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Francisco Jesús Bonin Font

March 15, 2012





CONTENTS

List of Figures vii

List of Tables 1

I Introduction 3

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 The Navigation Problem: Control Architectures . . . . . . . . . . . 11

2.1.1 Deliberative Control Architectures . . . . . . . . . . . . . . 12

2.1.2 Reactive Control Architectures . . . . . . . . . . . . . . . . 16

2.1.3 Hybrid Control Architectures . . . . . . . . . . . . . . . . . 18

2.2 The Localization Problem . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Closed-loop Localization . . . . . . . . . . . . . . . . . . . . 20

3 Visual Navigation: State of the Art 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The primary techniques until the late 90’s . . . . . . . . . . . . . . 24

3.3 From the late 90’s up to present . . . . . . . . . . . . . . . . . . . . 25

iii



3.3.1 Map-based Systems . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Mapless Navigation . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 57

II The Visual Navigation Approach 65

4 Obstacle Detection and Avoidance 69

4.1 The Vector Field Histogram . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Perspective Transformations . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Obstacle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Feature Classification . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Obstacle Profiles . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Obstacle Avoidance and the Navigation Task . . . . . . . . . . . . . 85

4.4.1 Building a Local Occupancy Map for Reactive Navigation . 85

4.5 Experimental Results: Autonomous Navigation in an exploration task 87

4.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Assessment of Different Feature Trackers 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Evaluating Several Feature Trackers . . . . . . . . . . . . . . . . . . 97

5.2.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Robot Navigation Strategies 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Comparing Bug-T 2 and ND: advantages and inconveniences . . . . 110

6.2.1 Some considerations about Bug-T 2 . . . . . . . . . . . . . . 110

6.2.2 Some considerations about ND . . . . . . . . . . . . . . . . 115

6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 The Navigation Strategy . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.2 The Navigation Strategy: Situations and Actions . . . . . . 122

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 131

iv



7 Robocentric Localization using Ground Points 147

7.1 Discrete Kalman Filters. EKF Localization . . . . . . . . . . . . . . 147

7.1.1 The Linear Kalman Filter . . . . . . . . . . . . . . . . . . . 147

7.1.2 The Extended Kalman Filter (EKF) . . . . . . . . . . . . . 149

7.1.3 EKF Localization . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Visual Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 Robocentric EKF prediction . . . . . . . . . . . . . . . . . . 152

7.2.2 Robocentric EKF update . . . . . . . . . . . . . . . . . . . . 153

7.2.3 Robocentric composition and state augmentation . . . . . . 154

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 156

III Conclusions 163

8 Conclusions and Future Work 165

8.1 The Image Point Classifier . . . . . . . . . . . . . . . . . . . . . . . 166

8.2 Obstacle Detection and Avoidance: The Local Occupancy Map . . . 167

8.3 The Navigation Strategy . . . . . . . . . . . . . . . . . . . . . . . . 168

8.4 The Robocentric Localization Algorithm . . . . . . . . . . . . . . . 169

9 Related Publications 171

References 174

v





LIST OF FIGURES

4.1 The Vector Field Histogram . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The Perspective Transformation . . . . . . . . . . . . . . . . . . . . 72

4.3 Coordinate frame conventions . . . . . . . . . . . . . . . . . . . . . 74

4.4 The IPT-based obstacle detection approach . . . . . . . . . . . . . 75

4.5 The compresed IPT equation: p = pl + λ(pp − pl) . . . . . . . . . . 78

4.6 Classifier Assessment: ROC curves (1) . . . . . . . . . . . . . . . . 82

4.7 Classifier Assessment: ROC curves (2) . . . . . . . . . . . . . . . . 84

4.8 Distance and orientation of a ground point with respect to the camera 86

4.9 The discrimination of the obstacle contours . . . . . . . . . . . . . . 88

4.10 Trajectories corresponding to the first experiments concerning au-

tonomous navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Images and maps of early navigation experiments: Scenario 1, Ex-

periment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Images and maps of early navigation experiments: Scenario 2, Ex-

periment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.13 Images and maps of early navigation experiments: Scenario 3, Ex-

periment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.14 Images and maps of early navigation experiments: Scenario 3, Ex-

periment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Assessment of feature trackers: time of execution . . . . . . . . . . 101

5.2 Assessment of feature trackers: number of detected features . . . . . 102

5.3 Assessment of feature trackers: percentage of inliers . . . . . . . . . 103

vii



5.4 Assessment of feature trackers: percentage of miss-classified points . 104

5.5 Examples of the feature classifier using different feature trackers . . 106

6.1 Getting trapped in a local minima using the potential fields method 111

6.2 The navigation filter . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Gaps detection: relevance of the filter radius in the navigation per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Gaps detection 2: relevance of the Filter radius in the navigation

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 The Navigation Strategy: the goal direction is free of obstacles and

the gap is wide enough for being traversed by the robot. . . . . . . 125

6.6 The Navigation Strategy: the goal direction is free of obstacles, the

gap is wide enough for being traversed by the robot, but the robot

can not face directly the target. . . . . . . . . . . . . . . . . . . . . 126

6.7 The Navigation Strategy: the goal direction is occupied. One gap

with extremes in adjacent sectors . . . . . . . . . . . . . . . . . . . 131

6.8 The Navigation Strategy: the goal direction is occupied. Discontinu-

ities of different sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.9 The Navigation Strategy: the goal direction is occupied. One of the

extremes of the gap is behind the robot. . . . . . . . . . . . . . . . 133

6.10 The Navigation Strategy: From a starting to a goal point passing

through all available gaps . . . . . . . . . . . . . . . . . . . . . . . 134

6.11 The Navigation Strategy: the goal point has to reach the goal inside

a G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.12 The Navigation Strategy: escaping from a huge U-shaped obstacle . 136

6.13 The Navigation Strategy: a simplified overview of the complete nav-

igation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.14 Dimensions of the experimental robot platform Pioneer 3DX . . . . 138

6.15 Autonomous navigation from a departure point to one or several

targets: experiments inside the laboratory, avoiding trapping areas . 140

6.16 Avoiding a trapping zone inside the laboratory: captured images. . 141

6.17 Autonomous navigation from a departure point to one or several

target points: long paths in a crowded daily used university hall (1) 142

6.18 Autonomous navigation from a departure point to one goal point:

long paths in a crowded daily used university hall (2) . . . . . . . . 143

viii



6.19 Some images captured from experiments in the hall-office . . . . . . 144

6.20 Autonomous navigation from a departure point to a goal point: long

path in a university corridor . . . . . . . . . . . . . . . . . . . . . . 145

7.1 World-fixed cameras for ground truth calculation . . . . . . . . . . 157

7.2 Mean and Mean±0.2σ for the trajectory errors . . . . . . . . . . . . 158

7.3 Examples of estimated trajectories with different levels of odometry

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Images captured during localization experiments inside the laboratory160

7.5 Images captured during localization experiments along a straight cor-

ridor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.6 Trajectories and some images of outdoor experiments . . . . . . . . 161

ix





LIST OF TABLES

3.1 Summary of the most outstanding visual navigation approaches from

1987 to late 1990’s (1) . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Summary of the most outstanding visual navigation approaches from

1987 to late 1990’s (2) . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Summary of the most outstanding visual navigation approaches from

the late 90’s to the present (1) . . . . . . . . . . . . . . . . . . . . . 60

3.4 Summary of the most outstanding visual navigation approaches from

the late 90’s to the present (2) . . . . . . . . . . . . . . . . . . . . . 61

3.5 Summary of the most outstanding visual navigation approaches from

the late 90’s to the present (3) . . . . . . . . . . . . . . . . . . . . . 62

3.6 Summary of the most outstanding visual navigation approaches from

the late 90’s to the present (4) . . . . . . . . . . . . . . . . . . . . . 63

4.1 Rates of false positives and AUC for some of the analyzed scenes . . 83

1





Part I

Introduction
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This part presents the motivation and the necessary background to introduce

the reader in the main issues of this dissertation.

Chapter 1 proceeds with the general motivation that lead to understand the

importance of the algorithms presented in this dissertation, circumscribed in the

context of navigation strategies for autonomous robots. Next, the principal re-

quirements for the new algorithms are outlined. The aim is overcoming several

limitations encountered in other visual approaches, and designing a system suitable

in environmental conditions as general as possible.

Chapter 2 examines in the first section the different types of control architectures

for mobile robots, emphasizing and reviewing the concepts of deliberative, reactive,

map-based or mapless systems. The second section of this chapter introduces the

background of the localization problem.

Chapter 3 surveys the most outstanding approaches on visual navigation from

the final eighties up to nowadays. The review of all these pieces of work places the

reader into the main problems encountered during all these years concerning how to

extract and interpret the environmental information from digital images. Reviewing

a wide range of visual navigation approaches leads to a complete comprehension of

what has been done until the moment and what is still remaining to be done. Of

course, all these pieces of work have been an important source of inspiration for this

research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In general, autonomous robots must be endowed with all the necessary capabilities

to move safely through their operative areas while executing the intended tasks,

such as efficiently proceeding towards a target point.

The optimization of routes is also linked with the ability of the autonomous

mobile agents to detect obstacles, and to determine which is the best option to avoid

them, bearing in mind that the final objective is to reach the target. Optimizing

routes means optimizing time and energy resources.

The different navigation techniques addressed to mobile robots can be roughly

divided in map-based and mapless systems [18]. Map-based systems plan routes and

their performance on the basis of the map loaded in the robot core. Mapless systems

have no prior knowledge of the environment, analyzing it on-line to determine the

route to follow.

Both different techniques commonly need to deal with the robot position. In

the case of map-based techniques, the robot must be self-located inside the map

and along the planned path. In mapless systems, the robot needs to know its self

global coordinates to control its route towards the different targets.

A third type of navigation system corresponds to some navigation approaches

that do not assume any previous knowledge of the environment but they include

the implementation of local occupancy maps that show the presence of obstacles
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in the vicinity of the robot. These systems try to perform a symbolic view of the

surrounding world and can be considered as hybrids because they combine some

typical aspects from the map-based systems with some other from the mapless

systems. These maps are updated on-line and used to navigate safely.

Obstacle detection and collision avoidance are crucial abilities that have to be

included in any navigation system addressed to mobile autonomous agents. This

is particularly important in mapless or hybrid navigation approaches, where the

robot has no information about the environment where it has to operate. Range

sensors, basically ultrasonic and laser, have been traditionally used for obstacle

avoidance and mapless navigation in structured and non-structured scenarios [5]

[136]. However, the former are only able to provide sparse sets of readings and thus

aggregating a group of them is necessary to cover a relatively wide field of view,

while the latter are still expensive if one wants to scan also a relatively wide range

of orientations. Lately, visual solutions have emerged as competitive alternatives

because of the low cost of cameras, the richness of the provided sensor data and

the larger spatial and temporal resolution available. The increasing capabilities

of nowadays computers, make it possible to successfully perform image processing

in real-time, and thus to run on-line navigation, obstacle avoidance, mapping and

localization algorithms.

As previously mentioned, another crucial task in mobile robotics is the contin-

uous estimation of the robot pose, or self-localization for short. This task usually

involves the use of proprioceptive sensors such as wheel odometers, gyroscopes or

accelerometers. However, the information that is obtained by these sensors can not

be entirely trusted during long paths since they are liable to drift. Then, exterocep-

tive sensors have to be used to correct position data and to close the localization

loop. Similarly to navigation, range sensors constitute the traditional approach

for robot localization [51], [26] but vision-based solutions have progressively been

emerging over the rest, principally visual odometry approaches (for example [161] )

and, more sophisticated, visual SLAM (see for example [152] and [30] among many

other solutions). Many of this visual localization approaches make use of EKFs

(Extended Kalman Filters). World-centric EKF-based localization algorithms deal

with all pose information measured with respect to the global fixed coordinate

frame. These systems present inconsistencies in the pose estimations caused by

errors accumulated due to the linearization process inherent to the EKF [90]. Con-

versely, in robocentric approaches all coordinate measurements are computed with
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respect to the robot position. This allows to deal better with linearization errors

than traditional filter-like world-centric systems [29].

If a camera is already used for navigation and obstacle avoidance, it is desirable

to take advantage of it when estimating the robot pose, so that the robot sensorial

equipment can be reduced. Moreover, if the same data gathered to perform one

of these tasks is also utilized to perform the other, then, the system might also

simplify its software design and its computational charge. Consequently, one of the

objectives of this work is the design of a system capable of performing the tasks

of obstacle detection, collision avoidance, navigation in a reactive context and self-

localization, using a single visual sensor and the same data set of environmental

information.

Moreover, an exhaustive analysis of the state of the art in visual navigation

would reveal some important deficits in the solutions proposed up to now, leading

to the possibility of offering new or improving proposals. For example, there are a

lot of solutions based on image segmentation, but they fail when the illumination

conditions are deficient or in front of highly textured floors. As another example,

other systems try to find relations between coplanar points in successive images,

but this requires a method to discriminate the different planes of the scene and

to assign each image point to the corresponding plane, which can be a challenging

task in intricate scenarios. Therefore, the other principal objectives of this thesis

will be: a) surveying the most of the visual navigation approaches, from the late

nineties until nowadays, to analyze the main weak and strong points, and to see

possible ways for new contributions, b) designing a new system that overcomes the

principal vulnerabilities, at least, as many as possible, found in the surveyed pieces

of work with the unique constraints of assuming a flat ground and knowing the

camera world coordinates, its pitch and yaw angles and its speed of motion.

1.2 Document Structure

The rest of the document is organized as follows:

Part I [Chapters 2]: Reviews robot architectures and general concepts about nav-

igation and localization are introduced to understand and to easily follow the

subsequent presented thesis and developments.

[Chapter 3]: Extensively reviews the main research contributions on visual
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navigation from the late nineties until nowadays. The final discussion included

in this chapter reveals the strong and weak points of the main trends reviewed

in the survey and proposes the general requirements and the general outline of

the contribution described in this thesis, specially designed to overcome some

of the described problems.

Part II describes the complete Navigation algorithm: the obstacle detection, the

occupancy map building, the navigation strategy and the localization process.

[Chapter 4] details: a) the image feature classifier and its assessment using

ROC (Receiver Operating Characteristic) curves, b) the obstacle detection

process and the computation of range and angle with respect to the robot,

c) the process of local map building and some preliminary tests to prove

the suitability of the proposed obstacle detection algorithm in autonomous

navigation missions.

[Chapter 5] exposes the experimental assessment of different feature descrip-

tors and trackers and concludes which is the one that supplies the best results

to our system.

[Chapter 6] states the overall navigation strategy and shows a set of exper-

imental results in which the robot must go from a starting point to a goal

point in different scenarios with different problems.

[Chapter 7] focuses on solving the localization problem using an EKF and

presents an extensive set of real experiments conducted indoors and outdoors.

Part III concludes the present document, suggests the forthcoming work to extend

the research described here and presents a list of all the related publications.
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CHAPTER 2

BACKGROUND

2.1 The Navigation Problem: Control Architec-

tures

Talking about the navigation problem one can get a little bit confused, since it is not

clear how many concepts these terms can include. In autonomous mobile robotics,

the navigation problem basically refers to the ability of the agent to move through

the environment from a starting point to one or several targets, without collisions

and in an efficient way in terms of mission achievement [104, 37]. Navigation abilities

might need to increase in underwater or in aerial robots, since they must take into

account the three dimensions, contrarily to the terrestrial robots, which are more

likely to consider only two dimensions.

Navigation capabilities will be given by the software architecture installed and

used to control the robot. The software architecture determines the general abili-

ties of the robot, for example: building maps or interpreting them for navigating,

detecting obstacles, learning from the environment, computing its own pose, or

matching all it perceives with the data stored in memory.

In the literature there are many different descriptions refering to control architec-

tures. People from different fields have their particular vision of how architectures

have to be defined and which must be their competences in an autonomous agent.

Let us propose a compilation of several well accepted definitions to compose a rough
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description of this term:

• From the software point of view, a robot control architecture is a highly specific

collection of software building blocks, their interfaces, usability and organi-

zation between them to provide the control system with a particular global

functionality. All software components are installed in the robot core com-

puter, and are specifically dedicated to manage the robot behavior. However,

lately, distributed control architectures share resources and efforts between the

robot and some external control units. The software architecture generates

orders directly addressed to the actuators, according to, a) the environmental

conditions captured via the different sensors, b) a collection of preprogrammed

actions designed to respond to any different external stimulus, and c) a set of

planned tasks.

• From a more functional point of view, a control architecture is the set of

structural software components that provide the robot with the capability of

performing its three main functions: to perceive, to reason and to act [7].

It is commonly accepted that robot architectures can be classified as deliber-

ative, reactive or hybrids. Pure reactive or deliberative systems are each one in

one extreme of the spectrum, while hybrid systems combine the advantages of both

trying to minimize their disadvantages.

The main characteristics of these architectures are exposed in the following sec-

tion.

2.1.1 Deliberative Control Architectures

General Outline

In deliberative architectures, navigation or action decisions are taken on the basis

of pseudo-logical reasoning derived from: a) the previous analysis of environment

models, or b) the recognition of landmarks or predefined patterns, or c) guided tours,

or any kind of previously programmed plan of actuation based on the knowledge of

an already explored scenario.

Deliberative agents usually need to be provided with some kind of representation

of the environment to perform their programmed tasks. These world models can be

12



built either by a tele-operated agent, or by an autonomous mobile robot, previously

to the autonomous navigation stage or simultaneously to it.

During the autonomous navigation phase, a deliberative agent must continuously

contrast the data contained in the stored model with the data that the sensorial

equipment captures online from the environment. By comparing the stored data

with the perceived data, the robot is able to localize itself and, depending on its

position and state, it is also able to run the corresponding planned actions. In-

formation flows from the sensors to the world model and from the world model to

the actuators, but never in the reverse manner. According to this, agents involved

in map building tasks and map-based deliberative systems have to be specially

accurate in:

a) translating the real world into a sufficiently accurate model with an adequate

symbology to be useful for logical reasoning,

b) representing the complex, or sometimes dynamic, real world entities and events

in order to be useful for itself or for others to work with them, and

c) analyzing the environmental information and generating the corresponding rea-

soning in time to be able to react online to the events produced in the envi-

ronment.

The lack of precision in any of these three important points can lead to an inadequate

world representation and thus to an inefficient robot, either in the planning or in

the acting performance.

Then, it is reasonable to define three main logical and symbolic layers, known

as the SPA (Sense-Plan-Act) approach, for the classic deliberative architectures [7]:

1. Sensorial module: this is the module dedicated to incorporate the data cap-

tured by the sensors into the world model.

2. Planner: this module must execute a plan for a determined goal, taking into

account the perceived environment.

3. Execution system: its task is to translate the plan into navigation orders for

the different actuators.

In consequence and summarizing, the main shortcomings of these kind of agents

that can induce incorrect robot behaviors are:
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• The inaccuracy of the sensors derive to errors in the world modeling process.

These errors in the world model can affect the planning, in the same way that

sensor errors affect the mapping task.

• Deliberative agents can be ineffective in dynamic environments when the fre-

quency of the events occurred in the real world is higher than the time the

robot needs to sense, plan and act.

Map Building

Although some visual reactive or hybrid systems can simultaneously build local

maps and/or localize themselves, the construction and the use of maps of the com-

plete environment is mostly inherent to deliberative architectures. Maps can be

either needed for human guidance and thus they are built to be interpreted by hu-

man beings, or they can be used by an autonomous mobile robot for navigation

tasks or path planning. In this case, maps need to be interpretable by the robot

but not necessarily by a human being.

There exist two major paradigms for mobile robot mapping: Metric and Topo-

logical maps.

Metric Maps : Metric maps are built using fine metric information of the envi-

ronment, that is, distances, measures, sizes, heights, angles, etc... and they

are referenced to a global coordinate system (so-called the world coordinate

system in this document). These maps are intended to use metric informa-

tion as accurate as possible since they try to represent the environment as

precisely as possible. To this end, agents dedicated to map-building must pay

special attention to the sensors that are used to retrieve the environmental

information. Sensors for metric map building must be specially calibrated and

uncertainties in their measurements have to be taken into account to antici-

pate possible errors in the map. Metric maps have the additional problem of

accumulating too much data, considerably increasing the storage needs of the

system and the computational time.

The metric map building problem is strongly linked to the localization prob-

lem. On the one hand, for building maps as accurate as possible it is necessary

to know the exact localization of the robot at each moment. And, on the other

hand, for a correct localization, in many cases it is important to be provided
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with a map as accurate as possible. Errors in the mapping procedure, caused

basically for sensor inaccuracies are also translated into localization inaccu-

racies, and vice-versa. Concurrent or simultaneous localization and mapping

has become in the last decade one of the most challenging problems in the

robotics research, either using vision, ultrasounds or laser as the main sensor.

One of the most extensively used metric map configurations that deserves a

special attention is the Occupancy Grid. Occupancy grids divide the envi-

ronment in rectangular cells. Each cell is labeled with a certainty of being

occupied by an obstacle or a part of it. As it is exposed in the next chap-

ter, Occupancy Grids can represent a vast outdoor region, a complete indoor

environment, or simply the vicinity of the robot (local maps). These local

map-based systems can be considered to be in the borderline between the

deliberative systems and the hybrid ones since they try to infer a map of the

environment but only of the portion very close to the robot, which is a certain

sign of reactiveness.

As it is shown in chapter 3, a lot of approaches performing Occupancy Grids

are found in the literature. Ultrasounds, laser range finders and visual sensors

have been indistinctly used for building them.

Topological Maps : Topological maps are coarse abstract representations of the

environment, usually denoted by a graph with nodes and links between nodes.

Nodes represent different points, sites, landmarks or features of the environ-

ment and links represent or can be labeled with actions or relationships be-

tween the different nodes. For example, links can represent time of traveling

from one point to another or an approximate distance. Topological maps are,

in general, not referenced to any coordinate system and they generate much

less information to be stored than metric maps. Furthermore, the localization

problem relaxes its constraints to a location recognition and these systems

are less vulnerable to noise or sensor inaccuracies. However, topological maps

are, in general, useless for obstacle detection and avoidance.

Some authors have analyzed both paradigms and explored hybrid (metric-

topological maps) solutions where the benefits of both techniques are com-

bined [142], [195], [199].
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2.1.2 Reactive Control Architectures

General Description

Reactive systems usually do not need any previous knowledge or abstract represen-

tation of the navigating environment. Instead, navigation decisions are taken as the

information of the surroundings is perceived, trying to couple perception to action

in the best possible way. Purely reactive systems directly react as they perceive

the world, avoiding obstacles or evaluating online the best choice for getting the

destination point through the optimal path. These systems are often used in robot

navigation approaches since they are usually faster than map-based systems.

Purely reactive architectures are an application of the sense and act paradigm.

Environments where robot moves can be unstable or dynamic, and, in these cases, it

is convenient to fit the robot with a set of high level rules to be able to overcome all

unexpected situations. Another key issue of these systems is to appropriately sense

the environment and often enough to be able to properly generate the navigation

decisions. Therefore, putting all efforts in the sensing systems instead of in the

planning systems is very important to design a useful reactive architecture. The

sensors the robot is equipped with have to be convenient enough to cover all tasks

in all environments. Remarkably, reactive systems can properly react in hazardous

or highly dynamic environments, where a great level of unpredictability can cause

the robot to get stuck.

Reactive architectures are usually composed by a set of preprogrammed rules,

so called behaviors, which try to give fast and accurate response to the different

situations appeared during the navigation process.

Behavior-based Architectures: An Overview

The core of a reactive architecture is usually formed by a collection of predefined

directives which state each robot response for each possible external stimuli or

situation that the robot is able to perceive.

These directives are commonly known in the robotics field as behaviors, and

they are embedded in a bottom-up hierarchical collection of modules with different

levels of abstraction. High level modules implement the abstract representation

of behavioral rules and the low level modules implement the physical communica-

tion with sensors and actuators. Each behavior can be implemented by a software

module and the system can add, remove, enable or disable behaviors as needed.
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Robotic Behaviors can be designed according to different criteria, for example

[7]:

• In the last decades, many researchers have focused their efforts in trying to

extrapolate the behavior of some animals, basically some insects, to the robot

behaviors. Animals provide powerful insights of how robot behaviors can be

constructed.

• Designs are often based on the activities in which the robot is involved or

on the situations in which the robot is found itself. The robot actuation is

simplified to identify a determined situation and choosing the pre-programmed

proper action to overcome it.

• Some other robot architecture designers prefer to firstly prove that it has been

previously demonstrated that all the pre-programmed behaviors are suitable

to give response to all the possible considered situations Behaviors are de-

bugged in real world and modified or recycled until they exhibit satisfactory

performance.

One of the most popular behavior-based technique found in the literature is

the Potential Fields method [97]. This method was developed to generate smooth

trajectories in navigation tasks and can be roughly defined as the method of appro-

priately combining different behaviors represented by repulsive or attractive action

vectors. Vectors are related to obstacles and targets as a repulsive or an attractive

force, respectively. Forces potential drop off with the square of the distance be-

tween objects and the robot. The robot is affected by the repulsive forces coming

from nearby obstacles and by the attractive force generated by the goal point. The

different forces (repulsive and attractive) are combined to yield a single field. The

resulting force vector determines the trajectory direction and speed.

The techniques based on potential fields is not exempt of problems. Its main

pitfalls are [100]:

1. The method is vulnerable to local minima, which makes the robot stay trapped

in between certain obstacle configurations.

2. Attempting to pass through closely spaced obstacles or door apertures is not

properly solved.
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3. The system can get unstable if there are irregularities in narrow passages or

in the presence of multiple obstacles.

When a behavior-based control architecture is in operation, behaviors can be in-

dividually applied or can be fused to obtain different or more appropriate responses

to a vaster range of unpredictable situations. This is commonly known as behaviors

coordination. The coordinator usually acts as the mapper between stimulus and

motor orders. There exist two main techniques to combine (coordinate) different

behaviors, namely, competitive and cooperative methods:

Competitive methods : When in a determined situation several behaviors are

simultaneously active and get in conflict, these conflicts are resolved by the

coordinator choosing the most appropriate behavior for each situation. For

example, each behavior can obtain a different number of votes depending on

the results obtained in previous experiences, or the coordinator response can

be the result of the application of a set of rules.

Cooperative methods : The different behaviors are combined in such a way

that the system takes advantage of the best of all concurrent behaviors and

rejects their hazards. This method permits to concurrently use more than one

behavior at the same time. Each behavior has a relative gain, which is used to

multiply the behavior output module before they are combined. The Potential

Fields method can be considered one of the approaches where different actors

cooperatively participate in the final robot steering decision.

2.1.3 Hybrid Control Architectures

On the one hand, when an agent is moving in scenarios that can guarantee a high

level of stability or when the estimation of the location of the agent in the world

is absolutely necessary, then, systems with a higher degree of deliberativeness are

preferred (planning, positioning, landmark detection and following, local mapping

performance, among other functionalities). Furthermore, it is difficult for reactive

agents to organize themselves or coordinate their behaviors with other agents in a

non-trivial way.

But, on the other hand, even if a complete map of the environment is pro-

vided, robots need some kind of rules to apply when unexpected situations appear,
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unlikely detectable with some kind of sensor configurations or architectures. De-

liberative systems dedicated to dynamically build maps or locate themselves need

an implementation of some kind of reactive behaviors to detect and avoid obsta-

cles. Furthermore, the knowledge of the world model may help to avoid potential

hazardous situations.

Consequently, many researchers feel that hybrid systems, which combine delib-

erative reasoning with reactive behaviors, are necessary to maximize the potential

of the automatic agents. In hybrid architectures, robot behaviors are designed or

built in accordance with the tasks that have to be executed, while planned schemas

can anticipate environmental conditions so as to apply the behavior that best fits at

each situation. A priory world knowledge or dynamically acquired environmental

information can be even used to efficiently reconfigure some of the existing behav-

iors.

Hybrid systems are normally designed in a hierarchical structure. Lower levels

are occupied by reactive modules acquiring information of the environment and

interacting with the sensors and actuators, and deliberative modules lie in the upper

level for goal determination, planning, decision making, localization or map building

tasks.

2.2 The Localization Problem

2.2.1 Overview

The majority of applications involving autonomous robots need to know or deal with

the robot position in the environment. For instance, in missions between defined

or preprogrammed points, the robot pose is needed to evaluate if the goal points

have been reached or not. In surveillance, exploration or mapping operations, the

location of the robot is crucial because it is the only way to know which parts of

the environment have been covered and which sites are still unexplored.

Depending on the nature of the sensorial robot equipment, localization tech-

niques can be roughly classified as:

• Open-loop methods which are also known as dead-reckoning. The robot po-

sition is estimated from the data given by the proprioceptive sensors such as

wheel odometers, gyroscopes or accelerometers. These sensors provide rela-

tive measurements with respect to the last captured information and the pose
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is obtained integrating this information with any observation of the environ-

ment. Due to this integration process, boundless errors in the pose estimations

are accumulated with time and length.

