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Resum

La regió de la Mediterrània occidental es veu sovint afectada per esdeveniments
de pluja intensa. Aquests esdeveniments acostumen a tenir un gran impacte en la
societat a causa de les pèrdues econòmiques, les lesions personals i les morts que
causen. S’ha establert una relació entre alguns d’aquests esdeveniments de pluja
intensa i la presència d’un cicló sobre la regió. La Mediterrània occidental és una
àrea molt ciclogènica a causa, principalment, de la topografia complexa que envolta
un mar quasi tancat. Per tant, qualsevol millora de la nostra capacitat de predir
aquests esdeveniments potencialment perillosos suposaria importants beneficis per
a les societats afectades. Els serveis de protecció civil podrien aprofitar aquestes
previsions millorades per implementar mesures de prevenció més eficients i advertir
la població amb més antelació. Una resposta més ràpida podria marcar la diferència
entre danys major i menors, o fins i tot entre la vida i la mort.

L’objectiu principal d’aquesta tesi és millorar l’actual capacitat de predicció d’a-
quests fenòmens meteorològics potencialment perillosos. Desenvolupam aquesta
tasca mitjançant un sistema de predicció per conjunts (SPC) -ensemble, en anglès.
Més concretament, desenvolupam i verificam tres sistemes de predicció per con-
junts, tots centrats en els fenòmens meteorològics de gran impacte en la Mediter-
rània occidental. Entre els tres conjunts es tenen en compte tant les incerteses
presents en els models numèrics de predicció meteorològica com les presents en les
condicions inicials. Consideram les deficiències del model en el conjunt de multi-
física. Els membres del conjunt de multifísica es generen variant els esquemes de
parametrització física. A més del conjunt de multifísica, utilitzam dos SPC que
generam pertorbant les condicions inicials i les condicions de contorn del model,
que tenen en compte l’impacte de les incerteses presents en aquestes condicions.
Aquestes pertorbacions s’apliquen sobre el camp de vorticitat potencial (VP; po-
tential vorticity, PV, en anglès) mitjançant una tècnica d’inversió, aprofitant la
connexió entre les estructures de VP i els ciclons. Per això anomenam PV-perturbed
aquests dos conjunts. Treballar amb el camp de VP té l’avantatge de poder definir
les pertorbacions sobre una sola variable, VP, i, juntament amb la tècnica d’inversió
de VP, ens asseguram que la resta de camps meteorològics siguin pertorbats sense
comprometre el balanç atmosfèric que hi ha entre els camps de vent i de tem-
peratura. Per evitar pertorbacions no realistes, desenvolupam una climatologia
d’error de VP. Aquesta climatologia proporciona un marge d’error de VP consis-
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Resum

tent en el rang d’incertesa propi del camp de VP. Malgrat que els dos conjunts
de PV-perturbed es basen en pertorbar el camp de VP, el criteri que segueixen
per decidir on aplicar les pertorbacions és diferent. Breument, en un conjunt les
pertorbacions s’apliquen sobre les zones del camp de VP amb valors més intensos
i major gradient (PV-gradient), mentre que en l’altre les pertorbacions s’apliquen
a les zones de sensibilitat calculades pel model adjunt MM5 (PV-adjoint).

Avaluam l’actuació dels tres conjunts mitjançant una col·lecció de denou ciclons
d’alt impacte associats a precipitació i a vents forts (tots el ciclons provenen de la
base de dades del projecte MEDEX). La verificació se centra en la precipitació a
causa de l’impacte social, tot i que som conscients que les seves característiques, és
a dir, forts gradients en l’espai i variacions ràpides en el temps, dificulten el procés
de verificació. En altres paraules, és difícil obtenir bons resultats a la verificació
quan avaluam el camp de precipitació. Per altra banda, la verificació també es
veu afectada per la naturalesa extrema i poc freqüent dels episodis d’interès. Els
valors extrems de precipitació no sempre són ben capturats pel model, i la base de
dades d’observacions de fenòmens extrems i rars no sempre és prou àmplia (mida
de la mostra insuficient).

Els nostres resultats, tal com esperàvem, mostren que el sistema de predicció per
conjunts proporciona una predicció més hàbil que una predicció determinista. A
més, quan els comparam, el conjunt PV-gradient es mostra més hàbil que el con-
junt de multifísica. Entre els conjunts PV-perturbed, l’SPC PV-gradient també
supera en habilitat el conjunt PV-adjoint. Això implica que el cost computacional
addicional d’utilitzar el model adjunt MM5 en el conjunt PV-adjoint no és com-
pensat en habilitat de predicció. Per tant, el conjunt PV-gradient ha resultat ser
una estratègia rendible, tant per la simplicitat com per l’habilitat que demostra.

Posteriorment, els tres conjunts s’apliquen a tres situacions diferents per tornar a
posar a prova el potencial i la utilitat que tenen. L’èxit d’aquestes aplicacions ha
estat divers. La primera aplicació consisteix a construir un superensemble basat
en el nostre conjunt de multifísica. Els resultats mostren que el cost addicional
de construir un superensemble en comptes d’una mitjana amb el biaix corregit
no es veu compensat en habilitat, ja que les dues prediccions obtenen puntua-
cions similars en la verificació. La segona aplicació utilitza el conjunt PV-gradient
per calcular el camp de precipitació necessari per a les simulacions hidrometeo-
rològiques d’escolament. En aquest cas, els resultats mostren que l’ús d’una es-
tratègia basada en la predicció per conjunts dins un sistema hidrometeorològic de
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predicció d’escolament millora la dita predicció. Per tant, en aquesta aplicació l’ús
de tècniques basades en predicció per conjunts es mostra com un bon mètode per
millorar el resultat de les simulacions d’escolament. La tercera aplicació mostra el
potencial d’altres mètodes basats en la pertorbació del camp de VP. En aquesta
aplicació modificam el camp de VP en base a la informació que ens proporciona
el canal de vapor d’aigua del satèl·lit METEOSAT-7. Les modificacions es fan
aprofitant la relació teòrica entre el camp de VP a nivells alts i el camp de tem-
peratura de brillantor de vapor d’aigua. Els resultats mostren que quan aplicam
una tècnica de pertorbació obtenim una millor predicció que quan no l’aplicam. A
més, quan comparam el resultat d’aquesta tècnica de pertorbació amb els resultats
dels membres de la predicció per conjunts PV-gradient i PV-adjoint, veim que es
manté dins els rangs dels dos conjunts i és estatísticament indistingible.

Els resultats d’aquesta tesi mostren la utilitat i la idoneïtat dels mètodes de predic-
ció basats en la pertorbació dels tàlvegs de nivells alts, precursors de les situacions
ciclòniques. Els resultats i les estratègies presentades pretenen ser un punt de
partida per a futurs estudis que facin ús d’aquests mètodes.
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Summary

The western Mediterranean region is often affected by heavy rain events. These
events generally have quite an impact on society due to the economic losses, per-
sonal injuries and fatalities they cause. The connection between some of these
heavy rain events and the presence of a cyclone over the region has been estab-
lished. The western Mediterranean is recognized as a very cyclogenetic area as a
consequence of the complex topography surrounding a quasi-closed sea. As one
would expect, any improvement of our capability to predict these potentially dan-
gerous events would represent an important gain for the affected societies. Civil
protection services could take advantages of these improved forecasts, so that is-
suing better preventive measures and earlier warnings would be possible. These
quicker reactions could make the difference between major and minor damages or
even between life and death.

The main goal of this Thesis is to improve the current prediction skill of these
potentially hazardous weather events. We tackle this task by using an ensemble
forecasting system approach. We develop and test three different ensemble pre-
diction systems (EPSs) that target western Mediterranean high-impact weather
events. By means of these three ensembles we account for uncertainties present
in the numerical weather models and in the initial conditions. We deal with the
model deficiencies by building a multiphysics ensemble. The members of the multi-
physics ensemble are generated by varying the physical parameterization schemes.
In addition to the multiphysics ensemble, we use two EPSs built by perturbing the
initial conditions and the boundary conditions of the model, so that the impact
of the uncertainties of these conditions are accounted for. These perturbations are
applied over the potential vorticity (PV) field by means of an inversion technique,
exploiting the connection between PV structures and cyclones. So, we call these
two ensembles the PV-perturbed ensembles. Working with the PV field has the
advantage of defining the perturbations on a single variable, PV, while the PV
inversion technique ensures that the rest of meteorological fields are consistently
perturbed without compromising the mass-wind balance of the atmosphere. To
avoid unrealistic perturbations, we develop a PV error climatology. This clima-
tology provides a PV error range consistent with the PV field uncertainty range.
Although the two PV-perturbed ensembles are based on perturbing the PV field,
the decision on where to apply the perturbations is different. Briefly, in one en-
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semble the perturbations are applied over the most intense values and gradients
PV zones (PV-gradient) while in the other the perturbations are applied along the
MM5 adjoint model calculated sensitivity zones (PV-adjoint).

We evaluate the performance of the three ensembles on a collection of 19 high-
impact cyclones associated with heavy precipitation and strong winds (all cyclones
come from the MEDEX database). The verification procedure focuses on the pre-
cipitation field due to its direct impact on society, even though we are aware that
its features, i.e., strong gradients in space and rapid variations in time, make the
verification process difficult. In other words, it is hard to obtain good verification
scores when dealing with precipitation. The verification procedure is also affected
by the extreme and rare nature of the targeted events. Extreme precipitation val-
ues are not always well captured by the model, and the observational database of
extreme and rare events is not always as extensive as desired, leading to the well
known sampling problem.

Our results show the expected improvement in forecast skill when using an ensem-
ble prediction system instead of a determinist forecast. Moreover, when compared,
the PV-gradient ensemble outperforms the multiphysics ensemble. Between the
PV-perturbed ensembles, the PV-gradient EPS also outperforms the PV-adjoint
ensemble. This means that the extra computational cost derived from running
the MM5 adjoint model in the PV-adjoint ensemble is not compensated later in
forecast skill. Therefore the PV-gradient ensemble reveals itself as a profitable
strategy, owing to both its low computational cost and its competitive skill.

Later, the three ensembles are applied on three different situations to further test
their potential and usefulness. These applications result in varying degrees of suc-
cess. In the first application, we build a superensemble fed by our multiphysics
ensemble. The results show that the extra cost of building a superensemble in-
stead of a cheaper bias corrected ensemble mean is not returned in skill since both
forecasts obtain similar scores in the verification results. In the second applica-
tion, we use the PV-gradient ensemble to produce the precipitation fields needed
to drive hydrometeorological runoff simulations. Here, the results show that ap-
plying an ensemble strategy into a hydrometeorlogical forecasting chain leads to
more skillful runoff simulations. Therefore, in this particular application the use of
ensemble-based techniques is a successful method that improves the performance
of the runoff simulations. The third application exposes the potentiality of further
extending the PV perturbing approach. In this application, we modify the PV
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field using the information provided by the METEOSAT-7 satellite water vapor
(WV) channel for guidance. This guide comes from the existing relationship be-
tween upper-level PV features and WV brightness temperature. The results show
that the perturbed run performs better than a non-perturbed run. Besides, when
confronted with PV-gradient and PV-adjoint ensembles members, the tested per-
turbing technique remains within the range of both ensembles members scores and
is statistically indistinguishable.

The results of this Thesis show the utility and suitability of forecasting methods
based on perturbing the upper-level precursor trough present in cyclonic situations.
The results and strategies here discussed aim to be a basis for future studies making
use of these methods.
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Preface

Storm Ending
by Jean Toomer, 1992

Thunder blossoms gorgeously above our heads,
Great, hollow, bell-like flowers,
Rumbling in the wind,
Stretching clappers to strike our ears...
Full-lipped flowers
Bitten by the sun
Bleeding rain
Dripping rain like golden honey-
And the sweet earth flying from the thunder.

Nature marvels us with these breathtaking phenomenons and we cannot help but
stare in wonder. The human race has been fascinated by meteorological events
since time in memorial. We have written poems, composed paintings, sung songs,...
while wondering about their whys and hows.

Seeking answers for these questions may perfectly represent the main pillar of
meteorology, the science devoted to the study of the atmospheric processes and
dynamics that govern the weather. In our quest for answers, new questions arise:
when and where can we witness the next major weather event? Will it be danger-
ous?... So the desire to predict the event is then added to the longing to diagnose
it.

This PhD Thesis is a result of succumbing to these desires and longings and at
the same time, an attempt to provide a meaningful contribution to the field of
meteorology.
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Objectives and Outline of this Thesis

The main goal of this Thesis is to improve the current prediction capability of high
impact weather events that often strike the western Mediterranean. We undertake
this task by developing and testing several ensemble forecasting systems. It is
appropriate to use this kind of strategy since extreme and rare events, like the
ones we are targeting, are often not well resolved by a deterministic prediction
given their inherently unpredictable nature and their high sensitivity to model
deficiencies and initial conditions errors.

This Thesis is organized as follows. Part I provides the necessary background for
this work. In Chapter 1 we deepen on the reasons behind focusing on the western
Mediterranean region. Chapter 2 describes general issues on numerical weather
models and provides details on the models used here. The ensemble forecasting
strategy as well as some examples and related issues are discussed in Chapter 3,
while the necessary tools to verify the quality of the forecasts are revised in Chap-
ter 4. An overview of the Potential Vorticity Thinking approach is provided in
Chapter 5.

Throughout Part II we develop a multiphisics ensemble that combines different
model physical parameterization schemes and two EPSs based on perturbing the
initial and boundary conditions (Chapter 6, 7 and 8). These perturbed initial and
boundary conditions ensembles are accomplished by perturbing the PV field, thus
exploiting the strong connection between PV streamers and cyclogenesis observed
in the troposphere. These two PV-perturbed ensembles differ in the criteria used
to locate the perturbing zones.

The performance of the three ensembles is evaluated with a thorough verification
process. Different quality attributes of the forecast will be explored by a wide range
of verification scores and indices. This evaluation is done for a trial set consisting of
19 MEDEX cyclones collection. These events are associated with floods and strong
winds over the western Mediterranean and represent the kind of phenomena we
are targeting.

In Part III we apply these techniques in three different contexts to test further
their properties and take advantage of their skill. The multiphysics ensemble is
used to build a superensemble forecasting system in Chapter 9. The performance
of the superensemble is compared with that of a simpler bias corrected ensemble
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mean. Chapter 10 describes the utility of using the PV-gradient ensemble in a
hydrometeorological context with the aim of accounting for the uncertainty in the
initial and boundary conditions. In Chapter 11, a different method for modifying
the PV field in the model initial state is developed and tested for two case studies.
The results are examined and compared with both PV-gradient and PV-adjoint
ensembles modification techniques.

Finally, general conclusions and several potential future studies are presented and
discussed in Chapter 12.
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Introduction

9





Chapter 1

Why focus on the western

Mediterranean region?

The Mediterranean region is the region in between, in between cultures, lands,
environments, etc. In fact, it literally means "sea in the middle of the earth"1.
This middleman position makes its a place of confluence: atmosphere, sea, orogra-
phy and topography together in close quarters, leading to very interesting weather
phenomenons. Because, while it is true that Mediterranean climate is mainly char-
acterized by hot dry summers and wet cool winters, it can also be notoriously
capricious with sudden torrential downpours or bouts of high wind occurring at
various times of the year.

The Mediterranean basin covers portions of three continents: Europe, Asia, and
Africa, and is surrounded by prominent mountain ranges, like the Pyrenees (di-
viding Spain from France), the Alps (dividing Italy from Central Europe) and
the Balkan mountains. A shallow submarine ridge between the island of Sicily,
Italy, and the coast of Tunisia divides the sea in two main subregions, the western
Mediterranean and the eastern Mediterranean. The western Mediterranean, our
target region, covers an area of about 0.85 million km2 (see Fig. 1.1).

The western Mediterranean is often hit by heavy rain events that have a high
socio-economical impact (Llasat and Sempere-Torres, 2001; Llasat et al., 2010).
For example, on 10 June 2000 a storm flooding caused five victims, more than
500 evacuated and material losses, including the destruction of a highway bridge,

1See http://www.etymonline.com/index.php?term=Mediterranean
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Chapter 1. Why focus on the western Mediterranean region?

Figure 1.1. The western Mediterranean region and its orography. (Image source: Google
Maps.)

were estimated to exceed 65 million euros by the local media on Catalonia, Spain
(Llasat et al., 2003; Martín et al., 2007) and on 10 November 2001 a storm flooding
caused 886 victims on Algiers (Tripoli et al., 2005) and 4 casualties in the island
of Mallorca, Spain, accompanied by more than 200.000 uprooted trees and records
of wind gusts exceeding 140 km/h and heavy precipitation up to 400 mm in two
days (Romero et al., 2002). In fact, several studies have established a connection
between some of these heavy rain events and the presence of a cyclone over the
region (e.g. Jansà et al. 2001). This area, the Western Mediterranean, is a very
cyclogenetic area as a consequence of the complex topography surrounding a quasi-
closed sea (Reiter, 1975; Meteorologial Office, 1962).

Some examples of these cyclones associated to heavy rain events are:

� shallow weak disturbances with a warm core over land masses of thermal
origin (Romero et al., 2001),

� shallow weak lows with a warm core over the sea at the lee of important
mountain ranges, linked to the orographic effect on the atmospheric flow
(Romero et al., 2000), and

� baroclinic systems with great vertical amplitude (Homar et al., 2002), de-
veloped along frontal zones under the intrusion in the Mediterranean region
of an upper-level through.

12



Chapter 1. Why focus on the western Mediterranean region?

The capability to predict such hazardous events is still limited. However many
efforts are being devoted to successfully increase it in hopes of preventing and
reducing the damages they cause. Some of these efforts are endorsed on interna-
tional programs like MEDEX2 and HyMeX3 and are in complete agreement with
the final objective of this Thesis: to improve the capability of predicting accurately
and timely the western Mediterranean high-impact weather events by means of
several ensemble prediction systems developed for this purpose.

2MEDEX is the Mediterranean Experiment on cyclones that produce high impact weather
in the Mediterranean, a project endorsed by the WMO under the THORPEX WWRP (http:
//medex.aemet.uib.es).

3HyMeX is the Hydrological cycle in the Mediterranean Experiment, a project also endorsed
by the WMO under the GEWEX WCRP and THORPEX WWRP (http://www.hymex.org/).
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Chapter 2

Numerical weather prediction

models

A numerical weather prediction (NWP) model is a mathematical model of the at-
mosphere that uses the fluid dynamics and thermodynamics equations to estimate
the state of the atmosphere at a future time once the state of the fluid has been
sampled. The first attempt to use a numerical weather prediction model was done
in 1922 by Lewis Fry Richardson that worked by hand on a local example, after
Vilhelm Bjerknes had laid out the fundamental principles of the computation of
atmospheric evolution in 1904 (Shuman, 1989). However the task was too big to
solve by hand, so it was thirty years later with the invention of computers when
numerical weather prediction was able to take off. The first successful NWP was
done in 1950 by a working group leaded by Jule Charney and assisted by the
mathematician John von Neuman using a barotropic model. Since then, numeri-
cal weather prediction models have greatly improved hand in hand with computer
capacity. Nowadays, several NWP models are run operationally worldwide to fore-
cast the weather and are also used in many research centers as a tool to study
the atmosphere and improve the prediction, among other tasks. A thorough and
recent review of the origins of computer weather prediction can be found in Lynch
(2008).

The NWP models predict the future state of the atmosphere solving the basic
equations on a three-dimensional grid representing the atmosphere after gathering
the current state of the atmosphere into the defined grid. The basic equations,
used to approximate global atmospheric flow and also used in most atmospheric
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models, consist of the following set of nonlinear differential equations:

• Conservation of momentum (the Navier-Stokes equations)

• Thermodynamics laws

• Mass continuity equation

• Equation of state (Ideal gas law)

• Water species predictive equations

These nonlinear partial differential equations cannot be solved analytically, instead
they must be solved using numerical techniques (an approximation) requiring a
huge computational power. The most common used numerical methods are the
finite difference methods for all three spatial dimensions, spectral methods for the
horizontal dimensions and finite difference methods in the vertical. It is worth to
note that the physical process that can not be explicitly solved owning to their
small scale, their complexity, the lack of understanding or their high computation-
ally cost (e.g. turbulence, convection, diffusion, etc) have to be parameterized.

Certainly the finer the model grid resolution the more accurately the prediction
will be. However, finer resolution requires more computational power and better
physical parameterizations schemes that can not always be achieved, either due to
excessive computational cost and/or inability to correctly parameterize the com-
plex sub-grid physical processes. To overcome the computational limitation, two
kind of models coexist: global models that cover the whole Earth with a coarser
resolution and regional models that cover local areas with a finer resolution. If
regional models do not get information from outside their domain, they can only
predict for short times since as time passes they are not able to account for weather
phenomena occurring outside their domain but affecting the weather inside. There-
fore, limited-area models need to be nested inside a larger coarser domain run by
a global model, in other words, needs to be provided with boundary conditions or
lateral forcing. The effects of this nesting is widely discussed in Section 3.2 on the
EPS framework.

As already stated, a NWP model needs to know the current state of the atmosphere
to initialize the predictive equations. The initial conditions needed to run the mod-
els are usually the weather analysis: the best available representation of the current
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atmospheric state. The analysis are obtained processing irregularly spaced obser-
vations by data assimilation and objective analysis methods that perform quality
control into a evenly spaced grid usable by the model (See Section 3.1.3 for an
overview on data assimilation techniques). The analysis are worldwide generated
by operational centers like the National Centers for Environmental Prediction,
the European Centre for Medium-Range Weather Forecasts, Japan Meteorolog-
ical Agency, Météo-France or UK Met Office. Several operational centers have
done a re-analysis to include all the now available observations, measures and ad-
vanced numerical techniques, for example the ECMWF has available the ERA-40
reanalysis that cover the period between 1957 and 2002 and has just produced the
ERA-Interim, a more refined reanalysis covering from 1989 to the present time
(ERA-40: Uppala et al. 2005 and ERA-Interim: Berrisford et al. 2011; Dee et al.
2011).

The observations used in atmospheric models come mainly from state weather
services all over the globe. The World Meteorological Organization1 has issued
many Manuals and Guides providing a standardization for observational mea-
surements (e.g. WMO 2008) and a suitable framework worldwide for meteorolog-
ical observations, especially the Global Observing System (WMO, 1989, 2003),
aeronautical meteorology (WMO, 1990), hydrology (WMO, 1994), agricultural
meteorology (WMO, 1981) and climatology (WMO, 1983). The main observa-
tional inputs are surface observations from automated weather stations at ground
level over land and from weather buoys at sea. Other observations come from ra-
diosondes launches that measure through the troposphere until the stratosphere,
aircraft and ships reports and weather satellites. Additionally, research projects
launch special campaigns to increase the number of observations over a region
of interest like the forthcoming HyMeX 2012 Special Observation Period (SOP)
campaign that plans to improve the observational network over the northwestern
part of the Mediterranean to study key processes of the water cycle, especially
heavy precipitation systems, intense air-sea fluxes and dense water formation (see
http://www.hymex.org for details).

