

Reservoir computing based on

delay-dynamical systems

Lennert Appeltant

Promoters: prof. dr. Jan Danckaert, prof. dr. Ingo Fischer,
dr. ir. Guy Van der Sande

Report writer: prof. dr. Claudio R. Mirasso

Joint PhD
Vrije Universiteit Brussel

Universitat de les Illes Balears
May 2012

ii

Reservoir Computing based on Delay-dynamical Systems
PhD thesis by Lennert Appeltant
E-mail: Lennert.Appeltant@vub.ac.be

Vrije Universiteit Brussel
Pleinlaan 2
B-1050 Brussel
Belgium

Instituto de Física Interdiscplinar y Sistemas Complejos IFISC (UIB-CSIC)
Campus Universitat de les Illes Balears
E-07122 Palma de Mallorca
Spain

Proefschrift ingediend tot het behalen van de academische graad van Doctor
in de Ingenieurswetenschappen
Thesis submitted in partial fulfilment of the requirements for the academic
degree of Doctor in Engineering Sciences
Tesi presentada al Departament de Física de la Universitat de les Illes
Balears per optar al grau de Doctor en Física

Promoters: prof. dr. Jan Danckaert, prof. dr. Ingo Fischer, dr. ir. Guy Van
der Sande Jury members: prof. dr. ir. J. Tiberghien (chairman / Vrije Uni-
versiteit Brussel), prof. dr. ir. R. Pintelon (vice-chairman / Vrije Universiteit
Brussel), prof. dr. A. Nowé (secretary / Vrije Universiteit Brussel), prof. dr.
P. Colet (Universitat de les Illes Balears), prof. dr. L. Pesquera (Universidad
de Cantabria), prof. dr. S. Massar (Université Libre de Bruxelles), prof. dr.
ir. J. Van Campenhout (Universiteit Gent)

Print: Silhouet, Maldegem
© 2012 Lennert Appeltant
2012 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers
nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be
ISBN 978 90 5718 120 7
NUR 925 / 926 / 928
Legal deposit D/2012/11.161/056

All rights reserved. No parts of this book may be reproduced or trans-
mitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the author.

Acknowledgements

Writing an acknowledgement... How can I fulfill this job without forgetting
someone? So many interested people asked me how my PhD was progressing.
It was not always easy to explain that once again the simulation did not
work or that everything I had been claiming the last months was not entirely
correct because I had forgotten a square root somewhere... My PhD became
a project in which so many people were involved that I am doomed to forget
to mention someone. I could not have succeeded without the help of so many,
but I would like to give some special, personal thanks.
First, I want to express my gratitude to prof. Tiberghien, prof. Pintelon, prof.
Nowé, prof. Massar, prof. Colet, prof. Pesquera, and prof. Van Campenhout
for accepting to be part of my jury. Next, I want to explicitly thank my
promotors: prof. Jan Danckaert, prof. Ingo Fischer and dr. Guy Van der
Sande.
Jan, bedankt voor de kans die je mij gegeven hebt om te werken op een
onderwerp waarvan de wetenschappelijke output een lange tijd zeer hypo-
thetisch is geweest. Ik ben er me ten volle van bewust dat het feit dat ik
zolang kon doorwerken op dezelfde topic zonder enige vorm van publicatie te
danken is aan het feit dat jij het voor mij hebt opgenomen. Bedankt voor het
geloven in mij en mijn onderwerp, bedankt voor de fantastische werkomgev-
ing die je creëert voor al je doctoraatsstudenten. Dat alles in een aangename,
ongedwongen sfeer verliep, stimuleerde mij om te durven vragen, te zoeken,
te proberen. Kortom, alle ingrediënten die nodig waren om positief werk te
leveren waren in ruime mate aanwezig.
Ingo, many thanks for the scientific support, for the continuous interest in
what I was doing and of course for the wonderful time in Palma. I thank
you for putting your scientific shoulders under my research and for giving
me the opportunity to spend part of my PhD at IFISC in the Universitat de
les Illes Balears. I can only be grateful for the fact that someone with your

iv

scientific experience wanted to accept a project with someone who had not
proven anything yet. I will never forget the fruitful collaboration at work nor
the enjoyment of the wonderful island of Mallorca after working hours.
Guy, mijn grootste dankbetuiging gaat naar jou. Het is nu ongeveer 7
jaar geleden dat ik van jou ’vaste stof en stralingsfysica’ kreeg. Toen reeds
moedigde je me aan om voor fotonica te kiezen. Je was een fantastische the-
sisbegeleider en een uitmuntende doctoraatsbegeleider. Jouw betrokkenheid
bij dit project was intens voelbaar voor elke invalshoek van dit project. We
hebben bijna elke weekdag van de laatste 4 jaar samen gewerkt. Of het nu
ging om het uitdenken van een strategie, om te debuggen, om rapporten te
schrijven of om mijn laptop te herinstalleren, ik kon steeds voor alles bij jou
terecht. Jouw constructieve opmerkingen, jouw inzicht maar ook je richtli-
jnen op het vlak van communicatie zijn de wortels van het succes van deze
studie.
Irina, ik had als jonge student het geluk mee door jou opgeleid te worden.
Jouw enthousiasmerende werking is legendarisch. Het pumpernickel-virus
heeft zijn werk gedaan en kan nooit meer uitgeroeid worden. Oprechte dank
hiervoor.
One of the things I especially enjoyed about my PhD was the wide interna-
tional collaboration. Thanks to prof. Mirasso, prof. Pesquera, prof. Larger,
prof. Schrauwen and prof. Dambre for inviting me to their labs. It has been
a pleasure to work with you. Our scientific discussions, your help, your en-
couragements, my deepest respect for that. I appreciated a lot that I, as
a young beginner, was allowed to have a voice in your team of experienced
scientists. Many thanks to all the people I met on my trips: Miguel, Daniel,
Miguel-Angel, Konstantin, Jade, Xavi, Neus, Silvia, Clara, Ana, Romain,
Sergei, Yanne, Maxime. Thanks for helping me getting through the ups and
downs of reservoir computing.
Working on ’the 9th floor’ has been very valuable on a professional level,
but I especially appreciated the relaxed atmosphere. I thank you all for
your enthusiasm, your support and for the wonderful years. The renovations
have provided proof that working at TONA/APHY is great because of the
people. It did not matter whether our office was on the 9th, somewhere in a
student lab or even in the restaurant, the atmosphere was unforgettable. My
deepest gratitude goes to Otti, Gordon, Lendert, Lydia, Vincent, Werner,
Lilia, Sifeu, Modeste, Mulham, Guy I and Guy II, Stefano, Philippe, Lars,
Nicky, Stijn, Stefaan, Pierre, Tom, Diane, Jana and Amani for their true
friendship. Thank you for the scientifically completely irrelevant discussions.
It provided a nice counterpart for all the simulation results that should have
appeared on my computer screen, but did not.

v

Maybe also a small word of thanks to my own lap top. It needs to be said: it
led a life of it’s own and too early it decided to abruptly end our relationship...
A PhD comes with side-effects as well. Dragging around didactic material
made me meet Lucia in the elevator. Since that moment I come to the VUB
not only for pedagogical or scientific motives...
Niemand haalt de eindmeet zonder supporters. Het belang van een warm
nest kan niet overschat worden. Welke richting het op wetenschappelijk vlak
ook uitging, mijn trouwste fans, mijn ouders, mijn zus, Kevin, meter en de
Staessens clan in Eppegem bleven op post. Of het nu ging om logistieke
ondersteuning, even stoom afblazen of skype momenten vanuit Palma of
conferenties, het deed deugd en het hielp me weer verder op weg. Jullie
hebben me steeds gemotiveerd om het beste uit mezelf te halen.
Zovele jaren op de VUB leverde nog zoveel meer contacten op. Zowel in het
restaurant, de voetbalcompetetie, het fitnesscentrum, het Kultuur Kaffee, de
taallessen, de managementcursussen als in de Opinio kwam ik telkens weer
soulmates tegen die zin hadden om de dagelijkse kommer door te spoelen...
met een sprite. Aan allen, uitgesproken dank voor de memorabele momenten.
Thank you all for being persistent and encouraging, for believing in me, and
for the many precious memories along the PhD journey.

Summary

Walking down a street, we are constantly bombarded with sensory impres-
sions. Seeing a vehicle or a familiar face, hearing the ongoing traffic and
conversations, smelling the food stalls . . . All these external impulses in-
stantly produce massive neural activity in our brain, so that we recognize the
passing bus, a good friend or a car horn, or that the smell of freshly baked
waffles makes us hungry. We can see a blurry photo and still recognize the
scene in a fraction of a second, a task for which a computer takes minutes or
even hours. Today, except for mathematical operations, our brain functions
much faster and more efficient than any supercomputer. It is precisely this
form of information processing in neural networks that inspires researchers
to create systems that mimic the brain’s information processing capabilities,
in a way radically different from current computer based schemes. In this
thesis we propose a novel approach to implement these alternative computer
architectures, based on delayed feedback.
Time delays are intrinsic in many real systems. In engineering, time delays
often arise in feedback loops involving sensors and actuators. In photonic
systems, time delayed feedback plays an important role and arises due to
unwanted external reflections. On the one hand, time delays tend to destabi-
lize systems such as lasers, but, on the other hand, the chaotic output from
e.g. a laser with feedback can put into use e.g. in chaotic communication
systems. In general, systems subject to time-delayed feedback present a rich
variety of dynamical regimes. We propose to exploit the rich dynamics of
delayed feedback systems for information processing by using the system’s
transient response to an external input. We show that one single nonlinear
node with delayed feedback can replace a large network of nonlinear nodes.
Our results demonstrate that this new information processing architecture
performs well in a variety of tasks, such as e.g. time series prediction and
speech recognition.

viii

We investigate whether applying this simple architecture in electronic, opto-
electronic or photonics systems could potentially be more resource-efficient
as hundreds or even thousands of artificial neurons could be replaced by
only one single hardware node in combination with a delay line. Moreover,
the fact that delay is easily implementable, sometimes even unavoidable, in
photonic systems may lead to the implementation of ultra-fast all-optical
computational units. First we numerically investigate the architecture and
performance of delayed feedback systems as information processing units.
Then we elaborate on electronic and opto-electronic implementations of the
concept. Next to evaluating their performance for standard benchmarks, we
also study task independent properties of the system, extracting information
on how to further improve the initial scheme. Finally, some simple modifica-
tions are suggested, yielding improvements in terms of speed or performance.

Samenvatting

Wandelend door de straat word je aanhoudend gebombardeerd met indrukken
uit je omgeving. Het waarnemen van een voertuig, een bekend gezicht, het
horen van het verkeer en gesprekken van anderen, het ruiken van het voed-
sel in de eetstalletjes... Al die externe impulsen produceren instantaan een
indrukwekkende neurale activiteit in onze hersenen, om op die manier de
voorbijrijdende bus te herkennen, een goede vriend of een auto en om hon-
gerig te worden door het ruiken van de geur van versgebakken wafels. We
kunnen in een wazige foto vaak toch nog herkennen wat er op afgebeeld
staat en dat in een fractie van een seconde, een taak die voor een computer
verschillende minuten of misschien zelfs uren in beslag zou nemen, Op de
dag van vandaag, behalve voor zuiver wiskundige operaties, functioneert ons
brein veel sneller en vooral veel efficiënter dan eender welke supercomputer.
Het is juist die vorm van informatieverwerking in neurale netwerken die on-
derzoekers inspireert om systemen te creëren die het brein nabootsen op het
gebied van informatieverwerking, op een manier die radicaal verschillend is
van de aanpak van de huidige computerarchitecturen. In deze thesis stellen
we een nieuwe aanpak voor om deze alternatieve computerachitecturen te
implementeren, gebaseerd op vertraagde koppelingen.
Tijdsvertragingen zijn intrinsiek aanwezig in een grote verscheidenheid aan
systemen. In de toegepaste wetenschappen zijn vertragingen meestal afkom-
stig van terugkoppelingen van sensoren en actuatoren. Ook in fotonische
systemen speelt tijdsvertraging een belangrijke rol en kan ze veroorzaakt
worden door ongewilde reflecties. Terwijl aan de ene kant tijdsvertragingen
een destabilizatie van een systeem zoals een laser kunnen teweeg brengen,
kunnen ze aan de andere kant voordelig aangewend worden voor bv. chaos
communicatie d.m.v. chaotische lasers met terugkoppeling. In het algemeen
vertonen systemen die onderworpen zijn aan een tijdsvertraging een rijke va-
rieteit aan dynamische regimes. We stellen voor om gebruik te maken van die
rijke dynamica voor informatieverwerking door het transiente antwoord van

x

zo een systeem op een externe input aan te wenden. We demonstreren dat
een enkele niet-lineaire node met vertraagde terugkoppeling een heel netwerk
van niet-lineare nodes kan vervangen. Onze resultaten tonen aan dat deze
nieuwe architectuur voor informatieverwerking goed presteert voor verschil-
lende taken, zoals bv. het voorspellen van tijdreeksen en spraakherkenning.
We onderzoeken of het toepassen van deze simpele architectuur in elektron-
ica, opto-elektronica of fotonische system potentieel efficiënter zou zijn op
gebied van implementatie, aangezien honderden of zelfs duizenden artifi-
ciële neuronen vervangen kunnen worden door één fysiek aanwezige node
met een vertraagde terugkoppeling. Daarenboven kan het feit dat vertrag-
ing gemakkelijk implementeerbaar is, soms zelfs onvermijdelijk, in fotonische
systemen leiden tot een implementatie van ultra-snelle fotonische verwerk-
ingseenheden. Allereerst bestuderen we de architectuur en de performantie
van met vertraging gekoppelde systemen als informatieverwerkende compo-
nenten d.m.v. numerieke simulaties Daarna gaan we dieper in op een elek-
tronsiche en een opto-elektronische implementatie van het concept. Naast het
evalueren van de performantie op standaardtaken bekijken we ook taakon-
afhankelijke eigenschappen van het systeem en trachten we daaruit suggesties
af te leiden voor het verbeteren van die initiële configuratie. Uiteindelijk
stellen we enkele simpele modificaties voor die het systeem kunnen verbeteren
op het gebied van snelheid en performantie.

Resumen

Cuando caminamos por la calle nos bombardean constantemente multiples
impresiones sensoriales. Ver un vehículo o un rostro familiar, oír el tráfico
o las conversaciones, oler la comida en los puestos,. . . Todos estos impulsos
externos producen al instante una masiva actividad neuronal en nuestro cere-
bro para que así podamos reconocer el autobús que pasa, un buen amigo o el
claxon de un coche, o que el olor de los gofres recién hechos nos de hambre.
También podemos ver una foto desenfocada e immediamente reconocer la es-
cena en una fracción de segundo, una tarea para la cual un ordenador tarda
minutos o incluso horas. Hoy en día, excepto para operaciones matemáticas,
nuestro cerebro funciona mucho más rápido y eficientemente que cualquier
supercomputador. Es precisamente este tipo de procesamiento de la infor-
mación en redes neuronales el que inspira a investigadores a crear sistemas
que mimeticen las capacidades cerebrales de procesamiento, de manera to-
talmente diferente a los actuales esquemas basados en ordenadores. En esta
tesis proponemos un nuevo enfoque para implementar estas arquitecturas
de ordenador alternativas, basandonos en sistema con retroalimentación re-
trasada.
La aparición de un retraso temporal es intrínseca a muchos sistemas reales.
En ingeniería, este retraso temporal surge generalmente en lazos de retroal-
imentación que implican sensores y accionadores. En sistemas fotónicos,
la retroalimentación retrasada temporalmente juega un papel importante y
surge debido a reflexiones externas indeseadas. Por una parte, los tiempos
de retraso tienden a desestabilizar sistemas con láseres y pueden llegar a ser
un problema. Por otra parte, la emisión caótica de un láser con retroali-
mentación, puede ser utilizada en sistemas de comunicaciones caóticas. En
general, los sistemas sujetos a retroalimentación retrasada temporalmente
presentan una amplia variedad de regímenes dinámicos. Proponemos ex-
plotar esta dinámica de los sistemas de retroalimentación retrasada para el
procesamiento de información utilizando la respuesta transitoria del sistema

xii

a una entrada externa. Mostramos que un simple nodo no-lineal con retroali-
mentación retrasada puede reemplazar una red con un gran número de nodos
no-lineales. Nuestros resultados demuestran que esta nueva arquitectura de
procesamiento tiene un buen rendimiento en una variedad de tareas, como
por ejemplo, predicción de series temporales y reconocimiento del habla.
Investigamos si la aplicación de esta simple arquitectura en sistemas electróni-
cos, opto-electrónicos o fotónicos podría ser potencialmente más eficiente en
términos de puesta en práctica, ya que cientos o incluso miles de neuronas ar-
tificiales podrían ser reemplazadas por una realización física con único nodo
no-lineal y una línea de retraso. Además, el hecho de que el retraso es fá-
cilmente implementable en sistemas fotónicos, incluso inevitable en ciertas
ocasiones, puede llevar a implementar unidades computacionales ultrarápi-
das completemante fotónicas. Primero investigamos numéricamente la arqui-
tectura y rendimiento de los sistemas con retroalimentación retrasada como
unidades de procesamiento de información. A continuación evaluamos imple-
mentaciones electrónicas y opto- electrónicas del concepto. Después de eval-
uar el rendimiento para tareas estándares, también estudiamos propiedades
del sistema independientes de la tarea, extrayendo información de cómo mejo-
rar el esquema inicial. Finalemente sugerimos algunas simples modificaciones
revelando mejoras en términos de velocidad o rendimiento.

Publications

Journal Publications

Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan Danck-
aert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio Mirasso,
Ingo Fischer. Information processing using a single dynamical node
as complex system. Nat. Commun. 2:468 doi: 10.1038/ncomms1476
(2011).
Laurent Larger, Miguel C. Soriano, Daniel Brunner, Lennert Appeltant, Jose
M. Gutierrez, Luis Pesquera, Claudio R. Mirasso, and Ingo Fischer. Pho-
tonic information processing beyond Turing: an optoelectronic im-
plementation of reservoir computing. Opt. Express, 20/3: 3241-3249,
(2012) .

Conference proceedings

Romain Martinenghi, Sergei Rybalko, Lennert Appeltant, Guy Van der Sande,
Jan Danckaert, Maxime Jacquot, Yanne Chembo, Laurent Larger. Dy-
namique integro-differentielle en longueur d’onde optique, a re-
tards multiples, pour le ”Reservoir Computing”. 14e Rencontre du
Non-lineaire Paris, Paris, France (2011).
Lennert Appeltant, Guy Van der Sande, Sergei Rybalko, Romain Marti-
nenghi, Maxime Jacquot, Yanne Chembo, Laurent Larger, Ingo Fischer, Jan
Danckaert. Computational performance of a single bandpass electro-
optic delay oscillator. European Conference on Lasers and Electro-Optics

xiv

and the XIIth European Quantum Electronics Conference, Munich, Germany
(2011).
Romain Martinenghi, Lennert Appeltant, Sergei Rybalko, Guy Van der Sande,
Jan Danckaert, Maxime Jacquot, Yanne Chembo, Laurent Larger. Multiple
delay nonlinear wavelength dynamics for photonic Reservoir Com-
puting. European Conference on Lasers and Electro-Optics and the XIIth
European Quantum Electronics Conference, Munich, Germany (2011).
Lennert Appeltant, Guy Van der Sande, Sergei Rybalko, Romain Marti-
nenghi, Maxime Jacquot, Yanne Chembo, Laurent Larger, Ingo Fischer, Jan
Danckaert. Computational performance of a single bandpass electro-
optic delay oscillator. Osnabruck Computational Cognition Alliance Meet-
ing on ”Natural Computation in Hierarchies”, Osnabruck, Germany (2011).
Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan Danck-
aert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio Mirasso,
Ingo Fischer. Single delay element as a computational unit. Interna-
tional Symposium on Nonlinear Theory and its Applications, Kobe, Japan
(2011).
Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan Danck-
aert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio Mirasso,
Ingo Fischer. Reservoir computing using a delayed feedback system:
towards photonics. Proc. Ann. Symp. IEEE/LEOS Benelux Chapter
2011, Ghent, Belgium, pp. 125-128,2011

Contents

1 Introduction 1

1.1 Learning vs programming . 1
1.2 Artificial neural networks . 4

1.2.1 Feedforward neural networks 5
1.2.2 Recurrent neural networks 5

1.3 Reservoir computing . 7
1.3.1 General concepts . 7
1.3.2 Applications . 10
1.3.3 Different views on reservoir computing 11

1.3.3.1 Machine learning 11
1.3.3.2 Neuroscience 11
1.3.3.3 Dynamical systems 12

1.4 Delayed feedback systems as reservoirs 13
1.4.1 Delayed feedback systems 13
1.4.2 Can delay systems be used as reservoirs? 16

1.4.2.1 Topology of the network approach 16
1.4.2.2 Topology of the delayed feedback approach . 18
1.4.2.3 An example: chaotic time series prediction . . 19

1.5 Overview of this thesis . 23

2 Single node with delay: input, training and testing 25

2.1 Single delayed feedback for reservoir computing 26
2.1.1 Basic setup . 26
2.1.2 Input driving . 26

xvi Contents

2.1.3 Interconnection structure 30
2.1.4 Training . 36

2.1.4.1 Determination of the weights 36
2.1.4.2 Overfitting 37
2.1.4.3 Unbalanced data sets 37
2.1.4.4 Framework for simulation and training 38

2.2 Benchmark tasks . 39
2.2.1 NARMA . 39
2.2.2 Isolated spoken digit recognition 41
2.2.3 Santa Fe laser data prediction 41
2.2.4 Sunspot prediction . 42

2.3 Conclusion . 44

3 Modeling an electronic implementation 45

3.1 Mackey-Glass delayed feedback oscillator 45
3.2 Experimental implementation 48
3.3 Results . 50

3.3.1 NARMA10 . 50
3.3.1.1 Numerically obtained performance 50
3.3.1.2 Experimentally obtained performance 52
3.3.1.3 Comparison with state of the art 52
3.3.1.4 Optimal virtual node separation width . . . 52

3.3.2 Santa Fe time series prediction 54
3.3.2.1 Numerically obtained performance 54
3.3.2.2 Comparison with state of the art 55

3.3.3 Isolated spoken digit recognition 55
3.3.3.1 Performance: numerical simulations and ex-

periments . 55
3.3.3.2 Speaker identification: numerical results . . . 56
3.3.3.3 Comparison with state of the art 58

3.3.4 Sunspot Prediction . 58
3.3.4.1 Numerically obtained performance 58

3.4 Conclusion . 59

4 Modeling an opto-electronic implementation 61

4.1 Experimental implementation 61

Contents xvii

4.2 Ikeda delayed feedback oscillator 66
4.3 Results . 68

4.3.1 NARMA10 . 68
4.3.1.1 Numerically obtained performance 68
4.3.1.2 Comparison with state of the art 69

4.3.2 Santa Fe laser data . 70
4.3.2.1 Numerically obtained performance 70
4.3.2.2 Experimentally obtained performance 70
4.3.2.3 Comparison with state of the art 72

4.3.3 Isolated spoken digit recognition 73
4.3.3.1 Numerically obtained performance 73
4.3.3.2 Experimentally obtained performance 73
4.3.3.3 Comparison with state of the art 76

4.4 Bandpass filtering . 76
4.4.1 NARMA10 . 78
4.4.2 Interconnection structure 80

4.5 Conclusion . 80

5 Task-independent properties of delayed feedback reservoirs 85

5.1 Separation property and kernel quality 86
5.1.1 Separation property . 86
5.1.2 Kernel quality . 87
5.1.3 Generalization property 88
5.1.4 Computational ability 90

5.2 Memory . 93
5.2.1 Memory capacity . 93
5.2.2 Memory quality . 98

5.3 Explaining performance: an example 99
5.4 Noise . 100

5.4.1 System noise . 100
5.4.2 Quantization noise . 102

5.5 Conclusion . 105

6 System modifications 107

6.1 Multiple delayed feedback . 107
6.1.1 Architecture . 107

0 Contents

6.1.2 Numerically obtained performance 108
6.1.2.1 Memory . 108
6.1.2.2 NARMA10 111

6.2 Network motifs . 115
6.2.1 Architecture . 115
6.2.2 Numerically obtained performance for NARMA10 . . . 115

6.3 Construction of an optimal mask 118
6.3.1 Concept . 118
6.3.2 Numerically obtained performance 120

6.3.2.1 NARMA10 120
6.3.2.2 Santa Fe laser data 123

6.4 Conclusion . 125

7 Conclusion and future outlook 127

7.1 What we accomplished... 127
7.2 Continuation of this work . 130

7.2.1 Integrated all-optical approach 130

References 133

1
Introduction

1.1 Learning vs programming

Novel methods for information processing are highly desired in our informa-
tion driven society. While traditional Von Neumann computer architectures
or Turing approaches [1] work very efficiently when it comes to executing
basic mathematical instructions, in terms of efficiency they run into trouble
for highly complex computational tasks such as, e.g., speech recognition or
facial recognition. Our brain functions in a different way and seems to be
optimally designed for these kinds of tasks. Walking down a street, we are
constantly fed with sensory impressions. Seeing a vehicle or a familiar face,
hearing the ongoing traffic and conversations, smelling the food stalls . . . All
these external impulses instantly produce large neural activity in your brain,
so that we can recognize the passing bus, a good friend or a car horn or that
the smell of freshly baked waffles makes us hungry.
When recognizing faces in a crowd, we are unaware that our brain not only
analyzes each trait, but it also classifies these faces and compares them with
known ones. Differentiating a tree from a car, the sound of a piano from
the vacuum cleaner are types of activity we do constantly. The neural net-
work system that constitutes our brain is constantly categorizing stimuli in
different patterns and using these structures to interpret reality. In this, the
human brain is very efficient. You can see a blurry photo and from that
partial image still recognize the scene in a fraction of a second, a task for
which a computer takes minutes or even hours. Today, except for mathemat-
ical operations, our brain functions much faster and more efficient than any
supercomputer.
It is precisely this form of information processing in neural networks that has
inspired researchers to create systems that mimic the brain’s information pro-

2 1 Introduction

cessing capabilities, radically different from current computer based schemes,
see Fig. 1.1. Although many fundamental aspects of the brain’s functioning
are still unknown, we can get inspiration from some insights or the architec-
ture of the brain. In Fig. 1.1(a) a Von Neumann computer architecture is
depicted. An analog input coming from the outside world is digitized and
subsequently processed by a preprogrammed computational unit. The in-
structions on how to treat the input bitstream are predefined in the program
and they are usually executed by a combination of logical blocks. After the
processing the output bitstream is converted back to an analog signal. In
Fig. 1.1(b) another approach is used to solve the task. Instead of a tradi-
tional Von Neumann architecture, a neural network that learns by examples
is used. For a considerable amount of problems it can be advantageous to
learn how to solve them instead of executing a set of preprogrammed instruc-
tions. Machine learning is the scientific discipline that focusses on designing
and implementing algorithms that allow to optimize learning behavior. The
’machine’ or in many cases the network is being fed with some examples of
possible inputs for the task to be solved. For a while the machine learns
how to interpret and how to classify different inputs into different categories.
When the learning phase is over, we can provide a previously unseen exam-
ple to the machine for processing. The unseen input can be interpreted as
long as it belongs to a general class of inputs that was present during the
training phase. The training data have an unknown probability distribution,
which can nevertheless reveal some underlying features when an appropri-
ate training algorithm is used to interpret the data. The difficulty relies in
the fact that not every single input pattern can be matched exactly with a
different target class, hence the system and the algorithm need to have the
capability to generalize. Consider for example the task where the idea is to
classify pictures of people into two categories: man or woman. Although in
most cases this should be an easy job for the human brain, formulating the
rules in order to program this is far from straightforward. A more feasible
approach consists of feeding examples to the system and providing it with the
correct solution. The system should extract the classification rules without
explicitly formulating them and then apply them to a test sample for which
the solution is not given by the supervisor. Different women have different
characteristics, but a well-trained system should be able to generalize them
into one class.
Learning algorithms can be supervised or unsupervised. The former means
that every input should be mapped to a certain target class, as defined by the
(human) supervisor, during the training phase. When applying unsupervised
learning there is no external control on the different categories of inputs to be
distinguished. The machine itself needs to discover different features in the
data during the processing, by identifying clusters of data inputs with similar

1.1 Learning vs programming 3

00101101 10111100

Analog Input Digital Input

Von Neumann/Turing Architecture
(programming)

Digital Output Analog Output

(a)

Analog Input

Network Architecture
(learning)

Analog Output

(b)

Input Output

Memory

Control unit Arithmetic
logic unit

Fig. 1.1: Von Neumann versus network architecture. (a) Von
Neumann architecture with pre-programmed instructions, executed by
logical blocks. (b) Network architecture with a neural network that
learns by examples.

4 1 Introduction

properties. For problems where an agent, this could, e.g., be a robot, needs
to interact with its environment, sometimes a technique called reinforcement
learning is used. When using this approach, the goal is to make an agent
follow a certain behavioral pattern in an environment, by rewarding him
for beneficial actions and punishing for wrong choices. Characteristic for
reinforcement learning is that a trade-off needs to be made, comparing long
term with short term decisions.
As mentioned before, a system that relies on learning by examples is the
human brain. In essence, the brain is a network of spiking neurons or nodes,
connected to each other within a certain configuration. Each neuron is an
electrically excitable cell that releases a spike when the voltage gradient over
its membrane reaches a certain threshold. Trying to mimic and to under-
stand the computational abilities of the brain, a lot of effort has been put
into creating artificial neural networks, which refers to models of the brain
structure, where the mathematical principle of what happens in the brain
is applied without necessarily having to go into the biological details of a
neuron. These structures allow for solving tasks such as pattern recognition,
time series prediction and system identification in a computationally efficient
way.

1.2 Artificial neural networks

The idea behind artificial neural networks is that a network is built from
neurons1 or nodes. These are in many cases treated as black boxes with a
certain nonlinear transfer function, sometimes referred to as activation func-
tion. Some or even all of these nodes are connected with each other, resulting
in a more global connectivity structure. A signal input is fed to the network
and, while propagating through the connected nodes, it gets (nonlinearly)
transformed. In the end, the signal reaches the output nodes, which send the
output signal to the outside world. The shape of this output signal is not only
dependent on the exact shape of the activation function of the nodes, but
it is also sensitive to the way the nodes are interconnected with each other.
Hence, by appropriately adapting the strength of the connections among all
the nodes, the shape of the resulting output signal can be manipulated. This
process is generally referred to as training and allows for a network to map
input values on their corresponding target values [2, 3, 4].

