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No quiero olvidarme de mis compañeros de grupo de investigación, algunos
que han continuado en el mundo de la investigación y otros que han decidido
seguir otros caminos: Isaac Lera, Mehdi Khouja, Jaume Vicens y Pere Pau
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Abstract

The performance of the web caches has been reduced in Web 2.0 applica-
tions and, particularly, in content aggregation systems because of the high
customization of the web pages and the increase in the number of content
updates. These two facts result in low re-usability among the responses of the
user requests. This problem can be solved by reducing the granularity of the
contents stored and managed in the web cache. Thus, instead of caching the
whole web pages, it is better to cache fragments of the web pages.

If the number of fragments of a web page is very high, the overhead of the
assembly of fragments is also very high in comparison with the total latency
time of the web page. It is important to balance the number of fragments in
order to maximize the hit ratio improvements and minimize the assembling
times.

The main objective of this thesis is to propose a system that adapts the
content fragments of the web pages in order to reduce the user-perceived
latency. This performance improvement is achieved by increasing the hit ratio
and reducing the assembling times. The algorithm in charge of the adaptations
is based on the values of the content characterization parameters of the web
pages (structure and size) and in the user behaviour (update and request
rates). The fragment designs are adapted as the content changes occur.

This thesis describes a general framework to deploy, in a content aggrega-
tion system, a solution based on the adaptation of the page fragments. The
framework defines the interfaces, the changes in the web application tiers, and
the new modules and interfaces to be created. The definition of the framework
keeps open the way to implement the adaptive core, and it can be based on a
wide range of techniques.

We have implemented the adaptive core of the system using decision trees.
These decision trees have been obtained as the result of a knowledge discovery
process. In this process, performance and characterization data have been
mined. The data have been obtained from the emulation of a synthetic web
content page model. This data mining process is done in an off-line training



X Abstract

phase in order to reduce the resource usage. This last feature is very important
to generate the lowest overhead in the implementation of the adaptive core.

The proposed framework and the particular implementation of the adap-
tive core have been evaluated in a set of experiments using real web content
models. The evaluation is done in terms of user-perceived latency, cache hit
ratios, and CPU consumption.



Resumen

El rendimiento de las caches se ha visto reducido en las aplicaciones basadas
en Web 2.0 y en los sistemas de agregación de contenido. Esto se debe a los
altos grados de personalización de las páginas web y a que las actualizaciones
de los contenidos son más frecuentes. Estos dos aspectos provocan que el
grado de reutilización entre las respuestas de las peticiones de los usuarios sea
muy bajo. Este problema se puede resolver reduciendo la granularidad de los
contenidos que son almacenados y gestionados de forma independiente por la
cache web. En lugar de cachear las páginas web completas, es mejor cachear
fragmentos de dichas páginas.

Si el número de fragmentos de una página web es muy alto, esta experi-
menta grandes sobrecargas por el tiempo consumido en la unión de los distin-
tos fragmentos. Es importante equilibrar el número de fragmentos para que
se obtenga el mayor porcentaje de aciertos de la cache junto al menor tiempo
posible de unión de los fragmentos.

El objetivo más importante de la tesis es proponer un sistema que adapte
los fragmentos de los contenidos de las páginas web para conseguir reducir la
latencia observada por los usuarios. Esta mejora se basa en incrementar los
aciertos de la caché y minimizar los tiempos de unión de los fragmentos. El
algoritmo encargado de adaptar estos diseños de fragmentos basa sus deci-
siones en los valores de los parámetros de caracterización de los contenidos
(estructura y tamaño) y en el comportamiento de los usuarios (velocidad de
peticiones y actualizaciones). Los diseños de los fragmentos se van adaptando
a medida que se producen los cambios en los contenidos.

Esta tesis describe un framework general para implementar una solución
basada en la adaptación de los fragmentos de las páginas en sistemas de
agregación de contenidos. El framework define las interfaces, los cambios en
los niveles de la aplicación web y los nuevos módulos e interfaces a desarrollar.
Los detalles de la implementación del algoritmo que se encarga de adaptar los
fragmentos, el núcleo adaptativo, no son definidos por el framework. De esta
forma, el núcleo del sistema puede ser desarrollado mediante el uso de un gran
número de técnicas.



XII Resumen

Nosotros hemos llevado a cabo una implementación particular de este
núcleo mediante el uso de árboles de decisión. Estos árboles han sido obtenidos
como resultado de un proceso de extracción de conocimiento. En este proceso,
se ha utilizado datos sobre el rendimiento y las caracterésticas del contenido.
Estos datos han sido obtenidos de una emulación donde se ha utilizado un
modelo sintético de las páginas de contenido. El proceso de data mining se
ha llevado a cabo en un fase de training llevada a cabo previamente a la
ejecución del sistema. De esta forma, evitamos que, en tiempo de ejecución,
se produzcan sobrecargas generadas por el proceso de extracción de la infor-
mación. Es importante que la implementación del núcleo adaptativo no genere
sobrecargas importantes sobre el sistema web.

El framewok y la implementación particular del núcleo, utilizando data
mining, han sido evaluadas mediante un conjunto de experimentos donde se
han utilizado modelos obtenidos de webs reales. La evaluación se basa en el
estudio del tiempo de latencia observada por el usuario, los aciertos de la
cache, y el consumo de CPU.
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1

Introduction

This thesis demonstrates that the user-perceived latency of a content aggre-
gation web system which uses web caching can be reduced by creating and
adapting fragments of the content of the web pages. By the creation of these
fragments, the metrics of the web cache are improved (hit ratio). However,
overhead times, corresponding to the assemblies of the content fragments, also
appear. Our main objective is to find the content fragments that balance the
cache improvement with the assembling losses. Thus, we have researched the
next issues: the definition of a general architecture for content aggregation sys-
tems in which the content fragments can be adapted as the content changes;
the study of the most suitable inputs for the algorithm in charge of adapting
the fragments; the definition of the guidelines to use data mining techniques
and emulation in an off-line phase to extract the knowledge required to adapt
the content fragments of the web pages; and, finally, the implementation of a
real web system in which decision trees are used to represent the knowledge
extracted in the training phase and to implement the classification algorithm
of the adaptive core of the framework.

1.1 Motivation

Web caching has been widely used and many research works have been ad-
dressed to improve it. But the emergence of Web 2.0 has resulted in new
problems and new challenges in the field of web caching. Web 2.0 applications
are characterized by the high customization level and the high update rates
of the content. These new features have caused that the performance of web
caches has been considerably reduced due to the lack of re-utilization of the
contents stored in the cache.

It is well-known that the solution of the problem of content re-usability of
web caches is to reduce the granularity of the cacheable units, storing frag-
ments of the content instead of whole web pages. This granularity reduction
generates an increase of the web cache hit ratio. But the assembling process
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adds overhead times to the user-perceived latency. If the number of fragments
reaches high values, the increases of the hit ratio will be counteracted by the
losses of the assembling process.

Content aggregation systems are Web 2.0 systems in which the users are
allowed to create their own web pages by the aggregation of small pieces of
content gathered from content providers. If each content aggregation is stored
in the cache as independent fragments, the overhead time generated by the
assemblies will be very long. It is important to find a suitable fragment design
which balances the benefits of having a high number of small fragments with
the benefits of having few fragments of big size.

The hypothesis of this research work is that the user-perceived latency of
a content aggregation system can be reduced by adapting the content frag-
ments that are managed and stored independently by the web cache. The
process of adapting the content fragments is based on classifying the aggre-
gation relationship of a pair of content aggregation elements, by indicating
if both contents are assembled in the web server, creating a unique content
fragment, or they are assembled in the web cache, creating two independent
content fragments. These classification decisions should be done using inputs
which are easily gathered from the system. The classification algorithm, in
charge of deciding the assembly point of each pair of content elements, should
not add important overheads to the system. The knowledge to implement
the classification algorithm should be obtained in an off-line training phase.
And, finally, the extracted knowledge should be expressed with some type of
structure or representation that can be used by the classification algorithm
without generating a high overhead.

The main objectives of the thesis, which emerge from the hypothesis enun-
ciated in the previous paragraph, are:

• To establish a methodology, based on phases, to address the problem of
adapting the designs of the fragments to reduce the user-perceived latency
in content aggregation systems.
• To find a group of parameters of the content elements, fragment elements

and web pages which can be used as input of the classification process of
the aggregation relationships.
• To find a method to train the classification algorithm in an off-line phase.

The training should be done using performance and content characteriza-
tion data extracted from the execution of a synthetic content page model
in the content aggregation system. To find a suitable representation for
the extracted knowledge.
• To define general guidelines for the creation of the synthetic content page

model to be emulated.
• To define a general framework to adapt the fragment designs of the web

pages, by determining the inputs and outputs of the adaptive core, the
interfaces with the tier of the content aggregation systems, and the changes
in the tiers and in the interfaces between tiers.
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• To implement an example of the proposed framework as an extension of
some commercial web application.
• To evaluate the validity of the proposed framework by the execution of

experiments in the developed tool, using web content model extracted
from real web sites.
• To compare our solution with similar proposals and with traditional cache

schemes.

1.2 Outline

Hence, we have divided this document into five main parts: Background, Re-
search contributions, Validation, Conclusions and Appendixes and references.
The first part helps the reader to understand the related work, the differences
between other works and our own research and its motivations. The second
and third parts include the contributions, ideas and results of our research.
Finally, the two last parts present the conclusions, future works, references
and complementary information.