• Close-Loop methods which make use of exteroceptive sensors to observe the

environment. Pose estimations are computed from data given by propriocep-

tive sensors corrected by data observed and captured from the environment.

Since dead-reckoning data is continuously being corrected by observations,

pose errors can be controlled.

Mobile robot localization is not the main concern of this thesis, but it is devel-

oped as a complement of the navigation approach. The aim is to correct the robot

pose given by its proprioceptive sensors. In our system, inaccuracies in the robot

pose can affect the obstacle localization and, thus, the navigation task.

There are different interpretations of the localization problem. Some systems

need to know their position in a qualitative manner, analogously to a topological

map. In these cases it is enough to know if the robot has been in a certain labeled

place as obstacles are approximately located in the environment representation.

Other localization approaches compute accurate numerical pose estimates with

respect to a reference frame. In these type of localization systems, the problem thus

consist on calculating the robot coordinates with respect to a fixed world coordinate

system: (x, y, z, θ, ϕ, φ) (translation and rotation) if the robot as a total of 6 degrees

of freedom, for example in underwater or aerial robotics, or (x, y, θ) if the robot is

moving in a plane (3 degrees of freedom), as for terrestrial robots.

If the initial robot pose is unknown, this is called the global localization problem.

Contrarily, the pose tracking or local localization refers to those systems where the

initial pose is previously known. Normally, all localization problems start being

global and continue being local once the robot has located itself in the environment.

General pose tracking approaches compute the position at one time t from the

position at instant t − 1 and some additional information captured from the envi-

ronment, such as the position of natural or artificial landmarks.

2.2.2 Closed-loop Localization

Concerning closed-loop localization, one of the most relevant methods is the one

based on landmarks.
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A landmark is an element of the imaged scene that can be detected or recognized

by the robot from its sensors and used as a reference point to compute its own

position. The common localization or mapping models assume that the robot can

measure the range and the bearing of all the landmarks, with respect to the robot’s

current pose.

Landmarks can be passive or active. Active landmarks continuously transmit

information of location to the robot. They have the advantage of being easy to

detect and that the location information is sent directly to the robot. However,

they need a power supply and additional technical infrastructures which increase

cost and maintenance. Passive landmarks do not emit any sign, and they have to be

recognized on-line. They are cheaper and easy to design and maintain, but require

more sophisticated software in the robot side. Furthermore, passive landmarks have

to be invariant to scaling, rotation, and viewing angle to facilitate their successive

detection and identification. From now on, we will refer only to passive landmarks.

Landmarks can also be natural or artificial. Artificial Landmarks are specifically

designed to be recognized by the robot. They can be deliberately placed on the envi-

ronment or simply be on it, but in all cases the robot has a certain knowledge about

their characteristics which normally rely on some kind of structured information.

Traditional visual localization approaches based on passive artificial landmarks

try to identify colors, shapes, patterns, textures, or, for instance, barcodes (see for

example, [156], [31], [213] ).

Navigation and localization systems based on natural landmarks [17] [175] have

emerged over the ones based on artificial landmarks. These systems do not have

any previous knowledge of the landmark characteristics or location. A particular

type of visual localization algorithms search for distinctive regions in the image,

considering them as the set of referenced natural landmarks. Image distinctive

regions are normally labeled with a descriptor based on surrounding image data.

These points, so called features or corners, are image points with significant visual

characteristics that can be easily tracked across consecutive images. As a matter

of fact, image feature detection and tracking has become itself in a research area of

growing interest. Image features are used for visual odometry, localization, mapping

and navigation approaches. Section 3.3.2 overviews the general principles of feature

detection, lists their most significant solutions found on the literature and supplies

a set of visual-navigation outstanding approaches based on tracking image features.

Many localization approaches assume that the robot has been equipped with
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a map of the environment. Inversely, many map building approaches need the

pose information to self-locate in the map. In these cases, they must assume that

the localization problem has been previously solved. The SLAM (Simultaneous

Localization and Mapping) techniques are devoted to implement systems able to

incrementally build maps from unknown environments and to simultaneously self-

locate within these maps.

Early SLAM techniques were performed from data provided by range sensors.

But, analogously to navigation and localization, interest in visual SLAM has been

significantly growing during the last years.

Some visual localization, odometry or visual SLAM powerful solutions track

uniquely identifiable features in consecutive frames and integrate them in an EKF

(Extended Kalman Filter) ([154, 209, 39]). The filter continuously corrects and

stabilizes the information included in its state vector and it can provide future

estate estimations. Theory and applications of EKF localization and SLAM are

extensively detailed in [198].

Once the basis for contextualizing all the work presented in this thesis have been

given, next sections will introduce the related work and proceed with the navigation

and the localization algorithms.
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CHAPTER 3

VISUAL NAVIGATION: STATE OF

THE ART

3.1 Introduction

Different types of sensors can be used for navigation purposes, deriving into a var-

ied spectrum of solutions. In particular, in the last three decades, visual navigation

for mobile robots has become a source of countless research contributions. Naviga-

tion strategies based on vision can increase the scope of applications of any kind

of autonomous mobile vehicles (land, aerial or underwater). Among the different

proposals, this chapter surveys the most outstanding ones. Since in many cases

the performance of a good navigation algorithm is deeply joined to an accurate

robot localization approach, some vision-based localization solutions have also been

included in this chapter.

Regarding the type of control architecture, navigation systems can be roughly

divided in those that need previous knowledge of the whole environment (delibera-

tive) and those that perceive the environment as they navigate through it (reactive).

Visual systems that need or produce a map can be included in one of these main

groups:

• Metric map-using systems, which need to be provided with a complete metric

map of the environment before the navigation task starts.
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• Metric map-building systems, which build the whole metric map of the envi-

ronment by themselves and use it in the subsequent navigation stage.

• Topological map-based systems, which build or use topological maps for navi-

gating.

Mapless visual navigation systems mostly include reactive techniques that use

visual clues derived from the segmentation of an image, optical flow, or the track-

ing of features among frames. No global representation of the environment exists;

the environment is perceived as the system navigates, recognizes objects or tracks

landmarks.

Concerning visual sensors, most configurations are based on monocular and

binocular (stereo) systems, although others based on trinocular configurations also

exist. Omnidirectional camera systems are another type of structures that are

gaining popularity because of their advantages: i) omnidirectional cameras have

a 360◦ view of the environment, ii) with this kind of cameras it is easier to find

and track features, since they stay longer in the field of view. Omnidirectional

cameras are usually obtained combining a conventional camera with a convex conic,

spherical, parabolic or hyperbolic mirror.

The progress made in vision-based navigation and localization for mobile robots

up to the late 90’s was widely surveyed by DeSouza and Kak in [49]. After the late

90’s, some authors have hardly surveyed this area: examples are Kak and DeSouza

[95], whose work is restricted to navigation in corridors, and Abascal and Lazcano

[1], whose work is restricted to behaviour-based indoor navigation. A remarkable

outline of navigation and mosaic-based positioning solutions for AUVs can be found

in [43, 44] and a wide list of underwater vision tracking techniques was surveyed in

[202].

The survey presented in this chapter mostly covers the work performed from

the late nineties until the present day, and includes all the topics related to visual

navigation.

3.2 The primary techniques until the late 90’s

De Souza and Kak in [49] structure robot visual navigation in two main subjects:

indoor navigation and outdoor navigation. Outdoor navigation is in turn subdivided

in structured and unstructured environments, while indoor navigation is subdivided
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in map-building-based navigation and mapless navigation. Tables 3.1 and 3.2 sum-

marizes all visual navigation techniques until the late 90’s included in [49].

3.3 From the late 90’s up to present

In the last decade, the techniques included in tables 3.1 and 3.2 have matured

into more refined versions, or have evolved into other more accurate and efficient

systems. This variety of old and new techniques have extended the amount and

quality of research in this area and their applications. This section surveys most of

these studies distinguishing between map-based and mapless solutions.

3.3.1 Map-based Systems

This section considers techniques that build and/or use metric or topological maps.

Metric Map-using and -building Navigation Systems

This group includes systems that need a complete map of the environment before

the navigation starts.

Metric map-using systems are unable to map the environment and they need

to be equipped with it, while metric map-building systems explore the environment

and automatically build its map. The navigation phase starts only if the map of

the environment is available for the robot or after the map has been built. The map

information can be either directly used for navigation, or it can be post-processed

to improve its accuracy, and thus to calculate more precise localizations. This is the

navigation technique that requires more computational resources, time and storage

capability. Since outdoor environments can be large in size and extremely irregular,

visual navigation techniques based on maps are in most occasions applied to indoor

environments.

Map building and self-localization in the navigation environment are two func-

tionalities that deliberative systems tend to incorporate. In map-building standard

approaches, it is assumed that the localization in the environment can be computed

by some other techniques, while in pure localization approaches, the map of the en-

vironment is presumably available. Robots using pure localization approaches need

to track their own position and orientation in the environment in a continuous way.

Accurate metric maps are essential for good localization, and precise localization
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Table 3.1: Summary of the most outstanding visual navigation approaches from
1987 to late 1990’s (1)

Authors Indoor-
Outdoor

Category Method

[20, 99] Indoor Map based Force Fields

[22, 149] Indoor Map based Occupancy Grids

[33] Indoor Map based Occupancy Grids

[188, 58, 196] Indoor Map based Absolute Localization

[8] Indoor Map based Absolute Localization

[128] Indoor Map based Incremental Localization

[205] Indoor Map based Incremental Localization

[38] Indoor Map based Incremental Localization

[101, 132, 131,
150]

Indoor Map based Topological Map. Incremen-
tal Localization

[94] Indoor Map based Landmark Tracking

[84] Indoor Map based Landmark Tracking

[138] Indoor Map building Stereo 3D reconstruction

[192] Indoor Map building Occupancy Grid

[21] Indoor Map building Occupancy Grid

[195] Indoor Map building Grid and Topological Repre-
sentation

[167] Indoor Mapless Optical Flow
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Table 3.2: Summary of the most outstanding visual navigation approaches from
1987 to late 1990’s (2)

Authors Indoor-
Outdoor

Category Method

[15] Indoor Mapless Optical Flow

[50] Indoor Mapless Optical Flow

[124] Indoor Mapless Appearance-based Naviga-
tion

[93] Indoor Mapless Appearance-based Naviga-
tion

[146] Indoor Mapless Appearance-based Naviga-
tion

[204] Outdoor Mapless Road Following

[71, 70, 72, 73] Outdoor Mapless Road Following

[203] Outdoor Mapless Road Following

[194] , [193] Outdoor Mapless Road Following

[155], [91] Outdoor Mapless Road Following

[208] Outdoor Mapless Random Exploration

[103] Outdoor Map building Given Mission Exploration

[127] Outdoor Mapless Random Exploration
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becomes necessary for building an accurate map. If the exploration and mapping of

an unknown environment is automatically done online, the robot must accomplish

three tasks: safe exploration/navigation, mapping and localization, preferably in

a simultaneous way. SLAM (Simultaneous Localization and Mapping) and CML

(Concurrent Mapping and Localization) techniques search for strategies to simulta-

neously explore, map and self-localize in unknown environments.

Davison and Kita discuss in [48] about sequential localization and map build-

ing, review the state of the art and expose the future directions that this research

domain should take. Furthermore, they present a tutorial of first-order relative po-

sition uncertainty propagation and a software to perform sequential mapping and

localization.

Sim and Dudek [177] proposed a framework to learn a set of landmarks and

track them across the sequence of images maximizing the correlation of the local

image intensity. Landmarks are characterized with position parameters and subse-

quently used by the robot for self-localization. Sim and Dudek [178] extended their

previous work with a new strategy for environment exploration and map build-

ing, maximizing coverage and accuracy and minimizing the odometry uncertainties.

This proposal maped image features instead of performing a geometrical representa-

tion of the environment, operating and managing the framework presented in [177]

and adapting an Extended Kalman Filter localization framework described in [182]

and [106]. In this approach, exploration policies were chosen among a great number

of possibilities: (1) seed spreader, by which the robot followed a predefined naviga-

tion pattern throughout the environment; (2) concentric, where the robot followed

concentric circular trajectories, with their center in the starting point, and the di-

rection of movement changing at every circle; (3) figure eight, by which the robot

followed eight-shaped concentric trajectories; (4) random, where the robot moved

randomly; (5) triangle, by which the robot moved in concentric closed triangular

trajectories; (6) star, where the robot moved along a set of rays that emanate from

the starting point. Experimental results in [178] showed that, exploration efficiency

(measured in observed images definitely inserted in the map) divided by the total

number of processed images, was maximum for the concentric policy, and minimum

for the star policy. Besides, the mean error in odometry was maximum for the

random policy and minimum for the concentric policy.

Sim et al [179, 180] solved the SLAM problem with a stereo pair of cameras and a

Blackwellised particle filter. The system implemented a hybrid approach consisting
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of 3D landmark extraction for localization, and occupancy grid construction for safe

navigation.

AQUA is a visually guided amphibious robot developed by Dudek et al [53, 67].

This system runs on land and swims into the water. Using a stereo trinocular

vision system, it is capable of creating 3D maps of the environment, locates itself

and navigates.

In [46], Davison reported a new Bayesian framework that processed image infor-

mation of a single standard camera to perform localization. Weak motion modeling

is used to map strong distinguishable features, which are used to estimate the cam-

era motion.

Wide angle cameras present a much wider field of view than standard lens cam-

eras. Therefore, features are visible longer and are present in more frames. Due

to the distortion introduced by a wide angle lens, a previous calibration process

has to be performed in order to get corrected images from original frames. In [47],

Davison et al extended their previous work by substituting the 50◦ standard camera

with a 90◦ calibrated wide angle camera, leading to a significative improvement in

movement range, accuracy and agility in motion tracking. Camera calibration im-

proves the calculation of relative positions, and consequently improves the accuracy

of the localization process. On the other hand, the Shi and Tomasi algorithm [173]

was adopted in [47] to extract the position of the image features, which were used

as landmarks to guide the navigation process. Experimental results proved that

with a wide angle camera some aspects were improved: i) the camera motion could

be better identified, with particular improvements on rotational and translational

movements estimation, ii) the range of movements increased, and large motions or

motions with great acceleration were better dealt with, since they appeared much

less abrupt.

Schleicher et al [168] used a top-down Bayesian method-based algorithm to per-

form a vision-based mapping process consisting in the identification and localization

of natural landmarks from images provided by a wide-angle stereo camera. Simul-

taneously, a self-localization process was also performed by tracking artificial known

features (landmarks). The position of these features was determined through the

combination of the epipolar line concept, characteristic from stereo theory, and the

calculation of the fundamental matrix. The authors proved that using the redun-

dancy of the information extracted from the images of both cameras increases the

robustness and accuracy, and decreases the processing time of the procedure. To
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prove the improvements of the stereo-based solution. the system with a wide-angle

stereo camera was compared with a SLAM approach that used a single wide-angle

camera.

Some researchers have focused their work on approaches to recover 3D environ-

ment structures and/or to estimate robot motion models from vision information

[129, 201].

Manessis et al addressed the 3D environment reconstruction problem using im-

age sequences captured from n different camera views [117]. The two main contri-

butions of this proposal are: i) a new geometric theory for surface recovery from

3D sparse data and ii) an algorithm based on a recursive structure from motion

(SFM) method, which is used to estimate the location of 3D features and then to

reconstruct the scene.

The classic process of building a 3D map using stereo images was refined by

Wooden [211] under the DARPA-sponsored project Learning Applied to Ground

Robots (LAGR), and particularly applied on its robot LAGR. The map building

process consisted of four main steps:

• the captured stereo images were transformed into a three-dimensional repre-

sentation by matching small patches in the two images,

• the real possible position of image points were deduced from the geometrical

characteristics of the camera,

• a derivative was applied to the 3D map points to detect abrupt changes in

slope, as for example, trees, rocks, etc..., and,

• in order to decrease the resolution of the map and smooth some variations, the

result of the derivative was transformed into a cost map, where every point

value was the average of the values over a defined 1.2 m × 1.2 m region.

Once the map had been created, a process of path planning was used to navigate

through the environment.

When a robot explores an environment and constructs an occupancy grid, it

makes approach of where the free space is. In this case, the object shape is not

important, only the certainty that a fixed location is occupied by an object. In

some cases, it is important to recognize the objects because they have to be picked

up or manipulated, and, in other cases, it is paramount to recognize if the objects
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are on a table or lying on the floor. Following this trend, Tomono [200] proposed

a high density indoor map-based visual navigation system on the basis of on-line

recognition and shape reconstruction of 3D objects, using stored object models. A

laser range finder was also used to complement the information provided by the

camera. The proposed method contemplated three main issues:

• advanced objects model creation, before the navigation starts,

• on-line object recognition and localization, during the navigation stage and,

• placement of recognized objects in the 3D map of the environment.

Other map-based navigation techniques are those that impose a human-guided

pre-training phase. Kidono et al [98] developed an approximation to this type of

systems. In their contribution, a human guided the robot through an environment

and during this guided route, the robot recorded images with a stereo camera and

incrementally (frame by frame) constructed the 3D map on-line. After the map was

built, the robot was able to repeat the same route from the starting point to the

goal point, tracking features and computing the shortest safe path. In this solution,

the robot odometry was used to support the stereo vision sensor.

An outstanding evolution of this technique using a calibrated wide angle camera

came up from Royer et al [164]. The robot was guided by a human in a pre-training

navigation stage, recording images from the trajectory. A complete 3D map of

the environment was constructed off-line, using the information extracted from the

pre-recorded images. A collection of useful landmarks and their 3D position in a

global coordinate system were used for localization purposes, during the autonomous

navigation stage. At the beginning of the navigation process, the robot had to self-

localize in the starting point where it had been left, by comparing the current

image to all stored key frames to find the best match. The selected subsequent

images had to present a certain movement perception between them, to provide

the system with trackable feature information. Losing perceptual movement caused

problems to the algorithm. In these terms, the robot was able to follow the same

complete pre-recorded trajectory, saving a lot of time in the positioning process.

This approximation was basically directed to city navigation, rich in visual features,

and where kinematic GPS visibility can be hidden in a lot of places.

Several undersea map construction techniques combined with a proper and ac-

curate algorithm of position estimation can also be considered to belong to the
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CML category. In major cases, undersea bottom mosaics can be used by AUVs for

navigation purposes. Haywood designed a system to mosaic underwater floors using

images attached with accurate position coordinates [85]. Marks et al [118] devel-

oped a technique to implement real-time mosaics using correlation between on-line

images and stored images. In a subsequent work, and following the same trend,

Fleischer et al [60] improved the previous work [118] focusing on dead-reckoning

error reduction. Previous systems often assumed that the seafloor was plane and

static, and that the camera was facing it, making the image plane almost paral-

lel to the seafloor plane. Gracias et al [69] proposed a method for mosaicing and

localization that did not make any assumption on the camera motion or its rela-

tive position to the sea bottom. The system was based on motion computation by

matching areas between pairs of consecutive images of a video sequence. Finally,

Xu and Negahdaripour presented in [212] an interesting contribution to underwa-

ter mosaicing and positioning. The vehicle position was computed integrating the

camera motion from consecutive frames using Taylor series of motion equations,

including the second order terms, which in previous research was usually ignored.

Topological Map-based Navigation Systems

Topological maps are suitable for long distance qualitative navigation, and specially

for path planning. In general, they do not explicitly represent obstacles, walls or free

space so that obstacle detection and avoidance must be performed on line by other

means. Visual topological maps are simple and compact, take up less computer

memory, and consequently speed up computational navigation processes.

Winters and Santos-Victor [210] use an omnidirectional camera to create a topo-

logical map from the environment during a training phase. Nodes are images of

characteristic places and links are sequences of various consecutive images between

two nodes. During the navigation, the position is determined matching the online

image with previously recorded images. The matching process is performed with

an appearance-based method which consists of projecting every online image onto

an eigenspace defined by the covariance matrix of a large image training set.

More recently, Gaspar et al use [210] to map indoor structured environments and

emulate insect vision-based navigation capabilities [66]. The robot must be able to

advance along corridors, recognize their end, turn into the correct directions and to

identify doors. The division of the map into nodes allows splitting the navigation
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task into sub-goals. Every sub-goal is recognizable with landmarks and covers

the movement between two nodes; for instance, two doors joined by a corridor.

Navigation between two nodes works through detection of the corridor parallel sides

and generation of the adequate control signals.

Another topological map-based navigation strategy for indoor environments

comes from Košecka et al [102]. In a previous exploration stage, video is recorded

and, for each frame, a gradient orientation histogram is computed. After that, a

set of view prototypes are generated using Learning Vector Quantization over the

set of histograms gathered. Each histogram corresponds to a node in the topo-

logical map. During the navigation phase, the gradient orientation histogram of

each frame is compared with the view prototypes to determine the location it most

likely comes from using the nearest neighbor classification. In case the quotient of

the distances with the nearest and the second closest histograms/views is below a

certain threshold, the classification is considered correct and a location is obtained;

otherwise, the classification is refined by comparing sub-images of the new image

and the images in the database closest to the view prototypes.

Remazeilles et al proposed a system based on environment topological repre-

sentation and a qualitative positioning strategy [158]. Nodes were represented by

views captured in a training phase and edges represented the possibility of moving

from one scene towards another. The robot navigated tracking landmarks over con-

secutive frames and keeping them inside the field of view. The localization strategy

used in this approach is qualitative since it informs that the robot is in the vicinity

of a node, instead of giving exact world coordinates.

Museum guiding robots is one of the map-building applications that has proved

to be greatly useful, in contrast to other solutions that need the museum map to

navigate. These robots need to be autonomous in their missions, recognize people,

guide them through different environments and also avoid static and dynamic obsta-

cles, such as chairs, bookcases or other people. Because of the growing interest on

this application, two relevant contributions are reviewed in the following. Thrun et

al [197] developed MINERVA, a robot that used two cameras combined with a laser

sensor to build a complete map of the environment for the navigation process. Shen

and Hu [172] presented ATLAS, a museum guiding robot that combined topological

map building and appearance-based matching algorithms for localization. ATLAS

also incorporated a human face detection algorithm [14] used to actively approach

to new visitors.
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One of the problems in topological SLAM is to decide when to add a new node

in the map when new images are provided. Systems must be able to detect when

new images correspond to already visited locations, so to existing nodes, or to

new ones. This is the loop-closure detection problem particularized for topological

map building and localization. Approaches focused in solving this problem have to

be specially accurate since different images taken from different viewpoints or at

different distances can represent the same node. In [3], Bayes filters were employed

to calculate the probability of loop-closure detection each time a new image was

acquired. If the matching process was successful, the node information was updated

with the information retrieved from the last image. If not, a new node was added to

the topological map. Nodes were characterized with words. Word were formed by

incrementally combining similar SIFT features [112] stored in a visual vocabulary

(database of SIFT features with their descriptors). These words were also used to

determine the matching between acquired images and existing nodes.

More recently, Liu et al [108] described a novel scene recognition appearance-

based method for omnidirectional vision. Viewed scenes were compared with stored

scenes representing topological-map nodes. The method permits to recognize an

already registered place (as a map node) or to add a new node to the topological

map in case the scene has not been identified. For each scene, dominant vertical

lines define the regions for segmentation. For each region, the average color value

in the U-V space is extracted. This U-V average value and the width of the re-

gion delimited between two lines form the region descriptor. The descriptors were

invariant in rotation and to some illumination changes. Scene matching between

new scenes and existing nodes was performed computing the 2D euclidean distance

between color descriptors and recursively comparing the widths of the regions ac-

cording to an empirically determined inequality ( 1

3
< Width1

Width2
< 3 ). Every node was

characterized with more than one image and it was assumed that occlusions caused

by dynamic obstacles would not occupy more that a 30% of the total image.

Local Map-building Navigation Systems and Obstacle Avoidance

The strategies seen so far base their strength in a global description of the envi-

ronment. This model can be obtained automatically by the robot, or in a previous

human guided stage, but it has to be acquired before the robot begins the naviga-

tion. Since the early nineties, some authors have developed solutions where visual
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navigation processes are supported by the on-line construction of a local occupancy

grid. In vision-based navigation, the local grid represents the portion of the envi-

ronment that surrounds the robot and the grid size is determined by the camera

field of view. This local information can be used for a subsequent complete map

construction or simply updated frame by frame and used as a support for on-line re-

active navigation. Since robot decisions depend, to a large extent, on what the robot

perceives at every moment in the field of view, these navigation techniques arise a

disscusion about what can be considered deliberative and what can be considered

reactive vision-based navigation techniques.

Badal et al reported a system for extracting range information and performing

obstacle detection and avoidance in outdoor environments based on the computation

of disparity from the two images of a stereo pair of calibrated cameras [9]. The

system assumed that objects protrude high from a flat floor that stands out from

the background. Every point above the ground was configured as a potential object

and projected onto the ground plane, in a local occupancy grid called Instantaneous

Obstacle Map (IOM). The commands to steer the robot were generated according

to the position of obstacles in the IOM.

Gartshore et al [63] developed a map building framework and a feature position

detector algorithm that processed images on-line from a single camera. The system

did not use matching approaches. Instead, it computed probabilities of finding

objects at every location. The algorithm started detecting the object boundaries

for the current frame using the Harris edge and corner detector [82]. Detected

features were back projected from the 2D image plane considering all the potential

locations at any depth. The positioning module of the system computed the position

of the robot using odometry data combined with image feature extraction. Color or

gradient from edges and features from past images helped to increase the confidence

of the object presence in a certain location. Experimental results tested in indoor

environments set the size of the grid cells to 25 mm × 25 mm. The robot moved

100 mm between consecutive images.

Goldberg et al [68] introduced a stereo vision-based navigation algorithm for the

rover planetary explorer MER, to survey and map locally hazardous terrains. The

algorithm, first, computed epipolar lines between the two stereo frames to check

the presence of an object, second, computed the Laplacian of both images and,

third, correlated the filtered images to match pixels from the left image with their

corresponding pixels in the right image. The work also included a description of the
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navigation module GESTALT, which packaged a set of routines able to compute

actuation, direction, or steering commands from the sensor information.

Gartshore and Palmer presented in [64] a novel approach for complete unknown

environment visual exploration and map construction with a limited field-of-view

vision system. Afterwards they extended this work to more complex environments

[65]. No landmarks or way-markers were used, and once the navigation had started,

there was no human interaction. The exploration agent had to act as a human might

do, observing the current view of the environment, exploring it, and deciding in

which direction to advance to explore new areas. The main issues of the incremental

map building process were:

• Vertical edges were extracted from the current frame to define obstacle bound-

aries. In some cases, these edges did not correspond to obstacles, but to

shadows or specularities.

• To discriminate shadows or specularities from real obstacles, a confident mea-

sure was assigned to every edge point. Such a measure was a function of the

number of times the object had been seen and the number of times the same

area had been viewed.

• Features were connected with lines. These lines could either correspond to

objects or just be connecting lines traced for triangulation purposes.

• Lines were also labeled with a confidence of being an obstacle. According to

[116]: a candidate point to be labeled as an obstacle can not intersect the

line that joins the camera with a real obstacle. The confidence measures were

recalculated when points labeled as obstacles were viewed from another point

of view as occluding other real obstacles.

• Obstacles and triangulation information are stored in discrete grids.

Visual Sonar

In recent years, visual sonar has become an original idea to provide range data

and depth measurements for navigation and obstacle avoidance using vision in an

analogous way to ultrasound sensors. Therefore, the originality of the concept is

not in the navigation process itself, but in the way the data is obtained.
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Martens et al were pioneers in using the concept of visual sonar for navigation

and obstacle avoidance [119]. Their ARTMAP neural network combined sonar data

and visual information from a single camera to obtain a more veridical perception

of indoor environments. Real distance to obstacles was calculated from distances

measured in pixels between obstacle edges and the bottom of the image. This

distance computation was based on Horswill’s idea [86]: the image was divided in

eight columns, and the distance, measured in pixels from the bottom of the image

to the object edge in every column, was considered to be proportional to the real

world distance from the robot to the detected object.

Lenser and Veloso exposed a new visual sonar-based navigation strategy for the

ROBOCUP competition and the AIBO robots [105, 56]. AIBOs are dog-shaped

robots that have a single camera mounted on their heads. The system segmented

color images to distinguish floor, other robots, goals, the ball and other undefined

objects. Once objects had been defined, lines were radiated from the center of the

image bottom, every 5◦. An object was identified if there existed a continuous set

of pixels in a scan line which corresponded to the same item class. Distance from

object edges to the focus of the radial lines defined the real distance from the robot

to the obstacle. The system builded a local grid of the environment with the robot

centered on it, and avoided obstacles using contour following techniques. Since error

increased with distance, anything separated more than 2 m could not be properly

measured, and consequently, the algorithm only considered obstacles closer than

0.6 m.

