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Chapter 1

Biological Overview

The purpose of this introductory chapter is twofold: to motivate, and to
contextualize. The motivation aims at evidencing the importance of syn-
chronization to brain functioning. Consciousness, cognition, behavior and
perception require the interaction of multiple large groups of intercon-
nected neurons, which are often segregated and distant. Fundamentally,
the synchronous and precisely coordinated spiking activity is considered
a middle-ground link between single-neuron activity to large-scale brain
activity (Buzsáki and Draguhn, 2004). Afterwards, the contextualization is
provided by the description of elementary characteristics, and relationships
of the brain substrate, particularly emphasizing the structures involved in
our results.

Section (1.1) is devoted to the identification of two essential principles of
structural and functional organization of the neuronal dynamics: segrega-
tion and integration. We signalize that the former principle is a recognized
aspect that is observed in the brain. The latter principle is presumably
a prerequisite for the cognitive functions to emerge from the activity of
segregated and specialized areas. To understand how the brain integrates
neuronal activity of segregated and frequently distant areas constitutes a
long-standing theoretical inquiry of neuroscience. The cornerstone of most
models tackling this issue relies on the synchronization of neuronal activity.

Before we address the problem of synchronization between distant neu-
ronal populations, this chapter contextualizes the field with respect to the
established knowledge in biology. We provide a rather peripheral overview
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CHAPTER 1. BIOLOGICAL OVERVIEW

that highlights only the most relevant components invoked in the following
chapters. As our prime efforts, we attempt to offer:

• an intuitive view of the architectural structure of the nervous system
(section 1.2);

• a comparative assessment of the existing experimental techniques to
capture the brain dynamics (section 1.3);

• and a guide to understand the genesis of the neuronal dynamics (sec-
tion 1.4).

1.1

Segregation and integration: Two organizational
principles of the brain

The structure of the central nervous system is thought to be hierarchi-
cal (Maunsell and Van Essen, 1983; Zeki and Shipp, 1988; Felleman and
Van Essen, 1991; Mesulam, 1998). According to this conceptualization, the
sensory neurons and the periphery of the sensory systems comprise the bot-
tom level of such hierarchy. On the other extreme, the deep cortical regions
comprise the top level of the hierarchy. Under scrutiny, pervading all levels,
cyto- and myeloarchitectural studies of the brain tissue indicate a segregated
arrangement.

Different aspects of the brain organization reflect the segregation principle.
The following sections (1.1.1, and 1.1.2) shall discuss some striking examples
of segregation at the peripheral level, where a plethora of studies have
acquired abundant knowledge.

The cortical level also presents a categorical segregation. However, at fine
scale the cortical segregation gets lopsidedly fuzzier. Over a century ago,
Campbell and Brodmann, the two contemporaries, mapped the human
cerebral cortex with distinct segregation borders because they had used dis-
tinct criteria in their citoarchitectonic approach (Campbell, 1905; Brodmann,
1909). Currently, utilizing more sophisticated methods, several groups fol-
low the same goal to characterize the human cortex (ffytche and Catani,
2005; Sporns, 2010).
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1.1. SEGREGATION AND INTEGRATION: TWO
ORGANIZATIONAL PRINCIPLES OF THE BRAIN

Along the history, a multitude of clinical studies involving brain damage
show that some brain functions depend on the integrity of specific brain
areas (Kolb and Whishaw, 1990; Sporns, 2010). This represents another rich
field supporting the principle of segregation in the brain.

Altogether, these approaches demonstrate the tendency of segregation of
brain activity. The recognition of this fact leads straightforwardly to the
necessity of an integration principle. Cognitive functions, like perception,
attention, and memory, demand to assemble pieces of information that
are coded at distant regions. Such integration is another organizational
principle of the brain.

Owing to their fundamental importance, most brain functions are thought
to rely on the interrelationship of segregation and integration. The coexis-
tence of these two principles has been proposed to be the origin of neural
complexity (Sporns, 2010). A remarkable attempt to quantitatively measure
the complexity of a system also depends on the expression of both segrega-
tion and integration (Sporns, 2010). In a completely segregated system, the
units are independent and there is only randomness. In a completely inte-
grated system, all units behave identically and there is only regularity. Both
extreme cases have no complexity. Therefore, complexity depends on the co-
existence of order/disorder, random/regularity, and segregation/integration.
This mixture distinctly prevails in the brain structure and its function.

1.1.1 Sensory input enters from specialized pathways

As the animals grew in size and complexity, certain cell types, the sensory
neurons, adapted to extract the maximum information of the environment
with respect to different aspects of the sensory stimulus. This specificity
is a consequence of differences in physical and chemical structures of the
neurons. There are great differences among the receptor neurons of the
sensory systems. Even within a given sensory modality, there are different
specializations of the receptor neurons. For example, the olfactory system
has hundreds of different chemoreceptor neurons that respond optimally to
different chemical compounds; the somatosensory system possesses several
types of receptors (thermoreceptors, mechanoreceptors); etc.
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CHAPTER 1. BIOLOGICAL OVERVIEW

1.1.2 Examples of receptive fields

From the periphery of the central nervous system to the higher levels, the
sensory systems receive, process and transmit information. Irrespective of
the sensory modalities, the pathway of the information flow is typically
restricted by the receptive fields.

The receptive field of a neuron is the region of sensory space that elicit neu-
ronal responses in the presence of a stimulus (Alonso and Chen, 2009). The
receptive field is a neural mechanism utilized to decompose complex stim-
uli. This procedure of decomposing is undertaken early in the periphery,
and it is typically maintained along several hierarchical levels. This strategy
to process complex information is thought to provide a reliable way for the
information to reach the intended sensory cortical area.

A considerable amount of the established knowledge about the receptive
fields has been gathered in the peripheral areas. Independently of the sen-
sory mode, the peripheral zones typically offer less challenging experimental
barriers. To illustrate a little of the generality of the segregation principle,
next we discuss some classical examples of receptive field in the peripheral
areas of different sensory modalities.

Somatosensorial system. The somatosensory system responds to different
sorts of stimulus: touch, vibration, body position, temperature or pain. The
receptive fields in such system comprise a limited region of the skin or the
internal organs where a stimulus can elicit a neuronal response. The size
of the receptive fields vary both as a function of the stimulus, and the part
of the body. The precision to detect changes of a somatosensorial stimulus
decreases with the size of the receptive field. In humans, some areas have
a very detailed somatosensorial resolution like the fingers, the lips, and the
tongue; whereas other areas have poor resolution like the back, and the
back of the legs. This resolution can be assessed by the two-point limen
detection (Squire et al., 2003), a typical test to find the minimum detectable
distance between two blunt probes. The areas with the smallest (largest)
two-point limen represent the highest (lowest) resolution. Moreover, in ad-
dition to plentiful innervations of sensory neurons, superior resolution also
demands a sufficient amount of cortical tissue to process the information.
As reflected by the sensibility, both the distribution of innervations and the
amount of cortical tissue are highly non-uniform. As the cortical homuncu-
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1.1. SEGREGATION AND INTEGRATION: TWO
ORGANIZATIONAL PRINCIPLES OF THE BRAIN

lus have popularized (Kandel et al., 2000), large proportions of cortical tissue
correspond to the processing of especial regions of the body.

Visual system. From the peripheral level to the deep cortical level, the
concept of receptive field pervades our knowledge about the visual sys-
tem. Following the flow direction of the neuronal activity elicited by the
visual stimulus, neurons from any level show traces of the receptive fields:
photoreceptors, retinal ganglion, lateral geniculate nucleus, primary visual
cortex (striate), up to extrastriate cortical cells. In the first layer, the recep-
tive field of a photoreceptor neuron corresponds to the region in which light
alters the firing response of that cell. For the ganglion cells in the retina,
the receptive field encompasses the sensitive areas of their afferent photore-
ceptors. Among these neurons, the ganglion cells at the fovea (center of
the retina) have the smallest receptive field, providing the finest resolution.
Rising the level along this flow direction, the receptive fields increase in
size and specificity of the stimulus. Neurons may respond to objects and
faces (Bruce et al., 1981; Desimone et al., 1984; Tsao and Livingstone, 2008),
or even to a single person (Quiroga et al., 2005).

In the vision, the concept of receptive field has also been extended to capture
a spatiotemporal feature of the stimulus. This generalization allows the
characterization of direction selective responses from neurons in primary
visual cortex (Alonso and Chen, 2009).

Auditory system. The neuronal receptive fields in the auditory system
code at least two features of the stimuli: spatial and spectro-temporal infor-
mation (Alonso and Chen, 2009). The response of neurons with the spatial
receptive field depends on the position of the sound source (Knudsen and
Konishi, 1978; Knudsen, 1982; Ashida and Carr, 2011). Such location can
be precisely estimated by coincidence detection using the minute temporal
disparity of arriving spikes from the sensory neurons of the two ears (Jef-
fress, 1948; Joris et al., 1998; Agmon-Snir et al., 1998), or by the recently
proposed code by population spike rate (Vasilkov and Tikidji-Hamburyan,
2012). Neurons with the spectro-temporal receptive field respond prefer-
entially to sound of a given frequency (Robles and Ruggero, 2001). The
frequency decomposition of complex sounds takes place at the cochlea. The
cochlea is a sensory organ in the auditory system that has a precise repre-
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CHAPTER 1. BIOLOGICAL OVERVIEW

sentation of sound frequency: the base detects higher tones and the apex
detects lower tones.

Olfactory system. The olfactory system depends on a chemical signaling
that is rather complex and poorly understood. There are a multitude of
families of olfactory receptor neurons, each type of neuron responding op-
timally to a certain odorant. Recently, an olfactory receptive field has been
proposed to be mapped as a function of the molecular carbon chain length
of the odorant (Mori et al., 1999; Wilson, 2001; Wilson and Stevenson, 2003;
Alonso and Chen, 2009).

1.1.3 Intra- and cross-modal convergence: Picking up from
fragments

The stimulus enters the brain through a myriad of relatively independent
channels at the sensory systems. Each channel receives rather small data
sets. Practically, the information of several of those small data sets must
be collected to achieve any percept. This convergence is fundamental and
ubiquitous within and among different sensory modalities.

Convergence occurs at many levels. It is, however, more prominent at higher
levels, where the activity is most raveled and cannot be decomposed into
distinct contributions from discrepant sources. Despite being a requirement,
convergence alone does not guarantee integration.

1.1.4 The binding problem

Sensory, cognitive and motor processes involve essential interactions among
large populations of neurons within different brain regions that must ex-
change information among themselves. The bind problem refers to how
information from distinct populations is exchanged. A solid base to un-
derstand the neuronal pattern of activity representing the integration of
coherent information is still needed (Roskies, 1999). It is still a general
open question, which arises whenever information from distinct areas must
be exchanged. The binding problem was originally stated as a theoretical
problem when the experiments seemed to indicate that none of the localized
parts of the brain could generate some aspects of mind’s function like con-
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1.2. AN OVERVIEW OF THE FUNCTIONAL ANATOMY OF THE
CENTRAL NERVOUS SYSTEM

sciousness or reason (von der Malsburg, 1981). Such studies raised hopes to
fundamental question like: Will the solution of the binding problem resolve
the mystery of consciousness?

The most popular hypothesis for the binding conundrum involves the tem-
poral correlation of firing patterns. It states that features should be bound by
the synchronization of spikes of distant neurons. This is called the binding
by synchrony theory and its validity is still under debate.

1.2

An overview of the functional anatomy of the cen-
tral nervous system

There are two main lines of thought to understand neuroanatomy proceed-
ing from a simple state to a more complex state (Squire et al., 2003). Evolu-
tion is the first line; it is hard to overstate about the importance of evolution
because it constitutes a prime foundation of biology. Embryology is the
second line; in a much faster time scale, embryology studies the dynamics
of development of embryos from a single cell to the fetus stage.

From the two complementary approaches we learn that all vertebrates share
the same functional systems. This has profound implications on the way
the research in those systems is typically undertaken. Such principles of-
fer a solid foundation to tackle elaborated problems involving complex
brains. The support of these pillars provides reasonable security to the
successful approach: to solve a difficult problem beginning with a simple
version and then increasing the level of complexity. The difficult problem
in neuroscience consists of understanding the dynamics of a multitude of
interconnected neurons and its manifold consequences. Despite the impor-
tance of this approach in complex systems, a straightforward extrapolation
can occasionally be meaningless. A careful analysis is usually required
because the interaction of non-linear elements can lead to unpredictable
phenomenology, or can show counter-intuitive behavior (Anderson, 1972).
Consciousness is a conspicuous example of behavior that emerge when in-
creasing the complexity level of the system. To understand the emergence
of consciousness constitutes a fundamental goal of neuroscience.

9
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Another remarkable lesson gotten from the evolutionary and the embry-
ologic approaches is that, in terms of cell biology, nerve cells are basically
the same in all animals (Squire et al., 2003). The focus is thus directed to what
changes most during evolution and embryogenesis: the arrangement of the
network. The architecture of the nervous system is profoundly important!

1.2.1 C. elegans: An especial example

In spite of many efforts, the anatomical knowledge of the nervous system,
studied for centuries, is still not well known, except very general principles.
A very celebrated exception occurs with the Caenorhabditis elegans.

The C. elegans is a nematode of about one millimeter in length. This worm
lives in temperate soil environments, but it is easily grown in the laboratory.
It has become a model organism in molecular and developmental biology
mainly because of its simplicity. All its somatic cells have been mapped;
they are around a thousand cells. In addition, it was the first multicellular
organism to have its genome entirely sequenced.

C. elegans was also the first and unique (by the date) organism to have the
whole nervous system mapped. The wild type organisms are essentially
invariant with respect to the number, and type of neurons and the synapses
they make. In this way, White et al. (1986) identified all the 302 neurons of
the hermaphrodite C. elegans, thus obtaining its complete wiring diagram.

White and colleagues succeeded to obtain the neuronal network because
they were studying a very simple organism. The neurons of the C. elegans
typically have few branches, and make few synapses, being mostly local con-
nections. Nevertheless, the work to obtain the complete neuronal network
from reconstructions of electron micrographs of serial sections represents
already a huge effort.

1.2.2 Evolutionary perspective

From the metabolic viewpoint, it is really expensive to keep a nervous sys-
tem. Nevertheless, following an evolutionary perspective, it seems intelligi-
ble that the nervous system favors the species by improving the behavioral
repertoire of an animal. This, in turn, increases the probability of the indi-
viduals to survive and to generate offspring.
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Even unicellular organisms utilize several types of taxes to improve their
chances of survival. These strategies consist on the movement of the or-
ganism towards or away from the external stimulus, typically attempting to
reach an optimum concentration. The response could be associated to stim-
ulus of several different qualities: chemical (chemotaxis), light (phototaxis),
temperature (thermotaxis), sound (phonotaxis), gravity (gravitaxis), electric
field (electrotaxis), concentration of oxygen (aerotaxis), and so on. In the
case on chemotaxis, for example, the reliable discernment of shallow gra-
dients of stimulus intensity might involve rather sophisticated mechanisms
that combine cooperation and adaptation to perfect the sensitivity (Bray
et al., 1998; Sourjik and Berg, 2002; Hansen et al., 2008; Skoge et al., 2011).

In the case of multicellular animals, the onset of the nervous system has long
been thought to largely improve their fundamental capacities to respond to
environmental changes (Parker, 1919). The sensitivity to stimuli increases
in the presence of nervous system, and the response to a stimulus can be
faster and stronger. These factors have been critical for many animals to
survive under evolutionary pressure.

On the history of the nervous system. The Cnidaria was the first phylum
to present nervous system (Squire et al., 2003). This phylum contains over
10,000 species of aquatic animals; it comprises jellyfish, corals, anemones
and the hydra. The nervous system of an animal from Cnidaria phylum is
a decentralized nerve net; they have no brain or central nervous system, see
Fig. 1.1. The nerve net of the hydra is distributed rather uniformly through-
out the cell body, with the exception of some zones of larger concentration,
like the mouth and the base of the tentacles, which could be considered
already as a tendency for centralization.

The flatworms are the simplest animals to display cephalization and cen-
tralization (Squire et al., 2003), which are fundamental organizational trends
in the evolution of the nervous system. Besides from sensory and motor
neurons, the flatworms have interneurons interpolated between sensory
and motor neurons. The interneurons increase the capacity to transmit and
process information. Differently of animals from cnidaria, the flatworms
have a bilateral symmetry. As shown in the right panel of Fig. 1.1, their
neurons form bundles of axons (nerve cords) extend along longitudinal and
transverse directions. These nerve cords connect the clusters of neurons
(ganglia), which are mostly concentrate in the rostral end (the head).

11



CHAPTER 1. BIOLOGICAL OVERVIEW

Figure 1.1: Left: the nerve net of a Hydra. Right: The nervous system
with bilateral symmetry of a flat worm. Figure adapted from Bio1152

(2012).

Among the bilateral animals, there are two important configurations for the
nerve cords. Arthropods, like insects, crustaceans, arachnids, and many
other invertebrates, display a ventral nerve cord. Chordates, including all
vertebrates, present a dorsal nerve cord surrounded by a notochord. The
nerve cord generally defines a prime axis during the development of the
chordates.

1.2.3 Developmental perspective

In an extremely faster time scale, the animals may develop the most complex
nervous systems starting from a single cell. Remarkably, the early stages
of embryogenesis follow basically the same steps for all vertebrates (Squire
et al., 2003). This development leads straightforwardly to the main brain
regions. The understanding of the development of the nervous system turns
out to be an important guide for the modular anatomy of the brain (Kandel
et al., 2000).

In the ectoderm, the outermost layer of the trilaminar gastrula (early em-
bryo), there is the neural plate. The neural plate, shown in Fig. 1.2, is a
spoon-shaped region that gives rise to the central nervous system. As illus-
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trated in Fig. 1.2, the flat neural plate gets indented along the rostral-caudal
axis forming the neural groove. Such invagination process is followed by
the merging of the opposing lateral edges of the neural groove. This thin
(one cell thick) closed tube is called neural tube.

Figure 1.2: Development of a neural tube from a neural plate. Left and
middle columns represent a diagram of human development. Right
column shows a chick embryo of two days (top), and a mouse embryo
of 9.5 days (bottom). Figure adapted from Trimble (2012); Cell (2012).

Along the rostral-caudal axis, the neural tube presents inhomogeneities
that are already the first sign of regionalization. As in the spinal cord, the
early neural tube also develops three swellings at its rostral end (Swan-
son, 1998). Figure 1.3 illustrates the primary vesicles, which correspond
to prosencephalon (forebrain), mesencephalon (midbrain), and rhomben-
cephalon (hinbrain) vesicles. Next, the right and left differentiation occurs
and the vesicles divide further (Fig. 1.3). The prosencephalon differenti-
ates into two secondary vesicles, telencephalon and diencephalon, whereas
the rhombencephalon differentiates into two secondary vesicles, meten-
cephalon and myelencephalon. Following neurulation, the telencephalon
gives rise to the cerebral cortex, and cerebral nuclei; the diencephalon gives
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rise to the thalamus and the hypothalamus; the mesencephalon gives rise
to tectum and tegmentum; the rhombencephalon gives rise to rhombic lip,
alar plate, and basal plate (Squire et al., 2003; Swanson, 1998).

Figure 1.3: Schematic and nomenclatural representation of a human
embryo early development from the neural tube to the secondary

vesicles. Figure adapted from Trimble (2012).

1.2.4 Principles of functional anatomy of the central ner-
vous system

The central nervous system comprises the brain and the spinal cord. The
organization of the central nervous system of vertebrates follows the axis
defined by the neural tube, i.e., the rostral-caudal axis. Along this axis,
located between the spinal cord (most caudal) and the cerebral cortex (most
rostral), there are six main regions (Kandel et al., 2000):

Spinal cord. The spinal cord connects the brain to the rest of the body: re-
ceiving somatosensory information through afferent pathways, send-
ing motor information through efferent pathways, and coordinating
certain reflexes and many autonomic functions.
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Figure 1.4: Main regions of the central nervous system. Figure
adapted from Umm (2012).

Medulla oblongata. The medulla is the direct rostral extension of the spinal
cord. Resembling the anatomy of the spinal cord, the medulla trans-
mits information between the higher regions of the brain and the spinal
cord. As well as the spinal cord, the medulla is also responsible for
coordinating certain reflexes and many autonomic functions.

Pons and cerebellum. The pons is the rostral extension of the medulla, and
the cerebellum is located dorsal to the pons. The pons is a relay center
that transmits top-down signals from the telencephalon to the cere-
bellum, and to the medulla; and transmits bottom-up sensory signals
to the thalamus. The human cerebellum has more neurons than the
remainder of the brain combined (Williams and Herrup, 1988). Most
of those neurons are tiny granule cells. Besides from these diminu-
tive and numerous neurons, the Purkinje cells are also found in the
cerebellum. These Purkinje neurons are widely known because of its
fascinating and extensive dendrites (depicted in section 1.4.2). Among
other functions, the cerebellum contributes to behavioral functions,
and modulates cognitive information processing. For example, the
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cerebellum plays the role of coordinating and correcting movements,
during tasks involving fine motor skills.

Midbrain. The midbrain is the rostral extension of the pons, and is as-
sociated with different sensory systems: visual, auditory, and so-
matosensory. The midbrain also plays a role in temperature regulation,
sleep/wake cycles, and alertness.

Diencephalon. The diencephalon, which lies rostral to the midbrain, is
comprised of two main structures: the hypothalamus and the thala-
mus. Forming the ventral part of the diencephalon, the hypothalamus
coordinates activities of the autonomic nervous system, and regulates
metabolic process. The thalamus plays the role of the gateway to the
cortex, because it relays most of the information coming from the lower
regions. The thalamus is one of the key regions of this thesis. We shall
discuss the function and organization of the thalamus in more detail
below.

Cerebral hemispheres. The cerebral hemispheres are composed of cerebral
cortex, and the basal ganglia (Kandel et al., 2000).

Next we discuss some general features of the cortex, and the hippocampus
(which is located in the medial temporal lobe). Along with the thalamus,
those regions are central for the results of the thesis.

cortex

Comprising more than three fourths of the volume of the human central
nervous system (see table 1.1), the cerebral cortex is a major processing cen-
ter. This region is concerned with perceptual awareness, memory, attention,
thought, language, and consciousness.

Roughly speaking, the cortex can be viewed as a series of two-dimensional
overlapping layers (up o six), which have been packed to cover a core brain
region (basal ganglia and diencephalon) and to fit inside the approximately
spherical surface constrained by the skull. This compression process gives
rise to several folds: gyri and sulci. Despite a considerable fold variation
among people (Toro et al., 2008), some notable divisions of the human
cortex are invariant. These prime fissures, used as landmarks, separate each
cortical hemisphere into four lobes: frontal, parietal, temporal, and occipital.
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proportions by volume (%)
rat human

cerebral cortex 31 77
basal ganlgia 7 4
diencephalon 6 4

midbrain 4 1
hindbrain 7 2
cerebellum 10 10
spinal cord 35 2

Table 1.1: Table extracted from Swanson (1995).

The cortex surface has a gray color. This color arises from large collections of
cell bodies, dendrites and unmyelinated fibers. Thus, this part is called gray
matter, and it surrounds the deeper white matter. The white matter is manly
composed by glial cells, and myelinated axons responsible for transmitting
signals between separated regions. The name of this part of the nervous
system comes from the lipid tissue of the myelinated axons, which has a
white color.

Abounding in the white matter, the long-range connections are a general
feature across several species. Comparing different mammalian species,
there is a robust power-law scaling relating the volume of the gray matter
to the volume of the white matter. This allometric relationship is shown in
Fig. 1.5.

The division of brain tissue into gray and white matter is a ubiquitous feature
of the vertebrate anatomy. Different sorts of explanations have been given
for this intriguing fact. Some authors claim that the origin of this separation
could be a consequence of minimizing the wiring volume (Ruppin et al.,
1993; Murre and Sturdy, 1995). Based on scaling arguments, an alternative
proposal to solve this conundrum suggests that the fundamental element
to minimize is not the wiring volume, but the conduction delay (Wen and
Chkolvskii, 2005). On top of that, this optimization of the latencies would
also explain why the cortical thickness remains almost unchanged whereas
the brain volume varies by orders of magnitude between species (Fig. 1.5).

Many efforts have been done to characterize the cortical networks. At the
macroscopic level of cortical regions, which are connected by long-range
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Figure 1.5: Scaling relation between the volume of neocortical gray
and white matter. Figure extracted from Zhang and Sejnowski (2000).

fiber pathways, the mammalian cortex is characterized solely for a few
of the most studied mammals like the cat (Scannell et al., 1999), and the
monkey (Felleman and Van Essen, 1991; Kötter, 2004).

Sometimes considered as the basic functional units of the neocortex, a next
modular level or organization is given by the cortical columns and micro-
columns (Mountcastle, 1997; Mountcastle et al., 1957; Mountcastle, 1957).
These columns are modules that extend vertically across the layers, perpen-
dicular to the pial surface. What defines a column is the fact that the neurons
within a given column encode similar features.

Despite the many efforts, like the neuronal reconstruction by electron mi-
croscopy (Briggman and Denk, 2006), the architectural network at the colum-
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nar level, as well as the microscopic level, have remained elusive (Sporns
et al., 2004). This structural information is a key feature to build more
precise models. The absence of detailed structural information requires a
workaround. For this reason, we stick to a less constrained relationship,
which is generally satisfied by the cortex. Microscopically, the cortex is
mainly composed of excitatory pyramidal cells, and local inhibitory in-
terneurons, in a proportion of 80% and 20% respectively. Typically, we sim-
ply utilize random recurrent networks (following this recipe), or a mesoscale
model (mimicking this recipe). This is a frequent issue, and, from now on,
we shall implicitly or explicitly invoke this argument in almost every chap-
ter.

The results of this work focus on the synchronization properties of cor-
tical populations of neurons. Experimental observations of synchroniza-
tion between distant neurons have long been observed (Engel et al., 1991;
Frien et al., 1994; Roelfsema et al., 1997), however, the proposed mecha-
nism explaining the observations (Traub et al., 1996) have not been entirely
compelling. The hesitation appears especially because of the restricted ro-
bustness of the spike doublets model (Traub et al., 1996) with respect to key
elements of the system, such as the broad range of cell types and delays
in the connection. The universality of the synchronization found in the ex-
periments suggests that a more general phenomenon must underpin this
collective order. Based on recent advances in the synchronization aspects
of delay-coupled systems [i.e., dynamical relaying (Fischer et al., 2006)], we
attempt to identify and characterize the zero-lag long-range cortical syn-
chronization. The first problem we tackle is how such isochronous cortical
synchronization emerges in a generic cortical population of spiking neu-
rons (Vicente et al., 2008b, 2009).

hippocampus

Historically, the brain was first analyzed by post-mortem inspections. Sev-
eral regions were named based on the appearance that they had in the freshly
dissected state (Squire et al., 2003). One example, as depicted in the Fig. 1.6,
the hippocampus was thus named because of the similarities of its shape
with the sea horse.

The hippocampus is among the most well studied brain areas. This region
attracts much interest because it plays an important role in memory for-
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Figure 1.6: Comparison of a hippocampus with a sea horse. Extracted
from Wikipedia (2012a).

mation, and spatial navigation (Buzsáki, 2010). The consolidation of both
long-term and short-term memories depends on the hippocampus. Remark-
able examples of hippocampal activity include the place cells (O’Keefe and
Nadel, 1978) and the replay of waking assembly sequences during sleep (Lee
and Wilson, 2002). For example, the hippocampal place cells have been pro-
posed to constitute a cognitive map (O’Keefe and Nadel, 1978). Additionally,
there are further practical reasons to understand the hippocampus and its
relationship with the brain. Hippocampal damage is one of the first events
of Alzheimer’s disease. Moreover, schizophrenia and epilepsy have also
been associated with abnormal activity of the hippocampus.

The hippocampal activity is characterized by some oscillatory rhythms,
ranging from slow to hight gamma oscillations. Recently, the isolated hip-
pocampus has been shown to generate theta oscillations (Goutagny et al.,
2009). Such rhythms spans beyond the default activity of the hippocam-
pus. In rodents, for instance, theta oscillations are even enhanced when the
animal is moving.

The hippocampus exchanges a lot of information with cortical regions. For
example, it has been recently proven that the prefrontal cortex and the
hippocampus can develop phase locked oscillations (Siapas et al., 2005). As
an attempt to establish a solid framework for such observations, we study
the theta-band synchronization of distant cortical areas mediated by the
hippocampus. As presented in chapter 6, our results suggest that such well-
known phase-locking between prefrontal cortex and hippocampus is a facet
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of a hippocampal dynamical relaying (Gollo et al., 2011). In addition to this
phase-locking, a recurrent scenario, observed both in mice experiments and
simulations, shows other cortical areas isochronously synchronized with the
prefrontal cortex. This has been the prominent configuration generated by
the hippocampal relaying. Moreover, in the experiments, such configuration
appears with a higher probability when the mouse moves rather then quiet.
This indicates that the dynamical relaying might play a key role in the
integration of information from distant brain areas.

thalamus

The thalamus is a pivotal product of the embryonic diencephalon. Lying
under the cerebral hemispheres, the thalamus is a collection of nuclei that
occupies a core position in the brain. Such centrality confers the thala-
mus a remarkable capacity to exchange information with the cerebral cortex
throughout extensive thalamocortical radiations. With the exception of the
olfactory stimulus, which is primitive in evolutionary terms, all sensory
stimuli intermediately pass through the thalamus. For this reason the tha-
lamus is famous to be the gateway to the cortex. Figure 1.7 illustrates the
central location of the thalamus in the brain, the anatomic configuration of
its nuclei, and the areas bridged by the extensive thalamocortical radiations.

According to the functional role, each thalamic nucleus is classified as one of
the three classes: specific relay nucleus, association nucleus, or nonspecific
nucleus (Kandel et al., 2000). The specific relay nuclei receive sensory affer-
ent input from a given sensory modality or motor function, project to and
receive the feedback from the respective primary motor or sensory region
of the cortex. The specific relay nuclei are: the medial geniculate (hearing),
the lateral geniculate (vision), the ventral posteromedial (somatic sensation
of the face), the ventral posterolateral (somatic sensation of the body), the
ventral intermedial (motor), the ventral lateral (motor), the ventral anterior
(motor), and the anterior nuclei (limbic function).

The association nuclei receive input from several regions of the brain and
project to an association cortex. The association nuclei are: the lateral dorsal
(emotional expression), lateral posterior (integration of sensory informa-
tion), pulvinar (integration of sensory information), and the media dorsal
(limbic function).
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Figure 1.7: Thalamus in the human brain. The location of the thala-
mus (right panel), the position of the thalamic nuclei (bottom panel),
and the thalamocortical areas connected by the thalamocortical radi-
ations (top and bottom panels). See text for details. Figure adapted

from Eneurosurgery (2012).

The other nuclei (midline, intralaminar, centromedian, centrolateral and
reticular) have nonspecific functions. These nuclei have a widespread con-
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nectivity pattern. They are thought to regulate the motivational and the
arousal states, as well as the level of activity of the brain. Except for the
reticular nucleus, their outputs consist of excitatory projections to other
regions. The reticular nucleus, on the other hand, sends inhibitory projec-
tions to the other thalamic nuclei. It plays an important role in controlling
and modulating the activity of the thalamus. Considering the thalamus
as the gateway to the cortex, the reticular nucleus is the guardian of the
gateway (McAlonan et al., 2008)

By analogy with the specific relay nuclei, it has been proposed that the ol-
factory bulb, which has also segregated and specialized moduli (glomeruli),
plays the role of olfactory thalamus to pre-process the information, and to
make the loops with the cortical areas involving the olfactory stimulus (Kay
and Sherman, 2007).

The thalamus plays the important role of being a relay station. It is believed
that the cortical areas would not be able to interpret the sensory stimuli
without the pre-processing of the information at the thalamus. The first
stride in the generation of sensory perception occurs through the recep-
tion and transmission of unimodal sensory stimulus to the primary cortical
areas. In a series of back and forth thalamocortical exchanges of informa-
tion, the perception of the different sensory stimulus is integrated. These
thalamocortical loops represent a fundamental flux of information, ascend-
ing and descending along the hierarchical pathways (Llinás et al., 1999).
Such loops have been proposed to be the neural mechanism underlying
consciousness (Llinás and Ribary, 1993; Ward, 2011).

It has been argued that virtually any trivial task involves at least three dis-
tant brain regions (Kandel et al., 2000). This required integration is a central
and recurrent topic of the thesis. A model of the thalamocortical circuit
that attempts to elucidate a possible mechanism to give rise to such integra-
tion is presented in chapter 5. We consider the dynamical-relaying model
in which the role of mediating element is played by the thalamus (Gollo
et al., 2010). Remarkably, according to our results, the thalamus is not a
passive element in the thalamocortical circuit, but instead its dynamics gov-
erns the long-distant zero-lag cortical synchronization. Due to the extensive
thalamocortical radiations, the thalamus has always been the strongest can-
didate to mediate the cortico-cortical dynamics and synchronization. Not
surprisingly, recent experimental evidences (Temereanca et al., 2008; Wang
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et al., 2010a,b; Bruno, 2011; Poulet et al., 2012) support the fundamental
importance of the thalamus in controlling the cortical activity.