• Part I: Background In the first part, we have included a general view
of content aggregation systems. We have explained their architecture and
given details about web cache performance limitations. We have included
two surveys, one about fragment-based caching approaches and another
one about the use of data mining to improve the web performance.
• Part II: Research contributions The second part of this work has

three chapters. Chapter 3 includes a description of a model for content
aggregation systems and the study of the relationship between the per-
formance of the web cache, for a given fragment design, and the char-
acterization parameters of the content elements of the fragments. In the
next chapter, Chapter 4, we explain the implementation of the core to
adapt the fragment designs, the algorithm in charge of determining the
content fragments. An exploration of the benefits and drawbacks of three
possible implementations of the core is also done in the chapter. Finally,
we present, in Chapter 5, the details of a general framework to adapt the
content fragments in order to improve the user-perceived latency. The de-
tails about the integration in a content aggregation system are also done.
The work done in the development of an example of this framework in a
real web application is also presented.
• Part III: Validation The third part of the dissertation explains all the

details about the design and execution of the experiments which evaluate
the validity of our contributions. The first of the three chapters is about
the design of the experiments (Chapter 6). The next one, Chapter 7 in-
cludes the analysis of the cache performance and latency results of the
experiments. Finally, Chapter 8 is devoted to study the overhead of our
solution by the analysis of the server workload generated by the software
of our framework.



4 1 Introduction

• Part IV: Conclusions The chapter of this part contains the conclusions
of our dissertation, open problems and further research work.
• Part V: Appendixes and references The last part includes the ap-

pendixes and the bibliography. The appendixes are devoted to present all
the decision trees that have been used in the evaluation of the research,
the details of the framework algorithm which we have compared our re-
sults with, the details of the crawled real web sites and the setup to create
the synthetic content page model.
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Background
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Content aggregation systems

Wit is the sudden marriage of ideas which before
their union were not perceived to have any relation.
—Mark Twain—

In this chapter, the general architecture of content aggregation web appli-
cations (or mashups) is introduced and the performance limitations on this
type of systems are explained, more precisely, the problems that these new
applications generate in traditional web caching techniques.

The chapter also includes the summary of the most significant techniques
of web caching. The significance of the techniques is based on the relation and
similarity to our approach. These reviews explain that some of the solutions
for the performance limitations can be solved by reducing the size of cacheable
objects.

2.1 Introduction

In order to start the explanation of our research work, the background in the
field of web caching and current web system should be explained. Therefore,
we are going to introduce the details of web caching architectures in traditional
and current web systems.

Current web systems have new performance limitation, mainly web caching
techniques, because of the increase of the content update rates and the cus-
tomization level of the web pages. These two facts generate a reduction in the
cache effectiveness. Important research works should be done in this direction.

Research efforts in web performance and web caching have been done since
web applications appeared. New paradigms of web usage and new web data
flows have been created during the last years. These changes have caused
that an important number of performance techniques got useless. We have
addressed our research work to create a framework in which traditional per-
formance tools are adapted to the requirements of the new web paradigm,
commonly known as Web 2.0.

This chapter is devoted to explain, in a conceptual way, the architecture
of content aggregation systems, and how the performance changes for each of
these architectures.



8 2 Content aggregation systems

The chapter is organized as follows: Section 2.2 outlines the general archi-
tecture of content aggregation systems. Section 2.3 is about the performance
issues for web caching in this type of applications. Section 2.4 includes the
reviews of some significant, previous and related research works, focussing on
the use of data mining techniques in order to improve the performance of web
caching.

2.2 Mashup and content aggregation architecture

Content Aggregation Systems (CAS) are applications in which users are able
to create their own web pages by the aggregation of contents. These applica-
tions differ from other Content Management Systems (CMS) in that users do
not create the content, they only set up the web pages by aggregating content
from public services and content sources (Web Services, RSS,. . . ). Therefore,
the web pages retrieve content from distributed sources and assemble it in a
single web page.

CAS applications do not only differ from other Web 2.0 applications in the
way that the users use them. The features of CAS result in that web pages
are updated more frequently and they are more customizable. Web pages have
high update rates because the content is retrieved from different sources and
the web page needs to be updated every time a single source changes. The
web pages of these systems also have high customizable degree, because each
user sets up his own pages. The pages created by different users cannot be
re-used between them.

There are a lot of web applications that fit in the definition of Content
Aggregation Systems: social networks, web blogs, feed aggregation tools,. . . We
have focused our study on the next types: news sites (newspapers web sites),
customized dashboards publishing platforms (PageFlakes), and personal start-
pages or web portal (Yahoo! Pipes, iGoogle, Netvibes).

The well-known three-tier architecture of web environments is also used
for Content Aggregation Systems. This common schema is usually extended
with other tiers in order to improve the system, for example, in terms of
performance. We are specifically interested in the case of extending the basic
scheme by the use of a web cache tier. Therefore, we consider a four-tier
architecture: data sources, web application, web cache and user presentation
(Figures 2.1 and 2.2). A deeper explanation of each tier is done in the next
paragraphs.

CAS systems retrieve content from data sources and assemble them to
create the final user web page. The data sources are content web services
which usually correspond to remote servers, geographically distributed. The
web application retrieves independent content from these servers. We called
content elements (CE) to these independent and indivisible contents.

HTTP requests are used to retrieve content elements. We call them content
requests in order to distinguish them from other request types (user requests,
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template requests, etc.). The web server and the web cache are the only ele-
ments which can create HTTP requests to retrieve single content elements.

CAS systems use local databases to store some data. They need to store
the information of the users of the system, the user web page setups —which
contents are aggregated in which pages—, the templates of the web pages and,
in some rare cases, content elements. The web application server is in charge
of the process of retrieving templates from local databases and the content
elements from remote content sources.

The content elements are assembled in some of the tiers of the architecture
in order to create the user web pages. The CAS system is called mashup when
the assemblies take place in the user clients or browsers. However, when they
take place in some of the tier of the server side, the system is called portlet.
For the last one, the web application server and the web cache proxy are two
usual assembly points. Depending where they take place, the cache would be
able to manage and to store whole and indivisible web pages, or otherwise,
content elements.

XML
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RSS

Third-party
AppServers
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App
ServerWeb

Cache

User
request

Page
request

Content
requests

Database
access

Template

Web Page

CE CE CE
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Fig. 2.1. Architecture of a content aggregation system in which the content assem-
blies take place in the application server.

On the one hand, when the assembling process is done in the web proxy
cache, the cache is able to store content elements (CE) independently. Conse-
quently, when the proxy creates a web page to respond a user request, it only
requests to the web server the content elements that are not locally stored
—because they have been invalidated, they have not been requested before
or the template of the user has been modified—, the other ones are obtained
from the cache local store (Figure 2.2).

On the other hand, when the assemblies take place in the web application
server, if the web page is invalidated, the cache needs to request the whole
web page to the server (Figure 2.1). This invalidation takes place when a
single content element, or the template, changes. Architectures with different
assembly points have advantages and drawbacks and they are explained in
Section 2.3.
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Fig. 2.2. Architecture of a content aggregation system in which the content assem-
blies take place in the cache server.

When the assembling process is done in the web application server, the
web proxy cache is in charge of managing user requests. When a user request
arrives to the proxy cache, this last checks if a temporally copy of the web
page is stored in the cache: if it is stored, the answer to the user request
is generated immediately; on the contrary, the proxy cache forwards a page
request to the web server, and this is in charge of retrieving the template of
the web page and the individual content elements in order to create the whole
web page (Figure 2.1).

When the assembling process is done in the web proxy cache, this receives
the user request and it forwards a template request to the web server, which
retrieves the template data from the local database and sends it to the web
cache. The web cache analyses the template and generates the single content
requests, which are sent to the web server to be retrieved from remote sources.
The web server responds with the contents which are finally assembled in the
web cache (Figure 2.2).

In the case of assembling the content elements in the proxy cache, the
web server needs to tell the cache which content elements are part of a web
page and how they are identified and requested. ESI (Edge Side Includes) is
the standard de facto which defines how content elements are included in a
general template. ESI is based on the use of special tags that are interpreted
by the cache proxy and translated into the appropriate action. There is a
tag for inclusion of content elements (<esi:include src=""/>). The content
elements are identified by an URL (Uniform Resource Locator) and the cache
requests them, to the web server, using this URL. Listing 2.1 shows an example
in which the ESI tags include four content elements in a HTML web page
template. The ESI tags indicate the URLs which identify the four content
elements and that are used to request them.

The next section (Section 2.3) has the details of the performance issues of
both assembling scenarios, assembling the content elements either in the ap-
plication server or in the cache proxy. We have shown that the performance of
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Listing 2.1. Example of ESI tags included in a HTML file.

<body>
<h1> t i t l e 1 </h1>
<es i : include src=” http ://www. domain . com/ cnt e lem1 . html”/>
<es i : include src=” http ://www. domain . com/ cnt e lem2 . html”/>
<h1> t i t l e 2 </h1>
<es i : include src=” http ://www. domain . com/ cnt e lem3 . html”/>
<es i : include src=” http ://www. domain . com/ cnt e lem4 . html”/>

</body>

the web cache depends on the place in which the content elements are assem-
bled [36]. One of the contributions of this thesis is to create an architecture
with an intermediate assembling scenario, where some of the content elements
are assembled in the application server and other ones in the cache, in order
to achieve a higher performance than in the case of the two basic assembling
scenarios.

2.3 Performance issues

The performance of a web cache is based on the re-usability of previous re-
quests. The web cache temporally and locally stores the response of the web
application server for a given page request. If this same request arrives before
the page changes, the cache responds with the local copy. In this way, it is
reduced the workload over the web server and the user-perceived latency.

The most common performance metrics for web cache performance are hit
ratio, byte hit ratio, and latency (or response time). A hit occurs when a page
request is responded with the local copy in the web cache. The hit ratio is
the percentage of hits by the total number of page requests. Byte hit ratio
considers the percentage between the size of all the hits and the size of all the
requests. The user-perceived latency is the time between the user requests a
web page and the response for the request is received. This time is usually
shorter with high hit ratios, but not always as we explain in Section 2.3.2.

Web responses are re-used, in order to increase the hit ratio, in two cases:
when a user requests, at least, twice the same page; when different users re-
quest the same page. The first case occurs when the page content has not been
updated between two requests. Therefore, low content update rates improve
hit ratios. The second case occurs when the same web page is available for
different users. Therefore, customizable web systems do not help to improve
the cache performance.