Another key component in a NWP model is the terrain representation. In order
to produce a plausible forecast the model needs information about the orography,
topography, land uses, etc to better describe phenomena like downslope winds,
mountain waves, thermally-driven circulations and so on. The land use data allows

1WMO: http://www.wmo.int/
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to describe the interaction between weather and ecosystems by proving information
such as the kind of vegetation or the presence of desert. This information is crucial
to determine the land properties like the albedo or the moisture required in the
model radiation scheme, for example.

Several efforts have also been directed to couple atmospheric models with oceano-
graphic ones to remove the need of artificially adjust fluxes across the ocean surface
interface. These coupled atmosphere-ocean models are basically used on future cli-
mate predictions, like the HadCM32 coupled atmosphere-ocean general circulation
model, used in the IPCC3 Third Assessment Report in 2001.

2.1 MM5 non-hydrostatic mesoscale model

The non-hydrostatic mesoscale MM5 model is a high resolution short-range weather
forecast model developed by the National Center for Atmospheric Research (NCAR)
and the Pennsylvania State University (PSU; Dudhia 1993; Grell et al. 1995). The
main characteristics of the MM5 are described below with the aid of the MM5
Users’ Guide (Dudhia et al., 2005).

2.1.1 The MM5 model horizontal and vertical grid

The MM5 acquires and analyzes the data on pressure surfaces. This information
is previously interpolated to the model’s vertical coordinate. The model vertical
coordinate, �, follows the terrain at the lower grid levels and flattens at the upper
surface (see Fig. 2.1). This � coordinate is defined by

� =

p� p
t

p
s

� p
t

, (2.1)

where p
t

is upper boundary of pressure and p
s

is the surface pressure. The values
of � go from 0 at the atmosphere’s top to 1 at the earth’s surface.

The horizontal grid has an Arakawa-Lamb B-staggering of the velocity variables
with respect to the scalars. This is shown in Fig. 2.2 where it can be seen that

2Hadley Centre Coupled Model, version 3, developed at the Hadley Centre in the United
Kingdom (e.g. Collins et al. 2001).

3Intergovernmental Panel on Climate Change; http://www.ipcc.ch/
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Figure 2.1. Schematic representation of the vertical structure of the model. This example is
for 15 vertical layers. Dashed lines denote half-sigmalevels, solid lines denote full-sigma levels.

the scalars, like temperature, are defined at the center of the grid square, while
the eastward and northward velocity components are collocated at the corners.
All these variables are defined in the middle of each model vertical layer, referred
to as half-levels, and vertical velocity is carried at the full levels (see Fig. 2.1).

2.1.2 The nesting capability

The MM5 model contains a capability of multiple nesting with up to nine domains
running at the same time and completely interacting. A possible configuration is
shown in Fig. 2.3. The nesting ratio is always 3:1 for two-way interaction, and is not
restricted for one-way nesting. The one-way nesting differs from two-way nesting
in having no feedback and coarser temporal resolution at the boundaries. Each
sub-domain has a mother domain in which it is completely embedded. Moving a
domain and turn on and off a nest at any time in the simulation is also possible.
There are three ways of doing the two-way nesting. First, nest interpolation, where
the nest is initialized by interpolating coarse-mesh fields and requires no additional
input files. Second, nest analyses input, which requires a model input file to be
prepared for the nest in addition to the coarse mesh. Third, nest terrain input
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Figure 2.2. Schematic representation of the horizontal Arakawa-Lamb B-staggering staggering
of the dot and cross grid points. The smaller inner box is representative of a mesh staggering
for a 3:1 coarse-grid distance fine-grid distance ratio.

that requires just land use input file, so the meteorological fields are interpolated
from the coarse mesh and vertically adjusted to the new terrain.

Figure 2.3. Example of nesting configuration. The shading shows three different levels of
nesting.
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2.1.3 The lateral boundary conditions

A regional numerical weather prediction model requires lateral boundary condi-
tions. In MM5 all four boundaries have specified horizontal winds, temperature,
pressure and moisture fields, and can have specified microphysical fields, such as
cloud and precipitation species, if these are available. These boundary values have
to be set in the simulations in addition to initial values for these fields.

The boundary values can come from analyses at the future times, from a previous
coarser-mesh simulation, and from another model’s forecast. For real-time forecasts
the lateral boundaries will ultimately depend on a global-model forecast. In studies
of past cases the analyses providing the boundary conditions may be enhanced by
observation analysis in the same way as initial conditions are. The MM5 uses these
discrete-time analyses by linearly interpolating them in time to the model time.
In two-way nest, the boundaries are updated every coarse-mesh timestep.

2.1.4 The nonhydrostatic dynamics

In the mesoscale models, the hydrostatic approximation can be applied when the
typical horizontal grid sizes are comparable with or greater than the vertical depth
of features of interest. Then, the pressure is completely determined by the overlying
air’s mass, like the hydrostatic relation shows,

dP = �⇢0g dz . (2.2)

However, when the scale of resolved features in the model have aspect ratios nearer
unity, or when the horizontal scale becomes shorter than the vertical scale, nonhy-
drostatic dynamics can not be neglected. The nonhydrostatic dynamic introduces
an additional term, the vertical acceleration that contributes to the vertical pres-
sure gradient, so the hydrostatic balance is no longer exact.

The reference state in the nonhydrostatic model

The reference state is an idealized temperature profile in hydrostatic equilibrium,
given by

T0 = T
s0 + A ln

✓
p0
p00

◆
, (2.3)
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where T0 is specified by: sea-level pressure, p00, the reference temperature at p00,
T
s0, and a measure of lapse rate, A, representing the temperature difference be-

tween p00 and p00/e. Usually, just T
s0 needs to be selected based on a typical

sounding in the domain.

The surface reference pressure, therefore, depends entirely upon the terrain height,
and can be derived from Eq. (2.3), using the hydrostatic relation (2.2),

Z = �RA

2g

✓
ln

p0
p00

◆2

� RT
s0

g

✓
ln

p0
p00

◆
(2.4)

and this quadratic can be solved for p0(surface) given the terrain elevation, Z.
Once this is done, the heights of the model � levels are found from

p0 = p
s0� + p

top

, (2.5)

where
p
s0 = p0(surface) � p

top

, (2.6)

and then Eq. (2.4) is used to find Z from p0. It can be seen that since the reference
state is independent of time, the height of a given grid point is constant.

2.1.5 The land use categories

The MM5 provides three sets of land use categorizations that are assigned along
with elevation. These have various categories like: type of vegetation, desert, urban,
water, ice, and others. Each grid cell of the model is assigned one of the categories,
and this determines surface properties such as albedo, roughness length, longwave
emissivity, heat capacity and moisture availability. Additionally, if a snow cover
dataset is available, the surface properties may be modified accordingly. These
values are also variable according to summer or winter season, for the northern
hemisphere. It is important to note that the values are climatological and may not
be optimal for a particular case, especially moisture availability.
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2.1.6 The map projections and map-scale factors

The modeling system has a choice of several map projections. Lambert Conformal
is suitable for mid-latitudes, Polar Stereographic for high latitudes and Merca-
tor for low latitudes. These transformations are accounted for in the model pre-
processors that provide data on the model grid, and post-processors.

The map scale factor, m, is defined by

m =

distance on grid
actual distance on earth

, (2.7)

and its value is usually close to one varying with latitude. The projections in the
model preserve the shape of small areas, but the grid length varies across the
domain to allow a representation of a spherical surface on a plane surface. Map
scale factors need to be accounted for in the model equations wherever horizontal
gradients are used.

2.1.7 The basic equations of the MM5 model

As expected, the MM5 basic equations are nonhydrostatic and are given in terms
of terrain following coordinates (x,y,�). These equations without moisture terms
are given by

� the equation of state:

p = ⇢RT , (2.8)

where p is the pressure, ⇢ is the air density, R is the gas constant (which
depends on the composition of the air), and T is absolute temperature.

� the pressure equation:

@p0

@t
� ⇢0gw + �pr ·�!V = ��!

V ·rp0 +
�p

T

 
˙Q

c
p

+

T0

✓0
D

✓

!
, (2.9)

where p0 is the nonhydrostatic perturbed pressure, p is the hydrostatic pres-
sure p0 plus p0, ⇢0 is the air density, g is the gravity constant, w is the vertical
velocity, � =

Cp

Cv
, where C

p

is the air calorific heat at constant pressure and
C

v

is at constant volume,
�!
V is the velocity vector, ˙Q is the heat exchange
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with the environment, T0 is the temperature of the buoyancy term, ✓0 is the
reference potential temperature and D

✓

is the heat loss owning to friction
and turbulence. This equations shows that pressure temporal variations are
due to the rising and subsidence fluid motions, variations produced by con-
verge and divergence, pressure advection and variations provided by heat
exchanges.

� the momentum equations:

a) component x:

@u

@t
+

m

⇢

✓
@p0

@x
� �

p⇤
@p⇤

@x

@p0

@�

◆
= ��!

V ·ru

+ v

✓
f + u

@m

@y
� v

@m

@x

◆
� ew cos↵� uw

r
earth

+D
u

, (2.10)

where m is the map scale factor, p⇤ = p
surface

� p
top

is the difference
between pressures, f and e = 2⌦ cos� are the Coriolis terms where
� is the latitude, ↵ = � � �

c

, � is the longitude and �
c

is the cen-
tral longitude, u@m

@y

, v @m

@x

and r
earth

are the curvature effect terms, and
D

u

is the heat loss term due to friction and turbulence in the compo-
nent x direction. The component x momentum temporal variations are
due to spacial variations in the pressure field, u velocity advection and
curvature and Coriolis effects.

b) component y:
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c) component z:

@w

@t
� ⇢0

⇢

g

p⇤
@p0

@�
+

g

�

p0

p
= ��!

V ·rw + g
p0
p

T 0

T0

� gR
d

c
p

p0

p
+ e(u cos↵� v sin↵) +

u2
+ v2

r
earth

+D
w

, (2.12)

where R
d

is the dry air universal constant.
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� the thermodynamic equation:
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The temperature temporal variations are due to thermal advection, density
variations, heat exchanges and heat loss owning to friction and turbulence.

2.2 Adjoint model

An adjoint model is a powerful tool to estimate the sensitivity of a given forecast
feature, limited to the linear framework. In other words, the adjoint models allow
to evaluate the effect of any perturbation to one particular response function4.
Formally, an adjoint model is defined as the transposition of a linear operator that
is constructed tangent to the phase space trajectory that is followed by the forward
nonlinear deterministic forecast. This tangent linear approximation can be affected
by the timespan of the adjoint run. The longer the evolution analyzed, the farther
away from a linear evolution the perturbations evolve in the nonlinear model.
The linear assumption is valid for smooth integrated response functions defined at
lead times up to 48 h (e.g. Rabier et al. 1992; Vukićević 1991), while decreasing to
24 h when diabatic processes significantly affect the response function (Homar and
Stensrud, 2004). Also, the response function definition is critical since a response
function highly influenced by nonlinear forecast features, e.g. rain, may severely
constrain the tangent linear approximation.

2.2.1 Applications

Sensitivity analysis estimates the impact of the uncertainty contribution to differ-
ent initial conditions aspect on the uncertainty of a given forecast aspect. Therefore
a sensitivity analysis is very suitable to evaluate and investigate the existent re-
lationship between different atmospherics features and their predictability given

4The term response function is commonly used to denote a forecast feature of interest.
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certain conditions. The simplest form of sensitivity analysis is to create a given
set of scenarios where the sensitivity analysis can determine how changes in one
forecast feature will impact a response function (e.g. Romero 2001; Martín et al.
2007). The problem with this kind of sensitivity analysis is that it is possible that
another perturbation with similar characteristics and properties of the first one
may produce a very different impact, leading to a different interpretation of the
sensitivity. The adjoint has the advantage of being able to evaluate the effect of any
perturbation to one particular response function instead of being limited to eval-
uate the effect of one perturbation to any number of response functions (Homar
and Stensrud, 2004). Therefore, the use of an adjoint model is a more efficient
and direct way to tackle sensitivity analysis (see, e.g., Homar and Stensrud 2004;
Errico 1997; Errico and Vukićević 1992; Rabier et al. 1992 and Hall et al. 1982).

Although sensitivity analysis is an adjoint model main application, there are other
applications that can be derived from applying sensitivity analysis (see Errico
(1997) for a more extensive review of adjoint models and their applications). One
example are optimal analyses like the one used by data assimilation to adjust the
model initial fields to incorporate observations. The optimal solution can be ef-
ficiently determined using the sensitivity analysis provided by the adjoint model
(e.g. Lewis and Derber 1985). The adjoint approach has the advantage of solving
the optimization analysis in a reasonable time, enough to be applied in real-time
forecasting. An analogous approach can be used to efficiently determine model
parameters, like a model physic parameterization scheme, where instead of opti-
mizing the initial conditions to obtain an accurate forecast, the model parameters
are the ones being optimized.

Another useful application of adjoints is targeting (e.g. Langland et al. 1999). This
technique aims to determine where it is most important to produce an accurate
initial condition for a forecast using the sensitivity fields derived from a sensitivity
analysis. The method takes advantage of the fact that any significant error in the
initial conditions where the sensitivity is large, will have a significant impact on
the forecast response function and therefore on the accuracy of its prediction and
viceversa; similar errors where the sensitivity is low will have little effect on the
forecast response function. These locations will depend on the accuracy of the
nonlinear model used to generate the forecast and on the accuracy of its adjoint,
used to determine the sensitivity (see, e.g., Palmer et al. 1998). Maintaining ini-
tial errors at minimum in the sensitive regions is therefore crucial. This can be
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achieved by, for example, increasing the number of observations in those regions,
or improving the initial conditions on specific synoptic situations by modifying
them to obtain another plausible initial condition better representing the true
state of the atmosphere. This later application is exploited on Part II by means of
an ensemble prediction system that uses a sensitive analysis as guide to build sets
of initial conditions perturbations. This approach has already been successfully
applied on several studies, for example, Molteni et al. (1996); Xu et al. (2001) and
Vich et al. (2011b).

2.2.2 MM5 adjoint model

The MM5 adjoint mesoscale model was developed at the National Center for At-
mospheric Research and is based on the MM5 model, described in Section 2.1. The
current version of the MM5 adjoint modeling system includes model dynamics, dif-
fusion, bulk planetary-boundary-layer processes, surface friction, a semi-implicit
time-split integration scheme, dry convective adjustment, a cumulus parameter-
ization scheme and a resolvable-scale precipitation process. Moreover, since the
MM5 is a regional model, the adiabatic MM5 adjoint has been developed with
flexibility of controlling initial conditions and/or lateral boundary conditions. An
extensive description of the mathematical and numerical formulation of the MM5
adjoint model can be found in Zou et al. (1997) and a guide of how to run the
programs that made up the model is gathered on its User’s manual (Zou et al.,
1998).
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Ensemble prediction systems

Numerical weather prediction models have greatly improved since their origins
(Lynch, 2008). Likewise the quality, quantity and availability of the observations
required to estimate the model initial conditions have also been improved (WMO,
2008). However, neither numerical weather prediction models nor observations
are perfect. Numerical weather predictions need to deal with the uncertainties
present on the observations (Lorenz, 1963) and the inaccuracies of the models
(Frank, 1983). As a response to the constraints imposed by these uncertainties the
concept of probabilistic forecast arises, since the uncertainties associated with a
forecast can be better conveyed through the use of probability levels.

An ensemble prediction systems (EPS) produces probabilistic forecast based on a
set of deterministic forecasts valid at the same time. The underlying uncertainties
present in both initial conditions and model formulations allow to build a set
of plausible states that captures the true state. In fact, the ensemble average or
mean is generally more accurate than a single deterministic forecast (Leith, 1974;
Zhang and Krishnamurti, 1997; Du et al., 1997; Buizza and Palmer, 1998). Fig. 3.1
illustrates a conceptual ensemble consisting of a control forecast initialized with
an analysis and two additional forecasts initialized with two perturbations of the
analysis. The first ensemble (Fig. 3.1.a) is able to track the true state while the
second one (Fig. 3.1.b) does not capture the true state inside the range predicted by
the ensemble members, most probably due to model defects and/or to implausible
initial perturbations. However, capturing the true state is not enough, an ensemble
forecasting system also needs to be reliable and to have resolution (Murphy, 1973).
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Figure 3.1. Illustration of a conceptual EPS consisting of three members, a control and
two perturbed states. The control forecast (green line) is initialized with the analysis (cross
symbol), and two initial perturbations of the analysis (dot symbol) are used to initialize the
two perturbed forecasts (black line). The truth or verifying analysis is represented by the
red dashed line. a) Represents an ensemble in which the truth has been captured by the
ensemble members. In contrast, b) represents an ensemble in which the ensemble members do
not manage to capture the true state. (Adapted from Palmer and Hagedorn 2006.)

The forecast probability of an event is estimated by the fraction of the forecasts
predicting the event among all forecasts considered (number of ensemble mem-
bers), assuming that each forecast is an independent realization. An estimate of
the EPS uncertainty is given by the spread of the forecasts, usually defined as the
standard deviation about its mean. Moreover, the ensemble can be interpreted
as an estimate of the evolution of the probability density function (pdf) of the
selected states over time. It is worth to note that ensemble forecasting only esti-
mates the forecast probabilities through sampling the pdf initial state and evolving
it over time. The analytical evolution of the pdf over time involves, in addition to
knowing the initial pdf, computing the Liouville equations (e.g. Ehrendorfer 1994).
Currently, while theoretically it should be doable, in a realistic context it becomes
unattainable due to the extremely high dimensionality of phase space that must
be considered and its consequent computational cost.

In terms of probability density function, the initial pdf is sampled by the ensemble
members initial conditions reflecting the likely uncertainty in the analysis. This
narrow pdf is widened over time as the forecast lead-time increases and the growth
of initially small perturbations and model deficiencies increments the uncertainty.
An skillful EPS evolves the pdf capturing the true state through time and provides
a narrower pdf than the climatological distribution, in other words, the ensemble
pdf resolves better whether or not an event is likely to occur than climatology
(see Fig. 3.2). When evolving over time, one needs to be careful to not exceed
the predictability threshold, the forecast uncertainties/errors will then grow non-
linearly until all predictability is lost and the forecast pdf evolves into the pdf
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invariant distribution of the attractor. This point is illustrated in Fig. 3.3 by means
of the Lorenz attractor schematics (Lorenz, 1963) presented on Palmer (1999).

Figure 3.2. Schematic of how the forecast uncertainty is sampled by an EPS, assuming that
the model is perfect. Even with a perfect model, the forecast can not be perfect since the
true initial state remains unknown due the initial conditions uncertainties. If we use our best
guess (red cross) as substitute for the true state we generate a forecast that can be inaccurate
(commonly known as the control member of the EPS; green line). If we sample the uncertainty
in the initial conditions and run several ensemble members with the model (blue lines), we
obtain an estimation of the forecast uncertainty. If the EPS is well designed, the forecast pdf
will be contained within the climatological pdf but will have more resolution.

3.1 Ensemble forecasting building techniques

The generation of an ensemble forecasting system is achieved by exploiting the un-
certainties present on the initial state, the model deficiencies or both uncertainty
sources simultaneous. In fact, several weather services have implemented oper-
ational ensemble prediction systems by adding perturbations to the analyses to
define the initial conditions, thus assuming that forecast errors arise from analysis
errors while the model is considered perfect. The National Centers for Environ-
mental Prediction (NCEP) define these perturbations through bred modes (Toth
and Kalnay, 1993, 1997) which represent the fastest growing perturbations and
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Figure 3.3. Schematic evolution of an isopleth of the probability density function (pdf) of
initial and forecast error in N-dimensional phase space. (a) At initial time, (b) during the
linearised stage of evolution. A (singular) vector pointing along the major axis of the pdf
ellipsoid is shown in (b), and its pre-image at initial time is shown in (a). (c) The evolution
of the isopleth during the nonlinear phase is shown in (c); there is still predictability, though
the pdf is no longer Gaussian. (d) Total loss of predictability, occurring when the forecast pdf
is indistinguishable from the attractor’s invariant pdf. (From Palmer 1999.)

simulate the development of growing errors in the analysis cycle. The European
Center for Medium-Range Weather Forecasts (ECMWF) used singular vectors
(Buizza and Palmer, 1995; Molteni et al., 1996) which maximize the linear growth
of energy over a specified domain until June 2010, when it was replaced by an En-
semble Data Assimilation (EDA) system that perturbs observations, sea-surface
temperature fields and model physics (Fisher, 2003; Tan et al., 2007). The Cana-
dian Meteorological Center (CMC) applies the ensemble Kalman filter (EnKF;
Evensen 2003; Houtekamer et al. 2005) which provides an ensemble of initial con-
ditions thanks to the assimilation of an ensemble of perturbed observations. Other
EPSs building techniques, that do include model errors, involve the use of differ-
ent forecast models (e.g. Evans et al. 2000; Krishnamurti et al. 2000a; Stensrud
2001), different physical parameterization schemes (e.g. Houtekamer et al. 1996;
Stensrud et al. 1999) or stochastic physical parameterization (e.g. Palmer 2001;
Grell and Devenyi 2002).

An overview of the cited generating techniques is provided below.
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3.1.1 Singular vector

The singular vector EPS generation techniques is just one of many useful appli-
cations in signal processing and statistics of the singular value decomposition1. In
meteorology, this technique is used to estimate the most linearly quickly growing
perturbations over a given initial forward time period. Since these perturbations
are consistent with uncertainties in the observed properties of the atmosphere,
they are suitable to build an ensemble forecasting system. Despite this, it is worth
to remember that no-method is perfect, Isaksen et al. (2005) showed that pertur-
bations constructed by the singular vector method could give rise to structures
rarely observed in the atmosphere.

The ECMWF EPS singular vectors (SV) generation method assumes that the
perturbations grow linearly in time, a generally valid assumption in the atmosphere
for small perturbations for one or two days lead-time. In the ECMWF EPS the
singular vectors are calculated over a 48-hour period (Buizza and Palmer, 1995),
a compromise between the constraints of the linearity approximation and the
requirement to provide an operational EPS for medium-range forecasting, using a
tangent linear forward and adjoint model during this 48-hour period. It is worth
mentioning, that the ECMWF computes the singular vector decomposition solving
the eigenvalue problem with a Lanczos code2 (Golub and Van Loan, 1983) due to
the very large dimension of the system (Buizza, 2001).

On the other hand, the size of the perturbation at both initial and final time of
the forwarded period needs to be measured. Ideally, the norm should be related to
the spatial distribution of expected errors in the analysis (at the initial time) and
to the forecast errors of interest (at the final time). In practice, this measure is
done by a norm provided by the use of total energy for both initial and final time
since it fits the general requirements of the ECMWF EPS (Buizza and Palmer,
1995).

Moreover, a targeting region can be implement in the singular vector computa-
tions. If there is a particular region of interest the singular vector can be calculated
to have the greatest impact in the target region even if they originated outside this

1a factorization of a real or complex matrix in linear algebra
2The Lanczos algorithm is specifically suitable for decomposing very large matrices. This iter-

ative algorithm finds the singular value decomposition of a rectangular matrix with an adaptation
power method.
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region. The ECMWF EPS singular vector system aims to produce perturbations
localized over the extratropics, in fact, a separate calculation is made for each
hemisphere. See Buizza et al. (2000) for a comprehensive review of ECMW EPS
singular vector.