1.3

A brief comparative overview on the experimen-
tal measurements of brain activity

Along the last century, during the course of the history of neuroscience, the
anatomy of the nervous system has been studied thoroughly. Riding on top
of such anatomical substrate, the neuronal dynamics is of exceptional rele-
vance. Along a lifetime, there are certain changes in the anatomy, however,
occurring at a much slower time scale than the changes in the dynamics.
Thereby, the neuronal dynamics is asserted fundamental for cognition. The
execution of essentially any task depends on some specific pattern of neu-
ronal activity.

There is an important research field in neuroscience concerned to assess
the neuronal activity. Brain activity can be assessed with recording meth-
ods or imaging techniques. The electrophysiological recordings capture the
action potentials and the post-synaptic potentials. The electric signaling
characterizes in a most reliable way the neuronal activity, however, this
comes with a price: it requires an invasive method. There are also non-
invasive neuroimaging methods based on electrophysiological principles.
Two important examples are electroencephalography (Berger, 1929) (EEG)
and magnetoencephalography (Cohen, 1968) (MEG). These popular neu-
roimaging techniques measure electrical potentials and magnetic fluxes re-
spectively with high temporal resolution. However, as illustrated by Fig. 1.8,
the spatial resolution is rather poor, even when taking into account the elec-
tromagnetic source imaging (Michel et al., 2004) (ESI), which improves the
spatial resolution of EEG and MEG to the order of centimeter.

Other neuroimaging methods based on metabolic and hemodynamic prin-
ciples can improve this limited spatial resolution. Some examples of such
neuroimaging methods are functional magnetic resonance imaging (fMRI),
near-infrared spectroscopy (NIRS), single-photon emission computed to-
mography (SPECT), and positron emission tomography (PET). The metabolic
and hemodynamic activities reflect the neuronal dynamics in an indirect
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Figure 1.8: Limits of resolution of the different experimental tech-
niques. Blue areas represent the ranges of resolution of the nonin-
vasive techniques. Red areas represent the ranges of resolution of
the invasive electrophysiological recordings from single-unit activ-
ity (SUA), multi-unit activity (MUA) and local field potential (LFP).

Figure adapted from Liu (2008).

way. The neuronal activity consumes energy and triggers a cascade of
metabolic and hemodynamic events. These events can be traced with fine
spatial resolution but poor temporal resolution (see Fig. 1.8) because these
indirect effects of neuronal activity take place at a much slower time scale.

For the time being, one cannot measure the brain activity with fine spatial
and temporal resolutions by non-invasive methods. A promising advance
in this direction is called the multimodal neuroimaging (Liu, 2008) (MN),
which integrates different types of neuroimaging methods EEG/MEG and
fMRI.

To detect synchronization between distant neurons (or specific neuronal
regions) is among the most technical challenges. Such detection requires si-
multaneously recorded data with high temporal precision (∼1 millisecond).
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In addition, an accurate spatial precision, which to a great extent depends
on the spot of interest, is often desired.

1.4

Biophysical overview of the neurons and neu-
ronal interactions

The brain activity is a product of the neuronal dynamics combined with the
neuron-to-neuron communication. This section addresses the fundamental
problem of how the brain dynamics is generated. We start by identifying the
building blocks of the brain; some authors (Izhikevich, 2007) claim that the
neuron is the most important concept in neuroscience. Next, we describe
the typical anatomy of a neuron, and the main functions of its constituents.
We follow characterizing the neuronal dynamic states originated from the
activity of the ionic channels. Finally, we discuss the types of neuronal
communication.

1.4.1 Neurons

Cells are the basic structural unit in all living beings. This idea is credit to
Schwann and Schleiden who in 1839 suggested that cells were the funda-
mental unit of life and all organisms were composed by one or more cells.
In 1858, Rudolf Virchow, concluded that all cells derive from pre-existing
cells, thereby completing the classical cell theory.

At that time, however, the nervous system was still considered to be an
exception. The nervous tissue was thought to be a continuous reticulum
system owing to its similarity to wire elements. This idea persisted until
the Camillo Golgi’s development of a new histological stained technique
with a silver chromate solution, which allowed Ramón y Cajal to perform
his experiments. The technique dyes only a few neurons [∼ 2% of the
cells (Kandel et al., 2000)], and enables the observation of single neuronal
cells. Based on a deep investigation, Cajal concluded that the neurons were
the fundamental building blocks of the nervous system (Squire et al., 2003).
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The human brain has about 1010 neurons organized in a multilevel hierar-
chical system (Shepherd, 1998). The nervous system presents an enormous
diversity of neuron types, connectivity, functionality, etc. Our description is
solely restricted to the most common behavior, despite the large variability
that exists. In this section we describe the neuron, first by its anatomical
structure, and second by its central dynamical states: rest, spike and re-
fractory period. At last, we comment on how the transitions between the
dynamical states take place.

1.4.2 Neuronal morphology

Based on the neuronal morphology and on the cytological displaying fea-
tures, Cajal proposed the principle of dynamic polarization (Kandel et al.,
2000). This principle [which is part of the neuron doctrine (Golgi, 1906;
Shepherd, 1991)] states that the activity coming from the dendrites are pro-
cessed and passed from the axon to neighbor neurons. Despite of some
exceptions (e.g., dendrodentric synapses), this directionality in the flow of
activity typically occurs. In most cases the neuronal morphology can be
understood as several parts adapted to fulfill its functional role. Some of
the general morphological characteristics satisfied by most neurons (Kandel
et al., 2000) are displayed in Fig. 1.9.

Figure 1.9: Sketch of a typical neuron with myelinated axon. Figure
adapted from Wikipedia (2012b)

The three main parts of a neuron are the dendrites, the soma (cell body), and
the axon. Most of the incoming inputs to a neuron come from the dendrites.
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Presumably, the great distinctive feature of neurons is the presence of large
dendritic trees. They are responsible for most of the variety in neuron
size, shape and types [there are about 104 different morphological classes
of neurons (Johnston et al., 1996)]. Figure 1.10, for example, compares
two distinct types of neurons: The cerebellar Purkinje cell, and the cortical
pyramidal cell.

The dendritic tree contains most of the postsynaptic terminals of the chem-
ical synapses. Several functions (Stuart et al., 1999) of the dendritic arbors
have also been claimed:

• to perform biological gates (Stuart et al., 1999; Koch, 1999);

• to detect the coincidences of incoming spikes (Agmon-Snir et al., 1998;
Koch, 1999);

• to contribute with plasticity via dendritic spikes (Golding et al., 2002);

• to increase the learning capacity of the neuron (Poirazi and Mel, 2001);

• to improve the ability to distinguish the intensity of an incoming stim-
ulus [i.e., to enhance the dynamic range] (Gollo et al., 2009, 2012a).

Despite such dendritic-computation properties, the role of dendrites seems
yet distant from been clearly understood.

The cell body (soma) contains the nucleus and most of the cytoplasmic
organelles. It is responsible for large part of the metabolic processes. More-
over, this region is where most recordings of the neuronal electrical activity
take place.

In general, the axon can extent to regions far away from the soma. It
might have different size (from 0.1 to 2,000 mm) depending on its function-
ality (Kandel et al., 2000). It starts at the axon hillock, where the action
potential is generated (see section 1.4.4), and present ramifications at the
extremities. Most of the pre synaptic terminals come out from those ter-
minal buttons. The axon might be covered by myelin, which protects and
controls some properties of neuronal activity, such as the velocity of the
pulse propagation.

The axon is the crucial unit specialized to conduct the action potentials. Such
propagation essentially occurs without distortion. This reliability property
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Figure 1.10: Examples of two different types of neurons. Top: Draw-
ings by Ramón y Cajal of a human Purkinje cell (left), and a human
pyramidal cell (right). Bottom: A rat Purkinje neuron injected with a
fluorescent dye (left) [panel extracted from Rikenresearch (2012)], and
a confocal laser scanning microscope image of a typical mouse frontal
cortical layer 3 pyramidal cell (right) [panel extracted from Bumc

(2012)].

is important because the action potentials (or spikes) are considered to carry
most of the information of the neuronal activity (Gerstner and Kistler, 2002;
Fries et al., 2007), either by the precise timing of the events, or by the firing
rate over a certain period.
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1.4.3 Nerst potential

The neurons are, as well as all other living cells, enclosed by a cell mem-
brane. It separates the extracellular medium from the interior of the neuron.
The neuronal membrane is a lipid bi-layer of 3 to 4 nm thick, which acts
as a capacitor, separating the ions lying along its interior and exterior sur-
face (Gerstner and Kistler, 2002; Dayan and Abbott, 2001).

Variations of the ionic concentrations give rise to the potential difference
maintained by the cell membrane. This is called the membrane potential.
Under normal conditions, the membrane potential remains around -90 to
50 millivolts. The membrane potential also defines the rest potential, a
dynamical equilibrium state of ions coming back and forth.

Since the lipid bi-layer is impermeable in natural conditions, the ions might
only cross the cell membrane via specialized structures (pore-forming pro-
teins) called ionic channels, or by the active selective pumps. The operation
process of channels does not involve metabolic energy, whereas the active
movement of ions by the pumps requires the energy produced by the hydrol-
ysis of adenosine triphosphate [ATP] (Kandel et al., 2000). Most channels
possess gates that open in response to ligands (especially neurotransmit-
ters), or voltage changes; they normally close by an intrinsic inactivation
process (Lehmann-Horn and Jurkat-Rott, 2003). The ionic channels corre-
spond to the molecular basis for the intracellular signal transduction, the
maintenance of the resting potential, and the generation of action potentials.

There are a variety of different types of ionic channels; each neuron has
more than ten types. Each channel type has its own properties; in particular,
some of them are highly selective to a specific ion. Figure 1.11 illustrates the
typical behavior of a voltage-gated ionic channel.

1.4.4 Neuronal activity

Neurons are nonlinear excitable elements, i.e., they generate a spike when
its membrane potential exceeds a defined threshold [about 20-30 mV above
the rest potential (Gerstner and Kistler, 2002)]. This excitation is also called
action potential. When the membrane potential of a given neuron is per-
turbed without reaching the threshold, it relaxes back to its rest potential in
a time scale governed by the membrane properties.

30



1.4. BIOPHYSICAL OVERVIEW OF THE NEURONS AND
NEURONAL INTERACTIONS

Figure 1.11: Diagram of the possible states of a voltage gated cation
channels. This type of channels is important for the sodium, potas-
sium, and calcium ions. A depolarization of the rest membrane (left)
promptly opens the channel allowing a flux of cations according to
their electrochemical gradients (right). The channel with a reverse
polarization closes (bottom) and reopens very rarely. From refractory
state, the membrane recovers back to the resting state. Owing to a
slow depolarization process, a transition from the polarized to the
inactivated state may also occur without channel opening (accommo-
dation). Figure extracted from Lehmann-Horn and Jurkat-Rott (2003).

The spike is generated in a particular region called axon hillock located in
between the soma and the axon. The pulse propagates (Fatt, 1957) mainly
throughout the axon (forward propagation), but may also propagate to
the dendrites [backpropagating spike (Stuart and Sakmann, 1994; Johnston
et al., 1996; Falkenburger et al., 2001; Häusser and Mel, 2003)].

The spike occurs in a very narrow time window followed by a sudden
decay of the membrane potential bellow the rest state. At this moment,
the neuron is said to be hyperpolarized, and its potential difference with
respect to the exterior region is greater than at rest. This stage is called
refractory period. During the refractory period the neuron rarely gather
enough contributions to spike. Typically, the membrane potential relaxes
to the rest potential before another cycle happens. Figure 1.12 B shows an
example of a whole cycle of microelectrode recording. This particular case
corresponds to the seminal experiments of Hodgkin and Huxley in the squid
giant axon (Fig. 1.12 A).

31



CHAPTER 1. BIOLOGICAL OVERVIEW

Figure 1.12: Intracellular recording of an action potential in the squid
giant axon. (A) A microelectrode of 100µm of diameter is inserted into
the interior of a squid giant axon of about 1 mm. (B) The dynamics
of an action potential dynamics. The y axis refers to the membrane
potential (millivolts) while the x axis represents the time. The time
interval between two peaks below equals to 2 ms. Figure adapted

from original work of Hodgkin and Huxley (1939).

1.4.5 Neuronal communication

Charles Sherrington, in 1897, suggested that neurons perform functional
contacts with other neurons and other types of cells through synapses. The
existence of such structures was solely demonstrated 50 years later by elec-
tron microscopy (Squire et al., 2003).

Currently, we define the synapse as the specialized junctions through which
cells of the nervous system signal to one another and to non-neuronal cells,
such as muscles or glands. It is also the region in which two neurons are
closest to each other. The cell transmitting a signal is known as pre-synaptic
cell whereas the cell receiving the signal is the post-synaptic cell.

The brain is a highly connected tissue. Each neuron exchanges synaptic
information with about 104 other neurons (Kandel et al., 2000). There are
at least three different ways of communication among neurons: chemical
synapses, electrical synapses and ephaptic interaction.
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Chemical synapse

The predominant form of communication between neurons of vertebrates
is the chemical synapse (Gerstner and Kistler, 2002). In this type of synapse
there is a separation of the order of a few tens of nanometers called synaptic
cleft, see Fig. 1.13. In the pre-synaptic terminals, there are collections of
synaptic vesicles, each containing thousands of molecules of neurotrans-
mitters. The vesicles release neurotransmitters in the synaptic cleft when
the pre-synaptic neuron fires. After the spike, the neurotransmitters suffer
a diffusion process in the extra cellular space of the synaptic cleft space.
The molecules of neurotransmitters may bind to the post-synaptic cell re-
ceptors. The effective coupling of neurotransmitters triggers the opening
of the ionic channels. This dynamics of the channels generates the postsy-
naptic potentials, which are local changes (excitatory or inhibitory) of the
membrane potential. If the potential difference exceeds a certain threshold,
the post-synaptic neuron fires, concluding the communication. Note that, in
this case, there is an anatomical difference between two well-defined cells,
which makes this type of communication unidirectional.

The resultant variation of membrane potential of the postsynaptic neuron
depends on the type of neurotransmitter and the number of channels opened
due to the binding of neurotransmitters. There are several types of neuro-
transmitters. Some of them excite (Brock et al., 1952) the postsynaptic neuron
(increase its membrane potential, or depolarize); others inhibit (Wilson and
Cowan, 1972; Duchamp-Viret and Duchamp, 1993; Rinzel et al., 1998) the
postsynaptic neuron (decrease the membrane potential, or hyperpolarize).
Our results focus on the chemical synapse because it is the most common
type of interaction present in the brain.

Electrical synapse

Another route of neuronal communication is via electrical synapses. The
electrical synapses occur through the electrical interaction between cells. In
this case, the cellular membranes of neighbor neurons are located very close
to each other. They are directly connected through specialized channels
called gap junctions, see Fig. 1.14. These gap junctions are proteins that
have the channels larger than the pores of the ionic channels. Various
substances are simply free to spread by these channels. More importantly,

33



CHAPTER 1. BIOLOGICAL OVERVIEW

Figure 1.13: Diagram of the action of a typical chemical synapse,
where the axon represents the presynaptic terminal and the dendrite
represents the postsynaptic terminal. Figure extracted from Hrsbstaff

(2012).

the gap junction enables a bidirectional and virtually instantaneous flow of
current between the neurons.

Differently from the chemical synapses that are pulse-coupled, the electrical
synapses have virtually instantaneous diffusive coupling. The effects of the
chemical synapses are intermittent and sporadic, typically maintaining the
communication active solely for brief time intervals. Such differences in the
interactions can be reflected in the dynamics of neuronal networks (Balen-
zuela and García-Ojalvo, 2005; Rossoni et al., 2005; Feng et al., 2006; Pérez
et al., 2011).
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Figure 1.14: Schematic representation of a gap Junction. Two neurons
get very closed together separated by an uniform gap, roughly 2-3 nm

in width. Figure extracted from Antranik (2012).

Ephaptic interactions

A third, and less common type of neuronal communication is called ephaptic
interaction. Formally, ephaptic coupling is the process by which neighbor-
ing neurons affect each other by current spread through the extracellular
space (Lowe, 2003; Bokil et al., 2001; Furtado and Copelli, 2006). Eventually,
in some cases of convergence of unmyelinated neurons, the axons gather
into densely packed fascicles allowing the neuronal communication. An
example of extreme convergence that occurs in mammals is the projections
of the olfactory receptor neurons from the olfactory epithelium to the Mitral
cells of the olfactory bulb.
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Chapter 2

On the Different Modeling Lev-
els

From subatomic elementary particles to universe(s), models span all spatial
scales. The determination of the most appropriated modeling level highly
depends on the features of interest. The best model for a given feature can
be useless for another. The quest for better models is a fundamental and
interminable task.

The brain, as a highly complex system, offers a multitude of functions,
mechanisms, and behaviors. All of them become better understood after
modeled (formally), or a set of experiments performed. Even the most pure
empirical data demand a qualitative model to explain the results. There-
fore, in science, one can never avoid modeling, which can indeed be of
countless diverse natures. In particular, quantitative models, amenable to
mathematical analysis, provide the advantage of enabling a formal consis-
tency check. Furthermore, the understanding of suitable models of any kind
frequently leads to successful predictions. Analogously to experiments, in
which each experimental technique contains its own limitation, the validity
of each model is also restricted by some boundaries. Thereby, it is important
to take into account such restrictions to select the best model.
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In neuroscience, where the quantum aspects have not been proved yet to
play a role1, probably, the smallest modeling scales correspond to the dy-
namics of the ionic channels. Several complex mechanisms of molecular
interactions of the channels dynamics remain poorly understood. However,
since the pioneer work of Hodgkin and Huxley, in a major conceptual leap,
the opening and closing kinetics of the ion channels was deduced (Hodgkin
and Huxley, 1952; Dayan and Abbott, 2001). They considered the conduc-
tance per unit of area of ion i (Gi) equals the maximal conductance per unit
of area (gi) times the probability of finding a channel in the open state Pi,
i.e., Gi = giPi. In turn, Pi might depend on one or more gates. In the case
of persistent conductances (single gate), taking n (1 − n) as the probability
of a subunit gate being permissive (non-permissive), then Pi = nk, where k
represents the number of gating events (assumed independent). The prob-
ability of finding a channel in the open state is governed by the dynamics of
n:

dn
dt

= αn(V)(1 − n) − βn(V)n , (2.1)

where αn(V) is the non-permissive to permissive transition rate, and βn(V)
is the permissive to non-permissive transition rate. Finally, following the
steps of the seminal work by Hodgkin and Huxley (1952), fitting these rates
to the experimental data renders a biophysical model for the conductance.

Another important subcellular elements to model is the synaptic dynamics.
The optimal synaptic model customarily depends on the precision craved.
For example, the postsynaptic potentials can assume a variety of shapes:
delta functions, exponential functions, alpha functions, and so on. The
strength of the synapses also varies as a function of time (Bi and Poo, 1998;
Abbott and Nelson, 2000). It has been claimed that the synapses play in-
deed a computational role (Abbott and Regehr, 2004). However, for many
purposes, say whenever the focus is restricted to the events occurring in
a fast time scale, it is a good approximation to assume a steady synap-
tic strength. To summarize, the phenomenology highlights that there are
plenty of interesting behaviors at the subcellular level.

This chapter, however, aims at addressing the modeling strategies beyond
the subcellular level, and to illustrate some of the major approaches that
have been currently used. We start by the single neuron model. The ap-
proach of section 2.1 takes into account the neuronal tree topology and

1There is not only researches, but also a journal (Neuroquantology), handling with the
interface of neuroscience and quantum mechanics.
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considers the neuron as a spatially extended system. Although the most
biophysically realistic model considers the neuronal structure, this strategy
presents several limitations regarding its tractability. The most straightfor-
ward approximation to circumvent this limitations is to consider the neuron
as a punctual element (section 2.2). To ignore the intricated morphology al-
lows insights that, in several cases, justify the approximation. In particular,
this compromise can be very convenient to study the behavior of a large
number of interconnected neurons (section 2.3). In fact, it is already a con-
siderable computational task to model populations of neurons using simple
spiking neuron models. Frequently, a further simplification is advisable: to
reduce the parameter space by the use of coarse-grained mesoscale models
(section 2.4).

2.1

Detailed neuron models

The origin of the detailed neuronal modeling dates back to the development
of the cable theory. Analogously to the heat equation, the cable theory com-
prises a partial differential equation that considers the membrane potential
(V) as a function of space (x) (long axis of the neurite) and time (t) (Niebur,
2008):

τ
∂V
∂t
− λ2 ∂

2V
∂x2 = VL − V ; (2.2)

where the parameters are: τ, a characteristic time scale; λ, a characteristic
length; and VL, the equilibrium membrane potential. The cable theory was
further improved to study the cylindrical geometry of the cable (Rall, 1959,
1964), and its ramifications (Mel, 1993), as well as to understand the activ-
ity of pulses propagating through small buttons placed into the membrane
called spines (Segev and Rall, 1988). These studies motivated the extensions
to the two-compartmental model (Pinsky and Rinzel, 1994), and the multi-
compartmental model (Traub et al., 1991; Migliore et al., 2005; Rumsey and
Abbott, 2006; Root et al., 2007).

The search for the most biologically realistic model has been a trend in
neuronal modeling. The approach requires details concerning the neuronal
morphology, the distribution of channels along the neuron, the precise be-
havior of each channel type, and so on. Those elements are largely unknown,
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and usually vary in time. Therefore, they are either not included in the equa-
tions, or their setting relies on a prevalently speculative fashion. In addition,
in the hypothetical case that all variables have been captured; the simula-
tion of such a complex system represents a significant computational and
interpretational challenge. This hampers the study, or allows only the sim-
ulations of idealistic situations in which, for example, the neuron receives
rather artificial input signals.

It is essential to keep a balancement of detail and abstraction to model
a single neuron (Herz et al., 2006). The greater the simplicity the better
the topological description is allowed to be. This line of research aims at
finding out the possibility that extensive neuronal regions could be the stage
for some kind of dendritic computation (Gollo et al., 2009, 2012a).

Abstract models also provide further benefits. They are frequently the most
appropriated to analytical investigations. Often a minimal model is the
best to conspicuously show general features, which are also expected in
more elaborate models. Moreover, the collective behavior of a multitude of
connected units is typically better studied in simple models.

The most traditional approximation is to consider the neuron as a punctual
element. Spiking neurons are typically modeled by differential equations
(that we shall describe next). Other approaches to study punctual simplified
models consist in assuming a network of neuron as a map (Chialvo, 1995; Ki-
nouchi and Tragtenberg, 1996; Izhikevich and Hoppensteadt, 2004a), or neu-
rons as cellular automata (Greenberg and Hastings, 1978; Ermentrout and
Edelstein-Keshet, 1993; Furtado and Copelli, 2006; Kinouchi and Copelli,
2006; Gollo et al., 2012b). Those abstractions often allow analytical insights
that would probably remain veiled otherwise.

To neglect the spatial structure of the neurons is the most widespread ap-
proximation in the art of neuronal modeling. The following section is de-
voted to discuss and to compare the different sorts of models that assume
the neuron as a punctual element. Such modeling strategy either focuses on
how its various ionic currents contribute to the subthreshold behavior and
spike generation, or just mimics this entire process without monitoring each
specific ionic contribution.
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2.2

Spiking neurons

The dynamics of spiking neurons is mainly modeled by differential equa-
tions. One of the earliest models, which remains widely used, is the inte-
grate and fire (I&F) neuron model (Lapicque, 1907; Knight, 1972; Abbott,
1999; Brunel and van Rossum, 2007). It is given by only one differential
equation, which adds up the external input contributions and simultane-
ously relax exponentially to the rest state (see section 2.2.2). When the
membrane potential reaches the threshold, it is reset to its rest state during
a certain time interval called refractory period. Further features (mimicking
the ionic channel time dependence) can be added to this model, to generate,
for example:

Burst, this has been done by the so called integrate-and-fire-or-burst model
(Smith et al., 2000);

Adaptation, as in the model of integrate-and-fire with adaptation (Izhike-
vich et al., 2004).

The neuronal models might also be more constrained to the detailed dy-
namics of several biophysical ionic channels, as, for example, the Hodgkin-
Huxley (HH) model (Hodgkin and Huxley, 1952), which is based on a
rather influential approach, motivating the study of numerous neuronal
models (see section 2.2.1). The HH model inspired, for example, a simpli-
fied two-dimensional model called FitzHugh-Nagumo model (FitzHugh,
1961; Nagumo et al., 1962). Subsequently, both FitzHugh-Nagumo and
HH were combined into a voltage-gated calcium channel model with a
delayed-rectifier potassium channel called Morris-Lecar (Morris and Lecar,
1981). In order to describe different types of neurons with a better precision,
some other models were also developed, like (for instance) the Hindmarsh-
Rose (Hindmarsh and Rose, 1984), and the Izhikevich model. The last one
reproduces several observed features, by two coupled differential equa-
tions (Izhikevich, 2000; Izhikevich and Hoppensteadt, 2004b). Mostly fol-
lowing Izhikevich (2004), next we discuss some of the major models of
spiking neurons.
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2.2.1 Biophysical models

The biophysically meaningful models of spiking neurons depend on mea-
surable parameters. We first introduce the seminal work of Hodgkin and
Huxley, which customarily influenced subsequent models.

Hodgkin-Huxley

Overcoming a series of experimental barriers, Hodgkin and Huxley studied
in detail the dynamics of the squid giant axon. Such axon has a large length
and diameter, which permitted electrophysiological intracellular recordings.
Moreover, it has mainly two types of voltage gated ion channels (potassium
and sodium). Compared to other conductance types that can influence the
excitability of neurons (Llinás, 1988), this relatively simplicity endows the
squid giant axon the ingredients required for the major conceptual advance
provided by Hodgkin and Huxley.

Figure 2.1: Equivalent electrical circuit representing membrane pro-
posed by Hodgkin and Huxley for the squid giant axon. Figure ex-

tracted from Hodgkin and Huxley (1952).
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The first assumption is to consider the membrane as the parallel electrical
circuit shown in Fig. 2.1. The membrane current is thus divided into a
capacity current and a ionic current:

Cm
dVm

dt
+ Iion = Iext , (2.3)

where Cm is the capacitance of the membrane; Vm: the membrane potential;
Iion: the net ionic current; and Iext: an applied current.

The ionic current is

Iion = INa + IK + IL = GNa(V − ENa) + GK(V − EK) + GL(V − EL) , (2.4)

where Gi = 1/Ri is the conductivity per unit of area. Importantly, they
found that GNa and GK are transient and persistent voltage dependent con-
ductances that can be written as:

GNa = gNam3h , (2.5)
GK = gKn4 ,

where gNa and gK are the maximal conductances. The transient conductances
are controlled by two gates with opposite voltage dependences (in this
case: m for activation and h for inactivation) (Dayan and Abbott, 2001).
The persistent conductances are controlled by a single activation gate, as
discussed previously (see Eq. 2.1).

Finally, The Hodgkin Huxley equations are found by combining Eqs. 2.3 to 2.5:

C
dV
dt

= −gNam3h(V − ENa) − gKn4(V − EK) − gL(V − EL) + I . (2.6)

The dynamics of the voltage-gated ion channels are described by the set of
differential equations:

dm
dt

= αm(V)(1 −m) − βm(V)m , (2.7)

dh
dt

= αh(V)(1 − h) − βh(V)h , (2.8)

dn
dt

= αn(V)(1 − n) − βn(V)n , (2.9)

whereα j and β j are specific rate functions for each gate probability j = m,n, h.
They were fitted experimentally in Hodgkin and Huxley (1952).
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Morris-Lecar

To describe the oscillatory activity of the barnacle giant muscle fiber, Morris
and Lecar (1981) proposed a leading biophysical model. The clarity of this
nonlinear two-dimensional model enables insights with biophysical mean-
ing, analogously to the Hodgkin-Huxley model. Although the model was
proposed for a specific neuron type, its use has crossed remote boundaries
(e.g., to represent a mammalian cortical neuron). The biophysical relevance
of results under such distant conditions is debatable. Nevertheless, the
model remains rather popular in the computational neuroscience commu-
nity. The membrane potential depends on the K and Ca ionic currents,
where the potassium (calcium) has a slow (instantaneous) activation:

C
dV
dt

= I − gL(V − EL) − gCam∞(V)(V − ECa) − gKn(V − EK) ; (2.10)

dn
dt

= λ(V)[n∞(V) − n] ; (2.11)

where

m∞ =
1
2

[
1 + tanh

(V − V1

V2

)]
; (2.12)

n∞ =
1
2

[
1 + tanh

(V − V3

V4

)]
; (2.13)

λ(V) = λ̄ cosh
(V − V3

2V4

)
; (2.14)

with parameters: C = 20 µF/cm2, gL = 2 mmho/cm2, gCa = 4 mmho/cm2,
gK = 8 mmho/cm2, EL = −50 mV, ECa = 100 mV, EK = −70 mV, V1 = 0 mV,
V2 = 15 mV, V3 = 10 mV, V4 = 10 mV, λ = 0.1 s−1, and the external current
I[µA/cm2].

2.2.2 Reduced models

Biophysical models have the advantage of allowing direct comparison with
the experiments. On the other hand, most theoretical work are favored
by simple models. A reduced number of parameters aids mathematical
analysis to be amenable. Many simple models have been proposed since
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the Hodgkin Huxley contribution. Typically, the simple models either focus
on the integration properties of the neuron, or on reducing the amount
of features involved in the conductances dynamics. Frequently, the most
suitable model is not clearly identified. The purpose of the model restricts
the most opportune choices. A brief description of some of the most featured
reduced spiking neuron models is presented next.

FitzHugh-Nagumo

The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962) is a
two-dimensional simplification of the Hodgkin-Huxley model. The idea
was to qualitatively explain the excitability properties with an adapted van
der Pol model. This set up was called Bonhoeffer-van der Pol model by
FitzHugh, because its dynamics qualitatively resembles Bonhoeffer’s theo-
retical model for the iron wire model of nerve (Bonhoeffer, 1948).

The model contains one equation that has a cubic nonlinearity, and another
equation that is linear and describes a slower recovery variable:

dv
dt

= a + bv + cv2 + dv3
− u ; (2.15)

du
dt

= ε(ev − u) . (2.16)

Hindmarsh-Rose

The Hindmarsh-Rose model (Hindmarsh and Rose, 1984; Rose and Hind-
marsh, 1989) is a three dimensional model:

dv
dt

= u − F(v) + I − w ; (2.17)

du
dt

= G(v) − u ; (2.18)

dw
dt

=
H(v) − w

τ
. (2.19)

It can reproduce most neuronal behaviors depending on the choice of the
functions F(v), G(v) and H(v). In several cases, though, it is not straightfor-
ward to find the suitable set of functions (Izhikevich, 2004).
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Izhikevich

A simple model that reproduces many computational features of spiking
neurons was proposed by Izhikevich (2003):

dv
dt

= 0.04v2 + 5v + 140 − u + I ;

du
dt

= a(bv − u) . (2.20)

v and u respectively represent the membrane potential and a membrane
recovery variable. Additionally, there is a reset after each spike if v ≥ 30 mV:
v is thereby reset to c; and u, to u + d.

This model is appropriated for simulations when diversity of neuronal ac-
tivity plays a role, or different types of spiking modes coexists.

Integrate-and-fire (I&F)

This was perhaps the first neuronal model developed. It has been widely
used ever since. The model, which is also known as leak integrate and
fire, is very simple and intuitive. It allows fast simulations and analytical
treatment. The dynamics is determined by a single equation describing the
membrane potential:

dv
dt

= a − bv + I ; (2.21)

with an additional reset after each spike: if v ≥ vthreshold, then v is reset to a
constant value c. a and b are constants and I the applied current.

Integrate-and-fire with adaptation

By adding an extra equation to the integrate and fire model, more sophisti-
cated features can be reproduced. The integrate-and-fire model with adap-
tation can be written as (Izhikevich, 2004):

dv
dt

= a − bv + g(d − v)I ;

dg
dt

=
e − δ(t) − g

τ
. (2.22)

46



2.2. SPIKING NEURONS

v and g represent the membrane potential and slow recovery variable, re-
spectively. a, b, d and e are constants; tau is a time constant; I, an applied
current; and δ stands for Dirac delta function. This constitutes an option for
a simple and intuitive model that present spike-frequency adaptation.

Integrate-and-fire-or-burst

Alternatively, one might be more interested in the coexistence of burst-
ing and tonic spiking modes. For this purpose, the integrate-and-fire-or-
burst can be an appropriated choice. The model also requires two equa-
tions (Smith et al., 2000; Izhikevich, 2004):

dv
dt

= a − bv + gH(v − vh)h(vT − v) + I ; (2.23)

with an additional reset after each spike: if v ≥ vthreshold, then v is reset to c.

dh
dt

=

{
−h/τ− , if v > vh ;
(1 − h)/τ+ , if v < vh ;

where v represents the membrane potential, and h describes the inactiva-
tion calcium T-current with parameters g, vh, vT, τ−, τ+. H stands for the
Heaviside step function.