CAS are systems in which the web pages are very customized —each user
sets up his own web page— and in which the page content updates are very
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usual —the page content is generated from a set of contents, so the update
frequency is the sum of all the single update frequencies—. Web caches are
not useful in this type of web systems, because it is very unlikely to re-used
web responses.

Systems in which the contents have high update rates and high customiz-
able level reduce the performance of web caching techniques. This is the main
drawback to apply caching in current web systems and the main motivation of
our research. Almost all the types of current web applications have high levels
of update rates and user customization. Different solutions have been used to
counteract these limitations in web systems. We have focused our background
study mainly on the techniques based on the creation of fragments of web
contents, but we have also taken into account others type of solutions in our
background study.

2.3.1 Fragment-based caching approaches

Web caching reduces its performance in systems with high update rates and
user customization levels. It is well-known that a solution for this problem is
to reduce the minimum cacheable unit [65, 60, 91, 92]. The cache is able to
manage fragments of the web pages instead of complete web pages. We have
called them as fragment-based web caches.

The process of fragmenting the web pages to improve the performance can
be applied on all the tiers of the web architecture. These tiers correspond
to the data, application or presentation. In any of them, the objective is to
reduce the cost of generating dynamic web pages, mainly in user-customized
scenarios.

The fragment-based techniques for the presentation tiers usually work by
fragmenting the HTML code in different parts which can be assembled in
different places: the server, the edges of the content delivery networks (CDNs)
or, even, in the user systems. We differentiate two groups: the fragment-based
techniques that analyse the HTML to detect fragments, and the techniques
that modify the web applications to manage fragments.

In the first set of techniques for the presentation tier, Ramaswamy et
al. [72, 73] proposed a technique to detect fragments directly in the HTML
of the web pages. It is a scheme to automatically detect and flag fragments
that are cost-effective cache units in web sites serving dynamic content. The
criteria to detect the fragments are the content sharing level among multiple
documents and the differences in lifetime and customization. For them, any
part of the document is a candidate to be a fragment.

Another approximation to deal with the high rates of changes in web sys-
tems is to work with base documents and managing the differences between
documents or time shots of a document. In [69], Psounis proposed to combine
a cacheable, previous snapshot of a document, called base-file, with a small
difference-file, called delta, to generate the current snapshot of the web doc-
ument. Instead of splitting the document in parts which could be updated



2.3 Performance issues 13

independently without having influence on the others parts. This proposal
always uses the same base-file, and the delta will be updated in the future.

The main part of research contributions for the presentation tier are fo-
cussed in the second set of techniques. For example, Khaing and Thein, in [53],
proposed a framework in which the pages are created by aggregation of frag-
ments. The fragments do not have to be detected, because the web applica-
tion manages the pages as a set of content fragments. The fragment-based
publishing system analyses the information sharing behaviour, customization
characteristics, and the changes occurring to them over time.

Another framework for publishing web pages with content fragments was
proposed in [16] by Challenger et al.. The system allows to designers to mod-
ify inclusion relationships among Web pages and fragments. The study also
includes algorithms for consistency analysis, and for efficiently detection and
update of web pages affected after changes in the content.

Welicki and Sanjuan proposed the creation of distributed caching frame-
work for web-based applications [85]. In this approach, the fragments have
descriptive metadata that are used for synchronization and eviction purposes,
and they are not accessed directly by the users. The system has a caching
front-end to interact with the storing cache server.

In [71], Rabinovich et al. proposed a fragment-based solution in which
the fragments are assembled in the client-side. They addressed an issue of
assessing whether and which pages should use fragmentation on a Web site.
This is based on an analytical study where different attributes (content sizes
and request rates) of the web pages are taken into account. By estimating
these attributes, the web administrator should discover if the use of fragments
improve the performance. Nevertheless, the fragmentation of the web pages
is done by the programmers by changing the application server.

The techniques for the application tier are mainly focussed on code caching
instead of content caching. These techniques apply the concept of reducing the
minimum cacheable unit, but they split the web application code instead of the
generated HTML code. Suresha and Haritsa, in [79], proposed a system with
the integration of the fragment and code caching. The results of the different
code fragments are cached separately. The code fragments, with cached results,
are bypassed when a new request triggers. If the result is not cached, the code
fragment is executed. They applied the technique using scripting languages.
They created code block which could be executed independently.

Finally, the techniques corresponding to the data tier include, for exam-
ple, Ullrich et al.’s contribution in [83]. They propose a pipeline based on a
Model-View-Controller architecture which overcomes caching in a customiza-
tion problems. They deal with the problem by using small XML documents
with content elements of the web pages. They propose three points at which
caching take place: after the fetching XML files with the contents; after the
XSLT-transformation process; or the complete result of the user request.

Another approach with different caching points is proposed by Datta et al.
in [21]. They proposed an approach for caching granular proxy-based dynamic
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content that combines the benefits of front-end and back-end caching, while
suffering the drawbacks of neither. Their solution caches dynamic content
fragments in the proxy cache, but the layout information will be determined,
on demand, from the source site infrastructure.

Our proposed solution differs from the above ones in the way of dealing
with the problem. Previous proposals are focussed in the definition of frame-
works for the creation of web content by the assembly of fragments of the
pages, or on splitting web pages in fragments by the analysis of the HTML
code. Our proposal is focused on adapting the fragments of the web page (con-
tent fragment design), in an on-line way, as the characteristics of the content
elements are changing. Since our solution is going to be applied in content
aggregation system, the content elements are our initial minimum cacheable
units. The fragments are created by assembling sets of these content elements.
Thus, we do not need to create any algorithm to split the HTML code, it only
need to decide when two content elements are assembled or not.

2.3.2 Adapting a fragment-based caching solution to content
aggregation systems

We have approached the problem to get the answer for the next question: how
many fragments should the content be split into in order to achieve an opti-
mal performance, measured in terms of user-perceived latency? This amount
of fragments depends on their characteristics. Content fragments which are
part of several web pages with low update frequencies are good candidates to
be split. But web pages, with a huge number of fragments, experiment long
overhead times in assembling fragments, and connection and protocol times
for the fragment requests. These problems are deeply developed at the end of
this section.

Systems with fragment-based web caches have to deal with the problem
of splitting, identifying and requesting the content fragments. The problem
of identifying and requesting the fragments can be easily solved by the use
of ESI. The problem of splitting the content of a page in several fragments
depends on the type of the web application.

In the case of CAS systems, the splitting process of the web page content
can be done almost directly. Each content element of the system is considered
as a split fragment which will be assembled in the web cache. This fits perfectly
with the CAS architecture in which the content elements are assembled in the
web proxy cache.

The overhead times have influence on the latency. These overhead times are
related to the connections, transmission, content processing, etc. In the case of
CAS systems, there are a lot of number of content elements, and consequently,
of page fragments. Thus, the overhead times have an important influence on
the total latency. When a web page has a high number of fragments, as the web
pages of a CAS system, the cache hit ratios are improved, but the latency gets
longer due to the assembly and connection overhead times of each fragment.
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These overhead times are the reason for which latency is not always improved
by a better hit ratio.

UPL = fragmentNumber∗
∗ [(hitRatio ∗ storageST ) +

+ (1− hitRatio) ∗ (serverST + connectionT ime) +

+ joinT ime+

+ parseT ime]

(2.1)

The system response (UPL, user-perceived latency) is composed of several
attributes. Equation (2.1) approximates the user-perceived latency [87, 55, 63].
The latency is the sum of latencies of the single fragments. Each of these
fragment latencies is composed by: the time to parse the content, in order to
find ESI tags; the time to join or assemble the content with other contents
to create the whole page; and, finally, the time to retrieve the content —
the service time of a storage access when a hit occurs, or the service time of
connection, transmission and server response, when it is missed in the cache—.

The user-perceived latency depends on the hit and miss ratios, the number
of fragments in a page, and the cost of assembling and parsing the templates
and content fragments. Depending on the values of these attributes, it would
be better to improve the hit ratio by the use of several content fragments, or
minimize the overhead times (connection, assembling and parsing times) using
a small number of fragments, or even, only a single fragment corresponding
to the whole web page.

Basic CAS systems have only two trivial choices: (a) a huge number of
fragment elements, where each content element corresponds to a fragment el-
ement (CAS with assemblies in the web cache proxy); (b) only one fragment
element that is the whole web page (CAS with assemblies in the web applica-
tion server). We have analysed the latency in these two schemes, and we have
seen that the shortest latency is achieved sometimes by one of the schemes
and other times by the other one, depending on the analysed web page [36].

In this study, we also proved that the choices are not only two —the whole
page assembled in the application server or in the proxy cache—, instead of
that, the problem could be addressed for each content element individually.
Thus, for a given web page, the highest performance corresponds to the design
in which some of the content elements are assembled in the application server
and other ones in the proxy server. Therefore, an open problem emerges from
this study: which contents should be assembled in the proxy cache to improve
the user-perceived latency?, and moreover, which contents are improving this
latency when they are assembled in the application server?

This dissertation contributes with a framework in which a core tool decides
the content elements that are assembled in the application server and those in
the proxy cache. The process is based on the classification of the aggregation
relationship into two states: one to indicate that the assembly takes place in
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the application server and another one in the case of the proxy cache. The aim
of this classification is to improve the performance by reducing the latency.

From other point of view, the objective of our dissertation is to define the
fragments of the pages to be interchanged between the web server and the
web cache. In current CAS systems, these fragments are the single content
elements. We propose to pre-assemble some of them in the web server. From
our knowledge, there is only another approach that addresses the problem
in the same way. This is the MACE framework, presented by Hassan et al.
in [49, 51].