1The terminology ’neuron’ is not to be understood literally. It refers to the rough
functionality, but it is not necessarily biology-related.

1.2 Artificial neural networks 5

Input layer Output layer
Hidden layers

Fig. 1.2: Network topology: feedforward. A feedforward network
with several layers is shown. The information only travels forward
through the network and never enters in a loop.

1.2.1 Feedforward neural networks

In the most simple case, artificial neural networks consist of a structure in
which no internal loops can be found, meaning that the propagating sig-
nal will never pass the same neuron twice, as depicted in Fig. 1.2. These
structures are called feedforward neural networks and can be trained using
linear algorithms such as backpropagation until the examples are correctly
classified or a stopping criterion is satisfied [5]. All the neurons are divided
into separate sequential layers and the signal only goes forward, one layer
per discrete time step. The interaction between the neurons and the out-
side world only happens in the first and the last layer of the network. The
first layer is an input layer that injects the input signals into the network,
while the output layer provides the resulting signal coming out of the net-
work structure. The layers in between are sometimes referred to as hidden
layers. Because of their feedforward structure these kinds of networks are
not capable of processing temporal information. The only values available
for read out and interpretation of the signal are the ones in the last layer,
which only contain information about a single moment of the input history.
They were originally designed to process static spatial patterns of inputs.

1.2.2 Recurrent neural networks

When recurrent connections are added to the network, the training procedure
becomes drastically more complicated. Because of the recurrence within the
network, input data can remain present in the network for a much longer time
and a certain dynamical memory is created. Then, the state of the network

6 1 Introduction

Input layer

Fig. 1.3: Network topology: recurrent. A recurrent network is
shown. Some connections couple the signal back to nodes belonging
to previous layers, therefore making the layer structure obsolete.

does not only depend on the current input value, but also on the past one(s).
The network is a dynamical system, the state of which can possibly depend
on all previous input values that were ever presented to the system. This
enables the processing of temporal information, necessary for tasks such as
speech recognition, time series prediction etc. In recurrent neural networks,
splitting up the system into different layers makes less sense since the signals
can, in principle, endlessly loop around through all layers of the network.
Even the output nodes can be fed back to the previous layers. An example
of a recurrent network is shown in Fig. 1.3.

While training a feedforward network is a relatively easy task, doing this
for a recurrent network is much harder. For a feedforward network a linear
training algorithm, such as a least squares fit, can be used to determine the
weights for all the connections. The training of a recurrent neural network
becomes highly nonlinear and requires a lot of computational power. It does
not even necessarily converge. It is exactly this problem that is avoided in
the recently introduced concept of reservoir computing. The output layer is
explicitly separated from the rest of the network and only the connections
from the network to the output layer are trained. The connections within
the network itself remain unaltered. By using this procedure, the training
becomes linear. The untrained network implements a transformation of the
input, which can be interpreted by the output layer using linear algorithms.

1.3 Reservoir computing 7

1.3 Reservoir computing

1.3.1 General concepts

Reservoir computing [6, 7, 8, 9, 10, 11, 12] is a recently introduced, bio-
inspired, paradigm in machine-learning. With this approach, state-of-the-art
performance has been found for processing empirical data. Even for tasks
that are deemed computationally hard, such as chaotic time series prediction
[9], or speech recognition [13, 14], amongst others, good results are obtained
with a computationally efficient process. The main inspiration underlying
reservoir computing is the insight that the brain processes information by
generating patterns of transient neuronal activity excited by input sensory
signals [15]. The electrical discharges of billions of neurons are organized
in such a way that our brain can deliver the correct response to an external
stimulus in a very short time. An analogy that is often brought up by the
machine learning community is the one with waves emerging in a bucket
of water when small pebbles are thrown into it. With the naked eye it
might be tricky to make an estimation on the weight of the pebbles. The
key idea is to transform this original question to another one that is much
easier to solve. When the pebbles are thrown into a bucket of water wave
patterns will emerge. The wave is a transient phenomenon because if no
more perturbations are introduced, eventually it will fade out. By studying
the wave pattern, one could deduce where the pebble hit the water surface or
when it happened. The magnitude of the wave could even give an indication
about the size and weight of the stone or about the velocity with which it
was thrown. The water serves as a reservoir that will not solve the original
problem, but it translates it into another form, allowing other methods to be
used to interpret the information. Although just an analogy, the bucket of
water provides an insight into some of the crucial elements of a potentially
successful reservoir.
The objective of reservoir computing is to implement a specific nonlinear
transformation of the input signal or to classify the inputs. Classification
involves the discrimination between a set of input data, e.g., identifying fea-
tures of images, voices, time series, etc. In order to perform the task, neural
networks require a training procedure. Since recurrent networks are notori-
ously difficult to train, they were not widely used until the advent of reservoir
computing. Another layer is added and the only part of the system that is
trained are the connections from the reservoir to this extra layer. Thus, the
training does not affect the dynamics of the reservoir itself. The situation is
depicted in Fig. 1.4.

8 1 Introduction

Input layer Output layerReservoir

Fig. 1.4: Network topology: reservoir computing. A reservoir
computing network is shown. The reservoir is a recurrent network,
explicitly separated from the output layer.

To efficiently solve its tasks, a reservoir should satisfy several key proper-
ties. Firstly, it should nonlinearly transform the input signal into a high-
dimensional state space in which the signal is represented. In machine learn-
ing this is achieved through the use of a large number of reservoir nodes
which are connected to each other through the recurrent connections of the
reservoir. In practice, traditional reservoir computing architectures employ
several hundreds/thousands of nonlinear reservoir nodes to obtain good per-
formance. In Fig. 1.5, we illustrate how such a nonlinear mapping to a
high-dimensional state space facilitates separation (classification) of states
with the example of an XOR. Consider the situation depicted in Fig. 1.5(a).
Two binary input variables, x and y, lead to a target that corresponds to
an XOR logical function. If x and y both have the same value this results
in a 0, represented by a star. If x and y have different values, the result
is a 1, represented by a sphere. The goal is to separate the red stars from
the yellow spheres, but this cannot be achieved with one straight line. If
this would have been the case, the problem would have been linearly sepa-
rable. Linearly separable problems are regarded as easy, since they can be
solved with a linear training algorithm. When smartly mapping this prob-
lem from a two-dimensional space onto a three-dimensional one, the nature
of the separability changes. In Fig. 1.5(b) both variables kept their initial x-
and y-positions, but the yellow spheres were given a different position along
the z-axis compared to the red stars. It suffices to introduce one straight
plane to separate the two types of variables. The 2D plane in 3D space is
the equivalent of a straight line in 2D space. The nonlinear transformation
to high-dimensional space does not construct the hyperplane itself, but it
allows its existence by reshaping the nonlinear separation problem onto a
linear one. Reservoir computing implements this idea: the input signal is

1.3 Reservoir computing 9

x

y

10

1

0

x

y
z

10

1

0

(a) (b)

Fig. 1.5: Illustration of linear separability. In (a) The XOR problem
in a two-dimensional input space: a 0 corresponds to a star and a 1
to a sphere. The yellow spheres and the red stars cannot be separated
by a single straight line. (b) With a nonlinear mapping into a three-
dimensional space the spheres and stars can be separated by a single
linear 2D plane. Figure taken from Appeltant et al. [17].

nonlinearly mapped into the high-dimensional reservoir state represented by
a large number of nodes. It can be shown that, the higher the dimension of
the space is, the more likely it is that the data become linearly separable, see
e.g. [16] .
Secondly the dynamics of the reservoir should be such that it exhibits a
fading memory (i.e., a short term memory): the reservoir state is influenced
by inputs from the recent past, but it is independent of the inputs from the
remote past. This property is essential for processing temporal sequences
(such as speech) for which the history of the signal is important. Additionally,
the results of reservoir computing must be reproducible and robust against
noise. For this, the reservoir should exhibit sufficiently different dynamical
responses to inputs belonging to different classes. At the same time, the
reservoir should not be too sensitive: similar inputs should not be associated
to different classes. These competing requirements define when a reservoir
performs well. Typically reservoirs depend on a few parameters, which must
be adjusted to satisfy the above constraints. Experience shows that these
requirements are satisfied when the reservoir operates (in the absence of
input) in a steady regime. However, many aspects of dynamics leading to
good performance are not yet known. For the reader interested in a more
in-depth presentation of reservoir computing, we refer to the recent review
articles [18, 19, 20, 21].

10 1 Introduction

Fig. 1.6: Reservoir computing applications. (a) Modeling the
movements of a robot arm based on sensory inputs, picture by [40]
(b) Predicting and explaining traffic jam situations, picture by [41]
(c) Speech recognition, picture by [42] (d) Handwriting recognition,
picture by [43].

1.3.2 Applications

Nowadays, applications of neural networks are found in a large variety of
fields. They are very commonly used in robotics [22, 23, 24, 25, 26, 27, 28, 29]
where the main goal is usually to induce a movement after a sensory input.
While accurate models exist to organize the movement in a traditional way,
these often lack the flexibility to be used in a practical implementation of the
robot. Some sensors might have slightly different parameters than the ones
used in the model, or some parts of the robot design might simply be un-
known. Neural networks are more suitable to estimate parameters from the
system’s behavior itself. Also, in all kinds of pattern recognition neural net-
works represent the state-of-the-art. They are used for automatic detection
of credit card fraud [30], optical character recognition [31, 32] or grammar
modeling [33]. Furthermore, reservoir computing has been contributing to
speech recognition [17, 13, 34, 35, 36], noise modeling [9] and the generation
and prediction of chaotic time series [37, 38, 39]. While numerous numerical
implementations of this concept exist, competitive technical implementations
are still scarce.

1.3 Reservoir computing 11

1.3.3 Different views on reservoir computing

1.3.3.1 Machine learning

From the viewpoint of machine learning, the techniques used in reservoir
computing are related to those implemented in support vector machines,
originally introduced in the nineties by Vapnik [44]. Support vector machines
have proven to be able to attain state-of-the-art performance on a number
of tasks. They also rely on a mapping of a low-dimensional input onto high-
dimensional states with the goal to construct a hyperplane that separates
different classes of data. The implementation, however, is fundamentally
different. The main difference with reservoir computing relies in the exact
realization of the high-dimensional mapping. While in reservoir computing
the mapping is explicit -the dynamical response resulting in the reservoir
states-, in support vector machines the high-dimensional space does not need
to be formulated explicitly. A technique called the kernel trick is employed
[45] and standard kernels are used for the mapping. A second difference
is that in reservoir computing the mapping onto feature space is explicitly
temporal. This is implemented by reservoirs exhibiting fading memory.
Another class of traditional computation machines closely related to reservoir
computing are Hopfield networks [46, 47]. This approach is based on a set
of attractors each one representing a certain class in which inputs can be
categorized. Each state of the network can be related to a scalar value
referred to as the energy of the network. If the activation functions of some
nodes in the network are randomly updated, the network will evolve to a new
state that corresponds to a local minimum of the energy function. Training
the network means lowering the local minima of interest. When a perturbed
input is fed to the system, it will be related to one of the local minima, based
on similarity. A disadvantage of this concept is that it lacks the ability to
process information at any moment in time. When a certain input is fed
to the network, the state has to evolve to an attractor and this attractor
represents the final computation result. No information is extracted from
the evolution in state-space towards a certain attractor, only the final result
is interpreted. In the case of reservoir computing also the excursion in phase-
space to reach the new steady state is used to process the input. The states
of the nodes represent transient behavior and they contain information of
both the present and past inputs, thus creating memory.

1.3.3.2 Neuroscience

From the viewpoint of neuroscience, reservoir computing aims at mimicking
the way the brain does information processing. In this context, reservoir

12 1 Introduction

computing assumes that the neurons are embedded in a complex network
whose intrinsic activity is modified by external stimuli. The persistent neu-
ronal network activity makes the information processing of a given stimulus
occur in the context of the response to previous excitations. The generated
network activity is then projected into other cortical areas that interpret or
classify the outputs. It was this bio-inspired view that motivated one of the
original reservoir computing concepts, the liquid state machine [12].

1.3.3.3 Dynamical systems

From the point of view of complex system studies, the reservoir can be re-
garded as a complex dynamical system that operates optimally in a certain
dynamical regime. Three basic properties, linked to the dynamical properties
of the network should be fulfilled for a network to perform as reservoir [12].
Firstly, different inputs should be mapped onto different reservoir states.
This is generally referred to as the separation property. Secondly, reservoir
states that are only slightly different should be mapped onto identical tar-
gets. If not, noise would suffice to map identical inputs onto different target
values. This is called the approximation property. Finally, fading memory is
desired. In many tasks, the information is stored in the temporal behavior of
the input (e.g. speech recognition). It does not suffice to process the present
input values, also previous values have to be taken into account. Usually,
only recent inputs are relevant while those from the far past do not need to
be taken into account. These three properties can be realized by the dynam-
ical system, provided that the system resides in a proper dynamical regime.
When the system operates in a chaotic regime, it is highly sensitive to small
input variations and therefore has very good separation properties. The sep-
aration might, however, become so high that the approximation property no
longer holds. In the reservoir community it is sometimes claimed that the
edge of chaos is an optimal operating point [18], since it offers a compromise
between a stable system, with good approximation properties and fading
memory, and a chaotic system, with excellent separation capability. This is
not always the case and we have identified the steady regime as appropriate
operating point, without input.
This viewpoint, relating reservoir computing to complex dynamics, suggests
that reservoir computing can be implemented in a wide variety of physical
systems, provided that separation, approximation and fading memory prop-
erties are fulfilled. This has led to a few proof-of-principle demonstrations
using different systems such as a bucket of water [48], the cerebral cortex
of a cat [49], a VLSI chip [50]. However, in all these implementations the

1.4 Delayed feedback systems as reservoirs 13

tasks performed have been rather simple and the performances did not reach
those of digital implementations.
In 2006, during a talk at the IAP doctoral school in Couvin (B), prof. J. Van
Campenhout (U. Gent) proposed the idea of investigating photonic imple-
mentations of reservoir computing [51]. This path has been actively pursued
in the 6th phase (2007-2011) of the IAP network “photonics@be” [52, 53]
by groups at U. Gent, ULB and VUB. In our work we will show that delay-
coupled optical systems represent excellent substrates for reservoir comput-
ers They allow achieving sufficiently high-dimensional dynamics and thus the
required mapping with only a few elements. When considering a practical
application, the delayed feedback system can be implemented using photon-
ics. Photonic systems have proven to be robust and well-controllable, offering
high processing speed and low power consumption. In order to succeed, we
have modeled several photonic systems to implement the reservoir computer.
In collaboration with several groups, numerical simulations have been com-
plemented by electronic and opto-electronic implementations, on which we
will report in Chapters 3 and 4.

1.4 Delayed feedback systems as reservoirs

1.4.1 Delayed feedback systems

Nonlinear systems with delayed feedback and/or delayed coupling, often sim-
ply put as ‘delay systems’, are a class of dynamical systems that have at-
tracted considerable attention, because they arise in a variety of real life
systems [54]. They are commonly found in, e.g., traffic dynamics due to
the reaction time of a driver [55], chaos control [56, 57] or gene regulation
networks where delay originates from transcription, translation, and translo-
cation processes [58]. Also in predator-prey models they occur with the
time delay representing a gestation period or reaction time of the predators.
Sometimes the delay in the system originates from the fact that the previous
number of predators has an influence on the current rate of change of the
predators [59]. In the brain, delay occurs because of the axonal conduction
delay between two neurons [60]. Remote cerebral cortical areas are subject
to an entire series of these axonal conduction delays. The total connection
delay between these areas could even be tens of milliseconds, but still zero
time lag synchronization between them was observed [61, 62, 63]. Delay is
found in networks of semiconductor lasers [64] when the signal travels from

14 1 Introduction

one laser to the other. Whether it is through free space or via, e.g., an opti-
cal fiber, the light needs to cover a certain distance and that requires time.
In control systems the time-delayed feedback originates from the fact that
there is a finite time between the sensing of the information and the subse-
quent reaction of the system under the influence of a control signal. Another
example taken from daily life is temperature control of the water coming
from a shower. Because of the fact that the water needs to travel a certain
distance along the tube between the heating element and the shower head
the response to any temperature adjustment of the system is not immediate
from the perspective of the user. This could lead to an unstable behavior
where the controller increases or decreases the temperature of the water too
much due to apparent non-responsivity of the system.
It has been shown that delay has an ambivalent impact on the dynamical be-
havior of systems, either stabilizing or destabilizing them [57], with possible
emergence of complex dynamics. This has been observed in e.g. biological
systems [65] or laser networks [66]. Often it is sufficient to tune a single pa-
rameter (e.g., the feedback strength) to access a variety of behaviors, ranging
from stable via periodic and quasi-periodic oscillations to deterministic chaos
[67]. In photonics a normally stable laser source can become chaotic when
subjected to feedback even for small feedback strengths. As an example we
take one of the most simple delay systems, given by the equation

ẋ(t) = −αx(t− τ), (1.1)

where we choose α = 0.2. In Fig. 1.7 we show the solution of this equation
for three different values of τ . In Fig. 1.7(a) τ = 7. When looking at the
time trace some damped oscillations can be observed in the transient before
the system reaches a constant output value. However, when the delay time
is increased to τ = 8, as in Fig. 1.7(b) the oscillations are no longer expo-
nentially damped. They increase in amplitude with time. For an even larger
τ , equal to 10, this behavior is confirmed with an even stronger growth in
amplitude. For this system the delay clearly has a destabilizing effect.
From the application point of view the dynamics of delay systems is gain-
ing more and more interest: whereas initially it was considered more as a
nuisance, it is now viewed as a resource that can be beneficially exploited.
It found applications in chaos-communication [68] and also the results pre-
sented in the next chapter are an example of benefitting from the delay in the
system [17, 69]. One of the simplest possible delay systems consists of a single
nonlinear node whose dynamics is influenced by its own output a delay time
in the past. Such a system is easy to implement, since it comprises only two
elements: a nonlinear node and a delay loop. When going to more complex

1.4 Delayed feedback systems as reservoirs 15

0 100 200 300 400 500
−3

−2

−1

0

1

2

Time

X

−5

0

5

10
x 10−4

X

0

0.2

0.4

0.6

0.8
x 10−3

X

(a)

(b)

(c)

Fig. 1.7: Destabilizing effect of delay. Time trace originating from
the system given by Eq. (1.1) (a) τ = 7, (b) τ = 8, (c) τ = 10.

16 1 Introduction

situations of several nonlinear nodes being coupled with delay, these systems
have successfully been used to describe the properties of complex networks
in general. They allow a better understanding of e.g. synchronization and
resonance phenomena [70, 71, 72]. Of particular interest for this thesis is
the situation in which only a few dynamical elements are coupled with delay
within a certain configuration, e.g., a ring of delay-coupled elements [66].
Mathematically, delay systems are described by delay differential equations
(DDE) that differ fundamentally from ordinary differential equations (ODE)
as the time-dependent solution of a DDE is not uniquely determined by its
initial state at a given moment. For a DDE the continuous solution on an
interval of one delay time needs to be provided in order to define the initial
conditions correctly. The general form of a DDE is given by

ẋ = F [x(t), x(t− τ)] .

with F any given linear or nonlinear function and with τ being the delay time.
Mathematically, a key feature of time-continuous delay systems is that their
state space becomes infinite dimensional. This is because their state at time
t depends on the output of the nonlinear node during the continuous time
interval [t− τ, t[. Another interpretation is that a delayed feedback equation
leads to a non-rational transfer function, resulting in an infinite number
of poles. The dynamics of the delay system remains finite dimensional in
practice [73], but exhibits the properties of high dimensionality and short-
term memory. Since two key ingredients for computational processing are
nonlinear transformation and high-dimensional mapping, delay systems are
suitable candidates.

1.4.2 Can delay systems be used as reservoirs?

1.4.2.1 Topology of the network approach

Reservoir computing is an implementation of a recurrent neural network
with the general idea that the network is split up into several parts. The
recurrent part is difficult to train, therefore another layer is added, which is
no more than a series of simple linear nodes. Traditional reservoir computing
implementations are generally composed of three distinct parts: an input
layer, the reservoir, and an output layer, as illustrated in Fig. 1.8.
The input layer feeds the input signals to the reservoir via fixed random
weighted connections. These weights will scale the input that is given to the

1.4 Delayed feedback systems as reservoirs 17

Random, fixed connections

Input layer Output layer

Trained weights

Reservoir Classes

1

2

3

Random, fixed input weights

Fig. 1.8: Classical reservoir computing scheme. The input is cou-
pled into the reservoir via a randomly connected input layer to the N
nodes in the reservoir. The connections between reservoir nodes are
randomly chosen and kept fixed, that is, the reservoir is left untrained.
The reservoir’ s transient dynamical response is read out by an out-
put layer, which are linear weighted sums of the reservoir node states.
Figure taken from Appeltant et al. [17].

nodes, creating a different input scaling factor for every individual node. The
second layer, which is called reservoir or liquid, usually consists of a large
number of randomly interconnected nonlinear nodes, constituting a recurrent
network. The nodes are driven by random linear combinations of input sig-
nals. Since every node state can be seen as an excursion in another state space
direction, the original input signal is thus projected onto a high dimensional
state space. The emerging reservoir state is given by the combined states of
all the individual nodes. Contrary to what happens in traditional recurrent
neural networks, the coupling weights in the reservoir itself are not trained.
They are usually chosen in a random way, globally scaled in order for the net-
work to operate in a certain dynamical regime. Under the influence of input
signals the network exhibits transient responses. These transient responses
are read out by the output layer via a linear weighted sum of the individual
node states, with no additional nonlinear transformation happening in the
last layer. The training algorithm can thus be drastically simplified to a
linear classifier.
The reservoir computing implementation we work with is closely related to
echo state networks [9]. In echo state networks the node states at time step
k are computed according to the following equation:

x(k) = f [W res
res · x(k − 1) +W res

in · u(k − 1)] . (1.2)

18 1 Introduction

In this equation, x(k) is the vector of new node states at time step k, u(k−1)
is the input matrix, which is considered at time step k− 1, for causality rea-
sons. The matrices W res

res and W res
in contain the (generally random) reservoir

and input connection weights. The weight matrices are scaled by multiplica-
tive factors in order to get good performance. For the nonlinear function f
often a sigmoidal function, e.g. f(x) = tanh(x) is chosen. In some cases,
feedback from the output to the reservoir nodes is also included. This is not
used in our approach2. In a simplified formulation, the output is a weighted
linear combination of the node states, a constant bias value and the input
signals themselves.

ŷ(k) = W out
res · x(k) +W out

in · u(k − 1) +W out
bias. (1.3)

In reservoir computing only the matrices in Eq. (1.3) are optimized (trained)
to minimize the mean square error between the calculated output values ŷ(k)
and the required output values y(k).

1.4.2.2 Topology of the delayed feedback approach

In this section we introduce the general principle how delay dynamical sys-
tems can perform efficient computation. We succeed in replacing an entire
network of connected nonlinear nodes by one single nonlinear node subjected
to delayed feedback. This approach does not only provide a drastic simpli-
fication of the experimental implementation of artificial neural networks for
computing purposes, it also demonstrates the huge computational processing
power hidden in even the simplest delay-dynamical system. In Fig. 1.9 the
delayed feedback equivalent of Fig. 1.8 is shown. Contrary to the parallel
input feeding to several nodes in the case of the neural network, in the de-
layed feedback system all inputs need to be injected in one nonlinear node.
To compensate for the loss of parallelism the input is pre-processed. This
pre-processing will from now on be referred to as the masking procedure.
It combines time-multiplexing of the input with imprinting different scaling
factors on the input ensuring that the system always resides in the transient
regime. It can be seen as a convolution between a masking function and the
input to be injected in the system. The entire process is explained in detail
in Chapter 2. After injection of the input into the node, the transformed
signal resides in the delay line for a time τ before it is re-injected into the
nonlinear node. Since the high-dimensionality of the system can be found

2When connections from the output layer back to the reservoir are included Eq. (1.2)
becomes: x(k) = f [W resres · x(k − 1) +W resin · u(k − 1) +W resout · ŷ(k − 1)] .

1.4 Delayed feedback systems as reservoirs 19

NL

Virtual nodes
Trained weights

Input layer Output layerReservoir Classes

1

2

3
θ

τpre-processing

Fig. 1.9: Delayed feedback reservoirs scheme. All input channels
are sent in via the one nonlinear node. Figure taken from Appeltant et
al. [17].

along the delay line, different states residing in it are regarded as the neurons
or nodes of the system. Because they do not represent physical nodes, we
refer to them as virtual nodes. The states they contain do represent a non-
linearly transformed version of the input, but the transformation happened
earlier in the real nonlinear node. The temporal separation of the different
virtual nodes, θ, which is in fact the interval with which we read out states
of the delay line, plays an important role for the performance of the system.
We elaborate on this in Chapter 2. The node’s transient dynamical response
is read out along the delay line by an output layer, which combines them
linearly in a weighted sum.

1.4.2.3 An example: chaotic time series prediction

To compare the approaches of traditional reservoir computing and our de-
layed feedback system, we demonstrate their function by means of a com-
monly used benchmark task: chaotic time series prediction. Without going
into detail about the exact data processing, we illustrate the different steps
and compare the performance. The test originates from a time series pre-
diction competition, organized as a survey to compare different time series
forecasting methods. At that time many new and innovative methods, such
as artificial neural networks, emerged to compete with standard prediction
methods. In May 1993 in Santa Fe, New Mexico the NATO Advanced Re-
search Workshop on Comparative Time Series Analysis was held to have an
overview of existing methods and their performance [74]. Several time series
coming from different systems were provided as a challenge:

• A physics laboratory experiment (NH3 laser)

20 1 Introduction

0 200 400 600 800 1000
0

50

100

150

200

250

300

In
te

ns
ity

 v
al

ue
s

Recorded data points

Fig. 1.10: Santa Fe input data. The input data series for the Santa
Fe time series prediction of a chaotic laser is shown. The y-value
denotes the measured intensity of the laser, while the x-axis indicates
the index of the recorded sample.

• Physiological data from a patient with sleep apnea

• Tick-by-tick currency exchange rate data

• A computer-generated series designed specifically for the competition

• Astrophysical data from a variable white dwarf star

• J. S. Bach’s last (unfinished) fugue from "Die Kunst der Fuge."

In this thesis we only consider the first set, coming from the chaotic laser ex-
hibiting dynamics related to Lorenz chaos. The input data series is depicted
in Fig. 1.10, with the laser intensity shown on the y-axis versus the index of
the sampled data point.
The goal is to make a one-step ahead prediction, based on the present value
of the system and this for all values of the time trace. In our training pro-
cedure several time series as the one depicted in Fig. 1.10 are fed to the
system, for the case of a neural network with many nodes and a delayed
feedback system, as examples. The systems will process the input data and

1.4 Delayed feedback systems as reservoirs 21

150 160 170 180 190 200
150

160

170

180

190

200

−30

−20

−10

0

10

Discrete input steps
150 160 170 180 190 200

150

160

170

180

190

200

−0.06

−0.04

−0.02

0

0.02

0.04

Discrete input steps
N

od
e

st
at

es

N
od

e
st

at
es

(a) (b)

τ
Fig. 1.11: Spatio-temporal representation Santa Fe. A zoom is
presented of the evolution of the reservoir states of nodes. Feeding in
1000 input steps leads to the construction of 400 reservoir states of
each 1000 steps. Here only 50 steps are shown for 50 nodes. The state
values are shown in color code. (a) network reservoir approach, (b)
delayed feedback reservoir.

nonlinearly transform it. In Fig. 1.11 the reservoir states are shown both for
a network of randomly connected nodes and for a delayed feedback system,
where we consider 400 states in both cases. One time series realization con-
sists of 1000 measurement points. Every point that is fed to the reservoir
leads to a change in all 400 node states of the reservoir, hence 400 series
of 1000 points are recorded and plotted as reservoir states. Both systems
rely on a different configuration, but for both the same nonlinearity type, a
Mackey-Glass nonlinearity, was taken, with identical parameters. This type
of nonlinearity will be extensively discussed in Chapter 3.
Both in the situation of Fig. 1.11(a) and the one of Fig. 1.11(b) 400 nodes were
used, but only 50 node states are plotted. In Fig. 1.11(a) the reservoir states
of a traditional network are depicted. The different node states are plotted
along the y-axis and their evolution in discrete time is given by moving
along the x-axis. Fig. 1.11(b) shows the states we can obtain with a delayed
feedback setup. What is plotted corresponds to the spatio-temporal mapping
carried out by the system [75]. On the y-axis one interval of τ is depicted,
containing all the states in the delay line (in Fig. 1.11(b) only a part of the
interval τ is shown). Moving along the x-axis gives the evolution in time of
the entire delay line. Every discrete input step in Fig. 1.11(b) corresponds
to a jump in time of τ . The general trend of the reservoir states is quite
similar for the network and the delayed feedback response. The fact that
they both respond in a similar way to identical inputs already gives a first
indication that both are able to extract information in an equivalent way.
The details of the input signal flowing through the different reservoirs and

22 1 Introduction

100 150 200 250

0

50

100

150

200

250

100 150 200 250

0

50

100

150

200

250
(a) (b)

In
te

ns
ity

 v
al

ue
s

Recorded data points

In
te

ns
ity

 v
al

ue
s

Recorded data points

Fig. 1.12: Target reconstruction Santa Fe. The crosses represent
the sample points of the original target series. The full line connects
the approximation of the target. (a) The network reservoir. (b) The
delayed feedback system reservoir.

the construction the reservoir states are not given in this introduction. In
Chapter 2 we elaborate on the exact procedure of feeding and pre-processing
the input.
In Fig. 1.12 the result of the training procedure on these reservoir states is
depicted. The crosses correspond to the original target and the black curve
is the approximation. Please note that the approximation of the target is
also a discrete time series with the same number of samples as the original
target. The full lines are present only for clarity and do not mean that we
only sampled some points of the input or target. The error, expressed as
a normalized mean square error, see Chapter 2, section 2.2.1, in this exam-
ple is 0.0651 for the network approach and 0.0225 for the delayed feedback
approach.
We have developed a way to drive and train these kind of delayed feedback
reservoirs and have achieved performance comparable to state-of-the-art dig-
ital numerical simulations of reservoir computing. Moreover, based on our
numerical results the first experimental implementations of delayed feedback
reservoirs have been realized by members within the PHOCUS consortium3.