Quadratic integrate-and-fire

The quadratic integrate and fire is a simple and canonical model, whose
dynamics is described by a single variable:

dv
dt

= a(v − vrest)(v − vthreshold) + I ; (2.24)

with an additional reset after each spike: if v ≥ vpeak, then v is reset to vreset.
In the trigonometric form, the model is also known as theta-neuron (Er-
mentrout and Kopell, 1986; Ermentrout, 1996). v represents the membrane
potential a, vrest and vthreshold are constants and I is an applied current.
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2.2.3 A comparative view of the most influential models of
spiking neuron.

The number of models is increasingly large, and the competition between
them can be quite fierce. Relevant inquiries in this regard include: What is
the best model?; or which model to choose? A recent paper by Izhikevich
(2004) tried to answer this question for spiking neurons.

The results, according to his evaluation, can be roughly summarized in a
single plot, see Fig. 2.2. The criteria Izhikevich chose to quantify the plausi-
bility of a model is controversial. The measure relies on the computational
cost of the model, as well as the number of neuro-computational features
reproducible by each model. In the top panel of Fig. 2.2, the x axis represents
the number of computational steps to simulate the model for a period of 1
millisecond, which can be estimated with sufficient precision. However, the
quantity measured by the y axis is subjective, and thereby the quantitative
value is rather arbitrary. It is challenging to define a fair measure because
presumably each feature should have a weight to separate the major from
the minor functions. On top of that, the importance of a function is not
steady, but it is highly dependent on the dynamical behavior of interest.

The biophysical models occupy the right edge positions because the com-
putational effort is heaviest in these cases. This can be limiting, especially
when the goal consists in simulating a large number of interacting units. The
simplest models, on the left edge, are typically used to overcome such com-
putational limitations. Furthermore, even the simplest model frequently
suffices for the suggested purposes. It is not coincidently that, in our re-
sults, we have used only the extremal models for spiking neurons: HH
(biophysically realistic), I&F (simple), and Izhikevich (flexible).

2.3

Neuronal populations of spiking neurons

It is important to understand and to acquire intuition on the behavior of
single neurons. Neurons are considered building blocks of the nervous
system, and the communication between two independent units occurs at
the neuronal level. The neuronal activity is the basic dynamical element
that ensures brain functioning.
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Figure 2.2: Comparing models of spiking neurons. Figure adapted
from Izhikevich (2004).

Most of the information processing underlying brain functions, however, is
thought to be carried out by a relatively large ensemble of neurons (Deco
et al., 2008). Interesting behavior emerge from the collective behavior of
numerous non-linear units (neurons): the whole system becomes more than
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the sum of its parts (Anderson, 1972). Moreover, the collective behavior
of a network of neurons can substantially overcome the behavior of a sin-
gle neuronal unit [recent examples include Gollo et al. (2012b); Vasilkov
and Tikidji-Hamburyan (2012)]. Thus, it seems unquestionable the need to
elucidate the neuronal dynamics at the level of neuronal populations.

The straightforward route to assess the behavior of neuronal populations is
to study the dynamics of large groups of spiking neurons. This approach is
described in the following sections.

2.3.1 Building a network of excitatory and inhibitory spik-
ing neurons

Once the cortical network gets mapped, and the columns get well charac-
terized, it will be essential to understand the differences and the similarities
of the dynamics in such networks compared with the recurrent networks.
Meanwhile, invoking our ignorance (or our lack of knowledge) about the
structure, we study recurrent networks because they are simple, and at the
same time they are specially designed to fulfill a given function. In fact, the
networks do not represent a specific structure; they are just random.

Most of the networks of spiking neurons involve both excitatory and in-
hibitory neurons. Typically, there are a series of standard methods that are
observed in order to construct a neuronal network.

Dale’s principle. A latter element of the neuron doctrine is the Dale’s prin-
ciple (Dale, 1934). This law, based on pharmacological evidences, states that
the presynaptic contacts the neuron has release the same set of neurotrans-
mitters. As a consequence, neurons can be classified in either excitatory
or inhibitory: Excitatory (inhibitory) neurons cause excitatory (inhibitory)
post-synaptic potentials. Although the functional implications of the Dale’s
principle to the network dynamics probably remain obscure, the principle
is customarily taken into account in simulations of neuronal networks.

Balancement. Another indispensable element to take into account is the
balancement of the amount of excitatory and inhibitory stimulus each neu-
ron receive from the network. Excitatory neurons usually outnumber in-
hibitory ones, and neurons might receive much more excitation than inhi-
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bition. Some aspects can be taken into account to equilibrate a network,
such that, in average, neurons receive the same amount of excitation and
inhibition, maintaining the same connectivity. The magnitude of the effi-
cacy of the inhibitory synapse is often considered greater than the efficacy
of the excitatory synapse. Alternatively, a larger firing rate of the inhibitory
neurons can also compensate their minority. Unlike the dale’s principle, the
functional implications of the balancement are clearer understood (Brunel,
2000). The balancement of the network might strongly affects the dynamics.
In a network of integrate and fire neurons, for example, the balancement is
a control parameter that governs the synchronous state of the network.

2.3.2 Building modular structures

The segregation principle of organization of the brain is also represented by
the cortex. Various modules are defined by the anatomical connectivity and
observed by the dynamical activity of the brain (Hagmann et al., 2008). In
fact, it is not clear weather there are intrinsic biophysical aspects that char-
acterize each cortical module, or if they end up having different functions
because of their connectivity and their position in the network (Wyss et al.,
2006).

It is thus frequently desired to include modular features in the neuronal
network. In such models, not only the behavior of the whole network
is relevant, but also special attention is usually given to each module. The
comparison of the dynamics of those modules can illuminate certain features
of the dynamics, like the synchronization.

To model this specific modular aspect of the brain, recurrent networks can
be joined together to give rise to a network comprised of modules. We
indicate a set of remarks that might be useful to obtain modular networks
mimicking reduced pieces of the brain.

Connectivity and delay. In general, most of the connections of a corti-
cal neuron come from nearby neurons. The remainder connections come
from separated neurons, and a few of those might come from quite distant
neurons. High clustering and short path length have been observed from
the cellular to the large-scale level (Sporns, 2010). This is the well-known

51



CHAPTER 2. ON THE DIFFERENT MODELING LEVELS

small-world property of the cortex, which promote economy and efficiency
in brain networks.

On top of that, despite of the large connectivity, the number of neurons is so
large that the network is astonishingly sparse. To reproduce such sparseness
is a limitation because it requires an immense number of neurons. The
typical workaround for this issue is to simulate a reduced network that only
resembles the sparse connectivity.

Considering the small-world modular structure, and the sparse properties,
it is possible to mimic reduced pieces of the brain. The local connectivity
inside a module is assumed sparse. Furthermore, the connectivity among
modules is assumed even sparser.

Another key element associated with the connectivity (via chemical synapse)
is the delay. There are several dynamical processes that contribute to the
synaptic delay. The prime contribution in most cases, especially for long-
range connections, is designated to the axonal conduction latency time.
Therefore, long-range connections (between different modules) are consid-
ered to have expressive delay. Intra-modular connections are considered
to have significantly less delay, which are sometimes even assumed to be
negligible.

2.3.3 Modeling meso- and large-scale brain dynamics with
populations of spiking neurons

A large-scale network of spiking neurons necessarily requires numerous
parameters. All of them must be adjusted in order to simulate the desired
dynamics. The tuning of at least some parameters usually relies on an it-
erative process to set their values. The values of these parameters, in turn,
depend on some aspects of the simulation results. Finding a fine set of
parameters might take several attempts until all constrains get satisfied, es-
pecially when the parameters are strongly correlated (i.e., far from being
independent). In order to simulate populations of spiking neurons, this is
definitely the most routine obstacle to defeat. In this journey, short sim-
ulation time and few parameters to adjust are inevitably beneficial. It is
thus crucial to reduce the number of free parameters and to choose simple
models, which give rise to fast simulation times.
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We have modeled meso-scale dynamics (motifs of neuronal populations)
utilizing the integrate-and-fire model (chapters 4 and 5), and the Izhikevich
model (chapters 6 and 7) for the spiking neurons. The integrate and fire
model is very simple and fast, and the Izhikevich model is relatively fast
and can reproduce different aspects of the neuronal dynamics.

Many works are restricted to study the dynamics of meso-scale models, say a
unique neuronal population (Brunel, 2000; Izhikevich et al., 2004; Izhikevich,
2006), or motifs of neuronal populations (Chawla et al., 2001; Vicente et al.,
2008b; Gollo et al., 2010, 2011). Others, however, go beyond the motifs of
populations and attempt to simulate the entire cortex (Zhou et al., 2006;
Zemanová et al., 2006; Zhou et al., 2007; Izhikevich and Edelman, 2008).

In Comparison with experiments, simulations have the benefit of being able
to keep track of every single variable at any instant of time. However, the
dimensionality of such system can be barely innumerable. Therefore, the
investigation of only a small set of parameters (out of several) turns out
to be feasible. The large complexity hampers a deep understanding of the
system. To circumvent this limitation, there are several methods of reducing
the dimensionality of the system.

2.4

Reduced meso- and large-scale models

There are several ways to reduce the degrees of freedom of a neuronal pop-
ulation. Firing-rate models are a prominent example (Wilson and Cowan,
1972, 1973). Instead of simulating the neuronal dynamics, or the dynam-
ics of the time-dependent conductances, it concentrates on processes that
occur at a slower time scale. Instead of actions potentials, which require
short time scale, the output of each neuron-like unit simply consists of fir-
ing rates. Firing-rate models have comparatively few parameters, and are
easier and faster to simulate than spiking neurons. Moreover, firing-rate
models also provide insights via analytical calculations. However, crucially
for our purpose, a firing-rate model fails when the presynaptic neurons are
synchronous or highly correlated (Dayan and Abbott, 2001).

As recently showed by Deco et al. (2008), some alternative methods to reduce
the degrees of freedom from a myriad to only few can be obtained by the
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description of the probabilistic evolution of the distribution function. In
particular, the probability distribution function can be represented by a set
of scalars that parameterize it. This reduction gives rise to the neural mass
models. An example of such model is discussed in chapter 7.

Reduced models have been successfully used to model and to elucidate
meso- and large-scale brain activity (Breakspear and Stam, 2005; Zhou et al.,
2007; Honey et al., 2007; Sotero et al., 2007; Deco et al., 2008; Pons et al., 2010;
Bojak et al., 2010; Ursino et al., 2010; Ponten et al., 2010; Deco et al., 2011).
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Chapter 3

Spatio-Temporal Neurodynam-
ics: Rhythms, Synchroniza-
tion and Coding

The brain dynamics that comprises perception, cognition, and consciousness
ultimately emerge from the outcome of a multitude of neurons connected
to around tens of thousands of neighboring neurons. Conspicuously, the
incalculable dimensionality of the system generates the impressively rich
and flexible patterns of neuronal activity of all brain functions. Neuronal
oscillations at cortical networks, which occur across spatial and temporal
scales, represent a general feature in this process. They have proven to
subserve to functionally relevant patterns that are associated with cognitive
behavior (Buzsáki and Draguhn, 2004). This chapter discusses some of these
patterns of neuronal activity that are considered to play an important role
in the brain functioning.

We restrict our focus to the dynamics of an isolated neuron solely in the next
section. The other sections elaborate on the collective behavior of numerous
coupled units. Section 3.2 discusses the neural oscillations observed in
considerably large groups of neurons. The dynamical relaying, an inspiring
mechanism to promote zero-lag synchronization between distant elements,
is concisely presented in the section 3.3. Finally, section 3.4 introduces the
binding by synchrony. This proposal constitutes an influential hypothesis
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that bridges the neural code to the synchronized activity of neurons, which
is ubiquitously found in the nervous system.

3.1

Single neuron activity: Excitability and oscilla-
tions

Analogously to lasers, chemical reactions, ion channels, climate dynam-
ics, and other dynamical systems, most neurons display excitable proper-
ties (Lindner et al., 2004). In the absence of stimulus they are typically at rest.
In response to a sufficiently strong input (injected current, or post synaptic
potentials) they fire, i.e., generate an action potential. After such a spike,
the neurons require a recovery time to fire again. Figure 3.1 exemplifies the
response of a canonical excitable element to different kinds of input.

Neurons are non-linear elements that may exhibit a rather rich behavior
even when isolated. Besides excitability, neurons can exhibit oscillations,
and can also be posed in a bi-stable regime, in which both excitable and
oscillatory states coexist. Interestingly, an oscillatory neuron in the bistable
regime might stop firing if it receives a pulse of current driving the trajectory
inside an unstable periodic orbit (Rinzel and Ermentrout, 1998).

3.1.1 Neuronal classification depending on the response to
a driving current

Probably the simplest way to induce oscillations in most neurons is by in-
jecting a current. There are different types of neuronal response to such
stimulus. Figure 3.2 illustrates the two principal classes of neuronal ex-
citability that have been characterized since the seminal work of Hodgkin
(1948):

Class I neurons show all-or-none action potentials, arbitrarily low oscilla-
tory frequency, and long delay to firing of an action potential after a
transient stimulus;
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Figure 3.1: Responses of an excitable element to different kinds of
input. Figure extracted from Lindner et al. (2004).

Class II neurons spike within a range of frequencies that precludes low
rates, and evince short latencies to firing.

I

F Class I

I

F Class II

Figure 3.2: Neuronal firing rate as a function of the injected current.
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The input-output function, which is given by the firing rate versus the
injected current, of class I neurons is continuous. In contrast, the input-
output function of class II neurons present an abrupt transition from rest
to active firing. The minimal firing rate of class II neurons is relatively
high, specially in comparison to class I neurons. Since the firing rate is a
saturating function of the stimulus (it does not go to infinity), the firing rate
dependence on the input of class II neurons is weaker than class I neurons.

Izhikevich (2007) suggests that class I neurons correspond to a snic (saddle-
node on invariant circle) bifurcation, whereas class II neurons correspond
to a saddle-node (off invariant circle) or a Hopf bifurcation. Such proposal
considers the restriction to codimension-1 bifurcations of equilibrium, which
depend on a single parameter (injected current). Naturally, the resting state
can also lose stability or disappear by higher codimension bifurcations,
eventually leading to counterintuitive behaviors.

3.2

Rhythmogenesis, neural synchrony and complex-
ity

Synchronous rhythms sculpt the temporal coordination of brain activity.
The rhythmic neuronal activity is associated with cognitive behaviors, and
with a healthy brain functioning. In turn, dysfunctions in synchronization
patterns are associated with some mental disorders.

It is fundamental to elucidate the mechanisms involved in such neuronal
oscillations. The synchronous activity of oscillating networks is considered
to be a fundamental link between events taking place at different spatial
scales: the activity of single neurons at the micro scale, and the brain rep-
resentations at the large scale (Buzsáki and Draguhn, 2004). Beyond the
activity of single neurons previously described, an ensemble of coupled
excitable neurons can also generate oscillatory activity in a spatially lo-
calized brain region. Within a larger scale, even rather distant oscillatory
ensembles sparsely connected between one another can also coordinate their
activity. The mutual relationship among the ensembles have been proposed
to generate fast, complex and flexible patterns of neuronal activity that are
required for the multiple brain states associated with cognition (Fries, 2005).
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The long-range connections between distant ensembles typically involve
a representative delay that crucially shapes the dynamics and should not
be dismissed. The dynamics of delayed coupled neuronal regions shows
complex behavior even for rather simple architectures due to frustration. A
frustrated system could provide the substrate for flexible evolving patterns
of oscillatory activity, and the coexistence of numerous metastable states.

3.2.1 Oscillatory brain activity associated with cognitive be-
haviors

The brain oscillations cover frequencies of about four orders of magnitude:
ranging from approximately 0.05 to 500 Hz (Buzsáki and Draguhn, 2004).
Within such a huge range, several bands have been characterized. Some of
them are remarkably important for behavioral tasks (Buzsáki, 2006; Wang,
2010).

Nearby frequency bands compete with each other, and typically correspond
to distinct functional modes (Buzsáki and Draguhn, 2004). Fast rhythms
tend to exhibit a more localized neuronal representation than slow rhythms.
Low frequencies present in each cycle a larger time period to recruit neurons,
Thereby, such longer recruitment embraces more widespread neuronal por-
tions. Different bands might work as parallel independent channels. How-
ever, the different frequency bands might also be correlated, as, for example,
the remarkable interplay between the theta and the gamma bands (Lisman
and Buzsáki, 2008).

Historically, the first rhythm to be described was the alpha (Bremer, 1958).
This oscillatory band (from 8 to 12 Hz) is prominent in the wake-relaxed
state. A variety of further brain rhythms have been classified across behav-
ioral states (Wang, 2010):

Slow (<1 Hz) oscillations correspond to the transitions between up and
down states (Steriade et al., 1993). Such oscillations occur during slow
wave sleep and might play a role in memory consolidation.

Delta (1-4 Hz) rhythm has been suggested to accompany sensory signal
detection and decision making (Başar et al., 2001).

Theta (4-8 Hz) rhythm is related to working memory, formation and re-
trieval of episodic and spatial memory.
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Beta (12-30 Hz) rhythm is associated with sensorimotor integration and
top-down signaling, and with preparation of movement (inhibitory
control in the motor system).

Gamma (30-80 Hz) rhythm is associated with attention and integration of
sensory information.

Ultrafast (>100 Hz) oscillations appear during anesthesia, behavioral im-
mobility, and natural sleep. They might lead to the onset of seizures.

3.2.2 Oscillations as an emergent property of the network

Due to the universal collective behavior of interacting elements, even canon-
ical networks of excitable units can generate oscillatory activity, e.g., Ki-
nouchi and Copelli (2006). Generic cortical networks comprised of exci-
tatory and inhibitory neurons, for example, can synchronize via diverse
mechanisms involving chemical synapses (Wang, 2010): recurrent exci-
tation, mutual interneuronal inhibition, and feed-back inhibition through
the excitatory-inhibitory loop. Moreover, connections involving electrical
synapses can also promote synchronization. Each of those mechanisms has
its own characteristics, with commonalities and subtle differences among
them. For a comprehensive and up-to-date review on the subject, please
refer to Wang (2010).

3.2.3 Synchronization

Synchronization is an astonishing omnipresent collective phenomenon oc-
curring at any known dimension, spanning from the subatomic to the as-
tronomical scales. Synchronization requires the coordination of systems to
operate at unison. Synchronized activities have been observed in the brain
between neurons, between heart cells, in coupled lasers, in fireflies and in
many other natural and man-made systems (Strogatz, 2003; Pikovsky et al.,
2002).

Owing to such a great universality, one might consider that it is not sur-
prising that synchronization also encompasses neuronal systems. Such that
this temporal coordination could be just an epiphenomenon: merely an un-
avoidable side effect resulting from the coupling of multitudinous excitable
units. However, growing evidence suggests that the brain developed (say
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throughout evolution) to functionally benefit from neuronal synchroniza-
tion. Synchronized groups of neurons, for example, are more effective than
asynchronous groups to transmit a message via sparse long-distance con-
nections. Exploring the time domain, this mechanism could operate as
an alternative neural code that is simultaneously fast, and flexible (Singer,
1999).

Neuronal synchronization arises across spatial scales, from pairs of neu-
rons to long-distance regions (Singer, 1999), which might even be in distinct
cortical hemispheres (Mima et al., 2001). Synchronization by neural oscilla-
tions contributes to the formation of functional circuits at different spatial
scales through a broad range of frequencies (Wang et al., 2010a; Kahana
et al., 2001; Kahana, 2006; Buzsáki, 2002, 2006; Buzsáki and Draguhn, 2004).
Specific patterns of neural synchronization have been largely associated
with perceptual, motor skills, and higher cognitive functions, providing in-
sights into how large-scale integration can be assisted by oscillatory codes
in the mammalian brain (Varela et al., 2001; Cantero and Atienza, 2005;
Womelsdorf and Fries, 2007; Uhlhaas et al., 2009; Crespo-Garcia et al., 2010;
Gutierrez et al., 2010). The phase relationship of synchronized elements has
been further suggested as a critical mechanism for the efficiency of such in-
formation exchange between neurons located in distant brain regions (Fries,
2005; Womelsdorf et al., 2007).

Delay

The presence of delayed interactions has been shown to play a critical role
in dynamical systems (Niebur et al., 1991; Ernst et al., 1995; Ramana Reddy
et al., 1998; Yeung and Strogatz, 1999; Atay, 2003; Atay et al., 2004; Sethia
et al., 2008; D’Huys et al., 2008). Particularly for neuronal systems, non-
negligible delays, which play an important role in long-distance connections,
have been argued to shape spatiotemporal dynamics (Roxin et al., 2005) and
to facilitate synchronization (Dhamala et al., 2004; Wang et al., 2008, 2009,
2011).

The presence of delay largely increases the dimensionality of the system,
giving rise to a rich dynamical repertoire, as well as a possibly copious com-
plexity. Accordingly, after extensive theoretical and experimental works,
the effects of the delay in the system are not yet fully understood. There are
examples of remarkable cutting edge exceptions in which the complexity of
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delayed systems can be exploited for non-trivial computations (Appeltant
et al., 2011). However, our first aim is to illustrate the order that emerges out
of an infinite dimensional system described by complicated non-linear equa-
tions. A case, which is particularly suitable to illustrate this spontaneous
organization, is the well known tendency of delayed-coupled oscillators to
synchronize in anti-phase.
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Figure 3.3: Anti-phase synchronization between two Hodgkin-
Huxley neurons mutually connected with delay (6 ms). Details and

parameters of the model are presented in chapter 7.

Figure 3.3 illustrates this tendency of anti-phase synchronization for a pair
of delayed-connected Hodgkin-Huxley neurons in the oscillatory regime.
The system is not deterministic because the neurons are driven by a Pois-
son process (to mimic the synaptic behavior). Nevertheless, the anti-phase
synchronization is not disturbed, which highlights the robustness of this
natural preference of the system.

3.2.4 Complexity and frustration

Cooperative behaviors have been proposed as a common thread between
complex systems: Cooperation allows multiple and complex patterns to
emerge from rather simple and local rules. However, a more universal
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view of complexity, which comprises all sorts of complex systems (genetic
algorithms, immune system, nervous system, protein folding, stock market,
and others adaptive evolving systems), might require a unifying concept.
Frustration has been proposed as a plausible unifying thread for complex
systems that accomplish such generalization (Binder, 2008).
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Figure 3.4: Example of frustration in a ring of three Hodgkin-Huxley
neurons mutually coupled with delay (6 ms). The anti-phase syn-
chronization between neighbor neurons cannot be satisfied simulta-
neously for all neighbor pairs. Details and parameters of the model

are presented in chapter 7.

Frustrated systems show competing interactions that prevent all elements to
satisfy their demands simultaneously: a piece of the system always remains
against its natural tendency. The complexity of frustrated systems typically
generates numerous metastable states without unbound grow. The concept
of frustration was firstly developed by geometrical configurations that lack a
unique minimal-energy state (Anderson, 1956; Toulouse, 1977; Villain, 1977;
Vannimenus and Toulouse, 1977; Greedan, 2001). Nevertheless, this con-
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cept can be largely extended to acquire a comprehensive formulation. For
example, some kind of frustration is conspicuous in the presence of oppos-
ing tendencies among elements of microscopic and macroscopic scales, and
could represent virtually all sorts of complex systems (Binder, 2008).

For us, an important and straightforward example is given by three all-to-all
delayed-coupled elements. Figure 3.4 depicts a trial in which neurons 1 and
2 reasonably succeed to maintain their preferred dynamical relation (i.e.,
synchronized in anti-phase). However, neurons 1 and 3 start isochronously
synchronized, and then switch to the anti-phase relation. In turn, neurons
2 and 3 start anti-phase synchronized, and then switch to the isochronous
relation. The system lacks a fully stable relation between the three neurons.
This is a rather simple geometry that can give rise to a rich dynamics due
to frustration. This geometry has instigated several works, including for
example D’Huys et al. (2011), who studied the role of the delay to shape
the dynamics, or Aihara et al. (2011) who studied other biological systems
composed of three Hyla japonica frogs in which delay can presumably be
dismissed.

3.3

Dynamical relaying

The dynamical relaying is a mechanism to achieve isochronous synchro-
nization between two delay-coupled oscillators. It has a general nature that
allows zero-lag synchronization in a large variety of systems: oscillators, ex-
citable systems, and maps. A prototypical motif of the dynamical relaying,
for example, can be obtained from the scheme shown in Fig. 3.4 by removing
the connections between neurons 1 and 3. In this case, the frustration of the
system vanishes. Indeed, as shown in Fig. 3.5, the zero-lag solution appears
even in the presence of stochastic inputs. The nearest neighbor neurons (1
and 2, or 2 and 3) show anti-phase synchrony, whereas the outer neurons (1
and 3) show zero-lag synchrony.

Furthermore, the dynamical relaying is not restricted to periodic systems.
In fact, the dynamical relaying was originally formulated for a system of
chaotic laser diodes bidirectionally coupled (see Fig. 3.6), and also addi-
tionally extended to other nonlinear systems such as neuronal elements
satisfying the same coupling architecture (Fig. 3.7). A further generalization
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Figure 3.5: Example of dynamical relaying in a chain of three
Hodgkin-Huxley neurons mutually coupled with delay (6 ms). The
outer neurons synchronize isochronously, whereas neighbor neurons
synchronize in anti phase. Details and parameters of the model are

presented in chapter 7.

of this simple motif of neurons to motifs of neuronal populations was the
first motivation for the original research of this manuscript.

In laser systems [solid-state and semiconductor lasers (Winful and Rahman,
1990; Terry et al., 1999)], investigations over three instantaneously coupled
elements showed an intriguing behavior in which the first and the third
lasers in the chain synchronized their activity. This motivated a deeper
study in similar systems coupled with delay. Surprisingly, this configura-
tion appeared to support the same isochronous activity (Fischer et al., 2006;
Vicente, 2006). This first result was obtained experimentally and numeri-
cally in delay-coupled systems of semiconductor lasers. Figure 3.6 shows
the experimental setup, time traces, and cross-correlations between pair of
lasers. Delay, in coupled semiconductor lasers, occurs for short separation
distance due to the fast internal time scale involved in such lasers. More-
over, Fischer et al. (2006) also showed analogous synchronization patterns
in systems of bursting Hodgkin-Huxley thermoreceptor neurons, depicting
an appreciable generality (Fig. 3.7).

The phenomenon engendered much interest both theoretically and exper-
imentally. Thus, the dynamical relaying was subsequently deeper studied
in a plethora of systems:
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Figure 3.6: Dynamical relaying. (top panel): Experimental setup;
(bottom panels): dynamics of a system of laser diodes (LD). Other
abbreviations are polarizer (POL), aspheric lens (L), beam splitter (BS),
photodetector (PD), neutral density filter (NDF), and Ci j corresponds
to the correlation function between nodes i and j. The time series of
the central laser is shifted τc. Figure panels extracted from Fischer

et al. (2006).

• Semiconductor lasers (Vicente et al., 2006; Vicente, 2006; Landsman
and Schwartz, 2007; Peil et al., 2007; Vicente et al., 2008a; Tiana-Alsina
et al., 2012);
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• Electronic circuits (Gomes et al., 2006; Wagemakers et al., 2007);

• Ikeda oscillators (Zhou and Roy, 2007);

• Josephson junctions (Chitra and Kuriakose, 2007);

• Mackey-Glass systems (Banerjee et al., 2012);

• Spatiotemporal chaotic systems (Jian-Ping et al., 2012);

• Coupled quadratic maps, Kuramoto, and Rösler oscillators (de Sousa Vieira,
2010);

• Diverse neuronal systems (Vicente et al., 2007, 2008b; Gollo et al., 2010,
2011).

Figure 3.7: Dynamical relaying in a chain of three Hodgkin-Huxley
neurons in the bursting mode. Figure extracted from Fischer et al.

(2006).
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3.3.1 Appraising the results in the dynamical-relaying frame-
work.

Based on the dynamical-relaying mechanism, the results of this entire thesis
can be elucidated. In fact, a shorter alternative title for this thesis could be:
Dynamical relaying in neuronal systems. To begin with, the order of the
result chapters reflects the chronological order in which the research projects
were developed.

First (in chapter 4) we show that the dynamical relaying is not only consistent
and robust in motifs of neurons but can be generalized to motifs of neuronal
populations. This generalization represents the first step aiming to check
whether the dynamical relaying could indeed play a functional role in the
synchronization of large neuronal systems.

Our next endeavor (chapter 5) considers the thalamus as the relay center.
Thalamocortical loops have been largely studied, and the thalamus has been
identified as the strongest candidate to mediate cortical synchronization.
The thalamus is the gateway for most sensory stimuli to reach the cortex.
Such attribute, as suggested by our model, naturally endows the thalamus
with the conditions to control and to coordinate cortical synchronization.

Ascribed to the previously satisfactory results, we acquired confidence to
seek experimental evidence for the dynamical relaying. The data involved
a dissimilar relay element: the hippocampus, which shows dominant oscil-
latory activity in the theta band. We thus show that the dynamical relaying
is robust to these fine details of the dynamics, and that the phase relation
between the areas obeys the pattern expected by the dynamical relaying.
Even neglecting numerous interactions with other brain regions, the model
accomplished to reproduce the data. This suggests a remarkable influence
of the dynamical relaying in sculpting the large-scale brain dynamics.

Finally, we attempt to understand the fundamental lurking interactions that
underpin the dynamical relaying. We find that a chain of bidirectionally-
coupled nodes is not the minimal structure to promote zero-lag synchroniza-
tion, but the common driving of a node which must be under the influence
of a pair of anti-phase synchronized nodes. The effects of this pair induce
the isochronous synchronization of the driven nodes. Thereby, we name
this effect: Resonance-induced synchronization.
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3.4

Binding by synchrony

The brain performs a myriad of parallel operations without the influence
of a coordinating center. The binding by synchrony proposes that the syn-
chronization of neuronal activity functions as a coordinating mechanism:
to select and route signals, and, more importantly, to bind together simul-
taneous computations from spatially segregated regions, and to generate
coherent percepts and actions (Singer, 2007). This proposal exploits the
time domain for coding, which has advantages over the rate code, in partic-
ular, it allows a much faster processing speed. The binding-by-synchrony
hypothesis was theoretically formulated by Milner (1974); Grossberg (1976);
von der Malsburg (1981), and a few years latter the first experiments were
accomplished to support the potential role of zero time-lag synchronization
to code (Roelfsema et al., 1997; Varela et al., 2001; Singer, 2007).

Numerous experimental evidences have been gathered along the years, see
for example the review by Uhlhaas et al. (2009). Moreover, owing to such
potentially strong relation with the neural code, the binding by synchrony
spurred numerous groups attempting to elucidate the phenomenon. It is
particular important to generate, to sustain, and to control the synchronous
oscillatory activity of the cerebral cortex. The next chapter sheds light in
this topic by proposing the dynamical relaying as an overwhelming candi-
date mechanism to promote zero-lag synchronization among distant cortical
populations of neurons.
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Chapter 4

Dynamical Relaying: A Ro-
bust Mechanism to Promote
Zero-Lag Long-Range Corti-
cal Synchronization

The development of multi-electrode recordings was a major breakthrough
in the history of systems neuroscience (Nicolelis and Ribeiro, 2002). The
simultaneous monitoring of the extracellular electrical activity of several
neurons provided a solid experimental basis for electrophysiologists to test
the emergence of neuronal assemblies (Singer et al., 1997). Specifically, the
parallel registration of spike events resulting from different cells permit-
ted the evaluation of temporal relationships among their trains of action
potentials, an eventual signature of assembly organization. Modern multi-
electrode techniques have now the capacity to simultaneously listen to a few
hundreds of cells and, in contrast to serial single cell recordings, to reveal
temporally coordinated firing among different neurons that is not linked

This Chapter is based on the paper: Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G
(2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction
delays. Proc. Natl. Acad. Sci. 105: 17157–17162; and the book chapter: Vicente R, Gollo LL,
Mirasso CR, Fischer I, Pipa G (2009) Far in space and yet in synchrony: neuronal mechanisms
for zero-lag long-range synchronization. Coherent Behavior in Neuronal Networks. Springer
Series in Computational Neuroscience 3: 143–167
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to any external stimulus but rather to internal neuronal interactions. Only
equipped with such class of technology it was possible to unveil one of the
most interesting scenarios of structured timing among neurons, namely the
consistent and precise simultaneous firing of several nerve cells, a process
referred to as neuronal synchrony (Singer, 1999).

Neuronal synchronization has been hypothesized to underly the emergence
of cell assemblies and to provide an important mechanism for the large-scale
integration of distributed brain activity (Singer, 1999; Varela et al., 2001). One
of the basic ideas in the field is called the binding by synchrony theory which
exploits the dimension that temporal domain offers for coding (Singer, 1999;
Milner, 1974; von der Malsburg, 1981; Gray et al., 1989; Gray, 1999). Essen-
tially, it states that synchrony can be instrumental for temporally bringing
together the processing output of different areas, which are functionally
specialized, in order to give rise to coherent percepts and behavior. The
differential effect that synchronous versus temporally dispersed inputs can
exert onto a downstream neuron indicates how the temporal coherence of
a set of neurons can become a flexible and potentially information-carrying
variable that can modulate subsequent stages of processing (Singer, 1999;
Salinas and Sejnowski, 2000, 2001). Despite the ongoing debate about its
functional role in neuronal processing, the last two decades have seen the
accumulation of large amount of data. Such results show evidence, at least
in a correlative manner, for a role of synchrony (and the customary oscil-
lations accompanying it) in a variety of cognitive processes ranging from
perceptual grouping or stimulus saliency to selective attention or working
memory (Gray et al., 1989; Castelo-Branco et al., 2000; Fries et al., 1997, 2001;
Sarnthein J, 1998).