The MACE framework is an approach that analyses the cost and benefits of
caching data in various stages of different mashups and selectively stores data
that is most effective in improving system scalability. They model mashup
applications as a set of operations represented by a tree. Each web page of
the system is represented by a different tree. They consider that the system
can be improved by defining a caching point in the tree structure. Thus, the
partial result of the execution of the web page is cached independently, and
other web pages (tree structures) can take profit of the cached result. The
main differences with our approach are:

• The web pages structure is represented as a graph in our approach instead
of a tree as in MACE approach.
• The number of caching points in a web page is 1 in MACE approach. In

our approach there is not limit in the number of different caching points.
• The algorithm to decide the caching point is implemented as a cost func-

tion in MACE approach. We use decision trees which have been mined
from synthetic data.
• The inputs of the MACE algorithm are the hit ratio, the request rate,

the tree-depth of the element and the cost of processing an operation,
which can be expressed as a latency, utilization or size. Our inputs are
quite similar, but not the same: request rate, update rate, size, number of
father elements and number of child elements.

The MACE framework is the most indicated to compare the improvement
of our approach with, because both approaches address the problem in the
same way.

2.4 Web performance and data mining

Our proposed framework creates an intermediate scheme between the two ba-
sic ones for CAS systems. This new scheme would create pages with a smaller
number of content fragments than the one in which each content element is a
content fragment. Thus, the performance of the cache, in terms of hit ratios,
would be lower, but the performance, in terms of latency, would be higher.
The framework will pre-assemble some content elements in the application
server, creating fragment elements, and these resulting fragment elements will
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be finally assembled in the cache proxy in order to create the whole web page,
i.e., the fragment elements are a set of one or more content elements pre-
assembled in the application server. The details about the architecture of the
framework are given in Section 3.3.

The element in charge on deciding the fragment elements is the adaptive
core. The details about how this adaptive core classifies the fragment elements
are given in Chapter 4. Several approaches have been considered to implement
the adaptive core, but we have finally adapted a solution based on knowledge
discovery and data mining. We have mined data about the performance in
order to predict it in the future. This prediction helps us to decide the fragment
elements design.

Data mining techniques have been widely applied in the field of web per-
formance engineering, and more precisely, in the field of web caching. Some
of them are based on the mining of historical data of user behaviour. This is
usually called as Web Usage Mining and there are a lot of techniques based
on it [68].

Bonchi et al. proposed to extend the LRU (Least Recently Used) caching
algorithm by using decision trees and association rules. These structures are
created by a process of data mining over server logs [8]. In [89, 90], Yang et al.
also used data mining to extend the eviction algorithm of the cache, but, in this
case, they extended the GDSF (Greedy-Dual-Size-Frequency) one. The data
mining process is also done with data from the request logs and a predictive
model is obtained. The predictive model is used to calculate the probability
of requesting the same web page twice.

Instead of using traditional web mining algorithms, other authors proposed
their own algorithms to extract knowledge from the historical user data. For
example, Fue et al. defined the access-orientation between two URLs, which
indicates the frequency of visiting one URL after the other [28]. The prediction
algorithm uses this metric to decide the cached web pages with less probability
to be accessed in the future, and consequently, the most suitable to be evicted
from the cache.

Huang and Hsu [52] proposed their own mining algorithm. In this case,
the result of the algorithm is a rule table. These rules will be applied to future
requests in order to assist prefetching and caching to decide which web pages
are evicted and which ones are prefetched. The algorithms generate frequent
sequences of paths. The frequent sequences are used to create the rules to
indicate the most probable requests after a given one.

The inventors of patent [74], Ramos et al., provided a method for pop-
ulating a web cache, either in real-time or batch mode, with data mining
techniques. These techniques evaluate workloads, discover query patterns of
consumers, and anticipate the needed data. These decisions are made dynam-
ically in anticipation to the requests of the consumers.

Other authors mix the data from the user access logs and from the website
structure repository. Makkar et al. use this to overcome the limitation of path
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completion. They apply Petri Nets to extract web site structure in order to
complete the paths, improve the prediction and decrease the web latency [61].

Apart from data mining techniques to create rules or decision trees, they
are used to create clusters or groups of web pages in the field of web caching.
Pallis et al. published in [67] an algorithm based on graph clustering, which is
used to identify clusters of correlated web pages. Kumar et al. [56] deal with
the caching problem by discovering patterns in user object requests. They
exploit the patterns of users by making caching decisions for a specific time
interval based on the history of observed requests for the same interval. Their
approach also includes a dynamic portion in order to handle deviations from
normal usage patterns.

Finally, some approaches mix several techniques. For example, Sulaiman
et al. tackle the problem of caching as a classification problem. They em-
ployed Classification and Regression Trees (CART), Multivariate Adaptive
Regression Splines (MARS), Random Forest (RF) and TreeNet (TN) for clas-
sification on Web caching [78].

All the previous approaches try to improve the eviction algorithms or
anticipate the introduction of web pages in the web cache by mining historical
user patterns. We also apply data mining to the field of web caching, but our
approach differs from these techniques in the aim and in the data used in
the data mining process. Our aim is to create fragment elements designs (the
parts of the web page). The knowledge to achieve this goal is obtained by
mining performance data, instead of user patterns.

2.5 Summary

This chapter included the background of this Ph.D. dissertation. This back-
ground covers the content aggregation systems, and the details of their archi-
tectures. These schemes are differentiated by the place in which the content
elements are assembled: either in the application server or in the proxy server.
Both schemes have their own benefits and drawbacks from a performance point
of view. If the cache is able to manage the content elements independently,
the hit ratio of the cache is improved, but the overhead time is longer. On
the contrary, the overhead time is reduced when the content elements are
assembled in the application server, but the hit ratio of the cache decreases
significantly.

This dissertation includes the proposal of a framework to counteract the
limitations of cache performance in environments with high update rates and
web pages with a high level of user customization. The framework bases the
contributions on adapting dynamically the fragment elements design using
knowledge extracted, by the use of data mining, from synthetic data.

This chapter also completed the background of our work with some related
research works. We have reviewed some significant studies in two different
fields: web caching and data mining; and fragment-based web caches.
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Modelling content aggregation systems and
performance improvement

Think globally, act locally.
—Patrick Geddes—

In this chapter, we explain the most important issues of our proposed solu-
tion for the performance degradation in content aggregation systems. We also
study the influence of content characteristics on the performance. This study
is addressed to define a set of parameters or attributes which will be used
as inputs of the adaptive core of our proposed architecture. As a result of
this preliminary study, we will obtain a group of possible parameters. Further
experiments will be done to validate their final suitability.

The chapter also includes details about how to model the web pages and
the content aggregations in a CAS system. A formal definition of the model
is given. Finally, a formal description of the main problem is also explained.

We propose a new architecture for content aggregations systems in which
the web pages are split into fragments. These fragments are adapted as changes
in the contents occur. The design of the fragments is addressed to improve
the performance, more precisely, the user-perceived latency.

3.1 Introduction

The latency of a content aggregation system (CAS) can be improved by chang-
ing the content fragment design, i.e., the definition of which content elements
are assembled in the web application, and which ones are assembled in the
proxy cache. This is the main hypothesis which our dissertation is based on.
A framework to solve these performance issues is presented in the first section
of this chapter (Section 3.3). We have created this framework to counteract
performance losses in content aggregation web applications.

In Section 3.2, we explain the details of the phases to conduct the different
problems addressed in our research. The specification of these phases is part
of the definition of a methodology to to cope with problems related to content
aggregation systems and web caching. The definition of the methodology is
also a contribution of our research work. Further research works may be solved
by using the same methodology and following the same phases. Therefore, our
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contributions are not only related to the techniques, solutions, etc. to solve our
problem, they are also related to the definition of a methodology to address
this type of problems.

One important issue, to validate our proposal, is to prove that different
content fragment designs have influence on the performance. In Section 3.4, we
explain the results of an experiment which proves that changes in the content
fragmentation design affect the latency.

Once the initial hypothesis is proved, we shall identify which parameters or
attributes can be used to determine ideal fragment designs. From our knowl-
edge, there is not any previous study about which parameters are able to
predict the fragmentation design. Therefore, we have selected usual parame-
ters from cache techniques and methods. We have studied if these parameters
show any correlation between their values and the difference of the latencies
when the content elements of a web page are assembled in the web application
and when they are assembled in the proxy cache. The experiments and the
results are explained in Section 3.5 and 3.6.

Finally, a formal description of the main problem of the dissertation (Sec-
tion 3.8) and a formal modelling annotation for the contents of a content
aggregation system (Section 3.7) are presented. We propose to use a model
based on an extended DAG (Directed Acyclic Graph) to represent characteri-
zation parameters of content elements and to represent information about the
assembly point of each aggregation. The adaptive core determines this last
information using the structure and the characterization data from the DAG.

3.2 Research methodology proposed to address the
problem of web caching in content aggregation systems

We have addressed the research of this dissertation in successive phases. These
phases are shown in Figure 3.1 and their descriptions are:

(i) Definition of the problem. The problem of our research has been already
stated. Our goal is to reduce the user-observed latency in content ag-
gregation systems. The use of web caching in this type of system has
experimented an important degradation. This is due to the increase in
the customization of the web pages and the higher update rates of the
contents.

(ii) Proposed solution. Our approach is based on the concept that the latency
of the system can be reduced by changing the content fragments. These
adapted fragments could be managed and stored independently in the
web cache. The assembly points of each pair of aggregated element define
these content fragments. This feature should be validated before the next
phases.

(iii) Design of the framework for the approach. The definition of the frame-
work should describe the changes in the tiers and the interfaces of tra-
ditional content aggregation systems and the new interfaces. These new
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interfaces will integrate the tiers of the CAS system and the adaptive
core.

(iv) Exploration of the parameters available as input of the approach. The
available parameters of web pages (content elements, user behaviour,
system metrics, etc.) should be considered as possible inputs of the al-
gorithm in charge of defining the fragments of the web pages. We should
validate if it exists any relationship among the values of these parame-
ters and the assembly point in which the system shows a shorter user-
perceived latency. We would select, as inputs of the core of the frame-
work, the parameters that show correlation between these two metrics.