3.1.2 Bred vector

The Bred vectors (BVs) are designed to build a set of initial states in agreement
with atmospheric realistic structures. While the singular vector method optimizes
the growth over time of the perturbations, the Breeding technique generates the
perturbations integrating a dynamical model forward in time. Magnusson et al.
(2008) states that BVs present a larger perturbation growth than SVs for medium
and large time-scales and viceversa for short time-scales, when an orthogonal set
of initial perturbations for the mode are used.

The BV are calculated on a breeding cycle (Toth and Kalnay, 1993, 1997) that
consists on:

1. Adding a random perturbation to the analysis.

2. Integrating the initial conditions from the breeding run (perturbed) and the
analysis (not perturbed) for 12 hours.

3. Normalizing the differences between these two nonlinear runs.

4. Adding the difference to the new analysis, valid at 12 h later than the pre-
viously used analysis.

5. Repeating steps 2 to 4.

The Bred vectors are defined as the normalized differences between breeding and
the 12 hour forecast runs. After a transitory period of the order of the dominant
instability time scale (3-5 days for baroclinc instabilities, Toth and Kalnay 1993),
the breeding cycle converges in a statistical sense3. Additional BV can be generated
using different initial perturbations to start the breeding cycle. Therefore, the

3On some strongly nonlinear models the bred vectors remain distinct instead of converging to a
single leading bred vector, presumably due to the nonlinear terms and physical parameterizations
introducing sufficient stochastic forcing to avoid such convergence (Kalnay et al., 2002).
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Lyapunov vectors (LVs) of a dynamical system are closely related to Bred vectors
(Kalnay et al., 2002). In fact, the bred vectors would be identical to the leading LVs
if an infinite breeding time and infinitesimal amplitudes were used, even though
in a practical context, bred vectors are local in space and time and not globally
orthogonalized, and they are not infinitesimal vectors.

An alternative method is self-breeding that uses pairs of ensemble forecasts to
generate the perturbation at the next time (Toth and Kalnay, 1997). In this pro-
cedure, the difference is scaled down as before and then added and subtracted to
the valid analysis. This technique, illustrated in Fig. 3.4, maintains the linearity
of the perturbation to second order instead of the first order of linearity obtained
with the one-side generation. It is also worth to note that the sef-breeding tech-
nique is cost-free in an ensemble forecasting context since the pair of ensemble
forecasts is already built.

Figure 3.4. Schematic of a self-contained breeding pair of ensemble forecasts. (From Toth
and Kalnay 1997.)
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3.1.3 Ensemble Data Assimilation

Data assimilation (DA) is a common analysis practice in weather forecasting since
Gandin (1963) introduced the concept of optimal interpolation4. The DA approach
combines the model state and the observational data at each time step in order
to provide a detailed analysis of the current state of the system. These combina-
tions help to overcome limitations in both the model and the data, and to better
understand the physical processes underlying the observational data leading to a
more accurate initial state of a forecast run.

The three-dimensional variational data assimilation (3D-Var, i.e., Parrish and Der-
ber 1992; Courtier et al. 1998; Rabier et al. 1998; Andersson et al. 1998) was the
logical next step after Lorenc (1981) generalized the optimal interpolation (OI) to
three spatial dimensions. The 3D-Var technique is an improved version of the OI,
for example: the analysis variables are spectral coefficients instead of gridpoint val-
ues and all observations are used at once instead to solve a single global problem.
The objective is to minimize the cost function build as a combination of forecast
and observation deviations from the desired analysis (weighted by means of the
corresponding forecast- and observation-error covariance matrices). A graphical
schematic of the technique is shown in the dashed square of Fig. 3.5.

The four-dimensional variational data assimilation (4D-Var, i.e., Courtier et al.
1994; Rabier et al. 2000; Mahfouf and Rabier 2000) is a generalization of the
3D-Var technique. The added dimension is time meaning that, in the 4D-Var
framework, the observations are distributed in time. The equations are the same,
provided the observation operators are generalized to include a forecast model
that will allow a comparison between the model state and the observations at
the appropriate time. The 4D-Var DA technique is illustrate in Fig. 3.5 with an
schematic representation, as well as, the transition from 3D-Var to 4D-Var by
adding the time dimension.

In an ensemble prediction system framework, the DA methodology can be used
to provide an ensemble of initial conditions thanks to the assimilation of an en-
semble of perturbed observations. This approach has been widely tested by many
operational centers. In fact, the 3D-Var technique was implemented in ECMWF

4Optimal interpolation interpolates arbitrarily located observations to a regular grid using a
background field as a first guess. The merged field is optimal in the sense that it has the lowest
error variance. Both fields, observations and background, may contain errors.
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Figure 3.5. Example of 4D-Var intermittent assimilation in a numerical forecasting system.
The technique is applied every 6 hours to assimilate the most recent observations, using a
segment of the previous forecast as background. This updates the initial model trajectory for
the subsequent forecast. Schematics notation: X

a

analysis, X
b

background, J
b

cost function
first term (as in the 3D-Var), J

o

cost function second term and obs observations. (From
Bouttier and Courtier 1999.)

operations on January 1996, and was replaced on November 1997 by the 4D-Var
technique (Rabier et al., 2000). The same occurred at the Meteorological Service
of Canada (MSC) that implemented the 3D-Var system in 1997 (Gauthier et al.,
1999) to replace it by the 4D-Var on 2007 (Gauthier et al., 2007). Other centers
have also implemented a 4D-Var global assimilation system like, the MetOffice
(Rawlins et al., 2007), the Japan Meteorological Agency (Kadowaki, 2007) and
Météo-France (Gauthier and Thépaut, 2001).

3.1.4 Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) is a sequential data assimilation method
that has gained a lot of popularity in the weather forecasting community. It was
proposed by Evensen (1994) as an alternative to the computationally extremely
demanding approximate error covariance equation used in the extended Kalman
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filter5. The EnKF technique address the errors and non-linearities of the initial
conditions at a valid time through explicitly describing the flow-dependent forecast
error structures, in contrast to the 4D-Var approach where their description is
implicit. Many papers have further developed and examined this technique like
Evensen and van Leeuwen (1996), Houtekamer and Mitchell (1998), Hamill and
Snyder (2000), Bishop et al. (2001), Houtekamer and Mitchell (2001), Whitaker
and Hamill (2002), Keppenne and Rienecker (2002), Tippett et al. (2003) and
Evensen (2003) which provides a review and overview of the technique and has
become a reference document for the basic methodology.

The EnKF can be tackled by two different approaches (Palmer and Hagedorn,
2006):

1. Perturbed observations (Evensen, 1994; Houtekamer and Mitchell, 1998; Ha-
mill and Snyder, 2000): An ensemble of data assimilations is built using the
same observations to which random noise has been added. The ensemble is
then used to estimate the forecast error covariance. This approach has proven
a worthy competitor to the operational 3D-Var technique, a well supported
technique by the community (Houtekamer et al., 2005).

2. Square Root Filters (Tippett et al., 2003; Bishop et al., 2001; Whitaker and
Hamill, 2002): This approach does not require to perturb the observations,
instead ensemble forecasts are used to obtain a background error covariance
at the time of the analysis. The analysis increment and the analysis error
covariance are obtained thanks to introducing the new observations using the
full Kalman Filter. Then, the new initial analysis perturbations are obtained
by solving a square root filter that relates the background and analysis error
covariance. The EnKF analysis cycle is made up by the steps just described,
Fig. 3.6 schematically represents this sequence.

A key point in the popularity gained by the EnKF is its simple conceptual for-
mulation and relative ease of implementation, e.g. it requires no derivation of a
tangent linear operator or adjoint equations and no integrations backward in time
(Evensen, 2003).

5The extended Kalman filter is the nonlinear version of the Kalman filter which linearizes an
estimate of the current mean and covariance.
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Figure 3.6. Schematic of the ensemble Kalman filter (Square Root Filters approach).
(Adapted from Reichle and Koster 2003.)

3.1.5 Multimodel, multiphysics and stochastic physical pa-
rameterizations

The previous techniques accounted for uncertainties in the initial conditions but
not for model deficiencies. In order to include model uncertainties when building
ensembles several strategies have been developed:

1. Multimodel
A different forecast model is used to generate each ensemble member in
order to account for structural modelling uncertainty inherent in each model
construction (e.g. Evans et al. 2000; Krishnamurti et al. 2000a; Stensrud
2001).

2. Multiphysics
Each ensemble member uses a different set of physical parameterization
schemes to take into account the present uncertainty in model parameters
controlling the best-estimate outputs of parameterizations of sub-grid-scale
processes, for example cloud physics (e.g. Houtekamer et al. 1996; Stensrud
et al. 1999).
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3. Stochastic physical parameterizations
Each ensemble member is perturbed by a stochastic forcing term that rep-
resents the statistical fluctuations in the subgrid-scale fluxes (stochastic di-
abatic tendencies) as well as altogether unrepresented interactions between
the resolved an unresolved scales (stochastic kinetic energy backscatter).
This approach has shown its potential in numerous studies since Buizza et al.
(1999) introduced it, some examples are Palmer (2001); Grell and Devenyi
(2002) and Shutts (2005).

3.1.6 Hybrid approach: Accounting for model and initial
conditions uncertainties

Another approach to build ensembles is to mix the previous exposed techniques
in order to simultaneously account for model and initial conditions uncertainties.
Meng and Zhang (2007) is an example where different physical parameterizations
are introduced after perturbing the initial state. Another example, that has already
proven its value (Callado et al., 2011), is the Multimodel Short Range Ensem-
ble Prediction System (SREPS) developed by the Spanish Meteorological Service
(AEMET) generated by five different limited area models and initialized by initial
and boundary conditions provided by five different global deterministic model and
multiple analysis sources from weather services worldwide (García-Moya et al.,
2011).

3.2 From global to regional area modeling

The use of limited-area numerical weather prediction model (LAM) has been
greatly expanded during the last decades due to the increase in computational
power of computers and workstations at an affordable price. A LAM covers only
a part of the Earth in contrast to a global model, that cover the entire Earth,
allowing to use a finer or smaller grid spacing than global models. Thanks to this
finer grid space, the regional modes are able to resolve explicitly smaller-scale
meteorological phenomena that cannot be represented on the coarser grid of a
global model. On the downside, LAMs need to be initialized and forced at lateral
boundaries by a global model in order to allow systems from outside the regional
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model domain to move into their area. Meaning that, when dealing with regional
models, apart from the uncertainty and errors attributable to the regional model
itself, one also needs to account for the uncertainty and errors attributable to the
global model used for the boundary conditions (Warner et al., 1997).

Several studies have already addressed this issue: for example Torn and Hakim
(2008) and Stensrud et al. (2009) apply one of the various methods presented in
Torn et al. (2006) for creating an ensemble of lateral boundary conditions (with
analysis errors in the interior domain comparable to a global ensemble) to examine
a pseudo-operational EnKF; other studies use various analyses from different op-
erational forecast centers as initial and boundary conditions, like Eckel and Mass
(2005) for their study of a multimodel and multiphysics mesoscale EPS; and others
use a multimodel formed by a combination of several operational forecast centers
control runs plus perturbations of these runs, like Fujita et al. (2007) in their
exploration of various ensembles dealing with the influence of initial conditions
and multiphysics, or Meng and Zhang (2007) in their test of an EnKF for data
assimilation.

Hence, even though the boundary condition error has not yet been defined un-
equivocally, studies using LAM EPSs take this uncertainty as an additional part
of the total uncertainty of the problem. On the other hand, a recent study (Vié
et al., 2011) stated that a better solution would be to use a higher-resolution
global EPS to circumvent the need for an intermediate downscaling in the ensem-
ble configuration or an intermediate downscaling ensemble taking into account all
the uncertainty sources. A disadvantage of these alternatives is that both require
much longer computing time.

3.3 Superensemble

The ensemble prediction systems outputs often undergo statistical postprocessing
in an attempt to improve the prediction. As previously stated at the beginning
of this chapter, the ensemble mean of an EPS, also known as poor-man ensem-
ble mean, is as good or even better than a single forecast. Fritsch et al. (2000)
stated that this improvement comes from overlapping differences in the sign of the
errors associated with individual traveling disturbances. Moreover, if each ensem-
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ble member is bias6 corrected, the resulting ensemble is generally more accurate.
For example, Stensrud and Yussouf (2003) showed that a simple bias corrected
ensemble mean performance is comparable to the performance of a nested grid
model output statistics based upon a multiple linear regression approach (Glahn
and Lowry, 1972; Jacks et al., 1990) , with the advantage that it does not require
a long data archive to produce good results.

The superensemble (Krishnamurti et al., 1999, 2000a,b, 2001) can be seen as the
next generation of bias corrected ensemble mean forecasting, where not only the
biases of individual members are recognized and corrected, but past performances
of members are also recognized. Whereas the poor-man ensemble mean and bias
corrected mean involves a straight average of all the members involved, the su-
perensemble assigned weights to each member. The actual weights are determined
through a multiple linear regression technique, where members forecasts are re-
gressed against the observed state in order to reward better-performing members
with higher weights and poorer-performing members with lower weights.

The superensemble generation comprises a training phase and a forecast phase.
The training phase is made up of previous forecasts from the ensemble mem-
bers and the corresponding observed states. As previous outlined, the ensemble
members variables of latitude, longitude, and intensity are regressed against the
observed states through a linear regression technique. The linear regression tech-
nique involves a minimization function that acts to limit the spread between the
variables of the members and the observed state. This minimization function is
described by

G =

TX

t=1

(S
t

�O
t

)

2 , (3.1)

where G is the minimization function, T is the length of the training period, S
t

is the superensemble prediction, and O
t

is the observed state. The length of a
particular training set is crucial in achieving high-skill forecasts, in fact, between
50 and 75 forecast cases are vital for attaining good forecasts.

For the forecast phase of the superensemble, S
t

is derived by using the data gath-
ered through the training phase and current ensemble members forecasts. The
forecast phase of the superensemble constructed with bias corrected data is given

6The bias is a term which refers to how far the average statistic lies from the parameter it is
estimating, that is, the error which arises when estimating a quantity.
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by
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where ¯O is the observed mean value in the training phase, N is the number of en-
semble members, a

i

represents the regression coefficient, weight, for member i. F
ti

is the variable forecast made by member i, and ¯F
i

is the mean of a particular vari-
able over all the forecasts in the entire training period. The susperensemble, S

t

, is
computed for each variable at each forecast hour. A schematic view of operational
application of the superensemble is shown in Fig 3.7.

Figure 3.7. The vertical line in the center denotes time t = 0, and the area to the left
denotes the training area where a large number of forecasts experiments are carried out
by multianalysis-multimodel system. During the training period, the observed fields provide
statistics that are then passed on to the area on the right, where t > 0. Here the multianalysis-
multimodel forecasts along with the aforementioned statistics provide the superensemble fore-
casts. (From Krishnamurti et al. 2001.)
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More recent applications have been carried out by several authors testing the
methodology in different contexts. As examples, Cane and Milelli (2005, 2006)
apply the superensemble approach on variables like temperature and wind, while
Yun et al. (2005) focuses on seasonal precipitation, and Cane and Milelli (2010)
on average precipitation over warning areas and Krishnamurti et al. (2008) on
the diurnal cycle of the precipitation. Furthermore, a recent application of the
superensemble applied on a muliphysics ensemble will be thoroughly explored on
Chapter 9.
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Chapter 4

Forecast Verification

Quoting Murphy and Winkler (1987): "Forecast verification is the process and
practice of determining the quality of forecast, and it represents an essential com-
ponent of any scientific forecasting system." It is an essential component because
it allows to monitor and improve the quality of a forecast, as well as compare its
quality with a different forecast system, all in an objective way.

But What is a good forecast?, Dr. Allan Hunt Murphy (1931-1997) established the
guidelines to answer this question in his essay: "What is a good forecast? An essay
on the nature of goodness in weather forecasting" (Murphy, 1993). In this paper,
Dr. Murphy points out three kinds of forecast goodness:

1. Consistency: correspondence between forecasts and judgments. A forecast is
consistent when the uncertainty inherent in forecasters’ judgments is prop-
erly reflected in their forecasts.

2. Quality: correspondence between forecasts and observations. The traditional
approach to forecast verification.

3. Value: incremental benefits of forecasts to users. A forecast has no value on
its own, it only acquires value when is being used.

If we focus on the quality of the forecast, Murphy (1993) describes nine differ-
ent quality attributes of the forecast that need to be evaluated on a verification
procedure. These nine attributes are1:

1These list can be found on the publicly available verification web-page created and main-
tained by the Joint Working Group on Verification (JWGW) under the WMO/World Weather
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1. Bias: the correspondence between the mean forecast and mean observation.

2. Association: the strength of the linear relationship between the forecasts and
observations (for example, the correlation coefficient measures this linear
relationship)

3. Accuracy: the level of agreement between the forecast and the truth (as
represented by observations). The difference between the forecast and the
observation is the error. The lower the errors, the greater the accuracy.

4. Skill: the relative accuracy of the forecast over some reference forecast. The
reference forecast is generally an unskilled forecast such as random chance,
persistence (defined as the most recent set of observations, persistence im-
plies no change in condition), or climatology. Skill refers to the increase in
accuracy due purely to the smarts of the forecast system. Weather forecasts
may be more accurate simply because the weather is easier to forecast - skill
takes this into account.

5. Reliability: the average agreement between the forecast values and the ob-
served values. If all forecasts are considered together, then the overall reli-
ability is the same as the bias. If the forecasts are stratified into different
ranges or categories, then the reliability is the same as the conditional bias,
i.e., it has a different value for each category.

6. Resolution: the ability of the forecast to sort or resolve the set of events into
subsets with different frequency distributions. This means that the distribu-
tion of outcomes when A was forecast is different from the distribution of
outcomes when B is forecast. Even if the forecasts are wrong, the forecast
system has resolution if it can successfully separate one type of outcome
from another.

7. Sharpness: the tendency of the forecast to predict extreme values. To use a
counter-example, a forecast of climatology has no sharpness. Sharpness is a
property of the forecast only, and like resolution, a forecast can have this
attribute even if it’s wrong (in this case it would have poor reliability).

Research Program and the WMO Working Group on Numerical Experimentation (http:
//www.cawcr.gov.au/projects/verification/).
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8. Discrimination: ability of the forecast to discriminate among observations,
that is, to have a higher prediction frequency for an outcome whenever that
outcome occurs.

9. Uncertainty: the variability of the observations. The greater the uncertainty,
the more difficult the forecast will tend to be.

There is a wide range of verification methods that can be used to evaluate the
quality of a forecast system, deterministic or probabilistic, measuring the relation-
ship between a forecast, or set of forecasts, and the corresponding observations.
Both Jolliffe and Stephenson (2003) and Wilks (1995) provide extensive details on
many verification scores, as well as the already mentioned verification web-page2.
A brief introduction and description of the verification measures that are used in
this Thesis is done bellow.

4.1 Point-to-point verification scores

Any point-to-point verification procedure involves a comparison between matched
pairs of forecasts and the observations to which they pertain. In order to ana-
lyze this relationship, for dichotomous forecasts, contingency tables are used. A
dichotomous forecast refers to the yes/no nature of the forecast at each point, for
example a rainfall threshold defines the transition between a rain event against a
nonrain. The contingency table, shown in Table 4.1, counts for each of the four
possible outcomes for the observed and forecast event: Hit (a), False alarm (b),
Miss (c) and Correct rejection (d).

Observed
Yes No

Forecast Yes Hit (a) False alarm (b)
No Miss (c) Correct rejection (d)

Table 4.1. Contingency table for observed event and forecast event in a 2x2 problem.

2
http://www.cawcr.gov.au/projects/verification/
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4.1.1 Relative Operating Curve (ROC)

The ROC was introduced in meteorology by Mason (1982) from the signal detec-
tion theory and measures the ability of the forecast to discriminate between two
alternative outcomes, thus measuring resolution. The ROC is obtained by plot-
ting, as illustrated in Fig. 4.1, probability of detection [POD=a/(a+c)] against the
probability of false detection [POFD=b/(b+d)] using a set of increasing probabil-
ity thresholds (for example, 5%, 15%, 25% and so on) to make the yes/no decision
(see Schwartz et al. (2010) for a more complete description of how to calculate a
ROC for a probabilistic forecast). The area under the ROC curve (ROC area) is
frequently used as score, in fact an area of 0.5 indicates no skill and of 1 a per-
fect skill. Moreover, according to Buizza et al. (1999) and Stensrud and Yussouf
(2007) forecasting systems with ROC areas greater than 0.7 not only have better
skill than a random forecast but are useful.

It is worth to note that the ROC curve can also be computed for a deterministic
forecast using a different criteria, such as the median, certain percentiles, or chosen
thresholds of interest instead of the probability thresholds used in the probabilistic
forecast.
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Figure 4.1. ROC curve, an example.
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4.1.2 Frequency Bias score

The Frequency Bias, referred to as Bias from now on, indicates how the forecast
event frequency, F, compares to the observed event frequency, O.

BIAS =

F

O

An unbiased forecast has a value of 1, while Bias > 1 indicates an overpredicting
forecast and Bias < 1 underpredicting.
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Figure 4.2. Bias for a test forecast, an example.

4.1.3 Taylor diagram

Taylor diagrams (Taylor, 2001) provide a way of graphically summarizing how
closely a pattern (or a set of patterns) matches observations. The similarity be-
tween two patterns is quantified in terms of their correlation, their centered root-
mean-square difference and the amplitude of their variations (represented by their
standard deviations). The perfect score is obtained when the data point represent-
ing the forecast field matches up with the observed one. The radial distance from
the origin is proportional to the standard deviation of a pattern. The centered
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RMS difference between the observed and forecast field is proportional to their
distance apart. The correlation between the two fields is given by the azimuthal
position of the forecast field. The standard deviation and centered RMS difference
units are rainfall millimeters. It is worth to note that the means of the fields are
subtracted, so the diagram does not provide information about overall biases, but
solely characterizes the centered pattern error. An example of a Taylor diagram is
displayed on Fig. 4.3. .
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Figure 4.3. An example of a Taylor diagram for 13 different forecasts valid at the same time
over the same region. The observed field is represented by the green solid square.