Choi and Oh detected obstacle boundaries in images where the diagonal Ma-

halanobis color distance changed abruptly over points situated in radial lines that

emanated from the calibrated camera to the rest of the image [36]. The system

assumed that floor color and lighting conditions were constant. Odometry infor-

mation was used to transform position coordinates on the image plane into world

coordinates over a local occupancy grid. The cells of the grid were labeled with a

probability of being occupied by an obstacle. Experimental tests have been per-

formed on cluttered offices and the local grid was constructed to support safe nav-

igation. The paper also introduced the idea of omni-directional observation with a

standard camera.

Martin computed depth from single camera images of indoor environments us-

ing also the concept of visual sonar [120]. The novelty of this method was the

use of genetic programming to automatically discover the best algorithm to detect
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the ground boundaries in a training phase. These algorithms were then combined

with reactive obstacle avoidance strategies, initially developed for sonar, and later

adapted.

3.3.2 Mapless Navigation

This section includes a representative collection of mainly reactive visual navigation

techniques. Those strategies process video frames as they gather them, and they

are able to produce enough information about the unknown and just perceived

environment to safely navigate through it.

Prominent mapless visual navigation techniques here included are classified in

accordance with the used vision technique or clue: optical flow, feature detection

and tracking, environment appearance, and extraction of qualitative information

from an image.

Optical Flow-based Navigation Systems

Optical flow can be roughly defined as the patterns of apparent motion of features

in a sequence of images caused by the relative motion of the camera with respect to

the environment. During navigation, the robot movement is perceived as a relative

motion of the field of view, and, in consequence, it gives the impression that static

objects and features move respect to the robot. To extract optical flow from a video

stream, the direction and magnitude of translational or rotational scene feature

movement must be computed at every pair of consecutive camera frames. Optical

flow between two consecutive frames is usually represented by a vector for every

pixel, where its norm depends on the motion speed and its direction represents the

movement of the corresponding pixel in consecutive images. In some cases, the

execution time and the computation resources required can be optimized by first

extracting the image prominent features, such as corners or edges [173, 82], and

then computing the optical flow only for these features. Image optical flow has been

used by some researchers to implement reactive mobile robot navigation strategies,

either for indoor or for outdoor environments. Object boundaries appear as regions

with significant optical flow, and thus as regions to be avoided. Specularities or

irregularities on the floor and textured floors also appear as regions with optical

flow and therefore can be wrongly considered as obstacles causing errors during

navigation.
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Variations in the optical flow pattern or direction are used by Santos-Victor

and Sandini to detect obstacles in a reactive, fast and robust approach for plane

ground environments using a single camera [166]. Objects that arise from the ground

plane cause variations in its normal optical flow pattern. To analyze and determine

the presence of obstacles, the image flow field must be projected inversely onto

the horizontal world plane. For translational motion, the projected flow must be

constant for every point on the ground plane. Obstacles alter this assumption,

presenting higher magnitudes or changes in the vector direction.

Camus et al [27] compute on-line the optical flow divergence from sequential wide

angle frames to detect and avoid obstacles. Flow divergence is used for computing

time to contact to obstacles in a qualitative way. To command the robot safely,

one-dimensional maps are computed, where every heading direction is labeled with

a potential risk of encountering obstacles.

Talukder et al [189] implement a novel and robust optical flow-based solution

to detect the presence of dynamic objects inside the camera field of view. It is

applicable to robots with translational and/or limited rotational movement. The

algorithm assumes that moving objects cause a discontinuity in optical flow orien-

tation and changes in its magnitude, with respect to the background pixels optical

flow direction and magnitude. The system is developed and first tested using a

single camera, and then using a stereo camera which provides depth information.

Some authors have proved that the combination of stereo vision, to obtain accu-

rate depth information, and optical flow analysis provides better navigation results.

Talukder and Matties extended [189] combining the stereo disparity field and opti-

cal flow to, first, estimate depth, second, to model the robot egomotion and, third,

to detect moving objects of the scene [190]. In [25], stereo information is combined

with the optical flow from one of the stereo images, to build an occupancy grid and

perform a real-time navigation strategy for ground vehicles.

A simple and preliminary qualitative visual-based navigation system was pro-

posed in [191] by Temizer and Kaelbling, under the DARPA-Mobile Autonomous

Robot Software (MARS) program. Although, to the best of the authors knowledge,

this work does not represent a real progress in the field, it deserves to be included

in a survey due to its simplicity and efficiency. The starting point for this strategy

is the computation of image edge maps by detecting Laplacian of Gaussian (LOG)

zero crossings. A patch matching procedure is subsequently applied using the edge

maps of consecutive frames to compute the corresponding optical flow. Finally, the
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system turns away from zones of high optical flow, since they likely correspond to

obstacles.

Visual navigation techniques based on optical flow have proved to be specially

useful for Unmanned Aerial Vehicles (UAV) because optical flow provides the scene

qualitative characteristics that can not be extracted in detail from single low qual-

ity images. Within this research trend, an important effort has been devoted to

imitate animal behavior as far as the use and processing of apparent motion is con-

cerned. Particularly, insects present a high degree of precision in their navigation

and guidance systems, despite the simplicity of their nervous systems and small

brains. Many authors have studied the way honeybees and other insects use optical

flow to avoid obstacles and/or to navigate centered in the middle of corridors or

narrow long ways. Experimental results found by Srinivasan et al [184] proved that

bees fly balancing the path in the middle of tunnels, evaluating the apparent motion

of images that perceive from both sides.

Van der Zwaan and Santos-Victor [207] implemented a UAV with a camera eye

equivalent to an insect compound eye. The camera eye consisted of an array of

photoreceptors, each one connected to an electronic Elementary Motion Detector

(EMD). This EMD was able to calculate the local optical flow at its particular

position. Contrast on optical flow calculations determined the presence of obstacles,

while, identifying the EMD polar coordinates that gave the changes on optical flow

measures permitted to construct a local map with the location of the obstacles.

Netter and Franceschini [144] also implemented a UAV with a camera eye assem-

bled with an array of photosensors and their corresponding EMDs. The information

given by the set of EMDs was used to determine the presence of obstacles. Fur-

thermore, when the UAV flew at a constant speed and altitude, a reference optical

flow distribution was calculated from the equation that models the velocity of the

artificial retina. To follow the terrain, the system varied thrust and rudders position

to adjust the online computed optical flow with the optical flow reference.

Nonetheless, the use of optical flow information in terrain following applications

for UAV presents limitations if the aircraft flies at low altitude, at high speed or if it

is landing, even more if the camera is facing the ground. In these cases, optical flow

estimation loses accuracy. Recently, Srinivasan et al [185] presented a new system

to increase accuracy in the optical flow estimation for insect-based flying control sys-

tems. A special mirror surface is mounted in front of the camera, which is pointing

ahead instead of pointing to the ground. The mirror surface decreases the speed of

40



motion and eliminates the distortion caused by the perspective. Theoretically, the

image should present a constant and low velocity everywhere, simplifying the opti-

cal flow calculation and increasing its accuracy. Consequently, the system increases

the speed range and the number of situations under which the aircraft can safely

fly. Particularly interesting is the work developed by Green et al [76], which de-

scribes the design of an UAV prototype called Closed Quarter Aerial Robot (CQAR)

that flies into buildings, takes off and lands controlled by an insect-inspired optical

flow-based system. This aerial vehicle incorporates a microsensor which weighs 4.8

grams, and is able to image the environment and compute the optical flow. The

minimum flying speed of CQAR is 2 m/s, the turning radius is about 2.5 m and to

avoid a detected obstacle it needs to turn about 5 meters before. Later, Green et al

emphasized again the relevance of insect-based navigation strategies in an optical

flow-based navigation system, for UAVs that fly in near ground environments such

as tunnels, caves, inside buildings or among trees [75]. The navigation principles

applied in both [75] and [76] come from equation 3.1:

F = (v/d) sin(θ)− ω, (3.1)

where F is the optical flow, v is the translational velocity, d is the distance between

the robot and an object, w is the angular velocity, and θ is the angle between the

direction of travel and the aforementioned object. Equation 3.1 models the fact

that optical flow of close obstacles has greater magnitude than the optical flow

of obstacles that are at longer distances. Furthermore, optical flow magnitude is

maximum for obstacles situated orthogonally to the robot motion direction.

To finish with this research line, Srinivasan et al presented an overview of illus-

trative insect-inspired navigation strategies for different situations, and the imple-

mentation of those strategies in several robots to test their feasibility [186].

Following a different research line, Cornall and Egan pointed out preliminary

results corresponding to the analysis of optical flow patterns. Images were recorded

during the UAV flight and transmitted to a ground station to be stored and ana-

lyzed. Optical flow example images of translation, pitch, roll to left/right and yaw

motion were computed off-line and primary conclusions presented in [41].

In urban missions, UAVs have to fly usually among buildings and at low altitude,

avoiding obstacles situated at both sides or at the front, and making very steep

turns or even U-turns at dead ends. This increases the possibility of crashing, thus
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the need of a very precise and safe navigation strategy. Hrabar et al present in

[89] a novel navigation technique for UAVs to fly in between of urban canyons. The

authors report a high degree of effectiveness of the system combining stereo forward-

looking cameras for obstacle avoidance and two sideways-looking cameras for stable

canyon navigation. Since the method is applied on UAVs, everything detected at

the front is considered an obstacle. The system projects 3D stereo data onto a 2D

map and performs a growing region process to extract obstacles. The robot stops

keeping constant the altitude or simply changes direction depending on its distance

to the obstacle. Besides, the robot always tries to balance the optical flow from

both sides, moving to the direction of larger optical flow magnitude. The system

implements a hierarchical architecture. Collisions with obstacles in the front are

more probable than on the sides, therefore the stereo output is given priority over

the optical flow output. The authors also expose an alternative for implementing

this kind of hybrid systems, using two forward-facing fisheye cameras that have

lenses with a 190◦ field of view. In this last case, the central part of an image can

be used for stereo front obstacle avoidance, and the peripheral part can be used for

computing the optical flow.

Appearance-based Navigation

Appearance-based strategies consist of two procedures. First, in a pre-training

phase, images or prominent features of the environment are recorded and stored as

model templates. The models are labeled with a certain localization information

and/or with an associated control steering command. Second, in the navigation

stage, the robot has to recognize the environment and self-localize in it by match-

ing the current on-line image with the stored templates. The main problems of

appearance-based strategies are finding an appropriate algorithm to create the en-

vironment representation and defining the on-line matching criteria.

Deviations between the route followed in the guided pre-training phase and

the route autonomously navigated yield different sets of images for the sequences

recorded in both cases. Different images implies differences in the perception of

the environment. Main researchers have focused their contributions on improving

the way how images are recorded in the training phase, as well as on the subse-

quent image matching processes. There are two main approaches for environment

recognition without using a map [123]:
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• Model-based Approaches. They utilize pre-defined object models to recognize

features in complicated environments and self-localize in it.

• View-based Approach. No features are extracted from the pre-recorded images.

The self-localization is performed using image matching algorithms.

Matsumoto et al presented in [124, 123, 125] research results focusing on indoor

route construction with standard or omnidirectional images. They defined corre-

lation equations to model the concept of distance between images, and designed

a new view creation procedure using stereo divergence for outdoor environments

where light conditions change most often.

Zhou et al [214] utilized histograms to describe the appearance of pre-recorded

indoor images. Color, gradient, edge density and texture histograms were extracted

from images, and stored in a multi-dimensional histogram database. The recognition

of the environment during the navigation stage was reached by matching the multi-

dimensional histogram of the current image with the multi-dimensional histogram of

the stored templates. Working with histograms has two main advantages: i) it saves

computation resources and, ii) it is simpler and quicker than entire images-based

correlation processes.

Haddad et al in [77] were pioneers on applying the Potential Fields method

in vision-based navigation and obstacle avoidance strategies. Remazeilles et al

used the concept of Potential Fields integrated in an appearance-based naviga-

tion method [157]. This system differs from typical appearance-based navigation

strategies in the way that navigation was performed. The method defined an image

database, which was a set of views built off-line, representing the whole navigable

environment. When a navigation mission was defined, an image sequence corre-

sponding to what the robot camera should see during the motion was extracted

from the image database. The robot motion was the result of the on-line detec-

tion and matching process between the models included in the sequence and the

perceived scenes. To navigate the environment, the robot tracked recognizable pre-

viously cataloged features. To fit these scene features in its field of view it used the

attractive Potential Fields method to approximate them.

Morita et al reported in [139] a novel appearance-based localization approach for

outdoor navigation. They extended their Support Vector Machine (SVM) -based al-

gorithm, proposed in [140], to a novel SVM-based localization architecture that used

vision information from panoramic images. The SVM localization process consisted
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of two main stages: first, feature or object learning, recognition and classification,

and second, scene locations learning based on the previous feature classification. In

this work, the authors showed how panoramic images improve considerably train-

ing, matching and localization procedures, since the scenes are less dependent on

the variation of the robot heading.

Image Qualitative Characteristics Extraction and Texture Segmentation

Reactive visual techniques for robot navigation and obstacle avoidance are often

devised around the extraction of image qualitative characteristics and their inter-

pretation. There are two main types of reactive visual obstacle avoidance systems:

• model-based obstacle avoidance systems, which need pre-defined models of

known objects, and,

• sensor-based obstacle avoidance systems, which process every on-line sensor

information to determine what could be an obstacle or what could be free

space.

These strategies can be included in what is known as qualitative navigation.

Reactive navigation systems based on qualitative information avoid as much as

possible using, computing or generating accurate numerical data such as distances,

position coordinates, velocity, projections from image plane onto real world plane,

or contact time to obstacles. In general, a coordinated behavior-based architecture

is needed to manage all qualitative image information and the subsequent reactions

[7].

Changes on the imaging conditions, that is for example, illumination intensity,

position of light sources or glossiness of the scene materials, are of particular rel-

evance to this sort of navigation systems due to qualitative data or image texture

have a critical dependence on unprocessed sensorial data.

As a consequence, and mostly for outdoor applications, the performance of cer-

tain visual navigation systems can be seriously limited depending on time, weather

conditions, season, etc.. One of the earliest solutions to these problems came from

[193]. In 1997, Lorigo et al proposed a very low resolution vision-based obstacle

avoidance system for unstructured environments [109]. The novelty of the solu-

tion was the construction of three simple modules that based the object detection
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criteria on brightness gradients, RGB color and HSV (hue, saturation, value) infor-

mation. The goal of this approach was to safely navigate with no destination point

or pre-designed mission. The method assumed that all objects stayed on the ground

plane, and that closer objects were in the bottom of the image while further objects

were on the top of the image. Apart from the three modules working on brightness,

RGB and HSV, a fourth one analyzed simultaneously their results to extract pos-

sible object boundaries. Afterwards, this information was used to generate motion

commands.

The combination of a camera and other sensors such as laser or sonar has been

applied in some reactive approaches to increase safety and the capabilities of the

navigation process. CERES [32] was a behavior-based architecture that combined

seven ultrasound transducers and a single grayscale camera. The vision module

applied a Canny filter to extract edges from images. Edges are a clear evidence

of the presence of obstacles. However, the floor carpet texture of the author test

environment generated edges that could be wrongly considered as obstacles. To

avoid this misbehaviour, a threshold was imposed to eliminate false edges. The

system transformed distances over images to real world distances using a rough

camera calibration algorithm. For this particular case, the authors knew that the

first fifth portion of the image, from bottom to top, corresponded to the closest

20 cm of the scene and that the other four fifths portion corresponded to the next

real world 26 cm. Consequently, all those edges found in the first fifth of the image

(bottom) were considered as obstacles to be avoided while the edges on the rest of

the image (top) were considered to be far enough so as to be taken into account.

Sonar is used to keep distance to the walls.

Other authors prefered to use a bi-level image segmentation process to segregate

floor from objects [114]. Floor detection permits determining where the free navi-

gable space is. In the ROBOCUP competition, the detection of the opponent robot

and the ball becomes a challenging task to properly play the game. Fasola and

Veloso [57] proposed to use image color segmentation techniques for object detec-

tion, and gray-scale image processing for detecting the opponent robots. Cherian

et al [35] proposed a ground plane detection method run on three stages: i) to

build the 3D depth map of the scene, the Y CbCr format of images was convolved

with 17 different filters forming 34× 5-dimensional feature vectors (1) representing

1each vector was composed by 34 dimensions but vectors of the 4 neighbors were include for
each feature in order to include information regarding the depth at surrounding pixels
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the depth information at each image point, ii) to correct irregularities in the depth

information, images were divided into regions of perceptually similar textures, as-

suming that regions with similar textures lied on the same plane, and iii) coplanar

regions were merged to form the complete ground plane.

The concept of fuzzy navigation, and particularly using visual sensors, has been

used by several authors, combining the extraction of qualitative information from

video frames with qualitative navigation algorithms based on fuzzy rules. One

example of these techniques comes from Howard et al [88]. Their system is focused

basically on ensuring a safe navigation through irregular terrains. It was assumed

that the terrain could present rocks and variations on its slope. A region growing

method based on edge detection and obstacle identification was used to detect rocks

on the ground, while the terrain slope was calculated using existing techniques to

retrieve 3D information and real Cartesian coordinates from a stereo pair of images.

The size and number of rocks and the slope of the terrain were then classified by

an algorithm that used fuzzy terms such as big, small, rocky terrain, flat, sloped,

steep, etc... Since the final goal of this system was to mimic as much as possible

the human criteria used to classify a terrain, the system was trained by an expert

which evaluated images taken from the robot point of view and judged the ability

of the robot to navigate through the terrain. The difference between the human

classification and the one done by the robot is an indication of the system optimality.

Navigation Techniques Based on Feature Tracking

Many of the existing navigation approaches are based on detecting and tracking the

environmental data perceived by the onboard sensors. When using range sensors,

the readings themselves can be used as the tracking data. However, with visual

sensors, the process of finding such trackable data usually starts by tracking the

most stable and significant points in the image, so called features or corners in the

early techniques. As a matter of fact, detection and tracking of visual features is a

mature but still growing area in the computer vision community nowadays.

1) Feature Detectors and Descriptors. Feature descriptors are categorized

using the concept of distinctiveness. Distinctiveness is related to the size of the

neighborhood window captured by the feature descriptor and also to the amount

and type of information processed and extracted from it. Distinctive features can

be tracked without using a motion model and more accurately than non-distinctive
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features. Harris and Kanade-Lucas-Tomasi algorithm (here called KLT) ([173])

methods are early and fast techniques to find and/or track little discriminative fea-

tures. Harris corners ([82]) corresponded to image patches whose C(x, y) matrix

eigenvalues were considerable high, where C(x, y) =

[

Gx Gxy

Gxy Gy

]

with Gx, Gy and

Gxy being the convolution of I2x , I
2
y and IxIy with a zero mean Gaussian kernel (Ix,

Iy are the image I partial derivatives along the x and y directions). Harris corners

are invariant to rotation and illumination transformations, and have a significant

repeatability rate, but the method fails when there are scale changes between im-

ages. In order to overcome this pitfall, Mikolajczyk and Schmid used the Harris

operator to find features for which the Laplacian achieved a maximum over a scale

space ([133]).

Shi & Tomasi ([173]) showed that good features were those corresponding to

image patches whose minimum eigenvalue of the C(x, y) matrix was above a defined

threshold.

Lowe developed the SIFT (Scale Invariant Feature Transform) method to ex-

tract high discriminative image features ([112]). A Gaussian scale space is gen-

erated convolving the original image with a set of Gaussians for different scales.

This Gaussian scale space generates a set of Differences of Gaussians whose local

extrema define the features location. Lowe approach combines this detector with

a descriptor of 128 components, containing the gradient location and orientation

of different points centered around the proposed feature. SIFT is robust to image

scaling, rotation, illumination changes and camera view-point changes. It has a

high degree of repeatability and it is remarkably robust to noise.

Other feature detectors such as SURF (Speeded-Up Robust Features) ([13]),

FAST (Features from Accelerated Segment Test) ([163]) and CenSurE (Center Sur-

round Extremas) [2] intend to increase speed and performance. SURF reduces the

number of interest points, computes scale, rotation and viewpoint invariant feature

descriptors with considerably good results and outperforms SIFT in terms of com-

putation time. Features are located where the Hessian Matrix eigenvalues of each

pixel have the same sign. Descriptors show how the pixel intensities are distributed

within the neighborhood of each feature in different scales. SURF uses integral im-

ages instead of the original images and a 64-items descriptor to reduce computation

time. CenSurE authors claim that their features have better computational char-

acteristics than other scale-space detectors, and that they are optimum for visual
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odometry since they result in longer track lengths, there are fewer frames where

images fail to match, and present better motion estimates.

FAST is based on SUSAN ([183]) and it considers an image point to be a fea-

ture if a minimum of 12 pixels can be found on a circle of fixed radius around the

point such that these pixels are all brighter or darker than the central point. The

feature descriptor consists of a vector containing the intensities of the 16 pixels

surrounding the point. FAST is more suitable for video streams at high frame rates

or images taken from rapid motions, but it is vulnerable to noise and it depends on

a pre-defined threshold. Mikolajczyk and Schmid [134] compared the performance

of different descriptors for image local regions. Experimental results of different

matching approaches used to recognize the same region in different viewing condi-

tions showed that SIFT yields the best performance in all tests. Later, Tuytelaars

and Mikolajczyk published an extensive survey of feature detectors, comparing the

performance of the most important approaches ([206]).

2) Techniques for Land and Aerial Feature-Based Localization and

Navigation. Visual techniques for detecting and tracking significant elements of

the scene, so called features, have been extensively improved over the last years

and used as the first step for localization and/or navigation purposes. Autonomous

navigation and obstacle avoidance, localization or mapping systems benefit from

high speed feature computation and stable and repeatable features. Of course,

feature descriptors invariant to changes on rotation, scale or viewpoint are also

preferable.

Many times, the control system divides a feature tracking task into two sub-

problems [202]:

• motion detection, which, given a feature to be tracked, identifies a region in

the next frame where it is likely to find such a feature, and,

• feature matching, by which the tracked feature is matched within the identified

region.

In general, feature tracking-based navigation approaches do not comprise an

obstacle avoidance module, but this task has to be implemented by other means.

Although video tracking and mobile robot navigation belong to separate research

communities, some authors claim to bridge them to motivate the development of

new navigation strategies. Some authors center their research in detecting and
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tracking the ground plane across consecutive images, and steering the robot towards

the free space. Mourikis et al based their system for planetary vehicle positioning

and real time speed computation on Harris corners and the normalized correlation

([141]). Zhou and Li [215], and Dao [45] computed and used the homography matrix

to detect and track the ground plane over previously tracked image corners or edges

using the Harris corner detector. In a more recent work, other authors prefer to

combine the concept of feature tracking with stereo 3-D environment reconstruction.

In [165], stereo vision was used in a novel navigation strategy applicable to unstruc-

tured indoor/outdoor environments. This system was based on a new, faster and

more accurate corner detector. Detected features were 3D positioned and tracked

using normalized mean-squared differences and correlation measurements.

Localization or motion estimation are robot capabilities typically performed

by combining wheel odometry (for ground robots), gyroscopes and accelerometers.

Wheel odometry is inaccurate and untrustworthy for irregular terrains since wheels

can slip, deflate or sink and inertial sensors are prone to drift. Visual odometry is

a good complement for wheel odometry or inertial sensors. Feature tracking tech-

niques are used for visual odometry estimation tasks. Image features are used as

reference points, and their estimated motion in a sequence of successive images is

properly employed to infer the robot motion and/or position. Nister et al. esti-

mated the motion of mobile robots tracking nondistinctive Harris corners ([145])

and supposing very small displacements between consecutive images.

Stereo camera pair configurations give some advantages to single camera sys-

tems in the sake of computing visual odometry. Last approaches show significant

advances in terms of speed, accuracy in the position estimation and reliability re-

spect to early solutions presented by Matthies [126], Olson et al [148] or to other

more recent approaches [34]. Howard et al proposed a new algorithm to calculate

the robot motion using a stereo pair of cameras [87]:

1. A stereo pair of images were rectified and prefiltered to eliminate high fre-

quency components.

2. A disparity image was computed by matching points in the left/righ images.

The prefiltered and the disparity images were the inputs available to the visual

odometry algorithm.

3. Harris or FAST features were detected in consecutive images, their world
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coordinates were computed from the corresponding disparity images and de-

scriptors, including the surrounding m×m− 1 pixels.

4. The sum-of-absolute differences (SAD) between all pairwise feature descrip-

tors formed the score matrix S, all minimum SAD scores determined the

matches between features in consecutive stereo images.

5. Outliers were filtered out searching for inconsistent matches, were the consis-

tency term is closely related with the discrepancy in the distance (expressed

in world coordinates) between two features measured in two time-consecutive

stereo images.

6. The camera motion is estimated by minimizing the image reprojection error

for all matches in the set of feature correspondences.

Authors discussed the possible convenience of using scale invariant features such

as SIFT or SURF in order to overcome the loss of matches in large motions. How-

ever, they noted that scale invariant features would notably increase the time of

execution, reducing the real-time performance.

Special characteristics of SIFT features qualifies them to be, in general, one of

the best solutions for performing visual odometry tasks. Parra et al proposed in

[151] a robust visual odometry algorithm by means of SIFT feature tracking using a

stereo pair of cameras. First, SIFT features were detected and traced in consecutive

stereo pairs of frames. Second, their world coordinates were calculated using the

camera parameters and the epipolarity properties. Third, the camera motion was

simplified assuming translation and only a rotation in the vertical axis y. Fourth,

RANSAC was used to estimate the rotation matrix and the translational vector

that characterized the camera movement in two consecutive stereo pair of images.

The 3D feature coordinates at instants t and t + 1 were used as input data in the

RANSAC algorithm.

Johnson et al analyzed in [92] two stereo visual odometers, MER − V O (Mars

Exploration Rover Visual Odometer) and MSL − V O (Mars Science Laboratory

Visual Odometer). The MSL−V O was an update of MER−V O and overcame the

shortcomings of its previous version. More specifically, MSL − V O improved the

run-time of the algorithm, increased the trackable number of features and eliminated

the initial motion estimation dependable with the wheel odometry. This approach

employed Harris corners as image main features and it tracked them in subsequent
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stereo image pairs using the Pseudo Normalized Cross Correlation (PNC ) and the

feature 3D world coordinates. Finally, the Maximum Likelihood Estimation using

the 3D point covariances was employed to estimate the camera motion.

Roberts et al [161] estimated the visual odometry computing the optical flow

from tracked Harris scene features. Scenes were gridded in cells of 20 × 20 pixels.

Harris corners were tracked across consecutive frames with the KLT feature tracker.

A velocity model was fit for every feature trajectory in order to compute the optical

flow that was finally used to estimate velocity and pose. The tracker was used in

a memory-based learner that compared estimated visual odometry data with the

ground truth computed with laser scan matching.

SIFT method stands out among other image feature or relevant point detection

techniques, and nowadays has become a method commonly used in landmark detec-

tion applications. During the robot navigation process, detected invariant features

are observed from different points of view, angles, distances and under different

illumination conditions and thus they become highly appropriate landmarks to be

tracked for navigation, global localization [170] and robust vision-based SLAM per-

formance [169].

Stephen et al performed global simultaneous localization and mapping in mobile

robots tracking distinctive visual SIFT landmarks in static environments ([187]).

Rodrigo et al. ([162]) combined the homography computed using a set of rele-

vant SIFT features with a collection of nondistinctive features to perform a robust

navigation algorithm.

Time to collision can be computed from consecutive image feature correspon-

dences that are perfectly consistent with the epipolar geometric constraints. Cohen

and Byrne sustained that time for collision was a function of the estimated motion

(for example via inertial sensors), the intrinsic calibration matrix and the inlier

position, if it is compliant with the epipolar geometry [40].

Pears and Liang use homographies to track ground plane corners in indoor envi-

ronments, with a new navigation algorithm called H-based Tracker [153]. The same

authors extend their work in [107] using also homographies to calculate height of

tracked features or obstacles above the ground plane during the navigation process.