(v) Selection of the technique to implement the core of the framework. We
need to decide which technique is used to implement the algorithm in
charge of adapting the fragment designs. This algorithm should accom-
plish some requirements: it should generate a low overhead; it should
use inputs that can be monitored easily from the system; and, finally,
it should make the changes in the fragment design as soon as possible
a change occurs in the content elements, web pages or user behaviour.
The inputs of the core are the parameters selected in the previous phase,
and the outputs are the fragment designs.

(vi) Evaluation of the benefits of the approach. The benefits of the techniques
used to implement the core should be evaluated with the execution of a
set of experiments. This experiment should be designed to validate the
use of the core, and an enough number of replicas of the experiments
should be executed in order to obtain reliable values. The evaluation of
the results of the experiments validate, or not, the contributions of the
research.

3.3 Adaptive content fragment framework

One important contribution of this dissertation is the design of a new frame-
work to improve the performance in content aggregation systems. This perfor-
mance improvement is based on a reduction of latencies. Traditional content
aggregation systems are able to assemble the contents either in the web server
application or in the web proxy cache. Our previous studies have shown that
the performance can be improved by pre-assembling some of the content ele-
ments in the web application server and assembling the complete page in the
web proxy cache [36, 34].

We call content fragment (CF) to the fragment of a web page that has
been pre-assembled in the application server. Thus, a content fragment is a
set of one or more content elements. We call fragment request to the HTTP
request that the proxy cache sends to the application server in order to retrieve
the content of these fragments. Content fragments are completely transparent
to the user, and they are internal re-organizations of the content assemblies
which help to improve the performance.
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Fig. 3.1. Research methodology of the dissertation.

The proposed framework is able to adapt the fragment elements in order to
improve the performance. This fragment adaptation is achieved by changing
the content elements which are pre-assembled in the application server, i.e.,
the content elements included in a content fragment. We call content fragment
design to each of the possible distributions of the content elements in content
fragments. The performance improvement is based on the concept of creating
content fragment designs that balance the hit ratio improvement of the cache
and the losses generated by the fragment overhead times. The system has to
deal with two classification criteria: small content fragments improve cache
hit ratio; big content fragments reduce overhead times.

A general view of the architecture of the adaptive content fragment frame-
work is shown in Figure 3.2. The main differences with the two previous
schemes (Figures 2.1 and 2.2) are that the content elements (CE) are pre-
assembled in the application server creating content fragments (CF). Finally,
the content fragments are assembled in the proxy cache.

The framework provides a new element in the architecture: an adaptive
core. The adaptive core uses data about the characteristics of the content ele-
ments in order to decide the content elements included in a content fragment.
It means that the system adapts the fragments in which a web page is divided.
The result is delivered to the application server, which is able to create the
content fragments. The details about the inputs of the adaptive system and
the models used to interchange data with the content aggregation system are
given in Sections 3.5 and 3.7.
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Fig. 3.2. Architecture for adaptive content fragment framework.

There is an important number of open problems in order to create the
proposed system. The performance research involves a deeper analysis of the
performance of content aggregation architecture. Thus, we need experimental
results which prove that changes on the content fragments have influence on
the performance perceived by the users (Section 3.4).

We use the results of this previous work to study which parameters or
characteristics of the content elements, fragment elements and web pages have
influence on the performance (Section 3.6). We use these parameters, and the
relation between them, to define the inputs of the adaptive system.

We analyse different techniques for the implementation of the adaptive core
(Chapter 4). The overhead generated by the core should be the lowest possible,
so that, we analyse the overhead and the hardware resources consumption for
each alternative, together with the improvement achieved for each of them.

Once the inputs and the implementation of the adaptive core are defined,
the changes in the system architecture are also analysed. Thus, we define the
interface of the CAS system and the guidelines to identify and manage the
adaptable content fragments (Chapter 5).

3.4 Study of the influence of the fragment design on the
performance

The work developed in this dissertation is based on the concept that different
content fragment designs experiment different latency times, and the best
solution is not any of the two basic schemes for content aggregations systems:
assembling all the content in the applications server or assembling all the
contents in the proxy cache.
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We have developed a benchmarking experiment to show that, for some
web pages, the latency is shorter when the content elements are assembled in
the proxy cache, and, for other pages, it is shorter when they are assembled
in the application server. We have used a content aggregation system with a
real content model. The CAS system is a specific development for the web
site of the Fundació Universitat Empresa de les Illes Balears-FUEIB. These
results have been published and explained in [36].

Fig. 3.3. Content designs for the benchmarked web site.

The web pages are created using a template and six content elements.
These content elements correspond to several remote contents, a navigation
menu, and several banners. The structure of the web page and the content el-
ements is in Figure 3.3. The content elements are labelled with capital letters.
Some of them (A, E and C) are shared between all the pages: the menus and
the banners. The total number of web pages is 60. Some other content ele-
ments are shared with a subset of web pages (B and D): highlighted contents
that are retrieved from remote servers. There is a total number of 6 subsets
with 10 pages each. Finally, one of the content elements is exclusive for each
page (F): content that is aggregated from other systems.

We have performed two experiments. In the first one, all the content ele-
ments have been assembled in the application server. In the other one, they
have been assembled in the proxy cache. In this way, we are able to compare
the latency of the web pages among the two cases. If we find pages with shorter
latencies in both assembly points —some pages with shorter times when the
contents are assembled in the proxy cache, and other ones with shorter times
and joints in the application server—, we will show that the best assembly
point is not always located at the same architecture element (the cache or the
web server).

Both tests have been executed 10 times. 100 concurrent users have been
emulated in each execution, and each user has done 100 requests. The requests
have been uniformly distributed over the 60 web pages. The users have been
emulated with Apache JMeter [46]. JMeter allows us to gather information
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about the latency of each web page. We have summarized these data in three
groups:

(a) Pages in which the shortest latency is obtained when the content elements
are assembled in the web cache proxy;

(b) Pages in which the shortest latency is observed when the content elements
are assembled in the application server;

(c) Pages in which the difference between the latency of both assembly points
is less than 50ms (1% of the maximum latency), which can be considered
almost negligible for our purposes.

In Table 3.1, we present the number of pages in each group and the average
of latencies for all the pages in a group in both benchmark tests.

Table 3.1. Summarized latencies for the benchmark to study the assembly points
with the highest performance.

Page Number of Mean Latency (ms) Mean Latency (ms)
group pages A.P.= cache proxy A.P.= web server

a 39 2576 4673
b 21 3850 2281
c 10 2740 2734

The results of this benchmarking test validate our initial hypothesis: the
ideal content fragment design, from a performance point of view, is different
for each web page. Moreover, this optimal design does not have to correspond
to one of the basic assembling schemes because the shortest latencies are
obtained, in some web pages, by assembling the content elements in the cache,
and, in other web pages, by assembling them in the web server. The parameters
or attributes which these two cases are depending on are analysed in the next
two sections.

3.5 Analysis of the adaptive core inputs

The content fragment design is adapted while web pages and content elements
are changing. Therefore, the adaptive core needs to be executed every time
a content of a web page changes. These changes are very usual, especially in
content aggregation systems and Web 2.0 applications. Thus, the workload
generated by the algorithm execution should be very low. But another impor-
tant requirement should be met, the inputs of the algorithm should be easily
gathered and they should be available immediately after a change occurs.

The first option for the inputs of the adaptive core is to use the feedback
from the performance metrics. This feedback indicates if the current fragment
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design experiences an ideal performance or not. The problem is that perfor-
mance cannot be calculated in a short period of time, because a single sample
of a performance metric is not valid. A great number of samples should be
gathered in order to get reliable averages. Furthermore, the system has high
update rates, so it is very probable that content will be changed again before
mean reliable values can be calculated. Therefore, the adaptive core does not
use performance metrics as an input value.

The algorithm of the adaptive core needs to decide if a content element
should be previously assembled in the web application tier. This decision
results in a classification of the aggregation relationships in two possible states.
This state indicates the assembly point of an aggregation. The details of the
data model to represent this information are given in Section 3.7.

If the number of content aggregations is represented by n, the total number
of fragment designs is calculated by the formula of the variation, V ′(2, n) = 2n.
The complexity of such problem is O(2n) and the data complexity is O(n).
The solution space complexity needs to be simplified because it is too high
to be executed in an on-line process. In order to create a faster and simpler
algorithm, only two content elements directly related are going to be taken
into account to classify a given aggregation. In this way, the complexity of
the problem has been reduced to O(n), and the amount of data used in each
classification is limited to two sets of node parameters, data complexity is
O(2).

We need to find content metrics that could be used to predict the best
content fragment design, from a performance point of view. This problem is
not trivial and, from our knowledge, previous research work has not been
done. The number and the type of parameters of a content element are very
high. The analysis and the selection of a set of content parameters to be used
to predict the content fragment design are part of our research contributions.

Metrics and parameters, such as size, hit ratios, request rates, etc., have
often been used in well-known cache techniques. Their suitability has been
proved in many research studies and publications [2, 17]. Although these tech-
niques are related to the field of the web caches, their basis of applicability
are not common to our research problem. In traditional web cache techniques,
these parameters are used in cache eviction techniques. We need to study if
there is a relationship between the content metrics and the suitability of as-
sembling the content elements on the server or on the cache, i.e. the content
fragment design.

The complete lack of studies has caused that any set of metrics related
to caching techniques could be very useful for us. Therefore, we have studied
traditional web cache inputs (size, latency, request rate, update rate, number
of children, number of fathers) to predict the ideal content fragment design,
from a performance point of view. In the next section, we explain the details
about the experiments that have been used to select and to reject some of the
parameters.
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3.6 Correlation analysis between performance and
content characteristics

In this section, we explain the experiments to prove if a set of seven content
characterization parameters —content size, content hit ratio, content request
rate, number of pages aggregated by a content element, number of pages where
a content element is aggregated, content service time, and depth level of the
aggregation— can be used to decide a content fragment design for a given
web page, in order to improve the performance or user-perceived latencies.

These experiments are only addressed to study the suitability of the pa-
rameters to predict the ideal content fragment design. They are not addressed
to create an algorithm, a formulation or a technique to determine the con-
tent fragmentation design. The issues and details of these other problems are
explained in Chapter 4.