4.1.4 Brier score

The Brier score (Brier, 1950) assesses the accuracy of a probability forecast, in
terms of predicting whether or not an event occurred. Thus defined by the mean
squared error of probabilistic forecasts with events assigned a value of 1 and non-
events zero, can be decomposed into the sum of three individual parts related to
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reliability, resolution and the underlying uncertainty of the observations (Murphy,
1973). Therefore, if the verification sample is partitioned into categories according
to the forecast probabilities, the Brier score can be defined as follows:
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where k is the number of forecast/event pairs, L is a discrete number of forecast
values or categories (often 11, corresponding to 0,10,..,100%, deciles of forecast
probability), n the number of realizations of the forecast, f

i

the forecast probability
corresponding to the i category, n

i

the number of times f
i

is forecast, o
i

the
observation probability corresponding to the i category that is 1 or 0 depending
on whether the event occurred or not, o

i

the mean occurrence of event for forecast
category i and o the base rate or climatological mean. The Brier score ranges from
0 to 1 with a perfect score of 0. The first term on the right-hand side is a measure
of reliability, the second term refers to resolution, and the third term represents
the uncertainty of the observations, so it is independent of the forecast system.
A perfect reliability means a perfect agreement between the forecast values and
the observed values, while a perfect resolution means that the forecast system
can successfully separate one type of outcome from another. This score can be
used to define a positively oriented index, the Brier skill score, that measures
the difference between the Brier score for the forecast and the Brier score for the
unskilled standard forecast normalized by the total possible improvement that can
be achieved. The unskilled standard forecast is often the climatology, then the BSS
can be written as

BSS = 1� BS

BS
climatology

which ranges from �1 to 1; 0 indicates no skill compared to the climatology
and the perfect score is 1. Fig. 4.4 displays an example of the Brier Score and its
components obtained by a forecast.
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Figure 4.4. Brier Score and its resolution, reliability and uncertainty terms for an illustrative
forecast.

4.1.5 Attribute diagram

The attribute diagram plots the observed frequency against the forecast proba-
bility including the no-resolution and no-skill line and is a measure of how well
the predicted probabilities of an event correspond to their observed frequencies
(Fig. 4.5). Reliability is indicated by the proximity of the plotted curve to the
diagonal. The deviation from the diagonal gives the conditional bias. If the curve
lies below the line, this indicates overforecasting (probabilities too high) while
points above the line indicate underforecasting (probabilities too low). Then the
perfect score is represented by a curve that matches the diagonal and the climato-
logical frequency of the event is represented by both horizontal and vertical lines
(no-resolution line), while the 0.5 slope that crosses the no-resolution and perfect
score lines represents the no-skill line. Points between the no-skill line and the
diagonal contribute positively to the Brier skill score.
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Figure 4.5. An example of a forecast attribute diagram.

4.1.6 Rank histogram

The rank histograms (Talagrand et al., 1997) indicate how well the ensemble
forecast spread represents the true variability or uncertainty of the observations
and are constructed by combining the verification data with the ensemble members
and determining what rank represents the verification data in the combined data.
The rankings from the forecast samples are then represented in a histogram just
like in Fig. 4.6. A flat histogram means that verification is equally likely to be found
anywhere within the ensemble, implying that the ensemble has the right spread.
An U-shape means that the verification is more likely to be found outside of the
ensemble range, so the ensemble spread is too small. On the other hand a dome-
shape means that the ensemble spread is too large and most observations are falling
near the center of the ensemble. An asymmetric curve indicates that the ensemble
contains bias. More detailed information on rank histogram interpretation can be
found in Hamill (2001).
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Figure 4.6. Rank histogram, an illustration.

4.2 Spatial verification techniques

The use of traditional point-to-point verification scores to evaluate a field, like the
precipitation field, characterized by highly localized gradients (with large fraction
of zones and times where the precipitation is zero) presents several problems (Mass
et al., 2002). The double penalty is one of them, for example when the shape and
pattern of the precipitation field is accurate but is displaced in space (Ebert and
McBride, 2000; Baldwin and Kain, 2006).

Several spatial verification techniques have been developed to help deal with these
issues, for example scale decomposition, object-based verification and fuzzy ver-
ification (see Casati et al. (2008) and Gilleland et al. (2009) for reviews). The
main drawback of these methods is that even though they are more advanced and
precipitation oriented, at their current development stage, they rely on observa-
tions defined continuously over a spatial domain. Therefore if the observations
are on a sparse network, instead of on a dense or radar/satellite-based network,
the verification procedure has to lean on point-to-point scores. These point-to-
point verification methods can operate with an observational network not defined
continuously over a spatial domain, the kind of observational raingauge network
available for this Thesis.
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Potential Vorticity thinking

The Potential Vorticity thinking provides a conceptual framework in which to
interpret numerical analyses and prognoses. Even though the concept of Potential
Vorticity (PV) was introduced by Prof. Carl-Gustaf Arvid Rossby and Prof. Hans
Ertel in the early 40’s, it was not until Prof. Brian John Hoskins and his colleges
wrote the paper called "On the use and significance of isentropic potential vorticity
maps" (Hoskins et al., 1985) that the understating and use of the PV thinking
really took off.

For a hydrostatic atmosphere, with potential temperature as a the vertical coor-
dinate the Ertel’s potential vorticity is given by

q =
1

⇢

!
⌘ ·

!
r ✓ , (5.1)

which is conserved following three-dimensional, adiabatic, frictionless motion (Rossby,
1940; Ertel, 1942). Here

!
⌘ is the absolute vorticity vector, ✓ the potential temper-

ature, and ⇢ the density. In essence, the potential vorticity is proportional to the
product of vorticity and stratification that, following a parcel of air, can only be
changed by diabatic or frictional processes.

The properties that make the potential vorticity an important and very used
variable for representing dynamical processes in the atmosphere are:

1. Conservation Principle: If contributions from diabatic and turbulent mixing
an neglected (i.e., adiabatic and frictionless motion) the potential vorticity is
conserved along its trajectory. The potential vorticity represents the vorticity
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that would potentially manifest an air parcel if it were brought adiabatically
and without friction to a standard latitude and static stability.

2. Invertibility Principle: given the proper boundary conditions and the bal-
ance condition1 imposed on the wind, it is possible to determine, uniquely,
the distribution of both vorticity and static stability associated with a PV
field. In other words, if the distribution of PV is known, then the wind and
temperature fields are also known (Bluestein, 1993).

3. Climatological distribution of PV : a useful property when describing and
understanding atmospheric dynamics (e.g. dynamical tropopause and PV
anomaly).

The climatological PV distribution, on Fig. 5.1, shows that on average the PV
ranges from 0.3 to 0.5 PVU2 in the low and middle troposphere and reaches
1 PVU in the upper troposphere and 3 PVU in the stratosphere after a rapid
increase. This rapidly increase to 3 PVU is due to the strong increase of static sta-
bility characteristic of the stratosphere. The discontinuity provoked by this rapid
increase together with the PV conservation property lead to define the 1.5-PVU
surface (sometimes the 2-PVU) as the dynamical tropopause surface separating the
troposphere, characterized by weak and quasi-uniform PV, from the stratosphere,
with strong PV.

An abrupt folding or lowering of the dynamical tropopause can also be called an
upper PV anomaly. When this occurs, stratospheric air penetrates into the tropo-
sphere resulting in high values of PV with respect to the surroundings, creating
a positive PV anomaly. In the lower levels of the troposphere, strong baroclinic3

zones often occur which can be regarded as low level PV anomalies. Under the
assumption of a three dimensional balance between the fields of mass (potential
temperature), pressure and wind, positive PV anomalies are connected with cy-
clonic vorticity and negative PV anomalies with anticyclonic vorticity (Hoskins
et al., 1985).

• In the case of a positive PV anomaly, the isentropes are characterized by
higher values than in the surrounding areas above the anomaly (indicating

1The balance condition links the wind field to the temperature field (a stability measure).
21 PVU = 10�6m2s�1Kkg�1

3A baroclinic atmosphere is one for which the density depends on both the temperature and
the pressure.
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Figure 5.1. Climatological distribution of potential vorticity. The black lines represent lines
of constant Ertel potential vorticity while the red lines represent lines of constant potential
temperature. The dynamic tropopause is represented by the bold black line (2-PVU surface).
(From Hoskins 1990.)

warmer air) and lower values below (indicating colder air). The height of the
tropopause has a local minimum. The corresponding pressure and wind field
shows an area with low pressure and a cyclonic circulation (Fig. 5.2.a).

• In the case of a negative PV anomaly, the isentropes are characterized by
lower values than in the surrounding areas above the anomaly (indicating
colder air) and lower values below (indicating warmer air). The height of the
tropopause has a local maximum. The corresponding pressure and wind field
shows an area with high pressure and an anticyclonic circulation (Fig. 5.2.b).

The upper PV anomaly perturbs the wind and pressure fields throughout the whole
depth of the troposphere (Fig. 5.2). The effect of this perturbation is proportional
to the horizontal scale of the anomaly and inversely proportional to static stability.
Observations and model fields show the existence of low level PV anomalies. These
low levels PV anomalies do not have stratospheric origin but are being formed in
strong baroclinic zones where much release of latent heat takes place. A more
thorough description of PV thinking and an extensive review of its applications
can be found in Hoskins et al. (1985) and Bluestein (1993), among others.
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Figure 5.2. Circularly symmetric flows induced by simple, isolated, PV anomalies, whose
locations are shown dotted. In (a) the sense of azimuthal wind is cyclonic and in (b) it is
anticyclonic. (From Hoskins et al. 1985.)

5.1 Applications: understanding cyclogenesis

The material conservation, combined with the advantage of invertibility is very
useful to describe complex dynamic processes. For example, cyclogenesis can be
explained by an interaction between low and upper-level PV anomalies. When
the phase difference between two PV anomalies has an optimum value, interaction
followed by mutual amplification takes place. Of course the opposite can also occur,
in the case of decaying cyclones.

If an upper-level PV anomaly develops, then as a consequence of the PV con-
servation, positive vorticity is released and high PV values from the stratosphere
influence the less stable environment of the troposphere. Fig. 5.3 illustrates cy-
clogenesis by baroclinic interaction by means of the PV thinking: an upper-level
PV anomaly caused by advecting downstream an area of PV maximun to the
mid-troposphere induces vorticity through the depth of the troposphere over a
baroclinic zone. Fig. 5.3.a shows such a situation with the solid plus sign indicat-
ing the upper-level PV anomaly. The thick solid arrow around the PV maximum
indicates the cyclonic rotation. This rotation is induced at lower levels of the
baroclinic zone as shown by the thin solid circulation arrow. This low level circu-
lation causes warm advection ahead leading to a low level positive temperature
anomaly indicated by the open plus sign in Fig. 5.3.b. This temperature anomaly
is associated with a cyclonic vortex which is marked by the open arrow at low
levels. In turn, this circulation has a positive feedback to the upper troposphere,
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Figure 5.3. A schematic picture of cyclogenesis associated with the arrival of an upper air
PV-anomaly (solid ’+’ sign) over a low-level baroclinic region. The circulation induced by the
anomaly is indicated by a solid arrow, and the potential temperature contours are shown at
the lower boundary by thin lines. A low-level PV anomaly (open ’+’ sign in (b)), can also
induce a cyclonic circulation (open arrow), that reinforces the circulation pattern induced by
the upper-level PV anomaly. (From Hoskins et al. 1985.)

shown by an open circulation arrow at higher levels. In parallel a second process
is taking place, the induced low level vortex results in a strong equatorward wind
component under the upper-level PV anomaly. This southward component also in-
fluences the higher levels and leads to an equatorward advection of the upper-level
PV anomaly which in turn intensifies the upper-level wave. Within this increased
flow, higher PV values to the west of the PV anomaly are advected southward
and lower PV values to the east of the PV anomaly are advected northward. As
a consequence of the latter process, the eastward movement of the PV anomaly
is decreased. Hence, the interaction between low and upper-level circulations and
the already ongoing cyclogenesis process will strengthen.

5.2 Potential Vorticity inversion technique

The invertibility principle can be applied to develop a diagnostic system that
obtains the wind and temperature perturbations associated with a given PV per-
turbation distribution. This application is called potential vorticity inversion tech-
nique and can be very useful in order to discuss the relevance of the PV-anomalies
in the atmospheric behavior (Romero, 2001, 2008; Argence et al., 2008). For exam-
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ple, the PV inversion allows to diagnose developments in which the PV-anomalies
are not growing, but are merely changing their relative positions or their shapes.
Furthermore, the conservation law for PV will help isolate those disturbances grow-
ing chiefly by non-conservative processes while the invertibility principle allows
direct calculation of their associated circulation. Several PV inversion techniques
have been developed, some examples are the one proposed by Davis and Emanuel
(1991), that is also applied in this Thesis and it is outlined bellow, the one by
Viúdez and Dritschel (2004), that inverts without any balance equation but based
on backward and forward model integrations to recover the balanced solution as-
sociated with a given PV distribution and that by Arbogast et al. (2008), that
inverts applying a digital-filtering method to a stratified primitive-equation model.

The potential vorticity inversion technique, developed by Davis and Emanuel
(1991), uses the balance condition derived by Charney (1955) to link the wind
field to the temperature field. This balance condition is very accurate in flows
with large curvature because is quite similar to gradient wind balance. The Char-
ney balance equation is obtained taking the horizontal divergence of the horizontal
momentum equations and decomposing the wind field into a nondivergent and an
irrotational part. After a scaling, the resulting equation may be written in spher-
ical coordinates (�,�, a), following Davis and Emanuel (1991) formulation (see
Romero (2008) for a version in (x,y) map coordinates):

r2
� = r · (fr ) + 2

a4 cos2 �

@
⇣

@ 
@�

, @ 
@�

⌘

@ (�,�)
, (5.2)

with � the geopotential,  the nondivergent stream function, � the longitude, �
the latitude, and a the earth’s radius. Relation (5.2) reduces to geostrophic balance
if f is constant and the Jacobian term is neglected.

One more diagnostic equation relating  to � is needed in order to close the sys-
tem. This is obtained from an approximate definition of Ertel’s Potential Vorticity
(ErPV, Eq. 5.1):
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� 1
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1
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where  = R
d

/C
p

, p is the pressure, ⇡ is the Exner function [C
p

(p/p0)


] and serves
as vertical coordinate, ⌘ is the vertical component of absolute vorticity and the
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hydrostatic approximation has been made. Performing the same kind of scaling
done to obtain Eq. 5.2 on to Eq. 5.3, results in a relation between the potential
vorticity, � and  ,

q = �g⇡

p

�
f +r2
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�
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a2 cos2 �
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@�@⇡
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�

@�@⇡
� 1

a2
@2
 

@�@⇡

@2
�

@�@⇡

�
. (5.4)

The approximation used here replaces the vertical derivative of the total wind by
the vertical derivative of the nondivergent wind (i.e ., the irrotational component
of the wind is very small relative to the non-divergent wind) and uses the Hyp-
sometric equation, that relates the thickness between two isobaric surfaces to the
mean temperature of the layer, to replace the ✓. Equations (5.2) and (5.4) form a
complete system for the unknowns � and  , given q.

For boundary conditions, � and  are defined in the lateral boundaries (Dirichlet
conditions) and their vertical derivatives on the horizontal boundaries are specified
(Neumann-type conditions). The observed geopotential serves as � on the lateral
edges and @�/@⇡ = �✓ is applied at the top and bottom. The gradient of  
along the edge is forced to match the normal wind component, and the horizontal
boundaries are given by @ /@⇡ = �✓, applied at both the top and the bottom.
The obtained solutions are fairly insensitive to this choice of boundary conditions.

The technique used to solve the system is an iterative numerical method of suc-
cessive overrelaxation (SOR) applied to each vertical level. As long as the ErPV is
everywhere positive the method consistently converges. Tests with different initial
guesses, done by Davis and Emanuel (1991), showed that the solution obtained
was apparently unique, or at least other existing solutions were unreachable.

61





Part II

Ensemble prediction of

Mediterranean high-impact events

using PV perturbations

63





Chapter 6

Stage 1: Building the perturbed

initial and boundary conditions

ensemble

⇤

As established in the Introduction, the ensemble forecasting technique stands out
as a suitable approach to improve the current prediction of high impact weather
events associated with Mediterranean cyclones, our target. The proposed ensem-
ble introduces the perturbations on the PV field instead of using a more standard
technique (e.g. breeding, EnKF). A method focused on the PV field, which encom-
passes information regarding the structure and location of the associated surface
cyclone, is more appropriate for our target. Indeed, previous studies have already
highlighted the sensitivity of cyclones to PV perturbations (e.g. Huo et al. 1999;
Romero 2008; Argence et al. 2008).

6.1 Datasets

Ideally, an EPS needs to be a real time fully operational system. The UIB Mete-
orology Group has been running the MM5 model on a daily basis for some years
(see http://mm5forecasts.uib.es). Owing to computational limitations, these

⇤This Chapter is based on the published paper Vich, M., R. Romero, and H. E. Brooks,
2011: Ensemble prediction of Mediterranean high-impact events using potential vorticity per-

turbations. Part I: Comparison against the multiphysics approach. Atmos. Res., 102, 227-241.
doi:10.1016/j.atmosres. 2011.07.017.
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48 h numerical forecasts, centered over the western Mediterranean region, are ini-
tialized with global coarse resolution 24 h forecast fields valid at 00 UTC and forced
at the lateral boundaries with the subsequent data (i.e. with 30, 36, ..., 72 h global
forecasts). Thus, the mesoscale prediction system can not be considered as real-
time in the sense that forecasts, rather than analyses, are used to nest the MM5
model. With such a testbed in mind, the same type of data is used to initialize and
force the numerical weather model in the present Chapter. These meteorological
data are provided by the European Center for Medium-Range Weather Forecasts.

Figure 6.1. Geographical domain used for the MM5 numerical simulations. The spatial dis-
tribution of the AEMET raingauge network used in the verification procedure is plotted using
crosses.

The Mediterranean Experiment on Cyclones that produce High Impact Weather
in the Mediterranean, MEDEX, is a project designed to contribute to a better
understanding and short-range forecasting of high impact weather events in the
Mediterranean, mainly heavy rain and strong winds. Therefore MEDEX provides
a suitable database for our study, so the ensembles trial set consists of a collection
of 19 MEDEX cyclonic episodes comprising 56 different days between September
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1996 and October 2002 (Table 6.1). The observations come from the AEMET
(Agencia Estatal de Meteorología - Spanish Weather Service) climatological rain-
gauge network which provides 24 h accumulated precipitation from 06 UTC to 06
UTC the next day. Fig. 6.1 shows the spatial distribution of this network over the
Mediterranean influenced regions of Spain, with more than 2300 stations depend-
ing on the event.

Date Country mainly affected
01 11-12 Sep. 1996 Spain
02 06-09 Oct. 1996 Italy, Spain
03 14 Oct. 1996 Spain, Italy
04 04-06 Nov. 1997 Portugal, Spain, France
05 11-14 Nov. 1999 Italy, Spain, France
06 10 Jun. 2000 Spain
07 21-26 Oct. 2000 Spain
08 02-05 Nov. 2001 Spain
09 09-13 Nov. 2001 Algeria, Spain, Croatia, Morocco
10 14-16 Nov. 2001 Spain
11 14-15 Dec. 2001 Spain
12 11 Apr. 2002 Spain
13 06-08 May. 2002 Spain
14 12-15 Jul. 2002 Spain, Croatia
15 31 Jul. - 01 Aug. 2002 Spain
16 08-10 Sep. 2002 France
17 12-13 Sep. 2002 Spain
18 23-24 Sep. 2002 Spain
19 08-10 Oct. 2002 Spain

Table 6.1. List of MEDEX episodes used for this study. A more detailed description can be
found at http://medex.aemet.uib.es .

6.2 Potential vorticity error climatology

To assure that the perturbations, introduced into the initial and boundary con-
ditions of the EPS that is being generated, are consistent with the PV field un-
certainty range, a quantitative assessment of this uncertainty is required. This is
estimated by means of a Potential Vorticity error climatology (PVEC) that com-
pares the ECMWF 24 h forecast and ECMWF analysis PV fields at all available
times: 00, 06, 12 and 18 UTC (the alternative approach of comparing two differ-
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ent analysis sources, like NCEP and ECMWF, seems to offer essentially the same
results; Horvath 2008). For this comparison it is assumed that the main error
sources are the displacement between PV structures and differences in intensity
following the concept of Hoffman et al. (1995) who decomposed forecast error into
displacement, amplitude and residual errors. The PVEC is derived over the same
larger domain used in the following Section 6.3 (200x200 nodes with an horizontal
resolution of 22.5 km).

In order to obtain statistically significant results, 19 MEDEX cyclonic episodes
(described in Table 6.1) containing 56 days are used for the calculations. The PV
fields of each 56 days are sampled over the 200x200 mesh at the following pressure
levels: 100, 200, 300, 400, 500, 700, 850, 925 and 1000 hPa. The goal is to obtain the
climatological (for the 19 MEDEX cyclones sample) displacement and intensity
differences between ECMWF 24 h forecast and ECMWF analysis PV structures,
fit a function on the displacement and intensity error percentiles found for each
pressure level and finally tabulate the coefficients of these functions.

6.2.1 Displacement error

The displacement error (DE) is calculated for each grid point of the 200x200 nodes
domain, providing then a statistical significant number of occurrences. At a certain
pressure level, for each grid point an area of 450x450 km centered on the grid point
is used to compare the ECMWF 24 h forecast with the ECMWF analysis PV field.
This area is displaced up to 225 km (10 nodes) grid point by grid point (i.e. in
22.5 km intervals), in the four cardinal directions (441 displacements in total).
The correlation between both fields over the 450x450 km area is obtained in each
displacement. Therefore, for each grid point we have 441 correlation values. The
minimum displacement of the forecast field providing a local (or relative) maximum
of correlation is defined as the DE for that grid point. Fig. 6.2 illustrates this
process schematically. This process is repeated for each grid point of the domain
and for each pressure level. The choice of the area dimension and the maximum
displacement tested are not entirely arbitrary, actually the 450x450 km matrix size
ensures that, according to the PV field typical scales (Bluestein, 1993), subsynoptic
structures will be effectively sampled and the possible displacements up to 225 km
ensure that plausible lags between forecast and analysis PV fields can be identified.
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Figure 6.2. A schematic on how the displacement error is obtained for an arbitrary grid
point. a) Initial PV field spatial pattern of the ECMWF 24 h forecast (solid line) and analysis
(dashed line), b) The 450x450 km area (grey square) associated to the grid point (grey dot),
c) Minimum displacement of the ECMWF 24 h forecast PV field providing local maximum
correlation with the analysis PV field.

6.2.2 Intensity error

As in the DE, the intensity error (IE) is also calculated for each grid point at each
pressure level with the aid of the 450x450 km subdomains explained above. The
IE is defined at each grid point as the difference in PV field value between the
ECMWF 24 h forecast (once displaced the corresponding DE of the grid point)
and the ECMWF analysis. This difference is averaged over the 450x450 km area
associated to the grid point in question and then divided by the same average of
the analysis PV field, the result is the IE value. Again this process is repeated
for each grid point of the domain and for each pressure level. The IE represents
the difference between the displaced forecast and analysis PV field as an error
percentage.