The accuracy of the navigation strategy must be a strategic point in aerial mo-

tion where the speed is high, the processing time must be reduced and the tracking

process needs to be more accurate. In [147], Ollero et al propose a new image

tracking strategy that computes and uses a homography matrix to compensate the
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UAV motion and detect objects. This system improves their previous work [59]

maintaining the tracking success despite the number of attempts is reduced. Lo-

calization and geo-location of observed elements, so called targets, from Unmanned

Aerial Vehicles (UAV) has been also a field of interest and application of feature

tracking procedures. The world coordinates of a certain image point corresponding

to a target observed from a flying UAV can be calculated without applying the

constraint of a flat terrain, knowing, i) the approximate altitude of the camera with

respect to the target (given, for example, by an altimeter), ii) the vehicle abso-

lute world position given by, for example, a GPS, iii) the rotation and translation

matrices that transform the camera coordinate system into the world coordinate

system, and finally, iv) the intrinsic and extrinsic camera parameters [79]. To geo-

localize targets from UAVs, Han and DeSouza [79] track image features using the

differential optical-flow and the KLT tracker. Feature world coordinates are then

computed assuming that all required parameters are known. Afterwards, SIFT fea-

tures are tracked on consecutive images and their world coordinates are computed

to reffine the previously estimated UAV height. Height estimation accuracy can

be improved by using a stereo camera pair. Çelik et al [30] proposed a new visual

SLAM technique tested on indoor Micro Aerial Vehicles (MAV ). As in many other

previous visual SLAM solutions, main image features were designed to be the nec-

essary landmarks for the motion tracking and localization process. Harris corners

were initially extracted but they were not suitable for tracking agile motion. Then,

it was used the Shi and Tomasi algorithm for both performances, feature detection

and tracking. Features that coincided with corridor (or equally for ceiling) lines

were potential good landmark candidates for the SLAM computation. Corridor o

ceiling lines are parallel in scene but intersect in a point (so called the infinity point)

in the image plain. By exploiting the geometrical properties of these lines, using the

features that were detected on them and knowing the vehicle altitude, the system

could calculate depth and bearing. This approach differs from optical flow methods

in that depth measurement does not need a successive set of images.

Supporting vision information with GPS data in outdoor environments is an-

other possibility of increasing reliability in position estimation. Saripalli and Sukhatme

combined a feature tracking algorithm with GPS positioning to perform a navigation

strategy for the autonomous helicopter AVATAR [130]. The vision process combines

image segmentation and binarization to identify pre-defined features, such as house

windows, and a Kalman filter-based algorithm to match and track these windows.
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3) Underwater Applications. Several techniques have been developed for

underwater environments. Some of them are of general application, such as image

mosaicing systems, and others are more application oriented, such as the systems

for pipeline or cable tracking. Sea floor mosaicing permits the robot to self-localize

and thus identify its motion model. It is usually based on feature identification

and tracking using texture-based operators and correlation-based procedures [62].

Pipeline or cable tracking is an essential issue for accurate maintenance of thousands

of kilometers of telecommunication or power cables between islands, countries and

continents. In particular, unburied cables can be tracked using vision techniques.

The first approaches to cable tracking were based on edge detectors and Hough

transform, but they were unable to perform real-time cable tracking at video rates

[160, 78, 122] by that time. Grau et al [74] proposed a cable or pipe tracking system

based on the generation of different texture groups and the segmentation of images

in regions with similar textural behavior. Foresti and Gentili [61] implemented a

robust neural-based system to recognize underwater objects. Balasuriya and Ura

[11] increased and improved the robustness of the existing systems by solving the

eventual loss of the cable with dead-reckoning positioning prediction combined with

2D models of the cable. In a recent work, Antich and Ortiz [4] present a control

architecture for AUV’s navigation based on a cable tracking algorithm that looks for

edge alingments related with the cable sides. Finally, the same authors included a

new sonar-based algorithm in the vision-based cable tracking architecture to escape

from trapping zones [6].

Moving-target vision-based tracking strategies have also become a motivating

research trend, specially to improve current fish shoal detection and tracking tech-

niques. Between 2000 and 2001 some relevant solutions were presented by Silpa-

Anan et al [176] and Fan and Balasuriya [55], respectively. Fan and Balasuriya [55]

presented a process based on two parallel stages: object speed calculation repre-

sented with optical flow, and moving objects positioning with template-matching

techniques. Rife and Rocks went a step forward implementing a system capable of

recognizing and tracking only jellyfish [159].

Estimation of camera motion in underwater unstructured environments with no

defined references, such as cables or pipes, becomes another complicated and chal-

lenging navigation problem. In this type of navigation strategies, references have to

be defined, found in the image, and tracked. There are fundamentally three methods

that are used for this purpose: optical flow, feature tracking or gradient methods.
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Optical flow-based methods and feature tracking-based methods can cause failure

in algorithms due to scattering effects, bad image quality or deficient illumination

under the sea. Gradient methods use scene properties such as depth, range, shapes

or color intensity, they are computationally more efficient and more accurate [44].

Station keeping is one of the problems that can be solved estimating the motion of

the camera. Station keeping consists in holding the robot around a fixed position

on the undersea floor that has a special interest at that moment. The AUV will

hover around the interest point maintaining the center of the camera pointing on

it. Examples of outstanding related solutions can be found in [143, 110] and [42].

IPT -based Obstacle Detection Approaches

Some authors exploited the concept of IPT to design reactive navigation and ob-

stacle avoidance algorithms.

The IPM (Inverse Perspective Mapping) is a particular use of the Inverse Per-

spective Transformation concept. The IPM techniques allow to remove the perspec-

tive effect of lines that are parallel in the real world but converge into the vanishing

point in the image. Each image pixel is re-mapped, and a new array of pixels is

created where the lines in perspective are transformed into straight lines and objects

are distorted. It represents a top view of the original image, like the projection of

the whole scene onto a planar surface.

To detect obstacles, Mallot et al [115] analyzed variations on the optical flow

computed over the Inverse Perspective Mapping (IPM ) of consecutive images.

Bertozzi and Broggi [16] projected two stereo images onto the ground applying

the IPM concept. Then, they subtracted both projections to generate a non-zero

pixel zone that evidenced the presence of obstacles. Batavia et al [12] used the IPT

and the camera ego-motion to predict future frames and compare them with the

corresponding new real frames. Differences between the predicted and real images

showed the presence of obstacles. The system was designed to detect vehicles in the

blind spot of the cars rear-view mirror. Shu and Tan [174] also employed the IPM

to detect road lanes for self-guided vehicles. Ma et al [113] presented an automatic

pedestrian detection algorithm based on IPM for self-guided vehicles. The system

predicted new frames assuming that all image points lay on the floor. The dis-

torted zones of the predicted image corresponded to objects. Simond combined the

IPM with the computation of the ground plane super-homography from road lines
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to discriminate obstacles from road in an autonomous guided vehicle application

[181].

3.4 Conclusions

In the last decades, vision has become one of the most cheap, challenging and

promising way that robots have to perceive the environment. Accordingly, the

number of navigation approaches based on vision sensors have increased exponen-

tially. Visual navigation techniques have been applied on almost all environments

and in all kind of robots. The most outstanding pieces of work related with visual

navigation from the early nineties until nowadays have been included in this chap-

ter. Map-based navigation techniques have been contrasted with those systems that

do not need a map for navigation in an attempt to gradually proceed from the most

deliberative navigation techniques to the most pure reactive solutions.

Tables 3.3, 3.4, 3.5 and 3.6 show an overview of the most outstanding publi-

cations referenced in this chapter, from the late nineties to present. The list has

been sorted by type of vehicle to facilitate analysis and comparison of the different

strategies used in each of these vehicles. Concerning the different types of robots,

the next general considerations can be drawn:

• Ground robots do not span the whole amount of applications revised in this

chapter but cover almost all the considered strategies. Apparently, some

strategies seem to be exclusive of ground robots because they are rarely found

in aerial or underwater vehicles. This is the case of:

– visual SLAM systems, because the computation of the environtment

model seems to be feasible only for indoor scenarios,

– homography-based navigation systems, because of their dependency on

floor detection and tracking, and finally,

– visual sonar systems and human pre-guided map building systems.

• The use of UAVs has significantly grown during the last decade and, as a

consequence, navigation solutions for this kind of vehicles have improved in

safety, accuracy and scope. The vast majority of UAVs use mapless navigation

systems. We should highlight here the insect-inspired solutions for optical flow
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processing as well as for feature tracking and detection. Some of these aerial

robots have also gained in accuracy, operativity and robustness incorporating

compound cameras or camera eyes.

• Visual navigation systems for AUVs have to cope with the special characteris-

tics of undersea light propagation. Researchers have mostly focused on devel-

oping and/or evolving general visual navigation techniques based on feature

tracking, mainly for mosaicing applications. Researchers have also focused on

devising application-oriented navigation strategies, in many cases for tracking

underwater cables or pipelines.

However, particularly focusing on the solutions adopted in mapless (reactive)

systems, some evident shortcomings arise from the approaches analyzed in this

survey, suggesting several possibilities for improvements or additive work:

• Normally, reactive solutions are proposed so as to solve either the navigation

or the localization problem, but none of the analyzed pieces of work tries to

solve both problems at the same time using a unique sensor and a unique

visual information source.

• Solutions based on the IPT or IPM usually need to back-project the whole

image onto the ground to remove the perspective effect caused by the imaging

process and to infer where the obstacles are. Back-projecting all the image

points can be unnecessary since maybe not all of them will be useful. Con-

trarily, back-projecting only a certain number of relevant image points could

save execution time and focus the weight of the algorithm to those significant

points of the image.

• Other solutions based on textures or appearance can fail under changes on il-

lumination, shadows, scenarios with highly textured floors, inter-reflections or

specularities unless the algorithms themselves cope explicitly with these opti-

cal phenomena. For example, some road line tracker algorithms addressed to

automatic car-driving need to previously find lines in the image that converge

to the vanishing point, which can be a difficult task if there is no sufficient

contrast between the road and the surroundings.

• Solutions based on optical flow require to find differences on it in the different

parts of the scene to infer the presence of obstacles.
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• Navigation systems based on exploiting the properties of coplanar points,

related in consecutive images through homographies, obligate to find the dif-

ferent planes present on the framed scene, segregating the ground plane from

the rest.

• Focusing the navigation and the localization problems from the perspective

of dealing with environmental information characterized by 3 dimensions is

more difficult and more demanding than planning both problems using scene

data only in the 2D ground plane.

3.5 Objectives and Contributions

Taking into consideration all the inconveniences exposed in the previous section,

the challenge will be designing an architecture that can manage the tasks of ob-

stacle detection, reactive navigation and localization, trying to accomplish the next

objectives:

1. Discriminating obstacles from the ground. Obstacles in front of the robot

must be detected regardless the characteristics of the environment where the

robot has to move. The designed method has to be based only in the imaging

geometry and frames have to be captured with no particular restrictions in

the angle between the optical axis and the ground plane. The system has

to overcome, to a certain extent, common scenarios with different planes,

reflections, shadows, different textures or obstacle shapes and be as fast as

possible to run on-line.

2. The detected obstacles have to be positioned in a local occupancy map cen-

tered in the robot pose to be used for safe navigation. The objective is not to

create a perfectly accurate metric map but to find the way to represent in a

qualitative manner which zones of the robot vicinity are occupied and which

are free. Steering orders will point towards those zones of the map free of

obstacles.

3. The final purpose of this navigation module must be to steer the robot towards

several goal points avoiding all collisions. Once the obstacle detection module

has proven to work properly, a navigation strategy would be needed in order

to define which are the best decisions to be taken at each moment, depending
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on each situation and with the final objective of reaching the programmed

target/s. The strategy must consider important issues, such as: a) which are

the optimum dimensions of the local map, b) where are the directions free of

obstacles, c) which of these permitted directions must be taken to steer the

robot towards the goal, or d) which would be the best way to infer the robot

pose while it is moving through the environment.

4. No additional sensors or data sources must be used to perform the localiza-

tion task. In order to reduce cost and hardware/software complexity, the

robot pose must be computed from the same sensor and data gathered to

detect obstacles. The localization algorithm must correct, in the best possible

way, the robot position computed by dead-reckoning. minimizing drifts and

inaccuracies as much as possible.

5. Since our navigation algorithm is based on the extraction and classification of

image features, evaluating and comparing different feature tracking strategies

becomes necessary to find the one that best combines performance and speed

in our particular approach.

Consequently, the design presented in this thesis focuses on giving response to

all the aforementioned objectives. The main parts of our proposal can be abstracted

as:

1. An image point classifier: image main features are tracked across consecutive

frames and classified as either obstacle or ground points using a new algo-

rithm based on the IPT. Obstacle points are used for obstacle detection and

avoidance while ground points are used for robocentric localization.

2. Obstacle avoidance and reactive navigation: the obstacle detection and avoid-

ance procedure computes the edge map of the processed frames and edges

comprising obstacle points are discriminated from the rest, emphasizing the

obstacle boundaries; then, the points where obstacles touch the ground are

incorporated into a qualitative occupancy map which represents the vicinity

of the robot included in a ROI (Region of Interest); finally, the system com-

putes the steering vector towards world areas free of obstacles. The method

has been inspired on the visual sonar algorithms and on the Vector Field His-

togram method [19], but here adapted for a vision sensor. These techniques
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have been integrated in a reactive navigation strategy aimed to guide the

robot safely in a mission way-point oriented where the robot is commanded

to attain a goal point from a given start (i.e. previous) point.

3. Localization: the features classified as ground are fused in an EKF context to-

gether with the robot position obtained by dead-reckoning. Ground landmarks

are added to the EKF as they are seen, or removed if they disappear from

the field of view. The continuous releases of the EKF vector state stabilizes

the ground landmark coordinates and gives the consecutive robot positions.

The aim of this localization process is to improve, as much as possible, the

robot pose data given by the proprioceptive sensors. Pose errors given by

dead-reckoning information are especially significant in long routes, so local-

ization experimental work will be focused on estimating trajectories as long

as possible in the best accurate manner.
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Table 3.3: Summary of the most outstanding visual navigation approaches from the
late 90’s to the present (1)

Authors Type of ve-
hicle

Category Strategy Type of visual sensor

[177, 178] Ground Map build-
ing

Visual SLAM. Land-
marks localization
and tracking

Single standard cam-
era

[180, 179] Ground Map build-
ing

Visual SLAM. Land-
marks extraction and
occupancy grids

Stereo cameras

[46] Ground Map build-
ing

Visual SLAM. Map
feature extraction

Single standard cam-
era

[47] Ground Map build-
ing

Visual SLAM. 3D
sparse mapping of
interest points

Single wide angle
camera

[116] Ground Map build-
ing

3D construction of an
occupancy grid

Single standard cam-
era

[200] Ground Map build-
ing

3D high density map
and object recogni-
tion

Single standard cam-
era

[98] Ground Map build-
ing

Human guided pre-
training

Stereo cameras

[164] Ground Map build-
ing

Human guided pre-
training

Single wide angle
camera

[210] Ground Map build-
ing

Topological map Omnidirectional
camera

[66] Ground Map build-
ing

Topological map Omnidirectional
camera
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Table 3.4: Summary of the most outstanding visual navigation approaches from the
late 90’s to the present (2)

Authors Type of ve-
hicle

Category Strategy Type of visual sensor

[102, 158] Ground Map build-
ing

Topological map Single standard cam-
era

[9] Ground Map build-
ing

Local occupancy grid Stereo cameras

[63] Ground Map build-
ing

Local occupancy grid Single standard cam-
era

[68] Ground Map build-
ing

Local occupancy grid Stereo cameras

[64] Ground Map build-
ing

Local occupancy grid Single standard cam-
era

[119, 120, 56,
36, 105]

Ground Map build-
ing

Visual sonar Single standard cam-
era

[166] Ground Mapless Optical flow Single standard cam-
era

[27] Ground Mapless Optical flow Single wide angle
camera

[189, 190] Ground Mapless Optical flow com-
bined with stereo
information

Stereo cameras

[191] Ground Mapless Optical flow Single standard cam-
era

[123, 125,
157]

Ground Mapless Appearance-based
method

Standard or omnidi-
rectional single cam-
era

[140] Ground Mapless Appearance-based
method

Panoramic camera
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Table 3.5: Summary of the most outstanding visual navigation approaches from the
late 90’s to the present (3)

Authors Type of ve-
hicle

Category Strategy Type of visual sensor

[197] Ground Map build-
ing

Museum guiding
robot: complete 3D
map

Single standard cam-
era

[172] Ground Map build-
ing

Museum guiding
robot: topological
map

Single standard cam-
era

[109, 32] Ground Mapless Image qualitative
characteristics ex-
traction

Single standard cam-
era

[114] Ground Mapless Image qualitative
characteristics ex-
traction

Single standard cam-
era

[88] Ground Mapless Image qualitative
characteristics ex-
traction

Stereo cameras

[107, 45, 153,
215]

Ground Mapless Features tracking;
homography

Single standard cam-
era

[165] Ground Mapless Features tracking;
homography

Stereo cameras

[111, 169] Ground Mapless Features tracking:
SIFT

Single standard cam-
era

[207, 144] UAV Mapless Optical flow: insect
inspired (EMD)

Camera eye

[185] UAV Mapless Optical flow: insect
inspired (EMD)

Single standard cam-
era
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Table 3.6: Summary of the most outstanding visual navigation approaches from the
late 90’s to the present (4)

Authors Type of ve-
hicle

Category Strategy Type of visual sensor

[75, 76] UAV Mapless Optical flow: insect
inspired (EMD)

Single mini wireless
camera

[89] UAV Mapless Optical flow: insect
inspired

Stereo cameras
looking forward
combined with two
sideways looking
cameras

[130] UAV Mapless Features tracking Single wide angle
camera

[53, 67] Amphibious Map build-
ing

Visual SLAM. 3D to-
tal map building

Trinocular stereo
cameras

[147] AUV Mapless Features tracking;
homography

Single standard cam-
era

[4, 6, 160,
122, 74, 78]

AUV Mapless Cable tracking Single standard cam-
era

[110, 143] AUV Mapless Station keeping Single standard cam-
era

[85, 118, 60,
69, 212]

AUV Map build-
ing

Underwater floor mo-
saicing

Single standard cam-
era
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Part II

The Visual Navigation Approach
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This part of the document concentrates the whole navigation and localization

process developed in this thesis. Chapter 4 details the image feature classifier, the

obstacle detection method and how the proposed algorithm builds the occupancy

grids for reactive navigation. Chapter 5 presents the assessment of different feature

detectors and trackers particularly applied to the obstacle detector introduced in

this thesis. Some prior experiments testing the effectiveness of the obstacle avoid-

ance algorithm running on-line in a moving platform are also presented in this

chapter. Chapter 6 is dedicated to the completed navigation strategy that must

guide the robot to cover missions from one starting point to one or several goal

points. The obstacle detector has been integrated in the navigation architecture

to provide a security module. The strategy generates the correct motion orders

to avoid obstacles and to steer the robot towards the goals, overcoming different

additional navigation problems, such as detecting and escaping from trapping zones

or moving in relatively cluttered environments.

Chapter 7 outlines the EKF(Extended Kalman Filter)-based localization algo-

rithm using the ground points. Its principal objective is to correct the pose estimates

given by the robot odometers using the same camera and data sources than in the

obstacle avoidance task.
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CHAPTER 4

OBSTACLE DETECTION AND

AVOIDANCE

This chapter begins introducing the VFH (Vector Field Histogram) method as the

main inspiration of our algorithm for building the local occupancy map, evaluating

the free and occupied zones surrounding the robot and computing the steering vector

in the early navigation experiments.

Next, a brief outline of the perspective transformations from the image geometry

point of view is given. These concepts are the basis of our feature classifier and

obstacle detector, and are basic to introduce the whole process.

The process for building the local map runs in 3 main steps:

1. Image features are detected and tracked across consecutive pairs of frames.

Features are classified as obstacle or ground using a new technique based on

the IPT (Inverse Perspective Transformation). The classifier performance is

evaluated using ROC (Receiver Operating Characteristic) curves.

2. Edge maps of consecutive frames are computed and edges containing obstacle

features are discriminated from the rest of edges. Discriminating the obsta-

cles edges from the rest permits: a) delimiting the obstacle boundaries, b)

detecting where these obstacles contact the ground plane, and c) having a

qualitative idea of the scene.
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3. The world coordinates of those image points that correspond to obstacle-to-

ground contact points are calculated applying the IPT. These world coordi-

nates are placed in a semicircular local occupancy grid, centered in the robot

position and with a fixed radius. This local map is continuously updated and

used for a safe autonomous navigation.

This chapter also includes initial experimental results to test the obstacle de-

tection and avoidance algorithm in autonomous missions. These first tests only

included moving without a predefined goal point avoiding the obstacles encoun-

tered in the scene.

4.1 The Vector Field Histogram

The VFH [19] is a classic approach widely used in reactive mobile robotic infras-

tructures equipped with range sensors. From a general point of view, the VFH

consists in building a one dimensional polar histogram to represent the immediate

environment around the robot. The histogram comprises k angular sectors, where

each sector defines a polar direction with respect to the robot center and it is labeled

with a value Hk called the polar obstacle density :

Hk =
∑

(mi,j), (4.1)

where mi,j is calculated for all the cells contained in each angular sector of k degrees,

as follows:

mi,j = c2i,j(a− bdi,j), (4.2)

where a and b are constants, di,j is the distance from the cell to the center of

the robot and ci,j is the certainty value of the cell. For example, using ultrasound

sensors, ci,j is incremented in one unit each time there is a sensor reading that fails in

that cell and the cell is in the acoustic axis of the sensor. The idea is that cells with

repeated or continuous presence of readings will be most likely occupied by obstacles

while cells that present fewer readings or readings with a random appearance would

show noise data, being 0 the value of ci,j if no readings come from that cell.

The polar histogram represents the polar obstacle density at each polar direction,

from 0◦ to 360◦. Sectors with peaks on the polar obstacle density values are labeled
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Figure 4.1: Vector Field Histogram: Sector K and Sector K+1 indicate the zones
where the sensors have detected obstacles. The VFH algorithm labels each polar
sector with certainty values different from 0. These values are the result of incre-
menting one unit each time a reading is found in that cell. Zones of the scene with
high density of obstacles correspond to the peaks of the histogram.

as unsafe directions and zones of the histogram with valleys or low values of the

polar obstacle density are labeled as free directions. Finally the control module

steers the robot toward the free direction that is closest to the target direction.

A threshold defines the maximum Hk value to consider a polar direction to

be a suitable candidate for the robot motion. This technique smooths the robot

steering control and considers, for example, each door aperture as being a zone free

of obstacles. The idea is illustrated in figure 4.1. The bottom of this figure shows

how the polar sectors with obstacles have certainty values different from 0. These

numbers labeling each polar direction are used to compute the Hk values which

make up the histogram shown in the top of the figure. The heading directions with

high density of obstacles are clearly reflected in those parts of the histogram with

high density of Hk values.
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Figure 4.2: The Perspective Transformation

4.2 Perspective Transformations

This section reviews the direct and the inverse perspective transformations, since

they are the basis of the obstacle detection technique used in our navigation strategy.

The Direct Perspective Transformation (DPT) maps three-dimensional points

onto a plane called the plane of projection. This transformation models the process

of taking a picture. The line that connects a world point with the camera lens

intersects the image plane defining the corresponding and unique image point of

that world point (see figure 4.2). The inverse process, that is, the projection of every

image point back to the world is modeled by the Inverse Perspective Transformation

(IPT). The back projected point will be somewhere in the line that connects the

image point with the center of projection (camera lens).

The direct and the inverse perspective projections are usually modeled assuming

a pinhole camera [52] [83]. Three coordinate systems are involved: the world, the

camera and the image coordinate systems. The linear mapping between world to

image points, both expressed in homogeneous coordinates, can be written as [83]:
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[

R3x3 T3x1

01x3 1

]

, (4.3)

where (xp, yp) are the image point coordinates, f is the focal length, (x, y, z) are

the corresponding scene point world coordinates and T c
w is the 4×4 transformation

matrix that relates, via a rotational (3 × 3) matrix R and a translational (3 × 1)
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vector T , the world and the camera coordinate frames.

The scene point world coordinates corresponding to an image point can be cal-

culated knowing either the distance between the camera and the point in the scene

or any of the (x, y, z) world coordinates; as for example, for points lying on the floor

(z = 0).

The equations in closed form to perform the Direct Perspective Transformation

can be exposed as follows [52]:

xp = f
(x−X0)cosθ + (y − Y0)sinθ

−(x−X0)cosϕsinθ + (y − Y0)cosϕcosθ + (z − Z0)sinϕ
(4.4)

yp = f
(x−X0)sinϕsinθ + (y − Y0)cosϕcosθ + (z − Z0)cosϕ

−(x−X0)cosϕsinθ + (y − Y0)cosϕcosθ + (z − Z0)sinϕ
(4.5)

while the equations in closed form to perform the Inverse Perspective Transforma-

tion [52] are:







x

y

z






=







X0

Y0

Z0






+ λ







xpcosθ − fcosϕsinθ + ypsinϕsinθ

xpsinθ + fcosϕcosθ − ypsinϕcosθ

fsinϕ+ ypcosϕ






(4.6)

where:

• (X0,Y0,Z0) are the lens world coordinates at the moment in which the frame

was taken,

• θ is the yaw angle of the camera,

• ϕ is the pitch angle of the camera,

• f is the focal distance, and

• λ is a non-zero value that parametrizes the exact position of the world point

on the inverse projective ray.

Since all points lying on the floor have z = 0, solving for λ in z and substituting

back, all performed over equation 4.6, the remaining world coordinates (x∗,y∗) turn

out to be:

x∗ = X0 −
Z0xpcosθ + (ypsinϕ− fcosϕ)(Z0sinθ)

ypcosϕ+ fsinϕ
(4.7)
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Figure 4.3: Coordinate frame conventions

y∗ = Y0 −
Z0xpsinθ − (ypsinϕ− fcosϕ)(Z0cosθ)

ypcosϕ+ fsinϕ
. (4.8)

Coordinate system conventions and notations are illustrated in figure 4.3.

4.3 Obstacle Detection

4.3.1 Feature Classification

The Basic Approach

Let us consider a single camera mounted on a moving platform running on a flat

ground, combining translational with rotational motion, and capturing frames at

consecutive time steps. The relative motion between the camera and the scene

causes the displacement of salient features in the image, changing their image coor-

dinates (xp, yp), but still representing the same scene point. Given an image feature,

the world coordinates of its corresponding scene point can be computed by means of

equations (4.7) and (4.8) in two consecutive images assuming that the world point

lies on the ground (z = 0).

If the assumption is correct, the two resulting pairs (x∗,y∗) will coincide. How-

ever, if the feature does not correspond to a ground point, the resulting values turn

out to be different to one another and different to the real world coordinates (x, y)

of the scene point. Hence, one can distinguish if an image point belongs to an

obstacle or to the floor projecting it onto a previously assumed flat ground (z = 0)

and comparing the distance between the resulting (x∗,y∗) values calculated for the
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Figure 4.4: The IPT-based obstacle detection approach.

same image point tracked in two consecutive images:

(discrepancy) D =
√

(x∗
2 − x∗

1)
2 + (y∗2 − y∗1)

2 ⇒







ifD > β⇒ obstacle,

ifD ≤ β ⇒ ground .
(4.9)

where (x∗

1,y
∗

1) and (x∗

2,y
∗

2) correspond to instants t1 and t2, respectively, and β is

the threshold for the maximum difference admissible between (x∗

1,y
∗

1) and (x∗

2,y
∗

2) to

classify the feature as ground point. Ideally β should be 0.

The idea is illustrated in figure 4.4. Two frames of a scene are taken at instants

t1 and t2. Point P2w is on the floor. Its projection into the image plane at in-

stants t1 and t2 generates the image points P2i0 and P2i1, respectively. The Inverse

Transformation of P2i0 and P2i1 generates a unique point P2w. P1w is an obstacle

point. Its projection into the image plane at t1 and t2 generates, respectively, the

points P1i0 and P1i1. However, the Inverse Transformation of P1i0 and P1i1 back to

the world assuming z = 0 (e.g. projection onto the ground plane), generates two

different points on the ground, namely, P
′

1w and P
′′

1w.

It is important to emphasize that this algorithm does not depend on any specific
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feature detector or matcher. In our particular implementation, SIFT features were

used in the studies conducted to assess the classifier performance off-line and in the

first on-line navigation experiments. SIFT were chosen because of their robustness

to scale changes, rotation and/or translation, as well as changes in illumination and

view point. However, later the KLT feature detector and sparse tracker were used

in the on-line navigation experiments which required the robot to move from the

departure point to some fixed goal points. KLT was chosen because: a) it is faster

than other detectors, b) it generates a sufficiently large number of features with high

repeatability, c) feature descriptors are not significantly affected by changes in scale

since differences in consecutive frames are negligible at relative hight frame rates,

d) more than 90% of the tracked features are inliers and well classified (see chapter

5), and e) they are usually found in corners, thus on potential edges, facilitating

the detection of the obstacle boundaries.

Feature Detection and Tracking

The first key step of the algorithm is to detect a sufficiently large and relevant set

of image features and match them across consecutive images.

Establishing good correspondences between image points, for example between

P2i0 and P2i1 in figure 4.4, is of crucial importance as incorrect correspondences

lead to wrong classifications. Because of this, wrong correspondences between im-

age points in consecutive frames are filtered out using RANSAC (Random Sample

Consensus) and imposing the epipolar constraint (x
′T
p Fxp = 0, where x

′T
p and xp are

the point image coordinates in two consecutive frames, and F is the fundamental

matrix) [83]:

The procedure can be summarized as follows:

1. Detect a set of N (N >= 8) image features and match them in two consecutive

images.