We have based the study on a correlation test. The correlation is studied
between the content characterization parameters and the latency. Correlation
tests (ρX,Y ) involve two random variables (X and Y ) and they prove if the
samples of both variables follow, or not, any trend.

Thus, we have created a synthetic content model —content elements and
aggregation relationships created randomly—, and we have measured, in a
real system, the latency when two content elements are assembled in the
application server and when they are assembled in the proxy cache. We have
three different variables in our system: the characterization parameters of both
content elements (the father content element1, and the child content element2)
and the improvement among the latencies of both assembly points. In order
to simplify our study, we should reduce these data to only two variables.

In our particular case, the first random variables of the correlation test
(X) are the characterization parameters. The aggregation is called i and each
single characterization parameters of the father element of the aggregation
is CEi,cp,father, where cp indicates the name of this single characterization
parameter. The notation is the same for the child element CEi,cp,child. There-
fore, we are going to perform one correlation test for each possible value of
cp and for each of the two involved content elements {father, child}. The
samples for the first variable are xi = CEi,cp,{father,child}. The second set
of samples is the improvement obtained by comparing the latency results in
both assembly points. This type of improvement is usually expressed as the

speed-up between both cases (yi =
UPLassemblingPoint(i,appServer)

UPLassemblingPoint(i,proxyCache)
).

We are going to make a correlation analysis for each single characteriza-
tion parameter we want to study. If the analysis shows correlation, the given
characterization parameter would be useful for predict the content fragment
design. We study the next characterization parameters, cp: content size, ser-

1 The father content element is which includes the content element of the other
element.

2 The child content element is which is included by the other one.
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vice time, content request rate, content update rate, number of children of a
content element, number of fathers of a content element, depth level of the
aggregation —number of aggregations that are between the template element
and the current aggregation—. The last one is a parameter associated with the
aggregation relationship; the other ones are related to the content elements.
Therefore, we have two values for all of them —the values corresponding to
the father element and to the child element— and only one for the last one
(depth level).

We have also considered to study the correlation using the ratios between
the father characterization value and the child one. Sometimes, it is more im-
portant the relation between these values, than the values themselves. There-
fore, the two initial correlation studies have been extended to a third one in
which the random variable is xi =

CEi,cp,father

CEi,cp,child
.

In order to study the correlation, we need to have samples of the two
random variables. The characterization metrics are created synthetically and
they determine the content page model (content elements, aggregations and
web pages) of the experiment. Once we have the content page model, we will
obtain the performance results. We are going to use two different tools to
obtain these results: a simulator and an emulator. The simulator help us to
scale the experiment to high workloads. The emulator give us real performance
data, since it is a real deployment of a content aggregation system with real
applications, hardware, data, etc. The subsections below include details about
the creation of the page model, the experimental tools and the results analysis.

3.6.1 Models for the experiment

In order to obtain and measure performance metrics, we need to parametrize
and deploy tools. This parametrization defines the user behaviour and contents
of the system (web pages and content elements).

The particular values of the parameters for the user behaviour and the
content characterization models are randomly generated using statistical dis-
tributions. We have used previous research results to select the most suitable
statistical distribution for each parameter. There is a huge number of studies
about content and user characterization for web systems. We focus on studies
about Web 2.0 systems because they are the most similar to content aggrega-
tion systems. We analyse these model parameter results by grouping them in
three sets (Table 3.2): parameters related to the user behaviour, to the server
workload, and to the content.

The parameters for the user behaviour model are the user arrival rate,
number of requests in a session, think-time and the popularity of the content.
Duarte et al. [23] conclude the popularity of the contents is modelled by a
power law with α = 0.83 and R2 = 0.99 for reads and α = 0.54 and R2 = 0.99
for updates. These authors also conclude the user arrival rates are defined by
a Weibull with parameters α = 0.000469 and β = 064892.
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We only need the web service time and cache service time to model the
system service times. These values are only used in the simulator, because
the test-bed tool uses a real cache and a real web server. Traditionally, the
exponential distribution has been considered the best one to define service
times in general computer systems and, in particularly, for web systems [14].

The last group of parameters are related to content. We need to model
the content size, the number of aggregated contents in another one (number
of children), and the number of contents in which another one is aggregated
(number of fathers). The size of content elements is modelled by a lognormal
distribution [76]. Brodie et al. specify, in [11], the content fragment sizes of
three different web pages. Two of them are newspaper web sites and the
other one is a web blog. They considered a mean fragment size of 1 KB
and a variance of 128 bytes. The structure of the aggregation relationship is
defined by the popularity of the content elements. [15], [31] and [45] model the
object popularity with a Zipf-like distribution with β = 0.56 and R2 = 0.97.
The number of aggregations of a content element is modelled by a Pareto
distribution.

Table 3.2 summarizes the parameters we need to define to create the mod-
els and the distributions used for each of them. The parameters of each distri-
bution and its initialization values are also presented. These values have been
determined using the referenced bibliography.

Table 3.2. Statistical distributions for the characterization of a web fragment cache.

Parameter Group Distribution Parameters

Popularity User Power Law α = 0.83
R2 = 3

Arrival rate (ms−1) User Weibull α = 0.000469
β = 0.64892

Update frequency (ms−1) User Power Law α = 0.54
R2 = 3

Thinking time (ms) User Pareto α = 1000
m = 5000

Web service time (ms) System Exponential µ = 100

Cache service time (ms) System Exponential µ = frag size
200000

Content size (bytes) Structure Lognormal µ = 1024
σ = 128

Number of aggregations Structure Pareto α = 1
m = 20

Object popularity Structure Zipf-like β = 0.56
R=0.97



32 3 Modelling content aggregation systems and performance improvement

3.6.2 Tools of the experiment

We have used two different tools to measure the performance: a test-bed and
a simulator. On the one hand, the test-bed gives us more realistic results, but
the capacity to scale the system and the number of users is smaller. On the
other hand, we are able to scale the system as much as we need by using a
simulator.

The simulator and the test-bed periodically change the assembly point of
one aggregation relationship in a web page. Thus, we are able to measure
the latency in two cases: when the selected aggregation is assembled in the
web cache, and when it is assembled in the application server. Only one of
the assembly points of the pages is changed, the other ones remain identical.
Thus, we compare the performance of both cases with the characterization
parameters of the two elements related by the aggregation.

The simulation tool has been developed as an event-driven simulator. The
simulator generates clients which represent page requests. The simulation
scheme has two main entities: the proxy cache and the web applications. This
simulation model does not take into account the communication layers. We use
the simulator to validate the results from a real application (the test-bed), but
with high loads. The cost of deploying a simulator, to include communication
layers, is very high. We also considered the use of a network simulator as NS2
or OPNET. These simulators are oriented to network scenarios, but they are
not able to simulate web cache systems based on content elements and aggre-
gation of contents. There are also specific web cache simulators [13, 62, 29, 22],
but they have the same limitations.

The test-bed is completely based on the architecture presented in Fig-
ure 3.2. A Java application is developed to emulate the behaviour of the
users. The application creates requests randomly, using the suitable distribu-
tions. The web proxy cache is deployed with Oracle Application Server Cache
10g [20]. This proxy cache is compatible with ESI tags [19]. The application
server is a PHP application [58], which manages web pages and aggregation
of content elements. The web pages and the aggregations are created previ-
ously to the emulator execution. Finally, the adaptive core is a simple program
that is able to change the assembly point for individual aggregations. Thus,
we compare the latency times among web pages in which only one assembly
point changes.

3.6.3 Experimental results

We use two correlation tests to study the correlation between our two vari-
ables: Pearson correlation coefficient and Spearman’s rank correlation coeffi-
cient. Pearson coefficient is the best known and it considers that there is a
linear relationship between the two studied samples. Spearman coefficient is
used without making any other assumptions about the particular nature of
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the relationship between the variables. Both coefficients give us an idea of how
independent the variables are (ρX,Y = 0) or not (ρX,Y = 1 or ρX,Y = −1).

The experiments have been repeated 10 times. Each simulator execution
covers 1.000.000 user requests. Each emulator experiment covers 100.000 re-
quests. The total number of web pages is 10.000 for the simulation experiment
and 1.000 for the emulation. The number of content elements is 300.000 and
30.000 respectively. The values for the performance functions have been cal-
culated as the mean value for all the experiment replicas.

Before the emulation or the test-bed execution, we already have the data
samples corresponding to the characterization parameters: those for the father
content element of the aggregation relationship, CEi,cp,father, and those for
the child element, CEi,cp,child. Once we have run the experiments in the em-
ulator and the test-bed, we have the data samples of the performance values:
the latency when a given aggregation is assembled in the application server
(UPLassemblingPoint(i,appServer)) and the latency when it is done in the proxy
cache (UPLassemblingPoint(i,proxyCache)). Finally, we calculate each yi and we
related them to their corresponding xi.

The results of both correlation tests (Pearson and Spearman) are presented
in Tables 3.3 and 3.4. There are many studies which give some guidelines to
determine the minimum correlation value to consider significant correlation.
These values depend on many aspects, for example, on the size of the sample.
We have considered the correlation is significant for values above 0.3. Thus,
we have labelled with an asterisk the test results in which there is correlation,
from our point of view.

We are not interested in performing a deep statistical analysis of the re-
sults. We only need some clue about which parameters can be used as inputs
of the adaptive core. Therefore, we use these preliminary results only to reject
parameters. We are going to design further experiments to prove the suitabil-
ity of the selected ones. These future experiments are based on the use of the
real adaptive core and we will obtain more accurate results, for our specific
solution. These experiments are explained in Part III of this dissertation.

In general terms, the simulation and the test-bed results are quite similar.
The results between Pearson and Spearman tests are similar as well. These
two facts help us to validate the results of this preliminary study.

The results show that there are parameters in which the correlation is very
clear, e.g., the request rate. The request rate parameters show correlation in
the case of the father, the child and the relation between both of them.