Interestingly, neuronal synchrony is not restricted to the local environment,
e.g., of a single cortical column or area. Rather, long-range synchrony across
multiple brain regions, even across inter-hemispheric domains, has been
reported in several species including the cat and primate cortex (Roelfsema
et al., 1997; Rodriguez et al., 1999; Mima et al., 2001; Uhlhaas et al., 2006;
Soteropoulus and Baker, 2006; Witham et al., 2007). However, the zero-lag
correlated activity of remote neuronal populations seems to challenge a ba-
sic intuition. Namely, one tends to tacitly assume that since the interaction
among distant systems is retarded by the conduction delays (and therefore,
that it is the past dynamics of one system what is influencing the other
one at present) it is not possible that such interaction alone can induce the
isochronous covariation of the dynamics of two remote systems. Actually,
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the latencies associated with conducting nerve impulses down axonal pro-
cesses can amount to several tens of milliseconds for a typical long-range
fiber in species with medium or large sized brains (Swadlow et al., 1978;
Swadlow, 1985, 1994). These ranges of conduction delays are comparable
with the time-scale in which neuronal processing unfolds and therefore they
cannot be simply discarded without further justification. Furthermore, pro-
found effects in the structure and dynamics of the nervous system might
have arisen just as a consequence of the communication conditions imposed
by the time delays (Miller, 2000; Wen and Chkolvskii, 2005). As an exam-
ple, several proposals of the origin of the lateralization of brain functions
are based on the temporal penalty to maintaining information transferring
across both hemispheres (Ringo et al., 1994; Miller, 1996).

The aim of this chapter is to illustrate that certain neuronal circuitries can
circumvent the phase-shifts associated with conduction delays and give rise
to isochronous oscillations even for remote-located areas. The chapter be-
gins with a brief review of some theories that have been proposed to sustain
long-range synchrony in the nervous system. Then we explore a novel and
simple mechanism that accounts for zero-lag neuronal synchronization for
a wide range of conduction delays (Vicente et al., 2008b; Fischer et al., 2006;
Vicente et al., 2007; D’Huys et al., 2008). For that purpose, we investigate
the synchronizing properties of a specific network motif which is highly
expressed in the thalamo-cortical loop and in the cortex itself (Jones, 2002;
Shipp, 2003; Honey et al., 2007). Such circuitry consists of the relaying of
two pools of neurons onto a third mediating population which indirectly
connects them. We then present numerical results on the dynamics of this
circuit with two classes of models: first using Hodgkin and Huxley (HH)
type of cells and second building large-scale networks of Integrate and Fire
(IF) neurons. Finally, and after a detailed characterization of the influence
of long-conduction delays in the synchrony of this neural module, we dis-
cuss our results in the light of the current theories about coherent cortical
interactions.
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4.1

How can zero-lag long-range synchrony emerge
despite of conduction delays?

Before discussing different mechanisms proposed to cope with the long-
range synchrony problem, it is first necessary to understand the origin of the
delay that arises in neuronal interactions. As a rule, it is possible to dissect
the latency in the communication between two neurons via a prototypical
axo-dendritic chemical synapse in distinct contributions. For illustration
purposes here we follow the time excursion of an action potential generated
in a presynaptic cell up to becoming a triggering source for a new spike in
a postsynaptic cell.

• The first component is due to the propagation of an action potential
from the axon hillock to the synaptic terminal. The limited axonal
conduction velocity imposes a delay ranging from a few to tens of mil-
liseconds depending on the caliber, myelination, internodal distance,
length of the axonal process, and even the past history of impulse con-
duction along the axon (Swadlow, 1994; Soleng et al., 1998; Swadlow
and Waxman, 1975).

• A second element of latency occurs due to the synaptic transmission.
After the action potential has reached the presynaptic terminal several
processes contribute, to different degrees, to the so-called synaptic
delay. These include the exocytosis of neurotransmitters triggered by
calcium influx, the diffusion of the transmitters across the synaptic
cleft, and their binding to the postsynaptic specializations. Altogether
the complete process from the release to the binding to specialized
channels can typically span from 0.3 ms to even 4 ms (Katz and Miledi,
1965).

• Another source of delay is the rise time of the postsynaptic poten-
tial. Different ionic channels have different time-scales in producing
a change in the membrane conductance which eventually induces the
building-up of a significant potential. For fast ionotropic AMPA or
GABAA receptors it can take a time of the order of half a millisecond
for such a process to rise a postsynaptic potential (Shepherd, 1998).
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• Dendritic propagation toward the soma by either passive or active
conduction is also a source of a small lag whose value prevalently
depends on the dendritic morphology.

• Finally, the postsynaptic neuron can exploit several mechanisms, such
as membrane potential fluctuations, to control to some degree an in-
trinsic latency in triggering a new action potential (Volgushev et al.,
1998).

For long-distance fibers the most important contribution of delay typically
comes from the axonal conduction. In human, an averaged-sized callosal
axon connecting the temporal lobes of both hemispheres is reported to ac-
cumulate a delay of 25 milliseconds (Ringo et al., 1994). This is certainly
not a negligible quantity, specially when a precise temporal relations among
neuron discharges plays a role.

Nevertheless, a fiber connecting two brain regions is inevitably composed
of non-identical axons, which give rise to a broad spectrum of axonal delays
rather than a single latency value (Ringo et al., 1994; Aboitiz et al., 1992).
Reciprocally connected fibers constitute one of the possible substrates for
the establishment long-range synchrony. Within this framework the com-
bination of a hypothetical extensive network of very fast conducting axons
with the phase resetting properties of some class of neurons could in prin-
ciple sustain an almost zero-lag long-range synchrony process. GABAergic
neurons have been suggested to meet the second requirement. Via a pow-
erful perisomatic control this type of cells can exert a strong shunting and
hyperpolarizing inhibition which can result in the resetting of oscillations
at their target cells (Dickson et al., 2003; Rizzuto et al., 2003; Mann and
Paulsen, 2007). Their critical role in generating several local rhythms has
been well described (Whittington et al., 2001; Buzsáki, 2006). However,
their implication in the establishment of long distance synchrony is heav-
ily compromised because the expression of fast long-range projections by
interneurons is more the exception than the rule (Mann and Paulsen, 2007;
Buzsáki, 2006). Another important consideration is that long-range connec-
tions in a brain do not come for free. Even a small fraction of long-distance
wiring can occupy a considerably portion of brain volume, an important fac-
tor that severely restricts the use of fast large-diameter fibers (Ringo et al.,
1994; Buzsáki, 2006).
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Electrical synapses, and in special gap junctions, have also been involved
in explaining spread neuronal synchrony (Bennet, 2004). Gap junctions
consist of clusters of specialized membrane channels that interconnect the
intracellular media of two cells and mediate a direct electrical coupling and
the transferring of small molecules between them (Caspar et al., 1977). Evi-
dence for the role of gap junctions to give rise to fast rhythmic activity has
been put forward by observations that fast oscillations can be generated
in conditions where chemical synaptic transmission was blocked (Draghun
et al., 1998). Gap junctions also present two clear advantages over chem-
ical synapses for inducing zero-lag synchrony. First, they are not affected
by synaptic delays since no neurotransmitters are involved. Second, the
electrotonic coupling between cells mainly acts via diffusion mechanisms
and therefore it tends to homogenize the membrane potential of the both
cells. Thus, gap junctions can be considered of synchronizing nature rather
than excitatory or inhibitory class (Bennet, 2004). However, as we have
pointed out before, for long-distance fibers the axonal delay is the largest
component of latency and the saving corresponding the elimination of the
synaptic delay can just correspond to a small fraction of the total time. In
any case, electrical synapses are believed to underly homogenization of
firing among neurons and to foster synchrony in moderately distributed
networks (Bennet, 2004; Traub et al., 2001; Kopell and Ermentrout, 2004).

Proposals for explaining the observed long-range synchronous fast dynam-
ics in the cortex have also been inspired by the study of coupling distant
oscillations. In this context Traub et al. (1996) investigated the effect of ap-
plying dual tetanic stimulation in hippocampal slices. This influential work
showed that, in a slice preparation, a strong simultaneous tetanic stimulation
at two distant sites induced synchronous oscillations in the gamma-band.
The concomitant firing of spike doublets by some interneurons with such
double stimulation condition plus modeling support, led the authors to infer
that a causal relationship between the interneuron doublet and the estab-
lishment of long-range synchrony should hold (Traub et al., 1996; Bibbig
et al., 2002).

From another perspective, it is important to recall that neuronal plasticity is
a key element in determining the structural skeleton upon which dynamical
states, such as synchrony, can be built. Therefore, the experience-driven pro-
cess of shaping neuronal connectivity can considerably impact the ability
and characteristics of synchronization of a given neuronal structure. In-
terestingly, this interaction can go in both directions and correlated input
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activity can also influence the connectivity stabilization via certain plastic-
ity processes (Lowel and Singer, 1992). Modeling studies have shown that
spike-timing-dependent plasticity rules can stabilize synchronous gamma
oscillations between distant cortical areas. This is achieved by reinforcing
the connections whose delay matches the period of the oscillatory activ-
ity (Knoblauch and Sommer, 2003; Izhikevich, 2006).

In summary, there are a number of factors and mechanisms that have been
put forward to explain certain aspects of the long-range synchronization
of nerve cells. Synchronization is a process or tendency toward the estab-
lishment of a dynamical order with many possible participating sources,
and as a result it is not strange that several mechanisms can simultaneously
contribute or influence it. Thus, neural systems might use distinct strategies
for the emergence of coherent activity at different levels depending on the
spatial scale (local or long-range), dynamical origin (intra-cortical or subcor-
tical oscillations), and physiological state (sleep or awake), among others.
Nevertheless, one should notice that a significant long-range synchroniza-
tion is observed across different species with different brain sizes and at
different stages of the developmental growth of brain structures. This point
strongly suggests that any robust mechanism for generating zero time-lag
long-distance cortical synchrony maintains its functionality for a wide range
of axonal lengths. While it is possible that developmental mechanisms com-
pensate for the resulting delay variations (Swindale, 2003) it is still difficult
to explain all the phenomenology of long-distance synchronization without
a mechanism that inherently allows for zero-lag synchronization for a broad
range of conduction delays and cell types. In the following parts of this
chapter we focus our attention on a recently proposed scheme, named dy-
namical relaying, which might contribute to such mechanism (Vicente et al.,
2008b; Fischer et al., 2006; Vicente et al., 2007; D’Huys et al., 2008).

4.2

Zero-lag long-range neuronal synchrony via dy-
namical relaying

In this section we explore a simple network module that naturally accounts
for the zero-lag synchrony among two arbitrarily separated neuronal pop-
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ulations. The basic idea, which we shall further develop later, is that when
two neuronal populations relay their dynamics via a mediating population,
a robust and self-organized zero-lag synchrony among the outer popula-
tions can be reached (Vicente et al., 2008b; Fischer et al., 2006; Vicente et al.,
2007; D’Huys et al., 2008).

At this point it is important to recall the difference between processes gener-
ating local rhythms or oscillations in a brain structure from the mechanisms
responsible for their mutual synchronization. The model and simulations
that are presented below provide a proof of principle for a synchronizing
mechanism among remote neuronal resources despite long axonal delays.
In contrast to the results present in the two following chapters, no partic-
ular brain structure or physiological condition is intended to be faithfully
reproduced in this chapter. The main objective is the demonstration that
under quite general conditions an appropriate connectivity can circumvent
the phase lags associated to conduction delays and induce a zero-lag long-
range synchrony among remote neuronal populations. In any case, it is
worth mentioning that the diffuse reciprocal connectivity, the dynamical
consequences of which we study below, is characteristic of the interaction
of the neocortex with several thalamic nuclei (Jones, 2002; Shipp, 2003).
Connectivity studies in primate cortex have also identified the pattern of
connections investigated here as the most frequently repeated network mo-
tif at the level of cortico-cortical connections (Honey et al., 2007; Sporns and
Kotter, 2004; Sporns et al., 2004).

4.2.1 Illustration of dynamical relaying in a module of three
Hodgkin and Huxley cells

The simplest configuration to illustrate the effects of dynamical relaying
corresponds to the study of the activities of two neurons that interact by
mutually relaying their dynamics via a third one. We start investigating a
circuit composed of three HH cells with reciprocal delayed synaptic con-
nections (see top panel in Fig. 4.1 for an schematic representation of the
network architecture). We first consider a condition in which the isolated
neurons already operate in an intrinsic spiking state and observe how the
synaptic activity modifies the timing of their action potentials. To this end
we add an intracellular constant current stimulation (10 µA/cm2) such that
each isolated neuron develops a tonic-firing mode with a natural period of
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Figure 4.1: Time series of the membrane voltage of three coupled HH
cells Nα−Nγ−Nβ. At time t = 0 the excitatory synapses were activated.
Conduction delay τ = 8 ms. Vertical lines help the eye to compare the

spike coherence before and after the interaction takes place.

14.7 ms. The initial phase of the oscillations of each cell is randomly chosen
to exclude any trivial coherent effect. Finally, we set all axonal conduction
delays in the communication between neurons to a considerably long value
of 8 ms to mimic the long-range nature of the synaptic interactions. Further
details about the methodology used in the following simulations can be
found at the Methods section at the end of the chapter. In Fig. 4.1 we show
the time evolution of the membrane potentials under such conditions before
and after an excitatory synaptic coupling among the cells is activated.

Previously to the switch-on of the synaptic coupling, the cells fire out of
phase as indicated by the left vertical line to guide the eye in Fig. 4.1. How-
ever, once the interaction becomes effective at t = 0 and synaptic activity is
allowed to propagate, a self-organized process is observed: the outer neu-
rons synchronize their periodic spikes at zero-phase (even in the presence
of long conducting delays). It is important to notice that no external agent
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or influence is responsible for the setting of the synchronous state but this
is entirely negotiated by the motif itself. Furthermore, we checked that the
present synchrony is not just a phase condition between purely periodic
oscillators but also a true temporal relationship. To that end, we added
independent noisy membrane fluctuations to each neuron that resulted in
a non-perfectly deterministic firing of them. In this case, the circuit main-
tained an approximated zero-lag synchrony between the outer neurons, re-
flecting both the robustness of the synchrony mechanism to moderate noise
perturbations and showing that the synchrony process can be generalized
beyond a phase relation. A condition akin has already been discussed in the
previous chapter: Figure 3.5 illustrates the dynamical relaying taking place
between three neurons, stochastically driven (Poisson input).

The mechanism responsible for the synchronization depends on the ability
of an EPSP to modify the firing latencies of a postsynaptic neuron in a
consistent manner. It further relies on the symmetric relay that the central
neuron provides for the indirect communication between the outer neurons.
The key idea is that the network motif under study allows for the outer
neurons to exert an influence on each other via the intermediate relay cell.
Thus, the reciprocal connections from the relay cell assure that the same
influence that propagates from one end of the network to the other is also
fed-back into the neuron which originated the perturbation and therefore,
promoting the synchronous state.

It must be noticed, however, that the effect of a postsynaptic potential on
a neuron strongly depends on the internal state of the receiving cell, and
more specifically on the phase of its spiking cycle at which a postsynaptic
potential (PSP) arrives (Ermentrout, 1996; Reyes and Fetz, 1993). Since the
neurons of the module are, in general, at different phases of their oscillatory
cycles (at least initially) the effects of the PSPs are different for the three
cells. The magnitude and direction of the phase-shifts induced by PSPs
can be characterized by phase response curves. The important point here
is that the accumulation of such corrections to the interspike intervals of
the outer neurons is such that after receiving a few PSPs they compensate
the initial phase difference and both cells end up discharging isochronously,
representing a stable state. Simulations predict that a millisecond-precise
locking of spikes can be achieved already after the exchange of only a few
spikes in the network (in a period as short as 100 ms). This value is found to
be a function of the maximal synaptic conductivity and can be even shorter
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for stronger synapses.

A key issue of the synchronization properties exhibited by such network
architecture is whether the zero-lag correlation can be maintained for dif-
ferent axonal lengths or whether it is specific to a narrow range of axonal
delays. To resolve this issue we test the robustness of the synchronous
solution for other values of conduction delays. In Fig. 4.2 we show the
quality of the zero-lag synchronization for two HH cells as a function of
the conduction delay. The plot corresponds to two different scenarios: one
in which the neurons are directly coupled via excitatory synapses (dashed
line) and a second one in which the two neurons interact through a relay
cell also in an excitatory manner (solid line). In both cases the connections
are bidirectional. A quick comparison already reveals that the direct exci-
tatory coupling exhibits large regions of axonal conduction delays where
the zero-lag synchrony is not achieved. On the contrary, the relay-mediated
interaction leads to zero time-lag synchrony in 28 out of the 30 delay values
explored, (1 − 30) ms. Only for the cases of τ = 3 ms and τ = 10 ms the
network motif does not converge to the isochronous discharge for the outer
neurons. For such latencies the three cells enter into a chaotic firing mode
in which the neurons neither oscillate with a stable frequency nor exhibit a
consistent relative lag between their respective spike trains.

Robust zero-lag synchrony among the outer neurons is also observed when
the synaptic interaction between the cells is inhibitory instead of excitatory.
Different synaptic rise and decay times within the typical range of fast
AMPA and GABAA mediated transmission were tested with identical results
as those reported above. These results indicate that the network motif
of two neurons relaying their activities through a third neuron leads to a
robust zero-lag synchrony almost independently of the delay times and
type of synaptic interactions. We have also conducted simulations to test
the robustness of this type of synchrony with respect to the nature of the
relay cell. The results indicate that when a relay neuron is operating in a
parameter regime different from the outer ones (such as different firing rate
or conductances), the zero-lag synchrony is not disturbed. Remarkably, even
in the case where the relay cell operates in a subthreshold regime, and thus
only spiking due to the excitatory input from any of the outer neurons, the
process of self-organization toward the zero-lag synchrony is still observed.
It is also worth mentioning that in all cases such firing coherence is achieved
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Figure 4.2: Dependence of zero time-lag synchronization as a function
of the axonal delay for a scheme of two coupled cells (dashed line)
and three coupled cells (solid line). In the case of the three interacting
cells only the synchrony between the outer neurons is plotted here.

through small shifts in the spiking latencies which leave the mean frequency
of discharges (or rate) almost unchanged.

4.2.2 Effect of a broad distribution of conduction delays

Axons show a significant dispersion in properties such as diameter, myelin
thickness, internodal distance, and past history of nerve conduction. Within
a fiber bundle the variability from one axon to another of these characteristics
is directly related to the speed of propagation of action potentials along them
and eventually translates into the existence of a whole range of latencies in
the neuronal communication between two separated brain areas. Thus,
conduction times along fibers are more suitably considered as a spectrum
or distribution rather than a single latency value (Ringo et al., 1994; Aboitiz
et al., 1992).

A crucial question is therefore whether the synchronization transition that
we have described in the former section is restricted to single latency synap-
tic pathways or preserved also for broad distributions of axonal delays. To
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Figure 4.3: Left panels: gamma distribution of delays with different
shape factors (k=1, 5, and 20) and the same mean (τ = 8 ms). Right
panel: synchronization index at zero-lag of the outer neurons as a
function of the shape factor and mean of the distribution of delays.

answer this issue we model the dispersion of axonal latencies by assuming
that individual temporal delays of the arrivals of presynaptic potentials (i.e.,
latency times) are spread according to a given distribution. This intends to
mimic the variability among the different axons within a fiber bundle con-
necting two neuronal populations. Since data about axonal distributions of
conduction velocities in long-range fibers is limited, specially in the case of
humans (Ringo et al., 1994; Aboitiz et al., 1992), and there is probably not
a unique prototypical form of such distributions, we explore a whole fam-
ily of gamma distributions with different shapes (see the Methods section).
The left panels shown in Fig. 4.3 illustrate different gamma distributions of
axonal delays for three different shape factors.
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Our numerical simulations indicate that for a large region of mean delays
(between 3 and 10 ms) the outer neurons synchronize independently of the
shape of the distribution. These results can be observed in the right panel
of Fig. 4.3 where we plot the zero-lag synchronization index of the outer
neurons of the network motif as a function of the shape of the gamma distri-
bution of axonal delays and its mean value. Only distributions with unreal-
istic small shape factor (i.e., exponentially decaying distributions) prevent
synchrony irrespective of the average delay of the synaptic connections. For
more realistic distributions, there is a large region of axonal delays that gives
rise to the zero-lag synchrony among the outer neurons. As in the case of
single latencies, we find a drop in the synchrony quality for distributions
with a mean value around τ̂ ∼ (10−12) ms, where chaotic firing is observed.
The isochronous spiking coherence is in general recovered for larger mean
delay values.

So far we have considered a rather symmetric situation in which similar
distributions of axonal delays are present in each of the two branches that
connect the relay neuron to the outer units. This assumption can only hold
when the relay cell is approximately equidistant from the outer ones. In
the final section of this chapter we refer to several results pointing to the
thalamic nuclei and their circuitry as ideal relay centers of cortical com-
munication which approximately satisfy this condition. It is nevertheless
advisable to investigate the situation in which the axonal delays of each of
the two pathways of the network motif are described by dissimilar distribu-
tions. In this case, we find that if the distributions of delays for each branch
have different mean values then a nonzero phase-lag appears between the
dynamics of the outer neurons. This effect is illustrated for gamma distribu-
tions of different shape factors in Fig. 4.4. For delta distributions of delays
(which is equivalent to the single latency case) the lag amounts to the dif-
ference in mean values. Thus, if one of the pathways is described by a delta
distribution of delays centered at τa = 5 ms while the other is represented
by a latency of τb = 7 ms, then after some transient the neuron closer to the
relay cell consistently fires 2 ms (i.e., τb − τa) in advance to the other outer
neuron. It is worth to note that such value it is still much smaller than the
total delay accumulated to communicate both neurons (τa + τb = 12 ms).
When studying the effect of broader distributions of delays we observed
that outer cells tend to fire with a lag even smaller than the difference in
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Figure 4.4: Left panels: different gamma distributions of delays used
for the two dissimilar branches of the network module. Upper left
panel shows distributions with shape factor k=10000 (quasi-delta)
and means of 8 and 11 ms. Bottom left panel shows distributions with
shape factor k=6 and means of 8 and 11 ms. Right panel: lag between
the discharges of the outer neurons as a function of the difference in the
mean of the distributions of delays for the two branches. Shape factors
k=6 (squares), k=8 (circles), k=10 (diamonds), k=12 (up-triangles),

k=14 (down-triangles), and k=10000 (stars) were tested.

the mean values of the distributions. Thus, our results suggest that broader
distributions of delays can help distant neurons to fire almost isochronously.

4.2.3 Dynamical relaying in large-scale neuronal populations

A further key step in demonstrating the feasibility of synchronizing widely
separated neurons via dynamical relaying is the extension of the previous
results to the level of neuronal populations, the scale at which neuronal
micro-circuits develop their function (Douglas and Martin, 2004). Far from
being independent, the dynamical response of any neuron is massively
affected by the activity of the local neighborhood and by the long-range
afferents originating in distant populations. It is also important to consider
the random-like influences usually referred to as background noise, a term
that collects a variety of processes from spontaneous release of neurotrans-
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mitters to fluctuations of unspecific inputs (Pare et al., 1998; Arieli et al.,
1996). In such a scenario, we explore whether long-range fibers supporting
dynamical relaying, and thus indirectly connecting pools of neurons, are
suitable to promote remote interpopulation synchrony in the presence of
local interactions and noise sources.

Balancement between excitation and inhibition

The scale extension, from motifs composed of a few neurons to motifs com-
posed of a few populations of neurons introduces a myriad of degrees of
freedom in the system. In a cortical region, there are about 4 excitatory
neurons for each inhibitory one. Moreover, the dynamical behavior of a
population of neurons strongly depends on the amount of excitatory and
inhibitory currents received by each neuron from its presynaptic neigh-
bors (Brunel, 2000). The balancement is an effective means to control the
proportion of excitatory to inhibitory current received by each population
in a random population (see section 2.3.1). As showed by Brunel (2000),
the balancement is perhaps the most efficient control parameter to tune the
populations into synchronous or asynchronous states.

We compare results for the same motifs and two different balancements.
First, we utilize unbalanced populations in which the excitation overcomes
the inhibition. Even isolated, each population synchronizes and generates
an intrinsic oscillatory rhythm. Second, we utilize balanced populations in
which neither excitation or inhibition overcomes the other. The dynamics in
this configuration is such that the isolated populations do not synchronize.
However, the system is tuned to a regime in which the addition of the long-
range excitatory connections between the pairs of populations synchronizes
each population. Both types of populations, regardless of the balancement
lead to the phase synchrony of the populations when connected following
the dynamical-relaying structure.

We built three large networks of sparsely connected excitatory and inhibitory
IF neurons. We interconnect the three populations following the topology
of the network motif under study, i.e. the mutual relaying of activities
of two external populations onto an intermediate pool of relay neurons.
For details on the building of each network and their connectivity see the
Methods section.
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Unbalanced populations We first begin by initializing the three networks
without the long-range inter-population connections. Thus only the recur-
rent local connections and the Poissonian external background are active
and then responsible for any dynamics in the stand-alone networks. Con-
sequently, each population initially exhibits incoherent spiking of their neu-
rons with respect to neurons belonging to any of the other populations.
Once the long-range synapses are activated at t = 100 ms, we observe how
the firing of the neurons organize toward the collective synchrony of the
outer populations. Thus, the firing cycles of the outer networks of neurons
occur with decreasing phase lags until both populations discharge near si-
multaneously and exhibit almost zero-phase synchrony. Fig. 4.5 illustrates
the typical raster plots, firing histograms, and cross-correlograms of neurons
among the three inter-connected networks for a long conduction delay of 12
ms. Similar results are observed when other axonal delays in the range of 2
to 20 ms are explored.

The effective coupling of the networks modifies the relative timing among
their spikes yielding populations 1 and 3 to rapidly synchronize. However,
the qualitative dynamics of each single neuron seems to be not so much
altered by the interaction. Periodic firing of comparable characteristics is
found in both the coupled and the uncoupled case (compare the firing of the
central population in Fig. 4.5 and Fig. 4.7 where in the latter the population
2 remains uncoupled from other populations). Indeed, the mean period of
the coupled oscillatory activity (∼32 ms) is found to be close to the local
rhythm of an isolated network (∼34 ms), and therefore the coupling has
little effect on the frequency of the oscillation. This indicates that zero-lag
synchrony can be developed by this mechanism via small latency shifts
without affecting the nature of the neuronal dynamics.

Balanced populations We repeat the same procedure, but utilizing a bal-
anced population (see the Methods section). As depicted in Fig. 4.6, this test
indicates the robustness of the dynamical relaying with respect to the details
of the model to generate zero-lag synchronization of populations 1 and 3.
Despite this resilience of the dynamical relaying regarding the balancement
of excitation and inhibition, there are some marked differences in the dy-
namics. The delay in the communication plays an important role in the
system composed of balanced populations, in which there is no prominent
oscillatory activity of the isolated populations before they are functionally
coupled. In this case, the excitatory reciprocal coupling between the popu-
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Figure 4.5: Dynamics of three unbalanced large-scale networks in-
teracting through dynamical relaying. Panel a): raster plot of 300
neurons randomly selected among the three populations (Neurons
1-100 are from Pop. 1, 101-200 from Pop. 2, and 201-300 from Pop.
3). The top 20 neurons of each subpopulation (plotted in gray) are
inhibitory, and the rest excitatory (black). Panel b): firing histogram
of each subpopulation of 100 randomly selected neurons (black, red,
and blue colors code for populations 1, 2, and 3, respectively). Panel
c): averaged cross-correlogram between neurons of Pop. 1 and Pop.
2. Panel d): averaged cross-correlogram between neurons of Pop. 2
and Pop. 3. Panel e): averaged cross-correlogram between neurons of
Pop. 1 and Pop. 3. At t=100 ms the external inter-population synapses
become active. Bin sizes for the histogram and correlograms is set to 2
ms. Inter-population axonal delays are set to 12 ms. Parameter values

are C = 0.25%, g = 3.5 and ν = 5Hz.
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lations is essential to synchronize the populations internally. Subsequently,
the populations adapt their period of oscillations by small amounts, end-
ing up phase synchronized. As a result of the coupling, the period of the
oscillations is strongly influenced by the conduction delays. The period is
generally given by a multiple of the delay in the connection, mostly twice
the long conduction delay.
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Figure 4.6: Same as figure 4.5, but for balanced populations: Parame-
ter values are C = 0.8%, g = 4 and ν = 5.4Hz.

Control motif To better determine the role of the relay cells (Pop. 2) in
shaping the synchronization among cells belonging to remote neuronal net-
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works (Pop. 1 and Pop. 3), we designed the following control simulation.
We investigated the neuronal dynamics obtained under exactly the same
conditions as shown in Fig. 4.5 for the unbalanced populations with the
only variation that this time the two outer networks interacted directly.
The results are summarized in Fig. 4.7. Although only the topology of the
connections has been changed, this is enough to prevent zero-lag synchro-
nization of networks 1 and 3 to occur, highlighting the essential role of the
relaying population.

Robustness

Direct connection So far we have focused on studying how a V-shaped
network motif with reciprocal interactions determines the synchronization
properties of the constituent neurons, and compared them to the case of
a direct reciprocal coupling between two populations. The results above
indicate that the V-shaped structure can promote the zero-lag synchrony
between their indirectly coupled outer populations for long delays, while
direct connections between two populations can sustain zero-lag synchrony
only for limited values of axonal latencies. However, usually both situ-
ations are expected to occur simultaneously, this is neuronal populations
that need to be coordinated might be linked by both direct (monosynaptic)
and non-direct (polysynaptic) pathways. In fact, there exists much more
cortico-cortical connections than connections with subcortical structures. It
is fundamental to understand the dynamics when all the populations pre-
sumably belong to the cortex. Therefore, we also conducted numerical
studies including bidirectional coupling between the populations 1 and 3
(closing the open end of the sketches shown in top of Fig. 4.5 or 4.6 to a
ring form) to study how it modifies the synchronization properties formerly
described, which were due only to their indirect communication via popu-
lation 2. Thus, we introduce a reciprocal connection between populations
(1 and 3) with variable strength (measured as the number of synaptic input
received by both population).

For both balanced and unbalanced populations, we observed that when the
connectivity (or number of synapses) between the pools of neurons 1 and 3 is
moderate and smaller than the connectivity between these populations and
the relay population 2, a zero-lag synchronous dynamics between the outer
populations still emerges. This holds even for the case in which the synapses
linking Pop. 1 and Pop. 3 have a different delay than the ones linking these
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Figure 4.7: Dynamics of two unbalanced large-scale networks inter-
acting directly. Population 2 is disconnected from other populations.
Panel a): raster plot of 300 neurons randomly selected among the
three populations (Neurons 1-100 are from Pop. 1, 101-200 from Pop.
2, and 201-300 from Pop. 3). The top 20 neurons of each subpopulation
(plotted in gray) are inhibitory, and the rest excitatory (black). Panel
b): firing histogram of each subpopulation of 100 randomly selected
neurons (black, red, and blue colors code for populations 1, 2, and 3,
respectively). Panel c): averaged cross-correlogram between neurons
of Pop. 1 and Pop. 2. Panel d): averaged cross-correlogram between
neurons of Pop. 2 and Pop. 3. Panel e): averaged cross-correlogram
between neurons of Pop. 1 and Pop. 3. At t=100 ms the external
inter-population synapses become active. Bin sizes for the histogram
and correlograms is set to 2 ms. Inter-population axonal delays are

set to 12 ms. Parameter values are C = 0.25%, g = 3.5 and ν = 5Hz.

93



CHAPTER 4. DYNAMICAL RELAYING: A ROBUST MECHANISM
TO PROMOTE ZERO-LAG LONG-RANGE CORTICAL
SYNCHRONIZATION
to the relay center. As expected, when the reciprocal connectivity between
pools 1 and 3 is stronger, direct coupling dominates, and, depending on the
delay, it can impose a non-zero lag synchronous solution. Consequently, the
connectivity weight plays a fundamental role in this case of a ring.

Asymmetrical external driving In natural conditions, we don not expect
the external incoming activity over the involved populations to be equiva-
lent. Actually, a rather asymmetric amount of stimulus driving the neurons
located at the distant populations can be expected. Inspired by this possibil-
ity, we checked whether the results previously described are robust to asym-
metric external driving. We characterize how much variation is allowed in
order to guarantee the zero-lag synchronization via the dynamical-relaying
mechanism.