2. Select M subsets formed each one by 8 randomly selected correspondences

from the entire set N.

3. Compute the fundamental matrix Fj for every subset using the 8 correspon-

dences and up to a scale factor.

4. Let us define the distance dC corresponding to a feature matching x
′

p 7→ xp as

the deviation of the value x
′T
p Fxp from 0 (the epipolar constraint).
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5. For each estimate Fj compute the inliers as all those correspondences with

dC < n, where n is a threshold previously set. Usual values of n are between

1 and 3 pixels and the value chosen in our practical implementation was 1

pixel. The rest of matchings are considered to be outliers.

6. Choose the fundamental matrix Fj that gives the maximum number of inliers

as the resulting F .

7. Refine the fundamental matrix estimation only from the final set of inliers.

The number of subsets M is usually given by:

M =
log(1− P )

log[1− (1− ǫ)q]
(4.10)

where P is the probability that the estimate matrix is correct, q is the size of the

subset, in this case 8 points, and ǫ is the assumed initial percentage of outliers.

However, in our practical implementation M was set to 500 since it experimen-

tally demonstrated to give an optimum performance.

Direct Identification of Some Obstacle Points

The set of scene points that map to a given image point can be written as [52]:

p = pl + λ(pp − pl) (4.11)

where p is a point of the scene with coordinates (x, y, z), pl is the camera center

(X0, Y0, Z0) and pp is the image point corresponding to the scene point p. This

expression is equivalent to equation 4.6. The idea is illustrated in figure 4.5-(a).

All those image features (pp) that correspond to scene points (p) located below

the plane parallel to the flat ground and that contains the lens center (pl), require

a positive λ to be back-projected onto the ground, while λ is negative for all image

features corresponding to scene points located above the mentioned plane.

The idea is illustrated in figure 4.5-(b). p1 is a point lying on the floor, and

its corresponding image point is pp1. In equation 4.11 p1 is obtained from pp1 with

λ > 0. Likewise, p2 and p
′

2w result from pp2 for λ > 0. However, pp3 leads to a point

on the ground p
′

3w for which λ is < 0

Clearly, image points with λ negative necessarily correspond to scene points

above the ground, while image points with λ positive can correspond either to
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(a) (b)

Figure 4.5: (a) The IPT: p = pl + λ(pp − pl). (b) λ
′s positives and negatives.

elevated points or to points lying on the floor. Consequently, the process of inverse

projection and discrepancy computation can be omitted for all these image features

that need a λ < 0 to be projected onto the ground, as they can be directly classified

as obstacle points.

From equation 4.6, the z world coordinate of a scene point can be calculated as:

z = Z0 + λ(fsinϕ+ ypcosϕ) (4.12)

where λ determines the exact position of the scene point in the inverse perspective

projecting ray.

If z = 0, λ can be easily solved as:

λ =
−Z0

fsinϕ+ ypcosϕ
. (4.13)

λ < 0 means that (fsinϕ + ypcosϕ) > 0. Solving for yp:

yp > −f tanϕ. (4.14)

Expressing the yp image coordinate in pixels, and translating the origin of the image

coordinate system from the image center to the upper left corner (from now on, the

image coordinates with respect to the origin located at the upper left corner will be

denoted as (u, v)), we obtain that:

v < v0 + kvf tanϕ (4.15)

where v0 depends on the image resolution and represents the constant factor used

to convert vertical image coordinates with respect to the center of the image into
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vertical coordinates with respect to the upper-left corner of the image, and the kv

factor is the vertical relation [pixels/length] in the images.

All image points with a vertical coordinate v lower that v0 + kvf tanϕ pixels

correspond to obstacle points of the scene. Therefore, these image points can be

directly classified as obstacles without being evaluated using the expression 4.9, and

thus reducing the total execution time of the classifier.

Overall Performance of the Classifier: Experimental Assessment

A total of 16 different image sequences, with more than 150 frames for each sequence,

were recorded by a calibrated camera mounted on a moving Pioneer 3DX robot.

The camera height was 430mm, the camera pitch and yaw angles were −9◦ and

0◦, respectively, and the focal length was 3.720mm. Test recordings comprised

several types of scenarios: with regular and irregular shaped obstacles, without

obstacles, with textured and untextured floor, with specularities and other with

low illumination conditions. Frames were recorded during rectilinear motion in

the forward direction and all were processed off-line to test the point classifier

performance.

Just before running the feature tracking procedure, all images were, a) down-

sampled to a resolution of 256×192 pixels, in order to reduce the feature tracking

computation time, and b) undistorted to correct the error in the image feature

position due to the distortion introduced by the lens, and thus, to increase the

accuracy in the calculation of (x∗, y∗). For each scene, the classifier algorithm was

run over undistorted pairs of 0.5-second separation consecutive frames (one frame

every 2cm) so that the effect of the IPT was noticeable. This separation between

frames was empirically determined. Increasing the frame rate decreases the IPT

effect over the obstacle points, and decreasing the frame rate delays the execution

of the algorithm.

Although SIFT features are not necessarily located on corners or on edges, they

were initially used to test the algorithm with real images and to assess it because of

their robustness, repeatability and invariance in scale changes or rotations. Lately,

once the important parameters that affected the classification process and the sys-

tem on-line applicability (classification time, number of features, their stability,

number of inliers, miss-classification rate, etc...) were determined, it was necessary

to search for that feature tracker that could optimize all these variables and give
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the best results to the global navigation system. The tracking algorithm was im-

plemented according to the methods and approaches described in [112]. In frames

captured in our daily scenarios, SIFT features classified as obstacle points were all

near edges facilitating the obstacle detection task.

The camera world coordinates were calculated for each frame by dead reckoning,

taking into account the relative camera position with respect to the robot center.

First of all, the classifier performance was formally determined using ROC (Re-

ceiver Operating Characteristic) curves [24]. A ROC curve can be seen as a graph-

ical plot of the binary classifier sensitivity, evaluated under different environmental

conditions. These different conditions are usually modeled by a threshold that de-

termines the boundary used to decide whether an element belongs to a class or to

another. The ROC curve space can be defined by the true positives rate (recall) in

the y axis and the false positives rate (fall-out) in the x axis:

recall =
TP

TP + FN
fall− out =

FP

FP + TN
, (4.16)

where TP is the number of true positives (obstacle points correctly classified), FN

is the number of false negatives (obstacle points classified as ground), FP is the

number of false positives (ground points classified as obstacle) and TN is the number

of true negatives (ground points correctly classified).

Both axes range between 0 and 1. A ROC curve close to the straight diagonal

line that connects the points (0, 0) and (1, 1) defines a completely aleatory classifier,

while a ROC curve close to the y = 1 line defines a classifier with a sensitivity close

to 100%.

In our case, these curves were computed for every pair of consecutive images.

They plotted the recall of classified points in the y axis vs the fall-out in the

x axis, for different values of the threshold β defined in equation (4.9). Every

different value of β leads to different values of TP , TN , FP and FN . The cost

function f(β) = FP (β) + δFN(β) was calculated for every pair of consecutive

frames, varying the β value. The optimum β was chosen so as to minimize f(β).

During the experiments, δ was set to 0.5 to prioritize the minimization of false

positives over false negatives. For all tested scenes in all different scenarios, f(β)

minimized for a common β value around 21mm.

The AUC (Area Under the ROC Curve) is commonly used as a summary mea-

sure, providing significant insights of the system performance in a very simple way:

the closer it is to 1 the better, with 1 indicating a perfect classifier and 0.5 indicating

80



a completely aleatory performance [81]. The AUC is equivalent to the probability

that a randomly chosen member of one class (class A) have a smaller estimated prob-

ability of belonging to the other opposite class (class B) than a randomly chosen

member of class B [80]. Although some authors of some other disciplines claim that

the AUC permits distinguishing between bad and good classifiers but not between

good classifiers [121], as a matter of fact, we have considered that classifiers with

higher AUCs present better classification results [171]. The AUC was calculated for

every ROC curve as a measure of success classification rate.

The classification of those image features that present a discrepancy D (see equa-

tion (4.9)) close to the threshold β can be altered very easily with slight oscillations

in β or in D.

In order to decrease the sensitivity of the classifier with regard to β, all these

points are left unclassified. Besides, in a previous training phase conducted before

the autonomous navigation, histograms of D values for misclassified points were

built from images taken in all different testing scenarios. D ranges with higher

values in these histograms were stored in a database. During the autonomous

navigation phase, all points with a D included in any stored D interval were neither

classified. Then, nearly all ground points classified as obstacles were eliminated,

reducing the risk of detecting false obstacles. Although some true obstacle points

were also removed, the remaining ones were sufficient to permit the detection of

those obstacles. The elimination of miss-classified features increases the recall and

decreases the fall-out, improving the success rate of the classifier.

Figures 4.6 and 4.7 show some examples of the classifier algorithm. Pictures (a)-

(b) and (g)-(h) of figure 4.6, and (a)-(b) of figure 4.7 show two consecutive frames

corresponding to scenes 1, 2 and 3 respectively. Pictures (b) and (h) of figure 4.6

and picture (b) of figure 4.7 show obstacle points in red and ground points in blue.

Although some ground points were wrongly classified as obstacles, the AUC of the

ROC curves for scenes 1 to 3 (plots (c) and (i) of figure 4.6 and plot (c) of figure 4.7)

show values of 0.98, 0.94 and 0.92, respectively, suggesting considerably high rates

in the proportion of well-classified points. Plots (d) and (j) of figure 4.6 and plot (d)

of figure 4.7 show the histograms of D values for true (blue) and false positives (red).

D values for true positives predominantly range from 21mm to 300mm, and false

positives from 21mm to 50mm. All positives with D values from 21mm to 50mm

were filtered out, as shown in pictures (e) and (k) of figure 4.6 and in picture (e)

of figure 4.7, where no false positives appear. The risk of detecting false obstacles
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Example 1: (a) (b) (c)

(d) (e) (f)

Example 2: (g) (h) (i)

(j) (k) (l)

Figure 4.6: Classifier Assessment. (a), (g) Undistorted first frame of examples 1
and 2, respectively. (b), (h) Undistorted second frames. (c), (i) ROC curves of
scenes 1 and 2, respectively (AUC=0’9791, AUC=0’9438). (d), (j) Histogram of D
values for TP (blue) and FP (red). (e), (k) Second frame with filtered SIFT points.
(f), (l) ROC curves after the filter (AUC=0’9843, AUC=0’9821).
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Table 4.1: Rates of false positives and AUC for some of the analyzed scenes

Scene FP/(Total Nbr of features) AUC after the filter

scene 1 0.0129 0.9482
scene 2 0.0078 0.9412
scene 3 0.0847 0.9434
scene 4 0.0000 0.9554
scene 5 0.0069 0.9834
scene 6 0.0000 0.9376
scene 7 0.0069 0.9827
scene 8 0.0166 0.9900

is reduced but a sufficient number of true positives is maintained to detect the real

obstacles. Plots (f) and (l) of figure 4.6 and plot (f) of figure 4.7 show the final

ROC curves and AUCs increasing to 0.98, 0.98 and 0.94, respectively. Notice that

all the scenes present inter-reflections and specularities, although they do not affect

the classifier performance.

Table 4.1 presents some relevant data concerning various tested scenes. 21 frames

were analyzed for every scene. The total amount of features ranged between 105

and 260. The percentage of false positives with respect to the total number of

features suggests failure ratios lower than 8%. Finally, the AUC values after the

filtering process have values greater than 0.93 in all cases, suggesting a high degree

of performance. Although the classifier performs accurately, obstacle points near the

floor, which may have low D values, have more probability of being miss-classified

than others with a larger height.

4.3.2 Obstacle Profiles

Image features or corners are usually detected at regions of high gradient, thus they

are likely to be near or belong to an edge. Besides, features classified as obstacle

are most likely to be contained or near a vertical edge belonging to an obstacle.

Hence, the next step of the algorithm is the computation of edge maps and the

association of such edges with features classified as obstacle. This permits isolating

the obstacle boundaries from the rest of edges and getting a qualitative perception

of the environment.

In order to combine a high degree of performance in the edge map computation

with a relatively low processing time, the edge detection procedure implements a
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Example 3 (a) (b) (c)

(d) (e) (f)

Figure 4.7: Classifier Assessment. (a) Undistorted first frame. (b) Undistorted
second frame. (c) ROC curve (AUC=0’9236). (d) Histogram of D values for TP
(blue) and FP (red). (e) Second frame with filtered SIFT points. (f) ROC curve
after the filter (AUC=0’9494).

reduced version of the Canny edge detector [28] running only these two basic steps:

1. First, the original image is convolved with a 1D Gaussian derivative horizontal

kernel. This permits detecting, with a single convolution, zones with high

vertical gradient from areas with smooth intensity values.

2. Next, a process of hysteresis thresholding is applied. Two thresholds are

defined. A pixel with a gradient above the highest threshold is classified as

edge pixel. A pixel with a gradient above the lowest threshold is classified as

edge if it has in its vicinity a pixel with a gray value higher than the highest

threshold. In this way, edge pixels with low gradient are not filtered if the

threshold is defined too high, and noise is not considered as an edge if the

threshold is defined too low.

The algorithm locates in the image all features classified as obstacle. Then,

for each one, it founds all edge pixels which are inside a window centered on the

feature image coordinates. Every edge is tracked down starting from the obstacle

point position until the last edge pixel or a ground point is found. This will be
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considered as to be the point or points where the object rests on the floor. This

process permits isolating the relevant obstacle boundaries from the rest of edges

and getting a qualitative perception of the environment. In our implementation,

the window used to find edges near obstacle points is longer in the vertical direction

to overcome possible discontinuities in the obstacle vertical border.

4.4 Obstacle Avoidance and the Navigation Task

4.4.1 Building a Local Occupancy Map for Reactive Navi-

gation

Knowing the camera position (X0, Y0, Z0), and the world coordinates of a point on

the floor (x, y, 0), the distance dcp between the camera and the floor point can be

calculates as:

dcp =
√

(x−X0)2 + (y − Y0)2 (4.17)

and the angle φ defined by the direction of motion and the relative orientation of

this floor point with respect to the camera optical axis can be defined as:

φ = arccos

(

~a ·~b

|~a||~b|

)

(4.18)

where ~a is a vector with the same direction as the vector from the world coordinate

system origin to the point (X0, Y0, 0), ~b is the vector from point (X0, Y0, 0) to the

point (x, y, 0), and ~a · ~b is the dot product between both vectors. The idea is

illustrated in figure 4.8.

As it has been previously stated, it is possible to calculate the world coordinates

of an image point if it corresponds to a ground point of the scene. Those points

where the obstacle touches the ground are ground points, hence it is easy to compute

their world coordinates from the image point coordinates.

The orientation and distance of obstacles with respect to the robot can be qual-

itatively estimated taking into account the relative position of the camera with re-

spect to the robot center and computing the distance and orientation with respect

to the camera of those obstacle points that are in contact with the floor (using, for

example, equations 4.17 and 4.18).
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Figure 4.8: Distance and orientation of a ground point with respect to the camera

A semicircular area of a fixed radius, centered at the robot position and virtually

located on the ground plane, is considered to be the ROI (Region of Interest) used

for the obstacle avoidance. Only obstacles detected inside this ROI are considered

to be avoided.

The ROI is in turn divided in angular regions. Histograms of obstacle-to-ground

contact points at each polar direction of the ROI are computed. Those polar direc-

tions corresponding to angular regions occupied by at least one obstacle-to-ground

contact point are labeled, in principle, as forbidden and those free of obstacle-to-

ground contact points are included in the set of next possible movement directions.

This process results in a polar occupancy map of free and occupied zones, that

qualitatively represents the vicinity of the robot. Obstacle-free polar regions which

are narrower than a certain threshold (determined empirically and depending on

the robot size) are excluded from the possible motion directions. If all free angular

regions are narrower than the defined threshold, the algorithm concludes that all

the space ahead is occupied by obstacles and returns the proper order to stop the

robot.

This method has been inspired on the VFH approach but here adapted to vision-

based systems.
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4.5 Experimental Results: Autonomous Naviga-

tion in an exploration task

After the classifier demonstrated an appropriate performance, it was convenient to

test it online, integrated in the global obstacle detection and avoidance process. In

a first set of experiments the mission to be accomplished by the vehicle was merely

moving erratically through the free space, detecting the obstacles present in the

scenarios described in section 4.3.1. Hence, there was no target point. For all these

experiments, the navigation module implements and applies the VFH method, but

here adapted to visual systems. The objective of these experiments was simply

evaluating: a) how the algorithm discriminated the obstacle boundaries from the

ground, b) the accuracy in the world coordinates of the obstacle-to-ground contact

points, and, c) if the occupancy grids, as defined, were appropriate for the obstacle

avoidance task.

The direction of motion was given as a vector pointing to the center of the widest

polar obstacle-free zone. Positive angles resulted in turns to the right and negative

angles in turns to the left. The system used the same operating conditions described

in section 4.3.1, in terms of: camera, robot speed, focal distance, lens height, frame

rate, image resolution and intrinsec camera parameters for image undistortion. The

camera world coordinates were obtained composing the robot world coordinates

obtained from the dead reckoning data with the camera position with respect to

the robot.

Figure 4.9 shows four examples of the obstacle contour discrimination algorithm

applied over images of a sequence recorded during these navigation experiments.

Pictures (a), (c), (e) and (g) are the second frame of four different pairs. Pictures

(b), (d), (f) and (h) show the corresponding edge maps with the obstacle boundaries

highlighted in orange. Although picture (e) shows a very high inter-reflection on the

ground and a very granulated texture on the floor tiles, only real obstacle boundaries

survived.

Figure 4.10 shows in plots (a), (b), (c) and (d) the trajectories followed by the

robot, according to the odometry data, during the navigation through the scenarios

of figures 4.11, 4.12, 4.13 and 4.14. All space coordinates shown in these plots are

expressed in milimeters. The blue circle denotes the starting point and the red

circle denotes the end point. Figures 4.11, 4.12, 4.13 and 4.14 show data corre-

sponding to some navigation experiments. Pictures (a), (b), (c) and (d) in all four
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Scene 1 (a) (b) (c) (d)

Scene 2 (e) (f) (g) (h)

Figure 4.9: Examples of obstacle contour discrimination. (a), (c), (e), (g): Undis-
torted second frame of different pairs of consecutive images of Scenes 1, and 2. (b),
(d), (f), (h): Obstacle contours.

figures show the second frame of some pairs recorded and processed in scenarios 1,

2 and 3. Every image was taken before the robot had to turn to avoid the frontal

obstacles; obstacle points are shown in red and ground points in blue. Figure 4.11

(scenario 1) shows a room full of obstacles with regular and irregular shapes. This

scene presents shadows and inter-reflections. Figure 4.12 (scenario 2) corresponds

to a corridor with a very high textured floor, columns, walls, inter-reflections and

some specularities. Figures 4.13 and 4.14 (scenario 3) present bad illumination

conditions, important inter-reflections, specularities on the floor, and some image

regions (white walls, shelves and lockers) with homogeneous intensities and/or tex-

tures. Regions with homogeneous textures result in few distinctive features and

poorly edged obstacles, which can difficult their detection. Pictures (e), (f), (g) and

(h) in all four figures show the vertical contours (in orange) comprising obstacle

points. As shown, obstacle contours were differentiated from the rest of the edges.

Obstacle-to-ground contact points inside the ROI have been highlighted in pink.

Histograms (i), (j), (k) and (l) in figures 4.11, 4.12, 4.13 and 4.14 account for

the number of obstacle-to-ground contact points detected in each polar direction.

Plots (m), (n), (o) and (p) show the semicircular floor portion in front of the robot

with all the obstacle-to-ground contact points, representing the local and qualitative

occupancy maps used for reactive navigation.
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(a) (b) (c) (d)

Figure 4.10: (a), (b), (c) and (d), robot trajectories for tests of figures 4.11, 4.12,
4.13 and 4.14, respectively. Length information referred in mm.

In all these tests the steering direction is shown in green. The experiments

performed show a remarkable robustness against textured floors, bad illumination

conditions, shadows or inter-reflections, and deals with scenes that include different

planes. In all scenes, features were well classified with success rates greater than

90%, obstacle profiles were correctly detected and the robot navigated through the

free space avoiding all obstacles.

4.5.1 Conclusions

Constructing local maps is a suitable way to represent the vicinity of the robot for

reactive navigation. Many of the reactive visual-based navigation solutions that

build or use local occupancy maps are sensitive to floor and obstacle textures,

homogeneity in the color intensity distribution, to the illumination conditions or

to the relative position of the camera with respect to the ground. Determining or

identifying exact obstacle shapes, exact positions, dimensions, colors or textures is

not essential to qualitatively decide the next direction of motion.

In this chapter, a new qualitative obstacle detection and avoidance algorithm

has been presented.

The complete strategy starts with a novel image feature classifier that distin-

guishes between obstacle features from features lying on the ground. The classifier

was experimentally assessed using ROC curves and their AUC. The ROC curves

were plotted from data fetched from sequences recorded by a camera mounted on a

moving robot platform. AUCs were higher that 0.9 in all curves, suggesting consid-

erably high success rates in the classification results. The detection of points that

belonged to obstacles permitted: a) discriminating the obstacle boundaries from the

rest of edges, and b) detecting those points where obstacles contacted the ground,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) 49◦ (n) 37.5◦

(o) −42◦ (p) 44.5◦

Figure 4.11: Scenario 1. Experiment 1: (a), (b), (c) and (d), undistorted frames;
(e), (f), (g) and (h), corresponding edge maps with obstacle borders highlighted in
orange. (i), (j), (k), (l), histograms of obstacle-to-ground contact points for each
polar direction between −90◦ and 90◦. (m), (n), (o) and (p), local occupancy map
with the resulting steering vector, for images (a), (b), (c) and (d) respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) −44.5◦ (n) −36◦

(o) 39◦ (p) −44◦

Figure 4.12: Scenario 2. Experiment 2: (a), (b), (c), (d), undistorted frames;
(e), (f), (g) and (h), corresponding edge maps with obstacle borders highlighted in
orange; (i), (j), (k), (l), histograms of obstacle-to-ground contact points for each
polar direction between −90◦ and 90◦; (m), (n), (o) and (p), local occupancy map
with the resulting steering vector, for images (a), (b), (c) and (d), respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) −46◦ (n) 35◦

(o) −34.5◦ (p) 0◦

Figure 4.13: Scenario 3. Experiment 3: (a), (b), (c) and (d), undistorted frames;
(e), (f), (g) and (h), corresponding edge maps with obstacle borders highlighted in
orange; (i), (j), (k) and (l) histograms of obstacle-to-ground contact points for each
polar direction between −90◦ and 90◦; (m), (n), (o) and (p), local occupancy map
with the resulting steering vector, for images (a), (b), (c) and (d) respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) 50.5◦ (n) 40◦

(o) 41◦ (p) 47◦

Figure 4.14: Scenario 3. Experiment 4: (a), (b), (c), (d), undistorted frames;
(e), (f), (g) and (h), corresponding edge maps with obstacle borders highlighted in
orange; (i), (j), (k), (l), histograms of obstacle-to-ground contact points for each
polar direction between −90◦ and 90◦. (m), (n), (o) and (p), local occupancy map
with the resulting steering vector, for images (a), (b), (c) and (d) respectively.
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and calculating their world coordinates.

The system built a radial qualitative model of the robot vicinity where only the

world coordinates of the obstacle-to-ground contact points detected in the image

were included. The goal was not to build maps as accurately as possible, but to

infer a qualitative idea of which parts of the environment were occupied and which

ones were free. These maps evidenced the presence of something that had to be

avoided, in a determined direction and at a specific distance. Zones free of obstacle

points were the candidates for the next direction of motion.

The algorithm shows a certain robustness to the presence of shadows, inter-

reflections, specularities or textured floors, overcomes scenes with multiple planes

and uses only a certain number of image points reducing the execution time respect

to those that process the whole image.

The obstacle detection algorithm was tested in an autonomous robot with the

unique mission of roaming inside the environment avoiding all obstacles. The di-

rection of motion was always pointing to the center of zones free of obstacle points.

Steering vectors were computed just to escape from areas potentially occupied.

These preliminar on-line tests were necessary to evidence the suitability of the al-

gorithm for real on-line navigation applications and to see which environmental

variables could affect the system. The experimental setup consisted of distinct

scenarios with different characteristics, several kinds of obstacles, different illumi-

nation conditions and various floor textures. In all cases the mobile robot was able

to navigate through the free space avoiding all obstacles, walls and columns.

One of the major problems encountered in the navigation tests was the execution

time. SIFT is slow compared to other commonly used feature detectors, and it

delays the whole process of obstacle detection and avoidance. If the feature tracker

is slow, then the calculation of the steering vector can be delayed too much. This

delay can lead the robot to crash unless it stops until the moving decision has

been taken. There are also other parameters that affected the obstacle detection

algorithm: for example, the image coordinates where the features were detected,

how many features were detected and how many features could be correctly tracked.

Due to the nature of our obstacle detector, features located over corners and edges

would be preferred than others. In order to detect all obstacle boundaries, the

algorithm needs features in all obstacle edges and the more features it gets, the

best it performs. And finally, under inconvenient illumination or environmental

conditions, the number of outliers can increase. It is important to have a high
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degree of inliers in the matching process since outliers are rejected and, thus, some

parts of the environment could be undetected.

For all these reasons, testing different feature detectors and trackers in our clas-

sifier algorithm was necessary in order to find out which was the one that gave the

best results and performance for our particular navigation system. This specific

point is studied in the next chapter.

95





CHAPTER 5

ASSESSMENT OF DIFFERENT

FEATURE TRACKERS

5.1 Introduction

The initial version of the navigation approach involved the use of SIFT features

because of their properties described in section 3.3.2. As it has been exposed in

the previous section, early experimental results of the complete navigation strat-

egy demonstrated appropriate performance as for the feature classification process

and as for the automatic robot operation. However, the complete strategy is not

restricted to a certain feature detector. Obviously, changing the feature detector,

descriptor and tracking algorithm leads to different number of features, different

feature locations and different execution times, and consequently, to different track-

ing results. All these parameters can influence the obstacle detection and thus the

navigation process. Therefore, it makes sense to select the best configuration of fea-

ture detector/descriptor and tracking approach to get the best performance from

the navigation task.

5.2 Evaluating Several Feature Trackers

A set of image sequences recorded with the same calibrated camera mounted on

the same Pioneer 3DX were processed off-line to test different feature detectors
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and matching approaches. Frames were recorded during the motion in the same

scenarios used for the experimental evaluation presented in the previous chapter.

However, all sequences utilized in the current assessment were exclusively recorded

for this purpose. The camera world coordinates were calculated for each frame also

by dead reckoning and taking into account the relative camera position with respect

to the robot center. The illumination conditions did not change abruptly during

the robot navigation. As it was done in the previous experiments, images were

down-sampled to a resolution of 256×192 pixels in order to reduce the computation

time. All frames were also rectified to correct the distortion introduced by the

lens and thus to reduce errors in the feature image coordinates. For each scene,

the classifier algorithm was run over more than 40 undistorted pairs of frames.

The time separation between consecutive frames was reduced (with respect to the

experiments presented in previous sections) to 0.4 seconds. Three additional feature

detectors were tested to compare them with the early results obtained with SIFT:

SURF-64 (i.e. descriptor length of 64), FAST, and KLT as a classic representative

of the autocorrelation or SSD (Sum of Squared Differences) based methods ([10]).

FAST features were labeled with the 16 position vector descriptor defined in

[163] and matched minimizing the SSD of the feature descriptor in consecutive

images. SURF detection and matching was implemented following [13]. Finally,

the KLT feature detection algorithm was combined with the feature tracking Lucas

and Kanade’s iterative method in image pyramids [23].

In all cases, the threshold β was obtained so as to minimize the cost function

f(β) = FP (β) + λFN(β) for a representative set of images (FP are false positives

and FN are the false negatives). During the experiments, λ was set again to 0.5 to

prioritize the minimization of false positives over false negatives.

Figures 5.1, 5.2, 5.3, 5.4 show some important results obtained from the exper-

iments carried out to test the aforementioned detectors and descriptors. Plots (a),

(b) and (c) of each one of these four figures refer to, respectively, scenes 1, 2 and

3, shown in figure 5.5. Plots (d) of all four figures show, as additional examples,

the results of the tests of the different feature trackers for 18 different image pairs

corresponding to other 18 different video sequences recorded in different scenarios.

Consecutive frames were paired and used off-line as input to our classification

algorithm to evaluate:

1. time of execution of the feature matching process,
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2. the number of features,

3. the number of inliers, and

4. the percentage of miss-classified features with respect to the number of inliers.

In these experiments, the number of KLT features was set to 250. This was ex-

perimentally demonstrated to be an appropriate number for detecting all obstacle

boundaries, and not too large to considerably increase the time of execution. Be-

cause of this, the KLT tracker does not appear in figure 5.2.