6.2.3 DE and IE percentile levels

The representation of the displacement error density function, expressed as func-
tion of number of grid lengths, shows a very clear symmetry along South-North
and West-East directions (see Fig. 6.3 for the 300 hPa pressure level). This fact
allows to express the error as an absolute value in both directions. Likewise the in-
tensity error presents a very high symmetry between positive and negative values
(not shown), so the absolute value is used too. Regarding the dependence on the
local PV value, DE appears to be insensitive to this value, while IE exhibits an
appreciable dependence. It could be argued that this later case owes to the fact of
expressing IE in relative terms, but a similar behavior is found when expressed as
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Figure 6.3. Displacement error density function at 300 hPa. It represents the number of
occurrences (grid points) as function of the displacement error in grid lengths. Results for the
South-North (solid line) and West-East (dotted line) directions are represented separately.

an absolute error. Analytical functions have been fitted to the percentile levels of
the displacement error percentiles (Fig. 6.4) and the intensity error (Fig. 6.5) us-
ing linear-like and power-law function, respectively. These DE and IE percentiles
shape the PV error climatology that is used in the ensemble building generation
to introduce the perturbation into the initial and boundary states. It should be
noted that in the ensemble building generation a superior limit is imposed to the
IE (IE

max

= 200%) to avoid inconsistencies because this relative error tends to in-
finity when PV tends to zero due to the power-law function properties, as Fig. 6.5
shows.
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Figure 6.4. Displacement Error percentile levels along a) South-North and b) West-East
directions at 300 hPa.
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6.3 Perturbed initial and boundary conditions en-
semble

The ensemble members are run using the non-hydrostatic mesoscale model MM5,
presented in Section 2.1. The simulation domain, Fig. 6.1, covers the whole area
affected by the selected MEDEX cyclones, and is defined by a 22.5 km resolution
horizontal grid mesh with 120x120 nodes, centered at 39.8� latitude and 2.4� lon-
gitude, with 30 sigma levels in the vertical grid mesh. Provided that the observed
daily rainfall accumulations span over 06-06 UTC, the forecasting period starts
at 00 UTC and extends for 54 h. To be able to compare the forecasts with the
observations in the verification procedure, the forecast gridded fields are interpo-
lated over the raingauge locations. Also, since the ensemble only varies the initial
and boundary conditions the same physical parameterization set is used on each
member, the UIB operational model set made up by the explicit moisture scheme
of Reisner graupel (Reisner et al., 1998), the cumulus parameterization scheme of
Kain-Fritsch 2 (Kain, 2004), the PBL scheme of MRF (Troen and Mahrt, 1986;
Hong and Pan, 1996), the cloud-radiation scheme of Dudhia (1989) and the five-
layer soil model described in Dudhia (1996).

The varying initial and boundary conditions are accomplished by perturbing the
PV field, thus exploiting the strong connection between PV streamers and cyclo-
genesis observed in the atmosphere. Moreover, the potential vorticity inversion
technique developed by Davis and Emanuel (1991) allows to convert the pertur-
bations introduced into the PV field to the wind and temperature fields in a
dynamically consistent manner. This PV inversion technique has already been
used successfully by different authors (e.g. Romero 2001, Swarbrick 2001, Rost-
ing et al. 2006, Romero 2008, Amengual et al. 2009 and Baxter et al. 2011) to
understand quantitatively the relevance of the PV-anomalies on the atmospheric
behavior. This is a neat approach of building physically-consistent perturbations
of the primitive mass and wind fields.

As detailed in the previous Section, the introduced perturbations are consistent
with the PV field uncertainty range thanks to the developed PV error climatology.
Summarizing its results, the displacement errors are found to be symmetric along
South-North and West-East directions and show no dependence on the magnitude
of PV (Fig. 6.4). Conversely, a strong dependence on the PV value is found for
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the intensity error (Fig. 6.5), while both PV errors depend on pressure levels.

These ensemble perturbations are introduced into the PV field using the zones of
most intense values and gradients of this field as guidance. This choice assumes
that these are the most sensitive zones of the subsequent atmospheric evolution
(Garcies and Homar, 2009; Romero et al., 2006). This idea is reinforced by Plu
and Arbogast (2005) who suggest that an ensemble based on extracting the PV
coherent structures from a given analysis and modifying their features (shape,
amplitude and position) would account for part of the analyses errors, and also by
Snyder et al. (2003) who stated that the behavior of PV perturbations and their
statistics appears to be fundamentally controlled by the reference-state PV gradi-
ents. From now on this ensemble will be referred to as the PV-gradient ensemble.

In practical terms, the field given by the difference of the three-dimensional PV
field and a highly smoothed version of it is defined as the guidance field. Then, a
threshold is defined as the average over the whole domain of the absolute value of
the guidance field. Finally, the 3-dimensional regions where the guidance field ex-
ceeds, in absolute value, the threshold is where the perturbations are introduced.
On each of these 3-dimensional regions or volumes, the intensity -both magnitude
and sign- and displacement -magnitude in zonal and meridional axes- perturba-
tions are assigned randomly accordingly to the PV error climatology statistics.
However, to avoid discontinuities in the perturbed PV field, the displacement di-
rections of the volumes lie all in the same randomly chosen quadrant. It is worth
to note that this randomly chosen quadrant is different from one ensemble mem-
ber to another. After perturbing, difference between the original and perturbed
balanced fields (obtained applying the PV inversion technique to both the original
and perturbed PV fields separately) is added to the non-perturbed, mass and wind
fields, to produce the initial and boundary conditions of the corresponding ensem-
ble member. A similar strategy has been used to analyze the effects of upper-level
PV anomalies on the numerical simulation of Mediterranean severe weather events
(Homar et al., 2002, 2003).

It is worth to note that the ensemble building procedure is realized over a domain
larger than the simulation domain to avoid inconsistencies in the boundary con-
ditions provided to the ensemble, since the method keeps the boundary values of
the inverted fields fixed. While the simulation horizontal domain is made up of
120x120 nodes, the domain used to perturb the initial and boundary states is made
up of 200x200 nodes. Since the horizontal resolution is 22.5 km and both domains
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are centered at the same geographical point, a symmetric frame of 900 km (40
nodes) exists between these domains for the perturbed fields to effectively reach
the simulation domain boundaries. To illustrate the perturbing procedure a case
study is presented in the following section.

6.4 Illustration of the methodology: 9-10 June 2000
case study

This Section illustrates the PV-gradient ensemble design step by step through
the case study of 9-10 June 2000. The event was mainly characterized by the
entrance of an Atlantic low-level cold front and an upper-level trough over the
Iberian peninsula. A mesoscale cyclone was generated in the Mediterranean Sea
east of mainland Spain leading to a mesoscale convective system that remained
quasi-stationary. The most affected region was the northeastern part of the Iberian
Peninsula. The heavy rains produced severe floods over densely populated areas
and very substantial material losses over Catalonia. The synoptic situation on 10th
June 2000 at 00 UTC is shown in Fig. 6.6.a, a more detailed dynamical description
of the event can be found in Chapter 11.

Fig. 6.7 shows a horizontal section at 300 hPa of the perturbation volumes, which
follow closely the structure of the upper-level trough as one would expect given its
definition. Now the locations of the perturbations are known but the character-
istics of each perturbation still need to be determined. All perturbation volumes
are displaced at once in the same quadrant (chosen randomly), in this case, the
southeast sector. Regarding the intensity perturbation (magnitude and sign) and
displacement magnitude (zonal and meridional) of each perturbation volume, a
PV error climatology percentile level is chosen randomly. As an example, on one
volume its PV structure is displaced 1.9 grid lengths in the N-S direction (per-
centile 80 % from Fig. 6.4.a) and 0.5 grid lengths in the W-E direction (percentile
20 % from Fig. 6.4.b) while its PV value is increased 80 % for PV values of 2 PV
units and 60 % for PV values of 3 PVU (percentile 10 % from Fig. 6.5). Note that
since the correspondence between grid lengths/PV values and percentile levels de-
pends on the pressure level, the grid lengths and PV values vary with pressure
even though the percentile levels are the same for the whole volume.
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Figure 6.6. Synoptic situation for 9 June 2000 at 00 UTC. a) Non-perturbed initial conditions
(ECMWF 24 h forecast) and b) a PV-gradient ensemble member perturbed initial conditions.
Geopotential height (continuous line, in gpm) at 500 hPa, sea level pressure (dashed line, in
hPa), and Potential Vorticity on the 330 K surface (color contours, in PV units).

The PV inversion technique is applied to the PV perturbed field obtained in the
previous step and to the non-perturbed PV field. The difference between these
two balanced fields is added to the original non-perturbed mass and wind fields
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Figure 6.7. PV-gradient EPS horizontal section of perturbation volumes at 300 hPa, solid
line positive value (guidance field values over the threshold) and dashed line negative value
(guidance field values below the negative of the threshold). As color contours in PV units
Potential Vorticity field on 330 K surface.

defining then the initial and boundary conditions of the corresponding ensemble
member. Fig. 6.6 shows the visible differences on the PV, geopotential and sea
level pressure fields between the non-perturbed and the PV-gradient perturbed
initial conditions. The MM5 model is initialized and forced with each ensemble
member fields and used to run the 54 h forecasts.
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Chapter 7

Stage 2: Comparison against the

multiphysics approach

⇤

In this Chapter, the building procedure of our multiphysics ensemble will be de-
tailed as it was done in the previous chapter with the PV-gradient ensemble. Af-
terwards, we will proceed to compare them. It is worth to keep in mind that each
ensemble accounts for a different source of forecast uncertainty: model deficiencies
on the multiphysics EPS and initial conditions uncertainties on the PV-gradient
ensemble.

7.1 Multiphysics ensemble

The multiphysics ensemble is generated using a variety of physical parameteriza-
tion schemes available in MM5 which are adequate for mesoscale simulations of
precipitation systems. Specifically, the multiphysics sets are the result of combin-
ing three explicit moisture schemes (Goddard microphysics, Reisner graupel and
Schultz microphysics), two cumulus parameterizations (Grell and Kain-Fritsch),
two PBL schemes (Eta and MRF) and the cloud-radiation scheme and the five-
layer soil model, plus the set used in the operational model run by our group, here-
after the control run (the explicit moisture scheme Reisner graupel, the cumulus

⇤This Chapter is also based on the published paper Vich, M., R. Romero, and H. E. Brooks,
2011: Ensemble prediction of Mediterranean high-impact events using potential vorticity per-

turbations. Part I: Comparison against the multiphysics approach. Atmos. Res., 102, 227-241.
doi:10.1016/j.atmosres. 2011.07.017.
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parameterization Kain-Fritsch 2, the PBL scheme MRF and the cloud-radiation
scheme and the five-layer soil model). Therefore the ensemble consists of 13 mem-
bers, exceeding the threshold given by Du et al. (1997) which indicates that 90%
of the improvement due to ensemble averaging is obtainable with ensembles sizes
as small as 8 to 10 members.

In order to be consistent when comparing both EPSs, both the PV-gradient and
the multiphysics ensemble use the MM5 to run the forecast, have the same simu-
lation domain, verification dataset and are both made up of 13 members.

7.2 Comparison: Verification results

Before starting the evaluation of both EPSs through a verification procedure,
we return to the 9-10 June 2000 event used to illustrate the methodology in
Section 6.4. Fig. 7.1 shows the 30-54 h forecast accumulated rainfall mean and
standard deviation (STD) of each 13-member ensemble, i.e., multiphysics and
PV-gradient. The multiphysics ensemble produces the highest rainfall values more
northeastwards than the PV-gradient EPS and a more meridionally elongated pat-
tern across France, while both STD fields present relative maxima over the highest
rainfall values. A more extensive examination of the ensembles performance is done
in the following.

The evaluation of the ensembles is done over the collection of 19 MEDEX presented
in Section 6.1. This trial set is representative of the kind of events that this study
aims: cyclones producing floods and strong winds over the western Mediterranean.
The heavy rain associated with this kind of events awakes the interest of the
public so, eventhough the precipitation field is hard to predict and verify due to
its complex nature, it is the subject of our verification.

The precipitation, is characterized by highly localized gradients, meaning that
there is a large fraction of zones and times where the precipitation is zero. As
mentioned in Section 4.2 of the Introduction, this fact increases the difficulty of
matching the forecast and the verifying data as the forecasts provide regularly
spaced grid fields while the verifying observations usually are in irregular spaced
networks of stations. Even though there are several spatial verification methods,
like object-based verification, devoted to surpass these issues they unfortunately
lean on a continuous gridded observation network that is not always available.
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Figure 7.1. Ensemble mean (color contours, in mm) and ensemble standard deviation (solid
line, in mm at 10 mm intervals) for the 24 h accumulated precipitation over the forecast region
(from 10 to 11 June 2000 at 06 UTC). a) PV-gradient ensemble and b) multiphysics EPS.

So, since point-to-point verification methods can operate with an irregular spaced
observational network, like the one available for this study (an irregular raingauge
network) and the spatial verification cannot, we will base our verification process
on them. Despite of leaning on traditional point-to-point verification scores we are
very aware of their limitations, like for example the double penalty that penalizes
the forecast even when the shape and pattern of the precipitation field is accurate
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but is displaced in space.

Before evaluating each EPS as a whole using probabilistic scores, the performance
of the ensemble members is assessed in order to assure that all of them are good
enough to be included within the ensemble. Since this study is not focused on
verifying a single observation threshold but on evaluating the general performance
of the ensembles, the definition of the observed event is not fixed. Therefore several
rainfall amount thresholds have been defined as observed events. All verification
results showed here correspond to the second day of simulation (30-54h simulation
time).

A brief description of each verification measure used next can be found in Chap-
ter 4. The ROC area results, Fig. 7.2, show that the multiphysics EPS members
are better at discriminating between events and non-events than the PV-gradient
ones for all thresholds, nevertheless both EPSs present ROC areas above 0.76,
a very satisfying result. The results for the Frequency Bias (Fig. 7.3) show that
all members of both ensembles overpredict (Bias > 1) rainfall amounts less than
5 mm while underpredict (Bias < 1) the larger rainfalls amounts. At approxi-
mately 5 mm threshold, the transitional region between over and underprediction,
both EPS are almost at the perfect score (Bias = 1). The Bias fast decay towards
zero can be due to a sample problem, since the base rate shows a rapid decrease
of the number of event samples for extreme precipitation values (Fig. 7.3). The
Taylor diagrams (Fig. 7.4) show similar results for both EPSs, approximately all
ensemble members present a root-mean-square (RMS) difference of 15 mm and a
correlation coefficient of 0.5, while the forecast and observation standard devia-
tions are approximately of 10 and 16 mm, respectively. Taking into account that
the RMS errors, correlation coefficients and standard deviations are sensitive to
steep gradients, noise and outliers, the obtained results, for the rainfall field, show
a reasonable skill.

The fact that all members of the EPSs have a reasonable skill is a positive feature
since they make a good basis to build a valuable ensemble system. To verify the
EPSs as a whole, the forecast probability of an event is calculated as the fraction
of the EPS members predicting the event among all members. With the purpose
of establishing a baseline and corroborate the advantages of using a probabilistic
forecast against a deterministic forecast, the performance of both types of forecasts
is compared, as well as each EPS against its control run. The chosen approach to
define the deterministic forecast is to consider a one-member ensemble made of
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Figure 7.2. ROC area range for the multiphysics and PV-gradient ensemble members, as
functions of different rainfall event thresholds. The vertical lines represent these ROC area
ranges where the extremes, maximum and minimum, values of the range correspond to the
ensemble member associated with the highest/lowest value of ROC area.

the control member. The control member corresponds to the non-perturbed run
using the physical parameterizations of our operational model, a member present
on both ensembles by construction.

The ensembles ROC areas results (Fig. 7.5) are very encouraging according to
Buizza et al. (1999) and Stensrud and Yussouf (2007) who stated that forecasting
systems with ROC areas greater than 0.7 are useful in discriminating between
events and non-events. In fact, our area values lie over 0.8 for rainfall thresholds
below 10 mm and over 0.7 below 50 mm. The low ROC area values above 50
mm are largely insignificant due to the following issues: first, a sample problem
associated with the small number of observed events, already noted for the in-
dividual ensemble members; and second, the difficulty of the EPS in predicting
extreme rainfall values due to the 22.5 km grid length. The PV-gradient ensem-
ble shows better results than the multiphysics in almost all thresholds while both
EPSs exhibit significantly better results than the control member, as expected.
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Figure 7.3. Bias and base rate of the events, for a) multiphysics and b) PV-gradient EPS.

The Bias results (Fig. 7.6) reveal a similar behavior to the EPS individual mem-
bers, in the sense that both EPSs overpredict small rainfall amounts while under-
predict large amounts. The highest score for both EPSs lies between 2 and 10 mm
rainfall values. Like the ROC area, the Bias shows a slightly better performance
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Figure 7.4. Taylor diagrams for a) multiphysics and b) PV-gradient EPS. The black square
represents the observed field and the dots the forecast fields. The perfect score is obtained
when the data point representing the forecast field matches up with the observed one.

of the PV-gradient ensemble than the multiphysics system and a fast decay in
skill for rainfall values above 50 mm. The verification procedure, from now on, is
focused on the thresholds ranging from 0 to 50 mm since out of this range statis-
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Figure 7.5. ROC area for the multiphysics and PV-gradient ensembles and the control one-
member ensemble, as functions of different rainfall event thresholds.

tical significance is low and the difficulties for quantitative precipitation forecasts
increase.

The Brier Skill Score (BSS) indicates the relative skill of the probability forecast
over that of climatology, in terms of predicting whether or not an event occurred.
Fig. 7.7 shows that the BSS is indistinguishable for both EPSs and the control
run, while the BS terms show different behaviors depending on the EPS and the
control. Both EPSs and control run present good skill for small rainfall thresholds
that decreases as the rainfall threshold increases. The BS uncertainty term does
not depend on the forecast but on the observations uncertainties so it is the same
for both EPSs and the control run. The results obtained on the BSS are explained
through the BS reliability and BS resolution terms. These two terms are oppositely
oriented and they almost compensate each other in the total score. Taking this
into account, the multiphysics ensemble shows better performance than the PV-
gradient for the resolution term, while both ensembles show better performance
over the control run for the BS resolution term, and viceversa for the BS reliability
term.
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Figure 7.6. Bias for the multiphysics and PV-gradient ensemble and their respective control
one-member ensemble, as functions of different rainfall event thresholds.

The attribute diagram plots the observed frequency against the forecast proba-
bility including the no-resolution and no-skill line. Fig. 7.8 shows the results for
rainfall thresholds of 2 and 30 mm which states how the skill decreases as the
threshold increases for both EPSs and the control run. Nevertheless the curves do
not migrate out of the regions of skill. Although both EPSs lie within the skill
zone, the PV-gradient ensemble presents better skill than the multiphysics EPS
in almost all regions. The control run is clearly not skillful at producing proba-
bilistic forecasts. Examining now the information of the BS decomposition terms
given the attribute diagram, Fig. 7.8.a shows a better reliability and resolution
for high forecast probability (over 0.4) than for low forecast probability (below
0.4) for both EPSs, meaning that they underforecast lower probability thresholds
and overforecast higher probability thresholds (conditional bias). A conditional
bias was already revealed by the Bias results (Fig. 7.6). From moderate rainfall
thresholds (Fig. 7.8.b) the interpretation is more complex and highly dependent
on the probability region.

The rank histograms indicate how well the ensemble spread represents the true
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Figure 7.7. Brier Skill Score and the three terms of Brier Score for the multiphysics and
PV-gradient ensembles and the control one-member ensemble, as function of different rainfall
event thresholds. a) Brier Skill Score, b) Brier Score Reliability term, c) Brier Score Resolution,
and d) Brier Score Uncertainty.

variability or uncertainty of the observations. The rank histograms for rainfall
thresholds of 2 and 30 mm (Fig. 7.9) present an U-shaped profile which indicates
that the spread in both EPSs is too small, as most of the observations fall outside
the extremes of the ensemble. The 30 mm threshold presents a form between an
U-shape combined with a strong right-asymmetry meaning that the EPSs results
fall outside the ensemble extreme with a negative bias. The PV-gradient ensemble
presents slightly better rank histograms than the multiphysics EPS.
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Figure 7.8. Attribute diagrams for the multiphysics and PV-gradient ensemble and the control
one-member ensemble, for a) 2 mm and b) 30 mm rainfall event thresholds.

As a complement to the rank histograms, the ensemble mean error and spread of
both ensembles were calculated (Jolliffe and Stephenson, 2003). These values are,
respectively, 5.21 and 2.44 mm for the multiphysics ensemble and 5.62 and 3.46
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Figure 7.9. Rank Histograms for the multiphysics and PV-gradient ensemble, for a) 2 mm
and b) 30 mm rainfall event thresholds.

mm for the PV-gradient, confirming that the lack of spread is more accentuated
in the multiphysics EPS.
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7.3 Conclusions

The designed multiphysics and perturbed initial and boundary conditions ensem-
ble prediction systems have proved to be a good strategy to improve the short-
range numerical forecasts of heavy rain events associated with western Mediter-
ranean cyclones. The methodology developed for building the PV-gradient ensem-
ble appears to be a promising tool. On the one hand, the use of a single variable
(potential vorticity) on which to define perturbations, combined with the PV in-
version technique, keeps the method simple while ensures modifications of all the
meteorological fields without compromising the mass-wind balance. On the other
hand, the verification results prove the usefulness of the method to yield skillful
probabilistic prediction of Mediterranean heavy precipitation events.

The verification procedure highlights the difficulties of evaluating the rainfall field
because it has strong gradients in space, rapid variations in time, and is observed
over irregularly spaced networks, as well as the sample problems associated with
extreme rainfall values and difficulties of the model to forecast extreme precipita-
tions. In spite of these difficulties the verification ratifies the advantages of an EPS
over a deterministic forecast. Moreover, the verification results also point out that
the PV-gradient EPS performs slightly better than the multiphysics ensemble.
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Chapter 8

Stage 3: Adjoint-derived sensitivity

zones

⇤

Encouraged by the better performance of the PV-gradient EPS over the more
traditional multiphysics approach, a new ensemble is developed and tested in this
Chapter. This new ensemble introduces the perturbations over the MM5 adjoint
model calculated sensitivity zones (hereafter PV-adjoint), while the PV-gradient
ensemble perturbs the PV field along the zones of the three-dimensional PV struc-
ture presenting the local most intense values and gradients of the field. An overview
on adjoint models can be found in Section 2.2 of the Introduction.

Both PV-perturbed ensembles (PV-gradient and PV-adjoint) introduce perturba-
tions into the initial and boundary potential vorticity field and propagate them
to the temperature and wind fields using the PV inversion algorithm. Perturb-
ing the boundary conditions prevents the ensemble from losing variance as lead
time increases (Nutter et al., 2004a,b). The sensitivity of cyclones and associated
high-impact weather to PV perturbations has been established in several studies
(e.g. Huo et al. 1999; Romero 2008; Argence et al. 2008 and Vich et al. 2011a).
Perturbations in the initial conditions are shown to be crucial for the accurate
simulation of severe convective events over the western Mediterranean (Cohuet
et al., 2011).

⇤This Chapter is based on the published paper Vich, M., R. Romero, and V. Homar, 2011:
Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations.