3PHOCUS is an acronym and stands for: towards a PHOtonic liquid state machine
based on delay-CoUpled Systems. This research project, funded by the European Com-
mission within the Seventh Framework Programme (FP7) in the domain of Future and
Emerging Technologies (FET-Open), brings together seven groups from four European
countries. The first experimental implementation, an electronic setup, was realized by
dr. M.C. Soriano, prof. C.R. Mirasso and prof. I. Fischer at IFISC at the Universitat
de les Illes Balears in Palma de Mallorca. The second hardware setup, an opto-electronic
delayed feedback reservoir was accomplished by prof. L. Larger, dr. D. Brunner, dr. M.C.

1.5 Overview of this thesis 23

These implementations are, as far as we know, the first experimental reser-
voirs able to compete with numerical implementations of reservoirs in terms
of performance. Our results, providing the proof of principle, were published
in Nature Communications [17], and opened an entirely new range of pos-
sibilities to implement artificial neural networks in a resource-efficient way.
Delayed feedback systems are relatively easy to implement in electronics, and
even more so in photonic systems. Delayed feedback can be easily provided by
a fiber loop holding the light for a certain amount of time. In the meanwhile,
an opto-electronic extension of the originally electronic implementation has
been realized [69]. We elaborate on them in Chapter 3 and Chapter 4.

1.5 Overview of this thesis

The main goal of this thesis is to demonstrate that delay dynamical systems
can be used to successfully process information. We develop suitable meth-
ods to drive and train these systems and compare their performance with
conventional reservoir computing systems.

• In Chapter 2 we go into the details of how delay dynamical systems can
be used to perform reservoir computing. We elaborate on the masking
procedure required to pre-process the input data and we introduce a
formalization of the introduced interconnection structure between the
virtual nodes.

• In Chapters 3 and 4 two different nonlinearities, one of Mackey-Glass
type and the other of Ikeda type, are studied in terms of performance
by evaluating several benchmarks. We present both numerical and ex-
perimental results, demonstrating an electronic and an opto-electronic
implementation of the concept.

• Chapter 5 focusses on properties of the reservoir that are benchmark-
independent. By studying the memory and the computational ability
of a system, one is able to predict regions of good performance with
respect to the requirements of the used benchmark task.

Soriano, prof. C.R. Mirasso and prof. I. Fischer in the same lab. During my stays at
IFISC, I have had the opportunity to contribute to both experimental implementations.
In the meanwhile, also another opto-electronic implementation of reservoir computing was
realized at the ULB by a consortium of ULB and UGent. See Paquot et al. [76].

24 1 Introduction

• Next to the basic configuration of a delayed feedback system, several
modifications can be made in order to increase the system’s perfor-
mance. After studying the key properties of a reservoir configuration
in Chapter 5, we use this knowledge in Chapter 6 to compensate for pos-
sible weaknesses concerning certain tests. By creating multiple delayed
feedback structures we boost the memory capacity and by introducing
a band-pass filter we can widen the region of operation. Next to struc-
tural changes of the system comprising one nonlinear node, we present
first steps towards studying small network motifs.

2
Single node with delay: input,

training and testing

In Chapter 1 we already proposed delayed feedback systems as suitable can-
didates for reservoir computing inspired problem solving. Here, we show
that this intuition is correct and that, by adapting the reservoir computing
paradigm to dlelay systems, properties of simple dynamical systems can be
associated with information processing capabilities1. We go into detail on
how to drive and train these systems. Because of the radically different ar-
chitecture the input feeding requires a pre-processing procedure. We explain
how this approach allows us to create and optimize the interconnection struc-
ture of the virtual nodes present in the delay line. The states are collected
from the delay line and are interpreted by a training algorithm to construct
a desired target function. To evaluate the performance of the system we
introduce benchmark tasks that are commonly used in the field of machine
learning and which we will use to quantify the performance of the delayed
feedback system.
Parts of the work described in this chapter are published in Appeltant, L. et
al. Information processing using a single dynamical node as complex system.
Nat. Commun. 2:468 doi: 10.1038/ncomms1476 (2011).

1The presented architecture is the result of a tedious process of matching the require-
ments for a well-performing reservoir with the constraints imposed by a single node system.
We evolved stepwise to an approach were the dynamics of the system provide the necessary
ingredients for reservoir computing. The present approach came to life because of several
discussions with dr. G. Van der Sande, prof. J. Danckaert, prof. J. Dambre, prof. B.
Schrauwen, S. Massar, dr. M.C. Soriano, prof. C.R. Mirasso and prof. I. Fischer. For the
training of the system we based ourselves on an existing framework for traditional reser-
voir computing systems, the RCToolbox developed by the ELIS department in UGent.
Before these results were published some elements of the strategy were already mentioned
in [77, 78].

26 2 Single node with delay: input, training and testing

2.1 Single delayed feedback for reservoir comput-

ing

2.1.1 Basic setup

Delayed feedback systems possess key properties to be used as a reservoir,
nevertheless their architecture is radically different from the one of traditional
neural networks. While in networks of randomly connected nonlinear nodes
all nodes are accessible from the outside world, delayed feedback systems
have only one nonlinear element. In order to provide input to all the virtual
nodes that reside in the delay line one has to pass via the nonlinear node at
the beginning of the delay line. We start by presenting in Fig. 2.1(a) the basic
principle of our scheme. Within one delay interval of length τ we define N
equidistant points separated in time by θ = τ/N . These N equidistant points
represent the virtual nodes. The values of the delayed variable at each of the
N points define the states of the virtual nodes. The term virtual originates
from the idea that no additional transformation happens in the delay line, the
states are just time shifted. The separation time θ among virtual nodes plays
an important role and can be used to optimize the reservoir performance. The
exact choice of this value and the consequences will be explained thoroughly
in section 2.1.3.

2.1.2 Input driving

The virtual nodes are subjected to the time-continuous input stream u(t)
or time-discrete input u(k), see Fig. 2.2, which can be a time-varying scalar
variable or vector of any dimension Q. The feeding to the individual virtual
nodes is achieved by serializing the input using time-multiplexing. For this,
the input stream u(t) or u(k) undergoes a sample and hold operation to
define a stream I(t) which is constant during one delay interval τ , before
it is updated. In our approach, every time interval of τ represents another
discrete time step. The resulting continuous function I(t) is related to the
discrete input signal u(k) by I(t) = u(k) for τk ≤ t < τ(k + 1). This
procedure is illustrated in the first part of Fig. 2.2 and the function I(t) is
depicted in Fig. 2.1(i). Thus, in our approach, the input to the reservoir
is always discretized in time first, no matter whether it stems from a time-
continuous or time-discrete input stream. What is actually injected into the

2.1 Single delayed feedback for reservoir computing 27

Input Stream

{

mask, defining
N virtual nodes
of length θ

τi

ii

Response

τ
1

2 3

N-1
N-2

N-3

w3

w1

w2

wN-1

+

NL

tt

iii

t

τ

θ

N

wN

Output

I(t)

J(t)

x(t)

w

N-4

Fig. 2.1: Scheme of single nonlinear node reservoir computer.
Along the delay line N states, separated a distance θ from each other,
are chosen to represent virtual nodes. (i) 3 discrete samples are each
kept constant for a time interval τ to reach all the states in the delay
line. (ii) To create more diversity in the states a mask is superimposed
on the input. (iii) The transient response of the node. Figure taken
from supplementary material of Appeltant et al. [17].

28 2 Single node with delay: input, training and testing

u(k)

k
u(t)

t

I(t)

t

J(t)

t
J(t)

τ τ
θ

x(t-τ)

NL node

Fig. 2.2: Masking procedure. A time-continuous input stream u(t)
or time-discrete input u(k) undergoes a sample-and-hold operation,
resulting in a stream I(t) that is constant during one delay interval τ
before it is updated. The temporal input sequence, feeding the input
stream to the virtual nodes, is then given by J(t) = M · I(t). Figure
taken from Appeltant et al. [17].

nonlinear node is time-continuous again, but from this signal no distinction
can be made whether the original data points where coming from a discrete
or time-continuous signal.

The challenge of the input feeding gets even bigger when we want to introduce
a specific input connection structure. In accordance to what happens in
traditional neural network reservoirs, every single virtual node can have its
proper input scaling factor. In terms of a ‘classical’ reservoir setup, these
values correspond to the weights of the connections between the input layer
and the reservoir layer. In Eq.(1.2), which we repeat here for convenience,

x(k) = F [W res
res · x(k − 1) +W res

in · u(k − 1)] . (2.1)

These weights were referred to as W res
in , which is a random (N ×Q) matrix

(we recall that N is the number of virtual nodes and Q the dimension of the
input). Every input value sent to a node is firstly multiplied with the factor
related to that node. This is done to increase variability in the network.
However, the delayed feedback system comprises only one physically present
nonlinear node that drives all the virtual nodes in the delay line. Hence all

2.1 Single delayed feedback for reservoir computing 29

node states originate from the same transformation and there is no possibility
to implement a scaling factor in the virtual node itself. The only option is
to imprint coupling weights from the stream I(t) to the virtual nodes by
introducing a functionM(t), from now on referred to as the mask, as follows:
M(t) = W res

in,i for (i− 1)θ ≤ t ≤ iθ and M(t+ τ) = M(t).
This mask function is a piecewise constant function, constant over an interval
of θ and periodic, with period τ . The values of the mask function during
each interval of length θ are chosen independently at random from some
probability distribution. When the input signal is one-dimensional, the values
to be injected are given by

J(t) = I(t) ·M(t). (2.2)

The function J(t) is the product of the input and the mask function and is
represented in Fig. 2.1(a) panel (ii). When the input consists of Q values
Ij(t) , we generate a separate mask M j(t) for each input j and subsequently
they are all summed together. The value to be injected is then given by:

J(t) =
Q∑
j=1

Ij(t) ·M j(t) (2.3)

The resulting evolution equations are thus

ẋ(t) = F (x(t), x(t− τ) + γJ(t)) (2.4)

where γ is an adjustable parameter (usually referred to as input gain).
The output of the nonlinear node is depicted in Fig. 2.1(iii). Because of the
mask fluctuations in the input, the node is constantly in a transient regime.
To relate the states in the delay line to reservoir states corresponding with
an input step, the signal needs to be discretized again. Only then can we
map every discrete input step u(k) is onto a discrete target value ŷ(k) and
this for every k. The reservoir state comprises the virtual node states, i.e.
the values at the end of each interval θ in the delay line. For the ith virtual
node the kth discrete reservoir state is given by

xdiscri (k) = xcont (kτ − (N − i)θ) . (2.5)

Note that this definition implies that the virtual node state is always read
out at the end of the interval θ. Although this is the common procedure

30 2 Single node with delay: input, training and testing

throughout this dissertation, other choices of sampling position can also yield
valid results.

2.1.3 Interconnection structure

In the delayed feedback system with external input as described in the pre-
vious section, we can identify three time scales: the separation of the virtual
nodes θ, the delay time τ , and the timescale T of the nonlinear node. We
assume that the computational power is hidden in the diversity of the states,
therefore we want to keep the system in a transient regime all the time.
Therefore we predict good performance when the time scales are related by
θ . T � τ .
If T � θ , the nonlinear node reaches its steady-state for each virtual node.
In this case the reservoir state x(t) is only determined by the instantaneous
value of the input J(t) and the delayed reservoir state x(t − τ). There is
no coupling between virtual nodes and the diversity of the reservoir states
goes down. The behavior in this case is illustrated in Fig. 2.3. Fig. 2.3a
shows the injected input (blue) and the corresponding output of the nonlinear
node that is sent in the delay line (red). The part of the time trace shown
here corresponds to one time-multiplexed input value with a binary mask
imprinted on it. Because every mask value is kept constant long enough for
the system to reach the steady-state, all node states with equal mask values
are identical. Regardless of the number of virtual nodes that are tapped from
the delay line, with this mask only two different reservoir state values can be
used for computation. Fig. 2.3b illustrates the equivalent traditional network
of nodes in terms of connectivity. All nodes have a self-coupling, induced by
the delayed feedback, but they are not influenced by the states of the other
nodes in the network.
When θ < T , the state x(t) of the system at time t depends on the states of
the previous virtual nodes. The strength of this dependency is an exponen-
tially decaying function of the separation of the virtual nodes. However, when
T/θ is too large, the nonlinear system is essentially not capable of responding
to the instantaneous value of the feedback and input. Empirically we have
found that for N = 400 virtual nodes, T/θ = 5 is the best choice2. This leads
to significant coupling between virtual nodes, but without too much averag-
ing. A more rigorous approach is applied in Chapter 6, section 6.3 where
the effect of the number of nodes, given a certain virtual node separation, is
studied. The regime is illustrated in Fig. 2.4. In Fig. 2.4(a) the node output

2This optimal value of θ has been determined using the NARMA10 task, as illustrated
in Fig. 3.6 in Chapter 3, section 3.3.1.4.

2.1 Single delayed feedback for reservoir computing 31

8.85 8.9 8.95 9 9.05 9.1
x 103

−0.01

−0.005

0

0.005

0.01

Normalized time

X
, γ

J

(a) (b)

Fig. 2.3: Input time trace for large θ and corresponding inter-
action graph (a) Input time trace γJ(t) (blue) and oscillator output
x(t) (red) of our system when the time scale T of the nonlinear system
is much smaller than the separation θ of the virtual nodes T � θ.
Here we choose T/θ = 0.05. The values on both the x- and y-axis
are dimensionless. The mask M(t) takes two possible values. For this
choice of parameters, the system rapidly reaches a steady-state that is
independent of previous inputs. (b) In this regime the system behaves
like N independent nodes, each of which is coupled only to itself at
the previous time step. Figure taken from supplementary material of
Appeltant et al. [17]

32 2 Single node with delay: input, training and testing

1 3 5 7 9 11 13 15
−2

−1

0

1

2
x 10

−4

Normalized time

X
, γ

J

(a) (b)

Fig. 2.4: Input time trace for small θ and corresponding interac-
tion structure (a) Input time trace γJ(t) (blue) and oscillator output
x(t) (red) of our system when the time scale T of the nonlinear system
is larger than the separation θ of the virtual nodes T � θ. Here we
choose T/θ = 5. The values on both the x- and y-axis are dimension-
less. The mask M(t) takes two possible values. (b) In this case the
system does not have the time to reach an asymptotic value. There-
fore, the dynamics of the nonlinear node couples neighboring virtual
nodes with each other. Figure taken from supplementary material of
Appeltant et al. [17]

never leaves the transient regime. This significantly increases the richness of
the reservoir states. Since the state of one virtual node depends on the state
of the previous ones, because of inertia, the equivalent connectivity graph is
given by Fig. 2.4(b). All nodes still experience the self-coupling, but they are
also connected to adjacent nodes, with the connection weights exponentially
decreasing as we move further back in time.
This relation between the timescales can be used to establish a more formal
link between the traditional formulation of reservoir computing, such as given
in section 1.3.1 and the interconnection graphs presented in Fig. 2.3(a) and
2.4(b). In contrast to traditional reservoirs where all communication between
nodes takes place from one discrete time step to another, in our concept
interaction between nodes occurs through inertia of the nonlinear system
and through the feedback line. For this reason, the interaction graphs shown
in Figs. 2.3(b) and 2.4(b) do not quite correspond to the interconnection
matrix W res

res used for traditional reservoirs in Eq.(1.2). In what follows,
we will derive an approximate interconnection matrix W res

res describing the
coupling between virtual nodes processing information from different input
time steps. For simplicity of notation, in the following we normalize all times
with respect to the intrinsic time scale of the nonlinear system T , that is we

2.1 Single delayed feedback for reservoir computing 33

work in units where T = 1. In this dissertation the we consider nonlinear
equations of the form:

ẋ(t) = −x(t) + F [x(t− τ), J(t)] (2.6)

with F any nonlinear function and J(t) given by Eq.(2.2). We recall that
J(t) is constant over each segment with duration θ and equals win,iu(k) over
the segment containing virtual node i, with win,i the specific input scaling
factor of node i. Assuming a constant value of F [x(t− τ), J(t)] during the
duration θ, solving Eq.(2.6) yields:

x(t) = x0e
−t +

(
1− e−t

)
F [x(t− τ), J(t)] (2.7)

where x0 is the initial value at the beginning of each interval θ, i.e., the value
for the previous virtual node. In particular, the values of the virtual nodes
are given by Eq.(2.7) with t replaced by θ. Now returning to the discrete
time of input signal u(k), the state of the ith virtual node (i ∈ [1, N]) is
reached after a time θ , denoted by xi,k . The input to virtual node i at time
step k equals win,iuk. Eq.(2.7) can be written as

x1,k = xn,k−1e
−θ +

(
1− e−θ

)
F (x1,k−1, win,1uk)

...

xi,k = xi−1,ke
−θ +

(
1− e−θ

)
F (xi,k−1, win,iuk) (2.8)

...

xn,k = xn−1,ke
−θ +

(
1− e−θ

)
F (xn,k−1, win,nuk)

where θ is the separation of the virtual nodes. This equation allows us to
recursively compute each virtual node state at time step k only as a function
of the input at the same time step k and virtual node states at time step
k − 1:

xi,k = Ωixn,k−1 +
i∑

j=1
∆ijF (xj,k−1, win,juk) (2.9)

34 2 Single node with delay: input, training and testing

20

15

10

5

1
Vi

rtu
al

 n
od

e
nr

1 5 10 15 20
Virtual node nr

0.1
0.3

0.9
0.7
0.5

θ = 2

20

15

10

5

1

Vi
rtu

al
 n

od
e

nr

1 5 10 15 20
Virtual node nr

0.09
0.27

0.81
0.63
0.45

θ = 0.2

Fig. 2.5: Analytical interaction graphs for large and small θ In-
teraction graphs for different virtual node separation where we plot the
coefficients Ωi and ∆ij of Eq.(2.9) as a matrix using color coding. For
large values of θ (left), the diagonal elements are significantly larger
than all others, but when θ decreases (right), the exponential tail of
the off-diagonal elements and also the connection to the last virtual
node of the previous input step become dominant. Figure taken from
supplementary material of Appeltant et al. [17]

with

Ωi = e−iθ,

∆ij =
(
1− e−θ

)
e−(i−j)θ, with i ≥ j.

This equation is our analogue of Eq.(1.2), representing classical reservoirs
and it explicitly describes the state coupling between consecutive time steps.
However, it differs from traditional reservoirs because the nonlinear functions
are applied to the states before the summation is taken. The interaction
topology encoded in Eq.(2.9) is similar to that in the recently proposed cycle
reservoir [79]. Figure 2.5 illustrates this interaction topology by showing in-
teraction strength matrices for two values of θ. The coefficients Ωi correspond
to the values found in the last column, while the diagonal and off-diagonal
elements are given by ∆ij . In terms of traditional reservoirs, this can be
related to W res

res .
The strongest assumption in this analytical derivation is the fact that the
function F is treated as a constant value over the interval θ. To verify whether

2.1 Single delayed feedback for reservoir computing 35

5 10 15 20
20

15

10

5

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 10 15 20
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

20

15

10

5

1

(a) (b)

Vi
rtu

al
 n

od
e

nr

Vi
rtu

al
 n

od
e

nr
Virtual node nrVirtual node nr

θ = 2 θ = 0.2

Fig. 2.6: Numerical interaction graphs for large and small θ In-
teraction graphs for different virtual node separation where we plot the
coupling strength between the virtual nodes as a matrix using color cod-
ing. For large values of θ (left), the diagonal elements are significantly
larger than all others, but when θ decreases (right), the exponential
tail of the off-diagonal elements and the also the connection to the last
virtual node of the previous input step become dominant.

this approximation is valid we perform a numerical check. While running the
reservoir for some random input samples we perturb one of the virtual nodes
with a pulse of amplitude 1 and observe how this perturbation is being passed
on to other virtual nodes. In this numerical experiment we choose a Mackey-
Glass nonlinearity type to fulfill the role of the function F . For further details
on this particular nonlinearity type we refer to Chapter 3 where the Mackey-
Glass oscillator is used for an electronic implementation of the single node
delayed feedback reservoir. Fig. 2.6 shows the interaction strength matrices
obtained from numerical simulations. The scaling is expressed in arbitrary
units since the obtained values depend on the strength of the pulse and the
exact shape of the nonlinear transfer function.

Qualitatively, a confirmation of the analytical result is found. For large
values of θ (θ = 2) the self-feedback is the strongest coupling contribution
for all virtual nodes. This results in a strong main diagonal in Fig. 2.6(a).
When setting θ to a small value (θ = 0.2) the effect of the inertia becomes
more important and the off-diagonal elements are more pronounced. Also
the coupling with the last virtual node (last column) is strongly present.

36 2 Single node with delay: input, training and testing

2.1.4 Training

The reservoir states themselves are not the desired outcome of the entire
system. A training algorithm assigns an output weight to each virtual node,
such that the weighted sum of the states approximates the desired target
value as closely as possible:

ŷ(k) =
N∑
i=1

wi · x
[
kτ − τ

N
(N−i)

]
,

with wi the weight assigned to the node state of virtual node i, x the output
of the nonlinear node and ŷ the calculated approximation of the target. the
values of the wi are determined by a linear training algorithm. The training
of the read-out follows the standard procedure for reservoir computing [6, 9].
The testing is then performed using previously unseen input data of the same
kind of those used for training.

2.1.4.1 Determination of the weights

During the whole process, all weight matrices in Eq.(1.2) remain unchanged.
The determination of optimal weight values, the process referred to as train-
ing, can be performed either in one-shot (offline) learning or by gradually
adapting the weights (online learning). The former approach has been ap-
plied in our work. It consists of driving the reservoir with a sufficient number
of input samples and recording the node states for each time step. For N
nodes and k time steps, the result is a (N × k)-dimensional reservoir state
matrix. To this matrix, we add a constant signal to be able to generate a bias
for the required output signal. We will refer to the resulting ((N + 1) × k)
matrix as S, and to the concatenation of all readout weight matrices as W ,
being a R× (N + 1) matrix, where R is the number of outputs. y designates
the R×k matrix corresponding to the desired output. The aim is to minimize
the mean square error ‖ WS − y ‖2. This can be obtained by choosing

W =
(
yS†

)T
(2.10)

Here † denotes the Moore-Penrose pseudo-inverse[80], which allows to avoid
problems with ill-conditioned matrices. After the training stage, the perfor-
mance of the system is evaluated by applying previously unseen input signals
to the reservoir (the testing stage).

2.1 Single delayed feedback for reservoir computing 37

2.1.4.2 Overfitting

In order to avoid overfitting to the training data, regularization is commonly
used. This is a technique to avoid complexity by implicitly or explicitly
penalizing models with a large number of parameters. Regularization is
performed either by adding some Gaussian noise to the node states during
training, or by using so-called Tikhonov regularization or ridge regression,
which minimizes ‖ WS − y ‖2 + ‖ λW ‖2 instead. The second term serves
the purpose of keeping the weights as small as possible, while still minimizing
the error. Smaller weights make the system less sensitive to the specific shape
of a training example, allowing a different realization of the same input class
to be mapped into the same target category. Both approaches can be used
and are expected to yield equivalent results [81]. Regularization complicates
the training because the parameter λ, or if Gaussian noise is added in the
training procedure, the amplitude of the noise, needs to be optimized first.
Therefore, yet another data set is used than the ones used in training and
testing.

2.1.4.3 Unbalanced data sets

When a problem consists of a series of inputs that should be categorized into
their corresponding target classes, the problem might be unbalanced. This
refers to the fact that more examples are present from one class than from
the other. When considering a purely binary problem - let’s say deciding
whether a certain piece of fruit is an apple or an orange - this corresponds
to the situation where there are more pieces of one fruit than of the other.
However, the problem might also occur in a multi-class situation, even when
all classes have an equal number of elements. In that case the definition of the
classifier becomes of importance. When going back to the fruit example, this
corresponds to havingM apples, M oranges andM lemons. Even though all
the classes haveM examples, the set could still be unbalanced when multiple
classifiers are used. There is no problem when one classifier maps all examples
directly on their target. However, in some cases, including the isolated spoken
digit recognition used in this thesis, many different classifiers will be defined,
each one stating whether a particular piece of fruit is a positive (is a member
of) or a negative (is not a member of) example for a particular class. Hence
for the apple-case there will be M positive examples and 2M negative ones.
The unequal number of examples for both decision possibilities will cause the
linear hyperplane that separates the two categories in feature space to shift
closer to the class with many examples. Ideally, the hyperplane should lie in
the middle between the realizations of the two classes. A technique to avoid
this problem is Fisher relabeling [82], where for a two-class case the positive

38 2 Single node with delay: input, training and testing

x

y

Fig. 2.7: Fisher relabeling. In the case of an unbalanced dataset the
separating hyperplane tends to shift towards the class with the most
examples present in the dataset. By relabeling the data it is possible
to construct a separation closer to the ideal separation line.

and negative targets {−1, 1} are replaced by
{
n1+n2
n1

,−n1+n2
n2

}
, with n1 the

number of examples of class 1 and n2 the number of realizations belonging to
class 2. This formula can be extended for multiple classes. By introducing
this scaling the unbalance is compensated for and the separating hyperplane
shifts more to the middle between the two classes.

2.1.4.4 Framework for simulation and training

For performing numerical simulations that evaluate the performance of de-
layed feedback systems we can distinguish two major parts. The first part
consists of a collection of functions to integrate delayed feedback systems
with external input driving. In this dissertation we use a simple Euler or
improved Euler integration algorithm, but other methods suitable for delay
systems exist. The simulation code preprocesses the input as described above
and simulates the reservoir states. When these reservoir states have been gen-
erated, they are sent to the second part: training. All training methods and
mechanisms we use are independent of the reservoir configuration and they
rely on the discrete time reservoir states. We analyzed and adapted existing
training methods present in the reservoir computing toolbox, RCToolbox in
Matlab v1.0., developed by the ELIS department in Ghent University [83].

2.2 Benchmark tasks 39

2.2 Benchmark tasks

To give an indication on the processing power of a reservoir a wide range
of benchmark tasks are available. Each of these tasks requires different key
properties to make a correct estimation of the target function. While some
are strongly dependent on good linear memory for good performance, others
require a strong nonlinear transformation. In this dissertation we limit our-
selves to four benchmarks: NARMA, Santa Fe laser data series prediction,
sunspot prediction and isolated spoken digit recognition3.

2.2.1 NARMA

The NARMA task is one of the most widely used benchmarks in reservoir
computing. It is an acronym for Non-Linear Auto-Regressive Moving Average
and was originally introduced in [84]. Later, it has been used in many other
publications in the context of reservoir computing, for instance in [85, 79].
For the NARMA task, the input u(k) of the system consists of scalar random
numbers, drawn from a uniform distribution in the interval [0, 0.5] and the
target y(k + 1) is given by a recursive formula. In literature, two versions
frequently occur: NARMA10 and NARMA30, with the number at the end
referring to the order of the system to be identified. For NARMA10 the
system is defined as

yk+1 = 0.3yk + 0.05yk
[9∑
i=0

yk−i

]
+ 1.5ukuk−9 + 0.1 (2.11)

and for NARMA30 the equation is given by

yk+1 = 0.2yk + 0.04yk
[29∑
i=0

yk−i

]
+ 1.5ukuk−29 + 0.001. (2.12)

Here, we will only make use of the NARMA10 task. The input stream J(t) for
the NARMA10 test is obtained from uk according to the procedure discussed

3Some tasks that are commonly used in the field of machine learning, but that have not
been addressed in this dissertation are: delayed bit parity check and Lorenz data series
prediction.

40 2 Single node with delay: input, training and testing

0 10 20 30 40 50
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Discrete time steps

Ta
rg

et
 v

al
ue

s

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Discrete time steps

In
pu

t v
al

ue
s

(a) (b)

Fig. 2.8: NARMA10 input and target. (a) Discrete points drawn
from a uniform distribution within the interval [0, 0.5]. (b) Target
points calculated from the input points using Eq. (2.11), with the first
10 steps of the target equal to 0.

in section 2.1.2. The input scaling values for the mask consist of a random
series of amplitudes of 0.1 and -0.1. The input signal, multiplied with the
mask and the input scaling factor γ, feeds the nonlinear node. The term
1.5ukuk−9 indicates that memory will play a crucial role in order to obtain
good performance on this task. Since in the calculation of step k + 1 the
term uk−9 appears, the system needs to have a memory of at least 10 steps.
One can still benefit from a longer memory, because of the fact that earlier
targets are also used to calculate the next target value. However, such terms
are of less importance. The error is expressed as a Normalized Root Mean
Square Error (NRMSE), defined as

NRMSE =

√√√√ 1
m

∑m
k=1 (ŷk − yk)2

σ2 (yk)
, (2.13)

where m is the number of time steps in the target function and σ denotes
the standard deviation. In Fig. 2.8 an example is given of the input and
target for a NARMA10 realization. Fig. 2.8(a) shows some discrete points
drawn from a uniform distribution within the interval [0, 0.5]. In Fig. 2.8(b)
the corresponding target points are shown, calculated according to the tenth-
order system from Eq.(2.11). Because of the need of the term uk−9 the first
target point with a non-zero value is the tenth one. Because of the fact that
the NARMA10 target is defined as a sum of only positive inputs, longer time
series can diverge. Practically we keep on generating random input series
until a realization remains stable within the considered time interval.

2.2 Benchmark tasks 41

2.2.2 Isolated spoken digit recognition

In the isolated spoken digit recognition task, the input dataset consists of a
subset of the NIST TI-46 corpus [86, 87] with ten spoken digits (0...9), each
one recorded ten times by five different female speakers. Hence, we have 500
spoken words, all sampled at 12.5 kHz. These are all preprocessed using a
standard cochlear ear model [88]. The input u(k) (with k the discretized
time) for the reservoir then becomes a set of 86-dimensional state vectors
(channels). The duration in time of each of these pre-processed spoken digit
series can be up to 130 time steps. To construct an appropriate target func-
tion, ten linear classifiers are trained, each representing a different digit of
the dataset. The target function is -1 if the spoken word does not correspond
to the sought digit and +1 if it does. For every approximation of the target
the time trace is averaged in time and a winner-takes-all approach is applied
to select the actual digit. An example is given in Fig. 2.9 where the averages
are shown for the ten classifiers. Ideally, nine of these classifiers would have
an average of -1 and one would have +1 as an average. However, the targets
have been altered using Fisher relabeling to compensate for the unbalance
of the dataset. The one with the highest average is taken as the winner.
To quantify the performance, two measures are used: the word error rate
(WER) and the margin. While the WER simply characterizes the number
of misclassified sample over the total number of samples, the margin denotes
the difference in average between the best and the second best guess.
To eliminate the impact of the specific division of the available data samples
between regularization, training and testing, we use n-fold cross validation.
This means that the entire process of regularization, training and testing is
repeated n times on the same data, but each time with a different assignment
of data samples to each of the three stages. The reported performances are
the average across these n runs.
For the spoken digit recognition task, the mask consists of a random assign-
ment of three values: 0.59, 0.41 and 0. The first two values have each 5%
probability of being selected, while the third one has 90% probability of being
chosen. Using a zero mask value implies that some nodes are insensitive to
certain channels, thus avoiding averaging of all the channels. In terms of tra-
ditional reservoir computing this corresponds to a 10% connection fraction
of the input weights.