Contrary to the ring test, previously discussed, asymmetric inputs devel-
oped noticeably different robustness for the balanced and the unbalanced
populations. In particular, the former displays more robustness, i.e., the
dynamical relaying do synchronize the outer populations for almost any
asymmetry for balanced neuronal populations. The only condition is that
the three population must to be active, in the sense that neurons should fire
spontaneously. On the other hand, the unbalanced case is much sensible to
the input asymmetry: Accordingly, we found the dynamical relaying to be
effective only for asymmetries smaller than 10% of the external driving input
to the outer populations. These results suggest that, given the dynamical-
relaying substrate, the regulation of input asymmetry could function as a
dynamic control of zero-lag synchronization. Furthermore, a larger star
motif embedded in a much large structure could in principle select which
regions should be engaged in the coordinated spiking mode by modulating
the external driving.

Further structures Amongst other relevant networks that might sustain
the emergence zero-lag synchrony between some of its nodes stands the
star topology where a central hub is reciprocally connected to other nodes.
For such arrangement, which in some sense can be understood as to be
composed of several V-shaped motifs, numerical simulations show that the
outer elements of the star that are bidirectionally connected to the central
hub also tend to engage in a zero-lag synchronous spiking.
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4.3

General discussion, conclusions and perspectives

In this chapter we have dealt with the intriguing problem of explaining
how long-range synchrony can emerge in the presence of long conduction
delays. This challenging question, that has attracted the attention of many
researchers, is still far from being fully clarified. Nevertheless, our main
goal in the previous pages was to disseminate the idea that, in addition to
intrinsic cellular properties, an appropriate neuronal circuitry can be essen-
tial in circumventing the phase shifts associated with conduction delays. In
particular, we have explored and showed how a simple network topology
can naturally enhance zero-lag synchronization of distant populations of
neurons. The neuronal micro-circuit that we have considered consists of the
relaying of two pools of neurons onto a third mediating population which
indirectly connects them. Simulations of Hodgkin & Huxley cells as well
as large networks of integrate and fire neurons arranged in the mentioned
configuration demonstrated a self-organized tendency toward the zero-lag
synchronous state despite of large axonal delays. These results suggest
that the presence of such connectivity pattern in neuronal circuits may con-
tribute to the large-scale synchronization phenomena reported in a number
of experiments in the last two decades (Singer, 1999; Varela et al., 2001).

The question immediately pops up: Is there brain any particular structure
in the where such connectivity pattern is significantly common? Within the
brain complex network, the thalamus and its bidirectional and radial con-
nectivity with the neocortex form a key partnership. Several authors have
indicated that the reciprocal coupling of cortical areas with the different
thalamic nuclei may support mechanisms of distributed cortical process-
ing and even form a substrate for the emergence of consciousness (Llinás
and Pare, 1997; Llinás et al., 98; Ribary et al., 1991; Sherman and Guillery,
2002). It has also been explicitly proposed that diffuse cortical projections
of matrix cells in the dorsal thalamus together layer V corticothalamic pro-
jections are an ideal circuitry to extend thalamocortical activity and sustain
the synchronization of widespread cortical and thalamic cells (Jones, 2002;
Shipp, 2003). The resemblance of such circuitry with the topology we stud-
ied here is evident if we identify the associative nuclei of the thalamus with
our relay population. Altogether, the results described in this chapter point
to the direction that long axonal latencies associated with cortico-thalamo-
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cortical loops are still perfectly compatible with the isochronous cortical
synchronization across large distances. Within this scheme the most impor-
tant requirement for the occurrence of zero-lag synchronization is that the
relay population of cells occupies a temporally equidistant location from the
pools of neurons to be synchronized. It is then highly significant that recent
studies have identified a constant temporal latency between thalamic nu-
clei and almost any area in the mammalian neocortex (Salami et al., 2003).
Remarkably, this occurs irrespectively of the very different distances that
separate the thalamus and the different cortex regions involved, and it relies
on the adjustment of conduction velocity by myelination. Thus, thalamic
nuclei occupy a central position for the mediation of zero-phase solutions.

Coherent dynamics between remote cortical populations could certainly be
generated also by reciprocally coupling these areas to yet another cortical
area or other subcortical structures. It is important to remark that connec-
tivity studies in primate cortex identified the pattern of connections studied
here as the most frequently repeated motif at the level of cortico-cortical
connections in the visual and other cortical systems (Honey et al., 2007;
Sporns and Kotter, 2004; Sporns et al., 2004). The functional relevance of
this topology in cortical networks is unclear but according to our results is
ideally suited to sustain coherent activity.

In general, it is quite possible that a variety of mechanisms are responsible for
bringing synchrony at different levels (distinguishing for example, among
local and long-distance synchrony) and different cerebral structures. The
fact that each thalamic nucleus projects almost exclusively ipsilaterally (the
massa intermedia is clearly inadequate for supporting the required intertha-
lamic communication) is already an indication that the callosal commissure
should play a prominent role in facilitating interhemispheric coherence.
Studies including lesions in the corpus callosum sustain this view (Engel
et al., 1991). However, within a single hemisphere the disruption of intra-
cortical connectivity by a deep coronal cut through the suprasylvian gyrus
in the cat cortex did not disturb the synchrony of spindle oscillations across
regions of cortex located at both sides of the lesion (Contreras et al., 1996).
This suggests that subcortical, and in particular cortico-thalamic interac-
tions, could be responsible not only for the generation of oscillations but also
for maintaining both the long-range cortical and thalamic coherence found
in such regimes. It is likely then that subcortical loops with widespread
connectivity such as the associative or non-specific cortico-thalamo-cortical
circuits could run in parallel as an alternative pathway for the large-scale
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integration of cortical activity within a single hemisphere (Shipp, 2003; Dou-
glas and Martin, 2004; Sherman and Guillery, 2002). As we have shown here,
with such connectivity pattern even large axonal conduction delays would
not represent an impediment for the observation of zero time-lag coherence.

We would like to stress here that conduction delays are an important variable
to consider not only for synchronization but in any temporal coding strategy.
They contribute with an intrinsic temporal latency to neuronal communica-
tion that adds to the precise temporal dynamics of the neurons. Thus, they
could have an important implication in gating mechanisms based in tem-
poral relationships. For instance, when assisted by membrane oscillations,
neurons undergo repetitive periods of interleaved high and low excitability
and it has been reported that the impact of a volley of spikes bombarding
one of such oscillatory neuron is strongly influenced by the phase of the
cycle (variable influenced by conduction delays) at which the action poten-
tials reach the targeting neuron (Volgushev et al., 1998). Conduction delays
along with the frequency and phase difference of two respective oscillatory
processes determine the timing of the arrival of inputs and therefore can
control whether the incoming signal is relatively ignored (when coincid-
ing the trough of excitability) or processed further away (when reaching
the neuron at the peak of the fluctuating depolarization) (Salinas and Se-
jnowski, 2001; Fries, 2005). By this mechanism it has been hypothesized
that a dynamically changing coherent activity pattern may ride on top of
the anatomical structure to provide flexible neuronal communication path-
ways (Fries, 2005). Based on the properties formerly reviewed subcortical
structures, such as some thalamic nuclei, might be in an excellent situation
to play a role in regulating such coherence and contribute to the large-scale
cortical communication.

In summary, the network motif highlighted here has the characteristic of
naturally inducing zero-lag synchronization among the spikes of two sep-
arated neuronal populations. Interestingly, such property is found to hold
for a wide range of conduction delays, a highly convenient trait not easily
reproduced by other proposed mechanisms, which have a more restricted
functionality in terms of axonal latencies. Regarding its physiological sub-
strate, the associative thalamic nuclei have the cortex as their main input
and output sources and seem to represent active relay centers of cortical ac-
tivity with properties well suitable for enhancing cortical coherence (Shipp,
2003). The advantage of this approach in terms of axonal economy, spe-
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cially compared to an extensive network of fast long-range cortical links,
is overwhelming. Ongoing research is being directed to a detailed mod-
eling of the interaction between cortex and such nuclei with an emphasis
in investigating the role of limited axonal conduction velocity. From the
experimental side the relatively well controlled conditions of thalamocorti-
cal slice experiments, allowing for the identification of synaptically coupled
neurons and cell class, might be a first step for testing whether the topol-
ogy investigated here provides a significant substrate for coherent spiking
activity. An important issue related to the physical substrate of synchrony
is how the dynamic selection of the areas that engage and disengage into
synchrony can be achieved, but that is a subject beyond the scope of the
present chapter.

4.4

Methods

4.4.1 Models

Two neuronal models were simulated to test the synchronization properties
of the neuronal circuits investigated here.

In the most simplified version we focused on the dynamics of two single-
compartment neurons that interact with each other via reciprocal synaptic
connections with an intermediate third neuron of the same type (see top
panel in Fig. 4.1). The dynamics of the membrane potential of each neuron
was modeled by the classical Hodgkin-Huxley equations (Hodgkin and
Huxley, 1952) plus the inclusion of appropriate synaptic currents that mimic
the chemical interaction between nerve cells. The temporal evolution of the
voltage across the membrane of each neuron is given by

C
dV
dt

= −gNam3h(V − ENa) − gKn4(V − Ek)

− gL(V − EL) + Iext + Isyn , (4.1)

where C = 1 µF/cm2 is the membrane capacitance, the constants gNa = 120
mS/cm2, gK = 36 mS/cm2, and gL = 0.3 mS/cm2 are the maximal conduc-
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tances of the sodium, potassium, and leakage channels, and ENa = 50 mV,
EK = −77 mV, and EL = −54.5 mV stand for the corresponding reversal po-
tentials. According to Hodgkin and Huxley formulation the voltage-gated
ion channels are described by the following set of differential equations

dm
dt

= αm(V)(1 −m) − βm(V)m , (4.2)

dh
dt

= αh(V)(1 − h) − βh(V)h , (4.3)

dn
dt

= αn(V)(1 − n) − βn(V)n , (4.4)

where the gating variables m(t), h(t), and n(t) represent the activation and
inactivation of the sodium channels and the activation of the potassium
channels, respectively. The experimentally fitted voltage-dependent transi-
tion rates are

αm(V) =
0.1(V + 40)

1 − exp (−(V + 40)/10)
, (4.5)

βm(V) = 4 exp (−(V + 65)/18) , (4.6)

αh(V) = 0.07 exp (−(V + 65)/20) , (4.7)
βh(V) = [1 + exp (−(V + 35)/10)]−1 , (4.8)

αn(V) =
(V + 55)/10

1 − exp (−0.1(V + 55))
, (4.9)

βn(V) = 0.125 exp (−(V + 65)/80) . (4.10)

The synaptic transmission between neurons is modeled by a postsynaptic
conductance change with the form of an alpha-function

α(t) =
1

τd − τr

(
exp (−t/τd) − exp (−t/τr)

)
, (4.11)

where the parameters τd and τr stand for the decay and rise time of the
function and determine the duration of the response. Synaptic rise and
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decay times were set to τr = 0.1 and τd = 3 ms, respectively. Finally, the
synaptic current takes the form

Isyn(t) = −
gmax

N

∑
τl

∑
spikes

α
(
t − tspike − τl

) (
V(t) − Esyn

)
, (4.12)

where gmax (here fixed to 0.05 mS/cm2) describes the maximal synaptic con-
ductance and the internal sum is extended over the train of presynaptic
spikes occurring at tspike. The delays arising from the finite conduction ve-
locity of axons are taken into account through the latency time τl in the
alpha-function. Thus, the external sum covers the N different latencies
that arise from the conduction velocities that different axons may have in
connecting two neuronal populations. N was typically set to 500 in the
simulations. For the single-latency case, all τl were set to the same value,
whereas when studying the effect of a distribution of delays we modeled
such dispersion by a gamma distribution with a probability density of

f (τl) = τk−1
l

exp(−τl/θ)
θkΓ(k)

, (4.13)

where k and θ are shape and scale parameters of the gamma distribution.
The mean time delay is given by τ̂l = kθ.

Excitatory and inhibitory transmissions were differentiated by setting the
synaptic reversal potential to be Esyn = 0 mV or Esyn = −80 mV, respec-
tively. An external current stimulation Iext was adjusted to a constant value
of 10 µA/cm2. Under such conditions a single HH type neuron enters into a
periodic regime firing action potentials at a natural period of Tnat = 14.66 ms.

The second class of models we have considered consists of three large bal-
anced populations of integrate and fire neurons (Brunel, 2000). Top panel
in Fig. 4.5 depicts a sketch of the connectivity. Each network consisted of
4175 neurons, 80% of which were excitatory. The internal synaptic con-
nectivity was chosen to be random, i.e. each neuron synapses with 10%
of randomly selected neurons within the same population, such that the
total number of synapses in each network amounts to about 1,700,000. Ad-
ditionally, to model background noise, each neuron was subjected to the
influence of an external train of spikes with a Poissonian distribution as
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described below. The inter-population synaptic links were arranged such
that each neuron in any population received input from a small number of
the excitatory neurons in the neighboring population, 0.8% for the systems
of balanced populations and 0.25% for the systems of unbalanced popula-
tions. This small number of inter-population connections, compared to the
much larger number of intra-population contacts, allowed us to consider
the system as three weakly interacting networks of neurons rather than a
single homogeneous network. Intra-population axonal delays were set to
1.5 ms, whereas the fibers connecting different populations were assumed
to involve much longer latencies in order to mimic the long-range character
of such links.

The voltage dynamics of each neuron was then given by the following
equation

τm
dVi

dt
= −Vi(t) + RIi(t) , (4.14)

where τm stands for the membrane constant and I(t) is a term collecting
the currents arriving to the soma. The latter decomposes in postsynaptic
currents and external Poissonian noise

RIi(t) = τm

∑
j

J j

∑
k

δ(t − tk
j − τl) + Aξi , (4.15)

where J j is the postsynaptic potential amplitude, tk
j is the emission time of the

k-th spike at neuron j, and τl is the transmission axonal delay. The external
noise ξi was simulated by subjecting each neuron to the simultaneous input
of 1000 independent homogeneous Poissonian action potential trains with
an individual rate of 5.4 Hz for the systems of balanced populations and 5 Hz
for the systems of unbalanced populations. Different cells were subjected to
different realizations of the Poissonian processes to ensure the independence
of noise sources for each neuron. Jexc and A amplitudes were set to 0.1
mV. The balance of the network was controlled by setting Jinh = −gJexc to
compensate the outnumber of excitatory units. We used g = 4 for the
systems of balanced populations, and g = 3.5 for the systems of unbalanced
populations.

The dynamics of each neuron evolved from the reset potential of Vr = 10
mV by means of the synaptic currents up to the time when the potential of
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the i-th neurons reached a threshold of 20 mV, value at which the neuron
fired and its potential relaxed to Vr. The potential was clamped then to this
quantity for a refractory period of 2 ms during which no event could perturb
the neuron.

4.4.2 Simulations

The set of equations (4.1-4.12) was numerically integrated using the Heun
method with a time step of 0.02 ms. For the first class of models that we in-
vestigated, i.e. the three HH cells neuronal circuit, we proceeded as follows.
Starting from random initial conditions each neuron was first simulated
without any synaptic coupling for 200 ms after which frequency adaptation
occurred and it settled into a periodic firing regime with a well-defined fre-
quency. The relation between the phases of the oscillatory activities of the
neurons at the end of this warm up time was entirely determined by the
initial conditions. Following this period, and once the synaptic transmission
was activated, a simulation time of 3 seconds was recorded. This allowed
us to trace the change in the relative timing of the spikes induced by the
synaptic coupling in this neural circuit.

The second class of model involving the interaction of heterogeneous large
populations of neurons was built with the neuronal simulator package
NEST (Brette et al., 2007). The simulation of such networks uses a pre-
cise time-driven algorithm with the characteristic that the spike events are
not constrained to the discrete time lattice. In a first stage of the simulation
the three populations were initialized isolated from each other and evolved
just due to their internal local connectivity and external Poissonian noise. In
a subsequent phase, the three populations were interconnected according
to the motif investigated here and simulated during 1 second.

4.4.3 Data analysis

The strength of the synchronization and the phase-difference between each
individual pair of neurons (m,n) were derived for the first model of three
HH neurons computating the order parameter defined as
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ρ(t) =
1
2
| exp(iφm(t)) + exp(iφn(t))| , (4.16)

which takes the value of 1 when two systems oscillate in-phase and 0 when
they oscillate in an anti-phase or in an uncorrelated fashion. In order to
compute this quantifier it is only necessary to estimate the phases of the
individual neural oscillators. An advantage of this method is that one
can easily reconstruct the phase of a neuronal oscillation from the train
of spikes without the need of recording the full membrane potential time
series (Pikovsky et al., 2002). The idea behind this is that the time interval be-
tween two well-defined events (such as action potentials) define a complete
cycle and the phase increase during this time amounts to 2π. Then, linear
interpolation is used to assign a value to the phase between the spike events.

The synchrony among the large populations of neurons of the second
model described above was assessed by the computation of averaged cross-
correlograms. For that purpose, we randomly selected three neurons (one
from each of the three populations) and computed for each pair of neurons
belonging to different populations the histogram of coincidences (bin size of
2 ms) as a function of the time shift of one of the spike trains. We computed
the cross-correlograms within the time window ranging from 500 to 1000
ms to avoid the transients towards the synchronous state. The procedure
was repeated 300 times to give rise to the estimated averaged distributions
of coincidences exhibited in Figs. 4.5, 4.6 and 4.7.
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Chapter 5

Controlling Cortical Synchro-
nization via Thalamic Dynam-
ical Relaying

In the central nervous system (CNS) it is assumed that the information is
mainly represented by the activity of neurons that is transmitted to other
neurons through synaptic links. The extent of the neural network activated
by a specific piece of information is a never-ending matter of investigation but
it is accepted that both average levels of discharges, firing rate (Gollo et al.,
2009), and precise spike timing contribute to neural coding. Spatiotemporal
firing patterns (Villa et al., 1999b; Hayon et al., 2005) and coherent oscilla-
tory neural activity (Fries et al., 2007) associated to sensory and behavioral
events support the hypothesis that temporal information plays a key role in
brain processing. Empirical phenomena and extensive experimental data,
validated across different species (Gray et al., 1989; Engel et al., 1991; Castelo-
Branco et al., 2000; Tiesinga et al., 2008), emphasize the importance of an
emerging cortico-cortical synchrony as a major phenomenon for binding
features associated to distributed neural activities (von der Marlsburg, 1973;
Fries, 2005; Desbordes et al., 2008). Despite the success of physical models
to reproduce oscillatory patterns of neural activity it is not clear whether

This Chapter is based on the paper: Gollo LL, Mirasso C, Villa AE (2010) Dynamic control
for synchronization of separated cortical areas through thalamic relay. NeuroImage 52: 947–
955.
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the synchronization is the result of network processing exclusively limited
to cortico-cortical interactions or subcortical structures might also intervene
(Contreras et al., 1996; Traub et al., 1996; Vicente et al., 2008b; Chawla et al.,
2001), for a recent review please refer to (Uhlhaas et al., 2009).

The thalamus is a structure of CNS that could play an important role in
the emergence or control of cortico-cortical synchronization because the
exchange of information between the thalamus and cerebral cortex is a gen-
eral feature of all ascending sensory pathways but olfaction (Jones, 1985;
Sherman, 2005). The connectivity pattern between thalamus and cortex is
usually viewed as been characterized by thalamocortical integration and
corticothalamic feedback (Steriade and Llinas, 1988; Villa et al., 1999a; Villa,
2002). Multiple thalamocortical modules characterized by the same basic
connectivity may be assumed to work in parallel and include three main
components (see Fig. 5.1): (i) dorsal thalamic neurons (e.g. from the medial
geniculate body for the auditory pathway or from the lateral geniculate body
for the visual pathway) recipient of the sensory input from the periphery; (ii)
cells of the thalamic reticular nucleus (R), a major component of the ventral
thalamus; (iii) the cortical area receiving the corresponding thalamic input.
The thalamic reticular nucleus receives collateral inputs from both thalam-
ocortical and corticothalamic fibers and sends its inhibitory projections to
the dorsal thalamus, thus regulating the firing mode of the thalamocortical
neurons. The thalamic reticular nucleus receives inputs also from several
forebrain and midbrain areas known to exert modulatory functions (Mc-
Cormick and Bal, 1994), in particular from basal forebrain cholinergic cells
(Villa et al., 1996) that are involved in many cognitive functions and whose
dysfunction is associated to Alzheimer’s disease. In the auditory system
evidence exists that corticofugal activity regulates the response properties
of thalamic cell assemblies by changing their bandwidth responsiveness to
pure tones (Villa et al., 1991) thus allowing to selectively extract informa-
tion from the incoming sensory signals according to the cortical activity
(Villa et al., 1999a). This model suggests that the thalamocortical circuit
carries embedded features that enable the build-up of combined supervised
and unsupervised information processing akin to produce an adaptive filter
(Tetko and Villa, 1997) aimed to select behaviorally relevant information
processing (von Kriegstein et al., 2008).

The current study is not intended at simulating any detailed thalamocortical
circuit, but rather to assess the contribution of simple variables that could
play a major role in controlling the emergence and maintenance of synchro-
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nized activity in distributed cortical areas that project to the same thalamic
nuclei. Our model predicts that small changes in the cortical neurons firing
rate, due to non-correlated background synaptic activity in the thalamic re-
gion, is capable of generating single or multiple frequency oscillations along
with zero-lag synchronization between distant cortical regions. We quantify
this synchronized state by measuring the signal-to-noise ratio, which does
not monotonically increase with the firing rate. According to our model,
thalamic activity plays a key role in controlling the appearance of lag free
synchronization between cortical areas. In addition, despite its simplifica-
tion, the model provides hints about the conditions necessary to achieve
that synchronization. We report an efficient control set as the ratio of dorsal
over ventral thalamus external input activity to switch on thalamocortical
synchronous dynamics. That switch occurs at a fast time scale, without any
need of synaptic plasticity that would require longer time scales (Fries, 2005).
The type of control that we suggest is not limited to an "On - Off " switch,
but it allows to control the appearance of synchronous activity over an ex-
tended range of frequencies despite the delays involved in the long-range
cortico-cortical interactions (Ringo et al., 1994; Vicente et al., 2009).

5.1

Methods

To study the synchronization of cortical activity facilitated by the thalamic
relay we conducted extensive numerical simulations of a reduced thalamo-
cortical model of spiking integrate–and–fire neurons subject to background
noise and an external driving. The model included both local synapses
and long-range interactions with different delays according to functional
connectivity in a four populations motif (Milo et al., 2002), as illustrated in
Fig. 5.2. The simulations were performed using NEST, the neuronal sim-
ulation tool (Brette et al., 2007) with the PyNEST interface (Eppler et al.,
2009).
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Figure 5.1: (a) A functional scheme of the modular organization
of the typical thalamocortical sensory pathway (somatosensory, vi-
sual, sensory). The signs indicate the nature of the connections, (+)
excitatory and (-) inhibitory. Notice the big arrows labeled CCC cor-
responding to long-range excitatory cortico-cortical connections and
CRR corresponding to the inhibitory connections within the reticular
and perigeniculate nucleus of the thalamus (R). Note the excitatory
input from the ascending sensory pathway to the dorsal thalamus, the
excitatory projection from the thalamus to the cortex with a collateral
to R, and the excitatory projection of the cortex to the thalamus with
a collateral to R. The only output of R is an inhibitory backprojection
to the thalamus. (b) Explicit connections within one thalamocortical

module.
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5.1.1 Neuronal model

The integrate-and-fire neuron model (Brunel, 2000) for each neuron i satisfies
the following dynamical equation for the membrane potential Vi(t):

τmem(m)
dVi(t)

dt
= −Vi(t) + RIi(t) , (5.1)

where τmem(m) is the membrane time constant of neuron i belonging to the
population m (as in Fig. 5.2); Ii(t) is the total current arriving to the soma.
The last term in the above equation is given by the sum of all postsynaptic
potentials (PSP) of neurons belonging to the network plus the total PSP of
all external neurons, the latter being modeled as a Poisson process. Thus,

RIi(t) = τmem(m)
∑

j

J( j)
∑

k

δ(t − tk
j − τ(z,m)) + Vext . (5.2)

The first sum is taken over all presynaptic neurons j, each neuron receives
Ce(m, z) excitatory synapses and Ci(m, z) inhibitory synapses and they de-
pend on the inter-population (long-range) connections z if both neurons
belong to different populations or otherwise on the population m to whom
they belong. tk

j is the time of the k − th spike received by neuron i from its
neighbor j. The axonal conduction delay is given by τ(z,m), which corre-
sponds to a spike of a presynaptic neuron j that reaches neuron i. J( j) stands
for the PSP efficacy and depends on whether its presynaptic neighbor neu-
ron j is excitatory (J( j) = Je) or inhibitory (J( j) = Ji). Vext is the PSP generated
by neurons from outside the thalamocortical network. It is given by an inde-
pendent and homogeneous Poisson process of Next external neurons, each
one firing with a fixed average rate ν(m). The external spike contributes
with a change of the membrane potential by Jext whenever it impinges upon
neuron i. The dynamics of the neurons can be described as following: the
neurons start at a rest potential Vr(m) which can be changed by the synaptic
current. If the potential Vi(t) of the i-th neuron reaches the threshold θ(m)
a spike is generated and its membrane potential is reset to Vr(m) after an
absolute refractory period (τrp = 2 ms).

5.1.2 Thalamocortical model

The topology of the model is characterized by two thalamic and two corti-
cal neural populations (Shepherd, 1998; Huguenard and McCormick, 2007).
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The overall layout of our model is depicted in Fig. 5.2. The thalamus is
composed by two segregated populations, one of excitatory thalamocor-
tical principal cells (T) and another of inhibitory neurons corresponding
to the thalamic reticular and perigeniculate nuclei (R). The two thalamic
populations are also characterized by recurrent intrathalamic connections.
The cortical populations are formed by an excitatory cell type with local,
long range cortical, and feedback corticothalamic projections and by an in-
hibitory type characterized by only local efferent projections. In addition,
the two cortical populations are distributed in two areas (C1 and C2) which
may or may not be interconnected (depending on the value of parameter
CCC). It is a hierarchical network, with an intra-population random structure
and a simple inter-population pattern of connectivity with longer delays.
The populations have both internal and external connectivity. Then, the
topology satisfies the following constrains: both R (CCR) and T (CCT) pop-
ulations receive cortical feedback, the cortical populations are innervated
by T (CTC) but do not receive inhibitory feedback from R. There are also
direct connections from R to T (CRT) and from T to R (CTR). Long-range
cortico-cortical connections are determined by CCC. Assuming that the tha-
lamus is composed by both R and T populations, the thalamocortical model
may also be reduced to a three populations network formed by a central
thalamic region (T and R) and two balanced cortical areas. Each neuron of
a given population receives the same amount of postsynaptic connections.
The presynaptic neurons are chosen randomly; therefore, the postsynaptic
distribution is binomial for each type of neuron (excitatory or inhibitory)
within a given population.

After a brief parameter search and according to the range of values described
in the literature, we have set characteristic parameters for each population
m as presented in Table 5.1. The rational of our choice was to preserve
the main dynamical features, though retaining the simplicity of a reduced
thalamocortical circuit. The values of the threshold, the resting membrane
potential, and the membrane time constants were selected such that the
neurons in R were the most excitable and those in T were the least excitable
because T neurons are meant to receive the external input arising from
the ascending sensory pathways. For the sake of simplicity, the refractory
period and the excitatory/inhibitory postsynaptic efficacies were chosen to
be the same for all neurons.

The connectivity parameter values described in Table 5.2 were set arbi-
trarily in order to maintain their relative proportion for cell types usually
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Figure 5.2: Thalamocortical connectivity. The populations are ran-
domly connected. The two cortical populations (C1 and C2) are bal-
anced with both excitatory (80%) and inhibitory (20%) neurons. The
parameters which define the neuronal model are presented in Ta-
ble 5.1. All populations are sparse with exception of the thalamic
reticular and perigeniculate nuclei region (R). The thalamus can be
considered as both R and the excitatory thalamocortical relay neu-
rons (T) together. The inter-population connectivity is described by
the parameters of Table 5.2. The dashed blue arrow (CRT) stands for
inhibition while black arrows stand for excitatory connections. The
background noise and the external driving consists of independent
Poisson train impinging in each neuron with parameters of Table 5.3.
Neurons in T are externally driven at rate νT meanwhile the other ones
receive background activity at rate ν0. The external input is uncorre-
lated and defines the key parameter: νT

ν0
. A scheme of all the synaptic

inputs innervated in the neurons of each population is presented at
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Table 5.1: Neuronal parameters for the neurons in population m.
*Each neuron receives from random neighbors of the same population.

m C1, C2 R T population
Ne(m) 800 0 200 # of excitatory neurons
Ni(m) 200 40 0 # of inhibitory neurons
τmem(m) 20 25 15 membrane time constant (ms)
θ(m) 20.5 24.65 15 threshold value (mV)
τrp 2 2 2 refractory period (ms)
Vr(m) 10 12.5 7.5 membrane rest potential (mV)
Ce(m) 80 0 5 # of excitatory synapses*
Ci(m) 20 10 0 # of inhibitory synapses*
τ(m) 1.5 2 1 synaptic delay (ms)
Je 0.05 0 0.05 excitatory synaptic efficacy (mV)
Ji -0.2 -0.2 0 inhibitory synaptic efficacy (mV)

described in the literature (Jones, 1985; Sherman, 2005). The number of con-
nections was set to keep 160 afferences to each neuron of C, 75 afferences
to each neuron of T and 150 afferences to each neuron of R. This pattern of
convergence-divergence is meant to preserve the known anatomical thalam-
ocortical and corticothalamic pattern of connectivity (Jones, 1985; Sherman,
2005). The specific proportion of afferences generated by each population
is indicated in the boxes at the bottom of Fig. 5.2. The delays were set to
account for typical axonal delays described in the thalamus and cortex of
mammals (Swadlow, 2000; Knoblauch and Sommer, 2004). Despite the fact
that we have not systematically investigated all ranges of axonal delays, we
observed that the results are robust for different delays. The most relevant
parameter is the delay between the thalamus and the cortical areas (τTC)
which must be kept identical for all ascending projections. If this latency
time is not the same for the different cortical areas, say τTC1 , τTC2 , the
maximum number of coincident spikes in the cross-correlograms would not
occur at zero-lag, but at a lag that depends on the difference between the TC
connections time delays. It is worth mentioning that a constant latency be-
tween thalamus and cortex, irrespective of the distances, has been reported
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due to regional myelination differences that compensate for the conduction
velocities (Salami et al., 2003).

Table 5.2: Synaptic parameters for inter-population (long-range) con-
nections z between any two regions. **Each neuron of the target
population receives input from randomly selected neurons belonging

to the efferent population.

z CR CT TC RT TR CC inter-population connection
Ce(z) 30 20 20 0 80 0-110 # of excitatory synapses**
Ci(z) 0 0 0 25 0 0 # of inhibitory synapses**
τ(z) 8 8 5 2 2 5 synaptic delay (ms)

5.1.3 Background activity and external input

To model the background activity we assume that each neuron in the net-
work is connected with Next excitatory external neurons subject to an in-
dependent random Poisson processes with average rate ν0 for neurons of
all regions. The thalamic region (T) receives the background activity com-
bined with an external input also modeled by independent Poisson process,
such that both the overall external input to T is a process characterized by a
rate νT. The parameters used for the Poisson background and the external
driving are presented in Table 5.3.

Table 5.3: Synaptic efficacy, Poisson external driving and background
activity parameters.

Jext 0.1 external synaptic efficacy (mV)
ν0 10.0 external driving Poisson mean rate to C and R (Hz)
νT 8.0-45.0 overall external driving Poisson mean rate to T (Hz)
Next 450 number of external neighbors
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5.1.4 Cross-correlation analysis

We run extensive simulations and analyze the spike trains over several
trials. In order to quantify the results from the numerical simulations, we
define two values from the cross-correlogram: a) the mean value evaluated
over the time lag representing the noise level that quantifies the expected
number of coincidences by chance; b) the peak of the cortico-cortical cross-
correlogram (typically at zero-lag) that stands for the signal. Those quantities
are used to compute the signal-to-noise ratio (SNR) for different values of
νT and different strengths of cortical interconnectivity (CCC). The cross-
correlograms are measured during 2, 000 ms in a stationary regime after
500 ms of transient dynamics. The result is condensed in a single cross-
correlogram, which quantify the mean number of coincidences (in a 2 ms bin)
of 3, 000 randomly selected neuron pairs belonging to different populations
averaged over 100 trials. This procedure allows us to assess the mean
behavior of the dynamics and eliminate single trial fluctuations.

The noise is determined by the mean over the time lag in the averaged
cross-correlogram. In the stationary regime, the noise can also be calculated
analytically considering the activity of the two populations just as been inde-
pendent: Let F(p) be the mean firing rate of a population p and b the bin size
of the computed cross-correlogram. Therefore the mean cross-correlogram
(noise) of two arbitrary populations i and j is given by 〈XCORi− j〉 = F(i)F( j)b .
For a typical thalamocortical circuit the two cortical areas have either maxi-
mum synchrony at zero-lag or no synchrony (unless CCC is greater than the
number of internal excitatory cortical connections CeC). Thus the signal of
the cortico-cortical dynamics is defined as the number of coincidences in the
cross-correlogram at zero time lag.