Part II: Adjoint- derived sensitivity zones. Atmos. Res., 102, 311–319. doi:10.1016/j.atmosres.
2011.07.016.
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The PV-adjoint EPS takes advantage of the main application of an adjoint model:
sensitivity analysis, that determines the sensitivity of a particular forecast feature
of interest to the initial condition. The tangent linear approximation made on the
adjoint formulation can be affected by the timespan of the adjoint run. The longer
the evolution analyzed, the farther away from a linear evolution the perturbations
evolve in the nonlinear model. As established in Section 2.2, this linear assump-
tion is valid for smooth integrated response functions defined at lead times up
to 48 h, while decreasing to 24 h when diabatic processes significantly affect the
response function. Moreover, the response function definition is also critical since
forecast features like rain (our final target) are nonlinear, i.e. they may invalidate
the tangent linear approximation. In a study like ours, focused on the rainfall
associated with intense cyclones, a response function involving a precursor larger-
scale dynamical feature like the intensity of the cyclone (the vertical component
of the relative vorticity near the surface) allows to circumvent the mentioned lim-
itation in the response function definition without compromising the objective of
the adjoint calculations.

Following Homar and Stensrud (2008) that classifies a sensitivity estimation as
objective if it is based on the tangent linear and adjoint models, and subjective
if it is based on human interpretation of the atmospheric fields and the links
between the chosen forecast aspect and the initial structures as derived from the
conceptual models, each ensemble can be tagged accordingly, the PV-gradient as
subjective and the PV-adjoint as objective. Therefore, in other words, this study
aims to explore the advantages or disadvantages of using an objective method like
MM5 adjoint model instead of the conceptual model that links the Mediterranean
cyclogenesis to an upper-level precursor PV anomaly, the basis of the PV-gradient
ensemble.

8.1 Ensemble prediction system design

The building of the PV-adjoint ensemble is analogous to the construction of the
PV-gradient EPS, except for the criterion used to create the PV perturbations.
Both ensembles are made up of 13 members (12 perturbed members plus a non-
perturbed) using the same MM5 configuration applied on the previous PV-gradient
ensemble.
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The approach proposed on both PV-perturbed ensembles exploit the well-known
connection between PV structures and our target, high impact weather in a lim-
ited area associated with cyclones, instead of using a more standard technique. For
example, Beare et al. (2003) stated that cyclogenesis is sensitive to PV structures
at different spatial scales, Snyder et al. (2003) found a strong relation between
the reference state of the PV field and the evolution of PV perturbations, while
Plu and Arbogast (2005) pointed the likelihood of replicating the system vari-
ability modifying the PV coherent structures present in the analyses. But, while
both PV-gradient ensembles are based on the idea of perturbing the initial and
boundary conditions through the PV field, they differ in the criteria that locate
the perturbed zones. The PV-gradient adopts the zones of most intense values
and gradients of the PV field as guidance, the most sensitive zones (Garcies and
Homar, 2009; Romero et al., 2006) of the subsequent atmospheric evolution, like
the cyclogenesis process that occurs over the western Mediterranean. On the other
hand, the PV-adjoint uses the PV sensitivity field calculated with the MM5 adjoint
model, assuming these objectively-obtained zones are the most sensitive areas of
the later cyclonic evolution.

The MM5 adjoint sensitivity field has already proved its value in computing sensi-
tivity areas of intense Mediterranean cyclones, as several previous studies sustain
(e.g. Homar and Stensrud 2004; Homar et al. 2006; Homar and Stensrud 2008,
among others). In this study, the MM5 adjoint simulation timespan is 24 h, which
assures that the tangent linear assumption made by the adjoint run is valid. The
linear assumption can also be hampered if nonlinear processes are dominant, so
the explicit nonlinear processes present in a high resolution adjoint run may lead
to unreliable sensitivity results (Homar and Stensrud, 2004). A 90 km horizon-
tal resolution for the adjoint run resolves well the dynamical features of interest
(MEDEX cyclones) and does not diminish the physical capabilities of the adjoint
while also keeping the computational cost low. Therefore, the simulation domain is
defined as a 90 km resolution horizontal grid mesh with 86x120 nodes, centered at
41� latitude and 3� longitude. The vertical grid mesh is defined by 30 sigma levels.
As previously explained, our response function is the vertical component of the
relative vorticity near the surface, strongly related to the associated mid-to large-
scale low-pressure system, our target. Specifically, the response function is defined
as the surface vorticity averaged over the 1530x1530 km2 square centered on the
minimum sea level pressure grid point of the corresponding ECMWF 24 h forecast
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cyclone. The size of the response function is set as a balance between the precise
target of the cyclone center (aiming at capturing the factors influencing its intense
deepening) and the stabilizing effect on the sensitivity results of widening the area
to a larger extent based on our experience on both Mediterranean intense cyclones
and the definition of response functions in sensitivity experiments. Since the per-
turbations are introduced on the PV field, the sensitivity to the quasi-geostrophic
PV is used as a proxy for the sensitivity to the full PV field. This sensitivity can
be written as function of the sensitivity to the stream function which in turn can
be formulated in terms of the sensitivity to the wind, both expressions obtained
by means of a simple hand transposition strategy (Errico and Vukićević, 1992).
The physical parameterizations of adjoint models are not as well resolved as in
the standard model version since they are based on a linear version of the model
equations, so in this study the adjoint configuration considers a dry atmosphere to
assure the Courant-Friedrichs-Lewy condition1 (CFL condition) with our available
computational resources for all the needed MM5 adjoint runs, one run per day of
study.

8.1.1 Practical implementation

As detailed in the PV-gradient building procedure, the guidance field is defined
by the difference between the three-dimensional PV field and a highly smoothed
version of itself, thus highlighting the most intense values and gradients. On the
contrary, in the PV-adjoint procedure the guidance field corresponds to the PV
sensitivity field obtained with the MM5 adjoint model. Once the guidance field is
known, the following generation stages for both ensembles are the same. A thresh-
old is then defined as the average of the guidance field over the whole domain,
in absolute value. The three-dimensional regions where the perturbations are in-
troduced are then defined by the 3D regions where the guidance field exceeds, in
absolute value, the threshold. On each of these volumes the intensity -both magni-
tude and sign- and displacement perturbations are assigned randomly accordingly

1A condition in numerical equation solving which states that, given a space discretization,
a time step bigger than some computable quantity should not be taken. The condition can
be viewed as a sort of discrete "light cone" condition, namely that the time step must be kept
small enough so that information has enough time to propagate through the space discretization.
(Weisstein, Eric W. "Courant-Friedrichs-Lewy Condition." From MathWorld-A Wolfram Web
Resource. http://mathworld.wolfram.com/Courant-Friedrichs-LewyCondition.html)
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to the PV error climatology2. On the other hand, the displacement direction per-
turbation is assigned using the same randomly chosen value to all volumes to avoid
discontinuities in the perturbed PV field. After perturbing, the difference between
the original and perturbed balanced fields (obtained applying the PV inversion
technique) is added to the non-perturbed, mass and wind fields, to produce the
initial and boundary conditions of the corresponding ensemble member.

The different various steps of the perturbing procedure are illustrated again by
means of the 9-10 June 2000 case study, like in the PV-gradient ensemble genera-
tion. Its synoptic situation on 9th June 2000 at 00 UTC is shown in Fig. 8.1.a.

Fig. 8.2 shows a horizontal section at 300 hPa of the perturbation volumes. The
PV-gradient zones follow closely the structure of the upper-level trough as ex-
pected given its definition (Fig. 8.2.a), while the PV-adjoint zones highlight dif-
ferent regions including the upper-level trough region (Fig. 8.2.b).

Fig. 8.1 gathers the results of the perturbing technique showing the visible dif-
ferences on the PV, geopotential and sea level pressure fields between the non-
perturbed, the PV-gradient and PV-adjoint perturbed initial conditions. The MM5
model is initialized and forced with each perturbed initial condition and used to
run the 54 h forecasts. Fig. 8.3 shows the 30-54 h forecast accumulated rain-
fall mean and standard deviation (STD) of each 13-member ensemble. The PV-
gradient ensemble presents the highest rainfall values located farther south than
in the PV-adjoint results and with a more meridionally elongated pattern across
France, while both STD fields present relative maxima over the highest rainfall
values. An extensive examination of the performance of each ensemble is done in
the following section.

2PV error climatology derived on Section 6.2 assures that the perturbations are consistent
with the PV field uncertainty range.
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Figure 8.1. Synoptic situation for 9 June 2000 at 00 UTC. a) Non-perturbed initial conditions
(ECMWF 24 h forecast), b) PV-gradient and c) PV-adjoint ensemble member perturbed initial
conditions for a randomly-chosen ensemble member. Note that the PV-gradient ensemble
member is different than the one displayed in Fig.6.6, page 75. Geopotential height (continuous
line, in gpm) at 500 hPa, sea level pressure (dashed line, in hPa), and Potential Vorticity on
the 330 K surface (color contours, in PV units).
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Figure 8.2. a) PV-gradient EPS and b) PV-adjoint ensemble horizontal section of perturba-
tion volumes at 300 hPa, solid line positive value (guidance field values over the threshold)
and dashed line negative value (guidance field values below the negative of the threshold).
Unperturbed PV field on 330 K surface, color contours in PV units.
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Figure 8.3. Ensemble mean (color contours, in mm) and ensemble standard deviation (solid
line, in mm at 10 mm intervals) for the 24 h accumulated precipitation over the forecast region
(from 10 to 11 June 2000 at 06 UTC). a) PV-gradient ensemble and b) PV-adjoint EPS.
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8.2 Comparison: Verification results

The verification framework is like the one used in the multiphysics and PV-gradient
ensemble comparison. As detailed in Chapter 6, the verification testbed consists
of a 56-day period from the 19 MEDEX episodes collection between September
1996 and October 2002 and the 24 h accumulated precipitation (from 06 UTC to
06 UTC daily) provided by the AEMET climatological raingauge network.

An evaluation of the predictive skill of each EPS is done using probabilistic scores
and indices, assuming each deterministic forecast (ensemble member) as an inde-
pendent realization of the same underlying process. The verification is done for
the 24 h accumulated precipitation period corresponding to the second day of
simulation and addresses the general performance of the ensembles, not a unique
observation threshold. Therefore, nine rainfall amount thresholds (0, 2, 5, 10, 20,
30, 50, 100 and 150 mm) have been defined as observed events.

The Bias score plotted on Fig. 8.4 shows a slightly better performance of the PV-
gradient ensemble over the PV-adjoint system considering that both EPSs overpre-
dict (Bias > 1) rainfall amounts less than 5 mm while underpredict (Bias < 1) the
larger rainfall amounts. Between 2 and 10 mm thresholds both EPSs are almost
unbiased. Like in the previous chapter results, the fast Bias decay towards zero
for greater thresholds, above 50 mm, is most probably due to a sample problem as
indicated by the rapid decrease in the number of events of extreme precipitation
values (Base Rate in Fig. 8.4). It may also be due to the difficulties of the EPSs
to forecast extreme precipitation values while running over a 22.5 km horizontal
resolution domain. From now on our verification procedure focuses on the thresh-
olds ranging from 0 to 50 mm due to the lack of statistical significance outside this
range and the low capability of mesoscale models to handle extreme precipitation
forecasts.

The ROC areas obtained for both ensembles (Fig. 8.5) are very skillful since
all forecasts lie well above 0.7, the threshold established by Stensrud and Yus-
souf (2007) which indicates usefulness of a forecasting system on discriminating
between events and non-events. Both EPSs exhibit good results for all rainfall
thresholds presenting their maximum value at 2 mm. The PV-gradient ensemble
shows better skill than the PV-adjoint for all rainfall thresholds, except for the
10 mm where their skill is similar.
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Figure 8.4. Frequency Bias for the PV-gradient and PV-adjoint ensembles, as function of
different rainfall thresholds. The Base Rate index shown by the histogram represents the
observed event probability (the sample size is 109276).

Fig. 8.6 shows that the Brier Skill Score is almost the same for both EPSs, while the
BS terms show different behaviors depending on the EPS. Both EPSs present good
skill for low rainfall thresholds that decreases as the rainfall threshold increases.
As the BS uncertainty term exclusively depends on the observations uncertainties
and not on the forecast, the results for all the EPSs are identical as they share
the same observational database. The almost coincidence of both EPSs on the
BSS are due to the BS reliability and BS resolution terms, two terms of opposite
sign, that almost compensate each other in the total score. The BS reliability is
almost the same for both ensembles (indistinguishable in the graph) indicating
that both ensembles present very similar reliability skill, while the BS resolution
term is slightly different between ensembles but not enough to show a meaningful
difference in how the different forecast events are classified by the forecast system.
Despite this, the PV-gradient ensemble slightly outperforms the PV-adjoint.

Fig. 8.7 gathers the attribute diagram results for the 2 and 30 mm rainfall thresh-
olds and states how the skill of both ensembles decreases as the threshold increases.
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Figure 8.5. ROC area for the PV-gradient and PV-adjoint ensembles, as function of different
rainfall event thresholds.

In spite of this skill decrease, the curves remain inside the skill region. Even though
both ensembles lay inside the skill region, both ensembles exhibit a tendency to
underforecast the Observed Probability for low values of Forecast Probability and
overforecast it for high values, indicating a conditional bias. Nevertheless, the
PV-gradient is closer globally to the perfect score than the PV-adjoint.

All rank histograms (Fig. 8.8) present a U-shaped form combined with a pro-
nounced right-asymmetric profile due to an excessive population within the ex-
tremes rank, revealing that the ensembles clearly underestimate the higher precipi-
tation values and slightly overestimate the lower precipitation values (an extended
discussion on rank histogram interpretation can be found in Hamill (2001)). This
behavior agrees with the Bias results (Fig. 8.4) which also show overprediction
for lower thresholds and underprediction for higher. Once again, the PV-gradient
ensemble shows slightly better skill than the PV-adjoint.
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Figure 8.6. Brier Skill Score and the Brier Score three components for the PV-gradient and
PV-adjoint ensembles, as function of different rainfall event thresholds. a) Brier Skill Score, b)
Brier Score Reliability term, c) Brier Score Resolution term, and d) Brier Score Uncertainty
term (only depends on the observations).
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Figure 8.7. Attribute diagrams for the PV-gradient and PV-adjoint ensembles, for a) 2 mm
and b) 30 mm rainfall event thresholds. The perfect score is represented by a curve that
matches the diagonal. The vertical and horizontal lines represent the no-resolution, also known
as the climatological frequency of the event, and the 0.5 slope that crosses the no-resolution
and perfect score lines represents the no-skill line.
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perfect score.
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8.3 Conclusions

The performance of two different EPSs is evaluated using a thorough verification
procedure. Considering that the aim of this study is to improve the short-range
numerical forecasts of cyclones associated with heavy rain events in the western
Mediterranean, the verification setup is focused on the 24 h accumulated precipi-
tation field; a field observed over non gridded networks and highly discontinuous
in both space and time that makes the evaluation harder and more demanding.
In addition, the study deals with extreme events which are difficult to predict in
nature and rare by definition.

Both ensembles are built using a single variable (PV) to define perturbations com-
bined with the PV inversion technique, keeping the method simple while ensuring
modifications of all the meteorological fields without compromising the mass-wind
balance. The only difference between both EPSs lies in the location where the
perturbations are introduced. The PV-gradient ensemble introduces the pertur-
bations in the areas corresponding to the PV zones of most intense values and
gradients (in essence a subjective choice based on our experience) while the PV-
adjoint does it in the MM5 adjoint model calculated sensitivity zones (an objective
method).

The high computational cost of the PV-adjoint ensemble (which implies running
the MM5 adjoint model for each simulation day) versus the low cost of the PV-
gradient is not compensated later in ensemble skill. Even though both EPSs are
skillful and present a more than adequate performance, the results obtained by the
PV-gradient ensemble are generally better than those obtained by the PV-adjoint
EPS. Thus, the PV-gradient ensemble is proved to be a more profitable strategy
than the PV-adjoint EPS, which is also useful but computationally more expen-
sive for our testbed. This result is in agreement with Homar and Stensrud (2008)
results, which stated that for intense cyclogenesis over the western Mediterranean,
adjoint-estimated sensitivity is comparable or slightly inferior to subjective (gra-
dient and human) sensitivity estimates.
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Chapter 9

A multiphysics superensemble

forecast

⇤

In pursue of our final goal, to improve the prediction skill of the heavy precipi-
tation events that characterize the western Mediterranean coastal countries, the
superensemble technique is tested in the region. As exposed in Section 3.3, the
superensemble forecast technique is a powerful post-processing method for the es-
timation of weather forecast parameters, like precipitation. Throughout Part II
the multiphysics ensemble, as well as both PV-perturbed EPSs, were tested in
the same fashion with good results. Therefore encouraged by the skill shown by
the multiphysics ensemble prediction system, the superensemble is fed with it in-
stead of the common approach of using a multimodel ensemble. Note that the
superensemble technique requires an ensemble made up by distinguishable mem-
bers, so from our three ensembles only the multiphysics qualifies.

9.1 Superensemble Construction

As part of the superensemble building procedure, a different databases for each
phase is required. In this study, the forecast phase consists of the same collection
of 19 MEDEX cyclones between September 1996 and October 2002 used in Part II,

⇤This Chapter is based on the published paper Vich, M. and R. Romero, 2010: Multiphysics

superensemble forecast applied to Mediterranean heavy precipitation situations. Nat. Haz. and
Earth. Syst. Sci., 10, 2371–2377. doi:10.5194/nhess-10-2371-2010.
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while the training phase consists of a very wet four-month period, September -
December 2001, characteristic of the precipitation climatology of the region during
Autumn. Notice that both phases focus on the precipitation field, as in previous
chapters.

The group of forecast members also needed to build the superensemble is provided
by applying the multiphysics EPS generation techinque to the 56- and 120-day pe-
riod comprising these 19 MEDEX cyclones between September 1996 and October
2002 and the four moths between September and December 2001, respectively.
Fig. 9.1 shows the area coverage of the MM5 domain and the available observa-
tional data, the same we used in Part II to build and test our three ensembles.

Figure 9.1. Geographical domain used for the MM5 numerical simulations. The spatial dis-
tribution of the AEMET raingauge network used in the verification procedure is plotted using
crosses.
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9.2 Experiments and results

The evaluation of the superensemble performance for the rainfall field is done
thanks to the wide range of verification indices presented in Chapter 4 and also to
comparing the superensemble results with that of the ensemble mean (a simple av-
erage of all the members), the bias corrected ensemble mean and the multiphysics
EPS control member. It is worth noticing that for both phases, training and fore-
cast, all computations have been done for the 24 h accumulated precipitation
field considering both the 06-30 h and 30-54 h accumulated periods indistinctly,
this implies that the number of days for both phases are doubled. Even though
Krishnamurti et al. (2000b) separates both time windows we have checked that
for this study merging them does not affect negatively the superensemble perfor-
mance and we gain statistical significance. Since we are not focused on verifying
a single observation threshold but on evaluating the general performance of the
superensemble, the definition of the observed event is not fixed. For example, if
a catchment gets flooded when it rains more than 50 mm/day this would be the
observed event, since such threshold separates safety from disaster. Here nine rain-
fall amount thresholds (0, 2, 5, 10, 20, 30, 50, 100 and 150 mm) are defined as
observed events.

The ROC area results plotted on Fig. 9.2 show that the bias corrected ensemble
mean performs better than the other forecasts followed by the ensemble mean,
the control member and finally by the superensemble, nevertheless all forecasts
present ROC areas above 0.7, a very satisfying result according to Stensrud and
Yussouf (2007) who establish that forecasting systems with ROC area greater than
the mentioned threshold are useful to discriminate between events and non-events.

The Bias results (Fig. 9.3) show that both ensemble means, poor man and bias
corrected, overpredict (Bias > 1) rainfall amounts less than 40 mm and underpre-
dict (Bias < 1) the larger rainfalls amounts, while the control member presents
the same behavior at a transitional threshold of 70 mm. On the other hand the
superensemble overpredicts rainfall amounts less than 80 mm and keeps steady
around the perfect score (Bias = 1) for larger rainfalls amounts.

The Taylor diagram (Fig. 9.4) shows similar results for both ensemble means, poor
man and bias corrected, approximately both present a RMS difference of 12 mm
and a correlation coefficient of 0.5, while the standard deviations of the forecast
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Figure 9.2. ROC area for the multiphysics ensemble control member, the multiphysics ensem-
ble mean, the bias corrected ensemble mean and the superensemble, as functions of different
rainfall event thresholds.

are between 11 and 13 mm and the observed standard deviation is approximately
13 mm. The control member and the superensemble show a higher RMS difference,
lower correlation and higher forecast and observation standard deviation. Note
that the statistics used on the Taylor diagram are negatively affected owing to the
discontinuities, noise and outliers characteristic of the rainfall field.

The Q-Q plots compare the observed and forecast distributions in terms of quan-
tiles. A diagonal line indicates a perfect skill, while below the diagonal the forecast
underestimates the observation and overestimates it over the diagonal (a more de-
tailed description can be found in Wilks (1995)). Fig. 9.5 shows that over the 100
mm rainfall threshold all forecasts except the superensemble underpredict the ob-
served precipitation distribution, while the superensemble captures the observed
precipitation distribution (perfect score).

The obtained superensemble scores at the ROC area and Taylor diagrams are lower
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Figure 9.3. Bias for the multiphysics ensemble control member, the multiphysics ensemble
mean, the bias corrected ensemble mean and the superensemble, as functions of different
rainfall event thresholds.

than expected. The cause of these low scores could be related to the superensemble
dependency on the assumption that the performance of the members past forecasts
accurately represent the performance of those members in the forecast period.
Since we are dealing with extreme and rare events this assumption might not
be achieved. Also it is worth to notice that ECMWF forecasts, our initial and
boundary conditions, have undergone severals updates during the period this study
is focused on (from 1996 to 2002). Although these changes could also affect the
superensemble skill, the possible effects will be neglected at this stage under the
assumption that the model physical parameterizations are the dominant source
of variability in heavy precipitation simulations. Bearing this in mind a new test
in done exchanging the training and forecast datasets in order to examine the
stability of the results. In this new experiment the superensemble is trained for
the MEDEX cyclones collection and tested for the 4-month period in the forecast
phase.
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Figure 9.4. Taylor diagram for the multiphysics ensemble control member, the multiphysics
ensemble mean, the bias corrected ensemble mean and the superensemble, as functions of dif-
ferent rainfall event thresholds. The perfect score is obtained when the data point representing
the forecast field matches up with the observed one (green solid square).

The ROC area (Fig. 9.6) shows that the superensemble is tuned for the 100 m
rainfall threshold being the forecast with the highest score. The Bias (Fig. 9.7) also
shows that the superensemble is the nearest to the perfect score for a wider range
of rainfall thresholds than the other forecasts, and while the others underpredict
for higher thresholds the superensemble slightly overpredicts them. The Taylor
diagram (Fig. 9.8) behaves as in the previous experiment: both ensemble means
(poor man and bias corrected) are the nearest to the perfect score, followed by
the control forecast and the superensemble. The Q-Q plot (Fig. 9.9) also shows
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Chapter 9. A multiphysics superensemble forecast

Figure 9.5. Q-Q plot for the multiphysics ensemble control member, the multiphysics ensemble
mean, the bias corrected ensemble mean and the superensemble, as functions of different
rainfall event thresholds.

that the superensemble is the nearest to the perfect score as in the previous test.
These results seem to indicate that exchanging the superensemble datasets make
the superensemble more attuned to the higher precipitation thresholds.
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Figure 9.9. Q-Q plot for the multiphysics ensemble control member, the multiphysics ensemble
mean, the bias corrected ensemble mean and the superensemble, as functions of different
rainfall event thresholds. Note: Training period 19 MEDEX cases and forecast period Sep-Dec
2001.