2.2.3 Santa Fe laser data prediction

The Santa Fe laser data prediction task is an example of a one-step time
series prediction. The data set we use consists of 4000 points, divided into 4

42 2 Single node with delay: input, training and testing

margin

1
2
3
4
5
6
7
8
9

0

Fig. 2.9: Isolated spoken digit recognition. Classifier result: the
approximation of the target time trace is averaged for all time steps
and subsequently a winner-take-all approach is applied. The margin is
defined as the difference in average between the best guess and the
second best guess.

different samples of 1000 points each. The measurements were made on an
81.5-micron 14NH3 cw (FIR) laser, using a LeCroy oscilloscope. The setup
can be found in ref.[89]. The error is expressed as a Normalized Mean Square
Error, defined as

NMSE = 1
m

∑m
k=1 (ŷk − yk)2

σ2 (yk)
. (2.14)

In Fig. 2.10 both the input and the target series are plotted. The target
equals the input version except for the fact that it is shifted one time step,
hence one-step prediction. The discrete input points are connected with a
full line and the discrete target points with a dotted one.

2.2.4 Sunspot prediction

Similarly to the Santa Fe laser data task, this is also a one-step time series
prediction task. The data set is provided by [90] and consists of 3100 counted
sunspots collected from Jan 1749 to April 2007. The error is expressed as an
NMSE. The sunspot data series is depicted in Fig. 2.11.

2.2 Benchmark tasks 43

0 10 20 30 40 50
0

50

100

150

Discrete time steps

In
pu

t a
nd

 ta
rg

et

Fig. 2.10: Santa Fe laser data input and target. The discrete
points from the original laser data are connected with a full line. The
target can be constructed by simply shifting the input series one step
forward. The target points are connected with a dotted line.

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

Time

C
ou

nt
ed

 s
un

sp
ot

s

Fig. 2.11: Sunspot data series. The number of counted sunspots is
depicted versus time.

44 2 Single node with delay: input, training and testing

2.3 Conclusion

We have proposed delayed feedback systems as reservoir computer. By using
only one nonlinear node and a delay line we succeed in creating an analogy
with a vast network of nodes.
A first step required to successfully process in put by using delayed feedback
systems is an input pre-processing stage. We have outlined a procedure that
combines time-multiplexing of the input with imprinting a mask on every
input value. This enables us to provide a proper scaling factor for each
virtual node.
By defining the mask correctly we can ensure that the node output is always
in a transient regime. Moreover, the chosen separation distance between
two virtual nodes, defined by the mask, is an important tool to manipulate
the interconnectivity between virtual nodes. We have deduced an analytical
expression for the interconnectivity weights and validated this numerically.
Finally, we have decided on a way to read out reservoir states from the system.
These states can be used for training, using linear training algorithms.
In Chapters 3 and 4 we will model practical implementations of the de-
layed feedback reservoir concept, evaluating their performance using several
benchmark tasks. Next to elaborating on numerical results, the experimen-
tally obtained performance of an electronic and an opto-electronic system
are shown.

3
Modeling an electronic

implementation

After explaining the general concept in Chapter 2, we now model a practical
implementation of the single node delayed feedback reservoir. To demon-
strate our concept, we have chosen the widely studied Mackey-Glass oscillator
[91], which was originally introduced as a model of blood cell regulation. It
has already been used extensively in the characterization of chaotic systems
[92]. This choice originates from the fact that this nonlinearity can be im-
plemented in an easy and noise robust way using a simple electronic circuit.
Moreover, the shape of the nonlinearity and the strength of the nonlinear
contribution can be tuned, allowing for exploration of the optimal settings
depending on the task at hand. The numerical simulations have been per-
formed by the author. The experiment was carried out by dr. M.C. Soriano,
prof. C.R. Mirasso and prof. I. Fischer at IFISC, Palma de Mallorca, Spain.
The author assisted in the input driving and the training of the experimental
system. The work reported in this chapter is partly covered in Appeltant et
al. [17]

3.1 Mackey-Glass delayed feedback oscillator

The equation of the system is given by

dx(t′)
dt′

= 1
T

[
−x(t′) + C · x(t′ − τ ′)

1 + bp [x(t′ − τ ′)]p
]
, (3.1)

with C being the coupling factor, p the nonlinearity exponent, b a nonlinearity
coefficient, T the intrinsic timescale and τ ′ the delay time. The intrinsic time

46 3 Modeling an electronic implementation

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (V

)

Fig. 3.1: Mackey-Glass nonlinearity shape and experimental
fit. Experimental transfer function (black) compared to a fit us-
ing the Mackey-Glass equation (red). Fit parameters correspond to
C = 1.33, b = 0.4 and p = 6.88 in Eq.(3.4). Figure taken from sup-
plementary material of Appeltant et al. [17].

scale is a measure for the response time of the system and will be used as a
reference time scale in the stage where input is added to the equation. The
delayed state of x appears in the nonlinearity term on the right hand side,
implying that we have nonlinear feedback. The second term between the
brackets is the nonlinear term and an example of the shape of this transfer
function is given in Fig. 3.1.

When extending Eq.(3.1) to the case where also an external input is injected
into the system this equation becomes

dx(t′)
dt′

= 1
T

[
−x(t′) + C · [α · x(t′ − τ ′) + β · J(t′)]

1 + bp [α · x(t′ − τ ′) + β · J(t′)]p
]
. (3.2)

The factor α determines how much of the feedback signal is mixed with
the input, while the factor β scales the magnitude of the input signal. The
mixing of input and feedback signal happens just before the re-injection into
the nonlinear node. We have rescaled the variables and parameters in the
previous equation to obtain a minimum number of significant parameters, as
follows: η = Cα, γ = bβ, X = bα � x and t = t′/T . This transforms Eq.(3.2)
to

3.1 Mackey-Glass delayed feedback oscillator 47

0 1 2 3 4
0

0.5

1

1.5

2

2.5

η

E
xt

re
m

a
of

 X

Fig. 3.2: Orbit diagram for Mackey-Glass system given by
Eq.(3.3) and γ = 0. The feedback strength η is varied, while the
extrema of the X values are plotted for every value of η. Different
dynamical regimes can be observed, for 0 ≤ η ≥ 1 we find a zero
fixed-point that for larger values of η evolves to a non-zero fixed-point,
limit cycles and finally deterministic chaos. The delay time was kept
constant at τ = 80.

dX(t)
dt

= −X(t) + η � [X(t− τ) + γJ(t)]
1 + [X(t− τ) + γJ(t)]p . (3.3)

with X denoting the rescaled dynamical variable, t a dimensionless time, and
τ the delay in the feedback loop. The characteristic time scale of the oscilla-
tor, determining the decay in the absence of the delayed feedback term, has
now become equal to 1 because of the time normalization. The parameters
η and γ represent feedback strength and input scaling, respectively. When
numerically simulating the system without input (γ = 0) we can construct an
orbit diagram as the one shown in Fig. 3.2. We investigate the dependence
on the feedback strength η, while plotting the minima and maxima of the X
variable. This representation allows to easily identify the different dynamical
regimes that can be addressed when scanning one parameter of the system.
By adjusting the value of η we can guarantee that the system operates in

48 3 Modeling an electronic implementation

a stable fixed-point in the absence of external input (γ = 0, p = 7). With
input, however, the system might exhibit complex dynamics. The choice
of this particular nonlinearity has two main advantages. Firstly, it can be
easily implemented by an analogue electronic circuit [93], which allows for
fine parameter tuning [94]. Secondly, the exponent p can be used to tune the
nonlinearity if needed. When p is chosen to be very small, the system becomes
very weakly nonlinear. For p = 0 the nonlinear contribution disappears
completely.

3.2 Experimental implementation

A block diagram of the experimental implementation of reservoir comput-
ing, as used in a spoken digit recognition experiment, is shown in Fig. 3.3.
Following [93], the Mackey-Glass nonlinearity itself is constructed according
to the scheme depicted in Fig. 3.4. The circuit consists of four parts: the
nonlinearity, an amplifier and an RC-filter. The nonlinearity was constructed
using two field effect transistors, one p-channel and one n-channel, and a re-
sistor. Both of them are coupled with the gate of each transistor connected
to the source of the other, resulting in a transfer function that can be fitted
to the next Mackey-Glass equation

Xout = C ·Xin

1 + bp (Xin)p . (3.4)

The RC filter is used to determine the time constant of the system, which is
10 ms (R4 · C1). Connected to the circuit of Fig. 3.4, we added a PC con-
trolled A/D D/A converter (National Instruments 6025E, 200 kSamples/s,
12-Bit A/D conversion). The delay line and the combination with the ex-
ternal input are both implemented digitally in the PC via LabView code.
The continuously acquired data are delayed for a time corresponding to the
feedback time. The input stream u(k) is converted into the function J(t)
by imprinting the mask. Finally, the sum of external input J(t) and de-
layed output of the circuit are fed into the nonlinearity (FET transistors).
In Fig. 3.1 both the experimentally observed transfer curve and the fit to the
Mackey-Glass Eq.(3.4) are depicted.

3.2 Experimental implementation 49

D
A
C

A
D
C

NL

τ
Post-processing

Trained weights iw

Pre-processing

Mask M

u ŷ

Amp

+
Input
Gain

Input Outputk k

Fig. 3.3: Schematic of the experimental reservoir computer. The
Mackey–Glass type nonlinear node is realized as in [93]. The time
constant of the system is T = 10 ms. The delay loop is implemented
digitally by means of Analog to Digital and Digital to Analog Converters
(ADC and DAC). The preprocessing to create the input stream γJ(t),
with γ the adjustable input gain described in Eq.(2.3) , and the post-
processing to create the output ŷ(t) are also realized digitally. Figure
taken from supplementary material of Appeltant et al. [17].

-

+

+15 V

-15 V

-

+

+15 V

-15 V

IN

OUT

R1

R2 R3

R4 R5

R6

C2C1

Nonlinearity Amplifier Low-pass filter

Fig. 3.4: Schematic representation of the hardware node. Two
FET transistors, one n-channel (Fairchild 2N5457) and one p-channel
(Fairchild 2N5460), and a resistor generate the nonlinear function itself.
An amplifier (LM741) provides the desired magnification factor and
two RC-circuits allow to set the time constant of the circuit. R1 =
507 Ω, R2 = 1 kΩ, R3 = 3.7 kΩ, R4 = 100 kΩ, R5 = 5.7 kΩ, R6 =
1.2 kΩ, C1 = 0.1µF, C2 = 47 pF.

50 3 Modeling an electronic implementation

3.3 Results

3.3.1 NARMA10

3.3.1.1 Numerically obtained performance

In this paragraph results from numerical simulations are presented, demon-
strating the computational capabilities of the Mackey-Glass delay-dynamical
node for the NARMA10 benchmark (see Chapter 2, section 2.2.1), a task
commonly used in reservoir computing literature [85, 95]. To quantify the
performance of the reservoir, the normalized root mean square error (NRMSE)
of the predicted versus the value obtained from the NARMA10 model is used.
Up to now, the best performance reported in traditional reservoir computing
for a reservoir of N = 400 nodes, is NRMSE = 0.099 [85]. If the reservoir is
replaced by a shift register that contains the input, the minimal NRMSE is
0.4. Also for a purely linear reservoir this is the lowest error found for the
NARMA10 task. From now on we use this value as an upper bound for good
performance. Only when the reservoir performs better than NRMSE = 0.4
its implementation makes sense for us. NRMSE values below this level re-
quire a nonlinear reservoir. Here, a nonlinear exponent of p = 1 is chosen,
resulting in a weak nonlinearity. Fig. 3.5 depicts the numerical results in the
γ − η plane. A large region with NRMSE < 0.2 (dark green) has been ob-
tained. The minimal normalized root mean square error obtained is as low as
NRMSE = 0.12. Numerically, we therefore achieve comparable performance
to conventional state-of-the-art RC, but with a much simpler architecture.
The light green region (0.2 < NRMSE < 0.3) represents the region where
performance is reasonable and the yellow region (0.3 < NRMSE < 0.4) is
situated around the performance of a linear reservoir. Finally, the red region
depicts the area where reconstruction of the target signal completely fails.
When looking at the left hand side of the figure, a red strip of bad per-
formance can be noted. This region corresponds to very low values of the
feedback strength. By re-normalizing the model as was done in Eq.(3.3), the
parameter η scales the entire nonlinearity, meaning that for very small η no
information is being fed to the nonlinear node. When moving to the right
we find a valley of better up to very good performance. It can be seen that
the error decreases for smaller values of the input scaling γ. A smaller input
scaling results in a smaller region of the nonlinearity that is scanned by the in-
formation signal. However, nonlinearity is still present, when a purely linear
system is employed the error rises to 0.4. We would like to point out that in
order to have the combination of high memory and nonlinear transformation

3.3 Results 51

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

1.0

0.9

0.8

0.7

0.6

0.5

0.4

N
R

M
S

E

Fig. 3.5: Simulation results for the NARMA10 task. The two
scanned parameters are γ (input scaling) and η (feedback strength).
The exponent in Eq.(3.3) is set to p = 1. Other characteristics of the
reservoir are τ = 80, N = 400, θ = 0.2). The obtained performance
for the NARMA-10 task, expressed as a normalized root mean square
error, is encoded in color. Figure taken from Appeltant et al. [17]

52 3 Modeling an electronic implementation

an extremely high precision is required. For the very optimal point of this
parameter scan it goes up to 16 decimal digits. We go more into details on
noise effects in Chapter 5. The attentive reader has noticed that the smallest
values of γ lead to high errors. This is trivial, when γ = 0 this implies that no
input is being fed to the system at all. When the precision is driven up, the
small red region on the bottom of the scan becomes narrower and narrower.
On the right hand side another abrupt transition to bad performance occurs.
This is caused by a bifurcation where the zero-fixed point solution becomes
unstable and a non-zero- fixed point solution appears. When γ increases the
bifurcation point shifts steadily to values of η lower than 1. If we repeat this
parameter scan for a high exponent, e.g. p = 7, the lowest error value found
is 0.4, indicating that the reservoir cannot exceed a linear shift register in
terms of performance. Hence to solve the NARMA10 task with a delayed
feedback reservoir that uses a Mackey-Glass nonlinearity type, we need to
work with a low nonlinearity exponent.

3.3.1.2 Experimentally obtained performance

For the NARMA10 task no experiment has been carried out using the Mackey-
Glass system. The available setup allows for a tunable nonlinearity, where
the exponent can be altered using a potentiometer. However, for lower ex-
ponents the quality of the fit between the Mackey-Glass function and the
experimentally realized function degrades significantly. Reaching an expo-
nent of p = 1 was not possible with the electronic circuit we used. Another
reason to only study the numerical model is noise. As will be explained in
Chapter 5, this task is extremely noise sensitive. Even numerical noise in
simulations can cause an increase in error.

3.3.1.3 Comparison with state of the art

To place the obtained results in perspective, we indicate some results on this
benchmark task found in literature. Table 3.1 compares the results found
with a delayed feedback reservoir with the performance of network reservoirs
from literature.

3.3.1.4 Optimal virtual node separation width

Next to the parameters varied in the scan, also θ plays a crucial role. In Fig.
3.6 we show the numerically obtained performance of the Mackey-Glass sys-
tem for the NARMA10 test when scanning θ. The optimal point is found for
virtual node separations of θ = 0.2, in units of the characteristic time scale of

3.3 Results 53

Table 3.1: NARMA10 performance literature review. For several
sets of reservoirs sizes the performance is given as an NRMSE. The
first performance column gives the results found by Jaeger et al. [85]
and the second column the ones obtained by Rodan et al. [79]. The
final column shows the results found with a delayed feedback reservoir.
All are results coming from numerical simulations.

Res. size NRMSE [85] NRMSE[79] NRMSE Our system
20 0.56 - 0.53
50 0.29 0.41 0.35
100 - 0.31 0.27
150 - 0.23 0.21
200 - 0.21 0.18
400 0.099 - 0.12

the nonlinear node. For shorter separations the Mackey-Glass system might
not be able to generate a sufficient response to the external input. For larger
separations the connectivity among virtual nodes is lost and consequently
any memory with respect to previous input. For node separations θ > 3
, the NRMSE reaches a level of 0.4, which is the performance of a linear
shift-register.

From now on we always use θ = 0.2 in our delayed feedback reservoir. The
motivation for this is not only the performance plot from Fig. 3.6, but also
the processing speed of the system. Using time-multiplexing to sequentially
feed all the virtual nodes in the delay line implies that every discrete input
step requires a time τ to be processed. In a setup consisting of N virtual
nodes, the next relation holds: τ = Nθ. By choosing a smaller value of θ
we also decrease the total delay time and as a consequence we increase the
processing speed. Of course, there is also a lower limit for the size of θ. This
lower limit can be set by the performance of the system on a certain task,
e.g. because smaller θ make the node state dependent on a large range of
adjacent virtual nodes. Another issue can be noise robustness. Indeed, when
θ is very small, the corresponding excursion of the system becomes smaller
as well, bringing the signal closer to the noise level.

54 3 Modeling an electronic implementation

θ

N
R

M
S

E

10 −2 10 −1 10 0 101

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.15

Fig. 3.6: Performance of NARMA10 task as a function of node
separation. Plot of the normalized NRMSE for the NARMA10 task
(simulations) versus the separation θ of the virtual nodes. Parameters
are: η = 0.5, γ = 0.05, p = 1, τ = 400θ. Figure taken from Appeltant
et al. [17]

3.3.2 Santa Fe time series prediction

3.3.2.1 Numerically obtained performance

Here, we show numerical results for the Santa Fe laser task, which was already
introduced in Chapter 1, section 1.4.2.3 and in Chapter 2, section 2.2.3.
Usually, in literature, performance on this task is expressed as the normalized
mean square error (NMSE) of the predicted versus the actual value. In Fig.
3.7 the NMSE values are shown in color coding, while scanning the input
scaling (γ) and the feedback strength (η). The exponent is chosen as p = 1.
Because now in the calculation of the error values the square root is omitted,
the reference values of the error are much lower. In the plot of Fig. 3.7 the
lowest value is NMSE = 0.019 (corresponding to an NRMSE = 0.137) and
the region of good performance is for low values of γ and η. When η increases,
the valley of good performance becomes narrower. Note that, although the
values of γ are smaller than the ones considered in the case of NARMA10,
the part of the nonlinearity that is explored is still reasonably large. While
a typical input of NARMA10 belongs to the interval [0,0.5], a Santa Fe data
point corresponds to a normalized intensity between 0 and 250. The resulting
value injected in the Santa Fe case is therefore still larger than in the case

3.3 Results 55

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
M

S
E

η

γ

Fig. 3.7: Performance for the Santa Fe time series prediction
task. The two scanned parameters are γ (input scaling) and η (feed-
back strength) and the error is plotted in color code as an NMSE. The
nonlinearity is of the Mackey-Glass type and the exponent in Eq.(3.3)
is set to p = 1. Other characteristics of the reservoir are τ = 80,
N = 400, θ = 0.2).

of our NARMA10 scan. For the virtual node separation we choose θ = 0.2,
which was previously found to be optimal for the NARMA10 task. Also for
the Santa Fe time series prediction this seems to be a suitable value.

3.3.2.2 Comparison with state of the art

In Table 3.2 a comparison with literature is made, comparing the delayed
feedback approach with a cycle reservoir as described in [79]. Rodan et al.
achieve slightly better results, but in the same order of magnitude.

3.3.3 Isolated spoken digit recognition

3.3.3.1 Performance: numerical simulations and experiments

For spoken digit recognition, memory is not as crucial as for the NARMA10
task, allowing us to use a higher exponent in the Mackey-Glass equation.
This is beneficial since it is easier to implement in an experimental setup.
We have verified through numerical simulations that a broad range of values
of p yields similar results. The virtual node separation is set at θ = 0.2, while
the total number of virtual nodes is N = 400. Larger values of θ also yield

56 3 Modeling an electronic implementation

Table 3.2: Santa Fe performance literature review. For several
sets of reservoirs sizes the performance is given as an NMSE. The
first performance column gives the results found by by Rodan et al.
[79]. The last column shows the results found with a delayed feedback
reservoir. Both are results coming from numerical simulations.

Res. size NMSE [79] NMSE Our system
50 0.0184 0.0228
100 0.0125 0.0214
150 0.00945 0.0212
200 0.00819 0.0210
400 - 0.0190

good results for this task, but the shortest one is chosen because of speed
considerations. The specifics of the training procedure are detailed in section
2.2.2. Fig. 3.8 depicts the numerically obtained classification performance of
unknown samples as a function of η for γ = 0.5, which has been chosen
such that input and feedback signals are of the same order of magnitude.
The classification performance is expressed in two ways: the word error rate
(WER) that shows the percentage of words that have been wrongly classified,
and the margin (distance) between the reservoir’s best guess of the target and
the closest competitor. It can be seen that an increase in margin corresponds
to a decrease in WER. Our results show that there is a broad parameter range
in η with good performance, with an optimum for both, margin and WER,
around η = 0.8. Note that the performance breaks down when η approaches
1. This is expected, as it corresponds to the threshold of instability of the
Mackey-Glass oscillator when there is no input (γ = 0). At the optimum
value of η, we obtain a WER as low as 0.14%. This corresponds to less than
one misclassification in 500 words. These performance levels are comparable
to or even better than those obtained with traditional reservoir computing
composed of more than 1200 nodes for which a WER of 4.3% was reported
[13], with a reservoir of 308 nodes for which more recently a WER of 0.2% was
obtained [14] and also with alternative approaches based on Hidden Markov
Models which achieved a WER of 0.55% [96].

3.3.3.2 Speaker identification: numerical results

A side task that we implemented is the identification of the speaker uttering
the digit. The processing of the signal in the reservoir is exactly the same, In
the considered data set there are five female speakers, hence identifying them

3.3 Results 57

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

5

5.5

η

M
ar

gi
n

(a
.u

.)

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

W
or

d
E

rr
or

 R
at

e
/ %

Fig. 3.8: Numerical and experimental results for spoken digit
recognition. The y-axis on the left-hand side denotes the margin,
whereas the y-axis on the right-hand side denotes the word error rate.
The abscissa represents the parameter η. γ has been kept fixed at 0.5
and the exponent is set to p = 7. The delay time is set at τ = 80, with
N = 400 nodes of τ = 0.2 separation. The red line represents results
for the numerically obtained margin and the black line represents the
numerically obtained word error rate. The red and black crosses denote
the corresponding experimental results. Figure taken from Appeltant
et al. [17].

58 3 Modeling an electronic implementation

Table 3.3: Isolated Spoken Digit Recognition performance liter-
ature review. For several sets of reservoirs sizes the performance is
given as an WER in %. The first performance column gives the results
found by Verstraeten et al. [13, 14] and the second column the ones
obtained with a delayed feedback reservoir. Both are results coming
from numerical simulations.

Res. size WER (%) [13] and [14] WER (%) Our system
50 7.32 3.0
100 2.96 1.6
150 1.82 1.2
200 1.38 0.8
308 0.2 0.3
400 - 0.14

only requires five extra classifiers. This way the system will process the data,
while the readout layer will solve two different tasks on the same reservoir
states. When training purely on the cochleagram (before feeding it into the
reservoir) the WER in terms of speaker identification is 2%. Although this is
already a relatively good result, we can still improve significantly by letting
the reservoir process the cochleagram. The obtained error then becomes
0.4% for the speaker task.

3.3.3.3 Comparison with state of the art

As an indication of the quality of the obtained results we give some perfor-
mance data for this test from literature. In Table 3.3 the first performance
column are results listed by Verstraeten et al. [13, 14] while the last column
shows our results using delayed feedback systems. Again, one can conclude
that the single node with delayed feedback performs as well or even better
than tradition reservoir simulations.

3.3.4 Sunspot Prediction

3.3.4.1 Numerically obtained performance

Another time series often used as prediction task is the sunspot data series,
described in Chapter 2, section 2.2.4. The best result we found on this test
corresponds to NMSE = 0.11. This value is similar to what is found in

3.4 Conclusion 59

literature [79]. Usually, in literature, linear nodes perform best on this task
and also in our case the results gets better as we explore smaller and smaller
parts of the nonlinearity. We note that the performance that can be obtained
for this benchmark is strongly dependent in the choice of training and test
samples. In our case we used the first 1600 data points for training, the
next 500 for validation and the last 1000 data points for testing. In case one
would like to introduce cross-validation, the average performance degrades
drastically because of the reversed role of training and test data. To avoid
this strong dependence on the choice of input data, from now on we only use
the Santa Fe laser data as a time series prediction task.

3.4 Conclusion

We have presented numerical evidence that a single nonlinear node with
delayed feedback can perform equally well as standard implementations of
reservoir computing on several benchmark tasks. The delayed feedback sys-
tem has a number of parameters that can be adjusted, such as the feedback
strength η, the input gain γ, the delay time τ , the separation of virtual
nodes in the delay line θ, the type of nonlinearity (in this case the exponent
p of the Mackey-Glass system), and the choice of input mask. When com-
paring this approach with traditional reservoir computing, we can identify
some analogues with parameters used in the network approach. The feed-
back strength and input gain are used to determine the dynamical regime in
which the non-perturbed system operates; the delay time is related to the
number of nodes and the separation of the virtual nodes to the sparsity of
the interconnection matrix; the type of nonlinearity can also be varied as in
traditional reservoir computing.
We have successfully modeled an electronic implementation of a delayed feed-
back system that is used for reservoir computing. This modeling has enabled
an experimental implementation, which represents the first hardware im-
plementation of reservoir computing using the delayed feedback approach
presented in Chapters 1 and 2. A good accordance between numerics and
experiment for the isolated spoken digit recognition task and we obtain re-
sults comparable to those obtained with state-of-the-art digital realizations.
We found that this task is noise robust. A decrease in margin was observed,
but the word error rate remains the same compared to numerical simulations.
This experiment, using a Mackey-Glass nonlinearity type, demonstrated that
electronic implementations are feasible, even rather simple, and very cost-
efficient in terms of components.

60 3 Modeling an electronic implementation

In the next chapter we model another experimental implementation. Instead
of using only electronics, we extend the concept to opto-electronic systems.
This is a step towards an all-optical approach that could enable us to to
all-optical information processing in a resource-efficient way.

4
Modeling an opto-electronic

implementation

Optics could potentially play an important rule in computing [97, 98, 99].
Also in the field of reservoir computing efforts have been made to combine the
computational power of the reservoir computing concept with the potentially
very fast signal handling in photonics. For instance, a photonic reservoir ap-
proach based on a network of coupled semiconductor optical amplifiers has
recently been proposed and simulated at Ghent University [52, 53]. How-
ever, considering the physical complexity of the reservoir, employing many
nodes is technologically highly demanding and can potentially be a draw-
back. The delayed feedback approach introduced in the previous chapters
is easily implementable using optics. In this chapter, we elaborate on an
opto-electronic system, implementing an Ikeda delayed feedback oscillator.
We present both numerical and experimental results. The building and test-
ing of the experimental implementation has been done by prof. L. Larger,
dr. M.C. Soriano, dr. D. Brunner, prof. C.R. Mirasso and prof. I. Fischer,
with theoretical support from prof. J.M. Gutierrez and prof. L. Pesquera.
Besides providing the numerical results, the author has been involved in the
input pre-processing and the training procedure. The experimental results
presented in this chapter have been published in Optics Express [69].

4.1 Experimental implementation

In Fig. 4.1 the scheme we use for the experimental implementation of the
opto-electronic delayed feedback system is depicted. Fig. 4.1(a) shows the
schematic representation and Fig. 4.1(b) is a picture of the actual setup.
The configuration is based on a simple and efficient delay coupled photonic
system, which was originally proposed for the exploration of optical chaos
[100, 101, 102], as exhibited by an Ikeda ring cavity [103]. Later on Larger

62 4 Modeling an opto-electronic implementation

et al. made slight modifications to the setup to use it in the framework of
broadband optical chaos communications [101], and highlighted as a system
for studying fundamental characteristics and applications of complex dynam-
ics including reservoir computing [104]. The nonlinear element consists of an
electronic circuit, a standard telecommunication wavelength diode laser plus
an integrated Mach-Zehnder modulator (MZM) providing an electro-optic
nonlinear transformation. This transformation can be a sin2-function or a
cos2-function.
A DFB telecom laser (1.5µm, 20 mW, polarization maintaining fiber pigtail)
serves as the optical source, seeding the optical power P0 into an integrated
LiNbO3 Mach-Zehnder electro-optic modulator. This electro-optic modula-
tor is used as a electrically tunable two-wave interference modulation transfer
function, P (v) = P0 sin2 [πv/(2Vπ) + φ], according to the voltage v(t) applied
to its RF-electrodes. Here Vπ is the electro-optic efficiency of the MZM, cor-
responding to the voltage to be applied for achieving a π phase shift (e.g.
leading to the change from a destructive to a constructive interference con-
dition in the optical output intensity). The function P (v) performs the non-
linear transformation of our dynamical reservoir. After the MZM, the signal
propagates through a L = 4.2km optical fiber delay line, introducing the
time delay τ = nL/c = 20.87µs, where c is the speed of light in vacuum, and
n is the refractive index of the SMF28 telecom fiber.
To understand why the Mach-Zehnder has this particular transfer function,
we look at Fig. 4.2. The input port of the MZM receives a signal coming
from the laser, with power P0. The power is proportional to the magnitude
of the electric field, squared. The signal is split equally over the two arms,
leading to the next expression for the field injected in each of the two arms:

Ei = |E0|√
2

1Eeiωti ,

with ω the pulsation of the electro-magnetic field and 1E the polarization.
The index i refers to the initial time. The wave traveling along path 1,
as indicated in the figure, remains unaffected by the modulation. When it
arrives at the end of the separate path it is of the next form:

Ef,path1 = |E0|√
2

1Eeiωtf ,

4.1 Experimental implementation 63

Optical Fiber
(4.2km)

Mach-Zehnder Modulator
EOspace AZ-1K1-12-PFA-SFA

Amplifier and
Low-pass Filter

Photodiode

Diode Laser JDS
DFB CQF935/56

DFB
telecom

laser
4.2 km
fiber

LiNbO Mach-Zehnder

Photo-
diode

w(t) Output Signal

+

3

bias:

Gain

G Filter
S

γJ(t) Input
Signal

T

x(t)

(a)

(b)

v(t)

iph

Fig. 4.1: Opto-electronic implementation of reservoir comput-
ing. The nonlinearity is realized optically using a Mach-Zehnder inter-
ferometer. Subsequently the signal enters the fiber loop that forms the
delay line, to be read out in the end with a photodiode. (a) schematic
representation of the setup, figure taken from [69] (b) picture of the
setup.