5.2

Results

We have simulated the activity of large populations of interacting neurons
with delayed connections. We used a simple integrate and fire (I&F) neu-
ronal model in order to keep the problem more tractable. The model is
such that if the membrane potential reaches the threshold a spike is fired.
The membrane potential is reset after the firing to its resting potential with

114



5.2. RESULTS

an absolute refractory period (2 ms). The spike is transmitted to all tar-
get neurons which receive an excitatory or inhibitory PSP according to the
type of synapse. The spike is transmitted with a delay depending on the
connection type. Large delays are associated with inter-population con-
nections and short delays with local connections within each population.
Obtained from extensive numerical simulations, the results analyze the fir-
ing rate, cross-correlation indicators, oscillation and synchronization infor-
mation calculated from the spike trains of individual neurons and neuron
populations. It is worth mentioning that the neuronal spike times were
reliably reproduced despite the simplicity of the I&F model.

5.2.1 Thalamocortical circuit dynamics

In the most symmetrical case, the T region is set in order to receive external
driving with the same rate as the other populations (νT = ν0). The firing
rate in R is higher than in the cortex which is also higher than in T. For
a typical number of cortico-cortical interaction, say CCC < 40, due to the
network connectivity and the difference in the neuronal parameters, there
is no correlation among the different areas, and the activity is random and
irregular. For νT > ν0 other scenario takes place. The raster plots of 150
neurons randomly chosen among all neuronal populations illustrate the
network dynamics. Such a typical raster plot is depicted in Fig. 5.3a. It
shows the case in which the cortico-cortical connections are set to CCC = 40
and the thalamus is receiving an external input of mean rate νT = 7/3ν0.
The neurons within the populations T and R are synchronized at a high
frequency. The two cortical areas exhibit a large number of coincidences
at zero-lag, meaning that they are synchronized and in-phase. The cross-
correlograms (see Methods section for details) between the cortical areas
and between the T region and one cortical area are shown in Fig. 5.3, b and
c. The plots clearly indicate in-phase correlation among cortical areas while
the thalamus and the cortical area are out of phase (with the cortical area
delayed by 6 ms).

The synchronization of the cortical regions depends on the external input
to T. Fig. 5.4 shows the raster plot of a single trial characterized at t =
50 ms by a sudden increase of the T activity from the mean rate ν0 to 7/3ν0.
Synchronization does not occur in the system for low values of input νT, for
instance νT = ν0, from 0 – 50 ms or after the input is switched off, say for
time t > 250 ms.
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Figure 5.3: Thalamocortical dynamics. Panel (a) shows raster plots
of 150 neurons randomly chosen, 50 neurons from each cortical popu-
lation and 25 neurons from R and T. In the cortical areas, the spikes in
magenta (blue) stand for excitatory (inhibitory) neurons. The spikes
of neurons in R are in green and those of T in red. Neurons in the
cortical populations and in R receive external stimulus of ν0 Hz. The
rate in T is νT = 7

3 ν0. The average cross-correlogram over 100 trials
of 3,000 random neuron pairs of different populations with bin size
2 ms are presented in panels (b) for C1 and C2 areas and (c) for T
and C1. The red horizontal line is the mean cross-correlogram value
(noise) and the C1-C2 peak at zero-lag stands for the signal, see text
for details. The vertical point line is set at zero-lag only to guide the
eye. The maximum of C1-C2 crosscorrelation occur exactly at zero-lag

while the maximum of T-C1 happen at 6 ms.116
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The mean firing rate of T, C, and R neurons, computed over 2, 000 ms,
increases monotonically as a function of the input rate νT (Fig. 5.5a). The
dependency of the cortical oscillation frequency as a function of νT/ν0 is
shown in Fig. 5.5b for directly interconnected (CCC = 40) and disconnected
(CCC = 0) cortical areas. The frequencies are determined from the power
spectrum analysis of the cross correlograms. Only those components whose
power is larger than 20% of the maximum power are considered here. In
the case where the cortical areas were disconnected, they oscillate at a single
frequency close to the thalamic firing rate (see rate in Fig. 5.5a). When
they are connected (CCC = 40) a single frequency dominates the oscillatory
dynamics only if νT < 2ν0. Beyond this threshold at least two frequencies
of oscillation appear. For νT = 7

3ν0 three different frequencies are observed
(as in Fig. 3b). The lowest frequency is related to the firing rate of the
neurons within the cortical areas. The intermediate frequency is related
to the thalamic firing rate like in the disconnected case. The oscillatory
frequency in the cortical areas enhances for increasing input fed into the T
region due to the stronger interaction between the cortex and the thalamus.
The highest frequency component in the interconnected case (CCC = 40) is
observed only for a very small range of input values.

The SNR, as defined in the Methods section from the cross-correlograms, as
a function of νT/ν0 is illustrated in Fig. 5.5c. The firing rate and the signal
increase monotonically with the external rate of the input, but interestingly
the SNR is characterized by a local maximum for uncoupled cortical areas
as well as for coupled cortico-cortical areas with connectivity CCC = 40. The
SNR was quite flat for low values of νT, and then increases until reaching
the local maximum. After decreasing from the local maximum the SNR
increases again monotonically for very large values of the rate νT. To gain
insight whether the synchronization among the cortical areas is induced
by the T-R circuit into this aspect, we simulated the system without the
cortico-thalamic connections (CCR = CCT = 0). The results are shown with
solid dots in Fig. 5.5c. This curve shows that for 2 < ν/ν0 < 3 the SNR is
much smaller than the one obtained with the whole connectivity, indicating
that the synchronization is not driven by the thalamus circuit. Instead, a
true collective behavior emerges from the whole interaction. For ν/ν0 ∼ 3
the curve increases suddenly, thus indicating that the synchronization starts
to be driven by the activity of the thalamus. The SNR as a function of
the strength of the cortico-cortical connection for different values of νT/ν0
is illustrated in Fig. 5.5d. Interestingly, for low values of νT/ν0 the SNR

118



5.2. RESULTS

 1

 1.1

 1.2

 1.3

 1  1.5  2  2.5  3  3.5  4  4.5

S
ig

n
al

/N
o

is
e

νT/ν0

CCC=40

CCC= 0 

CCC= 40, CCT=CCR=0

 1

 1.1

 1.2

 1.3

 1.4

 0  10  20  30  40  50  60  70  80

S
ig

n
al

/N
o

is
e

CCC

νT= ν0

νT= 10/3ν0

νT= 7/3ν0

νT= 4/3ν0

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1  1.5  2  2.5  3  3.5  4  4.5

C
o

rt
ic

al
 O

sc
il

la
ti

o
n

 F
re

q
u

en
cy

 (
H

z)
 

νT/ν0

CCC=40
CCC= 0 

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.5  1  1.5  2  2.5  3  3.5  4  4.5

F
 (

H
z)

 

νT/ν0

T

C

R

CCC=40

a

dc

b

Figure 5.5: Unveiling the dynamics - 100 trials analysis. (a): the
mean firing rate as a function of the external input νT incoming into T
population. (b): the cortical oscillation frequency for increasing νT for
the case of coupled and uncoupled cortical areas. The frequencies are
measured from the Fourier transform of the cross-correlograms. (c):
SNR for two values of the cortico-cortical interaction: when the areas
are coupled (open circles) and when they are uncoupled (triangles).
Solid circles correspond to the SNR obtained when there is no cortical
feedback (CCR = CCT = 0). (d): SNR for an increasing value of the

cortico-cortical interaction strength for different values of νT.
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Figure 5.6: Effect of the cortico-cortical connection. Panel (a): firing
rate of the T, R and C areas as a function of the cortico-cortical inter-
action strength for νT = 7/3ν0. Panel (b) cortical oscillation frequency
vs. CCC for two different values of νT (5/3ν0; 7/3ν0). Panel (c): Cross-
correlogram between C1 and C2 areas for CCC = 60 and νT = 7/3ν0, the
local maximum closest to zero are located at ±12 ms. Panel (d): same
as panel (c) but for νT = 5/3ν0, and the maximum are not exactly at

zero-lag but at ±6 ms.

response is flat but increases for large CCC while it is flat but decreases for
higher values of νT/ν0.

5.2.2 Effect of the cortico-cortical connection

The mean firing rate F of the three neuronal populations as a function of
the strength CCC at an input level νT = 7/3ν0 is illustrated in Fig. 5.6a. This
figure shows that the cortical firing rate is indeed the most affected rate and
increases monotonically with an increase in the cortico-cortical connectivity.
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Figure 5.7: Dynamics of the cortical area as a function of the cortico-
cortical interaction strength. Panel (a): cross-correlogram for νT =
5/3ν0 and ccc = 80; Panel (b): corresponding raster plot of all the
cortical neurons in both cortical areas. Panel (c): cross-correlogram
for νT = 7/3ν0 and ccc = 100; Panel (d): corresponding raster plot.
Panel (e): cross-correlogram for νT = 7/3ν0 and ccc = 110; Panel (f):

corresponding raster plot.

The dominant frequencies of cortical oscillations determined by the power
spectrum analysis are displayed in Fig. 5.6b as a function of cortical con-
nectivity and for two levels of external input to the thalamus. For a value
νT = 5/3ν0 a single frequency appears almost constant and independent of
the CCC strength. On the contrary, at νT = 7/3ν0 three frequency components
appear for CCC > 35. Like in Fig 5.5b the lowest frequency is associated to
the cortical firing rate and the intermediate frequency is associated to the
firing rate of population T. The highest frequency became more important
for higher values of CCC. The presence of multiple oscillatory frequencies
can be clearly observed in the cross-correlogram for CCC = 60 and νT = 7/3ν0
(Fig. 5.6c), whereas a single frequency component dominates the dynamics
for νT = 5/3ν0 (Fig. 5.6d).

The observation of the raster plots and of the cross-correlograms illustrates
further the dynamics emerging from the interaction between the cortical
areas. In Fig. 5.7, a and b it can be observed that for CCC = 60 and νT = 5/3ν0
the slow frequency component related to the cortical firing frequency is
predominant. The peak is not sharp, at ±4 ms from the zero-lag, and a
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master-slave dynamics can be observed in the region of high instantaneous
firing rate (say from 50 – 80 ms after the external input onset). Multiple
frequencies are observed in the raster plot and in the cross-correlogram
(Fig. 5.7, c and d) for CCC = 100 and νT = 7/3ν0. In this case, both the zero-lag
cortical synchronization and the leader-laggard dynamics present a strong
competition. The cortico-cortical connection dominates and gives rise to
an out-of-phase cortical synchronized dynamics between the two areas for
very large connectivity values, e.g. CCC = 110 as shown in Fig. 5.7, e and
f. The signature of this dynamics appears both in a double peak at ±6ms
(corresponding to the cortico-cortical coupling time in the cross correlation
function) and in the raster plot where zero-phase synchronization does not
occur between the cortical areas.

5.3

Discussion

We have presented the dynamics of a simplified thalamocortical circuit.
Our results suggest that the thalamus could be a central subcortical struc-
ture that is able to trigger the emergence of zero-lag synchrony between
distant cortical areas due to a dynamical relaying (Fischer et al., 2006; Vi-
cente et al., 2008b). According to this phenomenon a central element can
enable two populations to synchronize at zero-lag. Other subcortical areas,
such as the brainstem (Scheller et al., 2009) and the hippocampus, are likely
to play a similar role in dynamical relaying. However, the peculiar recurrent
connections of the thalamic reticular nucleus (Jones, 1985; Sherman, 2005)
might provide the thalamocortical circuit with specific features that do not
account just for the synchronized pattern, but also for switching On or Off
the asynchronous state. Furthermore, considering that large scale integra-
tion may occur as a consequence of neuronal coherence, the critical question
about how the dynamical selection of integrated areas is achieved remains
open (Salinas and Sejnowski, 2001; Fries, 2005; Vicente et al., 2008b; Uhlhaas
et al., 2009). We suggest that an increase in the external activity fed into the
T population with respect to that of R yields the cortical areas synchronize
at zero-phase lag as depicted in Fig 5.3. That means the thalamus would
be able to control the cortical synchronous state and regulate large scale
integration. This control can occur at a fast time scale in agreement with
experimental data (Fries, 2005) and without any need of plasticity or adap-
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tation mechanisms which typically require longer time scales (Knoblauch
and Sommer, 2004). The main input sources to T are the ascending sensory
input and the descending cortico-fugal pathway, thus suggesting that both
inputs may play an important role in controlling cortical synchrony. This
hypothesis for the cortico-petal projections is complementary to the hypoth-
esis of adaptive filtering suggested elsewhere for the cortico-fugal projections
(Villa et al., 1991, 1999a; Tetko and Villa, 1997).

According to our model, see Figs. 5.5b, 5.6b, the thalamocortical circuit
is able to generate fast oscillations in the frequency ranges of the beta or
gamma bands triggered by an external input into the thalamus formed by
independent Poisson trains. The question of how to generate such fast oscil-
lations has been largely discussed in the literature (Traub et al., 1996; Doiron
et al., 2003; Doiron et al., 2004; Börgers et al., 2005; Marinazzo et al., 2007;
Börgers et al., 2008) but, as recently pointed out (Nikolić, 2009), empirical
phenomena, like the cycle skipping, were not satisfactorily described. Cy-
cle skipping is observed experimentally in our thalamocortical model when
each cortical neuron spikes according to a gamma frequency modulation but
with a smaller firing rate. In the raster plots of Fig. 5.3a it can be observed
that few neurons spike at a given gamma cycle. Then, the oscillations are
in fact shared by a whole population while single neurons skip cycles. As
shown in Fig. 5.5, a and b the cortical oscillations, for instance at a signal-
to-noise ratio local maximum νT '

7
3 ν0, occur at frequencies near 80 Hz for

disconnected areas and in multiple frequencies for CCC = 40, while the aver-
age firing rate is approximately 1

4 of it, 20 spikes/s. In general, the firing rate
of the cortical populations (see Figs. 5.5a, 5.6a) was found to be related to the
lowest frequency component in the case of multiple frequency oscillations.

The current results emphasize the hypothesis that the thalamus could con-
trol the dynamics of the thalamocortical functional networks enabling two
separated cortical areas to be either synchronized (at zero-lag) or unsyn-
chronized. Remarkably, the cortical feedback contributes substantially to
generate the collective phenomena that give rise to the robust synchrony
control (Fig. 5.5c). Correlations in the output firing rate of two neurons have
been shown to increase with the firing rate (de la Rocha et al., 2007). We
observed that for increasing input rates (νT) the firing rate of all populations
increases monotonically, accordingly to a sigmoidal function (Fig. 5.5a). Un-
der the same conditions, the correlations among the cortical areas were also
enhanced. However, the SNR developed a more complex pattern, namely
a pronounced local maximum appeared as shown in Fig. 5.5c. König and
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collaborators (König et al., 1995) reported physiological evidence of long-
range synchrony with oscillations, whereas short-range synchrony may oc-
cur with or without oscillations. Our results, especially for low number
of cortico-cortical inter-population synapses (say smaller than the internal
connectivity), are in agreement with this finding. However, synchronization
without oscillations in the local circuit may appear due to extensive sharing
of common excitatory inputs which typically generates the zero-lag coinci-
dence observed when neurons fire at high rates (de la Rocha et al., 2007).
Conversely, neurons correlated by long-range connections are likely to share
very few synaptic drivings, such that synchronization without oscillations
should be very rare.

In order to suggest an insight of the model with the anatomical pattern of
the circuit one should consider that the thalamocortical and corticothalamic
projections are reciprocal to a great extent but corticothalamic projections are
characterized by a dual pattern of synapses on the thalamic neurons. Small
endings formed the major corticothalamic terminal field, whereas giant ter-
minals were less numerous and formed additional terminal fields together
with small terminals. (Rouiller and Welker, 2000; Takayanagi and Ojima,
2006). The modal switch of corticothalamic giant synapses controlled by
background activity was recently reported (Groh et al., 2008). We speculate
that this finding and our results may suggest that each pattern of corticotha-
lamic synapse might correspond to a different function. One synaptic type
might be involved in assessing the circuitry necessary for the build-up of
cortico-cortical synchronization. The other synaptic type would be involved
in transmitting stimulus-related information. Which is which is a question
that the current study is unable to answer. We must also consider the fact
that our model of individual dynamics of the integrate-and-fire neurons
does not produce burst discharges (Sherman, 2001; Krahe and Gabbiani,
2004). This is a clear limitation and the inclusion of a more physiologically
realistic model, as well as greater neuronal diversity (Buia and Tiesinga,
2008), are scheduled for our future work. Despite the simplification of our
circuitry and the neuronal network modeling in general, the robustness of
our model is a remarkable outcome of this study. The zero-lag synchroniza-
tion between the cortical areas depends only on the identical axonal delays
τ(TC). If these delays are not the same for all TC connections the maximum
number of coincident spikes in the cross-correlograms does not occur at
zero-lag but at a lag that depends on the difference between the TC time
delays. However, it is worth mentioning that regional myelination, that
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compensates for changes in the conduction velocity, has been reported as a
mechanism that could keep constant latency between thalamus and cortex,
irrespective of the distances. Moreover, our results are in agreement with
the suggestion reported by (Chawla et al., 2001) about the key role of the
thalamus favoring the zero-lag synchronization.

We have arbitrarily kept the external input ν0 over R and the cortex popula-
tions fixed but we might have kept fixed T and the cortex populations with a
variable external input into R (νR). In fact it is the dependency on the variable
νT
νR

which represents the control key of the dynamic activity of the system as
both rates of external inputs (νT, νR) are varying over time (McAlonan et al.,
2008; Yu et al., 2009). The importance of uncorrelated inputs can be viewed
as emphasizing the role of the so-called background activity, which was al-
ready reported to play an important role in controlling the thalamocortical
circuit dynamic state (Wolfart et al., 2005). We are convinced that further
investigations with more accurate details of the neuronal models and with
embedded models of the dual cortico-fugal connectivity could provide crit-
ical clues for better understanding the mechanisms of the dynamical control
subserving the synchronization of cortico-cortical distributed activity.

In conclusion, supported by extensive numerical simulations of the thala-
mocortical circuit, we found that the thalamus can play the role of a central
subcortical area capable of facilitating zero-lag synchrony among distant
cortical regions via dynamical relaying. It can also be responsible for the
dynamic selection of separated cortical areas to synchronize (at zero-lag).
Moreover, the system supports multiple frequency cortical oscillations when
driven by uncorrelated inputs. We hope our results will guide future ex-
periments aiming at the understanding of the thalamocortical circuit and
the large-scale brain communication. Ultimately, the binding by synchrony
theory might be finally tested once the zero-lag synchronization underling
mechanisms are well known.
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Chapter 6

Hippocampal Dynamical Re-
laying: Simulations and Ex-
periment

In vivo and in vitro experiments suggest that zero-lag neuronal synchrony
occurs in the brain even in the presence of large axonal conduction de-
lays (Roelfsema et al., 1997; Rodriguez et al., 1999; Soteropoulus and Baker,
2006). From a theoretical viewpoint, modeling zero-lag synchronization
in long delayed systems has typically been a challenging task. As men-
tioned in previous chapters, different mechanisms have been proposed to
account for this phenomenon (Ermentrout and Kopell, 1998; Kopell et al.,
2000; Knoblauch and Sommer, 2003). More recently, Fischer et al. (2006)
introduced a novel and robust concept of synchronization via dynamical re-
laying. This concept suggests that two distant neuronal populations are able
to synchronize at zero or near zero time lag if a third element acts as a relay
between them. This relay symmetrically redistributes its incoming signals
between the two other regions. Interestingly, this mechanism has proven
to be remarkably robust for a broad range of conduction delays and cell
types (Vicente et al., 2008b). A requirement for achieving synchrony with-
out time lag is that the involved brain generators oscillate endogenously or

This Chapter is based on the paper: Gollo LL, Mirasso CR, Atienza M, Crespo-Garcia M,
Cantero JL (2011) Theta Band Zero-Lag Long-Range Cortical Synchronization via Hippocampal
Dynamical Relaying. PLoS ONE 6(3): e17756.
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by coupling with other areas. In this context, the thalamus (chapter 5) has
been recently proposed as a pivotal region generating isochronal gamma
range synchronization between distant cortical areas by means of the dy-
namical relaying mechanism (Gollo et al., 2010).

Although the main generators of theta oscillations are located in the hip-
pocampus, this oscillatory activity has been observed in many cortical and
subcortical regions (Alonso and García-Austt, 1987; Leung and Borst, 1987;
Mitchell and Ranck, 1980). However, none of them are capable of gen-
erating theta activity on their own (Buzsáki, 2002) despite some models
of recurrent excitation predicted the generation of coherent theta oscilla-
tions in neocortical networks (Budd, 2005). Functional coupling between
hippocampal and neocortical theta waves have recently been observed in
rodents, likely revealing binding of cortico-hippocampal systems modu-
lated by cognitive and behavioral demands (Tejada et al., 2010; Young and
McNaughton, 2009). Long-range cortico-cortical synchrony without time
lags has been previously reported between areas subserving related func-
tions (Roelfsema et al., 1997; Murthy and Fetz, 1992), but the impact of the
hippocampus on cortico-cortical theta oscillatory dynamics has been unex-
plored to date. We hypothesize that if the hippocampus acts as a dynamical
relaying center connected to distant regions of the neocortical mantle, then
the hippocampus might act as a relay station inducing zero-lag synchro-
nization between long-distance cortical regions where theta oscillations do
not appear prominently.

This chapter tests this hypothesis by modeling local field potentials (LFP)
arising from the combined dendritic activity of a large number of neurons
in the hippocampus and two distant cortical areas in mice either during
spontaneous motor exploratory behavior (active) or motor quiescence (pas-
sive). We found that zero-lag synchronization between both cortical regions
was mediated by prominent theta oscillations in the hippocampal forma-
tion in the two behavioral states, although it was enhanced during motor
exploratory state, where the hippocampus has been suggested to play a
critical role in sensorimotor integration (Bland and Oddie, 2001).

128



6.1. RESULTS

6.1

Results

Zero-lag long-range synchronization emerged between the anterior (frontal)
and posterior (occipital) cortical regions when the amplitude of theta oscil-
lations was prominent in the hippocampus. The cortico-cortical zero-lag
correlation was approximately 45% higher in the active (when exploring)
than in the passive state (when quiet), as revealed by our experimental and
modeling results. The theta oscillations recorded in the hippocampus (relay
element) were delayed by 30 ms, which is a strong signature of the dynam-
ical relaying phenomenon (Fischer et al., 2006; Vicente et al., 2008b; Gollo
et al., 2010).

In the following, we show results obtained from numerical simulations
and LFP recorded data. We start by analyzing the neuronal population
dynamics and show how theta frequency emerges in the system. Then,
we simulate synchronization patterns within the neocortical-hippocampal
circuit in passive and active states. Finally, we compare the simulations with
the experimental data.

6.1.1 Modeling theta oscillations generated in the hippocam-
pus

We modeled the hippocampus and the frontal and occipital cortices. Each
area contains 500 sparse and randomly connected neurons described by the
Izhikevich model (Izhikevich, 2003). This model uses two variables: the
membrane potential v and a recovery variable u, associated with slow ion
channels. We assume that, within each area, 80% of the neurons project ex-
citatory synapses (AMPA) and 20% inhibitory synapses (GABA). Synapses
are mathematically described in equation (4) (see Materials and Methods
section). Each neuron in the hippocampus (cortical areas) is assumed to
receive 35 (50) synaptic inputs from randomly chosen neurons of the same
area with negligible conduction delay. The connectivity between areas is
considered even sparser. Neurons of a given area are innervated by three
excitatory synapses with long conduction delays (8-20 ms) from each of the
other areas. The ultimate goal of the model is to compare the neuronal
activity of the three areas during the active moving and passive quiescent
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motor behavioral states. The active state is modeled by assuming a 6%
larger external driving over the hippocampus with respect to the cortical
areas. This is obtained by increasing the Poisson rate of the external driving.

The capacity of the rodent hippocampus to generate theta oscillatory ac-
tivity is well documented (Buzsáki, 2002; Buzsáki et al., 2003; Leung, 1998;
Goutagny et al., 2009). Our model assumes that the hippocampus is mainly
composed of neurons operating in a burst regime whose activity is mod-
ulated by slow theta oscillations (frequency range from 6.5-7.5 Hz) and
an interspike frequency of 35-45 Hz. We consider that most neurons in
the cortical areas fire in the regular spiking regime. Diversity within each
population is added to the internal neuronal parameters of the model (see
Materials and Methods section). The spiking activities of the different re-
gions are illustrated in Fig. 6.1. Time traces of ten randomly chosen neurons,
eight excitatory (black) and two inhibitory (gray), are plotted in Figs. 6.1 A
to F, corresponding to the hippocampus (A & D) and the visual (B & E)
and frontal (C & F) cortical regions, respectively. In panels A to C, neu-
rons are completely disconnected from each other, at both global and local
levels. The lack of correlation between neuronal activities was due to the
assumed random initial conditions. When neurons are coupled within each
population, keeping the inter-population coupling strength equals to zero,
hippocampal neurons start to synchronize, as displayed in panel G. This
synchronization pattern gives rise to a theta oscillation reflected in the time
evolution of the average membrane potential shown in panel G. On the
contrary, cortical neurons do not fire synchronously, as illustrated in panels
E and F, resulting in an almost flat time trace of the average membrane
potential (panel G). This behavior is also evident in the raster plots shown
in panel H. To determine the level of synchronization, we computed the
auto-correlation function as the number of spike coincidences of neurons
belonging to the same population (bins of 2 ms), subtracted from the num-
ber of coincidences expected by chance, as shown in Fig. 6.1 I. A coherent
behavior was observed in the hippocampus, but not in the cortical areas.

6.1.2 Dynamical relaying in the theta range

Results from our model predict the emergence of zero-lag synchronization
between frontal and occipital cortices, but not between the cortical regions
and the hippocampus when the long-range connection is switched on (this
will be discussed later). The proposed reduced model, as will be shown
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Figure 6.1: Dynamical characterization of the hippocampus and cor-
tical regions during the generation of theta oscillations. Panels A, B
and C show the voltage v time traces of 10 randomly chosen neurons
(8 excitatory in black and 2 inhibitory in grey) of each population in
the absence of local and long-range connections. Panels D, E and F
show the same time traces of neurons locally connected within each
population. Panel G shows the ensemble average voltage v of each
area: Frontal cortex (F), Visual cortex (V) and the Hippocampus (H).
Panel H shows raster plots. Panel I shows an average number of coin-
cident spikes of neuron pairs of the same population, obtained from
the auto-correlation function and subtracted from the mean number
of coincidences over the delay window. The upper figure in panel I
displays cortical groups while the bottom figure stands for the hip-
pocampus. External driving to each neuron is given by 100 indepen-
dent excitatory neurons spiking according to a Poisson distribution

with average rate r = 16.3 Hz.
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below, captures the main features observed experimentally. A large-scale
integration is maintained by interconnecting the cortical populations and
the hippocampus via long-range fibers, with large conducting delays. Our
simple motif depicted in Fig. 6.2 A, is sufficient to reproduce the two be-
havioral states. In the model, the difference between the two states is on the
Poisson rate of the external driving. Both states present zero-lag synchro-
nization between cortical areas as revealed by the mean-voltage time traces
represented in Figs. 6.2 B and C, as well as in the raster plots (Figs. 6.2 D
and E). In the network, cortical activity becomes locally synchronized due
to theta oscillations generated in the hippocampus, when both the internal
and long-range connections between the different areas are active. Raster
plots also reveal the presence of two different groups of neuronal activity in
each area: one of excitatory neurons (black) and the other of inhibitory ones
(gray). Unlike neural assemblies in the two cortical areas that synchronize at
zero-lag, neural activity in the hippocampus was phase locked, but shifted
with the activity in cortical neurons.

6.1.3 Large-scale motifs

Our choice of motif is not arbitrary. From a physiological point of view, re-
current connections among the three involved areas are expected. From the
modeling point of view other options could be considered. One possibility is
to couple bidirectionally only the two cortical areas, as suggested in ref. (Er-
mentrout and Kopell, 1998). However, in this scenario the out-of-phase
solution is the one that appears more often (Vicente et al., 2008b). Moreover,
for our parameter values, the two areas do not synchronize (Fig. 6.3 A-C).
It is worth stressing that theta oscillations are not observed in either these
cortical areas. We have also tested a motif with unidirectional coupling be-
tween the hippocampus and the cortices, keeping the two cortical regions
bidirectionally connected. As shown in Fig. 6.3 D-F, this motif does not
yield zero-lag synchronization among cortical areas when using the same
parameter values. The motif that yields the most robust results is the one
chosen in the present study, as depicted in Fig. 6.3 G-I.
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Figure 6.2: Modeling neuronal dynamics underlying passive and ac-
tive behavioral states. Panel A represents the simple motif connecting
the brain regions F, V and H. Each neuron is driven by an independent
Poisson process of rate r = 16.3 Hz (r = 15.4 Hz) for the active (passive)
state. In panels B and C, the ensemble average voltage for the passive
and active states are plot respectively. Panels D and E include the

corresponding raster plots.
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Figure 6.3: Zero-lag cortico-cortical synchronization for different mo-
tifs. Simulation results for the ensemble average voltage of the cortical
regions are shown for two external drives corresponding to the active
(r = 16.3 Hz) and passive (r = 15.4 Hz) states. Regardless of the behav-
ioral state, we found that the two cortical areas (frontal and visual)
do not synchronize at zero-lag when mutually connected without the
hippocampal relay (panels A-C). Neither we observed zero-lag syn-
chronization when only the hippocampus drives them (panels D-F).
The cortical feedback to the hippocampus (as depicted in panel G)
is critical to promote zero-lag cortico-cortical synchronization, as de-

picted in panels H and I.
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6.1.4 Zero-lag synchrony is enhanced during motor exploratory
behavior

The reduced model proposed here is justified due to the remarkable equiva-
lence with the experimental data in neocortical-hippocampal neuronal sys-
tems during both behavioral states. Although our simulations might only
reveal a keen difference for the two states, we demonstrate that noticeable
differences are present. With both simulated and experimental data, we
proceeded as follows. First, the LFP time traces (for the experimental data)
and the ensemble average membrane potential (in the simulations) were
filtered around the dominant frequency of theta oscillations recorded in the
hippocampus (6.5-7.5 Hz). Next the cross-correlogram of the resulting sig-
nals of two different areas was performed within a 300-ms window with
delays varying from -300 to 300 ms. The time series were shifted by 50 ms to
account for the experimental data variability; the procedure was repeated
to cover the 60 s time series. The delay corresponding to the maximum
of each cross-correlogram window reflects the best suitable coupling delay
between the two areas. This delay was used to compute a normalized peak
density of the sliding window cross-correlogram. The result represents the
probability of finding the best coupling between different areas occurring at
a given time delay.

Following this procedure, we compared the simulated and experimental
data for the two behavioral states. A wider and less precise phase locking in
the passive condition was observed in both cases. Results in the active state
appeared to be more coherent, with higher values in the cross-correlograms
(Fig. 6.4). In particular, the two cortical areas were mostly synchronized at
zero-lag whereas the hippocampus was typically delayed by 15-30 ms in the
active state, and by 15-45 ms in the passive state. The maximum correla-
tion with zero-lag occurred with a probability 45% larger in the active state
than in the passive state, the latter showing a larger variability in its activ-
ity pattern (Churchland et al., 2010). Synchronization levels between the
hippocampus and the cortical areas were also more consistent during active
exploration when compared to motor quiescence. Simulations were in re-
markably good agreement with our experimental LFP recordings. However,
cross-correlograms between the hippocampus and the cortical areas peaked
at the same delay value in the model due to the symmetry assumed in the
conduction delays between these areas. We obtained even closer results
to the experimental ones in the simulations when considering asymmetric
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conduction delays (of the order of few ms) between the hippocampus and
the cortical areas (Fig. 6.5).

6.2

Discussion

Although a large body of studies has evaluated the hippocampal-neocortical
circuitry underlying theta oscillations (Young and McNaughton, 2009; Sia-
pas et al., 2005; Jones and Wilson, 2005a,b; Hyman et al., 2005; Cantero
et al., 2003; Paz et al., 2008; Doyère et al., 1993; Hasselmo, 2005; Koene
et al., 2003; McIntosh, 1999; Ranganath and d’Esposito, 2005; Vertes, 2006;
Wall and Messier, 2001; Wang et al., 2010a; Hyman et al., 2010), the mech-
anisms responsible for inducing coherent activity in these regions remain
elusive to date (Hyman et al., 2010). The present study gives a step further
by suggesting that these interactions may facilitate communication between
distant cortical regions. By borrowing concepts from the dynamical relaying
framework, we have studied the impact of hippocampal theta oscillations
on cortico-cortical functional coupling in mice during motor quiescent, and
while actively exploring the environment. Modeling results showed that
zero-lag synchronization between distant cortical regions increased simul-
taneously with hippocampal theta oscillations in both behavioral states,
although cortico-cortical coherence was mainly enhanced during motor ex-
ploratory behavior. LFPs recorded from the same brain regions and during
the same behavioral states qualitatively confirmed these results. Overall,
these findings suggest that the observed zero-lag cortico-cortical synchro-
nization is likely modulated by the hippocampus in lower mammals as a
function of cognitive demands and motor acts.