119



Chapter 9. A multiphysics superensemble forecast

9.3 Conclusions

The superensemble based on a multiphysics EPS instead of a multimodel ensemble
and applied to rare and extreme events has not performed as expected, although
the superensemble has proved its value in previous studies dealing with ordinary
situations. The fact that we are dealing with a multiphysics ensemble may lead to
more correlation between ensemble members and therefore affect the multi-linear
regression technique used to calculated the superensemble weights. Another fact
that is worth to note is that the superensemble technique assumes that the past
behavior of each ensemble member is representative of the present behavior, and
this assumption may not be accurate for the kind of events tested in this study,
cyclone-induced heavy rain events, rare and extreme by definition.

The bias corrected ensemble mean and the poor-man ensemble mean show a clear
improvement over the control member, as expected. Furthermore, the superensem-
ble is the best in the bias and Q-Q plots scores but is not good enough in the ROC
area and Taylor diagrams scores. The second experiment points out that inverting
the superensemble datasets attunes the superensemble better for higher rainfall
thresholds. In spite of the difficulties derived from focusing the verification on the
rainfall field, its results stress the good performance of the forecasts, specially how
the superensemble captures the quantile distribution of the precipitation.

Additional experiments can be envisaged to help to improve the performance of
the superensemble approach regarding extreme events. This line of research will
be revisited in the last chapter of this Thesis.
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Chapter 10

Inclusion of PV uncertainties into a

hydrometeorological forecasting

chain

⇤

An ensemble prediction system can be regarded as an appropriate approach to in-
troduce the uncertainties found in the initial and boundary conditions of mesoscale
model forecasts into the hydrometeorological modeling chain. Hydrological mod-
els driven by the ensemble-derived quantitative precipitation forecasts (QPFs) are
better fitted to deal with the difficulties in providing precipitation over the cor-
rect locations and times, owing to both the small scale nature of the responsible
atmospheric features and model physical parameterization deficiencies.

It has been established that traditional warning systems based on hydrological
models driven by rainfall observations do not provide the timely predictions re-
quired to implement the precautionary civil protection measures on short-time
scales of flash floods events (Siccardi, 1996) and that the use of high-resolution
numerical weather prediction models further extend the lead times associated to
discharge predictions (with lead times up to 12-48 h; e.g. Benoit et al. 2003). So
the use of QPFs derived by an ensemble prediction system could further enhance
this improvement in discharge predictions lead times and have a positive impact

⇤This Chapter is based on the published paper Amengual, A., R. Romero, M. Vich, and S.
Alonso, 2009: Inclusion of potential vorticity uncertainties into a hydrometeorological forecasting

chain: application to a medium size basin of Mediterranean Spain. Hydrol. Earth Syst. Sci., 13,
793–811. doi: 10.5194/hess-13-793-2009.
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on the flash flood warning systems.

10.1 The targeted region

As emphasized in Chapter 1, the Spanish Mediterranean area (Fig.10.1), as part of
the western Mediterranean, is often hit by high impact weather phenomenon like
flash flood, especially in autumn. The coast steep streams and high urbanization
rates typical of the region lead to short hydrological response times and poten-
tially high personal and material damages. Moreover, the characteristic semiarid
environment is associated with many ephemeral small and medium steep streams
prone to high flow velocities and large volumes of sediments causing unexpected
and extensive flood damage. Not surprisingly, many efforts, like ours, are being
devoted to flood forecasting tools, a key point in implementing reliable warning
systems before these kinds of events.

Figure 10.1. Geographical locations and main mountain systems of the Western Mediter-
ranean region. Major topographic features are shown according to the colour scale at 500 m
intervals starting at 500 m. The thick continuous line shows Catalonia and its internal basins
(highlighted with shaded grey).

The Llobregat river basin is a medium size catchment located in Catalonia, north-
eastern Spain (Figs.10.1 and 10.2), and it is periodically affected by intense pre-
cipitation events resulting in floods which sometimes produce hazardous effects.
In fact, four notable hydrometeorological episodes occurred over the 1996-2004 pe-
riod affecting the Llobregat river basin. These four events are the perfect testbed

122



Chapter 10. Inclusion of PV uncertainties into a hydrometeorological forecasting chain

to test the viability of the Hydrologic Engineering Center’s Hydrological Model-
ing System (HEC-HMS) runoff model discharge predictions driven by the QPFs
provided by:

� the kriging interpolation of the rain-gauge data available,

� the MM5 mesoscale model forecast nested within the ECMWF large-scale
forecast fields, and

� the PV-gradient ensemble prediction system developed in Chapter 6.

Figure 10.2. Distribution of the rain-gauges from the Automatic Hydrological Information
System in the internal basins of Catalonia (IBC; shown in Fig. 10.1). It includes a total of
126 automatic rainfall stations distributed over an area of 16000 km2. Llobregat basin is
highlighted.

The selected events produced heavy precipitation which resulted in severe floods
on the period covering 1996 until 2004. These case studies are a sample of different
intense rainfall episodes produced by prototype atmospheric dynamical situations.
The first two cases (16-17 November 1996 and 17-18 December 1997) were linked
with sustained and stratiform-like rainfalls over long periods of time, which re-
sulted in remarkable discharges at the Llobregat basin outlet. The last two cases
(9-10 June 2000 and 29-30 August 2004) produced important and sudden rising
flows owing to their convective nature, bearing heavy precipitations in short tem-
poral scales.

Note that from now on, we will focus our attention on the MM5 deterministic
simulation and on the PV-gradient EPSs approach, presenting their results for
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the 9-10 June 2000 event. Additionally, the results from the PV-gradient EPSs
approach for all four episodes are gathered on several verification scores, like for
example, the Bias or the probability of detection. Readers interested in the whole
study can find it in Amengual et al. (2009).

The 9-10 June 2000 event, also known in the literature as the Montserrat flash flood
event, is part of the 19 MEDEX event collection used to verify our ensembles and
it was used to illustrate the methodology of both the PV-gradient and PV-adjoint
ensembles prediction systems. On this event, many internal basins of Catalonia
(IBC, Fig. 10.1) were overwhelmed as a result of the heavy precipitation produced
by a quasi-stationary mesoscale convective system. The following flood produced
five fatalities and material losses estimated at about 65 million euros. A more
detailed description of the event can be found in Section 11.1.

10.2 Experiment setup

The Llobregat river basin is the most important internal hydrographic catchments
of Catalonia regarding to its size, river length, mean flow and population living
inside (Figs. 10.2 and 10.3). This catchment is formed by the Llobregat river
and its main tributaries, the Anoia and the Cardener. Llobregat basin extends
from the Pyrenees - with heights over 3000 m, through the pre-Pyrenees – with a
height transition from 750 m to 200 m in the pre-coastal range. The last section of
the river flows through the Mediterranean orographic systems which consist of two
mountainous aligments almost parallel to the coast line: the pre-coastal and coastal
ranges. The basin has a total drainage area of 5040 km2 and a maximum length
close to 170 km (for a more detailed description of the watershed see Amengual
et al. 2007).

The available raw precipitation is made up by 5-min rainfall data recorded at
126 stations inside the Internal Basins of Catalonia distributed over an area of
16000 km2 (Fig. 10.2). This network of rain-gauge stations belongs to the Auto-
matic Hydrological Information System (SAIH) of the Catalan Agency of Water
(ACA). Approximately 45 of this 126 stations lie inside the Llobregat basin or
near its boundaries.

This study is carried out using the physically-based HEC-HMS rainfall-runoff
model (USACE-HEC, 1998). The model has been implemented in a semi-distributed
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Figure 10.3. Digital terrain model of the Llobregat river basin with a cell size of 50m. It
displays the basin segmentation, main tributaries, stream-gauges (circles) and reservoirs (tri-
angles).

and eventbased configuration. HEC-HMS utilizes a graphical interface to build the
semi-distributed watershed model and to set up rainfall and control variables for
the simulations. Fig. 10.3 shows the digital terrain model for the Llobregat river
basin together with the main watercourses and its tributaries, the considered di-
vision in sub-basins and the location of the available river gauges.

The hydrological model is forced by using a single hyetograph1 for each sub-
basin. Rainfall spatial distributions are generated applying the kriging interpo-
lation method with a horizontal grid resolution of 1000 m on the hourly accumu-
lated values from: 1) the SAIH rain-gauges records (irregular grid) and 2) from the
model regular gridded QPFs. Then, the hourly rainfall series are calculated for each
sub-basin as the area-averaged of the gridded rainfall within each subcatchment.

The MM5 model set up used to perform the meteorological simulations is the
one used by both PV-perturbed ensembles. A complete description can be found
in Section 6.3, page 72. The only addition is a nested second domain, with two
way interaction and a horizontal resolution of 7.5 km. As Fig. 10.4 shows, the
second domain spans the entire Catalonian territory and contiguous land and
oceanic areas, and is used to supply the high-resolution rainfall fields to drive the

1A graphical representation of the distribution of rainfall over time.
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hydrologic simulations.

Figure 10.4. Configuration of the two computational domains used for the MM5 numerical
simulations (inner squares, with horizontal resolutions of 22.5 and 7.5 km for left and right,
respectively). The Llobregat river basin is highlighted as thick line on the smaller domain.

The ensemble simulations for each hydrometeorological episode are also run with
the same MM5 model configuration. Since the inner domain is two way nested
into the outer domain, the PV-gradient initial and boundary perturbations are
only applied on the outer domain. All MM5 simulations cover a a 54 h period for
each of the flood episodes under study, starting at 00:00 UTC 16 November 1996
for Case 1; 00:00 UTC 17 December 1997 for Case 2; 00:00 UTC 9 June 2000 for
Case 3; and 00:00 UTC 29 August 2004 for Case 4.

10.3 Results

10.3.1 Runoff simulations driven by MM5 deterministic QPFs

The deterministic forecasts for the 9-10 June 2000 event displays poor skill in
reproducing the observed accumulated precipitations and its spatial and temporal
distributions over the catchment (see Fig. 10.5). The MM5 control simulation is
clearly deficient as the maximum quantity of precipitation is located quite far away
from the Llobregat basin. The set of verifications indices used to evaluate the skill
of the MM5, correlation coefficient (r), root-mean-square error (RMSE) and mean
absolute error (MAE), is also in agreement as Table 10.1 clearly shows. In fact,
the actual maximum quantity is located in the north-western part of the Pyrenees
range (not shown here).
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a) b)

Figure 10.5. Spatial distribution of the accumulated precipitation (in mm according to the
scale) in the Llobregat basin for 9-10 June 2000 episodes: a) Observed and b) MM5 control
forecast simulation.

spatial temporal
r 0.28 0.11
RMSE 8.7 24.2
MAE 6.7 15.8

Table 10.1. Correlation coefficient, RMSE (in Hm3) and MAE (in Hm3) of the spatial and
temporal rainfall volume distributions yielded by the 9-10 June event MM5 control simulation.

These deficiencies affect the runoff simulation driven by the MM5 model results.
In fact, the severe underestimation in the QPFs means that the runoff simulation
misses the observed peak flow as Fig. 10.6 clearly exhibits.

Amengual et al. (2007) studied the same flash-flood event but initializating the
MM5 model with the NCEP analyses. It was found that the control simulation
reasonably reproduced the spatial and temporal distributions of the observed rain-
fall and the total precipitated volume. So it would appear that that there is a high
dependence of the hydrometeorological prediction on the initial and boundary
conditions of the databases, aside from the dependence on the flood event itself.
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Figure 10.6. Observed SAIH rain-gauge driven and MM5 control simulation driven runoff
discharge for 9-10 June 2000 episode. This hydrograph corresponds to the stream-gauges of
Sant Joan Despí where the maximums of rainfall (224 mm) and flow (1400 m3s�1) were
observed.

Its is worth mentioning that here we have only shown one of the four events
explored in the complete study, in fact one out of the two events that were not
captured by the MM5 deterministic simulation. The runoff prediction driven by the
well simulated events (November 1996 and December 1997) could be considered
suitable to use in an emergency management directive (e.g. Anderson et al. 2002).

10.3.2 Runoff simulations driven by MM5 probabilistic QPFs
ensemble

A PV-gradient ensemble of 20 members is built following the generation proce-
dure detailed in Section 6.3, plus the control member (the previous non-perturbed
MM5 deterministic run). This 21-member ensemble is used to drive a new set of
runoff simulations as means of introducing the atmospheric initial and boundary
conditions uncertainty into the hydrometeorological chain.

The discussion of the results is done for the runoff peak flow by means of cu-
mulative distribution functions (CDFs) plotted in a Gumbel chart (e.g Ferraris
et al. (2002); Fig. 10.8). Although no hydrometeorological forecasting chain is cur-
rently implemented for civil-protection purposes in the Llobregat river basin, we
have considered suitable for the present study the introduction of two hypothetical
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warning discharge thresholds (the maximum peak discharges for return periods of
5 and 10 years). These peak flows have been extracted from the technical report is-
sued by ACA (ACA, 2001). The first and second warning discharge thresholds are
266.3 m3s�1 and 555.4 m3s�1 at Sant Joan Despí hydrometric section. On the other
hand, a the quality of the PQPFs at sub-basin scale has been tested by a set of
categorical verification indices: the probability of detection (POD), the false alarm
rate (F), the frequency-bias score (Bias) and the relative-operating-characteristics
(ROC) score2, computed for diverse precipitation and runoff volume thresholds.
In order to increase the statistical significance of the results, these skill scores are
calculated using all the hydrometeorological episodes as follows:

1. the rainfall and driven runoff volumes of the MM5 control runs are compared
against the observed rainfall and SAIH rain-gauge driven runoff volumes,
respectively;

2. the rainfall and driven runoff volumes of the ensemble means are employed;

3. the rainfall and driven runoff volumes by the individual members of the
ensembles are used for the comparison with the observed rainfall and rain-
gauge driven runoff volumes.

Note that all these rainfall and runoff volumes are accumulated at hourly time-
steps and using the sub-basins as accumulation units. For the driven discharge
volumes, the scores are calculated using only the hourly data produced at each sub-
basin that is non-zero in at least one of the two compared series in order to prevent
an artificial improvement of the ROC score values. As commented in Chapter 3,
statistically speaking the ensemble mean should provide a better forecast that any
individual ensemble member, as errors in the individual forecasts tend to cancel
when averaged, so some benefits from a simple ensemble average over the control
experiment is expected.

Fig. 10.7 displays the ensemble mean and standard deviation of the accumulated
forecast rainfall over the MM5 inner domain. The rainfall pattern clearly shows an
important spread of the rainfall cumulative values over north-eastern Spain within
the mesoscale model ensemble.

It seems that the Montserrat hydrometeorological event is highly sensitive to
the PV perturbations, recall the control run missed it completely. Although this

2ROC score, also known as ROC area. See more details in Chapter 4.
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Figure 10.7. Ensemble mean (shaded contours, in mm) and ensemble standard deviation
(dashed line, in mm at 7.5mm intervals) for the accumulated precipitation over the second
MM5 computational domain for the 9-10 June 2000 event. The Llobregat river basin is high-
lighted as thick line.

episode was characterized by an important orographic enhancement mechanism
in the organization, development and duration of the quasi-stationary mesoscale
convective system, the atmospheric dynamical forcing played an essential role as
well. These dynamical factors are linked to the upper-level synoptic trough and
mid-to-upper-tropospheric flow, which are emphasized by the PV perturbation
approach. As consequence, the biases found in the control run are partially cor-
rected, and in spite that none of the members of the ensemble is able to forecast
the observed peak flow for this exceptional event, some of them yield important
peak discharges (Fig. 10.8). The probabilities of exceeding the first and second
warning discharge thresholds are close to 0.3 and 0.15, respectively. So at least,
a first theoretical warning could have been issued, even though the magnitude of
the Montserrat episode would have remained undetected.

The aforementioned verification indices results for the rainfall and runoff volumes
and their 95% confidence intervals are present on Table 10.2 and Figs. 10.9 and
10.10. This confidence intervals have been computed for each experiment by a
bootstrap test (Diaconis and Efron, 1983) with 1000 repetitions in order to better
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Figure 10.8. Peak discharge exceedance probability plotted on a Gumbel chart for 9–10 June
2000 episode at the stream-gauge of Sant Joan Despí. The vertical black line indicates the
observed maximum peak flow, the vertical dashed black line indicates the maximum peak
discharge from the ensemble mean. Light and dark grey vertical lines show the maximum
peak flows of 5 and 10 years return periods, respectively.

establish the uncertainties around the statistical indices.

• Rainfall volumes results: The ensemble means exhibit the best skill for the
POD at low and medium thresholds at expenses of a decrease in skill for
the F score. In other words, as the capacity of detecting the event increases
the false alarm rate also increases. However, the ensemble means ROC score,
that relates POD and F, is also the best of the three, indicating that the
ensemble means have smoothed the individual forecasts errors when averag-
ing the rainfall fields. Also, the ROC score for the control runs exceeds the
ROC score obtained from the ensembles, as the deterministic runs present
a higher probability of detection for all the volume thresholds than the full
ensembles while both sets of experiments present a similar false alarm rates
for all volume thresholds. The Bias score results indicate that a systematic
underforecasting of the precipitation amounts at all thresholds is occurring
on the deterministic and the probabilistic experiments.
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• Runoff volumes results: In this case, the best ROC score is obtained by
the full ensembles as they also obtain the smallest false alarm rate scores
while their POD skill is comparable to the one obtained by the ensemble
mean. However, the control simulations are the ones showing the highest
POD score. Notice the overall underforecasting of all simulations, and that
the less biased are the control runs. This general underprediction of the
runoff volumes clearly benefits the false alarm rates which become smaller,
and therefore, lead to higher ROC scores. In addition, no improvement of
the ROC scores is found when comparing the ensemble means against the
deterministic simulations.

control mean ensemble
rainfall volumes 0.62 (0.56-0.68) 0.65 (0.61-0.69) 0.58 (0.54-0.62)
runoff volumes 0.79 (0.73-0.84) 0.79 (0.73-0.84) 0.87 (0.83-0.89)

Table 10.2. ROC scores and the 95% percentile confidence intervals for the control simulation,
ensemble mean and ensemble members of all the hydrometeorological experiments, for hourly
rainfall and runoff volumes.
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Figure 10.9. POD, F and BIAS skill scores and the 95% percentile confidence intervals for
different precipitation volume thresholds obtained by the ensemble of MM5 simulations for
all the hydrometeorological experiments.
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Figure 10.10. POD, F and BIAS skill scores and the 95% percentile confidence intervals for
different runoff volume thresholds obtained by the ensemble of MM5 driven runoff discharge
simulations for all the hydrometeorological experiments.
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10.4 Summary and conclusions

Triggering an early warning to implement the right emergency procedures before
extreme floods is critical to reduce their possible hazardous consequences. This
process can benefit from a runoff forecast model driven by QPFs provided by a
mesoscale model and an ensemble prediction system. That is why this study as-
sesses the use of a MM5 model and the PV-gradient ensemble forecasts to force
the HEC-HMS runoff model, focusing on four intense rainfall episodes which re-
sulted in flood events of different spatial and temporal scales over the Llobregat
medium size river basin. These kinds of intense precipitation events, often highly
localized and convectively driven, present short recurrence periods in the Spanish
Mediterranean area and deserve particular attention.

The MM5 model is nested within the ECMWF large-scale forecasts in an attempt
to reproduce an operational hydrometeorological context. The PV-gradient en-
semble forecasting system is also run for each case study. The performance of the
control/non-perturbed QPFs has been evaluated from a comparison of the forecast
and observed rainfall volumes in space and time over the sub-basins by means of
a set of continuous verification scores. On the other hand, the probabilistic QPFs
have been evaluated following the same procedure, but using a set of categori-
cal verification indices. This methodology allows to assess the performance of the
forecast rainfall patterns at the catchment scale. The one-way coupling between
the meteorological and hydrological models has been regarded as a validation tool
as well.

Most of the deterministic quantitative precipitation forecasts show significant de-
ficiencies over the Llobregat river basin in terms of the rainfall amounts, their
timing and localization. Obviously, these deficiencies have a major impact on the
one-way coupling between the meteorological and hydrological models. Our ensem-
ble strategy succeeds in reducing these biases at the analyzed hydrometric sections
(Castellbell, not shown here, and Sant Joan Despí, partially shown), for most of
the hydrometeorological episodes. However, the probabilistic approach indicates
a better achivement of pre-defined theoretical warning runoff thresholds for only
the 17-18 December 1997 case (not shown). It is worth to note that due to the
restricted number of important floods available in the databases, the procedure
presented here has been applied to a limited number of cases but representa-
tive of different dynamical atmospheric situations bearing important precipitation
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amounts.

The value of using an EPS that accounts for the intrinsic uncertainties in initial
and boundary conditions has been well proven. It has also pointed out the high/low
sensitivity of different dynamical and orographic factors to the PV perturbations.
The external-scale meteorological uncertainties have been reflected through mod-
erate spatial and temporal variations of the forecast rainfall patterns as well as in
significant changes of the precipitation amounts.
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Chapter 11

Perturbing the PV field using the

Water Vapor brightness

temperature field as guidance

⇤

In agreement with our previous line of work, a different approach to perturbing
the PV field is implemented in this Chapter. Our goal remains unchanged: to
minimize or even prevent the dramatic consequences on society that the western
Mediterranean high impact weather events cause by improving their mesoscale
numerical forecasts.

This study proposes to modify the potential vorticity (PV) field of the model ini-
tial state taking advantage of the information provided by the water vapor (WV)
channel of METEOSAT-7 satellite. This technique (hereafter PV-WV technique)
uses the known relation between the upper-level PV features and the WV bright-
ness temperature field, under some assumptions, as a guidance to modify the PV
field in order to reduce the mismatch between these two fields.

We have established throughout this Thesis that the uncertainty in numerical
model initial conditions plays a major role in forecasting any event and that the
forecast performance benefits from improvements in the quality of the initial con-
ditions. Extreme weather events can be especially sensitive to the uncertainties of
atmospheric state tampering with their predictability. Many studies have shown

⇤This Chapter is based on a submitted paper Vich, M., R. Romero, E. Richard, P. Arbogast
and K. Maynard, 2012: Perturbing the potential vorticity field in mesoscale forecasts of two

Mediterranean heavy precipitation events. Tellus A, Conditionally accepted.
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that enhancing initial conditions accuracy results in a better forecast (e.g. Rabier
et al. 1996; Nutter et al. 1998; Nuissier et al. 2007). As highlighted in previous
chapters and other studies like Huo et al. (1999); Homar et al. (2003) to cite a
few, forecasts are very sensitive to PV modifications. More precisely, several stud-
ies show that modifying the PV field according to WV imagery has a positive
effect on reducing the forecast error (e.g. Dermitas and Thorpe 1999; Hello and
Arbogast 2004; Guérin et al. 2006; Røsting and Kristjánson 2006, 2008; Manders
et al. 2007; Argence et al. 2009).