64 4 Modeling an opto-electronic implementation

v(t) v0

P0~|E0|
2

RF DC

Path 1

Path 2

P(v)

Fig. 4.2: Scheme of Mach-Zehnder modulator. One arm of the
modulator is modulated by 2 electrodes, an RF electrode and a DC
electrode. The former contains the input and the feedback signal, the
latter sets the offset phase of the nonlinearity.

with the index f referring to the final time. The wave traveling along path
2, however, undergoes a modulation by both the RF electrode and the DC
electrode. These modulation terms are present in the propagation term of
the field:

Ef,path2 = |E0|√
2

1Eei(ωtf+πv/(2Vπ)+φ′),

with φ′ being the bias introduced by the DC voltage. When combining the
two fields again like Ef = Ef,path1+Ef,path2√

2 we get the next expression:

Ef = |E0|
2 1Eeiωtf

[
1 + ei(πv/(2Vπ)+φ′)

]
.

What is detected in the end is not the electric field, but the power, which is
proportional to the product of the electric field and its complex conjugate,
P (v) ∼ Ef · E∗f . This leads to the expression:

|E0|2

4 [2 + 2 cos (πv/(2Vπ) + φ′)] = |E0|2 sin2 (πv/(2Vπ) + φ) , (4.1)

with φ = φ′ + π/2.
The opto-electronic circuit that closes the loop in Fig. 4.1(a) performs several
basic signal processing tasks:

• It converts the optical intensity modulation into a photocurrent modu-
lation according to the photo diode conversion efficiency S. The photo-

4.1 Experimental implementation 65

detection current thus reads iph(t) = SαP (v(t− τ)) where α accounts
for all the optical losses from the MZM output to the photodiode input.

• It acts as a low-pass filter, imposing the time scale T of the system
which is normalized to 1 in Eq.(4.2). It filters the corresponding time
variation, via a passive RC filter (a capacitor C is connected with a re-
sistor R in parallel), leading to a response time T = RC. The voltage
across R, w(t) = R

[
iph(t)− C dw(t)

dt

]
corresponds to the filtered non-

linear delayed feedback signal detected by the setup, also used as the
readout signal.

• It adds the input signal γJ(t) to the feedback signal.

• It amplifies the sum of the feedback and input data to drive the MZM
to allow for sufficient nonlinear operation. This results in a voltage v =
G [w + γJ(t)] of sufficient amplitude to achieve dynamical modulation
of the MZM of order Vπ (thus able to modulate the MZM transmission
in a nonlinear fashion).

With the aim of mimicking the nodes of traditional reservoir computing we
define virtual nodes along the delay line (4.2 km optical fiber). For a parallel
readout one can simply tap the delay line at the nodes’ positions to read their
states. With the proposed scheme a sequential readout is also possible, mak-
ing it more practical and ideally suited for an experimental realization. The
experimental system provides direct access to key parameters, e.g. the feed-
back strength η and the phase offset of the MZM φ, enabling easy tunability
of nonlinearity and dynamical behaviors. Parameter η is controlled via the
laser diode power, while φ is controlled by the DC bias voltage of the MZM.
For the experiments we chose a number of N = 400 virtual nodes, a delay
time of τ = 20.87µs, i.e. θ = τ/N = 52.18 ns. With the internal system
timescale of T = 240 ns, a ratio of T/θ ≈ 4.6 between the system response
time and the virtual node separation is obtained. It is worth mentioning
that other values of N and τ yield similar results, as long as the indicated
relative scaling is fulfilled. In Fig. 4.3, a typical time trace, acquired from
the experimental system, is shown.
In parallel with the experimental work at IFISC, another opto-electronic
implementation was experimentally realized at ULB [77, 76]. In this work
we will concentrate on the numerical simulations of such a systems.
To evaluate the performance of our system we perform three benchmark
tasks, relevant in the machine learning field, of which two experimentally:
NARMA10, spoken digit recognition and time series prediction.

66 4 Modeling an opto-electronic implementation

10 Ms/s 30 Ms/s
0.2

0.15

0.1

0.05

Time (μs) Time (μs)
43 44 45 46 8.2 8.4 8.6 8.8 9.0 9.2

0.16

0.14

0.1

0.06

0.12

0.08

0.05

0

-0.05

0.05

0

-0.05

In
pu

t (
V

)

In
pu

t (
V

)

X
 (V

)

X
 (V

)

(a) (b)

Fig. 4.3: Experimental recording of the injected input (black)
and the response of the nonlinear node (red). (a) By varying the
mask at 10Ms/s the system is close to reaching the steady-state for
some virtual nodes. (b) When varying the mask values at 30 Ms/s
the system typically resides in the transient regime. The green circles
denote the virtual nodes for which the nonlinear node has approached
the steady-state value.

4.2 Ikeda delayed feedback oscillator

The function derived in Eq.(4.1) is known as the Ikeda nonlinearity, a well-
studied system [103, 67] that is often encountered in electro-optical systems.
When defining a new variable x(t) as x(t) = πG

2Vπw(t) and introducing η =
πGRSα|E|20

2Vπ , we obtain the following dynamical equation for the system:

ẋ(t) = −x(t) + η sin2 [x(t− τ) + φ] (4.2)

with η the feedback strength. The nonlinearity can be tuned by biasing
the system to a different operating point depending on the phase parameter
φ. In Fig. 4.4 some experimental measurements of the orbit diagram of the
system are shown, scanning the feedback strength. This bifurcation scheme
has already been studied in detail in Ref.[105]. Very rich dynamical behavior
has been observed depending on the parameters η and φ in the large delay
regime (τ � 1) . The destabilization of the steady-state typically occurs
at η = 1, when the steady-state is at the linear operating point of the sin2

4.2 Ikeda delayed feedback oscillator 67

ηBifurcation parameter

Si
gn

al
 a

m
pl

itu
de

 (V
)

Fig. 4.4: Experimentally obtained orbit diagram of the Ikeda non-
linearity. The orbit diagram when scanning the feedback strength,η,
illustrating the possibility of rich dynamical behavior. Courtesy of L.
Larger.

nonlinearity in a closed loop configuration (φ = −1/2±π/4), usually followed
by a period-doubling route to chaos, as η is increased. A high-dimensional
chaotic motion is finally obtained for η � 1 (chaotic attractor dimension
scaling with η).
In Fig. 4.5 the steady-state is plotted for η = 0.3 and η = 0.5 as a function
of the offset phase of the nonlinearity. The steady-state solution is obtained
by solving Eq.(4.2) in case the derivative is equal to 0. The solution is found
by solving the equation:

xst(t) = η sin2 [xst(t) + φ] .

When increasing η towards higher values, the asymmetry of the steady-state
solution becomes stronger.
If the systems is driven with an external input J(t), scaled with an input
scaling factor γ, the equation becomes

ẋ(t) = −x(t) + η sin2 [x(t− τ) + γJ(t) + φ] . (4.3)

68 4 Modeling an opto-electronic implementation

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

φ/π

S
te

ad
y-

st
at

e

Fig. 4.5: Steady-state solution of the Ikeda nonlinearity of
Eq.(4.2). The full line corresponds to the steady-state value for
η = 0.3, while the dashed line shows the steady-state for η = 0.5

The input J(t) is a time-multiplexed, masked version of the discrete input
points originating from the task that needs to be solved.

4.3 Results

4.3.1 NARMA10

4.3.1.1 Numerically obtained performance

When scanning the nonlinearity phase against the feedback strength we ob-
tain the NARMA10 results shown in Fig. 4.6. The input scaling γ is kept
constant at 0.01. A clear phase dependence can be observed. The best region
can be found for the offset phase chosen between π/20 and π/4, where the
minimum reached NRMSE is 0.22.
When comparing the results found for the NARMA10 task with the steady-
state value as a function of the offset phase and with the nonlinearity of
the system evaluated at the steady-state (see Fig. 4.5), we see that the best
performance is found on the positive slope of the nonlinearity. The effect of
an increasing η on the steady-state is also reflected in the NARMA10 results,
where for higher values of η the region of good performance on the positive
slope becomes narrower.

4.3 Results 69

0.5 1 1.5 2
0

0.25

0.5

0.75

1

η

φ/
π

0

0.2

0.4

0.6

0.8

1

N
R

M
S

E

Fig. 4.6: Numerical results on NARMA10 task for Ikeda non-
linearity. The offset phase of the nonlinearity is scanned versus the
feedback strength of the system. The input scaling is set to γ = 0.01.

Note that we do not elaborate on an experimental implementation of the
NARMA10 task for this nonlinearity type. The fact that good results can
only be found for very small values of the input scaling implies that the
experimental implementation suffers too much from noise in the system to
obtain a good performance. The effect of noise is studied in detail in Chapter
5.

4.3.1.2 Comparison with state of the art

For quantitative performance results described in literature we refer to Ta-
ble 4.1. The best performance we obtained in numerical simulations is an
NRMSE of 0.22 for 400 virtual nodes. This error is higher than what we
found for the Mackey-Glass nonlinearity type. We conclude that in the sin-
gle node delayed feedback configuration, the Mackey-Glass nonlinearity type
yields slightly better results than the Ikeda nonlinearity type.

70 4 Modeling an opto-electronic implementation

Table 4.1: NARMA10 performance literature review. The first
performance column gives the results found by Jaeger et al. [85] and
the second column the ones obtained by Rodan et al. [79]. The final
column shows the results found with a delayed feedback reservoir. us-
ing an Ikeda nonlinearity type. All are results coming from numerical
simulations.

Res. size NRMSE [85] NRMSE [79] NRMSE Our system
200 - 0.21 -
400 0.099 - 0.22

4.3.2 Santa Fe laser data

4.3.2.1 Numerically obtained performance

Next, the Santa Fe time series prediction task is used to evaluate the per-
formance of this opto-electronic delayed feedback reservoir. The error is ex-
pressed as the NMSE between the predicted point and the target. Numerical
results are shown in Fig. 4.7.
We vary the input scaling versus the offset phase of the nonlinearity. The
performance is clearly phase dependent, however, for small values of γ the
phase dependence almost disappears. The region of the nonlinearity that is
scanned decreases with γ, making the system less sensitive to the exact shape
of the nonlinear transfer function. Given the fact that smaller input scalings
will explore only a more linear part of the nonlinearity, one can conclude that
to tackle the Santa Fe time series prediction task only a weakly nonlinear
processing is required.

4.3.2.2 Experimentally obtained performance

This benchmark has also been solved experimentally. The corresponding
results are depicted in Fig. 4.8. For an intermediate feedback strength η = 0.2
(blue points), a strong dependence of the NMSE on φ is found. For φ =
0.1π we experimentally obtain the lowest prediction error with a NMSE =
0.124 ± 4 · 10−4. The experimental value of γ is not explicitly known, but
it is estimated to be around 0.02. We note that the numerically achieved
results are up to one order of magnitude better, as can be seen in Fig. 4.7
or in ref. [15, 74]. When including quantization noise as is present in the
experiment, the performance is of a similar level as the experimental one.
To provide evidence that the performance indeed stems from the interplay of
high-dimensional mapping and nonlinearity, and not from the nonlinearity

4.3 Results 71

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

γ

φ/π

N
M

S
E

Fig. 4.7: Numerical results for the Santa Fe laser prediction
task. The used nonlinearity is of the Ikeda type. The dependence
on the nonlinearity offset phase and the input scaling on the reservoir
computing performance on the Santa-Fe laser data set is investigated.
Best performance for η = 0.2 is found for several values of φ as long
as γ is taken small enough. The minimum NMSE is found to be 0.04,
comparable to values found in literature when using traditional reservoir
computing approaches on this benchmark.

72 4 Modeling an opto-electronic implementation

η

Fig. 4.8: MZM phase dependence of the reservoir computing
performance using the Santa-Fe data set. Best experimental per-
formance for η = 0.2 is found around φ0 = 0.1π, φ0 = 0.5π, φ0 = 0.7π
and φ0 = 0.85π phase values in the vicinity of local extrema of the
transfer function of the MZM (see Figs. 4.10(d), 4.10(a), and 4.10(b).
Figure taken from [69].

alone, we in addition plot the data obtained when disconnecting the feedback
line (red points). The output value of the nonlinear node is sent into the
delay line and is used for training. However, they are not fed back into
the nonlinear node. The lower performance without feedback loop is clearly
visible.

4.3.2.3 Comparison with state of the art

For quantitative performance results described in literature we refer to Table
4.2. Numerically we obtain a slightly worse performance for the Ikeda system
than for the Mackey-Glass delayed feedback oscillator. The experimental
implementation performs significantly worse. We attribute this mainly to
the 10 bit resolution of the experimental setup. Effects of quantization noise
are studied in Chapter 5, section 5.4.2.

4.3 Results 73

Table 4.2: Santa Fe performance literature review. The first
performance column gives the results found by by Rodan et al. [79].
The second and the third column show the results found with a delayed
feedback reservoir numerically and experimentally, respectively.

Res. size NMSE [79] NMSE Num. NMSE Exp.
200 0.00819 - -
400 - 0.04 0.124

4.3.3 Isolated spoken digit recognition

4.3.3.1 Numerically obtained performance

As we did for the case of the Mackey-Glass nonlinearity the TI46 speech
corpus is used, see Chapter 2, section 2.2.2. The performance for this task
is characterized by the word error rate (WER) as well as a margin to the
closest competitor digit. In Fig. 4.9 two simulation results are shown. In
Fig. 4.9(a) the input scaling is scanned versus the offset phase, while in Fig.
4.9(b) the feedback strength is scanned versus the offset phase. Contrary to
what was observed for the NARMA10 benchmark, for the isolated spoken
digit recognition the best operating point is not found at the lowest values of
γ. For this test, memory is of less importance and nonlinear transformation
plays a more crucial role. For spoken digit recognition the performance is
clearly phase dependent and some relatively wide regions are found were the
error corresponds to less then 1 mistake out of 500 on average.
In Fig. 4.9(a) we chose η = 0.3. The region of good performance is widest
for γ = 0.4 or γ = 0.5. In Fig. 4.9(b) the input scaling is chosen as γ = 0.5.
The offset phase is scanned from 0 to π. In this figure, instead of the WER
we plot the log(WER) to have a more clear distinction between regions with
good performance and parameter regions that perform less well. We see
that the best performance is obtained when the bias point is situated close
to a maximum or a minimum of the nonlinearity shape. In this region the
nonlinear shape is strongly nonlinear, which implies less memory, but more
nonlinear mixing of the input signals. These results confirm that isolated
spoken digit recognition relies more on identification of the general shape
than on memory of previous inputs.

4.3.3.2 Experimentally obtained performance

The experimental performance of the system can be found in Fig. 4.10. Fig.
4.10(a) and Fig. 4.10(b) show the dependence of WER and margin in the

74 4 Modeling an opto-electronic implementation

0 0.25 0.5 0.75 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

0.005

0.01

0.015

0.02

0.025

0.03

γ

W
E

R

0 0.2 0.4 0.6 0.8 1
φ/π

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

η

log10 (W
E

R
)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

φ/π

(a) (b)

Fig. 4.9: Numerical results on the isolated spoken digit recog-
nition task. An Ikeda nonlinearity is used. The WER is shown in
color code. (a) γ is scanned versus φ for a constant feedback strength
η = 0.3, (b) η is scanned versus φ for a constant input scaling γ = 0.5.

η-φ plane. The best operating point is found to be around η = 0.3 and
φ = 0.89π, where after repeated measurements the WER < 0.02% is reached.
Fig. 4.10(c) shows the WER and margin as a function of φ for η = 0.3. It
can be seen that good performance is not limited to a single point with
the WER remaining below 0.2% for the range 0.75 ≤ φ ≤ 0.95. Fig. 4.10(d)
shows the MZM transmission as a function of φ. A comparison between Figs.
4.10(c) and 4.10(d) allows an interpretation of the φ dependence. At values
of φ not far from the points of strongest nonlinearity in the MZM response
is where spoken digit recognition works best. In contrast the performance
dramatically decreases in proximity to a linear response of the MZM.
The numerical results in Fig. 4.9(b) can be compared to the experimental
results in Fig. 4.10(a). Both have the WER expressed in logarithmic scale
to make the general trend more visible. In both situations valleys of good
performance are found at the same positions, φ ≈ π/2 and φ ≈ 9π/10. The
small differences between the two performance plots can be explained by two
points. Firstly, there is the fact that the exact value of γ cannot easily be
matched between numerics and experiment. Secondly, in the experimental
setup there is the presence of noise, both system noise and quantization
noise. As was observed for the Mackey-Glass nonlinearity in Chapter 3, noise
decreases the margin. In simulations, small irregularities in the shape of the
valley of good performance can be observed because no noise was taken into
account. In the experiment the margin is lower and we observe the general
trends of good or bad performance.

4.3 Results 75
η

η
η

W
E

R

(a) (b)

(c) (d)

Fig. 4.10: Experimental results on Isolated Spoken Digit Recog-
nition task. (a) and (b) show the WER and margin, respectively,
for spoken digit recognition in the (η − φ)-plane (feedback strength
vs. MZM phase). The two figures of merit show a similar depen-
dency on both parameters, with excellent performance at η = 0.3 and
φ = 0.89π. (c) Detailed dependence of the performance on the MZM
phase at η = 0.3. (d) MZM transmission function as a function of
phase φ. Figure taken from [69].

76 4 Modeling an opto-electronic implementation

Table 4.3: Isolated Spoken Digit Recognition performance lit-
erature review. The used nonlinearity is of the Ikeda type. The
first performance column gives the results found by Paquot et al. [76]
and the second column the ones obtained with our delayed feedback
reservoir. Both results are experimental.

Res. size WER (%) [76] WER (%) Our system
200 0.4 -
400 - 0.02

4.3.3.3 Comparison with state of the art

For quantitative performance results described in literature we refer to Table
4.3. The best performance found here is similar to the result found for a
Mackey-Glass type nonlinearity, indicating that this task is not so sensitive
to the exact shape of the nonlinearity. In the similar experiment performed
by Paquot et al. at the ULB [76], the obtained performance on the isolated
spoken digit recognition task is WER = 0.4% or 200 nodes.

4.4 Bandpass filtering

The DDEs of the nonlinearities studied so far could all be written in the next
form:

ẋ(t) = −x(t) + F (x(t− τ), J(t)) , (4.4)

with ẋ the derivative to time, F any nonlinear function, x(t− τ) the delayed
feedback term and J(t) the masked input to the system. The derivative on the
left hand side of the equation represents a low-pass filter, which attenuates
all frequencies above a certain cut-off frequency. The timescale related to
this low-pass filter has been normalized to 1 and it plays a crucial role in
achieving good performance on reservoir computing tasks. We have found
that the system needs to be driven on a time scale faster than the response
time of the low-pass filter, optimally 5 times faster. The richness in different
time scales corresponds more variety in connections of the virtual nodes.
In experimental setups another filtering effects, attenuating low frequencies,
frequently occurs [106, 107]. This extra high-pass filtering term, in combina-
tion with the low-pass filter that was already described, creates a band-pass

4.4 Bandpass filtering 77

1/Ω 1/τ 1

Frequency

A
tte

nu
at

io
n

(d
B

)

0

Fig. 4.11: Frequency domain representation. The low cut-off fre-
quency (high-pass filter) is given by Ω−1, while the high cut-off fre-
quency (low-pass filter) is normalized to 1. The inverse of the delay
length τ−1 is situated in between the two in the above situation.

filter and can have a significant influence on the dynamics of the system. In
a delayed feedback reservoir we can benefit form this extra time scale present
in the system. It can increase the variation of node states and enhance the
mixing among them. To model this effect we extend Eq.(4.4) by adding a
high-pass filtering term. The general equation then reads

ẋ(t) = −x(t) +− 1
Ω

∫ t

−∞
x(s)ds+ F [x(t− τ), J(t)] , (4.5)

with Ω the ratio of the timescales of the high-and low-pass filters. Since
the response time of the low-pass filter is normalized to 1 in our scheme, Ω
represents the normalized response time of the high-pass filter. A schematic
representation of the situation in the frequency domain is given in Fig. 4.11.
1/Ω denotes the high-pass cut-off frequency, 1/τ indicates the frequency scale
introduced by the delay line and the 1 corresponds to the normalized low-
pass frequency. When a high-pass filter is added to the previously used
Ikeda delayed feedback system with low-pass filter, described by Eq.(4.3),
the dynamical equation becomes:

ẋ(t) = −x(t)− 1
Ω

∫
x(s)ds+ η sin2 [x(t− τ) + γJ(t) + φ] , (4.6)

where Ω is a new timescale introduced by the high-pass filtering. Adding

78 4 Modeling an opto-electronic implementation

a high-pass filter term to the equation implies that the lowest frequencies
are eliminated from the system. Hence also the DC terms disappears, re-
sulting in the removal of the non-zero fixed point solution of the low-pass
Ikeda Eq.(4.3). Only the zero-fixed point solution remains. To evaluate the
effect of high-pass filtering on performance, we now study the example of the
NARMA10 task.

4.4.1 NARMA10

We have explored the effect of the Ω on the performance for the NARMA10
task in more detail in Fig. 4.12 where we plot the Normalized Root Mean
Square Error (NRMSE) in the phase vs. feedback strength plane. We find
that good performance can be achieved when operating close to the inflection
points of the nonlinearity around φ = π/4 and φ = 3π/4. Still the best
operation is with a NRMSE of 0.22 is at φ = π/4 corresponding to the
positive slope of the nonlinearity. The sub-figures correspond to different
high-pass time scales in the system.
In Fig. 4.12(a) an asymmetrical performance curve can be seen, resulting
from the offset phase dependency of the steady-state solution in case of the
low-pass Ikeda system. In the absence of a high-pass filter, the steady-state
solutions of the unperturbed system are asymmetrically dependent on η, see
Fig. 4.5, what explains the same effect in the performance plot of the low-
pass. In Fig. 4.12(b) and Fig. 4.12(c) the non-zero steady state solution no
longer exists, hence the symmetry is restored. For Ω = 100, the performance
is determined by the nonlinearity shape. The two slopes of the nonlinearity
(the positive and the negative one) give rise to an extended region of good
performance, with equal results for both slopes. When evolving to the limit
situation of Ω = 1, the bias points on the positive slope yield even better
performance, while the operating points on the negative slope can no longer
perform accurate calculation. By making the high- and low-pass cut-off fil-
ters coincide, a very narrow pass-band is created. The parameter region of
optimal performance is still centered at both inflection points (φ = π/4 and
φ = 3π/4), but the best error around φ = π/4 has improved to a value of
0.17. We conclude that we find better performance for the Ikeda nonlinear-
ity delayed feedback system when band-pass filtering is used. The addition
of a high-pass filtering term removes the non-zero fixed point steady-state
solution and this way it alters the performance.

4.4 Bandpass filtering 79

(b)

0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

η

φ

0

0.2

0.4

0.6

0.8

1

N
R

M
S

E

0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

η

φ

0

0.2

0.4

0.6

0.8

1

N
R

M
S

E

0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

η

φ

0

0.2

0.4

0.6

0.8

1

N
R

M
S

E

(a)

(c)

Fig. 4.12: Performance on NARMA-10 benchmark for an Ikeda
nonlinearity. The error is expressed in color code as an NRMSE. The
number of nodes equals 400 and all nodes are separated by a distance
θ = 0.2. γ is set to 0.01. (a) Low-pass situation, (b) band-pass
situation with Ω = 100, (c) band-pass situation with Ω = 1.

80 4 Modeling an opto-electronic implementation

4.4.2 Interconnection structure

The introduction of an extra high-pass filter introduces another time scale
in the system and adds complexity to the dynamics. The node response
is integrated over several virtual nodes and this changes the virtual inter-
connectivity. As depicted in Fig. 4.13, the value of Ω influences especially
the connection to the last virtual node in the previous τ interval. While
the situation is still very similar for the low-pass case and the band-pass
case with Ω = 100, shown in Fig. 4.13(a) and Fig. 4.13(b) respectively, the
interconnectivity structure for Ω = 1 shows clear differences.
The connectivity with neighboring virtual nodes can become negative, while
in the low-pass situation only positive relation were found. In Fig. 4.14 a
time trace of the injected input and the corresponding node response are
shown.
In blue the injected input, scaled with γ, is shown, while the red curve
represents the response of the nonlinear node. In this simple example only
20 virtual nodes were used, separated by θ = 0.2. For large inputs, the
response looks qualitatively very similar to what is obtained with the low-
pass filtering. However, in Fig. 4.14 we notice for the second input interval
(smaller input amplitude) that the response does not simply follow the mask
variations. The contribution of the integral in Eq.(4.5) becomes significantly
more important than the input driving.

4.5 Conclusion

The results demonstrated in this chapter prove that the delayed feedback
approach as described in Chapters 1 and 2 can be implemented efficiently
using an opto-electronic system. First of all, with numerical simulations
we have shown that benchmark tasks such as NARMA10, Santa Fe time
series prediction and isolated spoken digit recognition can be solved using an
delayed feedback Ikeda oscillator. This confirms that the good performance
of the Mackey-Glass nonlinearity described in Chapter 3 is not only valid
for that particular shape of the transfer function of the nonlinear node. As
long the nonlinearity possesses different regions, weakly linear and strongly
nonlinear, several tasks can be solved. Depending on the requirements for
good performance on a particular task the operating point needs to be chosen
carefully.

4.5 Conclusion 81

5 10 15 20

15

10

5

1

−0.2

0

0.2

0.4

0.6

0.8

5 10 15 20

−0.2

0

0.2

0.4

0.6

0.8

5 10 15 20

−0.2

0

0.2

0.4

0.6

0.8

20

1

1

1

15

10

5

1

20

15

10

5

1

20

Virtual node nr

Virtual node nr

Virtual node nr

Vi
rtu

al
 n

od
e

nr
Vi

rtu
al

 n
od

e
nr

Vi
rtu

al
 n

od
e

nr

(a)

(b)

(c)

Fig. 4.13: Interaction graph for an Ikeda band-pass system. The
interaction graph is shown for a band-pass Ikeda delayed feedback sys-
tem. The coupling strength is expressed in color code. The virtual
nodes are separated by a distance θ = 0.2. γ is set to 0.1 and φ is
chosen to be 0.5. (a) Low-pass situation, (b) band-pass situation with
Ω = 100, (c) band-pass situation with Ω = 1.

82 4 Modeling an opto-electronic implementation

2 4 6 8 10 12 14 16 18

−10

−8

−6

−4

−2

0

2

4

6

8
x 10−4

Normalized time

γJ
, X

Fig. 4.14: Time trace for an Ikeda band-pass system. The blue
curve denotes the injected input multiplied with the input scaling and
the red curve shows the response of the nonlinear node The virtual
nodes are separated by a distance θ = 0.2 and for this example τ was
chosen equal to 20θ. γ is set to 0.1, Ω is equal to 0.1 and φ is chosen
to be 0.5.

4.5 Conclusion 83

Secondly, the experimental results that have been obtained at IFISC in
the Universitat de les Illes Balears demonstrate the first experimental opto-
electronic implementation of reservoir computing, able to compete with dig-
ital reservoirs in terms of performance. Also the similar experiment at the
ULB confirms this[76]. The experiments encourage investigation in more
depth of these approaches to optical information processing. They represent
a flexible, efficient and potentially low power-consuming device with excel-
lent computational performance. These results should not be limited to an
optoelectronic oscillator and might be transferred to an all-optical implemen-
tation. This is one of the main goals within the PHOCUS project, however,
that is beyond the scope of this dissertation.
Finally, we have shown that a band-pass filtering effect in the setup can be
used to increase the complexity of the dynamic response of the node, with
beneficial effect on the available region of operation in parameter space.
In the next chapter we will elaborate on general properties of the reservoir
that are not benchmark dependent. Instead of evaluating the performance
in terms of an obtained error value, we measure the memory and the com-
putational ability of a delayed feedback reservoir.

5
Task-independent properties of

delayed feedback reservoirs

As was discussed in Chapters 3 and 4, different benchmark tasks require dif-
ferent properties of a reservoir. While tasks such as NARMA10 and Santa
Fe laser data prediction seems to be optimally solved by weakly nonlinear
reservoirs, isolated spoken digit recognition benefits from stronger nonlin-
earity types. Given the specific details of the task in question, this can be
explained by e.g. the capability of a reservoir to separate different inputs, to
generalize different realizations of the same input to the same class and to
recall previous inputs. In this chapter we study some task-independent mea-
sures of reservoir performance in the case of a delayed feedback system and
apply that knowledge to explain its performance on the NARMA10 task1.
For this reason we always specifically investigate the parameter region where
best performance is found for NARMA10. To characterize regions of good
computational ability we make use of quantities such as the kernel quality
and the generalization rank. These properties were originally introduced in
[18] and have been used to characterize reservoir computing systems in terms
of processing power [109]. We remark that all results shown in this chapter
have been obtained with a Mackey-Glass nonlinearity type. Similar results
can be found for an Ikeda nonlinearity type [108].

1This approach was originally proposed by dr. S. Ortin and prof. L. Pesquera from the
Universidad de Cantabria [108].