6.2.1 The role of hippocampal theta oscillations in long-
range synchronization

The numerical results obtained from the simple model suggest that theta os-
cillations are critical for a long-range integration between the hippocampus
and the cortical areas, especially when the animal is exploring the environ-
ment. We speculate, based on the dynamical relaying mechanism, that theta
oscillations should participate if the hippocampus acts as the relay station
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Figure 6.4: Spatio-temporal synchronization obtained from the ex-
perimental and numerical data. We plot here the density of spikes in
the sliding window of filtered time series cross-correlation (see Ma-
terials and Methods section). The window has 300 ms length and
is shifted by 50 ms steps and analyzed over the 60-s of continuous
artifact-free LFP recordings for each behavioral state and animal (n
= 4), separately. Results are normalized in a frame of -110 to 110
ms. Experimental data correspond, in this example, to an individual
mouse, although other mice presented qualitatively similar results.
Simulations show high agreement with experimental results for both

active and passive behavioral states.
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Figure 6.5: Effects of an asymmetric delay time in the inter-population
couplings. If the delay time between the hippocampus and the vi-
sual area (T in the figure) is slightly different from that between the
hippocampus and the frontal area (20 ms), the maxima of the cross-
correlations between the hippocampus and the cortical areas become

different, as shown in the experiments (Fig. 6.4, upper panels).
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that putatively facilitates zero-lag synchrony between distant cortical areas.
Interestingly, our results suggest the possible coexistence of dynamical re-
laying in different frequency bands, for example in a gamma range (Vicente
et al., 2008b), which could be mediated by the thalamus (Gollo et al., 2010)
or other cortical areas (Chawla et al., 2001). A better understanding of the
synchronization in distinct frequency bands is however necessary.

6.2.2 Dynamical relaying and phase relation

A typical fingerprint of the dynamical relaying mechanism in neuronal sys-
tems connected via significant delays is the zero-lag synchrony coexisting
with the out of phase synchrony between the relay element and the other
two areas (Fischer et al., 2006; Vicente et al., 2008b; Gollo et al., 2010). The
novelty of our study with respect to others lies in the inclusion of the occipital
cortex in addition to the frontal cortex and the hippocampus. The occipital
cortex represents the major source of visual inputs to the hippocampus, and
is a key cerebral structure for the formation of spatial memories. Evidence
shows that theta-burst stimulation of the thalamocortical pathways leads
to a long-term enhancement of granule cell excitability in the hippocam-
pus, preceded by a concurrent potentiation of the visual cortex response.
The theta power in the dentate gyrus increases after tetanization-driven
high-frequency rhythms in V1. This sequence of events has been suggested
to facilitate synaptic plasticity in the hippocampus of the freely behaving
rat (Tsanov and Manahan-Vaughan, 2009). Theta oscillations recorded over
posterior neocortical regions during wakefulness have been further postu-
lated as reliable markers of the homeostatic process of sleep regulation in the
rat, suggesting that theta waves might have independent cortical generators
over the parieto-occipital regions (Vyazovskiy and Tobler, 2005).

It is broadly accepted that hippocampal theta oscillations play a crucial role
in sensorimotor integration (Bland and Oddie, 2001) and memory forma-
tion (Crespo-Garcia et al., 2010; Yamaguchi et al., 2004). For this endeavor, a
precise spiking time is needed. In the context of theta rhythms, the oscilla-
tory phase coupling has recently been proposed to enhance the efficiency of
spike-time dependent plasticity (Masquelier et al., 2009). The coordination
of neuronal assemblies over distant regions could be critically dependent on
the increased oscillatory phase coupling (Canolty et al., 2010), playing a role
in the cortico-hippocampal circuit for memory formation. For both sensori-
motor integration and memory formation, the hippocampus requires inputs
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from other regions typically involved in the automatic and voluntary control
of attention. Accordingly, memory recollection has been supported by a dis-
tributed synchronous theta network including the prefrontal, mediotempo-
ral and visual areas (Guderian and Duzel, 2005). Based on our findings, we
speculate that an enhancement of long-range cortico-cortical synchroniza-
tion patterns mediated by the hippocampus might facilitate the integration
of these top-down and bottom-up control mechanisms of attention.

6.2.3 Local field potentials recorded from hippocampus and
neocortex: the role of volume conduction

Zero-lag synchronization between cortical regions simultaneously with hip-
pocampal theta oscillations could be due to hippocampal-volume conducted
theta. Although concerns about volume conduction are significant in our
study, converging evidence also points against this possibility. For instance,
Katzner and colleagues (Katzner et al., 2009) found that the major part of the
LFP recorded signal (>95%) spreads within 250 µm from the recording elec-
trode, suggesting that the origin of LFPs is more local than often recognized.
Moreover, as recently reviewed by Pesaran (2010), simultaneous LFP record-
ings have been extensively used to evaluate the relationship between distant
areas including, for instance, the prefrontal and visual cortices (Gregoriou
et al., 2009), the prefrontal and parietal cortices (Buschman and Miller, 2007)
or the hippocampus and the prefrontal cortex (Siapas et al., 2005).

Theta waves recorded in the frontal cortex could be volume-conducted from
the olfactory bulb rather than intrinsically generated in the frontal region.
Although this hypothesis is conceivable, previous studies have provided
strong evidence of theta synchronization patterns between the frontal cortex
and the hippocampus (Siapas et al., 2005). Due to the course-grained nature
of our experimental data, we do not have access to the individual neuronal
spikes. However, after a filtering procedure, the data indicate that the
hippocampus is delayed with respect to the cortical areas.

6.2.4 Final remarks

We have studied the occurrence of zero-lag synchronization between dis-
tant cortical regions. Using a simple model where two cortical areas are
both directly connected and indirectly through the hippocampal relay, we
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find that the activities in these regions become synchronized in the theta
range in freely behaving mice. Our results suggest that the hippocampus
might act as a dynamical-relaying element that mediates zero-lag synchro-
nization between the cortico-cortical regions, during active and passive be-
havioral states. Simulated and experimental data showed that this zero-lag
synchronization between two distant remote cortical regions occurs simul-
taneously with prominent theta oscillations in the hippocampus in both
behavioral states, but it is significantly enhanced during exploratory motor
behavior. These findings could provide an alternative explanation to the
observed zero-lag relationship between distant cortical regions mediated
by hippocampal theta oscillations.

6.3

Materials and Methods

6.3.1 Modeling theta synchronization in large-scale sys-
tems

We aimed at modeling theta synchronization patterns of the hippocampus,
and the frontal and visual cortices supporting the emergent coherent be-
havior associated to spontaneous exploratory motor behavior and motor
quiescence, separately. To this end, we considered three neuronal popu-
lations composed of 500 randomly connected neurons, 80% excitatory and
20% inhibitory, with excitatory innervating monosynaptic pathways linking
any two of the three regions. We modeled excitatory and inhibitory neurons
of the two cortical areas with the following set of equations (Izhikevich,
2003, 2007):

dv
dt

= 0.04v2 + 5v + 140 − u + Isyn ,

du
dt

= a(bv − u) , (6.1)

where v is the neuron’s membrane potential, u is the recovery variable that
accounts for the K+ and Na+ ionic currents and Isyn the total synaptic cur-
rent. When the membrane potential reached the 30 mV value, v is reset to c
and u to u+d. For excitatory neurons, we take the parameters (a,b) = (0.02,
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0.2) and (c,d) = (-65,8)+(15,-6) σ2, where σ is a uniformly distributed random
variable within the interval (0,1). According to this distribution, cortical ex-
citatory neurons operate in the regular spiking, in the intrinsically bursting,
or in the chattering modes (Izhikevich et al., 2004). For inhibitory neurons,
we assume the parameters (a,b) = (0.02, 0.25)+(0.08,-0.05) σ and (c,d) = (-
65,2). These parameter values correspond to fast spiking and low-threshold
spiking firing modes. With similar computational costs, excitatory neurons
of the hippocampus are described with a slightly modified set of equations,
specifically calibrated to reproduce the hippocampal CA1 pyramidal neu-
rons dynamics (Izhikevich, 2007):

dv
dt

= 0.01v2 + 105v + 27 − 0.02u + Isyn ,

du
dt

= 0.02[0.5(v + 60) − u)] . (6.2)

In this case, when v reached the value 40 mV, v and u are reset as de-
scribed previously, the parameters are (c,d) = (-50,50)+(15,10)σ. This choice
favors the bursting mode rather than the regular spiking regime (Izhikevich
et al., 2004; Su et al., 2001). Inhibitory neurons of the hippocampus are also
modeled with the set of equations (1), using identical parameters as for in-
hibitory neurons of the cortical regions. Nevertheless, we have checked that
different distributions of parameters yielded similar results. Each neuron
receives the same number of synapses from randomly selected neighbors
of the same population (50 for the cortical populations which means a 10%
connectivity, and 35 for the hippocampus, i.e., with a 7% of connectivity),
and three long-range excitatory synapses from excitatory neurons randomly
selected from the other populations. The local connectivity is composed of
both excitatory and inhibitory synapses depending on the neuron type. Ex-
citatory neurons project excitatory synapses and inhibitory neurons project
inhibitory synapses. Each region corresponds to a coursed grained brain re-
gion, which is recurrently connected. Such connectivity (depicted in Fig. 6.2
A) composes a bidirectional triangular motif of the three regions of inter-
est. The simple motif connection is satisfied only on the large scale. At the
neuronal level, the connectivity is different.

The synaptic current is given by:

Isyn = −vgAMPA(t) − (65 + v)gGABA(t) , (6.3)
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and the synaptic dynamics are described by:

τAMPA
dgAMPA

dt
= −gAMPA + 0.5

∑
k

δ(t − tk − τk) ,

τGABA
dgGABA

dt
= −gGABA + 0.5

∑
l

δ(t − tl) . (6.4)

where δ stands for the Dirac delta function. The summation over k (l) stands
for excitatory (inhibitory) neighbor contributions. tk(tl) is the time at which
excitatory (inhibitory) firings occur in the presynaptic neurons. Conduction
delays τk, associated to excitatory long-range connections, are assumed to
be 8 ms for cortico-cortical connections and 20 ms for the connections be-
tween the cortical regions and the hippocampus. Synapses are modeled by
exponential decay functions (Dayan and Abbott, 2001) with time constants
τAMPA = 5.26 ms for excitatory and τGABA = 5.6 ms for inhibitory synapses
(other decay times produced qualitatively similar results). Each population
is subject to an external driving given by independent Poisson spike trains,
resulting from 100 excitatory neurons, at rate r = 15.4 Hz on each neuron
in the passive state, and 16.3 Hz in the active state. The equations were
integrated using a fixed-step first-order Euler method with time steps of
0.05 ms.

When modeling neuronal dynamics, it is always desirable to use simple, but
biologically realistic, models. The non-linear equations used in this study
are rather simple but allow at the same time for some flexibility. They were
derived and adjusted to fit certain behaviors: regular spiking, intrinsically
bursting, chattering modes, fast spiking or low-threshold spiking. The pop-
ulation of spiking neurons approach gives rise to a robust dynamic and the
possibility to compare with experiments at different spatial scales. It has
been shown to be suitable for studying general dynamical patterns (Zhou
et al., 2006; Izhikevich and Edelman, 2008) and zero-lag synchronization (Vi-
cente et al., 2008b; Gollo et al., 2010). Utilizing the same neuronal model
with a different set of parameters, arbitrary but specifically calibrated to
reproduce the diverse dynamics of existing neurons, the isolated hippocam-
pus generates theta rhythms as experimentally observed (Goutagny et al.,
2009). In contrast, isolated cortical areas do not develop prominent theta
oscillations, however, the emergence of these oscillations witnessed by the
presence of the hippocampal relay. Parameters responsible for population
and inter-population couplings were chosen to reproduce the dynamical
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regimes observed in the experiments. This set of parameters is not consid-
ered unique. Canonical models are also expected to be useful to study the
dynamical relaying mechanisms with the advantage of being more compre-
hensible although less biologically plausible.

6.3.2 Modeling theta synchronization in different behavioral
states

In our model, differences between active and passive states are attributed to
the rate of the uncorrelated external drives. We assume that when the animal
is performing the exploratory task, not only the regions of interest are ac-
tive but also many other regions contribute. On the contrary, during motor
quiescence, we assume that a smaller number of regions are involved, and
consequently the total external driving is considerably weaker. The possi-
bility that an increased background activity accounts for a model transition
is sustained by the increased scale-free activity found in the cortex during
cognition (Miller et al., 2009), and is also consistent with the proposal that
the external driving over the thalamus is a key element to control the en-
gaging and disengaging of a zero-lag cortical synchronization (Gollo et al.,
2010). The dynamical relaying mechanism is remarkably robust to repro-
duce the observed patterns, although similar results could also be obtained
in other ways. We have checked, for instance, that using a correlated exter-
nal driving or by changing the coupling strength among neurons (either for
intra-population connectivity, for inter-population synapses, or for both of
them) yielded qualitatively similar results (data not shown).

6.3.3 Synchronization measurements from correlation func-
tion

Our results described theta synchronization patterns between the cortical
areas and the hippocampus during different behavioral states in the alert
animal. We used correlation analyses to determine the level of synchrony
of the hippocampus-neocortical and cortico-cortical networks, separately.
Data were analyzed from the time series using both ensemble average volt-
age and spike time coincidences. The mean voltage of the time series is
filtered in the dominant frequencies of the spectrum corresponding to the
theta band (from 6.5 to 7.5 Hz), and the cross-correlation function is com-
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puted via a sliding window of 300 ms width, displaced 50 ms from each
other over the 60-s of continuous artifact-free LFP recordings for each be-
havioral state and mouse, separately. The cross-correlation between two
areas A1-A2 as a function of the delay d is defined as:

RA1A2(d) =
〈[a1(t) − 〈a1〉][a2(t − d) − 〈a2〉]〉√

[〈a1(t)2〉 − 〈a1〉
2][〈a2(t − d)2〉 − 〈a2〉

2]
, (6.5)

where a1 and a2 correspond to the LFP time series (ensemble average mem-
brane potential over a population) in the experiments (simulations), and
the brackets 〈·〉 stand for the time average computed for each window. The
delays corresponding to the maximum peak of the cross-correlation in each
window are displayed in a normalized histogram window with times rang-
ing from -110 to 110 ms. Furthermore, in the simulations, the number of
spike coincidences is measured from the activity of neurons belonging to
the same population (auto-correlation) within a 2 s time interval. The cross-
correlation function is calculated in bins of 2 ms for a sample of 50,000 pairs
of randomly chosen neurons.

6.3.4 Experimental protocol

All the experiments were carried out according to EU (2003/65/CE) and
Spanish (BOE 252/34367-91, 2005) guidelines for the care and use of labo-
ratory animals for chronic experiments. The experimental protocols were
previously approved by the Ethics Committee of the University Pablo de
Olavide (permit number 07/2). Mice (n = 4, 5 months old) were implanted
with electrodes in the CA1 subfield of the hippocampal formation, and in
two distant neocortical regions (frontal and occipital cortex) under stereo-
taxic guidance. The reference electrode was located above the cerebellum
(1 mm posterior to lambda on midline). Following experiments, mice were
deeply anesthetized with a lethal dose of Nembutal. To verify the electrode
placement, sections were mounted on gelatin-coated slides, stained with the
Nissl method, dehydrated, and studied with light microscopy.

LFPs were recorded in the animal’s home cage with a sampling rate of 200
Hz. 60-s of continuous artifact-free LFP recordings, selected both during ex-
ploratory motor behavior (active state) and motor quiescence (passive state)
in each animal. The running speed was similar in both groups of mice. The
averaged spectral power was estimated by applying the Welch’s modified
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periodogram method (4-s segments, 1 Hz resolution, 50% overlapping, and
Hanning windowing) to selected LFP recordings in each LFP derivation.
The theta (5-11 Hz) peak frequency was identified as the maximum spectral
power value for each cerebral site and animal, separately, by using custom
scripts written for Matlab v. 7.4 (The MathWorks Inc., Natick, MA).
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Chapter 7

Resonance-Induced Synchro-
nization

The study of large-scale brain dynamics, and the cortical networks on which
they unfold, is a very active research area, providing new insights into the
mechanisms of functional integration and complementing the traditional fo-
cus on functional specialization in the brain (Friston, 2011). Whilst progress
towards understanding the underlying network structure has been impres-
sive (Bullmore and Sporns, 2009; Sporns, 2010), the emergent network dy-
namics and the constraints exerted on these dynamics by the network struc-
ture remain poorly understood. The problem is certainly not straightfor-
ward, as the dynamics between just a pair of neural regions already depends
critically on the nature of the local dynamics and the connections between
them: Although non-trivial, a complete description of nonlinear dynamics
between a pair of nodes is nonetheless typically possible. However, ag-
gregating such duplets into larger arrays and introducing noise and time
delays leads to further challenges and prohibits an exact description of the
precise functional repertoire, motivating recourse to the broader objective
of finding unifying and simplifying principles. Structural and functional
motifs - small subnetworks of larger complex systems - represent such a
principle (Milo et al., 2002). They characterize an intermediate scale of or-
ganization between individual nodes and large-scale networks, that may
play a crucial role as elementary building blocks of many biological sys-
tems. Motif distribution in cortical networks has also been shown to be
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highly non-random, with a small set of motifs that appear to be significantly
enriched in brain networks (Sporns and Kotter, 2004). These motifs play
distinct roles in supporting various computational processes. In this report
we examine the types of neuronal dynamics that emerge on small motifs
and consider their putative role in neuronal function.

The mechanisms supporting zero-lag synchrony between spatially remote
cortical regions can be considered paradigmatic of those mediating between
structure and function. Since first reported in cat visual cortex (Roelfsema
et al., 1997), zero-lag synchrony has been widely documented in empirical
data and ascribed a range of crucial neuronal functions, from perceptual
integration to the execution of coordinated motor behaviors (Singer, 1999;
Varela et al., 2001; Uhlhaas et al., 2009). In particular, zero-lag synchrony
between populations of neurons (through synchrony between the local field
potentials) may play a crucial role in aligning packets of spikes into criti-
cal windows to maximize the reliability of information transmission at the
neuronal level, and to bring mis-aligned spikes into the time window of
spike-time-dependent plasticity. The situation is particularly pertinent in
sensory systems, where very slight differences in input timing, between left
and right cortex for example, may carry crucial information concerning the
spatial location of the perceptual source. However, a significant problem
arises because two oscillators interacting through a time-delayed connection
do not, in general, exhibit zero-lag synchrony. In particular, the presence of
a reciprocal delay introduces a frustration into the system such that zero-lag
synchrony is unstable and anti-phase synchrony is instead the preferred
dynamic relationship. More formally, anti-phase synchrony has a lower
minimum in the variational energy landscape than zero-lag synchrony in
oscillator pairs coupled through a time-delayed connection. When the cou-
pling is unidirectional, zero-lag synchrony is not a dynamical solution at
all.

Complex dynamics in spatially extended systems arise in a broad variety
of other physical and biological contexts. Because of their extraordinary
internal speed, even the small time delays due to the finite speed of light
are non-negligible in arrays of coupled lasers. Unlike the brain, laser ar-
rays allow almost complete experimental manipulation, hence permitting
mechanistic - and not just observational - inferences to be drawn. Detailed
analysis of delay-coupled laser systems has suggested that an intermedi-
ate and reciprocally coupled relay node in a motif of three nodes could
represent a general mechanism for promoting zero-lag synchrony in delay-
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coupled systems (Fischer et al., 2006). In previous chapters, we showed
that such motif arrangements also represent a candidate mechanism for
zero-lag synchrony in delay-coupled neuronal systems (Fischer et al., 2006;
Vicente et al., 2007, 2008b, 2009; Gollo et al., 2010, 2011). This is encouraging
because there exist several candidate neuronal circuits in the mammalian
brain which are characterized by reciprocal coupling between an intermedi-
ate delay node, including corticothalamic loops (Vicente et al., 2008b, 2009;
Gollo et al., 2010) and the hippocampal-cortical circuit (Gollo et al., 2011).
There also exist strong reciprocal connections in the visual system, such as
the heavily myelinated connections between primary visual cortex and the
frontal eye fields. Indeed, the corresponding motif occurs disproportionally
in mammalian cortex, hence being embedded in many cortical subsystems.

Here we undertake a systematic study of the patterns of neuronal synchrony
that arise on delay-coupled structural motifs. We find that common driving
- a coupling arrangement that is widely invoked in the literature - is in fact
an inefficient means of inducing zero-lag synchrony at the weak-coupling
regime. However, when present in a larger structural motif the existence
of a single resonant pair, a reciprocal coupling arrangement - which causes
anti-phase synchrony - is found to be a novel and efficient way of promoting
zero-lag synchrony amongst other members of the subnetwork. This effect,
which we term resonance-induced synchrony consistently arises in compu-
tational models at the neuronal, population and mesoscopic spatial scales
and is robust to mismatches in system parameters, to stochastic input, for a
surprisingly large range of coupling strength, and even to meaningful time
delays. Remarkably, we show that the resonance effects of an anti-phase
synchronized pair are not necessarily localized, but may instead propagate
throughout the network. Hence, based on our results in neuronal systems,
we propose the resonance-induced synchrony as a generalized and unifying
mechanism of facilitating zero-lag synchrony.

7.1

Common driving versus other motifs

In thought experiments, common driving was consider as a trivial means to
entail neuronal synchronization, say, for example, by shared input through
bifurcating axons (Singer, 1999). Certainly, point-process input of sufficient

149



CHAPTER 7. RESONANCE-INDUCED SYNCHRONIZATION

intensity can generate virtually perfect synchronization. Apart from such
extreme conditions, however, the intuitive transparency fades. Far from be-
ing as trivial as presumably assumed, the common drive scenario spurred
numerous recent studies (de la Rocha et al., 2007; Shea-Brown et al., 2008;
Renart et al., 2010; Barreiro et al., 2010; Tchumatchenko et al., 2010). Here,
in turn, instead of focusing on the statistical properties of the input signal
to synchronize the commonly driven elements, we followed a network ap-
proach to address: How the connectivity between the elements affects the
efficacy to synchronize the commonly driven elements.

M3

1 3

2

M8 M13M9M6

2

1 3

4

M3+1

*

* * *

Figure 7.1: Different types of common-driving motifs. Bidirectional
connections in the presence of delay generate potential resonant pairs,
a pair nodes synchronized in anti-phase. The red stars indicate active
resonant pairs that play a role of a resonance source to promote zero-

lag synchronization between nodes 1 and 3.

As an artifice to isolate the particular behavior of interest, we explored sev-
eral reduced common-driving motifs that are found abundantly in large-
scale networks, including the brain. Figure 7.1 depicts the motifs comprised
of three nodes, whose notation (M3, M6, M8, M9, M13) was adopted analo-
gously to (Sporns and Kotter, 2004), and an additional motif of four nodes
(M3+1), which, as we shall show, was proven specially suitable to illustrate
the resonance-induced synchronization. For the sake of clarity, we assumed
homogeneous delays in the motifs, i.e., all connections had the same delay.
Moreover, for these motifs, we considered node 2 as the driver node, and
nodes 1 and 3 as the driven nodes. The genuine common-driving motif
was designated M3, whereas the other motifs represented minute struc-
tural variations of the M3. In particular, M9 is the prototypal motif of the
dynamical-relaying motif (Fischer et al., 2006). This was also one of the
prime structures studied in chapters 4, and 5. M13 was one of the prime
structures studied in chapters 5 and 6. However, in both chapters a mis-
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match of the driver node was enough to guarantee the symmetry breaking
necessary to avoid the frustrated dynamics (see section 3.2.4). M8 was one
structure utilized in chapters 5 and 6 to illustrate the importance of the feed-
back connection to the driver node since the zero-lag synchronization in this
case showed highly impaired, like shown in Figs. 5.5 and 6.3.

7.2

Pair of anti-phase synchronized nodes

The novel and most important concept introduced in Fig. 7.1 corresponds
to the resonant pair of nodes, which induces zero-lag synchronization of the
driven nodes. The resonant pair of nodes are highlighted by the red star
whenever present in the motifs.

We have previously described the dynamics of two Hodgkin-Huxley neu-
rons delayed-connected to each other (see Fig. 3.3). A similar behavior also
occurred for other systems. Figure 7.2, for example, illustrates the dynamics
of two neural mass models (described in section 7.7.3) for distinct types of
connectivity: bidirectional connection (top panel), unidirectional connec-
tion (middle panel), disconnection (bottom panel). As it will be shown in
the following sections, when a certain node A drives other two nodes -
not shown (say, besides node B), then solely the bidirectional connectivity
(Fig. 7.2 a-c) would lead to a synchronized dynamics of the driven nodes.
This reciprocal coupling constitutes a potential resonant pair.

Furthermore, to obtain a resonant pair, some conditions in the connectivity
of the motif are required: Two nodes must be mutually connected to each
other, one of which can be also a driven node, but not the two of them
simultaneously; a mutual connection between the driven nodes introduces
frustration in the system, which destroys the synchronizing effect of the
resonant pairs.
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Figure 7.2: Dynamics of pairs of neural mass models. (a), (d) and
(g) show the time traces; (b), (e) and (h) show the auto-correlation
function of node A; (c), (f) and (i) show the cross-correlation func-
tion between nodes A and B; respectively for a pair bidirectionally

connected, unidirectionally connected, and disconnected.

7.3

Common-driving motif versus different common-
driving motifs enhanced with resonance-induce
sources

This section illustrates the effect of a resonant pair to induce synchronization.
We systematically compared the common-driving motif with other types
of common-driving motifs that additionally owned at least a single active
resonant pair. The presence of an active resonant pair in the motifs promoted
the synchronization of the commonly driven nodes. Therefore, an active
resonant pair constituted a source of resonance-induced synchronization.
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7.3. COMMON-DRIVING MOTIF VERSUS DIFFERENT
COMMON-DRIVING MOTIFS ENHANCED WITH

RESONANCE-INDUCE SOURCES
This section mainly concentrated in four of the motifs depicted in Fig. 7.1.
The common driving (M3) in which node 2 drives the dynamics of nodes 1
and 3 was contrasted with other three variations of common driving (M6,
M9 and M3+1), in which resonance-induce sources have been added. In
the particular case of M3, the delay between nodes if any, plays no role
neither in the dynamics nor in the synchronization between nodes 1 and
3. M6 has node 2 driving nodes 1 and 3, and receiving a feedback of node
1, and owns a resonant pair: the reciprocal connection 1-2. M9 has node 2
reciprocally connected with nodes 1 and 3, and owns two resonant pairs:
the reciprocal connections 1-2, and 2-3. M3+1 is given by M3 plus an extra
node (4) reciprocally connected to node 2, which comprises the resonant
pair.

Our study was based on extensive numerical simulations that included
different types of dynamics for the nodes. We started by simply considering
one neuron at each node, described by the Hodgkin-Huxley model. We next
considered each node as a population of Izhikevich neuron, mimicking a
cortical region. However, it was also convenient and more intuitive to work
with reduced system. Finally, following this rationale, we modeled each
cortical region by a neural mass model. Taking advantage of this reduction,
we performed a deeper analysis, discussed in the following sections. Details
about the models and parameter values are given in section 7.7.

7.3.1 Hodgkin-Huxley neurons

Nodes were chemically coupled via excitatory synapses with delay τ = 6 ms.
We concentrated in time traces and cross correlation functions between
the different nodes. Figure. 7.3 shows results for the motifs of Hodgkin-
Huxley cells. Each neuron received independent train of spikes distributed
according to a Poisson distribution (see the section 7.7.1 for details). The
neurons exhibited an oscillatory behavior with an average period of about
15 ms. The results showed that, in contrast to the genuine common-driving
motif (M3) (which did not lead to synchronization), the other three motifs
of common driving with active resonant pairs (M6, M9, M3+1) presented
node 1 and 3 synchronized at zero lag. Node 2, on the other hand, was also
synchronized, but in anti-phase with respect to nodes 1 and 3.
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Figure 7.3: Dynamics of common driving motif (M3) versus common
driving motifs with resonance-induced sources (M6, M9 and M3+1) in
motifs of delayed-coupled Hodgkin-Huxley cells with delay τ = 6 ms.
First and second columns correspond to the time traces of neurons,
whereas third column corresponds to the cross-correlation functions
of the respective time series. Please refer to the section 7.7.1 for details

about the Hodgkin-Huxley model.
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7.3.2 Populations of Izhikevich neurons

As a straightforward model to assess the large-scale brain dynamics, we
utilized an approach similar to the one presented in the previous chapter.
Each population comprised (400) excitatory and (100) inhibitory Izhike-
vich neurons (section 7.7.2), each neuron receiving an independent Poisson
spike train. Neurons were chemically coupled with no delay for the intra-
population connections and with a latency of 15 ms for (exclusively exci-
tatory) inter-population connectivity, to account for the finite propagation
time. We considered 〈V〉 the average of the membrane potential v of all neu-
rons within each population. Please refer to section 7.7.2 for details about
the model. The oscillatory activity of each population was prevalently at a
low frequency, with average of ∼3 Hz. The oscillatory period, in this case,
was much larger than the delay in the connection. Despite the discrepan-
cies in the systems, the results also consistently showed that M3 did not
render synchronization in contrast to the other three motifs M6, M9, M3+1,
in which nodes 1 and 3 synchronized at zero lag. The anti-phase relation
between node 2 with respect to nodes 1 and 3 appeared solely at a faster
time scale, similar (but not exactly equal) to the delay period.

7.3.3 Neural mass models

Once more, we aimed at illustrating the robustness regarding to the synchro-
nization pattern with respect to the dynamical systems utilizing a reduced
model of cortical dynamics. We followed the steps of Honey et al. (2007,
2009), who successfully unveiled important features of the large-scale brain
dynamics with the neural mass model. Instead of dealing with thousands
of equations for each population of neuron, the model presented only three
nonlinear equations to represent the spontaneous cortical dynamics of a
limited region (see details in the section 7.7.3).

The dynamics of the delayed-coupled neural masses showed intrinsic oscil-
lations with an average period of about 100 ms. As shown in Fig. 7.5, once
again, the common driving with resonance-induce sources (M6, M9, M3+1)
synchronized nodes 1 and 3, but not the genuine common driving (M3).
Node 2 was in anti-phase with respect to nodes 1 and 3. Remarkably, how-
ever, the anti-phase relation occurred at a much slower time scale (100 ms)
than the coupling delay (10 ms). The correlations in this system were most
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Figure 7.4: Same as figure 7.3, but for populations of Izhikevich neu-
rons and delay τ = 15 ms. Please refer to the section 7.7.2 for details

about the model.

pronounced than in the other models presumably ascribed to the absence of
stochastic synaptic input.
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Figure 7.5: Same as figure 7.3, but for neural mass models with cou-
pling strength c = 0.01, and delay τ = 10 ms. Please refer to the

section 7.7.3 for details about the model.
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7.4

Characterizing the dynamics of the motifs

From now on we restrict ourselves exclusively to motifs of neural mass
models. Such systems are clear and malleable, enabling a thorough analysis.
In particular we deeply study the robustness of our findings with respect to
the most key parameters of the system: the coupling strength and the delay.

Contrarily to the previous analysis, which illustrated a single trial of the
dynamics, in the remainder we aimed at studying the dynamics by aver-
aging over numerous independent runs with different initial conditions to
acquire more quantitative information. Figure 7.6 shows the mean over 40
trials of the cross-correlation function between the driven nodes at zero-lag,
where the error bars are given by the corresponding standard deviation.
The increase in the synchronization as a function of the coupling was an ex-
pected feature of the model. There were, however, some regions of complex
dynamics (considerable error bars) in which there was not a unique domi-
nating basin of attraction, thereby entailing significant trial-to-trial variabil-
ity. Moreover, the results were remarkably robust with respect to delays
(restricted to the physiologically plausible range).

From Fig. 7.6, it was possible to split the different types of common-driving
motifs in three distinct families:

Motif of genuine common driving (M3). It is completely independent of
the delay and cannot accomplish synchronization in the weak-coupling
regime;

Motifs of common driving with direct coupling between the driven nodes
(e.g., M8, M13). They simultaneously require a relative strong cou-
pling, and a negligible delay in order to promote synchronization;

Motifs of common driving enhanced by active resonant pairs (e.g., M6, M9,
M3+1). They remarkably accomplished for synchronization even for
very slight coupling, and irrespectively of the delay.
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Figure 7.6: Zero-lag cross-correlation between neural masses 1 and 3
for the motifs corresponding to the different types of common driving.
Top row compares common driving (M3) to common driving with a
resonance-induced source (M6, M9 and M3+1) for varying coupling
(panels a and b) and varying delay (panel c). Bottom panels compares
common driving (M3) to common driving with a resonance-induced
source disturbed (M13), and to common driving plus a bidirectional
connection between 1 and 3 (M8) for varying coupling (panels d and

e) and varying delay (panel f).