11.1 Meteorological description of the events

This study targets the 9-10 June 2000 and 9-10 October 2002 high impact weather
events gathered in our 19-MEDEX events database as a testbed for evaluating the
effectiveness of the PV-WV technique. Both events produced large amounts of
precipitation over Spain and France, up to 223 and 200 mm 24-h accumulated
rainfall, respectively, and presented a similar synoptic situation.

The event of 9-10 June 20001 was characterized by the entrance of an Atlantic
low-level cold front and an upper-level trough that contributed to the generation
of a mesoscale cyclone in the Mediterranean Sea in front of the Catalonia Coast
(northeast Spain; Fig. 11.1). The circulation associated with this mesoscale cyclone
advected warm and moist air towards Catalonia from the Mediterranean Sea. The
combination of the mediterranean air mass at low levels with the cold air aloft is
reflected in Figs. 11.1.b and d as moderate values of convective instability along
the Spanish mediterranean coast. The cyclone induced maritime flow together
with the prominent orography of northeast Spain produced strong convergence
of the water vapor flux in the lower troposphere during the whole episode (same
figures). As a result of this favorable synoptic-mesoscale environment, two long-
lived mesoscale convective systems developed over Catalonia and later merged
and remained quasistationary nearby Barcelona city for nearly 2 hours. A more
detailed diagnostic description of the event, including a sequence of radar images,
can be found in Martín et al. (2007).

1This chapter uses the 9-10 June 2000 event as a case study in combination with another
event and not only as an illustrative example (recall Chapters 6, 8 and 10). Therefore, we need
to describe it more deeply than in previous chapters.
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Figure 11.1. MM5 control forecast from 00 UTC 9 June to 06 UTC 11 June 2000. (left)
Potential Vorticity on the 330 K isentropic surface (dashed line, in PV units), sea level pressure
(continuous line, in hPa), and 6 h accumulated rainfall (color contours, in mm according
to scale) at (a) 9 June at 18 UTC and (c) 10 June at 00 UTC. (right) Water vapor flux
convergence in the 1000-700 hPa (continuous line, contour interval is 1 g m�2 s�1, starting
at 1 g m�2 s�1), convective instability (as measured by the equivalent potential temperature
difference between 1000 and 500 hPa, at intervals of 5�C starting at 5�C; dashed line) and
precipitable water (color contours, in mm according to scale) at (b) 9 June at 18 UTC and
(d) 10 June at 00 UTC.
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Although the event of 9-10 October 2002 (Fig. 11.2) shares many large-scale char-
acteristics with the June 2000 event, some remarkable differences can be high-
lighted. For example, the upper-level though has a longer wave length and remains
negatively tilted with respect to the horizontal wind shear during the episode, the
surface low-pressure area is much larger, spreading over the whole western Mediter-
ranean, and its minimum is located further north (Fig. 11.2.a and c). The resulting
maritime flow and thermal advection over the Catalan coast are weaker, but the
impinging mediterranean winds over the south coast of France, in the form of a
well-defined low-level jet (LLJ), are more notable. The diagnostic indicators sum-
marized in Figs. 11.2.b and d evidence that, with respect to the previous event,
basic ingredients for deep moist convection (large precipitable water, convective
instability and low-tropospheric water vapor flux convergence) are shifted towards
the northeast in this case, affecting mainly the south coast of France.

11.2 PV modifications

Briefly summarizing, the PV field is a useful meteorological parameter to study the
dynamical structures at the synoptic scale thanks to the conservative and invert-
ibility principles (Hoskins et al., 1985). In fact, both principles make the PV field
a suitable tracer of upper-level dynamics, which plays an important role in mid-
latitude synoptic developments. Upper-level positive PV anomalies can be inter-
preted as upper-level disturbances penetrating into the upper troposphere linked
to the undulation of the tropopause. As Santurette and Joly (2002) showed, only
one level of the dynamical tropopause is needed to diagnose upper-level dynamics
if balance in the atmosphere and a monotonic vertical PV gradient are assumed,
generally the 1.5 PVU surface or the PV field on a isobaric surface between 200
and 400 hPa.

The water vapor imagery provided by the 6.3 µm METEOSAT-7 channel is an
important tool for synoptic-scale analyses since it mostly reveals the WV con-
tent in the mid- and upper troposphere. There is a close relationship between PV
distribution and satellite WV images in dynamically active regions, so their joint
examination provides an excellent framework to assess the numerical model be-
havior and/or analyses quality. The key point to our PV-WV technique is that the
dark (light) features in the WV images can be associated to positive (negative) PV
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Figure 11.2. MM5 control forecast from 00 UTC 9 October to 06 UTC 11 October 2002. (left)
Potential Vorticity on the 330 K isentropic surface (dashed line, in PV units), sea level pressure
(continuous line, in hPa), and 6 h accumulated rainfall (color contours, in mm according to
scale) at (a) 9 October at 18 UTC and (c) 10 October at 00 UTC. (right) Water vapor flux
convergence in the 1000-700 hPa (continuous line, contour interval is 1 g m�2 s�1, starting
at 1 g m�2 s�1), convective instability (as measured by the equivalent potential temperature
difference between 1000 and 500 hPa, at intervals of 5�C) starting at 5�C; dashed line) and
precipitable water (color contours, in mm according to scale) at (b) 9 October at 18 UTC and
(d) 10 October at 00 UTC.

anomalies, descending (ascending) motions and low (high) geopotential heights of
the dynamical tropopause. Santurette and Georgiev (2005) details the use of WV
imagery side by side with the PV field, as well as an individual analysis of each of
them.
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Taking advantage of the known relationship between the METEOSAT-7 WV im-
ages and the PV field close to the dynamical tropopause level, some modifica-
tions can be applied to the PV field in the analyses to improve their matching.
These modifications are applied to the dynamical tropopause surface defined by
the height of the 1.5 PVU surface. Following the procedure used in Argence et al.
(2009) and Arbogast et al. (2012) these next steps are followed:

1. Compare the dynamical tropopause (1.5 PVU surface height) with the
METEOSAT-7 WV brightness temperature distribution at the simulation
initial time.

2. Reduce the mismatch by modifying the topography of the dynamical tropo-
pause accordingly.

3. For each horizontal grid point, the new vertical height of the dynamical
tropopause defines a PV correction which is actually the difference between
the original PV value at that height and 1.5 PVU. A 1DVAR method based
on known forecast error statistics is then applied to build a vertical profile
of PV modification over the corresponding grid point.

4. Invert the modified and control (unmodified) PV fields given some mass-
wind balance conditions.

5. Identify the initial perturbation as the difference between the PV-control
and PV-modified inverted fields.

6. Calculate the perturbed atmospheric state by adding this perturbation to
the original model initial conditions.

7. Perform the corresponding numerical run using this improved initial state.

The PV field modifications consist of adding/subtracting PV structures as well as
shifting them to minimize the mismatch between the PV field and the WV bright-
ness temperature. It is also worth to note that these modifications are confined
to the layer between 150 and 500 hPa to target the corrections on the tropopause
topography. The PV inversion technique used in this Chapter is the one presented
in Section 5.2 and used in Chapters 6 and 8 as part of the PV-perturbed ensembles
construction.
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A practical implementation of the PV-WV technique is illustrated in Fig. 11.3.
This figure shows the comparison of the METEOSAT-7 WV brightness temper-
ature and the PV field at 300 hPa for the initial time of the June 2000 case,
calculated using the ECMWF grid analyses. Using the known relationship be-
tween these two fields one can decide how to modify the PV field to improve their
mismatch. The locations of these modifications are indicated in Fig. 11.3 by cap-
ital letters, where G means that the initial PV gradient has been increased and
C that the curvature has been increased to match better the curvature of the PV
feature present on the WV image. An equivalent procedure has been done on the
initial state of the October 2002 case (not shown).

Figure 11.3. Overlap for 9 June 2000 at 00 UTC of the potential vorticity field at 300 hPa
(solid lines, contour interval 2 PVU, above 4 PVU) and METEOSAT-7 water vapor brightness
temperatures (shading, in K according to scale). The letters G and C indicate the locations
where the PV modifications are applied (see the details on the text).
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11.3 Results examination

Once the agreement between PV field and WV brightness temperatures is strength-
ened by modifying the PV field accordingly, this modified field is incorporated into
the model initial state using the PV inversion technique cited before. Then two
forecasts per event are run, the non-perturbed and perturbed, using the same MM5
configuration used on all PV-perturbed ensembles runs. In this study, the obser-
vations come from the climatological raingauge networks maintained by Météo-
France and AEMET.

The results obtained after implementing the PV modifications are shown in Fig. 11.4
for the June 2000 case and in Fig. 11.5 for the October 2002 case. For example, in
comparison with Fig. 11.1, Fig. 11.4 shows that the PV gradient around the trough
at the designed points has been increased, as well as a more pronounced curvature
on the western flank of the trough. Although these changes could be considered
irrelevant and, in fact, the meteorological scenario has been essentially unaltered
at synoptic scale, the mesoscale details do have a tangible impact on the forecast
precipitation (see also Fig. 11.6). Comparatively, the PV modifications dictated
by the PV-WV visual mismatch in the October 2002 case are larger (compare the
Fig. 11.6.a-c evolution with the Fig. 11.2.a-c sequence) but the resulting precipita-
tion forecast turns to be less sensitive to the initial state perturbation (Fig. 11.7).
These results are consistent with the findings of Romero et al. (2005) who, based
on perturbed numerical simulation of mediterranean heavy precipitation events,
concluded that cases driven by sub-synoptic cyclones (like the June 2000 event)
are more sensitive to the uncertainties of the precursor upper level disturbance
than those cases governed by a mediterranean LLJ embedded in a large-scale low
(e.g. October 2002).

Figs. 11.6 and 11.7 show the 30-54 h forecast accumulated rainfall for the non-
perturbed and perturbed runs and the corresponding observation, for each case.
The perturbed simulation of both cases present a forecast rainfall field closer to
the observed field than the non-perturbed one, even though it does not com-
pletely match the observed pattern. A closer examination shows that the highest
rainfall value for the June 2000 case predicted by the perturbed run is located
further southeastwards than in the non-perturbed forecast and nearer to the ob-
served maximum (Fig. 11.6). A similar affirmation is true for the October 2002
case (Fig. 11.7), where the maximum rainfall center (southern tip of the French
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Figure 11.4. As in Fig. 11.1 once the potential vorticity modifications are applied (a, b) 9
June at 18 UTC and (c, d) 10 June at 00 UTC.

Riviera) from the perturbed run is shifted northeastwards with respect to the
non-perturbed and nearer to the observed maximum.

A different approach for evaluating the improvement accomplished by the PV-WV
technique is to use objective verification scores and compare their values with the
results obtained for the same case studies by the PV modifications used on the
PV-perturbed EPSs presented in Part II. Briefly, the PV-gradient ensemble applies
perturbations in the areas corresponding to the PV zones of most intense values
and gradients while the PV-adjoint perturbs in the MM5 adjoint model calculated
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Figure 11.5. As in Fig. 11.2 once the potential vorticity modifications are applied(a, b) 9
October at 18 UTC and (c, d) 10 October at 00 UTC.

sensitivity zones. Both use a PV error climatology to randomly increase/decrease
the intensity and displace the PV features on the regions highlighted by each
method.

The ROC areas obtained by the PV-WV technique and the two ensembles for
both case studies (Fig. 11.8) are very skillful since all forecasts lie well above 0.7.
Moreover, on both events, the non-perturbed and the PV-WV perturbed runs lie
within the range of both ensembles, the perturbed one being more skilled than
the non-perturbed run. It is worth mentioning that these results correspond to
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Figure 11.6. Accumulated rainfall (color, in mm according to scale) between 10 June 2000 at
06 UTC and 11 June 2000 at 06 UTC. a) Non-perturbed run, b) PV-WV run and c) Observed.

the 30-54 h forecast accumulated rainfall, but analogous results were found for
the 06-30 h forecast period (not shown). The same behavior was observed on the
rest of verification scores explored, therefore only the 30-54 h rainfall verification
results are shown.

The results of comparing the observed and forecast distributions in terms of quan-
tiles by means of a Q-Q plot (Fig. 11.9) show that, as in the ROC area results, the
non-perturbed and the PV-WV perturbed runs lie within the range of both ensem-
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Figure 11.7. Accumulated rainfall (color, in mm according to scale) between 10 October
2002 at 06 UTC and 11 October 2002 at 06 UTC. a) Non-perturbed, b) PV-WV run and c)
Observed.

bles, being the perturbed forecast more skilled than the non-perturbed run. Each
event falls into a different region of the diagram, the June 2000 case overpredicts
the observed precipitation while the October 2002 case tends to underpredicts it.

The Taylor diagram diagrams of both events (Fig. 11.10) show the same tendency
seen in the other verification scores, that is the non-perturbed and the PV-WV
perturbed results are contained within both ensembles results. One of the differ-
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ences between the two events is the pattern displayed by the whole collection of
runs in the Taylor diagram, the June 2000 pattern is more elongated than the Oc-
tober 2002 cluster of positions meaning that the almost all June 2000 runs exhibit
a RMS difference around 9 mm, while the RMS difference shown by the October
2002 runs range from 8 to 18 mm. Another difference between the cases is in the
correlation coefficient, on the June 2000 events it ranges from 0.4 to 0.7, higher
values that those obtained for the October 2002 event (from 0.15 to 0.55). Even
though the observed precipitation field is different in each event, both exhibit a
similar standard deviation almost 10 mm on the June 2000 event and around 9 mm
on the October 2002 case. The forecasts standard deviations range from 0 to 15
mm for the June 2000 case and from 8 to 18 mm for the October 2002 event. It
is also worth mentioning that the statistics displayed on the Taylor diagram are
negatively affected by the discontinuities, noise and outliers typically present on
the rainfall field.
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Figure 11.8. ROC area range for the PV-gradient and PV-adjoint ensemble members, where
the empty square corresponds to the non-perturbed run and the filled square to the PV-WV
perturbed run. a) June 2000 event and b) October 2002 case. The vertical lines represent these
ROC area ranges where the extremes, maximum and minimum, of the range correspond to
the ensemble member associated with the highest/lowest value of ROC area.
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Figure 11.9. Q-Q plot for the PV-gradient and PV-adjoint ensemble members, the non-
perturbed and the PV-WV perturbed run. a) June 2000 event and b) October 2002 case. The
diagonal line represents the perfect score and the region below (above) the diagonal indicates
that the forecast underestimates (overestimates) the observation.
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Figure 11.10. Taylor diagram for the PV-gradient and PV-adjoint ensemble members, the
non-perturbed and the PV-WV perturbed run. a) June 2000 event and b) October 2002 case.
The filled square corresponds to the observations. The perfect score is obtained when the data
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152



Chapter 11. Perturbing the PV field using the Water Vapor brightness temperature
field as guidance

11.4 Conclusions

This Chapter implements a PV modifying technique applied on the initial state
of two Mediterranean high-impact weather events and tests its impact on the
corresponding mesoscale forecasts. The applied technique is based on correcting
the mismatch between the upper-level PV field and the observed WV brightness
temperature given by the METEOSAT-7 satellite. The forecast precipitation fields,
our feature of interest due to its regional socio-economical impact, obtained after
perturbing the initial state show a clear improvement compared with the non-
perturbed forecast, even though there seems to be still room for improvement on
the two selected events.

The examined verification scores also reflect the improvement in skill when the ini-
tial state of the event is perturbed using the PV-WV technique described. In fact
this improvement is observed on both events and on all the verification scores pre-
sented, the perturbed run always achieves a higher score than the non-perturbed
run. When the perturbed and non-perturbed runs are compared with the PV-
adjoint and PV-gradient ensemble members, they remain within the range of both
EPS members scores and are statistically indistinguishable.
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In this Thesis, we have focused on the characteristic high impact weather events
that often affect the western Mediterranean region. To improve the capability
in forecasting these phenomena is of paramount importance, provided the high
impact these events have on our society.

We have developed this task by designing three different ensemble prediction sys-
tems and by testing them for this type of events. The multiphysics ensemble fo-
cuses on the uncertainties derived from model deficiencies while the PV-gradient
and PV-adjoint ensembles target the uncertainties of the initial and boundary
conditions. These PV-perturbed ensembles exploit the connection between PV
structures and high impact weather events associated with cyclones. This fact
permits to implement a simple perturbation method based on perturbing a single
variable, i.e., the PV field, that ensures consistent perturbations of all the me-
teorological fields without compromising the mass-wind balance. In addition, to
ensure consistency between the PV perturbations and the PV field uncertainty
range we have developed a PV error climatology that assesses these PV errors
present in the initial and boundary conditions. The two PV-perturbed ensembles
differ by the fact that, the PV-gradient ensemble basically perturbs the PV zones
of most intense values and gradients (in essence a subjective choice based on our
experience) while the PV-adjoint ensemble perturbs along the sensitivity zones
calculated by the MM5 adjoint model (an objective method).

During the ensembles verification, the precipitation field picked our interest be-
cause of its direct impact on society. The downside of this choice is that the
precipitation field has both strong gradients in space and rapid variations in time,
and is observed over irregularly spaced networks. These facts cause the verification
procedure to be difficult, i.e., it is hard to obtain good verification scores when
dealing with precipitation. In addition, we cannot forget that we are dealing with

155



Conclusions and further work

extreme events often linked with observational sample problems and with the dif-
ficulties of the model to forecast extreme precipitations. The verification testbed
is basically fed by the MEDEX cyclones database. All the used cyclones caused
heavy precipitation over the western Mediterranean and were often accompanied
by strong winds.

In spite of the aforementioned difficulties, the verification procedure ratified the
advantages of an EPS over a deterministic forecast and highlighted the skill of
all three ensembles to provide a useful probabilistic prediction for our testbed.
It has also pointed out that the PV-gradient EPS performs slightly better than
the multiphysics ensemble. Regarding the two PV-perturbed ensembles, we find
that the high computational cost of the PV-adjoint ensemble (which implies run-
ning the MM5 adjoint model for each simulation day) versus the low cost of the
PV-gradient is not compensated later in ensemble skill. Even though both PV-
perturbed EPS perform more than adequate, the PV-gradient EPS is generally
more skillful than PV-adjoint ensemble. This fact turns the PV-gradient ensemble
into a more favorable strategy since it provides a more useful forecast than the PV-
adjoint at a better cost, at least when our testbed is concerned. This conclusion
is not surprising if we take into account that, using a similar testbed, Homar and
Stensrud (2008) concluded that the adjoint-estimated sensitivity is comparable or
even slightly inferior to subjective (gradient and human) sensitivity estimates.

To further explore the potential of the three developed ensembles, we have tested
their capabilities on three different applications. Next, we recapitulate our findings
regarding these applications:

1. Using the multiphysics ensemble to feed a superensemble calibration did not
result as profitable as expected. For our testbed, the results show that a
cheaper approach like a bias corrected ensemble mean is as beneficial as the
superensemble one. We propose several further studies that may help to track
down the reasons behind these results. For example, to repeat the experi-
ments feeding the superensemble with a multimodel ensemble in which its
members are less correlated than on multphysics ensemble by construction.
Another possibility is to redo the experiment using the ERA-INTERIM fields
as initial and boundary conditions in order to avoid any possible influence
of the updates undergone by the ECMWF forecasts between the training
period and earlier MEDEX cases.
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2. In the second application, we used the PV-gradient ensemble to introduce
the initial and boundary conditions uncertainties into a hydrometeorologi-
cal forecasting chain. This procedure gave very successful results. The hy-
drometeorological runoff simulations driven by the quantitative precipitation
forecasts provided by the PV-gradient ensemble generally performed better
than deterministic simulations. This is so because an ensemble, by defini-
tion, is better equipped to deal with the intrinsic difficulties in determining
accurately the intensity, timing and location of the precipitation.

3. The third application was designed to further explore the potential exhibited
by the PV perturbing approach. To do so, we chose a method that modifies
the PV field using the METEOSAT-7 satellite water vapor (WV) channel
information to decide where and in which amount the PV field has to be
perturbed. This technique proved to be worthy on both examined events.
The PV-WV perturbed run performed better than a non-perturbed run.
Moreover, when compared with the PV-gradient and PV-adjoint ensembles
members, the PV-WV technique run remains within the range of both en-
sembles members scores and it is statistically indistinguishable. In the future
it seems appropriate to explore whether the PV-WV technique outputs lie
systematically within the range of best ensembles members and whether this
technique can be used to generate additional ensemble members that would
increase the ensemble spread. These future checks should be done statisti-
cally over a large number of events. In this sense, we should at least repeat
the experiment for the whole set of MEDEX cases used in the PV-gradient
and PV-adjoint ensemble generation.

In view of all the results summarized above, a plausible future step would consist
in designing a hybrid approach as, e.g., that in Meng and Zhang (2007) where
different physical parameterizations are introduced after perturbing the initial
state. An ensemble made up of the multiphysics, PV-gradient and PV-adjoint
ensemble members should increase the accuracy and usefulness of the ensemble by
creating greater divergence in the ensemble trajectories (see, e.g., Stensrud et al.
(2000), among others). On the downside, this mixing of uncertainty sources makes
it very difficult to investigate each error type separately, as done here. Another
feasible future step is to expand the current testbench; statistically speaking, an
increase in case studies leads to more robust and general conclusions.
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Regarding the PV perturbation line of work, we should continue exploring addi-
tional ensemble generation methods based upon perturbing the initial and bound-
ary conditions through the PV field. After this Thesis experience, we suggest a PV
perturbation method that targets the precursor upper-level trough characteristic
of the mid-latitude cyclonic situations as in our PV-gradient ensemble, since it
was shown that these are the most fruitful dynamical structures. Another stra-
tegy may be based on flow dependent PV perturbation amplitudes. Our current
set up can be categorized as partially flow dependent, in the sense that while the
perturbed zones depend on the situation/event, the PV perturbation amplitudes
do not. Instead, they rely on a fixed climatology, i.e., the PV error climatology.
Flow dependent PV perturbations (both in amplitude and location) will require
an appropriate estimate of the PV error for each case study. Some ideas on how to
obtain this PV analysis error are: 1) to use a proxy like the standard deviation of
an operational ensemble, for example the one run by the ECMWF, and 2) to use
a data assimilation system that by definition will provide a flow dependent initial
time PV analysis error.

Finally, bearing in mind a more operational framework, campaigns like the forth-
coming HyMeX 2012 Special Observation Period (SOP; see http://www.hymex.

org for details) provide an excellent real-time framework to further explore the
capabilities and application of perturbation techniques like the ones studied here.
Moreover, at the time this Thesis was finished, we have already begun to im-
plement our three ensembles operationally. Once they are ready, the results will
be added to the UIB Meteorology Group-generated daily forecast products, and
publicly available on a web-page similar to http://mm5forecasts.uib.es/.
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