86 5 Task-independent properties of delayed feedback reservoirs

d(u,v = 0.4)

d(u,v = 0)
d(u,v = 0.1)
d(u,v = 0.2)

0 0.1 0.2 0.3 0.4 0.5

Time (s)

2.5

2

1.5

1

0.5

0

S
ta

te
 d

is
ta

nc
e

Fig. 5.1: Separation property. The state distance d(Xu, Xv) is plot-
ted as a function of time for several input spike trains with a different
distance d(u, v). The full line denotes the distance between two identi-
cal spike trains, but different initial conditions of the reservoir. Figure
taken from [7]

5.1 Separation property and kernel quality

5.1.1 Separation property

To distinguish different input signals using reservoir computing, they need
to be mapped onto different reservoir states. The linear separation property
(SP) is a measure for this, describing the distance between two reservoir
states that are driven with different inputs, possibly as a function of time.
It was originally introduced by Maass et al. in 2002 [7]. In their work a
computer model for neural microcircuits and spike train inputs is employed
to calculate the SP. As inputs a large set of pairs of Poisson spike trains u and
v were randomly generated and injected into a reservoir with random initial
conditions. For each of these time-varying inputs u and v the response of
the reservoir, respectively Xu and Xv, was recorded and for every time step.
The distance was measured using the Euclidean distance in the reservoir
state space. In Fig. 5.1 the result is shown after averaging for a large amount
of different initial conditions.
The separation distance of the states increases with the separation distance of
the inputs. The solid line represents a control distance, which should ideally

5.1 Separation property and kernel quality 87

be equal to 0. This curve denotes the separation distance of states originating
from identical inputs, but different initial conditions of the network. The
distance found there is significantly lower than the separation distance of
the states resulting from different inputs, implying that the distances found
for the dashed lines are not simply originating from the initial conditions of
the network. If one also wants to consider the timing differences between
two spike trains, a Gaussian kernel e−2(t/T) with a width of typically 5 ms
is convolved with the two input spike trains. The resulting distance d(u, v)
is defined as the distance of the resulting two continuous functions in the
L2-norm (divided by the maximal lengths of the spike trains u and v). This
measure of the separation is not used in this dissertation. We use an extended
measure of this, called the kernel quality.

5.1.2 Kernel quality

This measure indicates how well the reservoir represents different input streams
and it can be used as a measure for the complexity and diversity of nonlinear
operations performed. It allows to evaluate to which extent the reservoir facil-
itates classification performance of a linear decision-hyperplane [110]. While
the SP describes the distance between two or more state vectors without
considering the separability (see Fig. 1.5), the kernel quality measures how
well the reservoir represents different input streams [18]. The state matrix is
expected to contain a representation of the inputs that are linearly separable.
In order to have an excellent processing capability, the elements of the state
matrix should also be linearly separable. To study a reservoir of N nodes,
a set of N different inputs is used, U = {u1, u2, ..., uN}. Every input ui is
a series of k random data points to be injected into the reservoir. The first
k − 1 points serve to warm up the reservoir, making sure that the system is
no more in its quiescent state. A scheme of the situation is depicted in Fig.
5.2.
For the kth point the states si of all N nodes are recorded and it forms the
ith column in the resulting N ×N kernel matrix. Finally, the rank, which is
the number of linearly independent eigenvectors, is used to determine how
many input responses can be distinguished using a linear readout. When
for the rank rkq = N holds, this implies that all desired target values yi
at step k for the inputs ui can be returned by the reservoir trained with a
linear readout. Hence, a high kernel quality rank is desired. If the rank of
this matrix has a value rkq < N , rkq can still be viewed as a measure for
the computational performance of a network. It gives an indication of the
degrees of freedom that are available to map the states onto the targets. In
Fig. 5.3 a two-dimensional parameter scan of the kernel quality is plotted for

88 5 Task-independent properties of delayed feedback reservoirs

u11, u12, u13, ..., u1k

u21, u22, u23, ..., u2k

u31, u32, u33, ..., u3k
...
uN1 , uN2, uN3, ..., uNk

NL τ

s11, s12, s13, ..., s1k

s21, s22, s23, ..., s2k

s31, s32, s33, ..., s3k
...
sN1 , sN2, sN3, ..., sNk

Fig. 5.2: Kernel quality scheme. N input series of k steps are fed
into the nonlinear node. Only for the last step the reservoir states are
read out and used to construct the kernel matrix.

the Mackey-Glass nonlinearity. We investigate the dependence both on the
feedback strength (η) and the input scaling (γ).
In Figs. 5.3(a) and (c) the exponent is chosen equal to 1. Since in the system
400 virtual nodes are employed, the maximum achievable rank is 400 as
well. Within the scanned range, a large region of maximum rank is found,
especially for higher values of the feedback strength and the input scaling.
When zooming to the NARMA10-range, we still observe a large region with
a maximal rank. When considering the situation for p = 7, depicted in Figs.
5.3(b) and (d), the region of good separation is considerably wider. For low
values of η and γ, within the NARMA10-range, the rank is higher for p = 1.
Within the small window of good performance on the NARMA10 task, the
kernel quality is lower for a higher exponent.

5.1.3 Generalization property

Next to kernel quality, another crucial property is the ability to generalize.
Non-identical inputs do not imply that they should be classified in different
categories. They might differ a little bit because of noise or because of
previous inputs. Ideally, a reservoir computing system is able to neglect
these very small differences as long as the general pattern belongs to the same
category. The generalization rank is in fact the ability of the readout layer
to read states from the reservoir and generalize from the training data to the
test data. The construction of the generalization rank is similar to the kernel
quality rank. Again, a set of N different inputs is used, U ′ = {u′1, u′2, ..., u′N}.
This time, every input u′i is a series of k − l random data points and l fixed
points at the end of the series, denoted by X in Fig. 5.4.

5.1 Separation property and kernel quality 89

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

50

100

150

200

250

300

350

400

η

γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

50

100

150

200

250

300

350

400

η

γ

(c) (d)

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(a)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(b)

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

Fig. 5.3: Kernel quality for delayed feedback reservoir with
Mackey-Glass nonlinearity. In (a) and (c) the kernel quality is plot-
ted in color code for p = 1, scanning both η and γ. In (b) and (d) the
same η-γ range is scanned, but for p = 7. In both cases 400 virtual
nodes are considered, separated by θ = 0.2.

u’11, u’12, u’13, ..., u’ ,X1k-l

u’21, u’22, u’23, ..., u’ ,X2k-l

u’31, u’32, u’33, ..., u’ ,X3k-l
...
u’N 1, u’N2, u’N3, ..., u’ ,XNk-l

NL τ

s11, s12, s13, ..., s1k

s21, s22, s23, ..., s2k

s31, s32, s33, ..., s3k
...
sN1, s N2, s N3, ..., sNk

, ..., Xl

, ..., Xl

, ..., Xl

, ..., Xl

1

1

1

1

Fig. 5.4: Generalization scheme. M input series of k steps are fed
into the nonlinear node. For every sample the last l steps are identical.
Only for the last step the reservoir states are read out and used to
construct the kernel matrix. A system with good generalization should
map all inputs onto the same reservoir sates.

90 5 Task-independent properties of delayed feedback reservoirs

The l points are chosen randomly as well, but they are identical for all u′i. In
order to be able to generalize, the reservoir-readout combination should be
able to map the several u′i onto the same target. The fact that earlier inputs
(the first k − l steps of every u′i) were different, should not affect the fact
that the last inputs (the last l steps of every u′i) are the same and should
be mapped onto the same class. In this test the choice of k and, especially,
l is crucial. The generalization rank is given by the rank of the N × N
matrix, which is constructed as in section 5.1.2. The better a system is able
to generalize and become insensitive to input steps earlier than l steps ago,
the lower the rank will be. Hence, for the generalization a low rank is desired.
Because of the relevance for the NARMA10 task, in this work l is usually
chosen to be 9. The generalization property for a Mackey-Glass nonlinearity
type delayed feedback reservoir is depicted in Fig. 5.5 where the influence of
the input scaling (γ) and the feedback strength (η) are investigated.
In Figs. 5.5(a) and (c) the situation for p = 1 is shown, while Figs. 5.5(b)
and (d) correspond to the case of p = 7. For p = 1, a region of high rank is
found, but for higher values of η the generalization becomes better and the
rank goes down to 0. The system makes no distinction between the different
inputs. When the exponent is high, the generalization rank is maximum for
quite a broad range. The rank becomes high at a slightly larger value of
η, but contrary to the case of p = 1, it stays high for the large values of η
within the investigated parameter range. Although both types of nonlinearity
clearly have a different behavior in terms of generalization rank, within the
parameter range that is important for the NARMA10 benchmark, they yield
very similar results.

5.1.4 Computational ability

The kernel quality and the generalization are somehow contradicting prop-
erties. We desire a high kernel quality rank and a low generalization rank.
However, in systems where a difference in inputs (present or past) is enlarged
in the reservoir state space, both of them will usually be high. When shifting
the operating point towards regions where the separation becomes stronger,
the separation of past inputs becomes stronger as well, rendering the system
less able to generalize. Therefore one needs to work in parameter regimes
that keep the middle between strong separation and sufficient generalization.
To have an indication of the optimal area for processing, the computational
ability rc is used, which is the difference between kernel quality rank rkq and
generalization rank rg:

5.1 Separation property and kernel quality 91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

50

100

150

200

250

300

350

400

η

γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

50

100

150

200

250

300

350

400

η

γ

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(a)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(b)

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

(c) (d)

Fig. 5.5: Generalization rank for delayed feedback reservoir with
Mackey-Glass nonlinearity. In (a) and (c) the generalization rank is
plotted in color code for p = 1, scanning both η and γ. In (b) and (d)
the same η-γ ranges are scanned, but p = 7. In both cases 400 virtual
nodes separated by θ = 0.2. We note that (c) and (d) are zooms of
the situations depicted in (a) and (b), respectively.

92 5 Task-independent properties of delayed feedback reservoirs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

50

100

150

200

250

300

350

400

η

γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

50

100

150

200

250

300

350

400

η

γ

(c) (d)

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(a)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

γ

(b)

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
η

Fig. 5.6: Computational ability for delayed feedback reservoir
with Mackey-Glass nonlinearity. In (a) and (c) the computational
ability is plotted in color code for p = 1, scanning both η and γ . In
(b) and (d) the same η-γ ranges are scanned, but p = 7. In both cases
400 virtual nodes separated by θ = 0.2. We note that (c) and (d) are
zooms of the situations depicted in (a) and (b), respectively.

rc = rkq − rg. (5.1)

Using the data obtained for the kernel quality and the generalization in Figs.
5.3 and 5.5, respectively, we obtain the computational ability using 5.1. The
situation is given for p = 1 in Figs. 5.6(a) and (c) and for p = 7 in Figs.
5.6(b) and (d).
For p = 1 two regions of high computational ability are found. One is
situated at lower values of η (η < 1) and the other one is situated at high
values (η > 2). In between, the computational ability rank drops to 0. Also
in the zoomed parameter region of the NARMA10 task we find mostly a high
rank for p = 1. This means that an accurate distinction can be made between

5.2 Memory 93

reservoir states originating from different inputs, without being oversensitive
to variations in the past. For p = 7 this region is less pronounced and
much narrower. For values of η > 1 the computational ability rank decreases
rapidly for both exponents and within the zoomed region the rank is low.
Considering Figs. 5.6(a) and (b), we can decide that better computational
properties are found for the configuration with the weak nonlinearity, p = 1.
The strong nonlinearity is able to map different inputs onto different reservoir
states, but it is not as efficient in generalizing.
This measure can yield an accurate indication of the parameter range for
which the system is suitable for computation. However, it only represents
one property required for successful processing of an input signal. Another
crucial element is memory, the ability to retain previously injected inputs.

5.2 Memory

5.2.1 Memory capacity

Memory of previous inputs can be of significant importance when solving
problems. Absence of memory can be sufficient to degrade performance so
drastically that the reservoir loses all its prediction or processing abilities. An
example of a task with very strict requirements for memory is NARMA10.
Since we will focus on this benchmark, we repeat the recursive formula of
Eq.(2.11), defining the target yk+1 as a function of the input uk.

yk+1 = 0.3yk + 0.05yk
[9∑
i=0

yk−i

]
+ 1.5ukuk−9 + 0.1 (5.2)

To calculate the target value of discrete time step k + 1 the input of step
k − 9 is used. This implies that the input value of 10 steps earlier needs to
be available for a good target approximation. The recursive summation with
earlier target values suggests that even more than 10 steps will be required.
In 2002, Jaeger proposed a test that addresses the memory capacity of a
system [111]. Jaeger choose the input u(k) of the reservoir to be points
drawn from a uniform distribution in the interval [−0.8, 0.8]. However, in
this work we will mostly evaluate the memory capacity in order to explain
results obtained for the NARMA10 test and therefore the input interval will
be [0, 0.5]. This scaling with offset has no effect on the intrinsic scoring on
the memory capacity. It will only avoid that the input scaling needs to be

94 5 Task-independent properties of delayed feedback reservoirs

shifted in order to compare with NARMA10 performance. The outputs are
constructed as an infinite number of output series, yi, each being a copy of
the time series u which is shifted by i steps, hence yi(k) is a reconstruction
of u(k − i) for i = 1 . . .∞. In practice, the maximum value for i is chosen
high enough not make a significant difference in the scoring. It was shown
theoretically in [111] that when using a reservoir of size N , the maximum
possible memory capacity equals N , the value which can be reached when
using a purely linear reservoir. The total memory capacity is defined as the
normalized correlation between the approximation of the targets returned by
the readout layer and their associated delayed inputs, denoted by the next
equation:

µc =
∞∑
i=1

mi, (5.3)

with mi being the memory function or normalized correlation between ŷi and
yi, given by

mi = corr[yi(k), ŷi(k)]=corr [yi(k), u(k − i)] .

In Fig. 5.7 a memory curve is shown for a delayed feedback reservoir with
a nonlinear node of the Mackey-Glass nonlinearity type. We investigate the
memory for different values of feedback strength (η) and input scaling (γ).
For a small number of delayed steps the reconstruction is excellent and the
correlation is close to 1. Starting from a shift of 11 steps back in time, the
memory gradually decreases to 0. When integrating the surface under the
memory curve we obtain the memory capacity. By repeating this for a large
number of parameters we obtain the result depicted in Fig. 5.8.
In Fig. 5.8 the memory capacity for both a delayed feedback Mackey-Glass
system with node separation of 0.2, see Fig. 5.8(a), and one with separation
of 1.0, see Fig. 5.8(b), is depicted. In both cases the exponent is chosen equal
to 1, implying that the nonlinearity is only weak and the transfer function is
monotonous. Again, the same parameters are varied, η and γ. For every set of
parameters the memory curve is constructed and subsequently the memory
capacity is calculated using Eq.(5.3). Both realizations look quite similar,
which might indicate that the connections introduced by the inertia of the
nodes do not have a significant contribution in creating memory. The memory
capacity reaches its highest value for low γ, because in that case a smaller
region of the nonlinearity is scanned. A drastic decrease in memory capacity

5.2 Memory 95

0 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Delayed input steps

m
(i)

Fig. 5.7: Memory curve for for delayed feedback reservoir with
Mackey-Glass nonlinearity. The system is able to reconstruct the
delayed input signal perfectly up to 11 delayed input steps. After that
the memory decays gradually. The parameters are η = 0.48, γ =
0.02, p = 1, τ = 80 and 400 virtual nodes with separation distance
θ = 0.2.

10.90.80.70.60.50.40.30.20.1
η

20

0

5

10

15

M
em

ory C
apacity

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

γ

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

10.90.80.70.60.50.40.30.20.1
η

γ

20

0

5

10

15

M
em

ory C
apacity

(a) (b)

Fig. 5.8: Memory capacity for delayed feedback reservoir with
Mackey-Glass nonlinearity, different θ. The memory capacity is
shown in color coding, for different values of feedback strength (η) and
input scaling (γ). Blue indicates low MC, while a red color corresponds
to a high MC of 20 steps or more. The exponent is chosen p = 1 and
400 virtual nodes are used for training. (a) θ = 0.2, (b) θ = 1.

96 5 Task-independent properties of delayed feedback reservoirs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

10.90.80.70.60.50.40.30.20.1
η

γ

M
C

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

10.90.80.70.60.50.40.30.20.1
η

γ

70

0

20

50

60

M
C

(c) (d)

0.3 0.6 0.9 1.2 1.5 3

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0

10

20

30

40

50

60

1.8 2.1 2.4 2.7
η

γ

η

γ

(a) (b)

0

10

20

30

40

50

60

0.3 0.6 0.9 1.2 1.5 31.8 2.1 2.4 2.7

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

M
C

M
C

30

40

10

70

0

20

50

60

30

40

10

Fig. 5.9: Memory capacity for delayed feedback reservoir with
Mackey-Glass nonlinearity, different p. The memory capacity is
shown in color coding, while varying the feedback strength (η) and the
input scaling (γ). The virtual node separation is chosen θ = 0.2 and
400 virtual nodes are used for training. For (a) and (c) the exponent
is chosen p = 1, while for (b) and (d) it is set to p = 7. We note
that (c) and (d) are zooms of the situations depicted in (a) and (b),
respectively.

is detected when crossing the bifurcation point to a non-zero fixed point. At
this point the memory degrades drastically and it becomes insufficient for
any task requiring a certain amount of knowledge from the previous inputs.
This bifurcation point shifts to smaller values of η for larger values of θ.
When comparing the situation of p = 1 with the one of p = 7, we get the
results depicted in Fig. 5.9. In Fig. 5.9(a) and (c) the case of p = 1 is shown,
while Fig. 5.9(b) and (d) contain the memory capacity scan for p = 7.
For values of η larger than 1 the memory capacity is low (MC < 10) in
both cases and for any value of the feedback strength the memory capacity is
higher for lower values of input scaling. In the NARMA10 optimal parameter
region the highest memory capacity values are found, but the ones for p = 7

5.2 Memory 97

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

delayed input steps

m
(i)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

delayed input steps

m
(i)

(a) (b)

Fig. 5.10: Memory functions for delayed feedback reservoir with
Mackey-Glass nonlinearity, different p. The memory function is
shown for p = 1 and p = 7 in (a) and (b), respectively. In both figures
the same parameter values are used: η = 0.5, γ = 0.01 and τ = 80
consisting of 400 nodes separated by θ = 0.2.

are significantly higher than the ones for p = 1. While the region of high
memory capacity reaches values between 20 and 30 for p = 1, the system with
p = 7 reaches values up to 75. It might strike as odd that the system with
the higher exponent seems to have more memory than the system with the
weaker nonlinear transfer function. However, the observed region consists of
small values of γ scanning only a small part of the nonlinearity2, hence the
destructive power in terms of memory for the more nonlinear system cannot
be seen yet. Around 0 the deviations from linear behavior are smaller for
high exponents. The nonlinear contribution ε (ε < 1) is taken to the power
7, hence it is smaller than for the exponent 1 case. Another aspect is the
shape of the memory curve. For tasks such as NARMA10 is is not the total
memory capacity that is important, it is the memory of a certain number of
earlier steps. The individual memory curves are shown in Fig. 5.10.
In Fig. 5.10(a) the memory function of a Mackey-Glass nonlinearity with
exponent 1 is depicted. When comparing the shape of this curve with the
one of a Mackey-Glass nonlinearity with exponent 7, shown in Fig. 5.10(b),
we remark that the memory is better for a higher exponent. Not only the
region of very high correlation is more extended, but also the memory tail at
the end is longer.

2Although γ = 1 might not seem a small value, the combination of the NARMA10
input and the mask already provide a small amplitude. For γ = 1 the maximum range
that is explored is 0.5 · (±0.1) · 1 = ±0.05.

98 5 Task-independent properties of delayed feedback reservoirs

−0.5 0 0.5 1 1.5 2
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

Input

O
ut

pu
t

−0.5 0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

Input

O
ut

pu
t

(a) (b)

Fig. 5.11: Nonlinearity shapes for Mackey-Glass nonlinearity, dif-
ferent p. The Mackey-Glass nonlinearity transfer function is shown for
p = 1 and p = 7 in (a) and (b) respectively. In both figures η = 0.5.
Blue indicates the transfer function of the nonlinearity, while the red
stars show the region that is actually scanned by the input. Although
the global shape of the nonlinearity varies strongly with p, the local
nonlinearity in the region where the input is scanned is quite similar for
both.

Since for the investigated set of parameters (γ = 0.01, η = 0.5, NARMA10
input samples) only a small part of the nonlinearity is scanned by the input
signal, the global shape of the nonlinearity becomes of less importance. In
Fig. 5.11 the global nonlinearity shape is given as an illustration, but from
the inset it can be seen that the regions scanned by the input are very similar.
For small values of injected input the higher exponent even corresponds to a
more linear function.

5.2.2 Memory quality

Another measure that is occasionally used in the RC community is the mem-
ory quality. The memory capacity represents the area under the memory
curve depicted in Fig. 5.7, but it fails to capture all information about the

5.3 Explaining performance: an example 99

curve. It makes no distinction between the different shapes of the curves, as
long as the total area underneath the curve remains the same. Hermans et
al. therefore introduced another measure called the memory quality [112].
The memory quality is defined as

µq = 1
µc

µc∑
i=1

mi, (5.4)

with µc being the memory capacity as defined in Eq.(5.3).
In contrast to the memory capacity, this measure gives an indication of how
rectangular the shape of the memory curve is. For some tasks the memory
might be required to be very high at the first steps, as for example for the
NARMA10 task. In Eq.(5.2) the term ukuk−9 implies that when calculating
target yk+1 we still need to have the input of 10 steps earlier present in
the memory to complete the computation. The other terms containing the
combinations of previous targets add some extra steps to this requirements,
but in total a memory of more or less 20 steps is all that is needed to achieve a
good performance. A longer memory will not decrease the error any further.
Any inputs further than 10 steps steps ago become almost irrelevant. In such
a case a perfect memory is required up to 10 to 20 steps ago and then the
memory can decrease rapidly.

5.3 Explaining performance: an example

The properties described in the previous sections provide us with tools to
estimate the limits of performance on a certain task without explicitly test-
ing the benchmark in question. Because of its simplicity we consider again
the NARMA10 test using a Mackey-Glass nonlinearity. For convenience the
performance curve shown in Fig. 3.5 is repeated here in Fig. 5.12.
The exponent of the Mackey-Glass nonlinearity is taken to be p = 1 and the
delay line consists of 400 virtual nodes separated by a distance of θ = 0.2.
The best result is found for very low values of γ. By comparing with the
results from the memory capacity (Fig. 5.8(a)) and the computational ability
(Fig. 5.6(a)), we find that a compromise has to be found between both of
them. Good computational ability is found for higher values of γ, while the
memory capacity is maximal for the lowest values of γ. The valley of good
performance on the NARMA10 task corresponds to the region where both,
memory and computational ability, score well.

100 5 Task-independent properties of delayed feedback reservoirs

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

1.0

0.9

0.8

0.7

0.6

0.5

0.4

N
R

M
S

E

Fig. 5.12: Explaining performance on the NARMA10 task. The
feedback strength (η) is scanned versus the input scaling (γ). The
upper grey area represents the region of high computational ability as
found in Fig. 5.6(a) and the lower grey shaded area denotes the region
of good memory, coming from Fig. 5.8(a).

5.4 Noise

In a hardware implementation different types of noise can be present. Com-
putational performance is mainly affected by noise within the system itself
and by quantization noise due to the finite resolution of the analogue-to-
digital (A/D) and digital-to-analogue (D/A) converters.

5.4.1 System noise

System noise can have a significant effect on the performance of delayed
feedback systems as reservoir computers. The noisy reservoir state is fed
back into the nonlinear node and this way keeps on propagating through
the system. We model the noise by Gaussian white noise ξ(t) with standard
deviation σN . In the case the system is described by a single variable, the
equation becomes

5.4 Noise 101

0
2
4
6
8
10
12
14
16
18
20

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ M
C

0
2
4
6
8
10
12
14
16
18
20

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ M
C

(a) (b)

Fig. 5.13: Effect of noise on memory capacity for delayed feed-
back reservoir with Mackey-Glass nonlinearity.. Memory capacity
is shown in color coding while scanning γ on the y-axis and η on the
x-axis. Both for (a) p = 1 and (b) p = 7 the introduction of system
noise leads to destruction of the memory of the system. The standard
deviation of the used noise is σN = 10−6.

x(t) = −x(t) + ηF [x(t− τ) + γJ(t)] + ξ(t). (5.5)

The Signal to Noise Ratio (SNR) is given by

SNR = 20 log
(
σin
σN

)
, (5.6)

where σin is the standard deviation of the masked input J(t), already scaled
with the input scaling factor γ. The effect of noise can be seen clearly in the
memory capacity of the system, as is demonstrated in Fig. 5.13.

A two-dimensional parameter scan varying the feedback strength and the
input scaling shows the effect of noise on the memory capacity. Compared to
Fig. 5.8(a) the memory has decreased significantly. Especially the region of
small input scaling factors is affected. The signal becomes smaller and hence
more sensitive to noise. The noise strength is kept constant at σN = 10−6.
The average standard deviation of a masked, time-multiplexed NARMA10
input is 0.0285. For constant noise strength the SNR varies with γ. For
γ = 0.1 this becomes

102 5 Task-independent properties of delayed feedback reservoirs

SNR = 20 log
(
σI
σN

)
= 20 log

(
γ · 0.0285

10−6

)
= 69 dB,

while for γ = 1 the SNR is 69 dB. When looking at the computational ability,
we would see an even more drastic effect. The computational ability is defined
as the difference between the kernel quality rank and the generalization rank,
see Eq.5.1. However, when adding noise to the system, the generalization
matrix becomes of full rank. All realizations become linearly independent
because all the noise contributions, regardless of their amplitude, are linearly
independent. In that case the tolerance used in the rank calculation becomes
an important factor. Even in the noiseless system the calculation of the rank
suffers from numerical noise in the calculation. To avoid having a full rank all
the time, a tolerance is built in. In all the results shown this tolerance level
was set just high enough to eliminate the effect of numerical noise. Using the
computational ability in noisy systems would require a re-definition of the
tolerance level based on the amplitude of the noise. This also implies that
transferring this concept to experimental implementations is not trivial. The
exact choice of the threshold level and the implications of this choice are still
an open question and are not considered in this dissertation.
In Fig. 5.14 the performance on the NARMA10 task is shown when this same
white noise is applied. The best performance found is an NRMSE around
0.4, the performance of a linear shift register. Hence noise of this strength
has degraded both the memory and the computational ability sufficiently to
destroy the reservoir’s ability to solve the NARMA10 task, both for p = 1
and p = 7.

5.4.2 Quantization noise

Another form of noise that occurs in the experimental implementation is
quantization noise. The input values, whether originating from a discrete
or a continuous interval, are in practice injected into the experimental setup
with a limited precision. Also the states read out of the delay line and
used for training are subjected to quantization. Fig. 5.15 demonstrates the
evolution of the obtained error as a function of the number of bits for the
Isolated Spoken Digit Recognition task. The simulations are performed on
the Mackey-Glass system of Eq.(3.3), with the parameters settings which
were found to be optimal in Fig. 3.8: p = 7, η = 0.8 and γ = 0.5. Once
again the performance is expressed in two ways, the WER (in black) and
the margin (in red). As shown in Fig. 3.8 the optimal result is 0.14% WER,

5.4 Noise 103

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

η

γ N
RM

SE

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

η

γ N
RM

SE

(a) (b)

Fig. 5.14: Effect of noise on the NARMA10 task for delayed
feedback reservoir with Mackey-Glass nonlinearity. The NRMSE
is shown in color coding while scanning γ on the y-axis and η on the
x-axis. Both for (a) p = 1 and (b) p = 7 the introduction of system
noise leads to a significant increase in error. The standard deviation of
the used noise is σN = 10−6.

4 6 8 10 12
2.5

3

3.5

4

4.5

5
4 6 8 10 12

0

0.5

1

1.5

2

2.5

W
E

R
 in %M

ar
gi

n

Output quantization bits

x

x

x x x

o

o

o
o

o

4 6 8 10 12
3.5

4

4.5

5
4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

W
E

R
 in %M

ar
gi

n

Input quantization bits

xxx

x

x

o

o oo

o

(a) (b)

Fig. 5.15: Effect of quantization noise on the isolated spo-
ken digit recognition task for delayed feedback reservoir with
Mackey-Glass nonlinearity. The number of bits used in the quanti-
zation process, distributed over the entire dynamical range, is varied.
For every quantization level the error is given as a margin (red) and as
a WER (black).

104 5 Task-independent properties of delayed feedback reservoirs

4 6 8 10 12
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5

4 6 8 10 12

0

0.1

0.2

0.3

0.4

xo

oo
o

x x x

x
o

Delay quantization bits

W
E

R
 in %M

ar
gi

n

Fig. 5.16: Effect of quantization noise on delayed feedback reser-
voir with Mackey-Glass nonlinearity. We vary the number of bits
used in the quantization process, distributed over the entire dynamical
range. The red line denotes the margin, while the black line denotes
the WER.

corresponding to a margin of around 5. The results here plotted in Fig.
5.15 show that as soon as the number of quantization bits is greater than
or equal to 8, the performance remains unaffected. The error in a 20 fold
cross-validation was found to be 0, indicating zero mistakes or one miss-
classified word in this run. The fact that this task seems more robust to
noise is because of the less strict requirements on precision in the reservoir
states. In Fig. 5.16 the effect of the quantization of the nonlinearity itself
is depicted. The quantized states are not only the ones used for training,
but also they are fed back to the nonlinear node. Only for 4 bits a slight
decrease is observed, while from 6 bits on the reservoir works optimally. The
reason for this insensitivity for quantization is that in fact the nonlinear
transfer function itself has changed. The nonlinear transfer function is no
longer a smooth shape, but it contains different levels. In the previous case,
where we quantized only the states for training, the nonlinearity makes a
continuous mapping, but the state used for training is quantized. Small
node output differences will then in the training procedure be enlarged by
the quantization. When the nonlinear transfer function itself is quantized, the
values trained on are consistent with the node values present in the system.
This explains the good performance, even with a low number of bits.

5.5 Conclusion 105

5.5 Conclusion

We have discussed two important properties of the reservoir: computational
ability and memory. Both of them are tools to evaluate the performance of
a reservoir, independently from any benchmark task.
The computational ability can be calculated as the difference between the
kernel quality and the generalization. We have applied this measure for a de-
layed feedback reservoir with a Mackey-Glass nonlinearity type, focussing on
the parameter region where optimal performance for the NARMA10 task was
found in Chapter 3. For a delayed feedback reservoir with a Mackey-Glass
type nonlinearity with p = 1 the parameter region of high computational
ability is significantly wider and more pronounced.
Next to computational ability we have also evaluated the memory. Although
the memory capacity was found to be higher for a high nonlinearity exponent,
the case of p = 1 has a relatively wide parameter region where the memory is
sufficient for the NARMA10 task. Moreover, in this case we were able to find
an overlap of the parameter region of high computational ability and the one
with high memory capacity. It is in this overlap zone that good performance
is found for the NARMA10 task. From these findings we can explain why
good results are obtained for NARMA10 in the case of p = 1, and not in the
case of p = 7.
Finally, we studied the effect of noise on the reservoir performance, making
a distinction between system noise and quantization noise. The NARMA10
task is highly noise sensitive and the performance degrades drastically, even
for small noise amplitudes. The memory capacity is severely affected and the
use of the computational ability cannot be easily transferred to the case of a
noisy system. When investigating the performance of quantization noise on
the isolated spoken digit recognition, we find in general good noise robustness.
The system is less sensitive to input quantization than to quantization of
the reservoir states, probably because of the low-pass filtering effect of the
nonlinear node. When the nonlinear transfer function itself is quantized
the performance remains excellent, even for very few quantization levels. In
general, we can roughly state that classification tasks are more noise robust
than system identification tasks.
In the next chapter we will introduce some modifications to the single node
delayed feedback architecture, with as a goal to extend the parameter region
of good performance and to improve the noise robustness of the system.