Plots (a), (b) and (c) of figure 5.1 show the execution time (in miliseconds)

using different feature detectors and tracking approaches. Every plot shows data

recovered from the execution of the classifier over 10 consecutive image pairs. Time

magnitudes include the time for detecting and tracking features in a pair of con-

secutive images, plus the time for filtering outliers. As shown in the three plots,

SIFT is the approach that consumes the greatest amount of time while KLT and

FAST are the approaches that run faster. For our real time application, it can

be concluded that FAST and KLT seem to be the most appropriate to ensure an

acceptable frame processing rate of the obstacle detection algorithm.

Plots (a), (b) and (c) of figure 5.2 show the number of features detected using

SIFT, FAST and SURF in each one of these 10 image pairs from the 3 different

scenes. On the one hand, SIFT and FAST report more than 100 features, a suit-

able number for obstacle detection purposes. A larger number of detected features

increase the probabilities of detecting all the relevant obstacle edges. On the other

hand, SURF returns insufficient features to detect the whole obstacle boundaries:

if some obstacle edges are not found, an obstacle or part of an obstacle will not be

shown in the resulting qualitative occupancy map.

Plots (a), (b) and (c) of figure 5.3 show the percentage of inliers from the total

amount of features matched in two consecutive images. These inliers are the features

that will be finally classified as obstacle or ground points and that will be used

to discriminate the obstacle boundaries from the rest of edges. If the number of

discarded features increases, some obstacle edges can be missed. SIFT and FAST

maintain a medium number of inliers while SURF and KLT show a high percentage

of inliers, in some cases equal to the 100% of the matched features.

The results of the different evaluated parameters maintain a similar trend during

the consecutive frames over an image sequence, suggesting stability and repeatabil-

ity in the feature matching and obstacle detection process. Concerning plots (d)
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of figures 5.1, 5.2, 5.3, again, all these data suggest that: i) SIFT is the most time

consuming, ii) although SURF presents a great percentage of inliers, it generates

few features, and iii) SIFT and KLT generate more well-classified points than FAST

or SURF, which makes these options more suitable to be used within the navigation

algorithm. Furthermore, in some of these scenes, not only the percentage of inliers

in FAST is too low, but the percentage of miss-classified features is too high to

properly detect all the obstacle edges. This makes this method too irregular to be

properly used for the on-line application.

In conclusion, SIFT is the method that shows the best performance in different

scenarios, it has an average proportion of inliers but, conversely, it is the most time

consuming. SURF outperforms SIFT in time of execution (6 times on average);

further, although the percentage of inliers is high, the number of detected points is

considerably low so as to get an acceptable performance from the obstacle detection

step. FAST is quick but, in some cases, the lack of regularity makes it unreliable.

Sometimes, using FAST, the number of inliers can be considerably scarce with re-

spect to the initial number of detected features, depending on the image conditions.

The KLT approach is also fast, it is stable in a lot of different scenes with different

lighting conditions, it detects an appropriate number of features and the number

of inliers is close to 100%. Although the method is not invariant to scale changes,

ensuring small magnitude displacements, e.g keeping a sufficient frame rate, reduces

the relevancy of this shortcoming.

Concerning the point classifier and obstacle detection algorithm performance,

plots of figure 5.4 show the number of miss-classified points with respect to the total

amount of inliers, using the 4 different feature detectors. Again, plots (a), (b) and

(c) refer to the aforementioned scenes 1, 2 and 3, and plot (d) covers the data cor-

responding to the other 18 different scenes. The features wrongly classified induce

errors in the detection of obstacle edges and thus in the local qualitative occupancy

map construction. The classifier algorithm using SIFT or KLT generates a lower

percentage of miss-classified points than using SURF or FAST. As expected, in

most cases it is lower than 10%. FAST shows a greater percentage of miss-classified

features, which makes this detector non-appropriate to our purposes. These differ-

ences on the percentage of miss-classified features is due to the discrepancies in the

matched feature position calculated by every different approach. Different feature

image locations lead to differences in the world point coordinates.

With SURF or FAST, the number of images where some obstacle edges are not
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Figure 5.1: Assessment of feature trackers - execution time: (a) scene 1; (b) scene
2; (c) scene 3; (d) mixed scenes;

101



(a) (b)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Image pair

N
u

m
b

e
r 

o
f 

fe
a

tu
re

s

 

 

SURF

SIFT

FAST

(c) (d)

Figure 5.2: Assessment of feature trackers - number of detected features: (a) scene
1; (b) scene 2; (c) scene 3; (d) mixed scenes;
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Figure 5.3: Assessment of feature trackers - percentage of inliers: (a) scene 1; (b)
scene 2; (c) scene 3; (d) mixed scenes;
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Figure 5.4: Assessment of feature trackers - percentage of miss-classified points: (a)
scene 1; (b) scene 2; (c) scene 3; (d) mixed scenes;
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detected increases due to the lack of features they suffer from. In consequence,

from the point of view of performance, SIFT and KLT are the methods that best

contribute to our classifier algorithm, but again, SIFT is too time consuming.

Figure 5.5 shows different results of the obstacle boundary detection process

using the different feature detector approaches. Pictures (a) to (d), (i) to (l) and

(q) to (t) show the second frame of 3 different pairs of consecutive images taken

from the sequences evaluated earlier. Features classified as obstacle are shown in

red and those classified as ground are shown in blue. Pictures (e) to (h), (m) to

(p) and (u) to (x) of figure 5.5 show the corresponding edge maps with the obstacle

contours highlighted in orange. Furthermore, obstacle-to-ground contact points

that are inside a ROI with a radius of 1’5m are indicated in pink.

As can be observed, SURF either finds few features on the floor or it does not

find any. This complicates the discrimination between obstacle edges and edges

caused by, for example, ground textures, lines, inter-reflections or specularities.

It is obvious that different approaches generate different amounts of features with

different locations and this circumstance is specially relevant in the process described

in this thesis. In all cases where SIFT or KLT approaches are used, all obstacle

boundaries are well distinguished because both detectors find a considerable number

of features and it is more likely that all obstacle edges include one. However, as

it can be seen, for example, in figures 5.5-(n),(o),(v),(w), SURF or FAST generate

few inliers. Consequently, all obstacle edges which have no features on them can

not be well discriminated. Both, SIFT or KLT feature detectors ensure a good

performance of the obstacle boundary discrimination algorithm, but KLT is much

faster that SIFT.

5.2.1 Conclusions

Different feature detectors and matching techniques have been tested with the im-

age feature classifier and obstacle detector to compare reliability, execution time,

accuracy and performance. Tests conducted with SIFT, SURF-64, FAST and KLT

approaches over a number of different image pairs reveal that KLT is the approach

that provides the best performance to our purposes, since it is the fastest, it gener-

ates a sufficiently high number of features, near 100% of the detected features are

inliers and more than 90% of the detected features are well classified. Improving

all these parameters increases the obstacle boundary detection accuracy and the
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Scene 1: (a) SIFT (b) SURF (c) FAST (d) KLT

(e) (f) (g) (h)

Scene 2: (i) SIFT (j) SURF (k) FAST (l) KLT

(m) (n) (o) (p)

Scene 3: (q) SIFT (r) SURF (s) FAST (t) KLT

(u) (v) (w) (x)

Figure 5.5: The feature classifier using different feature trackers. (a), (b), (c), (d):
frame captured in scene 1. (i), (j), (k), (l): frame captured in scene 2, (q), (r), (s),
(t): frame captured in scene 3. (e), (f), (g), (h), (m),(n), (o), (p), (u), (v), (w), (x):
Obstacle contours and obstacle-to-ground contact points.
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quality of the obstacle-to-ground contact point detection. As a consequence, the

corresponding qualitative occupancy grid that has to be build for the safe navigation

attains a larger level of reliability.
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CHAPTER 6

ROBOT NAVIGATION STRATEGIES

6.1 Introduction

As it has been defined in section 2.1 the navigation problem deals with the ability

of the mobile robots to move between several target points, avoiding all collisions

and trying to maximize efficiency in terms of time and covered path length.

Current applications involving mobile autonomous agents entrust the motion

and behavior control to navigation strategies. Optimum and robust skills in mobility

and navigation, either for reactive, deliberative or hybrid systems have a great

influence in the system global performance. The navigation abilities are crucial in

the accomplishment of routine tasks such as exploration, transportation, guiding or

moving in daily dynamic or scenarios densely occupied by obstacles. For example,

an automatic wheel chair moving inside a university or administrative building or

a transformation robot working in a warehouse.

Particularly, reactive autonomous agents do not assume any knowledge of the

environment before they begin the navigation task, so it is crucial for them to be

endowed with obstacle detection and navigation algorithms, robust enough to assure

the achievement of all the assigned tasks without collisions as well as an accurate

localization approach in case different goal points have been previously programmed.

It is not enough being able to detect and avoid obstacles and perfectly localize the

robot while it moves, but also to maximize efficiency, basically in terms of time and

covered path length. For just erratic collision avoidance, the system only needs a
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suitable obstacle detection algorithm and a minimum criteria to direct the robot to

zones of free space. However, in reactive missions programmed to cover routes from

a starting point to a set of subsequents goal points, maximizing efficiency implies

taking into consideration that obstacles have to be avoided but the robot must

deviate as less as possible from the goal direction.

The goal of the mission described in this chapter is not only to detect and

avoid the obstacles, but to move from a starting to one or several goal points.

Consequently, from now on, the idea of steering the robot towards the center of

the widest obstacle-free zone adopted in the experiments of section 4.5 might be no

longer valid, if this is not the option that pursues guiding the robot to the objective,

trying to maximize the efficiency in the entire followed route.

The literature is profuse in reactive navigation strategies, (see chapter 3). Among

them, Bug-T 2 (Traversability and Tenacity) [5] and ND (Nearness Diagram) [136]

are the techniques that provide the most important insights for our particular sys-

tem. At the time of detecting obstacles and constructing the occupancy maps, our

system used all algorithms described in section 4.4. But the strategy for guiding

the robot from a starting to a goal point was newly designed and inspired on the

most relevant aspects of Bug-T 2 and ND. Although these two algorithms were im-

plemented, experimentally tested and proven to be effective using range sensors, an

important effort has been done to adapt their main benefits to vision-based naviga-

tion systems. It is obvious that the special characteristics of the sensors equipping

a robot are critical issues on final robot navigation capabilities. For this reason,

some modifications with respect the original solutions were needed to reach similar

performance when using cameras with regard to using range sensors.

6.2 Comparing Bug-T 2 and ND: advantages and

inconveniences

6.2.1 Some considerations about Bug-T 2

A local trapping zone is one of the most limiting situations to get success in a

reactive navigation task using the Potential Fields method. Usually, the robot

moves in the direction of the goal point until it finds obstacles. The influence of

the attractive vector caused by the goal is reduced and/or canceled by the repulsive
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Figure 6.1: (a): The robot moves towards the target under the influence of its
attractive force. (b) When it is close to the obstacle concavity, the resultant of the
repulsive forces has a significant magnitude and moves the robot away from the
target direction. (c): The robot is again far away from the obstacle, the magnitude
of the repulsive force attenuates, reducing the influence of the obstacle on the robot.
The robot feels attracted again by the goal point and it moves once again to the
obstacle concavity. d) The trajectory is cyclic, approximating to and separating
from the obstacle.

force generated by the obstacles. If one of the obstacles is a wall with an L or U

shape and it is located in between the robot and the goal point, the robot gets the L

or U concavity and then, rejected by its repulsive force, it moves backwards. Once

the robot has reached a considerable distance from the obstacle, the repulsive force

attenuates while the goal attractive force actuates again. The effect is that the

robot goes towards the target entering again in the obstacle influence and starting

a cyclic and infinite process of attraction and rejection (see figure 6.1). One of the

ways to escape from this situation is to plan a strategy to move the robot away

from the target direction, and that is exactly what successfully proposes Bug-T 2.

Antich et al [5] proposed a new reactive navigation method based on two main

principles: traversability and tenacity. The traversability principle is supported on
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the so called navigation filter. This navigation filter is a virtual circular structure

with a pre-defined radius that represents the environment surrounding the robot

up to a certain distance. The circle is divided in equal sectors and is filled with

the sparse data supplied by the range sensors (either sonar or infrared). The sensor

readings indicate the presence of obstacles. Each sector is labeled as permitted

or forbidden, depending on the presence or not of nearby obstacles. Figure 6.2

shows the circular space of directions surrounding the robot. Those regions where

sensor readings are detected (in brown) are labeled as occupied areas (in black).

No considerations concerning the distances between obstacles and the robot are

done. Simply, if there are obstacles inside one section of the navigation filter, then

this section is banned. Therefore, the navigation filter shows which regions of the

environment surrounding the robot can be traversed and which are occupied by

obstacles.

If the way to the target is clear of obstacles, the robot heads directly towards

the goal by means of its attractive force. When an obstacle is detected, the robot

follows its contour either to the left or to the right until the obstacle has been

circumnavigated. This behavior is the result of combining the repulsive force caused

by the obstacle and the principles of traversability and tenacity. When surrounding

the obstacle, the algorithm searches for the first traversable region, either clockwise

or counterclockwise (left or right), according to the tenacity principle. Roughly

speaking, the tenacity principle consists in making the same decision (left or right)

as the decision made in the previous execution of the navigation algorithm. In

this way, the robot keeps following the obstacle contour in the same direction until

the goal direction is free again. At that moment, the filter is reset and the robot

faces again towards the goal. However, the first time a certain obstacle is found

there is no previous decision to apply the tenacity principle. In this case, three

different criteria can be applied: minimum turn, fixed-beforehand and randomly

[5]. Recent readings are temporarily stored in the navigation structure until the

current obstacle has been completely overcome.

A further criterion that is additionally applied is as follows: if the goal point

appears to be in the same sector of an obstacle, and that sector was previously

banned, the local environmental information is updated and the robot is redirected

towards the target.

Both principles are general concepts that can complement other classical naviga-

tion strategies such as the Potential Fields method, the Dynamic Window Approach
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Figure 6.2: The navigation filter.

or other classical path-planning schemes such as Bug2.

To guarantee convergence, Bug-T 2 establishes some additional rules that tune

the application of the tenacity principle and the criteria to leave or to continue the

following of the obstacle contour. More specifically, in cases where, for example,

the goal point is placed inside or behind a G-shaped obstacle, if tenacity is always

applied a cyclical situation can emerge, forcing the vehicle to play always the same

trajectory without reaching the goal point. To guarantee convergence even in these

uncommon circumstances, Bug-T 2 must adopt the next additional criteria: a) leav-

ing the obstacle contour either if the obstacle direction is free and it is the first

time the robot passes by this current position, or, b) if the robot trajectory cuts

the Main-Line 1 in a point closer to the goal than previous intersections between

the Main-Line and the robot trajectory (see [5] for further details).

Bug-T 2 is a particularly robust strategy because: (a) with a relatively sparse

set of low-cost sensor readings, it builds an occupancy map sufficiently adequate to

define the free and the occupied zones in the vicinity of the robot, (b) it uses all

benefits from the Bug2 strategy and from the Potential Fields method, all combined

with the original principles of traversability and tenacity to guarantee convergence

to the goal point, c) it guarantees the robot escaping from trapping zones, regardless

their shape and dimensions.

One of the important issues of the T 2 algorithms is to determine the radius of

the navigation filter. Extending the area of this region of interest would permit

the system to perceive wider parts of the environment; however, in this case, the

algorithm can fail when it tries to detect free apertures between obstacles, if they

1Main Line: the straight segment joining the starting and the target points

113



do not occupy, at least, one entire sector of the filter (see figure 6.3). From now

on, discontinuities or apertures between obstacles will be referred to as gaps. As it

can be observed in figure 6.3-(a), the robot can perfectly pass through the indicated

aperture between both obstacles. But, as the sectors of the filter which contain

the gap are all forbidden since they also contain part of the obstacles, the robot

has to turn around to continue its route. Contrarily, figure 6.3-(b) shows the same

environmental configuration but with a smaller navigation filter. As the radius of

the filter is shorter, the robot does not notice the presence of the obstacles until

they are close. Furthermore, the robot is only able to see one of the two obstacles

inside the navigation filter. Figure 6.3-(b) shows in magenta the most likely route

followed by the robot. The robot starts going towards the goal point since there are

no obstacles inside the region of interest. When it detects the obstacle 1 it begins

to round it in the orientation of minimum turn. Immediately, the goal direction is

free since nothing is found inside the filter. The filter is reset and the goal direction

is taken again. When the obstacle 2 is detected, the robot starts its surrounding

until the path to the target is free and the robot can proceed towards it. The robot

has passed through the gap, in a path towards the goal much more efficient than

the one shown in picture (a).

The length of the navigation filter diameter can be adapted to the characteris-

tics of the environment and to the robot structure and dimensions. For navigation

purposes, it would be necessary to detect only those gaps that the robot can pass

through. Navigation filters with shorter radius permit the robot navigating closer

to the obstacles and thus detecting more quantity of traversable gaps, however as

the navigation filter radius decreases and the robot navigates closer to the obstacles,

two implications progressively arise: 1) the collision risk increases, and 2) the de-

tection of obstacles present in the environment is delayed, preventing the system to

anticipate the upcoming situations. Figure 6.4 illustrates the idea. The blue robot

has a navigation filter with a radius much shorter than the green robot. Due to the

shortness of its filter radius, the blue robot is unable to detect the obstacle and the

gap until it is very close to them. This permits the robot always finding the gap but,

on the other side, traveling so close to the obstacles increases the collision risk and

it prevents the robot from anticipating that the gap is not traversable. The green

robot will minimize the risk of collision and it will anticipate the obstacle, but it

will be able to detect the gap only if it is long enough to occupy, at least, one entire

portion of the navigation filter. In summary, the length of the filter radius must
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(a) (b)

Figure 6.3: Relevance of the filter radius in the navigation performance. (a) Gaps
are not detected because the radius of the navigation filter is too long; (b) Gaps are
detected because the radius of the filter is smaller than in case (a).

be always adjusted to find a compromise between following the obstacle contours,

minimizing the risk of collision and being able to find as many traversable gaps as

possible. Practical implementations of the algorithm used navigation filters with a

radius between 1 and 2 meters, giving optimal results in the tested environments.

Besides, the algorithm is able to define a sort of occupancy map of the sur-

rounding scenario only with the disperse readings provided by the range sensors.

By decreasing the range of the navigation filter, the amount of obstacles influencing

the robot is reduced and they are easier to control. Under these circumstances, the

robot is unlikely to anticipate potential undesired situations but it is prepared to

escape from them.

6.2.2 Some considerations about ND

The ND [136], ND+ [137] and other strategies derived from them (for example [54])

tackle the problem of autonomous navigation in troublesome environments, which

include either complex and cluttered scenarios. To this end, the method applies the

paradigm of perception-action which consists on defining a set of cases and designing
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Figure 6.4: Relevance of the filter radius in the navigation performance. The green
robot, with a larger navigation filter, will detect the obstacle earlier than the blue
robot. If the gap occupied more than one sector of the navigation filter, the green
robot could detect it and anticipate its movements.

an action to be executed in each case. Authors claim that the method anticipates

and avoids trapping situations. However, ND is not able to rule escaping from

local minima, once the robot is deeply inside one of them. Using this technique, the

motion is free of oscillations in narrow apertures. ND and ND+ assume a holonomic

robot and the sensor readings (obstacle information) represented as points.

The strategy searches for discontinuities between obstacles (gaps) wider than the

robot diameter. The search of gaps is done analyzing diagrams that represent the

nearness to the robot of obstacles located between it and the maximum sensor range.

Then, regions are built between two contiguous discontinuities. The algorithm

selects the navigable region closest to the goal location. This region is called the free

walking area. This formulation avoids declaring a U-shaped obstacle as a navigable

region. A security zone is defined as a region surrounding the robot, with a pre-

set radius and where the risk of collision is considered very high. The objective

is to find a set of situations, being each one capable of uniquely characterizing a

defined configuration of the group formed by obstacles, robot and goal location.

The different situations are organized in a binary decision-tree:

• If there are obstacles inside the security zone the situation is defined as LS

(Low Safety), and if the security zone is free of obstacles the situation is

defined as HS (High safety).
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• If the system is in the HS case, two different sub-situations can arise:

1. if the goal is inside the free walking area, then the situation is labeled as

HSGR (High Safety Goal in Region), or

2. if the goal is outside of the free walking area, the possible situations

will be, either HSWR (High Safety Wide Region) or HSNR (High Safety

Narrow Region).

• If the system is in the LS case: if there are obstacles in the security zone and

the goal location is within the free walking area, the situation is labeled as

LSGR (Low Safety Goal in Region). If not, situations can be either LS1 (Low

Safety 1 side) where there are obstacles within the security zone, but only on

one side of the discontinuity of the free walking area, or LS2 (Low Safety 2

sides), when there are obstacles on both sides of the discontinuity.

The actions for every situation can be summarized as follows:

• HSGR: the direction of motion, θmot, is the goal direction, θgoal.

• HSWR: θmot = θwa + α, where θwa is the direction of the discontinuity of the

walking area and α is an additional angle to prevent the obstacle invading the

security zone.

• HSNR: θmot = 0.5(θwa1+ θwa2), where θwa1 and θwa2 are the directions of both

sides of the walking area.

• LSGR: θmot = θgoal + β, where β is a additional angle which depends on the

distance to the obstacle inside the security region.

• LS1: θmot = θwa + α + β, where α + β depend on the direction and distance

of the discontinuity and the distance of the closest obstacle.

• LS2: analogously, θmot = 0.5(θwa1 + θwa2) + 0.5(γ1 + γ2), where γ1 and γ2

depend on both discontinuities and the distance to the closest obstacle.

All experimental implementations presented in [136], [137] and [54] used laser

range finders as the main sensor to perceive the environment, obtaining optimal

results.
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6.2.3 Discussion

Navigating in unknown, dynamic or cluttered environments is one of the most chal-

lenging tasks in reactive systems. On the one hand, Bug-T 2 is designed to represent

the navigability of the area surrounding the robot from a set of disperse sensor

readings. Sectors of the local map with obstacle points are banned and regions

without obstacle points are permitted. The robot follows the obstacle boundaries

until the path to the goal in free again. The dimensions of the local maps, so called

navigation filters, must be conveniently determined to circumnavigate all obstacles

at a cautious distance to avoid collisions but trying to detect as many gaps as pos-

sible. The strategy prioritizes arriving to the goals than rising maximum efficiency

in terms of time and path length. Besides, the application of the Traversability and

Tenacity principles guarantees escaping from trapping zones. However, the strategy

only considers the presence of obstacles, but not their distance to the robot or the

existence of discontinuities among them.

On the other hand, ND and other solutions derived from it are techniques de-

signed to navigate in cluttered environments, finding all gaps or apertures between

obstacles detected from the robot pose to distances equal to the maximum sensor

range. ND-based techniques take into consideration, not only the presence of obsta-

cles, but also the distances between them and the robot, trying to search each time

for the closest path to the goal. Though, they do not guarantee neither convergence

towards the target point nor escaping from deep global trapping situations once the

robot is immerse into one of them.

Considering all these arguments, it appears reasonable to search for a solution

that tries to take advantage from some of the benefits of both techniques and refuse

their drawbacks. Besides, cameras can drastically reduce the cost of the robot

equipment with respect to laser-based approaches, but still offering data with con-

siderable spatial and temporal resolutions.

From Bug-T 2 the new visual navigation strategy adopted the principles of Traversabil-

ity and Tenacity and the concept of the navigation filter as a way to characterize

the local environment with a sparse set of sensor readings. From ND, it was adapted

the strategy of searching for discontinuities between obstacles, taking into consid-

eration their relative distances and their distance to the robot, and including all

environmental data present between the robot and the goal.
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Concerning the obstacle avoidance technique described in this thesis, increas-

ing the size of the navigation filter would increase the range of the gathered data

(obstacle and ground points) to deal with in the navigation module. The num-

ber of obstacle-to-ground contact points included in the qualitative occupancy map

would increase, covering wider areas, facilitating the anticipation of undesired cir-

cumstances, detecting all visible gaps and choosing more efficient paths towards

the goal. However, the system could not guarantee escaping from trapping zones

without applying the principles of Traversability and Tenacity.

6.3 The Navigation Strategy

6.3.1 Overview

One of the important differences between the sensorial equipment used in the ex-

periments presented in [136], [137] and [54] and the visual sensor used in the exper-

iments of this thesis is the way the environment is scanned. Laser rangefinders are

usually mounted on rotational platforms that permit to scan the environment in

considerably wide horizontal ranges. For example, the Hokuyo URG-04LX horizon-

tal measuring area covers 240◦. For covering such horizontal ranges with a standard

lens it is necessary to capture several frames rotating the camera around its vertical

z axis. This point limits, in some way, the adaptation of the ND algorithm from

laser to vision, since, unless a fisheye lens or an omnidirectional system is used, a

camera will need several shots to cover an horizontal area that can be covered in a

single laser scan. Besides, being FOVH the lens horizontal field of view expressed

in degrees, the robot will have a blind zone of (180◦-FOVH)/2 at both sides, left

and right, increasing the need of storing recently captured obstacle information and

imposing additional navigation rules to carefully explore both sides of the robot.

Another important difference with respect to the ND-family systems is the quan-

tity of captured points. As a matter of fact, laser surely retrieves much more read-

ings than our system generates obstacle-to-ground contact points. Laser scanned

environments can generate dense maps, favoring the detection of obstacles and dis-

continuities with a considerable accuracy. However, the number of visual points de-

tected by our algorithm is limited to those points where obstacles touch the ground.

As stated in previous sections, the aim of the system is not to represent a map of
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the environment as accurate as possible, but to deal with a qualitative representa-

tion. The purpose will be to represent the environment with the obstacle-to-ground

points, in the most reliable way to be able to determine which parts of the scene

are occupied and which are free. Later, it would be necessary to infer if a space

sufficiently wide to be traversed by the robot can be found between zones occupied

by obstacle evidences. As our environmental representation tries to emulate a visual

sonar, the sparse set of retrieved obstacle-to-ground contact points will be placed

in the navigation filter, analogously to sonar readings are managed in Bug-T 2, but

taking into account three important features: a) sections of the filter containing at

least one obstacle point will be labeled as occupied, but, b) occupied zones will not

be automatically declared as forbidden directions; in some cases, it will be possi-

ble to pass through one or two occupied contiguous filter sections, if the distance

between obstacle points located in those neighbor sections is much wider than the

robot dimensions, and c) the strategy must guarantee escaping from trapping zones,

and, to a certain extent, the ability of anticipating hazardous situations.

The principal points of the new visual navigation strategy are:

1. The circular occupancy map (or so called the navigation filter) size will be

dynamic, centered at the robot pose and will cover from the current robot

coordinates up to the goal position. Obviously, the closer the robot is to the

goal, the shorter will be the radius of this ROI. This ROI, or navigation filter,

will be divided in polar sectors of γ◦ each one. The aim is to cover an area

as wide as possible at the beginning, and as the robot advances, to consider

only those obstacles of the environment that can obstruct the space between

the robot and the target.

2. Obstacle information is inferred from detected obstacle-ground contact points.

Analogously to Bug-T2, the world coordinates of all those visual obstacle-

ground points that range between the robot and the goal are placed and

stored in the accumulative and qualitative navigation filter. This informa-

tion will be used to determine the traversability of the different areas of the

environment. As the robot displaces and perceives the different parts of the

environment, points are continuously stored in the map until the immediate

obstacle is overcome. Then the filter is reset and the process is re-started

again. According to Bug-T 2, the coordinates of the obstacle points included
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in the navigation filter are always measured with respect to a world-fixed co-

ordinate frame. However, the center of the navigation filter moves with the

robot. This means that the orientation of a certain obstacle point with respect

to the robot position will change as the robot displaces, thus, changing the

sector currently occupied by this obstacle point. The 0◦ will be in the heading

direction, being positive angles to the left and negatives to the right.

3. Each execution of the algorithm involves a pair of images and outputs a steer-

ing vector.

4. When a sector of the navigation filter is occupied by several points, the one

closest to the robot will be the most restrictive in terms of estimating the level

of collision risk.

5. To guarantee escaping from trapping situations, and of course, to overcome

ordinary obstacles, the principle of tenacity will be applied until the goal

direction is free again or the obstacle has been completely surpassed.

Now, the scope of application of the tenacity principle has been re-defined.