7.5

Propagation of the resonant effect

Next we investigated further the propagation properties of the resonant
signal from a resonant pair. For this endeavor, we designed arbitrarily larger
structures in which the resonant pair was the most distant from the driver
node (2). This procedure is shown in Fig. 7.7 a, and exemplified in Fig. 7.7 b
for a particular network of N=7 nodes. We were especially interested in
the zero-lag synchronization of nodes 1 and 3 to determine whether the
effects of the resonant pair were strictly local, and, additionally, on how
the polysynaptic distance of the resonant pair influenced the dynamics and
synchronization in such networks.
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Figure 7.7: Effects of a resonant source propagates along a chain. (a)
depicts a resonance source (nodes N and N-1) arbitrarily distant from
a pair of commonly driven neural masses (1 and 3). (b) illustrates
a chain with 7 nodes. Zero-lag cross-correlation functions between
nodes 1 and 3 (c), and between 1 and 4 (d) for different chain sizes
as illustrated in panel (a) are shown in solid lines. Thin dashed line
represents the chain of panel (a) without the feedback connection from
node N-1 to node N. (e) Zero-lag cross-correlation functions between
every other node in the chain depicted in panel (b) are shown in solid
lines. Thin dashed line represents the chain of panel (b) without the

feedback connection from node 6 to node 7.

In Figs. 7.7 c, d we compare the zero-lag synchronization of node pairs for
the motif M3+1 (which is equivalent to N=4) with other larger structures
(N= 5,6,7). The results showed that the zero-lag synchronization between
the driven nodes 1 and 3 remained almost unaltered with the distance to
the resonant pair. The zero-lag synchronization of nodes 1 and 4 had a
specific range of couplings with a perfect synchronization. Apart from this
specific parameter region, synchronization decreased with structure size, or
polysynaptic distance from the resonant pair. The reduction was expected
because, the flux of information, for N ≥ 5, must follow a strict direction:
from node 4 to node 1. Therefore, high zero-lag synchronization required
periodic time traces.

For a fixed network (N=7), we also characterized the zero-lag synchroniza-
tion of different pairs of nodes that did not interact directly, but interacted
indirectly through a common neighboring mediator (see Fig. 7.7 e). With
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the exception of the pairs 5-7 and 1-3, the other pairs depicted a strict flux
of information. Thereby, synchronization decreased with distance from the
node 7, unless the system was set with a specific coupling that gave rise to
a periodic dynamics.

Next, to highlight the influence of the resonant pair in the dynamics, we
removed the feedback connection to node N (thin dashed lines in Figs. 7.7 c-
e). By means of this control experiment, we found that:

• The zero-lag synchronization between 1-3 was consistently reduced
(Fig. 7.7c);

• The zero-lag synchronization between 1-4 (Fig. 7.7 d), and between 5-7
(Fig. 7.7 e) disappeared completely.

7.5.1 Effects of common driving at higher orders

Another sort of propagation considered the synchronization of commonly
driven nodes at higher polysynaptic orders as shown in Figs. 7.8 a- c. We
analyzed the synchronization of indirect commonly driven nodes up to the
n-th order, thus polysynaptically connected by a chain of n-1 synapses. In
particular, we compared the synchronization of the symmetrically located
nodes n-n’ for the different connectivity states of the driver node A:

(i) A was part of a resonant pair together with node B (Fig. 7.8 a);

(ii) A received a unidirectional input from B (Fig. 7.8 b);

(iii) A did not receive any input from neighboring regions (Fig. 7.8 c).

Figures 7.8 d- g show the zero-lag synchronization from first to fourth order
for the distinct states of the driver node (represented in Figs. 7.8 a- c) as a
function of the coupling strength. For a fixed coupling value, Fig. 7.8 h shows
how the synchronization between the symmetrical nodes (n,n’) decayed
with distance. In this case, for a sufficient high order (e.g., n ≥ 4) nodes n-n’
could not synchronize in the absence of a resonant pair. Similarly occurred
for the maximum cross-correlation between A and node n; a resonant pair
was required for the propagation of synchronous activity.
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Figure 7.8: Propagation of synchrony to higher orders of pairs. Com-
mon driving to first (1,1’), second (2,2’) and n−th (n,n’) order for the
resonance-induced pair (a), a unidirectional input (b), and simple
common driving (c). (d) to (g): zero-lag cross-correlation functions
for the different types of common driving from the first to the forth
order. (h) The zero-lag cross-correlation functions between pairs of
nodes (n,n’). (i) The maximum cross-correlation functions versus the

distance from the driver node A.

7.6

Discussion

Historically, a large phenomenology pertaining to isochronous synchroniza-
tion has been ascribed to common driving. Our results cast doubts on the
efficacy of the genuine common driving motif to promote synchronization.
Supported by extensive numerical simulations, our findings suggest that, in
the weak-coupling regime, the importance of the genuine common driving
to synchronize spontaneous neuronal activity has been prevalently overes-
timated (see Figs. 7.3, 7.4, 7.5, 7.6). Apart from the genuine common driving
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(which completely disregards the effects of the delay in the coupling), a
common driving enhanced with a reciprocal connection between the driven
nodes could indeed improve the synchronization for a sufficiently strong
coupling. However, due to frustration, this scenario prevalently fades in the
presence of any non-negligible delay in the coupling (see Fig. 7.6).

Notably, in the presence of delay, regardless of its value, there is an entire
family of common-driving motifs enhanced by resonant pairs with out-
standing capability to promote synchronization. As a consequence of such
an enhancement, the driver node receives synchronized input that sculpts its
dynamics and optimizes its effectivity to synchronize the commonly driven
nodes. The criteria to belong to this distinguished family is to own (or to be
under the influence of) at least one active resonant pair. An active resonant
pair intrinsically endows these motifs with the ability to promote correlated
activity by means of resonance-induced synchronization. In other words,
the resonant pair plays the role of a resonant source when active, meaning
not disturbed or frustrated. Furthermore, a single resonant pair is important
because it is the simplest way to send a synchronized input to the driver
node.

Probably, the most especial specimen of motif in this family is the motif M9
(see Fig. 7.1), also known as the dynamical relaying (Fischer et al., 2006; Vi-
cente et al., 2008a; Gollo et al., 2010). This motif possesses two active resonant
pairs (Fig. 7.1). Therefore, one feedback connection to the driver node can be
removed (i.e., transforming the motif into a M6) without compromising the
synchronization. Thereby, we propose that the essence to promote zero-lag
synchronization of the dynamical relaying relies on a resonant pair. The
resonant pair is the source of resonance-induced synchronization, which, in
turn, constitutes the functional basis of the dynamical relaying.

The clearest way to illustrate the effects of a resonant pair is probably with
motif M3+1 (Fig. 7.1). Motif M3 has rather poor capabilities to induce
synchronization. However, the addition of merely one extra node mutu-
ally connected to the driver node (and thereby comprising a resonant pair)
completely changes the picture, and optimally promotes zero-lag synchro-
nization of the driven nodes.

Some other motifs have also been studied under the dynamical-relaying
framework (Vicente et al., 2008a; Gollo et al., 2010, 2011). But they have been
typically considered as robustness studies, say by introducing variations
in the structure to examine to what extent the synchronization remains
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undisturbed. Moreover, some of these studies have also taken advantage
of the mismatch in the driver node, which, as has been recently shown,
enhances its capabilities to promote zero-lag synchronization (Banerjee et al.,
2012). Such mismatch can be important to break the symmetry, thereby
fading the frustration effects.

We argue that the dynamical relaying can be thought as a particular case
of the resonance-induced synchronization, has indeed proven great ro-
bustness since its first proposal (Fischer et al., 2006). Analogously, the
resonance-induced synchronization also depicts promising robustness. We
have presented consistent examples covering different models (Hodgkin-
Huxley neurons, populations of Izhikevich neurons, and neural mass mod-
els) and scales: motifs of neurons and motifs of cortical regions. The results
also showed impressive robustness with respect to the delay and the cou-
pling strength. In particular, surprisingly weak couplings already lead to
synchronous solutions. Therefore, we expect that the resonance-induced
synchronization to be also important for other scales in brain systems, say
dendritic oscillations in single-neuron dynamics (Remme et al., 2009), or
other physical and biological systems of any domain whenever delay and
weak-coupling interactions coexist.

The effects of a resonant pair are remarkable: Such a pair not only induces
synchronization, but its effects can also propagate throughout the network,
resonating at distant neighbors of neighbors. Surprisingly, our results sug-
gest that the propagation could even be almost deterministically, and decay
rather slowly with the polysynaptic distance (see Fig. 7.7). Moreover, in
a sufficient sparse network, like the brain, the number of neurons grows
roughly exponentially with the neighboring distance. Such capacity to
strongly affect the neighbors of the neighbors via polysynaptic interactions
allied to the fast grow in the number of elements with distance could po-
tentially lead to deep entailments. The coexistence of such slow correlation
decay with a fast grow in the number of affected elements with the synaptic
distance could provide the substrate for the unfolding of rich dynamical
branching processes: The recruitment of elements to joint the blatant uni-
son. The propagation of synchrony is considered an important problem in
theoretical neuroscience (Kumar et al., 2010), which can be accomplished by
the delay-coupled networks via resonance-induced synchronization.

Despite the consistency regarding different sorts of models, and the robust-
ness with respect to the most important parameters of the model, some
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boundaries remain obscure. It will be fundamental to elucidate to what ex-
tent our results could be translated to other physical and biological systems,
perhaps including canonical models that are amenable to mathematical anal-
ysis.

We have identified and characterized a dynamical building block, which is
the resonant pair. The insights from the resonant pair provide intuition to
comprehend the dynamics of structures comprising three or more nodes.
We expect that this successful approach will encourage further investiga-
tions searching for additional dynamical building blocks lurking behind the
complex spatiotemporal dynamics of the networks.

We have found that a single node or connection can drastically alter the
dynamics of the system. This plain fact suggests that it could be rather chal-
lenging to unravel the interplay between structure and dynamics, similarly
to what have been recently reported (Adachi et al., 2011). However, this
exciting field could also be reserving many pleasant surprises.

7.7

Methods

We have used three different perspectives to simulate motifs of neuronal
tissue of small and large scales. First, representing the small scale, each
node was taken as a single neuron. For this endeavor we utilized Hodgkin-
Huxley cell. The other two perspectives aimed at the study of the neuronal
dynamics at a large scale. Second, as a direct extension of the motif of
single neurons, we took each node as a large population of spiking neurons.
Third, we considered a simplified coarse-grained version, in which each
population was taken as a neural mass model.

7.7.1 Motifs of Hodgkin Huxley neuronal model

Following the Hodgkin and Huxley original formulation (Hodgkin and
Huxley, 1952), each node was modeled by the Hodgkin-Huxley equations,
with three (sodium, potassium and leak) currents components as:
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C
dV
dt

= −gNam3h(V − ENa) − gKn4(V − Ek)

− gL(V − EL) + Isyn + Iext , (7.1)

where C = 1 µF/cm2 is the membrane capacitance The maximal conduc-
tances of the channels occur for completely open channels, for which the
conductances are given by gNa = 120 mS/cm2, gK = 36 mS/cm2, and gL = 0.3
mS/cm2, and ENa = 115 mV, EK = −12 mV, and EL = 10.6 mV stand for the
corresponding reversal potentials. Generally, the voltage-gated ionic chan-
nels are not fully opened. The probability of finding them open depend on
the gating variables. The Na+ channel depends on the combined effect of
m(t) and h(t), whereas K+ depends on n(t). They evolve according to the
equations:

dm
dt

= αm(V)(1 −m) − βm(V)m , (7.2)

dh
dt

= αh(V)(1 − h) − βh(V)h , (7.3)

dn
dt

= αn(V)(1 − n) − βn(V)n , (7.4)

Hodgkin and Huxley set the empirical functions α and β to fit the experi-
mental data of the giant axon of the squid as:

αm(V) =
2.5 − V/10

exp (2.5 − V/10) − 1
, (7.5)

βm(V) = 4 exp (−V/18) , (7.6)

αh(V) = 0.07 exp (−V/20) , (7.7)

βh(V) =
1

exp (3 − V/10) + 1
, (7.8)

αn(V) =
0.1 − V/100

exp (1 − V/10) − 1
, (7.9)

βn(V) = 0.125 exp (−V/80) . (7.10)
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The synaptic current due to the interactions between neurons of the motifs
are given by:

τsyn
dIsyn

dt
= −Isyn + 50

∑
k

δ(t − tk − τk) , (7.11)

where τsyn = 0.4 ms, and δ stands for the Dirac delta function. The sum-
mation over k stands for the spikes of the neurons (all excitatory). tk is the
time at which the k − th spike occurred. We assumed the conduction delay
τk = 6 ms.

The external current incoming to each neuron is:

Isyn = 20
∑

j

δ(t − t j) , (7.12)

where j are 1000 external neurons, and t j corresponds to the spike times,
modeled by a Poisson process with rate r = 40 Hz. The equations were
integrated by the Runge-Kutta method of fourth order, with time steps of
0.01 ms.

7.7.2 Motifs of populations of Izhikevich neurons

At this comprehensive large-scale model, each node is represented by pop-
ulations of 500 Izhikevich neurons randomly connected, 400 neurons are
excitatory and 100 neurons are inhibitory. The Izhikevich neurons are de-
scribed by the following equations:

dv
dt

= 0.04v2 + 5v + 140 − u + Isyn ,

du
dt

= a(bv − u) , (7.13)

where v represents the membrane potential, u represents the recovery vari-
able, accounting for the K+ and Na+ ionic currents, and Isyn is the total
synaptic current. The neurons have a threshold at 30 mV. Once this value is
reached, v is reset to c and u to u + d. Following the recipe of Izhikevich et al.
(2004), also reproduced in the previous chapter for cortical populations, we
have taken diversity in these four parameters (a, b, c and d) to account for
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the different behavior observed by the cortical neurons. Excitatory neurons
have (a, b) = (0.02, 0.2), and (c, d) = (−65, 8)+ (15,−6) σ2, where σ is a random
number drawn from a uniform distribution in the interval [0,1]. Inhibitory
neurons have (a, b) = (0.02, 0.2) + (0.08,−0.05) σ, and (c, d) = (−65, 2).

We chose this connectivity such that the populations show oscillatory activ-
ity, which is not periodic. Each neuron receives input from 80 neurons of the
same population and from 25 excitatory neurons of each afferent population.
The synaptic current is given by:

Isyn = −v gAMPA(t) − (65 + v)gGABA(t) , (7.14)

and the dynamics of the excitatory and inhibitory synapses are described
by:

τAMPA
dgAMPA

dt
= −gAMPA + 0.5

∑
k

δ(t − tk − τk) ,

τGABA
dgGABA

dt
= −gGABA + 0.5

∑
l

δ(t − tl) . (7.15)

δ in the equations above stands for the Dirac delta function. The summa-
tion over k (l) stands for the spikes of the presynaptic excitatory (inhibitory)
neurons. tk (tl) is the time at which the k − th excitatory (or l − th inhibitory)
spike occurred. Conduction delays τk, associated to excitatory long-range
connections, are assumed to be 15 ms. We modeled short-range connec-
tions with negligible delays. Synapses are modeled by exponential decay
functions (Dayan and Abbott, 2001), with time constants τAMPA = 5.26 ms
for excitatory and τGABA = 5.6 ms for inhibitory synapses. Each neuron is
subject to an external driving given by independent Poisson spike trains,
resulting from 100 excitatory neurons, at rate r = 16 Hz. The equations were
integrated with the Newton method with time steps of 0.05 ms.

7.7.3 Motifs of neural mass models

The previous section showed a model that included thousands of equations.
It is worthwhile and instructive to work in this system, however, accompa-
nying the large number of parameters and equations, there are pertaining
intricate challenges that precludes a mature and intuitive perspective of the
system. For example, it is virtually impossible to predict what changes in
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the dynamics would be produced by some changes in the model parame-
ters, and so on. We therefore find it not only suitable to illustrate the novel
phenomenology in a reduced system (Breakspear and Terry, 2002), which
represents the large cortical scale (in which most brain functions are carried
out), but also to thoroughly study and characterize the system with respect
to the most important parameters. In contrast to the previous models, the
coupling is not through discrete pulses, but by means of smooth sigmoidal
functions, as a consequence of the reduction approach. This also highlights
the robustness of the resonance-induced synchronization regarding to the
precise details of the models.

Each node represents an ensemble of neurons; the excitatory and the in-
hibitory subgroups are split to generate spontaneous rhythms mimicking
the cortical activity. Derived from the biophysical model of Morris and Lecar
(1981), the neural mass model dynamics have been first proposed by Larter
et al. (1999); the coupling was first proposed to represent synaptic interac-
tions instead of diffusive ions by Breakspear et al. (2003); and subsequently
the model have been extended for large networks to model whole brain
activity by Honey et al. (2007, 2009). We utilize this most recent approach
developed by Honey et al. (2007, 2009) systematically varying the features
of the connectivity: architecture, coupling strength, and delay.

The cortical model of spontaneous cortical dynamics comprises three state
variables:

• V: The mean membrane potential of the excitatory pyramidal neurons;

• Z: The mean membrane potential of the inhibitory interneurons;

• W: The average number of open potassium ion channels.

Despite the fact that the oscillatory rhythms accompanying the dynamics are
reflected by the other state variables Breakspear et al. (2003), our main focus
is on the dynamics of the pyramidal neurons. Their average membrane
potential V depends on the passive leak conductance, and on the conduc-
tance of voltage-gated channels of sodium, potassium and calcium ions.
The flow of current across the local pyramidal cell membranes, assumed as
capacitors, governs its dynamics. In turn, the local activity of the inhibitory
interneurons is course-grained modeled; its dynamics is modulated by the
activity of the pyramidal cell, considered with greater physiological detail.
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For each ensemble i, the equations for the dynamics of the mean membrane
potential of the neurons read:

dVi(t)
dt

= −

(
gCa + (1 − c) rNMDA aee Qi

V(t) (7.16)

+c rNMDA aee 〈Q
j
V(t − τ)〉

)
mCa (Vi(t) − VCa)

−

(
gNa mNa + aee Qi

V(t)
)

(Vi(t) − VNa)

−gK Wi(t) (Vi(t) − VK) − gL (Vi(t) − VL)
+aie Zi(t) Qi

Z + ane Iδ ;

dZi(t)
dt

= b
(
ani Iδ + aei V(t) Qi

V(t)
)
. (7.17)

The fraction of channels open mion are the neural-activation function, whose
shape reflects a sigmoidal-saturating grow with V:

mion = 0.5
[
1 + tanh

(
Vi(t) − Tion

δion

)]
. (7.18)

The third differential equation of each node i stands for the fraction of open
potassium channels:

dWi(t)
dt

=
φ [mK −Wi(t)]

τW
. (7.19)

The neuronal firing rate (Qi
V, and Qi

Z) averaged over the ensemble is as-
sumed to obey Gaussian distributions, thereby giving rise to the sigmoidal
activation functions:

Qi
V(t) = 0.5 QVmax

[
1 + tanh

(
Vi(t) − VT

δV

)]
; (7.20)

Qi
Z(t) = 0.5 QZmax

[
1 + tanh

(
Zi(t) − ZT

δZ

)]
. (7.21)

From the above equations, the following parameters: gCa, rNMDA, aee, VCa,
gNa, VNa, gK, VK, gL, VL, aie, ane, Iδ, b, ani, aei, Tion, δion, φ, τW , QVmax, VT,
δV, QZmax, ZT, δZ were set to physiological values taken from Breakspear
et al. (2003). Equation 7.16 includes the other important parameters in
our analysis: j = 1, ..., N, the presynaptic neighboring (afferent) regions of
region i; c, the coupling strength between cortical regions; τ, the synaptic
delay between cortical regions. The model is simulated in Matlab at a time
resolution of 0.2 milliseconds.
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Chapter 8

Concluding Remarks and Fur-
ther Perspectives

Brain sciences comprise a remarkable example of interdisciplinary science.
Traditionally, neuroscience has been almost uniquely dominated by exper-
imental work. However, theoretical neuroscience has gained space in this
exciting field of knowledge (Abbott, 2008). Theoretical contributions from
distinct areas have introduced novel perspectives, and shaped directions of
neuroscience research.

This manuscript represents mostly studies of numerical simulations on sys-
tems of large dimensionality, which are of interest to neuroscience. The
thesis collects a family of results primarily focusing on the mesoscale dy-
namics of motifs of neuronal populations. These results had been spurred
by recent developments in physics and non-linear dynamics, which can
be fruitfully utilized to understand the dynamics and synchronization of
distant ensembles of neurons. Nevertheless, the flux of ideas represented
by this thesis was not exclusively unidirectional. As presented in the pre-
vious chapter, our study on simple motifs also attempts to contribute to
the elucidation of the foundations of the synchronization phenomenon in
the presence of delayed interactions. Thus, the middle-ground interface
between the distinct fields has proved fertile for the reciprocal exchange of
knowledge.
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Analogously to the particular interface that we explored, neuroscience com-
prises other numerous fertile interfaces. In particular, there are several
promising theoretical opportunities to be explored at the front-line bound-
aries. Apart from bringing maturity to the field, theoretical frameworks are
required to sculpt a solid basis towards the scientific progress. We believe
that physics should play an engaged role in such an enterprise. Physics
could contribute to unravel universal patters in this hallmark of complex
system. Coinciding with the criteria of great success in physics, major break-
throughs in brain sciences would also unify manifold concepts and results
scattered throughout discrepant subfields.

Summary and main results.

In this thesis we showed that the dynamical relaying is consistently robust
to promote zero-lag synchronization in neuronal systems. Our results entail
that this mechanism could take place in a variety of brain structures: in
cortical networks, in thalamocortical circuits, and in hippocampal-cortical
networks. Moreover, we proposed that the dynamical relaying could be
unraveled even further in a minimal relation between two resonating nodes
to promote synchronization. A contextualized description of our major
conclusions is provided next:

Cortical Dynamical Relaying (chapter 4): Despite of being potentially
powerful and depicting a broad range of validity since its first proposal,
the robustness of the dynamical relaying mechanism had been still unclear.
Our first effort was to change such a picture. We scrutinized this promising
mechanism in a minimal neuronal motif of three Hodgkin-Huxley neurons.
The dynamical relaying showed overwhelming robustness to promote zero-
lag synchrony almost irrespectively of the coupling delays.

Next, we have been striven to translate this idea to a larger neuronal scale:
The scale of neuronal populations, in which most motor, sensory, and cog-
nitive functions are carried out. The first task in this endeavor was to
simulate distant populations utilizing a minimal model. To mimic cortical
assemblies, we considered each population as a sparse random network,
which was not specially designed for any particular function; and the nodes
were taken as the simplest way possible: Integrate-and-fire neurons. Thus,
we compared the synchronization of the motifs comprised two or three of
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these delayed-coupled generic assemblies of spiking neurons. Our finds
typically showed that the nearest neighboring populations synchronized in
anti-phase, whereas the outer populations synchronized at zero lag.

The results indicated that the dynamical relaying promotes isochronous
synchronization of distant populations with an overwhelming robustness.
Such robustness is fundamental because long-range synchronization: (i)
may involve many brain areas; (ii) is found across several species, with dif-
ferent brain sizes and axonal lengths; (iii) is observed in any developmental
stage. Therefore, the mechanisms involved ought to be analogously gen-
eral; it should not depend on an exact configuration. This extrication from
a precise and specific fine tuning is probably the most important feature of
the dynamical relaying.

Thalamic Dynamical Relaying (chapter 5): The universal character of the
dynamical relaying in generic neuronal populations also had the limitation
of being unable to reproduce the behavior of an especial circuit, like, for
instance, the thalamocortical circuit. The thalamus, the entry door of most
sensory stimuli into the cortex, occupies a central position in the brain.
Moreover, it is naturally considered a relay center of the brain because of its
multiple thalamocortical radiations. Due to these characteristics (inter alia),
the thalamus is considered the strongest candidate to promote cortical syn-
chronization by mediating the dynamical-relaying mechanism. Therefore,
we studied the dynamics of a minimum thalamocortical model in which the
outer (cortical) regions remained generic, but the central (thalamic) region
reflected some physiological particularities. In our model, the thalamus
was divided into two subregions to mimic a specific relay nucleus, and the
thalamic reticular nucleus. Additionally, the input to the specific relay nu-
cleus consisted of two components: an afferent sensory stimulus, and all the
remainder connections.

Our results in the thalamocortical circuit showed and confirmed the im-
portance of the thalamus to shape the cortical dynamics. According to
this thalamocortical model, the thalamus not only promoted, but also con-
trolled the zero-lag cortico-cortical synchronization. The thalamocortical
circuit provided the substrate to generate synchronization, and to control
the engagement and disengagement of cortical synchrony as a function of
the thalamic input in a plausible time scale. Synchronous neuronal activ-
ity is indeed found ubiquitously in the brain, and it is thought to play an
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important functional role. Nevertheless, the excess of synchronization is
associated with abnormal brain activity, such as seizures and epilepsy. It is
thus fundamental to control both processes the generation and the vanish-
ment of synchronization, analogously to the accomplishments of our model
of the thalamocortical circuit.

In the brain, there is a recognized close inter-relationship between the tha-
lamus and the cortex (Briggs and Usrey, 2010), which cannot be dismissed.
The thalamic activity strongly depends on the sensory stimuli (Temereanca
et al., 2008; McAlonan et al., 2008; Yu et al., 2009). In turn, as confirmed
by recent experiments, the thalamic dynamics coordinates and sculpts the
cortical activity (Wolfart et al., 2005; Wang et al., 2010a; Poulet et al., 2012;
Olsen et al., 2012).

Hippocampal Dynamical Relaying (chapter 6): Another circuit of partic-
ular interest involves the cortex and the hippocampus, which closely interact
during some motor and cognitive tasks. The interactions, however, promi-
nently take place at much slower rhythms (theta band). Therefore, to play
the role of the dynamical-relaying center, a first challenge was to propose a
hippocampal model of spiking neurons, whose activity was mainly gener-
ated at the theta band. This barrier was overcome by utilizing Izhikevich
neurons prioritizing the spikes in the bursting mode. Moreover, the distant
cortical areas were merely modeled as generic populations of Izhikevich
neurons prioritizing the spikes in the tonic mode.

Our results in this large-scale model indicated that the dynamical relaying
might also occur at slow frequencies. This highlighted the importance of
the hippocampus in coordinating the cortical activity in those rhythms. We
thus found, for the first time, the signature of the dynamical relaying in ex-
perimental data on behaving mice. The signature consists on the preferred
phase relation between pairs of areas. The cortical regions (prefrontal and
visual cortex) tended to synchronize at zero-lag, whereas the relation be-
tween the hippocampus and the cortical areas was phase-locked, but not in
phase. On top of that, another consistent relationship observed in the exper-
imental data was that such phase-relation signature was enhanced during a
moving state compared to a quiet state. This suggested that the dynamical
relaying of the motif comprised by the hippocampus, prefrontal, and visual
cortex played a functional role in the retrieval of spatial memory strongly
associated with the active motor state.
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The phase locking between the prefrontal cortex and the hippocampus had
been already reported (Siapas et al., 2005), however, it had been interpreted
uniquely as an empirical fact. In this context, the dynamical relay is re-
markably suitable because it provides a solid framework in which the phe-
nomenon can be distinctly elucidated.

Banerjee et al. (2012) have recently shown that the mismatch in the mediator
element enhances the zero-lag synchronization of the outer nodes in the
dynamical relaying. Both the thalamocortical circuit and the hippocampo-
cortical system took advantage of such mismatch in the mediator element.
In particular, even in the presence of a direct cortico-cortical connection
of moderated strength, the zero-lag sync was robustly found. Moreover,
the mismatch played an important dynamical role in each system. The
mismatch enabled: (i) the thalamus to control the synchronizing dynamics of
the cortex in the thalamocortical circuit; and (ii) the hippocampus to generate
prominent theta oscillations that was embedded by the hippocampo-cortical
circuit.

We started with a generic and robust mechanism to promote zero-lag syn-
chronization, and adapted the concept to especial large-scale motifs. Al-
though each of these studies can be improved in several ways, our last
endeavor was on a completely different direction.

Resonance-Induced Synchronization (chapter 7): We revisited the struc-
ture, the very starting point of the thesis, to systematically study other
potentially interesting motifs. All different sorts of motifs appear in neu-
ronal systems. Some motifs seem more important than others, showing
up with a disproportional probability compared to what can be expected
by chance (Sporns and Kotter, 2004). A particular configuration that has
gained a lot of attention in the literature is the common driving, probably
because intuition tells us that the common driving is the major factor to give
rise to synchronous behavior. Utilizing different types of neuronal models,
we studied various motifs in which the central node commonly drives two
nodes. First of all, our results showed that the intuition about the capacity of
the common driving to promote synchronization was indeed erroneous for
weakly coupled systems. Moreover, we found that the minimum require-
ment to promote synchronization of the driven nodes, and to circumvent
the limitation of the common driving motif was the presence of a resonant
pair, which by definition is comprised of two mutually connected nodes.
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If the central node belonged to (or was under the influence of) a resonant
pair, the synchronization was efficiently induced. The effects of a resonant
pair were not restrictedly localized; they could also propagate throughout
monosynaptic and polysynaptic pathways to influence the driver element
and consequently the synchronization pattern.

Our results were not only consistent in different systems, but they also
showed a remarkable robustness with respect to delay, and coupling strength.
However, despite of the robustness of the resonance-induced synchroniza-
tion, the addition or removal of a single connection or node on the structure
could provoke drastic changes in the dynamics.

On the other hand, for a fixed structure in which the effects of a resonant
pair were not disturbed, our results suggested that the resonance-induced
synchronization constitutes the basic interaction underlying the dynamical
relaying. Such fundamental interaction putatively endows the intrinsic
capacity of the dynamical relaying to promote synchronization of delay-
coupled elements.

Perspectives.

Improvements of our work can be accomplished in many (if not all) direc-
tions. A prolific and voluble avenue is the study of more realistic models. It
is a good and recommendable strategy to start with a simple version of the
model. An intuitive understanding of the model is better acquired in this
way. Nevertheless, further developments can be interesting and frequently
give rise to new dynamical features, which may be absent in the reduced
model.

For example, in our model of the thalamocortical circuit, an important dy-
namical distinction was not taken into account; Thalamic neurons can be
found in two spiking modes: tonic or burst. The tonic mode is considered
to be more reliable to transmit information to the cortex, and a neuron in
the tonic mode is more excited than in the burst mode. It seems impor-
tant to understand the effects of the thalamic spiking modes in the control
between the states of engagement or disengagement of cortical synchroniza-
tion. This study would require a more sophisticated neuronal model than
the integrate-and fire neuron, which is restricted to the tonic mode.
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Another limitation of our model strategy that extends beyond the neuro-
physiological properties of the cells refers to the absence of structure in each
region. The dynamical relaying, in which the nodes are spatially extended
systems, has been recently addressed (Jian-Ping et al., 2012), but its effects
in neuronal systems are largely unclear. The cortical regions can be made
more biologically plausible by introducing a cortical grid: comprised of
overlapping horizontal layers, and vertical columns. The thalamus can be
modeled in more detail by subdividing it in different nuclei, and a single
nucleus can be subdivided in distinct subparts. Amongst other features,
the hippocampus is also famous for exhibiting interesting spatio-temporal
structure that can certainly be explored. The interactions between cortical
layers and columns can be also enlightening to study. An inverse perspec-
tive of the dynamical relaying in the thalamocortical circuit can be obtained
by considering different thalamic nuclei, such as one specific relay and an-
other association nuclei (see Fig. 1.7), which do not interact directly, but
indirectly (say mediated by cortical areas and the thalamic reticular). In
short, the broadness of this trend seems virtually unbounded.

Those were straightforward continuations of our work. It might be perhaps
more important to explore the extremely opposite direction. Our work
has been almost entirely numerical because the systems were typically too
complex to allow any mathematical tractability. This could be a suitable
opportunity to concentrate in much simpler models in which analytical
insights are made possible in the field of synchronization of delayed-coupled
systems.

We expect the resonance-induced synchronization to be very general, how-
ever, its boundaries are still obscure. Analytical works in simple systems
could aid to substantially delineate its frontiers. Moreover, to tackle such a
basic problem, numerical solutions and a thorough analysis of the diverse
systems will also be valuable means to fully characterize the phenomenon.

The resonance-induced synchronization seems to constitute a building block
of the dynamics. This suggests that other dynamical building blocks with
elemental properties and capacities to shape the dynamics might exist. The
dynamics of complex networks presumably could be better comprehended
(in a more intuitive way) when the basic dynamical elements get understood.
However, even if this approach is possible, we expect this journey to be quite
challenging, because just a single node can already poignantly mold the
dynamics of the network. Thus, it is left as an intriguing open question: To
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CHAPTER 8. CONCLUDING REMARKS AND FURTHER
PERSPECTIVES

what extent the dynamics of a network can be dissected in such dynamical
building blocks?

Though rather intricated, the interplay between structure and dynamics is
absolutely important to be understood. There are innumerous questions
to be answered in this topic. Why some motifs appear more often than
expected? Is there a real advantage in the motif M9 (open chain of three
mutually connected nodes, see Fig. 7.1), which appears most in the macaque
visual cortex? Is this advantage structural or concerns the dynamics? Our
results indicate that M6 (M9 without one feedback) can lead to an equivalent
capacity to promote synchronization. So, which advantages does M9 offer
over M6? For example, would M9 be more stable than M6? Or would the
precise answer to these questions pertain to a completely different view-
point of analysis? The puzzle does not end up there. Further strides in
neuroscience will be necessary to elucidate the interplay between structure,
dynamics, and function.
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