6
System modifications

We have shown that single node delayed feedback systems have good compu-
tational properties. However, as was already demonstrated for the NARMA10
task, finding a compromise between long and good memory and strong com-
putational power is far from straightforward. While the former can be ob-
tained with weakly nonlinear systems, the latter usually requires strong non-
linearities that are able to transform and mix information. In order to satisfy
both requirements simultaneously, one might be forced to work in parame-
ter regimes that are hard to reach experimentally or that e.g. require high
precision. Another option is to modify the architecture of the delayed feed-
back reservoir used so far. The basic configuration consists of one nonlinear
node and a delay line that feeds back the signal after holding it for a time
τ . Nothing restricts us from investigating adapted setups, where some of the
capabilities of the system can be boosted in terms of performance or speed.
Here, we suggest three improvements to the system: multiple delayed feed-
back, a network motif consisting of two bidirectionally delay coupled nodes
and an optimal construction of the mask values in the pre-processing stage.

6.1 Multiple delayed feedback

6.1.1 Architecture

The configuration discussed so far always relied on the same input feeding
procedure. Every input sample was held constant for a time τ equal to
the delay time, representing one discrete input step. This way the input
response was distributed over the entire delay time, ensuring the maximal
use of the dimensionality introduced by the delay. Another implication is

108 6 System modifications

that it becomes challenging to remember previous inputs. Every discrete
step, a new input changes all the node states. The only memory mechanisms
are the feedback line and the inertia of the nonlinear node and neither gives a
direct link to states older than one step ago. These older states only remain
present in the system when the nonlinearity is very weak.
Here, we outline another approach, based on the presence of multiple feed-
back lines in the system. Originally this was proposed by prof. L. Larger in
the framework of the PHOCUS project and the work was initiated by dr.
S. Ortin and prof. L. Pesquera. The basic setup is shown in Fig. 6.1. To
preserve older information more explicitly, we can add several delay lines to
the system. The longer the delay, the older the response that is being fed
back. Even without explicitly reading the older states from the delay line,
the information is re-injected into the system and extends its memory. In
Fig. 6.1(a) the basic configuration is shown for the example of three delay
lines. The delay of length τ corresponds to the situation as was considered
so far. The extra delay lines correspond to delays of 2τ , 3τ etc.. The green
nodes represent the responses to the last masked input sequence, the red ones
to one discrete step before that etc. Similar to the procedure used in [17]
the tapped states of the first interval are employed as virtual nodes and their
value is used in the training procedure. In order to only take into account
the effect of previous states being fed back and not including the fact that
they are still present in the delay line, only the youngest set of nodes is used
for the training. This set corresponds to the response to the present input.
All the older states will remain present in the feedback line for a while, but
they are not included in the training data.
In a practical implementation we can benefit from the fact that the longest
delay line contains all the states that appear in the shorter one. From Fig.
6.1(a) it can be seen that the green nodes appear in all three delay lines
hence we have a clear redundancy. In Fig. 6.1(b) a more resource efficient
configuration is shown, where only the longest delay line is present. The
shorter delay lines are introduced in the system by tapping the longer one at
the desired interval and feeding back all the tapped states to the node.

6.1.2 Numerically obtained performance

6.1.2.1 Memory

In Fig. 6.2(a) the memory curve is depicted in the case of a Mackey-Glass
nonlinearity with single feedback and in Fig. 6.2(b) we show the memory
curve for the same nonlinearity, but using multiple feedback with 5 delay

6.1 Multiple delayed feedback 109

NL node

 Linear Training

1 2 3 NN-1N-21 2 3 NN-1N-21 2 3 NN-1N-2

+

τ ττ

τ
1 2 3 NN-1N-2

NL node

 Linear Training

1 2 3 NN-1N-2

1 2 3 NN-1N-21 2 3 NN-1N-2

1 2 3 NN-1N-21 2 3 NN-1N-2

+
2τ

3τ

(a)

(b)

Fig. 6.1: Multiple feedback setup. In this example the delay time is
chosen as 3τ , corresponding to the length of 3 time-multiplexed input
samples. The training algorithm only operates on the youngest set
of node states (depicted in green). (a) scheme of the multiple delay
concept, (b) equivalent scheme with only 1 delay line and taps.

110 6 System modifications

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Delayed input steps

m
(i)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Delayed input steps

m
(i)

(a) (b)

0

Fig. 6.2: Memory function for multiple delay lines. The memory
function is depicted for several feedback weight distributions. The red
line represents the oldest states having a smaller weight, blue the oldest
states having a larger weight. In both cases the scaling is linear from
old to young. The black line represents all weights to be equal. In
all three cases the total sum of the weights is 1 and each delay line is
chosen randomly within the corresponding τ -interval. Parameters are
chosen as: γ = 1, η = 0.5 and p = 1. (a) 1 delay line (b) 10 delay
lines.

lines. The different colors correspond to different feedback weight configura-
tions. Blue corresponds to the configuration where the weights are linearly
decreasing with the highest weight being assigned to the oldest response, red
represents the opposite situation where the youngest states have the high-
est weight and black corresponds to all weights being equal. In all three
cases the total sum of the feedback weights is kept constant and equal to
1. For the linearly increasing or decreasing weights the values are chosen as:
w1 = 1

S
, w2 = 2

S
, ..., wn = n

S
, with S being the sum of the numerators of all

weight values. It becomes clear that having feedback from older responses
has a positive influence on the linear memory capacity. The more feedback
lines are introduced (with the total delay length increasing correspondingly),
the longer the memory.
Using explicit feedback of several previous input responses enables us to
design the memory function 1. While in traditional neural networks the
memory function remains high for a certain amount of steps to fade out
afterwards, here it becomes possible to have memory holes. In Fig. 6.3 we
depict the situation where feedback lines omitted in the schedule. A total
delay length of 100× τ was used, but the responses belonging to the interval

1An idea proposed by dr. S. Ortin and prof. L. Pesquera in the framework of the
PHOCUS project

6.1 Multiple delayed feedback 111

0 50 100 150
0.96

0.97

0.98

0.99

1

Delayed input steps

m
(i)

Fig. 6.3: Memory curve for the multiple delayed feedback case.
The total delay is 100τ . Every τ -interval is being fed back to the
nonlinear node from a random position within the interval, except for
the part [40× τ, 60× τ]. All feedback weights are equal and their total
sum is 1. A clear degradation in memory is observed for the inputs
injected 40 to 60 steps ago. For steps 61 to 100 the memory returns
to eventually degrade permanently for older inputs.

[40 × τ, 60 × τ] were not being fed back to the nonlinear node. As can be
seen in Fig. 6.3 the memory function is not monotonously degrading as was
the case in all curves so far.

6.1.2.2 NARMA10

A crucial choice is the exact length of the feedback lines. They can be chosen
to exactly match a multiple of τ , e.g. l · τ , with l ∈ N0, or to show a certain
mismatch, l · τ + δ, with δ < τ . In Fig. 6.4 we plot the NRMSE obtained for
the NARMA10 benchmark when varying the number of delay lines used in
the delayed feedback configuration. In all cases the parameters were chosen
as: η = 0.4, γ = 0.01, p = 1 and θ = 0.2, a configuration far from the optimal
point for the single delayed feedback case. In that case the high input scaling
degrades the memory sufficient to make the obtained error rise significantly
in the single delayed feedback situation. The number of delay lines used for
feedback is varied in the and for every value the obtained NRMSE for the
NARMA10 task is given. In Fig. 6.4(a) the feedback positions in the delay
line are chosen exactly at a multiple of τ . The first point of the curve cor-
responds to the single delayed feedback situation of Chapter 3. There the

112 6 System modifications

0 10 20 30 40
0.1

0.2

0.3

0.4

Nr of delay lines

N
R

M
S

E

0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

N
R

M
S

E

Nr of delay lines

(a) (b)

Fig. 6.4: NARMA10 performance curve for multiple delay lines.
The NRMSE obtained for the NARMA10 task is depicted as a function
of the number of feedback lines for several feedback weight distribu-
tions. (a) The length of the delay lines was chosen exactly at multiples
of τ , the shortest delay line. (b) The length of the delay lines was cho-
sen not to be a multiple of τ . The red line represents the oldest states
having a smaller weight, blue the oldest states having a larger weight.
In both cases the scaling is linear from old to young. The black line
represent all weights to be equal. In all three cases the total sum of
the weights is 1. For 1 delay line the three cases are identical. We used
a Mackey-Glass type nonlinearity with parameters: γ = 1, η = 0.4 and
p = 1.

6.1 Multiple delayed feedback 113

performance is slightly below 0.4, due the high input scaling that was used
(γ = 1). When adding extra delay lines, the performance only gets worse.
In Fig. 6.4(b), where the lengths of the extra delay lines are not exact mul-
tiples of τ a clearly positive effect on the NRMSE is observed. In that case
all fed back values correspond to different inputs, but corresponding virtual
nodes, implying that all of them have states constructed with the same mask
value. When the delay lines are chosen randomly within different τ intervals,
making sure that none of them feeds back responses belonging to the same
input step as another feedback line, the performance can be boosted signifi-
cantly. NRMSEs as low as 0.12 can be achieved for input scaling factors one
hundred times larger than the ones used in the single feedback case. This
way will benefit from the computational ability of the system at higher in-
put scaling, while compensating for the memory requirements using multiple
feedback lines. Until 12 delay lines we hardly observe a difference between
the different feedback weight distributions. Only for a much higher number
the configuration with the highest weights corresponding to the longest delay
lines seems to degrade more rapidly in terms of performance than the inverse
case. The equally distributed weights keep the middle between the two. This
observation can be explained by the fact that for the NARMA10 task enough
memory is present in all three cases, as can be deducted from Fig. 6.2(b). For
the case of higher weights being assigned to longer delays, more importance
is given to inputs very far in the past, further than necessary for the approx-
imation of the NARMA10 target. They become an increasingly disturbing
part of the total feedback signal and weigh more and more as the number of
delay lines increases. As a side remark we mention that in order to maintain
the basic structure of the delay feedback system, both the shortest and the
longest delay line had there feedback position at the exact τ interval. Like
that that we did not alter the way the 400 virtual nodes used for training
are constructed and we had control over the total delay of the system.
In Fig. 6.5 the input scaling and the feedback strength are varied and the
performance on the NARMA10 task in the presence of noise is depicted.
The standard deviation of the noise is set at 10−6, as was done in Chapter
5, section 5.4.1. We employ 10 feedback lines with equal weights for all of
them and their sum being equal to 1. The length of the delay lines were not
matched exactly with an interval of τ . We observe that excellent performance
is found even in the presence of noise. The region of very good performance
reaches above γ = 10. When higher input scalings are used the response of
the node is stronger and the variations in the output are larger. This could
facilitate an experimental implementation significantly.

114 6 System modifications

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

η

N
R

M
S

E

Fig. 6.5: NARMA10 performance curve for multiple delay lines
in the presence of noise. The NRMSE obtained for the NARMA10
task is depicted as a function of the feedback strength and the input
scaling. The delay lines have lengths not equal to multiples of τ . The
blue line represents the oldest states having a smaller weight, red the
oldest states having a larger weight. In both cases the scaling is linear
from old to young. The black line represent all weights to be equal. In
all three cases the total sum of the weights is 1. We used a Mackey-
Glass type nonlinearity with parameters: τ = 80, θ = 0.2 and p = 1.

6.2 Network motifs 115

6.2 Network motifs

6.2.1 Architecture

In the case of a conventional reservoir computing setup, where the reservoir
consists of a random network of nonlinear nodes, the input is fed in parallel
to all nodes of the reservoir. While in terms of simplicity this concept suffers
from the large number of nodes that need to be implemented, in terms of
speed it benefits from its huge parallelism. On the other hand, the delayed
feedback approach is far more resource efficient, but that implies that all
the input data need to be serialized. The processing speed is limited by
the delay length and can only be improved by using a faster sampling rate.
It is reasonable to look for a compromise between these two extremes by
using a few nonlinear elements instead of only one. This opens a wide range
of possible configurations of which only one example is studied here. The
dynamics of small networks of delay-coupled nonlinear nodes have already
been discussed in several studies [64, 113, 114].
In Fig. 6.6 the situation of two bidirectionally coupled nodes is shown. They
are separated from each other by half the delay time and are both driven by
a masked input. To fully benefit from all available delay induced dimensions
the mask is chosen to be different for both nodes. In the case of both nodes
being identical and receiving exactly the same masked input, their output
would be identical as well. Hence the virtual node states in the two delay
lines would be redundant. When choosing a different mask we benefit from
all dimensions in a total delay time of τ . Moreover, the time to process
one input sample has now become τ/2, only half of the single node delay
system. The more nodes are added, the faster the processing can take place,
because less serializing is needed. In the limit we reach a network of many
nodes, similar to conventional neural networks. A trade-off has to be made
between speed, simplicity of implementation and other factors such as power
consumption.

6.2.2 Numerically obtained performance for NARMA10

In Fig. 6.7 the memory capacity of a bidirectionally coupled system of two
Mackey-Glass nodes is depicted. Both nodes receives exactly the same input,
but with a different mask. The parameters are identical for both nodes. The
exponent is taken 1 in Fig. 6.7a and 7 in Fig. 6.7b.

116 6 System modifications

NL NL

τ/2

τ/2

Input Input

Fig. 6.6: Network of two bidirectionally coupled nodes. The two
nodes are equally spaced along the delay line and receive the same
input, but with a different masking function for each.

M
C

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

0

5

10

15

20

25

30
(a) (b)

M
C

Fig. 6.7: Memory capacity for two coupled nodes. The memory
capacity is plotted in color code for a network motif consisting of 2
bidirectionally coupled nodes, while scanning the feedback strength and
the input scaling. Both nodes receive identical inputs, but preprocessed
with a different mask. The two nodes are equally spaced within the
τ -interval and each drive 200 virtual nodes with a separation of 0.2.
(a) p = 1, (b) p = 7.

6.2 Network motifs 117

0

50

100

150

200

250

300

350

400

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

0

50

100

150

200

250

300

350

400

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

(a) (b)

Fig. 6.8: Computational ability for two coupled nodes. The com-
putational ability is plotted in color code for a network motif consisting
of 2 bidirectionally coupled nodes, while scanning the feedback strength
and the input scaling. Both nodes receive identical inputs, but prepro-
cessed with a different mask. The two nodes are equally spaced within
the τ -interval and each drive 200 virtual nodes with a separation of
0.2. (a) p = 1, (b) p = 7.

Next to memory capacity, we study the computational ability of the bidirec-
tionally coupled system. The color coded plots in Fig. 6.8 shows the rank
corresponding to the computational ability as defined in Eq.(5.1).

The scanned parameter region is identical to the one studied in detail for the
single delayed-feedback situation. Also in terms of results a clear similarity
can be seen. Although the parameter scan uses larger steps in this case, the
same trends are observed. For a low exponent the memory is highest for small
values of γ and a total degradation of memory is observed when crossing the
bifurcation point. For the p = 7 the memory is higher in general (for 0 < γ <

1) and the drastic degradation within the scanned interval disappears. When
looking at the performance of the system on the NARMA10 benchmark (see
Fig. 6.9), we observe for p = 1 (Fig. 6.9a) that the region of good performance
has shifted towards higher values of γ. NRMSE values of 0.15 can be found
for γ as high as 1. This relaxes the strict conditions that were imposed for
good performance with the single delay element. For an exponent of p = 7
the system never outperforms a linear shift register and all errors are higher
than 0.4, as shown in Fig. 6.9b.

118 6 System modifications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

N
R

M
S

E

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

η

γ

N
R

M
S

E

(a) (b)

Fig. 6.9: Two coupled nodes, NARMA10. The NARMA10 perfor-
mance expressed as an NRMSE is plotted in color code for a network
motif consisting of 2 bidirectionally coupled nodes, while scanning the
feedback strength and the input scaling. Both nodes receive identical
inputs, but preprocessed with a different mask. The two nodes are
equally spaced within the τ -interval and each node drives 200 virtual
nodes with a separation of 0.2. (a) p = 1, the region of good perfor-
mance - NRMSE ≈ 0.15 - reaches much higher values of γ compared
to the single delayed-feedback case (b) p = 7, the performance never
reaches better than what can be achieved by a linear shift register.

6.3 Construction of an optimal mask

6.3.1 Concept

In the results described throughout this dissertation the values of the mask
were always chosen randomly. They represent the values with which an
input is multiplied before it is fed into a node, as explained in Chapter 2,
section 2.1.2. The masks used for the NARMA10 task and the Santa Fe time
series prediction were always random drawings from the binary distribution
{−0.1, 0.1}. When a large amount of virtual nodes is considered this is
acceptable, since the probability of a high variety in occurring mask value
sequences increases with the number of nodes. However, in terms of efficiency,
it is desirable to construct a mask in the shortest possible way (the smallest
possible number of nodes) that still yields good performance. When using
a random mask, the possibility of having N equal mask values for N nodes
is also included. In fact this corresponds to the absence of a mask and it
results in a bad performance. In order to avoid this or any similar situation,
we outline a method that guarantees an optimal choice for the mask values.
Only binary masks are considered, an approach which is justified since for

6.3 Construction of an optimal mask 119

1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 6.10: Fibonacci linear feedback shift register for a 16-bit
block. With the scheme depicted here a sequence of bits, containing
all possible bit patterns of a 16-bit block, can be generated. When
letting the system run freely the output is a series of bits with a period
of 65535 bits. Bits 11, 13, 14 and 16 are tapped and XORed to
generate the next bits of the register.

several tasks no improvement in performance was observed when multiple
mask values were used to solve the task. We conjecture that the series of mask
values should contain all possible patterns of these values, given a certain
sequence length. Therefore, one needs to decide how long the sequence of
mask values to be considered should be. Because of inertia, the output of
the nonlinear node does not only depend on the input and the feedback
values, but also on the most recent previous output values. If for example
the node state is strongly dependent on the states that were obtained for
the 6 previous adjacent virtual nodes, we believe no more information can
be extracted then given by all possible length-6 sequences of the two mask
values. Even more, in order to construct the most efficient mask, it seems
that all of them should occur exactly once.
This can be done by using a modification of what is called maximum length
sequences [115]. In maximum length sequences a series of values is generated
that contains all possible bit patterns of an m-bit block in a ring structure.
This means that all possible sequences of an m-bit block occur on condition
that the bits are placed in a ring and that the bits at the end can make
a combination with the bits at the beginning. The linear feedback shift
register setup that generates such a maximum length sequence is depicted in
Fig. 6.10. The example in Fig. 6.10 shows the linear feedback shift register
for 16-bit blocks. The structure generates a sequence of bits containing all
possible realizations of a 16-bit block when the bits are placed in a closed
ring. The bit stream is periodical with period 65535 (= 2m − 1). Some of
the states in the 16-bit block are tapped and subsequently combined using

120 6 System modifications

an XOR logical operation. The outcome of the XOR gates serves as the
youngest bit to enter the shift register. The positions of the taps depend on
the length of the block to be varied. Usually they are described by what is
referred to as a polynomial mod 2, which implies that the coefficients of the
polynomial are either 0 or 1. Tab. 6.1 gives an overview of the polynomials
for blocks going from length 2 to 19.
Since in the case of the optimally constructed mask all bit patterns need to
be present for one input step of length τ, the ring structure is not valid within
one and the same input step and some bits need to be added. In general,
when all possible realizations of m bits are required in the mask, the minimal
mask length is exactly 2m+m−1. This extra length ofm bits originates from
adding one 0 (the combination with m zeros is not present in a maximum
length sequence) and from adding the last m− 1 bits of the sequence to the
beginning of the series (because the mask is not a ring structure for one input
step).

6.3.2 Numerically obtained performance

6.3.2.1 NARMA10

By replacing 0 and 1 with the low and high value of the mask, respectively,
we can construct a mask with all possible mask value sequences of m values
present in the mask sequence. Using these optimally constructed masks, a
performance plot is shown for the Mackey-Glass nonlinearity in Fig. 6.11,
where the number of virtual nodes is scanned and the performance on the
NARMA10 task is shown as an NRMSE. The parameters are chosen close to
optimal according to Fig. 3.5, η = 0.5, γ = 0.01, p = 1 and θ = 0.2, while the
two mask values were ±0.1.
The points in green represent the scoring of 100 optimally constructed masks,
while the blue points mark the scoring of 100 randomly chosen binary masks.
Theoretically the random masks could also include the sequence with all
identical mask values for which the performance is known to be 0.40. Hence,
the spread on the random masks is much larger than shown here. Firstly, it
can be noted that for the optimal NRMSE a saturation can be observed when
increasing the number of virtual nodes up to 134 or more. This complies with
the fact that the θ is chosen to be 0.2, corresponding to 5 virtual nodes per
time unit of the nonlinear node. The response time of the node corresponds
to 5 virtual nodes, hence it is acceptable to assume that combinations with
a total length of a little more than the response time are important in terms
of performance. Any older state has no significant influence on the present
node state and cannot create more variation in the reservoir states. The

6.3 Construction of an optimal mask 121

Bits Characteristic polynomial Length
m 2m − 1
2 x2 + x+ 1 3
3 x3 + x2 + 1 7
4 x4 + x3 + 1 15
5 x5 + x3 + 1 31
6 x6 + x5 + 1 63
7 x7 + x6 + 1 127
8 x8 + x6 + x5 + x4 + 1 255
9 x9 + x5 + 1 511
10 x10 + x7 + 1 1023
11 x11 + x9 + 1 2047
12 x12 + x11 + x10 + x4 + 1 4095
13 x13 + x12 + x11 + x8 + 1 8191
14 x14 + x13 + x12 + x2 + 1 16383
15 x15 + x14 + 1 32767
16 x16 + x14 + x13 + x11 + 1 65535
17 x17 + x14 + 1 131071
18 x18 + x11 + 1 262143
19 x19 + x18 + x17 + x14 + 1 524287

Table 6.1: Characteristic polynomials for the construction of a
linear feedback shift register. In the column on the left the length
of the bit block for which all possible patterns need to be constructed
is given, with in the center column the polynomial indicating where the
taps need to be placed in the setup of 6.10. The column on the right
shows the length of the sequence that contains all possible variations
of the m-bit block.

122 6 System modifications

0 200 400 600 800
0

0.2

0.4

0.6

0.8

Nr of virtual nodes

N
R

M
S

E

Fig. 6.11: Performance plot NARMA10 for random and optimally
constructed masks. A Mackey-Glass nonlinearity type is used, with
parameter settings: η = 0.5, γ = 0.01, p = 1 and θ = 0.2. The blue
points denote the scoring of the random masks, while the green points
indicate the NRMSE obtained for optimally constructed masks. For
every scanned node number 100 masks were generated.

6.3 Construction of an optimal mask 123

0.2 0.21 0.22 0.23 0.24 0.25
0

5

10

15

20

25

30

0.2 0.21 0.22 0.23 0.24 0.25
0

5

10

15

20

25

30

NRMSE NRMSE

(a) (b)

Fig. 6.12: Histogram of the performance for NARMA10 for ran-
dom and optimally constructed masks. For both plots the employed
nonlinearity is of the Mackey-Glass type, 134 virtual nodes were em-
ployed and the mask values are +0.1 and -0.1. (a) distribution for
100 randomly chosen masks, (b) distribution for optimally constructed
masks.

spread on the performance of the different masks is higher for small node
numbers and decreases when more virtual nodes are employed. For the small
node numbers, not all possible bit combinations of 5 or more bits are present.
For some of the randomly chosen masks there are more combinations lacking
than for others, resulting in a spread on the error. When increasing the nodes
to a higher number, all possible mask value patterns are included and even
a certain redundancy is introduced, which can be necessary when the used
training algorithm is not able to extract all information optimally from the
reservoir states.
In Fig. 6.13 the performance of the optimally constructed masks is shown
for two values of θ, the virtual node separation. The green points denote the
score of the system for θ = 0.2 and the blue points for θ = 1. The spread
on the values obtained for θ = 1 is significantly lower. The node state is less
dependent on the states of adjacent virtual nodes, hence variability in the
mask is of less importance. The overall error is higher for θ = 1.

6.3.2.2 Santa Fe laser data

When the same test is made for the Santa Fe Laser task, a similar performance-
node relation is found, as shown in Fig. 6.14. Again, the number of virtual
nodes is varied, but this time the performance is shown as an NMSE. The

124 6 System modifications

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

Nr of virtual nodes

N
R

M
S

E

Fig. 6.13: Performance plot for NARMA10 for optimally con-
structed masks with different θ. A Mackey-Glass nonlinearity type
is used, with parameter settings: η = 0.5, γ = 0.01 and p = 1. The
blue points denote the scoring of the optimally constructed masks for
θ = 0.2, while the green points indicate the NRMSE obtained for the
same optimally constructed masks for θ = 1. For every scanned node
number 100 masks were generated.

6.4 Conclusion 125

0 200 400 600
0

0.01

0.02

0.03

0.04

0.05

Nr of virtual nodes

N
M

S
E

Fig. 6.14: Performance plot for the Santa Fe laser prediction
task for random and optimally constructed masks. A Mackey-
Glass nonlinearity type is used, with parameter settings: η = 0.5, γ =
0.01, p = 1 and θ = 0.2. The blue points denote the scoring of the
random masks, while the green points indicate the NMSE obtained
for optimally constructed masks. For every scanned node number 100
masks were generated.

blue points denote the error of the randomly chosen masks and the green
points represent the optimally constructed masks. Here, saturation of the
performance already occurs at 36 nodes.

6.4 Conclusion

Even though the single node delayed feedback reservoir can compete with
traditional reservoirs made of hundreds of connected nodes in terms of per-
formance, still improvements can be made to the design of the system. In this
chapter we have discussed three possible modifications: two modifications in
the basic architecture and one in the pre-processing stage.
By adding several feedback lines to the single delayed feedback situation, the
memory can be boosted significantly. This can be beneficial for tasks that
require a very long memory, but it also allows for tasks with low or medium

126 6 System modifications

memory requirements, to work in parameter regimes that were not suitable
before. We have achieved excellent performance for the NARMA10 task for
high values of the input scaling (γ ≈ 10), even in the case with system noise.
This could possibly facilitate experimental implementations of noise-sensitive
tasks.
Another modification is the use of more than one nonlinear node. Some im-
provements are found in terms of performance, but the main advantage is
the fact that the speed of the system can be increased. Although in this
dissertation we have limited ourselves to one implementation, two bidirec-
tionally delay-coupled nodes, there are many possible configurations that can
be explored here.
Finally, we have proposed a modification in the pre-processing procedure.
Instead of using a randomly chosen mask, we have outlined a procedure to
construct a mask vector of which we believe it optimizes performances. Using
a modified version of maximum length sequences, it becomes possible to
create more diversity in the states of the virtual nodes. These masks exhibit
the same average performance as a randomly chosen mask, but the spread
becomes lower and we guarantee that the accidental choice of a ’bad’ mask
is avoided. Both for randomly chosen and for optimally constructed masks,
when increasing the number of virtual nodes, for the NARMA10 task the
performance saturates and the spread on the performance becomes smaller.
For the Santa Fe laser data prediction this effect is not so pronounced.