Gap-based navigation makes unnecessary on many occasions, and difficult on

others, considering the same situations for applying the tenacity principle as

described in Bug-T 2. Now, the robot can go through sectors occupied by

obstacle points, if the spacing conditions described below are true. Tenacity

will be applied as long as the goal direction is still blocked and obstacles that

are currently been avoided are still in the portion of the navigation filter which

comprises angles γ such as: −90◦ < γ < 90◦, always with respect to the robot

direction of motion. This is similar to checking if the immediate obstacle is

or is not behind the robot. So, either if the immediate obstacles are behind

the robot or the path to the goal is free, the navigation filter is reset and the

tenacity concept is no longer applied. Continuity in obstacle evidences along

neighbor sectors means dealing with the same immediate obstacle. Reseting

the navigation filter implies immediately rebuilding it as the robot moves

towards the goal and perceives again the environment. Although the path

to the goal can still be occupied by more obstacles, the navigation algorithm

will search again for gaps to go through and tenacity will be applied again to

overcome the upcoming obstacles.

As now the navigation filter covers the whole area in between the robot and
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the goal point, it would be unnecessary considering the additional criteria

detailed in section 6.2.1, concerning situations where the goal is found in a

previously banned sector, being the goal in front of the obstacle that occupies

that section [5].

6. Analogously to [137], maps are continuously analyzed searching for gaps un-

der a certain criterion. To define this criterion, a set of different situations

is modeled. Each situation involves a certain configuration of robot, obsta-

cles and goal, and has associated a set of predefined actions or behaviors.

These actions will be conscientiously designed to efficiently proceed in front

of three main groups of characterized situations: 1) Low Risk Obstacle Avoid-

ance, which includes managing paths through obstacle discontinuities, 2) Go

to Goal, and 3) High Risk Obstacle Avoidance, which means immediately

avoiding any obstacle which is inside the security area. Next section details

all the situations defined with their associated actions.

7. A safety distance Sdist will be defined around the robot as the maximum

distance between the robot and an obstacle point to be considered as a robot-

obstacle configuration of high collision risk. This distance defines and delimits

the robot security zone. Sdist might be valued as the radius of the minimum

circumference containing the whole robot (in case the real robot is not com-

pletely circular) plus an additional safety distance for covering blind zones

close to the robot. The presence of an obstacle inside the security area will

immediately activate the situation of High Risk Obstacle Avoidance. In this

situation, the robot will take the direction computed by the purely reactive

module, which can be, for instance, the classic Potential Fields method.

6.3.2 The Navigation Strategy: Situations and Actions

The objective of this section is to describe a set of situations, and a set of behaviors

related to each different identified situation. Each situation uniquely describes a

certain configuration involving the robot, the nearby obstacles and the goal point.

Previously to describe all possible scene configurations and their corresponding

decisions, some assumptions must be done:

• The navigation architecture involves a cooperative coordinator which manages

a set of basic behaviors, namely, Go to Goal and Avoid Obstacle, in low or
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high collision risk mode.

• Scenarios will contain commonly used and shaped obstacles which generate

clusters or aggregations of obstacle-to-ground contact points. Points corre-

sponding to the same obstacle will occupy several contiguous sectors of the

navigation filter (a sector will be sized between 10◦ and 15◦), and they will

be at a nearly constant distance to the robot. In fact, it is assumed that the

relative position of an obstacle point with respect to the robot has a very

small change between two subsequent frames.

The Go To Goal module is the first of being executed, giving the direction

towards the target. The robot takes this direction as the starting point of the

process for deciding the next movement. Then, the algorithm analyzes which of the

next possible situations can come out:

(A) - GF (Goal Free): The sector of the navigation filter containing the goal

direction is free of obstacles. If the sector is relatively narrow, for example, between

10◦ and 15◦, evaluating if the sector of the goal direction is or is not free is approxi-

mately equivalent to evaluate if the goal direction is free of obstacles. If the sectors

were wider or too wide (for example 40◦ or 65◦), the fact that the one containing

the goal direction is occupied with obstacles would not significantly mean that the

goal direction is not free.

Some verifications have to be done before the navigation module decides whether

the robot can take the goal direction or can not. Starting at the sector corresponding

to the goal direction, the algorithm searches to the left for the first sector of the

navigation filter occupied by an obstacle point, and analogously, it searches for the

first occupied sector at the right of the goal direction. Let us denote as:

• PL: the closest obstacle point at the left of the goal direction,

• PR: the closest obstacle point at the right of the goal direction.

• θgoal: the goal direction with respect to the robot pose,

• θPL and θPR the polar directions of PL and PR, respectively, with respect to

the robot pose,

• d1 the euclidean distance between the robot and PL, and d2 the distance

between the robot and PR, and,
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• dRL the euclidean distance between PR and PL, defining the length of the gap

or discontinuity.

If dRL < 2Sdist, then the gap will be labeled as forbidden, otherwise the gap

will be permitted and the robot will be directed, in principle, to pass through it

following the direction θgoal.

However, following the goal direction can lead the robot to collide with one of

the obstacles that delimit the gap. To avoid the collision the robot will have to

deviate from the direction θgoal to pass, at least, tangential to the closest obstacle

point. Let us denote ǫ as the angle of minimum turn to pass tangential to the closest

obstacle point, defined as:

ǫ = arcsin(R/di), (6.1)

being R the radius of the minimum circumference containing the robot and di either

d1 or d2 (see figure 6.5).

Slightly bigger turns away from this tangential motion will guarantee no collision.

Let us redefine ǫ as:

ǫ = arcsin(Sdist/di), (6.2)

being Sdist the security distance and di either d1 or d2 (the closest to the robot).

If θgoal fulfills the requirement

|θgoal − θPX |> ǫ (6.3)

being θPX the direction of either PL or PR (take the closest to the robot) with respect

to the robot, then the direction of motion will be θmot = θgoal. If requirement 6.3 is

not accomplished, then θmot = θPX ± arcsin(Sdist/di) (see figure 6.6).

In this case θmot points to the direction closest to the goal that satisfies equation

6.3. The sum or the subtraction will be applied depending on the relative orientation

of the robot with respect to the goal (see figure 6.6).

If PR and PL are one behind the robot and the other in front of it, the algorithm

will control the directive 6.3 only for the point which is in front of the robot because

this will be the only one limiting the robot motion towards the target.

(B) - GO (Goal Occupied): The sector of the navigation filter containing the
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(a)

(b)

Figure 6.5: The goal direction is free of obstacles and the gap is wide enough for
being traversed by the robot. (a) Example 1: the robot faces the goal and the
distance between each point over the goal direction and the obstacle point PR is
bigger than the radius of the robot. Equation 6.1 is always fulfilled. The robot can
keep the goal direction. (b) Example 2: the robot faces the goal but, at a certain
moment, equation 6.1 is not fulfilled. The robot must deviate its trajectory to the
right in order to avoid a certain collision. A minimum turn of ǫ with respect to PL

guarantees the hitting avoidance.
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(a)

(b)

Figure 6.6: The goal direction is free of obstacles and the gap is wide enough for
being traversed by the robot, but the robot can not face directly the target. In red,
the distance of security and the security area surrounding the robot (black double-
thickness circle). In brown the goal direction and in blue the final motion. In both
cases the robot will not hit the closest obstacle point since the security area will
pass tangential to it. (a) case 1: the robot faces the goal from the right. ǫ is added
to θPR, since positive angles are at the left and negatives are at the right. (b) case
2: accordingly, the robot faces the goal from the left and ǫ is subtracted from θPL
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goal direction is occupied by obstacle points. Again, if the sector width is between

10◦ and 15◦, it can be assumed that the goal direction is blocked by an obstacle and

the robot can not move directly towards the target.

If the obstacle is inside the security area, the robot must urgently avoid the

closest obstacle. In that case, the direction of motion will be the result of applying

the Potential Fields method.

If obstacles are out of the security area, the system will propose two possible

solutions for the next steering vector, similarly to Bug-T 2.

The idea is to find the gaps located as close as possible to the goal direction, at

both sides of it. Gaps will be found either in sectors free of obstacle points delimited

at both sides by occupied sectors, or in n contiguous occupied sectors (where n ∈ N,

with n > 0).

For the first solution, the algorithm will search, from the goal direction, sector

by sector, clockwise, if one of the next cases is fulfilled:

• Case (1) - n contiguous sectors of the navigation filter are occupied by obstacle

points.

Find two obstacle-to-ground contact points, PL and PR, both in front of the

robot (the front of the robot will be the portion of the navigation filter com-

prising from −90◦ to +90◦ with respect to the robot orientation), with no

other points in between, satisfying two conditions:

1. | PL − PR | > 2Sdist,

2. d1 > Sdist,

or d2 > Sdist, depending on which point, PL or PR, is closer to the robot. If

two points fulfilling these requirements are found, it will be assumed that they

form a permitted gap which the vehicle can pass through. If several permitted

gaps are found in the set of occupied contiguous sectors, take the one closer

to the goal direction as the first candidate to be traversed by the robot.

The direction of motion will be the direction corresponding either to PL or

PR, depending on which one is closer to the robot, plus or minus ǫ 2, in such a

way that the resulting vector moves towards the furthest obstacle point (see

figure 6.7).

2being ǫ the minimum turn to fulfill the equation 6.3
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If the sector corresponding to the computed steering vector is occupied by

an obstacle point which, after the robot motion, can fall inside the security

distance, the gap is no longer valid, the motion is not performed and the

algorithm searches for another gap.

If no gaps are found, the sector/s are banned and the algorithm keeps searching

clockwise for another set of occupied sectors or another set of sectors which

fulfills case (2).

• Case (2) - n contiguous sectors free of obstacles bordered by one occupied

sector at each side. Each occupied sector at both sides of the free zone delimit

the discontinuity, which has to be located in front of the robot. Let us denote

again the points PL and PR as the extremes of both obstacles that define the

aperture. In this case, PL and PR can be determined, for example, as those

points at both sides of the empty zone that are closer to the polar direction

corresponding to the center of any of the free sectors.

The motion rules to control the robot towards the free space will be the same

as exposed in the previous case:

if | PL − PR | > 2Sdist and di > Sdist (i=1 or i=2), then the gap is labeled as

permitted, else the gap is labeled as forbidden and the corresponding sector/s

are banned.

The direction of motion will be, again, θmot = θPX ± arcsin(Sdist/dX), being

θPX the direction with respect to the camera of either PR or PL (the closest to

the robot), and dX the distance between PX and the robot, always moving the

steering vector from the closest obstacle point to the furthest obstacle point

(see figure 6.8).

Equally to the previous case, if the resulting vector steers the robot towards

a sector occupied by an obstacle point which shall fall inside the security

distance, the gap is discarded.

• Case (3) - One of the points, either PL or PR, of an existing gap is in front of

the robot and the other one is behind it. This case represents the situation

in which one of the obstacles delimiting the gap is behind the robot and the

other is still in front of it.

Let us denote θPX the orientation with respect to the robot of PX , being PX

either PL or PR, the one which is in front of the robot. The direction of
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motion θmot will be θmot = θPX ± ǫ, with ǫ = arcsin(Sdist/dX), being dX the

distance between the robot and PX . The summation or subtraction will be

chosen in order to displace θmot in the opposite polar direction of the obstacle

point which is in front of the robot (see figure 6.9). As it can be seen in figure

6.9-(a), in the front of the robot there is only one compact set of obstacle

points. Obviously, even being PL closer to the robot than PR, PR is the only

gap extreme that plays an influence in the motion control since it is the only

one blocking the path towards the goal. The situation is analogous in figure

6.9-(b), where only PL will be taken under consideration for computing the

steering vector.

In practical implementations, prohibiting or permitting sectors relatively nar-

row, lets say, for example, between 10◦ and 15◦, will be more representative of the

navigation filter occupancy state than managing wider sectors (for example between

45◦ and 60◦), since the later could be partly occupied by obstacles and partly free,

but they would be identified with a unique label.

For the second motion alternative, starting on the goal direction, the algorithm

searches again one of the aforementioned situations, but now counterclockwise.

At this point, and in case the goal direction is not free, the algorithm has

computed two possible steering vectors, one to the right and another one to the left

of the goal direction, both pointing to a sector of the navigation filter that fulfills

one of the cases described above. The next step would be to choose one of the two

proposed solutions. The decision will be made according to the next criterion:

1. if the current obstacle is still not left behind, the tenacity principle is applied

and the direction of turn (clockwise or counterclockwise) will be the same as

the previous decision,

2. contrarily, if there is no previous decision because the navigation filter was

recently reset, the direction of motion closer to the goal direction will be

chosen.

The idea is illustrated in figure 6.10. Nearly all sectors between the robot posi-

tion and the goal point are occupied by obstacle evidences. In plot (a) two possible

directions of motion are proposed: V1 (in blue) and V2 (in red). V1 is chosen be-

cause it is closer to the goal direction. In (b), again, two possibilities are generated,

V1 and V2. Applying the tenacity concept the robot chooses again V1. In (c)
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the direction of motion is still occupied. The immediate obstacle has been already

overcome. V1 is chosen again since it is the option closest to the obstacle direction.

The gaps at the right of the robot are not permitted because they are narrower

than the security distance. The first available gap at the right is indicated as V2

in red. In (d) the robot still chooses V1 applying the tenacity concept, since the

upcoming obstacle has still not been overcome. In (e), the goal point is perfectly

visible, its direction is completely free and the current obstacle has been overcome.

Immediately, the navigation filter and the tenacity boolean condition are both reset.

The robot faces directly to the goal. Notice how the navigation filter moves with

the robot and reduces its dimensions as it approximates to the target, checking each

time only the piece of the environment between the robot and the goal point.

The algorithm is valid to avoid a cyclic situation in some intricate scenarios,

for example if the goal point is inside some G-shaped obstacles (see an example in

figure 6.11). However, although the strategy permits the robot to reach the target

in numerous theoretical and practical situations, this version of the algorithm can

not formally guarantee convergence in all cases, since it is not applying the Bug-T 2

own rules that formally and practically assure convergence.

Finally, figure 6.12-(a) shows a simulation of escaping from a U-shaped obstacle

much bigger than the camera field of view. The robot is represented by a small blue

circle. The navy blue vector is the motion vector chosen at every position and the

light blue vector represents the rejected possibility. The black dotted line represents

the big U. The triangle over the blue circle represents the horizontal camera field of

view. The U is so big compared with the robot and the FOVH dimensions that the

camera is unable to perceive the frontal wall until this is inside the FOVH . As seen,

the portion of the wall perceived by the camera corresponds to a very small part of

the U. The first motion vector (from point (A) to (B)) corresponds to the closest

to the goal direction (in red). As the robot moves to the left applying the principle

of tenacity, it perceives more parts of the wall, storing all points in the navigation

filter. Between two motions, the perceived part of the environment will overlap

since the FOVH is sufficiently wide to see in one frame part of the environment seen

in the previous frame. Due to this continuity in the obstacle points, the algorithm

will consider that the obstacle is still the same and that it has not been overcome.

At each position, the motion vector will point to the most recently perceived part

of the obstacle, always to the left of the FOVH . At point (C) the robot will have

perceived all the U from point (A) to point (C) and will have stored all these data
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(a)

Figure 6.7: The Navigation Strategy: the goal direction is occupied. There are
two contiguous sectors occupied by two obstacle points with a gap in between.
θmot = θPL − ǫ

into the navigation filter. The robot has not perceived the right part of the U, but

it does not need it to reach the goal. Following the tenacity principle the robot will

move out of the U towards the goal as represented in the trajectory plot in green.

The main points of the navigation algorithm detailed above are presented in

figure 6.13. The schema represents the principal steps on the decision tree and the

corresponding actions performed in each case.

6.4 Experimental Results

In this stage, the platform mission was to move from a starting point to a goal,

or to a set of subsequent goal points. Except for the fact that SIFT features were

substituted by KLT features (without causing any significant variation in the clas-

sifier performance), the system used the same operating conditions described in

section 4.3.1, in terms of: camera, robot speed, focal distance, lens height, frame
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(a) (b)

(c) (d)

Figure 6.8: The Navigation Strategy: the goal direction is occupied. (a), (b) and
(c): there is a discontinuity longer that the robot security distance. (d) Gaps 1 and
4 are permitted while gaps 2 and 3 are forbidden since they do not exceed the robot
security distance.
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(a) (b)

Figure 6.9: The Navigation Strategy: the goal direction is occupied. One of the
extremes of the gap is behind the robot. (a): The direction of motion θmot = θPR+ǫ,
where ǫ = arcsin(Sdist/d2). (b): θmot = θPL − ǫ, where ǫ = arcsin(Sdist/d1).

rate, image resolution and intrinsec camera parameters for image undistortion. The

approximate diameter of the robot used (a Pioneer 3DX) is 50 cm and according

to the camera settings (height, focal length, vertical and horizontal FOV (Field of

View), and its position on the robot) there were nearly 60 cm of blindness between

the Pioneer front and the bottom of the camera vertical field of view. Considering

that the robot can rotate around its z axis, this blind area extents to a semi-circular

portion centered on the robot (see figure 6.14). With a focal length of 3.7mm, a

resolution of 1024×768 squared pixels and a pixel side of 4.65µm, the horizontal

FOV (FOVH) is 65.5
◦ and the vertical FOV (FOVV ) is 51.5

◦. The camera height

was imposed by the platform and the gimbal that append the camera to the robot,

but the tilt angle was chosen to obtain a reasonably short blind area in front of

the robot combined with a considerable vertical visual range. All these variables

directly conditioned the criteria for determining the size of the Sdist, and the value

of Sdist in turn is determinant to define which gaps are traversable and which are

not. The robot had very short time to react in front of obstacles or gaps closer

than 85 cm (which includes the blind area plus the approximate robot radius). At

shorter distances, gaps, can be either not properly perceived or too close for the

robot to correctly maneuver through them. Consequently, the Sdist was fixed on 95

cm in order to guarantee that the robot had enough time and space to perceive and
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: From a starting to a goal point passing through all available gaps. (a),
(b), (c) and (d): The robot goes through the permitted gaps, applying the criteria
of minimum turn with respect to the goal direction and Tenacity. (e) The robot
faces directly to the goal.
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(a)

(b)

Figure 6.11: The goal is inside a G. The blue point is the robot and the red point is
the goal. The red vector indicates the goal direction. For each robot position, the
navy blue vector indicates the chosen direction of motion, and the light blue vector
indicates the rejected option. Take into consideration that the navigation filter only
considers obstacle evidences from the robot pose up to the goal point. (a) In the two
first movements, the tenacity principle is applied, until the immediate obstacle is
behind the robot. In the third position, it applies the criterion of minimum distance
to the goal direction. In the plot of the right, tenacity is applied until the goal is
directly visible. (b) The goal point direction is free, but the robot has to slightly
deviate from it to guarantee that there will no be collision on the obstacle extreme.
Obstacles behind the goal are not considered.
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(a)

Figure 6.12: Escaping from a huge U-shaped obstacle applying traversability and
tenacity.
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Figure 6.13: A simplified overview of the complete navigation algorithm in a
schematic structure.

react. Besides, gaps shorter than 95 cm were labeled as forbidden. The width of

one navigation filter sector was 12◦, which means a total of 30 sectors. This value

experimentally demonstrated to be adequate for the navigation performance run by

our particular robot.

The limited camera FOV reinforced the idea of storing in memory the environ-

mental information during a certain period of time. It is fundamental in order to

plan the robot motion using data from already visited portions of the environments

but currently not visible.

In all the experiments included below, the robot detected the obstacles and

set the occupancy of the navigation filters according to the procedures described

in section 4.3. However, the motion orders were generated applying the strategy

reported in the previous section of this chapter. In all plots, the starting point is

colored blue, the goal points are colored in red, the trajectory points are pictured

as tiny empty red circles and all length units are expressed in mm.

At the beginning, first navigation experiments were planned inside the labora-

tory already known as Scenario 1 in section 4.5. There, scenarios were particularly

prepared to test certain robot behaviors that were considered to be fundamental in
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(a)

(b)

Figure 6.14: Robot platform (a): Approximate dimensions of The Pioneer 3DX.
(b): The robot with the camera. Blind zone and FOVV
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the system, such as, for example, escaping from potential trapping areas or navi-

gating through environments densely occupied by obstacles. In most of the cases,

the robot had only one possible free path to reach the goal.

Figure 6.15 shows some experiments conducted in the laboratory. Plot (a) shows

a route where the goal point is just behind a wall, and there is only one free path to

reach it. Plot (b) shows an example of going and returning to the same departure

point. Both objectives are always behind a set of obstacles. Plots (c) and (d) show

two examples of avoiding local minimas. As it has been seen, U shaped obstacles are

areas where autonomous agents typically get continuously stuck under the influence

of attractive-repulsive dual-action forces.

In both cases, local minimas were foreseen and the vehicle circumnavigated them

reaching the goal point without any incidence. If the robot had fallen into a deep

trapping canyon, due to, for example, the impossibility of detecting or anticipating

it in a reasonably number of frames, the application of the tenacity concept would

help to scape from it.

Figure 6.16 shows some pictures taken during these experiments conducted in

the lab. Obstacle points are colored red, ground points circled in blue, and the

computed obstacle-to-ground contact points are shown in pink.

The following experiments intended to simulate an ordinary situation in which

the robot had to execute a mission over two defined points in a relatively crowded

daily used environment inside a building. All tests tried to demonstrate the suit-

ability of our navigation strategy in common scenarios such as, for example, offices,

corridors, halls, sidewalks, warehouses, where it is unlike to find intricate obstacles

such as a maze or a G.

Figures 6.17 and 6.18 plot 4 different trajectories conducted by the robot in a

considerable busy hall, located inside a university building (the scenario known as

Scenario 3, where part of the experiments shown in section 4.5 were conducted).

Obstacles have been clearly labeled in all pictures.

Notice how the robot is able to pass through all available apertures in order

to advance along the free space towards the goal. Figure 6.17-(b) shows 3 goal

points, enumerated according to the order in which they had to be reached. Figure

6.19 shows some images recorded during experiments of figures 6.17 and 6.18 with

the obstacle and ground points and with the corresponding edge maps highlighting

the obstacle contours. In all cases every obstacle-to-ground contact points detected

between the current robot pose and the goal point was included in the navigation
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Figure 6.15: Scenario 1: (a): from starting to the goal point in a relatively dense
environment. (b): Going and return. (c) and (d): avoiding trapping zones. All
length units expressed in mm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.16: Avoiding a trapping zone. (a), (c), (e)nd (g): frames with obstacle and
ground points. (b), (d), (f)and (h): edge maps with obstacle boundaries in orange
and the obstacle-to-ground contact points in pink.

filter.

These tests evidence the capacity of the algorithm to provide a robust obstacle

detection module suitable for being integrated in reactive navigation architectures.

Navigating through long and relatively narrow spaces with a considerably num-

ber of randomly placed obstacles could be a challenge situation for a robot with

the dimensions of the Pioneer 3DX. In the experiment of figure 6.20, the starting

and goal points were separated 25 meters in the x axis of a long corridor. This

corridor corresponds to Scenario 2, also described in section 4.5 and was filled with

obstacles distributed along the whole path. Again, the robot was able to cover the

whole distance avoiding all the incoming obstacles using the so far described obsta-

cle avoidance and navigation algorithms. Walls of the corridor are clearly indicated

as well as obstacles colored in blue, soft blue and brown.

In some of these plots, there is a slight difference, caused by the odometry errors,

between the red circle, which represents the programmed goal point, and the point

where the robot really ends its trajectory.

All the position data used to plot robot trajectories and to calculate the world

coordinates of the ground points was obtained, up to now, from the robot wheel

odometers. But, as it has been previously mentioned in the Introduction of this

dissertation, the pose estimation obtained from proprioceptive sensors is unreliable

at relatively long distances since it is prone to drift. Visual localization is a good
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Figure 6.17: Experiments in Scenario 3: (a) One fixed goal point. (b) Three con-
secutive goal points forming a closed loop. Length units expressed in mm.
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Figure 6.19: Experiments on Scenario 3: Images recorded online during the route.
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Figure 6.20: The longest trajectory along a corridor, with several obstacles placed
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alternative to compute the robot position and thus to reduce the errors inherent to

dead reckoning. Next section details the visual robocentric localization algorithm,

designed to compute the robot position by fusing on an EKF the world coordinates

of those features classified as ground points and the odometry information. Ground

points have been chosen to be used in the localization process since their 2D position

in the ground plane with respect to the robot is known with reasonable accuracy.

The aim is to use part of the features gathered in the obstacle detection module to

obtain a reliable robot pose data along the whole trajectory. Besides, the result of

the continuous EKF execution will lead to the stabilization of the ground landmarks

world coordinates.
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CHAPTER 7

ROBOCENTRIC LOCALIZATION

USING GROUND POINTS

7.1 Discrete Kalman Filters. EKF Localization

7.1.1 The Linear Kalman Filter

Kalman filters are original from Rudolph Emil Kalman and are techniques for re-

cursively computing predictive data (so called beliefs) or state processing in linear

evolutive systems. These filters are very powerful in the sense that they can support

estimations of future states of a system, and they can be applied even when the

nature of the system is unknown [135, 96, 198] .

Future system states are estimated from system models and sensor measure-

ments. Data calculated at one execution is updated in the next consecutive execu-

tion. Beliefs at time t are the outputs of the filter, while the filter inputs are the

beliefs at t − 1. These inputs are then corrected or updated by the control vector

ut (the control vector typically includes robot pose or velocity information) and the

environmental observations or measurements zt.

The state vector, which generally contains the information to be predicted or

updated, describes a process, discrete in time, characterized by a linear difference

equation:
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xt = Atxt−1 +Btut + ǫt (7.1)

where xt and xt−1 are the state vectors at time step t and t − 1, respectively, ut

is the control vector at t, At is a square matrix of dimension m × m (being m

the state vector dimension), Bt is a another matrix of dimension m × n, (being n

the dimension of ut) and ǫt is an independent, additive, white, zero-mean Gaussian

noise modeling the prediction uncertainty.

At discrete time intervals, the sensors gather state observations zt, which in real

robotic cases would be the sensors environmental readings. The sensor readings can

be predicted from the state vector as:

zt = Htxt + δt (7.2)

where Ht is a matrix of size k×m (being k the dimension of zt), and δt indicates the

measurement noise or the difference between observed and predicted data, again a

zero-mean Gaussian distribution with covariance Rt.

Let us denote x̂t as the mean of the state vector xt at time step t, and Pt its

covariance. The Kalman Filter estimation process runs in two steps, the prediction

and the update steps.

The prediction step computes the estimated state vector by means of the state

model characterized in the At and Bt matrices and the control vector:

x̂−

t = Atx̂t−1 +Btut,

P−

t = AtPt−1A
T
t +Qt

(7.3)

being x̂−

t and P−

t the mean and covariance, respectively, of the predicted state vector

and Qt the model noise covariance.

In the update step, these predictions are corrected using the observations given

by the sensors. The Kalman Filter equations for this step are:

K = P−

t HT
t (HtP

−

t HT
t +Rt)

−1

x̂+

t = x̂−

t +Kµ

µ = zt −Ht(x̂
−

t )

P+

t = (I −KHt)P
−

t

(7.4)

being x+

k the state vector after the KF update, with mean x̂+
t and covariance P+

t and
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Rt representing the measurements uncertainty. µ can be seen as the discrepancy be-

tween the observations given by the sensors and the prediction of these observations

given by the model as Htx̂
−

t . K is called the Kalman gain and it indicates the degree

of relevance or participation of a certain measurement when it is incorporated in

the estimation of the state vector.

7.1.2 The Extended Kalman Filter (EKF)

In real situations, finding systems that fulfill linearity affected by white zero-mean

Gaussian noise is exceptional. Non-linear systems governed by non-linear functions

can be managed with EKFs.

Now, the part of the linear equation 7.1 involving the At and Bt matrices is

substituted by the nonlinear function g and the product Htxt in equation 7.2 is

substituted by the nonlinear function h:

xt = g(ut, xt−1) + ǫt

zt = h(xt) + δt
(7.5)

where h is called the observation function and it is dedicated to predict the mea-

surements from the state vector, with a certain error δ.

The EKF computes an approximation of the true belief contrarily to the KF

which computes an optimum estimation of the beliefs under the conditions of use.

The key of the EKF is to linearize the functions g and h. Once these functions are

linearized, the mechanics of this filter are the same as the ordinary KF. The EKF

uses the Fist Order Taylor Expansion technique to linearize. The Taylor expansion

gives a linear approximation of a function from the function values at some points

and the partial derivatives at those function points.

The equations for the prediction step are:

x̂−

t = g(x̂t−1, ut),

P−

t = GtPt−1G
T
t +Qt

(7.6)

being Gt the Jacobian matrix used for linearization:

Gt =
∂g

∂x
(x̂−

t , ut, 0)

and Qt the noise covariance.

The equations for the update step are:
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K = P−

t HT
t (HtP

−

t HT
t +Rt)

−1

x̂+
t = x̂−

t +Kµ

µ = zt − ht(x̂
−

t , 0)

P+

t = (I −KHt)P
−

t

(7.7)

being Ht the Jacobian needed to linearize the function h and Rt is again the mea-

surements uncertainty:

Ht =
∂h

∂x
(x̂−

t , 0)

so called the observation matrix.

The main strength of this filter is the computational efficiency compared with

other tools such as particle filters.