For these three cases, father, child and ratio, correlation is also present
for the size and for request rate, but it is not so clear. The results from the
simulator do not show correlation (values below 0.3) in some of the cases of
these two parameters. But the correlation is increased to values above 0.3 when
the results from the test-bed are analysed, except in the case of Spearman
correlation of the related sizes. The suitability of these parameters as inputs
of our system needs to be validated with further experiments. Therefore, we
are not able to reject their use, but we are not either sure about their use.
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Table 3.3. Correlation analysis for the results obtained in the simulator.

The samples of the Y variable are calculated as yi =
UPLassembPoint(i,appServer)

UPLassembPoint(i,proxyCache)

X Pearson ρX,Y Spearman ρX,Y

xi = CEi,size,father * -0.3729 * -0.3926
xi = CEi,size,child * -0.3162 * -0.3013

xi =
CEi,size,father

CEi,size,child
-0.2451 -0.2231

xi = CEi,updateRate,father * 0.9034 * 0.8635
xi = CEi,updateRate,child * 0.9102 * 0.9012

xi =
CEi,updateRate,father

CEi,updateRate,child
* 0.5837 * 0.5164

xi = CEi,requestRate,father -0.2924 -0.2913
xi = CEi,requestRate,child * -0.3027 * -0.3189

xi =
CEi,requestRate,father

CEi,requestRate,child
0.2468 0.2023

xi = CEi,fathersNumber,father 0.0045 0.0021
xi = CEi,fathersNumber,child * 0.6499 * 0.6010

xi =
CEi,fathersNumber,father

CEi,fathersNumber,child
0.0632 0.0412

xi = CEi,childNumber,father * -0.8813 * -0.9023
xi = CEi,childNumber,child 0.1009 0.1128

xi =
CEi,childNumber,father

CEi,childNumber,child
0.0095 0.0072

xi = CEi,serviceTime,father -0.1034 -0.0914
xi = CEi,serviceTime,child -0.1231 -0.1329

xi =
CEi,serviceTime,father

CEi,serviceTime,child
0.0234 0.0239

xi = CEi,depthLevel,− 0.0042 0.0013

Experiment results presented in Chapter 7 help us to make a final decision
about that.

The number of children (aggregated contents) of the father content ele-
ment, and the number of the fathers of the child content element (number of
content elements where it is aggregated) also show clear correlation. These
two parameters should be taken into account. The other parameters (depth
level and service time) and cases (number of children of the child content el-
ement, number of fathers of the father element and their relation with other
parameters) have been rejected because they do not show significant correla-
tion.

We presented similar results in [41], but the correlation analysis was fo-
cused in a different way. The user behaviour model, the synthetically created
web pages, the emulation model, the test-bed system, the executions and the
sample of the results for performance, and the samples for the characterization
parameters were the same that we have used for the analysis presented in this
section. In contrast, the variables of the correlation test have been defined in
a different way.

In the cited work, we studied three performance metrics, the hit ratio,
the byte hit ratio and the latency. On the contrary, we have finally consid-
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Table 3.4. Correlation analysis for the results obtained in the test-bed executions.

The samples of the Y variable are calculated as yi =
UPLassembPoint(i,appServer)

UPLassembPoint(i,proxyCache)

X Pearson ρX,Y Spearman ρX,Y

xi = CEi,size,father * -0.3925 * -0.3836
xi = CEi,size,child * -0.3472 * -0.3211

xi =
CEi,size,father

CEi,size,child
* -0.3129 -0.2925

xi = CEi,updateRate,father * 0.9483 * 0.9286
xi = CEi,updateRate,child * 0.9262 * 0.9319

xi =
CEi,updateRate,father

CEi,updateRate,child
* 0.7027 * 0.7089

xi = CEi,requestRate,father * -0.3638 * -0.3055
xi = CEi,requestRate,child * -0.4240 * -0.3971

xi =
CEi,requestRate,father

CEi,requestRate,child
* 0.3425 * 0.3288

xi = CEi,fathersNumber,father 0.0559 0.0696
xi = CEi,fathersNumber,child * 0.7753 * 0.7969

xi =
CEi,fathersNumber,father

CEi,fathersNumber,child
0.0632 0.0539

xi = CEi,childNumber,father * -0.9516 * -0.9601
xi = CEi,childNumber,child 0.1593 0.1329

xi =
CEi,childNumber,father

CEi,childNumber,child
0.0139 0.0099

xi = CEi,serviceTime,father -0.1530 -0.1499
xi = CEi,serviceTime,child -0.1487 -0.1463

xi =
CEi,serviceTime,father

CEi,serviceTime,child
0.0916 0.0900

xi = CEi,depthLevel,− 0.0037 0.0105

ered only the analysis of the latency since this dissertation is addressed to
improve the user-perceived latency. Another important difference is that the
correlation was not studied using the speed-up of the latency between both
assembly points. Independent correlation studies were done for both latencies.
In this section, we have analysed the correlation with the speed-up, because
we are truly interested in the improvement between both assembly points in
addition to the relative performance results of both cases. Finally, the number
of characterization parameters studied in the previous paper was significantly
smaller because when we wrote the paper we did not consider the other ones
as suitable inputs for the algorithm. After some additional experiments, we
took them into consideration.

To summarize, we have studied the correlation between the characteriza-
tion parameters of the content elements and the improvement of the latencies
speed-up between the case when the content elements are assembled in the
application server and in the proxy cache. Some of the parameters have been
rejected to be used as inputs of the future adaptive core because they do not
have a significant correlation. The other parameters, which have shown cor-
relation, are used in further experiments to validate their suitability. These



36 3 Modelling content aggregation systems and performance improvement

parameters are size, request rate and update rate and the number of children
of the father element and the number of fathers of the child element.

3.7 Model for content aggregation systems

The inputs and outputs of the adaptive core of our architecture need to be
represented by some type of data structure. We explain, in this section, the de-
tails of previous CAS system model representations, and how we have adapted
these models to our particular case.

Content aggregation systems are applications in which users set up their
own web pages by selecting content sources and putting them into groups.
We have called content elements to the single and indivisible contents. Ag-
gregations are the relationships among the contents that a user groups and
associates to a web page (template). Different users are able to add or to cre-
ate aggregation relationships over the same content element. Thus, content
elements are aggregated in several pages.

The data structure which best fits in the above explanation is a graph.
The vertexes of the graph represent the content elements and their setups. On
the one hand, the edges of the graph represent the aggregation relationships
created by the users. By definition, content self-aggregation is not allowed,
i.e. loops are not allowed in the aggregation relationships. On the other hand,
aggregation relationships are ordered: one element aggregates the content of
other. The aggregated content is considered the child vertex and the element
which aggregates the content is the father vertex.

These previous features define the type of graph to represent the content
model in a CAS system: a directed acyclic graph (DAG). The graph is directed
because the aggregation relationship determines an order (which element in-
cludes and which is included). And it is acyclic because it is impossible to
create a recursive inclusion of contents.

In Figure 3.4 we can observe an example of a web page generated by the
aggregation or combination of contents from different sources. The coloured
elements are aggregated more than once.

The content model (DAG) for the example above is shown in Figure 3.5.
The web page is generated by the combination of the contents from eight
elements (each grey box). Some of these elements are retrieved directly from
content sources (f4, f5, f15), and other ones are groups of other content ele-
ments (f1={f3,f2}, f6={f8,f7}, f9={f7,f10}, f11={f10,f12}, f13={f14,f2}). The
differences among the names of the nodes (use of f or t) are only to identify
the template node. The source vertexes of the DAG correspond to this type
of nodes.

The use of graphs is not new when we model web pages created by ag-
gregation of contents. Challenger et al. [16] defined an Object Dependence
Graph (ODG) to represent this type of data. An ODG is a Directed Acyclic
Graph (DAG) where content elements are represented by vertexes (nodes).
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Fig. 3.4. Example of content aggregation system web page (iGoogle [32]).

t 1

f 1 f 4 f 5 f 6 f 11f9 f 13

f3 f2 f 8 f 7 f 10 f 12 f 14

f 15

j

j j
j j

j

j j
j

s

s s

sss
sss

Fig. 3.5. Example of content aggregation graph structure.
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An ODG model has two vertex types: Pi which represents parent vertexes
(user web pages) and fi which represents content elements. Finally, the edges
of the graph represent aggregation relationships between a pair of elements.
This ODG model is not enough to represent all the data that our adaptive
core needs, so we extend this model representation. We have called ODGex
model to this model extension.

The framework presented in this dissertation suggests pre-assembling some
content elements in the application server, creating content fragments. The
content fragments are finally assembled in the cache proxy, so the cache is
able to manage them independently, and, to improve the hit ratio of the web
cache. The model of the content aggregation web pages needs to be extended
in order to represent these content fragments (ODGex).

We use labelled edges to identify which elements are pre-assembled in the
application server. An example is presented in Figure 3.5. When the aggrega-
tion relationship (edges) between two content elements (nodes) is labelled as
join (j), it means that the application server pre-assembles these two elements.
On the contrary, if it is labelled as split (s), the elements are independently
requested, received and managed by the cache proxy.

The content fragments can be obtained from the extended ODGex model
getting all the connected subgraphs when only the join edges are taken into
account. The process to conceptually distinguish the different content frag-
ments of an ODGex is as follows:

1. Remove all the edges labelled as split.
2. Choose the representative nodes of each content fragment. These represen-

tative nodes are the nodes without incoming edges or with incoming edges
in state split.

3. Iterate all the child nodes of each representative node of the content frag-
ments.

This process is not taken in the real framework because the content fragment
detection is directly done when the contents are retrieved and assembled. The
details are given in Section 5.2.

In the case of the example in Figure 3.5 the fragment elements are: {t1, f1,
f3, f4, f5, f9, f11, f10, f15}, {f2}, {f6, f8}, {f7}, {f10}, {f12},{f13},
{f14}. The first node of each sub-set is the representative node, and the
nodes of the sub-set are pre-assembled in the application server. This is an
example of a fragment design for the given content model. The total number
of fragment designs is the number of variations of repetitions of 2 elements
(join and split) choose p (where p is the number of edges) and it is calculated
as V ′(2, p) = 2p.