7
Conclusion and future outlook

7.1 What we accomplished...

Reservoir computing is a recently introduced paradigm in machine learning,
performing information processing in a computationally efficient way. By
dividing a recurrent neural network into two layers, called the reservoir and
the output layer, the training algorithm can be reduced to a mere linear
algorithm. This approach yields excellent results for a variety of tasks, e.g.,
time series prediction, pattern recognition and robot control.
We have identified delayed feedback systems comprising a single nonlinear
node and a delay line as suitable systems for reservoir computing. Delayed
feedback systems are receiving an increasing amount of attention, with delay
occurring in many physical and technological systems. Examples are the
brain, traffic dynamics, networks of lasers, etc. While often it is considered
to be a nuisance, some technological implementations such as chaos control
and chaos communication exploit the presence of delay beneficially.
Along the spatial dimension of the delay line we have defined virtual nodes
that fulfill a role comparable to the nodes in a traditional network approach.
Taking into account the different architecture, the procedure of feeding the
input to the reservoir has been drastically redesigned. The input signal
needs to be sequentialized and a mask is imprinted on it before it is injected
into the node. After processing the information in the reservoir and reading
out the node states, they are fed to a linear training algorithm. The used
training procedures are identical to the ones employed in traditional reservoir
computing setups.
We have pinpointed the virtual node separation distance as one of the most
important parameters in the delayed feedback reservoir setup. This distance

128 7 Conclusion and future outlook

is defined via the mask function and enables us to keep the output of the
nonlinear node constantly in a transient regime. Because of the inertia of
the nonlinear node it determines the interconnectivity structure of the virtual
nodes. We have succeeded in describing this structure, equivalent to what
is used in reservoirs consisting of a vast network of nonlinear nodes. From a
fundamental point of view, the simplicity of the delayed feedback architec-
ture assists in gaining a deeper understanding of the interplay of dynamical
properties and reservoir performance. The reduction of a complex network
to a single hardware node facilitates implementations enormously, because
only a few components are needed. Nevertheless, the use of delay dynamical
systems imposes certain constraints, since the feeding of the virtual nodes is
carried out serially, in contrast to the parallel feeding of the nodes in tra-
ditional reservoir computing. This serial feeding procedure implies that the
speed of the information processing is limited by the delay time. This draw-
back is compensated for by the much simpler hardware architecture of the
reservoir, and by the fact that the read-out can be taken at a single point of
the delay line.
The performance of our approach has been evaluated numerically and has
led to two experimental implementations. The first one is an electronic im-
plementation with a Mackey-Glass nonlinear node type. This represents the
first experimental implementation of delayed feedback reservoirs and it is
able to compete with numerical simulations in terms of performance. Sev-
eral benchmark tasks have been used to quantify the performance. For the
NARMA10 task, a problem of system identification, an NRMSE of 0.12 was
reached in numerical simulations and an NMSE of 0.019 was found for the
Santa Fe laser data prediction task. Experimentally, the isolated spoken digit
recognition task was solved, resulting in a WER of 0.14%. All these results
are comparable to what is found for state-of-the-art traditional reservoirs.
The second implementation is opto-electronic and uses an Ikeda nonlinearity
type. In this case excellent performance was also achieved for the same three
tasks. Numerically, for the NARMA10 task an NRMSE of 0.22 was found,
for the Santa Fe laser data prediction an NMSE of 0.04 and for the isolated
spoken digit recognition a WER of less than 0.2% has been obtained. We
have investigated the Santa Fe laser data prediction and the isolated spo-
ken digit recognition experimentally as well. The performance on the Santa
Fe task decreased drastically with increasing quantization noise, but for the
isolated spoken digit the experimentally found WER remains below 0.2%.
This proves that the exact realization of the system or the specific shape
of the nonlinear transfer function are not crucial. Since, in practice, often
a band-pass filtering effect is observed in the opto-electronic experimental
setup, we have modeled this numerically. The band-pass effect can be ben-
eficial to widen the available parameter region. From the two cases we can

7.1 What we accomplished... 129

conclude that a simple nonlinear dynamical system subject to delayed feed-
back can efficiently perform information processing. As a consequence, our
simple scheme can replace the complex networks used in traditional reservoir
computing.
Besides looking at the performance obtained on standard benchmark tasks,
we have numerically investigated some task-independent properties of the
reservoir. By measuring the kernel quality and the generalization we can
characterize system performance using the computation ability. This en-
ables us to predict in which parameter regions the delayed feedback reservoir
can potentially process information in a correct way. When combining this
with another measure, the memory capacity, performance results on, e.g.,
the NARMA10 benchmark can be explained. We have briefly studied the
effect of system noise and quantization noise. It has been found that for the
NARMA10 task noise can have a devastating effect on performance, even
for small noise amplitudes. The isolated spoken digit recognition task seems
more noise robust and very good results are obtained, even with quantization
levels down to only 6 digits.
To allow expansion of the viable parameter region and as such to facilitate
experimental implementation, we have proposed some system modifications.
We have investigated a single node delayed feedback reservoir with multi-
ple delayed feedback lines, a network motif consisting of two bi-directionally
delay coupled nonlinear nodes and we outlined a method to construct an
optimal mask. The modifications have been evaluated in terms of speed, per-
formance and noise robustness. With multiple delayed feedback the memory
of the reservoir can be boosted significantly, allowing for operation at very
high input scalings. In this region the system is less noise sensitive. For the
network motifs the parameter region of good operation widens, but not dras-
tically. The main advantage here is that a trade-off can be made between
temporal mapping using delay and spatial mapping using nonlinear nodes.
When using a few physically present nonlinear nodes, the speed of informa-
tion processing increases. Finally, we have suggested a method to construct
the mask using a method based on maximum length sequences, instead of
randomly choosing the mask values. This results in a smaller spread on the
performance because of the employed mask and, more importantly, it avoids
drastic failure due to a badly chosen mask realization.
The concept we have proposed could enable high-speed implementations of
reservoir computing, using high-speed components that would be too de-
manding or expensive to be used for many nodes. In particular, realizations
based on electronics and photonics systems are feasible using this simple
scheme, including real-time processing capabilities.

130 7 Conclusion and future outlook

7.2 Continuation of this work

7.2.1 Integrated all-optical approach

We have gained experience in driving and training delayed feedback systems
by implementing this in an electronic and an opto-electronic way. For both of
these approaches the input signals need to be fed in electronically. However,
in a telecommunication application the signals are optical and it would be
beneficial to skip the conversion to electronics. An all-optical implementation
is highly desired and this is the main goal of the PHOCUS project. At the
IFISC institute in the Universitat de les Illes Balears substantial progress
has been made on both the numerical and the experimental implementation
of a semiconductor laser with feedback, used as a reservoir in the framework
of the PHOCUS project. One of the challenges in an all-optical approach
is the influence of the optical phase. Although the phase can provide an
enrichment of the complexity of the system, it is a difficult property to control
experimentally. Also the masking procedure has to be optimized for optical
systems, taking into account the several timescales present in the optical
system.
As candidates for the implementation of the all-optical system, we too will
consider these SLs with delayed optical feedback. SLs are fast, sensitive to
feedback and can be integrated (Fig. 7.1). Interesting devices are distributed
feedback (DFB) lasers, semiconductor ring lasers (SRLs) and wavelength tun-
able lasers. While DFBs are easily controllable and mature devices, SRLs
and wavelength tunable lasers are particularly suited for integration. The
delay can be constructed externally or in an integrated way. In most of
the laser types described above several optical modes can be present simul-
taneously, with interactions between them. This offers the opportunity to
drastically reduce the length of the delay line, as several input streams can
be sent to different wavelengths, while several computational nodes belonging
to different wavelengths can be placed at the same position in the delay line.
Appropriate methods to input the data streams and to read out the data
will need to be developed and tested. We will focus on problems relevant
to information and telecommunication industry. This includes the imple-
mentation of hashing, flow recognition, transient data classification, sensor
networks and channel equalization. The data streams in a telecom network
are being sent around optically, hence an all-optical processing unit to an-
alyze them on the fly is highly desirable. These devices will all be subject
to an optical feedback signal. The delayed feedback can be implemented in

7.2 Continuation of this work 131

Delay line

Semiconductor ring laser

Mask
Fig. 7.1: Proposal of a reservoir computing setup using a semi-
conductor ring laser. The ring laser and the delay line can be realized
in an integrated form. A separate contact is provided to imprint the
mask on the input signal. Chip designed by Werner Coomans.

several ways: in integrated form or externally, e.g. through a pigtailed opti-
cal fiber. Ring laser devices have the practical advantage of having several
input and output ports. This advantage can be exploited to feed the input
to the system in one port and to re-inject the feedback in another port. Ring
lasers have two counter-propagating modes, hence the feedback can be self-
feedback (in the same directional mode) or cross-feedback (in the counter
propagating mode). The effect of their interaction on the performance is
one of the concepts to be studied. We can tune the feedback strength by
placing a variable optical attenuator in the delay path. Input data is fed
into the system either by injection of optical signals or by direct modulation
of the electrical injection current. To excite sufficiently complex transient
behavior in semiconductor lasers, the injected data rates need to be around
10 GHz. On the detection side, we need to analyze the complexity of the
excited transient behavior by sampling the optical output signals at speeds
exceeding this frequency. When working with optical injection, the opportu-
nity to address several wavelengths arises. By sending in different streams of
information at different wavelengths, parallelism is created without adding
extra components. As a consequence, the constraint on the delay time can
be decreased by the number of wavelength channels used.
We hope to have contributed to an emergent and exciting new field, combin-
ing physics, photonics and machine learning. We dare to hope that the work
presented here will foster novel developments and photonic implementations
of reservoir computing.

References

[1] Chouard, T. Turing at 100: Legacy of a universal mind. Nature 482,
455 (2012).

[2] Rosenblatt, F. The perceptron–a perceiving and recognizing automa-
ton. Report 85-460-1, Cornell Aeronautical Laboratory (1957).

[3] Minsky, M. L. & Papert, S. A. Perceptrons (MA: MIT Press, Cam-
bridge, 1969).

[4] Kolmogorov, A. On the representation of continuous functions by sev-
eral variables of superposition of continuous functions of one variable
and addition. Dokl. Akad. Nauk. SSSR 953-956, 669–681 (1957).

[5] Rumelhart, D., Hinton, G. & Williams, R. Learning representations
by back-propagating errors. Nature 323, 533–536 (1986).

[6] Jaeger, H. The ’echo state’ approach to analyzing and training recur-
rent neural networks. Technical Report GMD Report, German National
Research Center for Information Technology 148, 2188–2191 (2001).

[7] Maass, W., Natschläger, T. & Markram, H. Real-time computing with-
out stable states: a new framework for neural computation based on
perturbations. Neural Comput. 14, 2531–2560 (2002).

[8] Steil, J. J. Backpropagation-decorrelation: Online recurrent learning
with o(n) complexity. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN), vol. 1, 843–848 (2004).

[9] Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science 304,
78–80 (2004).

134 7 References

[10] Verstraeten, D., Schrauwen, B., D′Haene, M. & Stroobandt, D. An
experimental unification of reservoir computing methods. Neural Netw.
20, 391–403 (2007).

[11] Buonomano, D. & Maass, W. State-dependent computations: spa-
tiotemporal processing in cortical network. Nat. Rev. Neurosci. 10,
113–125 (2009).

[12] Maass, W., Joshi, P. & Sontag, E. Computational aspects of feedback
in neural circuits. PLOS Comput. Biol. 3, 1–20 (2007).

[13] Verstraeten, D., Schrauwen, B., Stroobandt, D. & Van Campenhout, J.
Isolated word recognition with the liquid state machine: a case study.
Inform. Process. Lett. 95, 521–528 (2005).

[14] Verstraeten, D., Schrauwen, B. & Stroobandt, D. Reservoir-based tech-
niques for speech recognition. In Proceedings of IJCNN06 , Interna-
tional Joint Conference on Neural Networks, 1050–1053 (2006).

[15] Rabinovich, M., Huerta, R. & Laurent, G. Transient dynamics for
neural processing. Nat. Rev. Neurosci. 321, 48–50 (2008).

[16] Cover, T. Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition. IEEE Trans.
Electron. 14, 326–334 (1965).

[17] Appeltant, L. et al. Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 468 (2011).

[18] Legenstein, R. & Maass, W. Edge of chaos and prediction of compu-
tational performance for neural microcircuit models. Neural Networks
16, 323–333 (2007).

[19] Lukoševicius, M. & Jaeger, H. Reservoir computing approaches to
recurrent neural network training. Computer Science Review 3, 127–
149 (2009).

[20] Hammer, B., Schrauwen, B. & Steil, J. Recent advances in efficient
learning of recurrent networks. In European Symposium on Artificial
Neural Networks, 213–226 (2009).

[21] Verstraeten, D. Reservoir Computing: computation with dynamical
systems. Ph.D. thesis, Universiteit Gent (2010).

7 References 135

[22] Joshi, P. & Maass, W. Movement generation and control with generic
neural microcircuits. In Proceedings of the First International Work-
shop on Biologically Inspired Approaches to Advanced Information
Technology (BioADIT), 258–273 (Lausanne, Switzerland, 2004).

[23] Burgsteiner, H. Training networks of biological realistic spiking neurons
for real-time robot control. In Proceedings of the 9th International
Conference on Engineering Applications of Neural Networks, 129–136
(Lille, France, 2005).

[24] Maass, W., Legenstein, R. & Markram, H. A new approach towards
vision suggested by biologically realistic neural microcircuit models. In
Proceedings of the 2nd International Workshop on Biologically Moti-
vated Computer Vision (BMCV), vol. 2525, 282–293 (Tubingen, Ger-
many, 2002).

[25] Hertzberg, J., Jaeger, H. & Schonherr, F. Learning to ground fact
symbols in behavior-based robots. In Proceedings of the 15th European
Conference on Artificial Intelligence, 708–712 (Lyon, France, 2002).

[26] Jaeger, H. Reservoir riddles: suggestion for echo state network re-
search (extended abstract). In Proceedings of the IEEE international
Joint Conference on Neural Networks (IJCNN), 1460–1462 (Montreal,
Canada, 2005).

[27] Antonelo, E., Schrauwen, B. & Stroobandt, D. Event detection and
localization for small mobile robots using reservoir computing. Neural
networks .

[28] Antonelo, E., Schrauwen, B. & Stroobandt, D. Modeling multiple au-
tonomous robot nehaviors and behavior switching with a single reser-
voir computing network. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC), 1843–1848 (Sin-
gapore, 2008).

[29] Antonelo, E., Schrauwen, B. & Stroobandt, D. Unsupervised learning
in reservoir computing: modeling hippocampal place cells for small mo-
bile robots. In Proceedings of the International Conference on Artificial
Neural Networks (ICANN) (2009).

[30] VISA. Counterfeit fraud (2006).

[31] LeCun, Y. et al. Handwritten digit recognition: Applications of neural
net chips and automatic learning. IEEE Communication 41–46 (1989).

136 7 References

[32] Simard, P., Steinkraus, D. & Platt, J. Best practices for convolutional
neural networks applied to visual document analysis. In Proceedings
of the Seventh International Conference on Document Analysis and
Recognition, vol. 343, 958–963 (2003).

[33] Tong, M., A.D., B., Christiansen, E. & Cottrell, G. Learning gram-
matical structure with echo state networks. Neural Networks 20(3),
424 – 432 (2007).

[34] Skowronski, M. & Harris, J. Automatic speech recognitionusing a pre-
dictive echo state network classifier. Neural Networks 20(3), 414 – 423
(2007).

[35] Ghani, A., McGinnity, T., Maguire, L. & Harkin, J. Neuro-inspired
speech recogition with recurrent spiking neurons. In Proceedings of
the International Conference on Artificial Neural Networks, Part I
(ICANN), 513–522 (2008).

[36] Jaeger, H. Discovering multiscale dynamical features with hierarchi-
cal echo state networks. Technical Report 10 GMD Report, German
National Research Center for Information Technology (2007).

[37] Jaeger, H. Short term memory in echo state networks. Technical Report
GMD Report 152, German National Research Center for Information
Technology (2001).

[38] Crone, S., Nikolopoulis, K. & Hibon, M. Automatic modelling and
forecasting with artificial neural networks - a forecasting competition
evaluation. technical Report, lancaster University management School
(2008).

[39] Wyffels, F., Schrauwen, B. & Stroobandt, D. Using reservoir computing
in a decomposition approach for time series prediction. In Proceedings
of the European Symposium on Time Series Prediction, 149–158 (2008).

[40] Greenhill, R. & Elias, H. http://www.shadowrobot.com/media/pictures.shtml
[gfdl (www.gnu.org/copyleft/fdl.html) or cc-by-sa-
3.0(www.creativecommons.org/licenses/by-sa/3.0/)]. Wikimedia
Commons (2012).

[41] Duran Ortiz Mariordo, M. [gfdl (www.gnu.org/copyleft/fdl.html),
cc-by-3.0 (www.creativecommons.org/licenses/by/3.0),
gfdl (www.gnu.org/copyleft/fdl.html) or cc-by-3.0
(www.creativecommons.org/licenses/by/3.0)]. Wikimedia Commons
(2012).

7 References 137

[42] Equationaudio. [cc-by-sa-3.0 (www.creativecommons.org/licenses/by-
sa/3.0) or gfdl (www.gnu.org/copyleft/fdl.html)]. Wikimedia Commons
(2012).

[43] Naylor, M. Image gallery, re-upload = ulamm 09:28, 16 november
2007 (utc) (transferred from en.wikipedia) [public domain]. Wikimedia
Commons (2012).

[44] Vapnik, V. The nature of statistical learning theory. Statistics for en-
gineering and information science (Springer, 1999), 2 edn.

[45] Aizerman, M., Braverman, E. & Rozonoer, L. Theoretical foundations
of the potential function method in pattern recognition learning. Au-
tomation and Remote Control 25(6), 821–837 (1964).

[46] Hopfield, J. Neural networks and physical systems with emergent col-
lective computational abilities. Proc. NatL Acad. Sci. USA 79, 2554–
2558 (1982).

[47] Hopfield, J. Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proc. NatL Acad. Sci.
USA 81, 3088–3092 (1984).

[48] Fernando, C. & Sojakka, S. Pattern recognition in a bucket. Lecture
Notes in Computer Science 2801/2003, 588–597 (2003).

[49] Nikolic, D., Haeusler, S., Singer, W. & Maass, W. Temporal dynamics
of information content carried by neurons in the primary visual cortex.
In Proceedings of NIPS, Advances in Neural Information Processing
Systems, vol. 19, 1041–1048 (2007).

[50] Schürmann, F., K., Meier & Schemmel, J. Edge of chaos computation
in mixed-mode vlsi - a hard liquid. vol. 17, 1041–1048 (2004).

[51] Van Campenhout, J. Toward photonic reservoir computing: a tutorial.
IAP Doctoral School, Couvin (2006).

[52] Vandoorne, K. et al. Toward optical signal processing using photonic
reservoir computing. Opt. Express 16, 11182–11192 (2008).

[53] Vandoorne, K., Dambre, J., Verstraeten, D., Schrauwen, B. & Bienst-
man, P. Parallel reservoir computing using optical amplifiers. IEEE
Trans. Neural Netw. 22, 1469–1481 (2011).

[54] Erneux, T. Applied Delayed Differential Equations (Springer Science
Business Media, 2009).

138 7 References

[55] Orosz, G., Wilson, R., Szalai, R. & Stépan, G. Exciting traffic jams:
Nonlinear phenomena behind traffic jam formation on highways. Phys.
Rev. E 80, 046205 (2009).

[56] Pyragas, K. Continuous control of cahos by self-controlling feedback.
Phys. Lett. A 170–421 (1992).

[57] Schöll, E. & Schuster, H. Handbook of Chaos Control (Wiley-VCH,
Weinheim, 2008), 2 edn.

[58] Chen, L. & Aihara, K. Stability of genetic regulatory networks with
time delay. IEEE Trans. Circuits Syst. I 49, 602 (2002).

[59] Martin, A. & Ruan, S. Predator-prey models with delay and prey
harvesting. J. Math. Biol. 43, 247–267 (2001).

[60] Haken, H. Brain dynamics: synchronization and activity patterns in
pulse-coupled neural nets with delays and noise (Springer Verlag GmbH,
Berlin, Germany, 2006).

[61] Roelfsema, P. R., Engel, A., König, P. & Singer, W. Visuomotor inte-
gration is associated with zero time-lag synchronization among cortical
areas. Nature 385, 157–161 (1997).

[62] Fischer, I. et al. Zero-lag long-range synchronization via dynamical
relaying. Phys. Rev. Lett. 97, 123902 (2006).

[63] Vicente, R., Gollo, L., Mirasso, C., Fischer, I. & Pipa, G. Dynami-
cal relaying can yield zero time lag neuronal synchrony despite long
conduction delays. P. Natl. Acad. Sci. USA 105, 17157–17162 (2008).

[64] Heil, T., Fischer, I., W., E., Mulet, J. & Mirasso, C. Chaos synchro-
nization and spontaneous symmetry-breaking in symmetrically delay-
coupled semiconductor lasers. Phys. Rev. Lett. 86, 5 (2001).

[65] Takamatsu, A., Fujii, T. & Endo, I. Time delay effect in a living cou-
pled oscillator system with the plasmodium of physarum polycephalum.
Phys. Rev. Lett. 85, 2026–2029 (2000).

[66] Van der Sande, G., Soriano, M. C. & Fischer, I. Dynamics, corre-
lation scaling, and synchronization behavior in rings of delay-coupled
oscillators. Phys. Rev. E 77 (2008).

[67] Ikeda, K. . & Matsumoto, K. . High-dimensional chaotic behavior in
systems with time-delayed feedback. Physica D 29, 223–235 (1987).

7 References 139

[68] Argyris, A. et al. Chaos-based communications at high bit rates using
commercial fibre-optic links. Nature 438, 343–346 (2005).

[69] Larger, L. et al. Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Opt. Express
20, 3241–3249 (2012).

[70] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. & Zhou, C. The
synchronization of chaotic systems. Phys. Rep. 366, 1 (2002).

[71] Pecora, L. M. & Carroll, T. Synchronization in chaotic systems. Phys.
Rev. Lett. 64, 821 (1990).

[72] Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a univer-
sal concept in nonlinear sciences (Cambridge University Press, Cam-
bridge, UK, 2001).

[73] Le Berre, M. et al. Conjecture on the dimensions of chaotic attractors
of delayed-feedback dynamical systems. Phys. Rev. A 35, 4020–4022
(1987).

[74] Weigend, A. & Gershenfeld, N. Time Series Prediction: Forecasting
the Future and Understanding the Past, vol. 80 (Addison-Wesley, 1993).
URL ftp://ftp.santafe.edu/pub/Time-Series/Competition.

[75] Giacomelli, G., Meucci, R., Politi, A. & Arecchi, F. Defects and space-
like properties of delayed dynamical systems. Phys. Rev. Lett. .

[76] Paquot, Y. et al. Optoelectronic reservoircomputing. Scientific Reports
2 (2012).

[77] Paquot, Y. et al. Artificial intelligence at light speed : toward opto-
electronic reservoir computing. Belgian Pysical Society Magazine 15–22
(2010).

[78] Paquot, Y., Dambre, J., Schrauwen, B., Haelterman, M. & Massar,
S. Reservoir computing: a photonic neural network for information
processing. In Proceedings of SPIE Photonics Europe, Nonlinear Optics
and Applications IV, vol. 7728 (2010).

[79] Rodan, A. & Tino, P. Minimum complexity echo state network. IEEE
T. Neural Netw. 22, 131–144 (2011).

[80] Penrose, R. A generalized inverse for matrices. Proc. Cambridge Phil.
Soc. 51, 406–413 (1955).

ftp://ftp.santafe.edu/pub/Time-Series/Competition

140 7 References

[81] Bishop, C. Training with noise is equivalent to tikhonov regularization.
Neural Comput. 7, 108–116 (1995).

[82] Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification (John
Wiley and Sons, 2001).

[83] URL http://reslab.elis.ugent.be/software.

[84] Atiya, A. & Parlos, A. New results on recurrent network training:
unifying the algorithms and accelerating convergence. IEEE T. Neural
Netw. 11, 697–709 (2000).

[85] Jaeger, H. Adaptive nonlinear system identification with echo state
networks. Advance in Neural Information Processing Systems, MIT
Press 15, 593–600 (2003).

[86] Texas Instruments-Developed 46-Word Speaker-Dependent Isolated
Word Corpus (TI46) (NIST Speech Disc 7-1.1 (1 disc), September
1991).

[87] Doddington, G. & Schalk, T. Speech recognition: turning theory to
practice. IEEE Spectrum 18, 26–32 (1981).

[88] Lyon, R. A computational model of filtering, detection, and compres-
sion in the cochlea. In Proceedings of IEEE-ICASSP, vol. 7, 1282–1285
(1982).

[89] Huebner, U., Abraham, N. & Weiss, C. Dimensions and entropies
of chaotic intensity pulsations in a single-mode far-infrared nh3 laser.
Phys. Rev. A .

[90] (National Geophysical Data Center (NGDC, 2007).

[91] Mackey, M. & Glass, L. Oscillation and chaos in physiological control
systems. Science 197, 287–289 (1977).

[92] Farmer, J. Chaotic attractors of an infinite-dimensional dynamical
system. Physica D 4, 366–393 (1982).

[93] Namajunas, A., Pyragas, K. & Tamasevicius, A. An electronic analog
of the mackey-glass system. Phys. Lett. A 201, 42–46 (1995).

[94] Sano, S., Uchida, A., Yoshimori, S. & Roy, R. Dual synchronization of
chaos in mackey-glass electronic circuits with time-delayed feedback.
Phys. Rev. E 75, 016207 (2007).

http://reslab.elis.ugent.be/software

7 References 141

[95] Steil, J. J. Memory in backpropagation-decorrelation o(n) efficient on-
line recurrent learning. In Proceedings of the International Conference
on Artificial Neural Networks (ICANN) (2005).

[96] Walker, W. Sphinx-4: A flexible open source framework for speech
recognition. Technical Report, Sun Microsystems (2004).

[97] Caulfield, H. & Dolev, S. Why future supercomputing requires optics.
Nat. Photonics 4, 261 (2010).

[98] Miller, D. A. B. Correspondence to the editor. Nat. Photonics 4, 406
(2010).

[99] Tucker, R. The role of optics in computing. Nat. Photonics 4, 405
(2010).

[100] Neyer, A. & Voges, E. Dynamics of electrooptic bistable devices with
delayed feedback. IEEE J. Quantum Electron. 18, 2009–2015 (1982).

[101] Larger, L., Goedgebuer, J. & Udaltsov, V. S. Ikeda-based nonlinear
delayed dynamics for application to secure optical transmission systems
using chaos. C. R. Phys. 5, 669–681 (2004).

[102] Callan, K., Illing, L., Gao, Z., Gauthier, D. J. & Schöll, E. Broadband
chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104,
113901 (2010).

[103] Ikeda, K. Multiple-valued stationary state and its instability of the
transmitted light by a ring cavity system. Optics Commun. 30, 257
(1979).

[104] Larger, L. & Dudley, J. M. Optoelectronic chaos. Nature 465, 41–42
(2010).

[105] Erneux, T., Larger, L., Lee, M. W. & Goedgebuer, J. Ikeda hopf
bifurcation revisited. Physica D 194, 49–64 (2004).

[106] Udaltsov, V. et al. Bandpass chaotic dynamics of electronic oscillator
operating with delayed nonlinear feedback. IEEE T. Circuits-I 49,
1006–1009 (2002).

[107] Peil, M., Jacquot, M., Chembo, Y., Larger, L. & Erneux, T. Routes to
chaos and multiple time scale dynamics in broadband bandpass non-
linear delay electro-optic oscillators. Phys. Rev. E 79 (2009).

142 7 References

[108] Ortin, S. & Pesquera, L. Deliverable 4: numerical evaluation of in-
put/output methods. PHOCUS Deliverable (2010).

[109] Schrauwen, B., Buesing, L. & Legenstein, R. On computational power
and the order-chaos phase transition in reservoir computing. In Pro-
ceedings of NIPS, Advances in Neural Information Processing Systems,
vol. 21, 1425–1432 (Vancouver, 2009).

[110] Vapnik, V. Statistical Learning Theory (John Wiley, New York, 1999).

[111] Jaeger, H. Tutorial on training recurrent neural networks, covering
bptt, rtrl, ekf and the ’echo state network’ approach. Technical Report
GMD Report 159, German National Research Center for Information
Technology (2002).

[112] Hermans, M. & Schrauwen, B. Memory in linear recurrent neural net-
works in continuous time. Neural Networks 23, 341–355 (2010).

[113] D’Huys, O., Vicente, R., Erneux, T., Danckaert, J. & Fischer, I. Syn-
chronization properties of network motifs: Influence of coupling delay
and symmetry. Chaos 18 (2008).

[114] D’Huys, O., Fischer, I., Danckaert, J. & Vicente, R. Role of delay for
the symmetry in the dynamics of networks. Phys. Rev. E 83 (2011).

[115] Davies, W. Generation and properties of maximum-length sequences.
Control (1966).

	1 Introduction
	1.1 Learning vs programming
	1.2 Artificial neural networks
	1.2.1 Feedforward neural networks
	1.2.2 Recurrent neural networks

	1.3 Reservoir computing
	1.3.1 General concepts
	1.3.2 Applications
	1.3.3 Different views on reservoir computing
	1.3.3.1 Machine learning
	1.3.3.2 Neuroscience
	1.3.3.3 Dynamical systems

	1.4 Delayed feedback systems as reservoirs
	1.4.1 Delayed feedback systems
	1.4.2 Can delay systems be used as reservoirs?
	1.4.2.1 Topology of the network approach
	1.4.2.2 Topology of the delayed feedback approach
	1.4.2.3 An example: chaotic time series prediction

	1.5 Overview of this thesis

	2 Single node with delay: input, training and testing
	2.1 Single delayed feedback for reservoir computing
	2.1.1 Basic setup
	2.1.2 Input driving
	2.1.3 Interconnection structure
	2.1.4 Training
	2.1.4.1 Determination of the weights
	2.1.4.2 Overfitting
	2.1.4.3 Unbalanced data sets
	2.1.4.4 Framework for simulation and training

	2.2 Benchmark tasks
	2.2.1 NARMA
	2.2.2 Isolated spoken digit recognition
	2.2.3 Santa Fe laser data prediction
	2.2.4 Sunspot prediction

	2.3 Conclusion

	3 Modeling an electronic implementation
	3.1 Mackey-Glass delayed feedback oscillator
	3.2 Experimental implementation
	3.3 Results
	3.3.1 NARMA10
	3.3.1.1 Numerically obtained performance
	3.3.1.2 Experimentally obtained performance
	3.3.1.3 Comparison with state of the art
	3.3.1.4 Optimal virtual node separation width

	3.3.2 Santa Fe time series prediction
	3.3.2.1 Numerically obtained performance
	3.3.2.2 Comparison with state of the art

	3.3.3 Isolated spoken digit recognition
	3.3.3.1 Performance: numerical simulations and experiments
	3.3.3.2 Speaker identification: numerical results
	3.3.3.3 Comparison with state of the art

	3.3.4 Sunspot Prediction
	3.3.4.1 Numerically obtained performance

	3.4 Conclusion

	4 Modeling an opto-electronic implementation
	4.1 Experimental implementation
	4.2 Ikeda delayed feedback oscillator
	4.3 Results
	4.3.1 NARMA10
	4.3.1.1 Numerically obtained performance
	4.3.1.2 Comparison with state of the art

	4.3.2 Santa Fe laser data
	4.3.2.1 Numerically obtained performance
	4.3.2.2 Experimentally obtained performance
	4.3.2.3 Comparison with state of the art

	4.3.3 Isolated spoken digit recognition
	4.3.3.1 Numerically obtained performance
	4.3.3.2 Experimentally obtained performance
	4.3.3.3 Comparison with state of the art

	4.4 Bandpass filtering
	4.4.1 NARMA10
	4.4.2 Interconnection structure

	4.5 Conclusion

	5 Task-independent properties of delayed feedback reservoirs
	5.1 Separation property and kernel quality
	5.1.1 Separation property
	5.1.2 Kernel quality
	5.1.3 Generalization property
	5.1.4 Computational ability

	5.2 Memory
	5.2.1 Memory capacity
	5.2.2 Memory quality

	5.3 Explaining performance: an example
	5.4 Noise
	5.4.1 System noise
	5.4.2 Quantization noise

	5.5 Conclusion

	6 System modifications
	6.1 Multiple delayed feedback
	6.1.1 Architecture
	6.1.2 Numerically obtained performance
	6.1.2.1 Memory
	6.1.2.2 NARMA10

	6.2 Network motifs
	6.2.1 Architecture
	6.2.2 Numerically obtained performance for NARMA10

	6.3 Construction of an optimal mask
	6.3.1 Concept
	6.3.2 Numerically obtained performance
	6.3.2.1 NARMA10
	6.3.2.2 Santa Fe laser data

	6.4 Conclusion

	7 Conclusion and future outlook
	7.1 What we accomplished...
	7.2 Continuation of this work
	7.2.1 Integrated all-optical approach

	References