7.1.3 EKF Localization

As it has been previously mentioned in section 2.2.2, Extended Kalman Filters

have been extensively used in the robotics context as data processing tool or state

estimation, in applications such as visual localization, mapping or visual SLAM.

These solutions integrate the environmental information observed by the on-

board sensors (usually landmark position) in the filter state together with control

information such as the pose or the velocity of the robot.

In [198], Sebastian Thrun et al modeled the EKF-localization method for two

different situations, namely the localization with know correspondences and the lo-

calization with unknown correspondences. In both cases, it was assumed that the

map of the environment was represented by a set of uniquely identifiable features

and that the EKF state vector was filled with the feature measurements and the

estimated robot pose. The proposed model for localization with know correspon-

dences additionally assumed that correspondences between features in consecutive

observation instants were known and that the initial robot pose was also relatively

well known.

The algorithm model requires in its input at time instant t: a) the Gaussian

estimate of the robot pose, b) the control information, and c) the set of feature

measurements at t, along with their correspondence information. The filter returns

as output the estimates of the robot pose, in terms of its mean and covariance.

Simulated theoretical results show as the uncertainty in the robot pose estimates
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(represented by their error ellipses) increases if no landmarks are obseved. Either

capturing new landmarks or visualizing old ones permits the system re-calculating

and correcting the robot pose. This model algorithm can be applied in countless

situations. The landmark measurements, the robot pose data, and the filter results

will entirely depend on the sensorial robot equipment and the system model designed

for each situation and environmental conditions.

The next section details the EKF-based localization algorithm implemented and

integrated in the navigation approach presented in this thesis. It is an implemen-

tation of the well known problem of localization with known correspondences, and

it uses the ground points world coordinates as the measurements of the observed

natural landmarks and the robot odometry data as its pose estimation.

7.2 Visual Localization

Our proposal is to use the ground points that are obtained from the classification

process, and not used until now, to perform localization. As all these points are

located on the floor, their z coordinate is known to be zero and their local coor-

dinates [x, y] can be calculated from the corresponding image coordinates and the

camera angles. In the context of this section, the ground points will be referred to

as landmarks.

The subsequent ground point observations are fused with dead reckoning by

means of an EKF (Extended Kalman Filter). The robot pose, as well as the land-

marks themselves, are stored in the EKF state vector.

The EKF approach to localization involves the linearization of both sensor and

motion models by means of a first-order Taylor series expansion. Due to the errors

introduced by these linearizations, the filter ends up providing inconsistent pose

estimates. Similarly to [39], these inconsistencies are particularly problematic in

our localization proposal as ground points are removed from the filter when they

are not observed. Thus, no loop closure is performed and the uncertainty with

respect to a world-fixed reference frame always grows. As large uncertainties (i.e.

covariances) are responsible for large EKF linearization errors, one of our goals is

to reduce these uncertainties.

Our proposal is based on the robocentric approach [29]. Under this approach,

ground points are stored and managed with respect to a coordinate frame locked

to the robot. Thus, the ground points that are close to the robot will have lower

151



uncertainty and linearizations will be more valid. Our approach particularly benefits

from this idea as only the visible ground points, which are close to the robot, take

part in the localization process.

Next, the main steps involved in the robocentric localization algorithm are de-

scribed.

7.2.1 Robocentric EKF prediction

The EKF prediction is in charge of estimating the state vector at time step k

from the state vector at time step k − 1 and the dead deckoning information. Let

xk = N(x̂k, Pk) be the state vector at time k, being x̂k its mean and Pk its covariance:

xk =

[

xRk

W

xRk

L

]

(7.8)

where xRk

W = N(x̂Rk

W , PRk

W ) denotes the pose of a world-fixed coordinate frame with

respect to the robot and xRk

L = N(x̂Rk

L , PRk

L ) represents the positions of the land-

marks with respect to the robot. The term landmark refers to the aforementioned

ground points. Note that, as this is a robocentric approach, every item in the state

vector is represented with respect to the robot. Initially, the state vector will consist

only of xRk

W , with zero mean and covariance. Let us denote by x
Rk−1

Rk
= N(x̂

Rk−1

Rk
, Qk)

the dead reckoning estimate of the robot motion from time step k − 1 to time step

k.

At this point, the next logical step would be to use the dead reckoning informa-

tion to represent each landmark position, xRk

Lj
, in the state vector with respect to the

current robot pose so that the state vector remains robocentric. This could be easily

done as xRk

Lj
= ⊖x

Rk−1

Rk
⊕ x

Rk−1

Lj
, where ⊖ and ⊕ are the inversion and compounding

operators, widely used in stochastic mapping and SLAM [29]. However, as dead

reckoning is likely to be the less precise component in the system, performing this

transformation may introduce significant errors. Accordingly, the proposal in the

robocentric approach is to delay this composition until the robot motion has been

improved in the EKF update step. To this end, during the prediction step, the state

vector comprise the state vector in the previous time step plus the dead reckoning

estimate as an independent element:
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x̂−

k =

[

x̂k−1

x̂
Rk−1

Rk

]

P−

k =

[

Pk−1 0

0 Qk

]

(7.9)

where x−

k = N(x̂−

k , P
−

k ) denotes the predicted state vector.

7.2.2 Robocentric EKF update

By matching the new observations against the corresponding landmarks in the state

vector, the filter performs the measurement update. As stated previously, the vision

modules not only provide the landmark coordinates, but also their associations

between consecutive frames and, thus, between the observed and the ones stored in

the state vector. Thus, from the EKF point of view, the data association is assumed

to be solved. Let us assume that at time step k a set of M observed ground points

has been associated with M landmarks previously included in the state vector. Let

zik denote the i − th ground point observed at time step k, which is known to be

associated with the landmark x
Rk−1

Lj
, stored in the state vector.

In the EKF context, the observation function hi
j,k is in charge of predicting the

measurement zik from the state vector. Accordingly, hi
j,k, is:

hi
j,k(x̂

−

k ) = ⊖x̂
Rk−1

Rk
⊕ x̂

Rk−1

Lj
(7.10)

The observation matrixH i
j,k which is the Jacobian matrix of hi

j,k, is the following:

H i
j,k =

∂hi
j,k

∂x−

k

∣

∣

∣

∣

∣

x̂−

k

=

[

∂hi
j,k

∂x
Rk−1

W

,
∂hi

j,k

∂x
Rk−1

L1

...
∂hi

j,k

∂x
Rk−1

Lj

...
∂hi

j,k

∂x
Rk−1

LN

,
∂hi

j,k

∂x
Rk−1

Rk

]∣

∣

∣

∣

x̂−

k

(7.11)

It is easy to see that all the terms in the previous expression are zero except

the two terms that depend on the landmark currently observed and on the dead

reckoning estimate. The former can be obtained as follows:

∂hi
j,k

∂x
Rk−1

Lj

∣

∣

∣

∣

∣

x̂−

k

=
∂(⊖x

Rk−1

Rk
⊕ x

Rk−1

Lj
)

∂x
Rk−1

Lj

∣

∣

∣

∣

∣

x̂−

k

= J2⊕{⊖x̂
Rk−1

Rk
, x̂

Rk−1

Lj
} (7.12)

153



where J2⊕ is the second Jacobian matrix of the compounding operator, as described

in [29]. The second of the mentioned non-zero terms is:

∂hi
j,k

∂x
Rk−1

Rk

∣

∣

∣

∣

∣

x̂−

k

=
∂(⊖x

Rk−1

Rk
⊕ x

Rk−1

Lj
)

∂x
Rk−1

Rk

∣

∣

∣

∣

∣

x̂−

k

=
∂(⊖x

Rk−1

Rk
⊕ x

Rk−1

Lj
)

∂(⊖x
Rk−1

Rk
)

·
∂(⊖x

Rk−1

Rk
)

∂x
Rk−1

Rk

∣

∣

∣

∣

∣

x̂−

k

(7.13)

= J1⊕{⊖x̂
Rk−1

Rk
, x̂

Rk−1

Lj
}J⊖{x̂

Rk−1

Rk
} (7.14)

where J1⊕ is the first Jacobian matrix of the compounding operator and J⊖ is the

Jacobian matrix of the inversion, also described in [29].

The measurement vector zk, observation function hk and observation matrix Hk

can be constructed using the M values from zik, h
i
j,k, H

i
j,k and Ck, where Ck =

{< α1, β1 >,< α2, β2 >, · · · , < αM , βM >} denotes the set of data associations so

that the measurements zα1

k · · · zαM

k are associated with the landmarks Lβ1
· · ·LβM

respectively:

zk =









zα1

k
...

zαM

k









, hk =









hα1

β1,k
...

hαM

βM ,k









, Hk =









Hα1

β1,k
...

HαM

βM ,k









. (7.15)

The update step can be performed by applying the EKF update equations as

follows:

K = P−

k HT
k (HkP

−

k HT
k +Rk)

−1

x̂+k = x̂−k +K(zk − hk(x̂
−

k ))

P+

k = (I −KHk)P
−

k

(7.16)

where Rk is a block diagonal matrix containing the error covariances associated to

each measurement and x+

k = N(x̂+

k , P
+

k ) denotes the state vector after the EKF

update.

7.2.3 Robocentric composition and state augmentation

At this point, the robot motion x
Rk−1

Rk
, which was included into the state vector in

the prediction step, has been improved. Thus, this improved robot motion can now
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be used to arrange the state vector so that it remains robocentric. This is the so

called composition step. The resulting state vector is the following:

xk =









⊖x
Rk−1

Rk
⊕ x

Rk−1

W

...

⊖x
Rk−1

Rk
⊕ x

Rk−1

LN









=









f0
...

fN









(7.17)

where x
Rk−1

W is the pose of the world-fixed coordinate frame with respect to the robot

after the EKF update, all x
Rk−1

LN correspond to the landmarks pose with respect to

the robot also after the EKF update, and all the fi have been introduced just to ease

notation in further explanations. It is straightforward to derive the expressions for

the mean of the state vector. In order to obtain the covariance of xk, the following

Jacobian matrix has to be computed:

J
.
=

∂xk

∂x+

k

∣

∣

∣

∣

x̂+

k

=













∂f0

∂x
Rk−1

W

· · · ∂f0

∂x
Rk−1

LN

∂f0

∂x
Rk−1

Rk

...
. . .

...
∂fN

∂x
Rk−1

W

· · · ∂fN

∂x
Rk−1

LN

∂fN

∂x
Rk−1

Rk













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂+

k

(7.18)

The non-zero terms in this expression are computed similarly to Equations 7.12

and 7.14:

∂fi

∂x
Rk−1

i

∣

∣

∣

∣

∣

x̂+

k

= J2⊕{⊖x̂
Rk−1

Rk
, x̂

Rk−1

i } (7.19)

∂fi

∂x
Rk−1

Rk

∣

∣

∣

∣

∣

x̂+

k

= J1⊕{⊖x̂
Rk−1

Rk
, x̂

Rk−1

i }J⊖{x̂
Rk−1

Rk
} (7.20)

where x̂
Rk−1

i denotes x̂
Rk−1

W when i = 0 and x̂
Rk−1

Li
when i > 0. Using this Jacobian,

the covariance is updated as Pk = J · P+

k · JT .

Finally, the observed ground points that have no corresponding landmark in the

state vector are considered to be new landmarks and included in the state vector.

Because of the robocentric approach, adding new landmarks consists, simply, in in-

cluding them in the state vector exactly as they are provided by the vision modules.

Also at this point, the landmarks in the state vector that have not been observed

during a certain time (i.e. 3 frames) are marginalized out and removed.
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When needed, the robot pose with respect to the world-fixed coordinate frame

can be recovered easily from the state vector as xW
Rk

= ⊖xRk

W .

7.3 Experimental Results

Concerning localization, the same robot Pioneer 3DX was used in the same scenarios

as for the navigation experiments, and with exactly the same operative conditions,

in terms of focal distance, frame rate, camera intrinsic parameters, camera height

and tilt. All the length units shown in the incoming experiments are expressed in

meters.

The camera motion between consecutive frames was obtained from the robot

odometry and the relative position of the camera with respect to the robot center.

In the implementation, ground features are continuously tracked while they stay

in the camera field of view. When a ground feature has not been seen during 3

frames, it is removed from the state vector, and when a new feature is fetched it

is included in the filter. The system always tries to ensure a minimum number of

observed landmarks in the state vector.

Several experiments were conducted both indoors and outdoors. Indoor experi-

ments have been performed both inside the laboratory and throughout corridors in a

university building, making the robot follow several different trajectories. The out-

door experiments were performed in the university campus. In these environments,

the rough terrain was responsible for bad odometry estimates.

Finding a proper ground truth became necessary to quantitatively evaluate the

obtained pose estimates. For the experiments performed inside the laboratory, the

ground truth was calculated from the images captured by two calibrated, world-

fixed, wide angle cameras facing perpendicularly to the ground plane at a height of

3 meters (see figure 7.1). The experiments were recorded using these two cameras

and the ground truth trajectory was recovered from the gathered images.

A different approach was adopted for outdoor scenarios since no cameras were

available to generate a ground truth. In these cases, the Pioneer 3-DX ultrasonic

array was activated and the data it provided were recorded. The ultrasonic data

correspond to distances of detected objects with respect to the robot. Then, the

ultrasonic data was plotted according to the trajectory being evaluated. When

plotted, sonar data must coincide with the reality if the trajectory of the robot

is accurately calculated. If the robot trajectory presents drifts, the plotted sonar

156



Figure 7.1: World-fixed cameras for ground truth calculation, on top of the picture

data will significantly differ from the real surrounding environment. Consequently,

the better the plotted sonar data coincides with the reality, the better is the robot

trajectory used to plot it. Thus, although no ground truth is available in outdoor

tests, sonar data makes it possible to qualitatively evaluate trajectories by visual

inspection.

For all and each of the trajectories run inside the lab, five different levels of

synthetic noise (namely, from now on, experiments 1 to 5) were added to the odom-

etry data, in order to check our approach with different levels of dead reckoning

errors, with lower and higher affectation. Especially relevant would be results of

the filter estimates in front of severe odometric errors. The odometric noise was

additive, zero-mean Gaussian with covariance Σ = diag(σ2
x, σ

2
y , σ

2
θ), where σx and

σy ranged from 0,0032 meters in the first experiment to 0,032 meters in the fifth

experiment, and σθ ranged from 0,0032 radians in the first experiment to 0,032 ra-

dians in the fifth. These σ ranges correspond to σ2 between approximately 0.00001

and 0.001, respectively. These values were chosen to represent, respectively, noise

with low and high covariance, that is, systems under a low noise influence and sys-

tems highly affected by noise. For each one of these tests, with a certain trajectory

and a certain noise level, 100 runs were executed in order to obtain statistically

significative results. In all tests and for each robot pose estimate, the trajectory

error was computed, both for dead reckoning and for our approach. The trajectory

error is defined as the distance between the robot pose under evaluation and its

corresponding ground truth.
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Figure 7.2: Mean and Mean±0.2σ for the trajectory errors.

Figure 7.2 shows a comparison of the mean errors corresponding to the corrupted

odometry with those corresponding to our approach, as a function of the 5 different

noise levels and computed for all the trajectories. As can be observed, the mean

error when using our approach, labeled as EKF, is considerably below the dead

reckoning error, and so does the standard deviation of the error. This correction is

much more evident as the odometry noise grows. In the figure, σ has been scaled

down to 20% to provide a more clear plot.

Figure 7.3 shows some data corresponding to two of the trajectories conducted

in the laboratory and used to perform the plot of figure 7.2. The plots show the

dead reckoning trajectories corrupted with two different levels of noise, the corrected

EKF trajectories and the evolution of the corresponding trajectory errors with time.

These examples evidence that dead-reckoning trajectories with higher noise levels

(with higher σ) present more distortion with respect to the ground truth than dead-

reckoning routes slightly affected by noise. However, the proposed EKF localization

algorithm corrected the odometry data even in the presence of high noise levels.

Figure 7.4 shows some images captured from the robot during these trajectories.

All images show the KLT features classified as obstacle points in red and those

classified as ground points as circles in blue.

Figure 7.5 shows images and the plot of a rectilinear trajectory conducted along

the center of a 2.50 meters wide corridor with a high textured floor. This is one of

the aforementioned indoor scenarios where no ground truth was available. Wheels
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Figure 7.3: (a), (e) Two different trajectories with σx=σy=0.0055m for the odometry
Gaussian noise. (c), (g) Trajectories with σx=σy=0.032m for the odometry Gaussian
noise. (b), (d), (f) and (h) Trajectory errors.
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Figure 7.4: Images taken from the robot, during the trajectories 1 and 2 referenced
in figure 7.3 .
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Figure 7.5: Images and trajectory on a straight corridor.
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were slightly deflated, resulting in odometric error, but no synthetic noise was added

in this case. Notice how odometry trajectory significantly deviates from the forward

direction whilst the EKF trajectory approximates better the right ahead course.

Figure 7.6 shows some data concerning two different outdoor experiments. Both

tests consisted on moving the robot parallel to the walls of different buildings. It

is important to emphasize that the proximity of walls is only needed to collect

the aforementioned sonar data, which is only used for human inspection. In these

experiments, stones, grass, and small clumps of soil over the floor influenced the

robot odometry estimates.
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Figure 7.6: Trajectories and some images of outdoor experiments.
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The top row shows, for both experiments, the EKF trajectory in black with the

2σ bound uncertainty ellipses in the picture on the left, the odometry trajectory

in red and the sonar data with respect to every EKF robot position in blue. The

middle row shows two images captured from the robot showing the KLT obstacle

points in red and the features classified as ground circled in blue. The bottom

row shows two images of the whole scene during the test. Notice how in outdoor

environments, even if only a reduced number of landmarks is detected and tracked,

the pose estimation is good.

Although no ground truth was available in these experiments, the plotted sonar

data gives a clear idea regarding the correctness of the estimated trajectories. As

it can be observed in the bottom row pictures, the building walls and angles are

straight, and so it is reflected by the sonar readings, which are plotted using the

robocentric pose estimates.

The exposed experiments evidence the potential of the presented localization

approach. It gives to the navigation system exposed in this thesis the possibility

of using part of the image features for improving the robot pose provided by dead-

reckoning.
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Part III

Conclusions
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Navigation and localization abilities are essential in reactive autonomous mobile

robots. The capacity of the robot to decide which movements are adequate in each

different situation and at each moment is a basic feature to successfully accomplish

the programmed missions. For reactive autonomous robots, it is also capital to

be equipped with a precise localization algorithm, since accurate position is also a

fundamental data to navigate along all subsequent targets.

This thesis has presented a novel visual obstacle detection and avoidance al-

gorithm integrated in a new reactive navigation task, which both experimentally

showed to be effective in autonomous missions, conducted in daily scenarios densely

occupied by obstacles. Furthermore, the navigation system is complemented with

a localization algorithm which integrates ground points and the dead-reckoning in-

formation in the state vector of an EKF to correct the pose given by the odometers.

Experimental results of this localization process demonstrated a great level of suc-

cess in the odometry data correction.

The main contributions of this work have already been detailed in section 3.5,

however it is worth to review all of them again in this section since each one generates

interesting conclusions and additional work. Summarizing:

1. An extensive survey of visual navigation from the early nineties up to nowa-

days,

2. the classifier of image features between obstacle and ground points,
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3. the obstacle detection and avoidance algorithm,

4. an evaluation of different feature detectors and descriptors for our particular

obstacle detector,

5. the reactive navigation strategy to safely move from one point to another, and

6. the localization method.

8.1 The Image Point Classifier

The new algorithm based on the IPT used to classify image main features in either

obstacle or ground points presented an important degree of success, according to

the evaluation results obtained applying ROC curves and their AUC. The method

has been tested offline and online, indoors and outdoors giving in all cases promising

results.

The point classifier assumes that the ground is plane, with no irregularities or

changes in slope. This assumption is important for the classifier and its lack of com-

pliance could mean a worse performance in the classification process. This ground-

flat assumption has been extensively applied in robot visual navigation approaches

based on feature tracking, homographies computation, or any other solution based

on geometrical considerations. Relaxing the flat ground constraint is under study

and would extend the scope of application of our system to terrains with certain

irregularities.

The entire feature classification process is also very dependent on the discrepancy

D and the previously defined threshold β. This dependability was minimized as

explained in section 4.3.1, but still that empirical method based on histograming

misclassified points could be changed by a general and theoretical method. Applying

evolutive algorithms to retrieve the optimum β and those D′s that generated mis-

classified points is under consideration. This process would be previously run in

order to anticipate these parameters before the autonomous navigation mission

begins.
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8.2 Obstacle Detection and Avoidance: The Lo-

cal Occupancy Map

Image features classified as obstacle points are used to discriminate the boundaries of

obstacles present in the scene from other edges located on the ground. This process

permits computing the world coordinates of all these points where obstacles touch

the ground. These obstacle-ground contact points are drawn in an occupancy map

that qualitatively represents the immediate vicinity of the robot, giving a certain

idea of which frontal areas are occupied and which ones are free. This method does

not depend on different scene planes, homographies, or ground/obstacle textures.

It also works, to a certain extend, under deficient illumination conditions, with

reflexions and with specularities. The aim is not building an accurate composition

of the real world, with extremely detailed measurements, but qualitatively seeing

which areas are occupied and which are free. Experimental results, where a robot

erratically moved avoiding all obstacles, showed how local maps were simple but

effective in marking the areas occupied by obstacles.

The obstacle detection and localization processes described in this thesis are

extremely dependent on the previous task of image feature detection and tracking.

Each feature detector and descriptor gives different results in terms of the number

of detected points, their location on the image and their robustness on the tracking

process. The affectation of these parameters can be summarized as follows: a)

very few image features or scarcely detected can lead to miss some obstacles or

can produce bad results in the localization EKF process, b) a leak of robustness in

the matching/tracking process, caused by, for example, changes on scale, rotations,

changes on illumination or excessive differences on their descriptors, can generate

an excess of outliers, being rejected from the process and leading to the previous

situation of few points, c) correct matchings but between points with considerable

differences in position or in their descriptors can difficult their classification and

the determination of the threshold β (see section 4.3.1), d) in principle, it seems

that the location of features in the image should not be a big deal, but, still, in

order to guarantee a good performance in obstacle avoidance and localization it is

important to gather features as in obstacle boundaries as in the part of the image

that shows the ground, and e) the execution time is important, since slow solutions

can be discarded, particularly in online applications.

Not all feature detectors and descriptors provide the same data, and in some
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cases these data lead to inadequate results in our navigation algorithm. As a matter

of fact, section 5 shows how different feature detectors give different results in the

classification process and in the subsequent obstacle detection algorithm. Among all

tested algorithms (SIFT, SURF, FAST and KLT), SIFT is the most robust detector

in front of all unfavorable conditions, but it is too slow. Conversely, KLT has some

inadequacies, for example, in frame rotations or scale changes, but it provides the

best results as: a) it finds a considerably number of features in many sectors of the

image, and specially over obstacle edges, b) at relatively high frame rates and with

no variations of the camera position with respect to the robot center and the gimbal,

changes on scale are imperceptible and there are no rotations of frames around their

center; consequently, the KLT tracker generates the highest rate of inliers, c) the

tracking process is robust, and all detected points are correctly classified and, d) it

is the fastest.

8.3 The Navigation Strategy

It is important for autonomous robots to be endowed with an effective obstacle

detector. But further from detecting obstacles, there is also an important and

clear need of moving towards or between points that have been preprogrammed as

different stages of a complete mission. These succesive set of goal points have to be

reached in the most effective way without excessive deviations due to the presence

of obstacles. To this end, navigation strategies are important because they define

how to act in each different situation or scene configuration, to effectively combine

the avoidance of obstacles and the guidance to the desired targets. The navigation

strategy presented in this thesis is based on Bug-T 2 [5] and ND [136], and integrates

the obstacle detector detailed in section 4.3. From Bug-T 2 our proposal inherits the

two basic principles of Tenacity and Traversability. On the one hand, the ability

to complete a highly credible occupancy map, build with a sparse set of obstacle-

ground contact points and used to check the traversability of the terrain. On the

other hand, the concept of tenacity to overcome obstacles and local minimas. From

ND our system acquires: 1) the capacity of detecting gaps or discontinuities between

obstacles in scenarios densely occupied, and 2) the reasoning methodology to plan

each different situation with a certain rule to pass through the gaps towards the

goal points.

The combination of the two strategies in a visual solution permits complementing
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the deficiencies of one with the benefits of the other. Success in real missions between

two or more pre-defined points in daily and normally used indoor scenarios show

the utility of the navigation strategy defined in this thesis. However, evolving this

version of the algorithm towards one that could guarantee convergence would permit

to face all type of obstacles no matter how intricate they were.

8.4 The Robocentric Localization Algorithm

The same camera and the same gathered data are used for navigation and for

localization. Errors and drifts in odometric pose estimates are corrected including all

features classified as ground points in an EKF context. This EKF-based localization

process is intended to complement the navigation strategy, supplying the system

with an extra ability without a reduction of effectiveness and without an extra cost

in terms of either additional equipment, time, or a rise in the software complexity.

Besides, the robocentric approach guarantees nearly eliminating errors in the

pose estimates inherent to the EKF intrinsic linearizations.

The ground points inserted in the filter state vector are removed or unused when

they fall from the camera FOV. Although close loops can not be performed as in

SLAM solutions, the localization algorithm runs in a short bounded time, which is

a certain advantage for online applications.

The results of some of the indoor experiments could be contrasted with a real

ground truth, and, the performance of the outdoor experiments could be estimated

using the sonar data provided by the robot ultrasound sensors. Experiments run

indoors and outdoors reveal a sufficiently precise performance of the localization

technique.

Changing the EKF for an UKF (Unscented Kalman Filter) or a particle filter

is under study to evaluate the localization performance given by these other tools

and to compare them with the results given by the EKF.
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CHAPTER 9

RELATED PUBLICATIONS

The research work presented in this Thesis has given rise to the following publica-
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1. Visual Navigation for Mobile Robots: a Survey. Journal of Intelligent and

Robotic Systems, vol. 53, nbr 3, pp. 263-296, 2008.

2. A Novel Image Feature Classifier based on Inverse Perspective Transformation,

Technical Report A-1-2008, 2008.

3. A novel Vision-based Reactive Navigation Strategy Based on Inverse Perspec-

tive Transformation, Proceedings of IEEE-IFAC International Conference on

Informatics in Control, Automation and Robotics (ICINCO), Milan (Italy),

pp. 141-146, 2009.

4. A Novel Inverse Perspective Transformation-based Reactive Navigation Strat-

egy, Proceedings of European Conference onMobile Robots (ECMR), Dubrovnik

(Croatia), pp. 25-30, 2009.

5. Building a Qualitative Local Occupancy Grid in a new Vision-based Reac-

tive Navigation Strategy, Proceedings of IEEE International Conference on
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6. A Visual Navigation Strategy Based on Inverse Perspective Transformation.

Book: Robot Vision, chapter 5. Intech-Sciyo. ISBN 978-953-307-077-3 2010
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based Navigation Task. Proceedings of the IFAC International Conference on
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International Conference on Emerging Technologies and Factory Automation

(ETFA) , september 2010.

9. Visual Localization Using Ground Points. Artificial Intelligencce Research and
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2010. Pg 301-310.

10. Combining Obstacle Avoidance with Robocentric Localization in a Reactive

Visual Navigation Task. Proceedings of the IEEE International Conference
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11. A Monocular Mobile Robot Reactive Navigation Approach Based on the In-
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GLOSSARY

D Discrepancy between backprojections of a same image point captured in two

consecutive frames. 81

Sdist Security Distance. 122

T 2 Traversability and Tenacity. 110

AUC Area Under the ROC Curve. 80

EKF Extended Kalman Filter. 67

FOV Field of View. 119

IPT Inverse Perspective Transformation. 69

KLT Kanade-Lucas and Tomassi. 47

ND Nearness Diagram. 110

RANSAC Random Sample Consensus. 76

ROC Receiver Operating Characteristic. 69

ROI Region of Interest. 86

SIFT Scale Invariant Feature Transform. 47
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SSD Sum of Squared Differences. 98

VFH Vector Field Histogram. 69
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[26] A. Burguera, Y. González, and G. Oliver. On the Use of Likelihood Fields to

Perform Sonar Scan Matching Localization. Springer Autonomous Robots, 2009.

[27] T. Camus, D. Coombs, M. Herman, and T.H. Hong. Real-Time Single-Workstation

Obstacle Avoidance Using Only Wide-Field Flow Divergence. In Proc. of 13th

International Conference on Pattern Recognition (ICPR). Applications and Robotic

Systems, 1996.

[28] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):679 – 698, 1986.

[29] J.A. Castellanos, R. Mart́ınez-Cant́ın, J.D. Tardós, and J. Neira. Robocentric Map

Joining: Improving the Consistency of EKF-SLAM. Robotics and Autonomous

Systems, 2007.
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