The basic ODG content model also needs to be extended in order to rep-
resent the content characterization parameters which are used to predict the
fragment designs. As it is explained in Section 3.5, these characterization pa-
rameters associated to each single content element are: content size, content
update rate, content request rate, number of other content elements that are
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included in a given one, and number of other content elements that includes
in a given one. The three first parameters need to be explicitly indicated, on
the contrary, the two last are implicitly in the graph structure —the number
of incoming and outgoing edges of a given node—.

Figure 3.6 is an example of a content model using the extended ODG rep-
resentation (ODGex). In the example, each node explicitly indicates a tuple of
three values corresponding to size, update rate and request rate. The content
fragments have been also plotted in the graph (dotted line).

The input of our adaptive core is an ODGex model instance with edges
without labels. The adaptive core is in charge of classifying each edge in join
or split state. The output of the algorithm is the ODGex model within the
labelled edges.

Fig. 3.6. Example of extended content aggregation graph structure.
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3.8 Formal definition of the problem

In this section, we define the main problem of this dissertation more formally.
We use a mathematical annotation to represent the concepts explained in
previous sections.

Define CE∗ to be the set of all content elements available in a content
aggregation system. Define cp = [cp1, cp2, ..., cpn] as the n-tuple of character-
ization parameters for a given content element. In our case, it is a 5-tuple
defined by its constituents: size, hitRate, requestRate, numberFathers, and
numberChilds.

An aggregation, ak = (Fcek, Ccek, F cpk, Ccpk), is defined by: Fcek ∈
CE∗, the content element that aggregates the other one, the father; Ccek ∈
CE∗, the content element that is aggregated by the other one, the child; Fcpk,
the values of the characterization parameters of the father content element;
Ccpk, the values of the characterization parameters of the child content ele-
ment. A∗ is the set of all the aggregation in a system.

Define AT ∗ as the tier of the architecture where two content elements can
be assembled (appServer, proxyCache for our specific system). An assembly
point apk is a tuple which indicates the application tier, atk, where a given
aggregation, ak, is assembled: apk = (ak, atk). Only one assembly point is
considered for an aggregation.

A content fragmentation design, D = [ap1, ap2, ..., apn] is the sequence of
all the assembly points for each aggregation of a content aggregation system.
It defines the assembly point for each aggregation in the system.

The problem of improving the performance by adapting the content frag-
ments is expressed as:

In a given content aggregation system, with a group of content elements
CE∗ and a group of aggregations A∗. Which is the content fragmentation
design D that generates the best performance in terms of user-perceived la-
tency?

3.9 Summary

In this chapter, we have explained the details of our approach to solve the
web cache performance limitations of content aggregation systems. Our so-
lution can improve the performance, in terms of user-perceived latency, by
pre-assembling some of the content elements in the web application and cre-
ating content fragments (sets of content elements). These content fragments
are managed independently by the web cache and it finally assembles them
to create the web pages.

The main open problem is to define a system that determines which are
ideal content element sets (content fragment design) in order to improve the
latency, by balancing the improvement of the cache hit ratios and the losses
of the assembling overhead times. We have proposed a framework in which an
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adaptive core determines these content fragment designs and they are adapted
as the content of the web pages changes. Several open problems remain for
next chapters:

• To discover the most suitable inputs for the adaptive core.
• To define the interfaces to intercommunicate the adaptive core and the

content aggregation system.
• To adapt the content aggregation system in order to make it able to

manage, identify and request content fragments.

We have explained the details of the experimentation addressed to validate
some initial hypotheses of the dissertation. These hypotheses are related to
the improvement of the performance by changing the content fragment design,
and to the set of parameters to be used to predict ideal fragment designs.

We have benchmarked a real content aggregation system with its real
web pages contents and aggregations. This benchmarking has been based on
comparing the latency when all the content elements are assembled in the web
server and when they are assembled in the proxy cache. The results have shown
that the shortest latencies are obtained, in some cases, with assemblies in the
application server, and for other cases, in the proxy cache. This validated the
hypothesis that different fragment designs have different latencies, and the
ideal assembly point is related to the particular web page contents and the
aggregation structure and it is not the same point in all the cases.

We have also presented some experiments addressed to obtain a set of
content characterization parameters to be further investigated. This future
investigation will study if these parameters can be used to predict the op-
timum content fragmentation design. In the preliminary results, some of the
initial parameters have been rejected to be further considered because they did
not show significant correlations with the performance results (user-perceived
latency). The results for the experiments have been obtained from two dif-
ferent tools: a simulator and a test-bed emulator. Both of them have used
models created from statistical distributions. These statistical distributions
have been selected using results from research works of other authors.

We have also defined a formal model to represent the contents of a content
aggregation system (ODGex), and a formal description of the main problem of
the dissertation. The content modelling is based on a DAG structure in which
the content aggregations are represented by vertices (content elements) and
edges (aggregation relationships). The vertex information has been extended
with information about the characterization parameters in order to use the
DAG as input of the adaptive core. The edges have been labelled to indicate
the places where the assembly of a given aggregation takes places.

To summarize, we present a list with the main contributions of this chapter:

• Definition of a methodology to solve the problem of web caching in content
aggregation systems.
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• Proposal of a framework to define content fragment designs in order to
reduce the user-perceived latency. These fragment designs define the as-
sembly point of the single content elements.
• Definition of a formal model for content aggregation structure, con-

tent element characterization parameters, and content fragment designs
(ODGex).
• Validation of the hypothesis that different content fragment designs gen-

erate different user-perceived latencies.
• Validation of the hypothesis that characterization parameters of the con-

tent elements have influence on determining the ideal assembly point.
• Definition of a set of characterization parameters to be used to predict

the optimal content fragment design.
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Definition of the core for the adaptation of
content fragment designs

If you do what you’ve always done, you’ll get what
you always got.
—Anthony Robbins—

This chapter is about the design and development of the core module of the
proposed framework. The core of the framework is in charge of determining the
content fragment design in order to improve the performance. The different
designs are evolving over time due to the changes in the values of the inputs.
Therefore, we have called it adaptive core, because it adapts the fragment
design over time.

In this chapter, it is briefly explained some techniques to develop the core.
At the end of the chapter, the detailed description of the technique selected
to implement the core is done.

4.1 Introduction

The main element of our framework is in charge of adapting the content
fragment designs. This core makes the fragment designs evolve over time when
the content element characteristics change. All this process is done during
execution time. The workload generated by the core system should be very
small in order not to penalize the latency of the generation of the web pages.
It is a problem of balancing the improvement and the overhead generated by
this solution.

The technique to implement the adaptive core remains open in the def-
inition of the framework. Several techniques could be used to implement it.
We have explored solutions based on the use of ontologies, genetic algorithms
and knowledge discovery/data mining. We have evaluated their requirement
accomplishment and their generated overhead. Finally, we have selected a
solution based on data mining techniques because it seems to be the best
alternative, from our point of view.

We present a description of the adaptive core, and its requirements and
features, in Section 4.2. The next section (Section 4.3) is devoted to analyse
three alternatives to develop the adaptive core. Finally, Section 4.4 includes
the details of the selected alternative, a knowledge discovery based solution.
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4.2 Adaptive core definition

The objective of our approach is to create the content fragment designs which
generate the highest performance in the system. These content fragment de-
signs should be adapted when the content changes.

One of the most important contribution of the dissertation is the technique
to create the algorithm in charge of adapting the fragment designs. One of
the requirements of this algorithm is that it should generate a low overhead
over the system. Thus, the inputs of the algorithm should be calculated with
low overheads. They should be also available as soon as possible after changes
in the characteristics of the contents. The suitability of the inputs has been
already discussed in Section 3.5. We stated that the characterization param-
eters of the content elements (aggregation structure, size, request rate and
update rate) can be used as inputs of an adaptive system in order to predict
the design which generates the highest performance in the system.

The output of the adaptive core is the fragment design for the web pages.
This design is represented by the states of the aggregation relationships among
the content elements. The content fragments are composed by the content
elements which are directly connected using join labelled edges. The obtained
design should show the highest performance.

Adaptive

core

Classificaton

tool

Off-line

training

process

{25, 

0.3, 

1.5}

{split}

{25, 

0.3, 

1.5}

Input Output

Fig. 4.1. Example of the inputs and outputs of the adaptive core.

In Figure 4.1, we can observe a brief diagram of the core algorithm. The
inputs of the adaptive core are size, update rate, request rates, number of
children and number of fathers of two aggregated elements. The output of
the algorithm is the ODGex edge state. The algorithm adapts the fragment
designs by changing the states of the aggregation relationship. The value of
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the state is decided by the characterization parameter values of both related
content elements. These values are used by a classification algorithm, which
decides the state. The execution of the algorithm generates a low overhead,
and the creation of the algorithm is done previously in an off-line phase.

The details of the process to create the classification algorithm and the
study of alternatives are given in the next section.

4.3 Alternatives to implement the adaptive core

The number of techniques to implement the adaptive core is very high. We
have studied the applicability of some techniques which, a priori, seem to be
suitable in our case.

We have dealt with the solution as an optimization process. This optimiza-
tion solution needs to classify the ODGex edges in one of the two available
states, join or split. The resulting classification should create the fragment
design which generates the highest performance in the system. Two main
requirements must be achieved by the solution:

• Overhead: the solution should generate as low overhead as possible. If the
overhead is very high, the improvement of the system will be counteracted.
• Immediacy: the solution should be generated as soon as possible, because

the contents change with high rates. If the solution takes a lot of time to
be found, it will not be obtained before new content changes.

The studied solutions for the developing of the adaptive core are quite
heterogeneous. More precisely, we studied the suitability of solutions based
on ontologies, genetic algorithms and knowledge discovery/data mining. The
details are explained in the next sections.

4.3.1 Ontologies

Ontologies are a hot topic in current research studies and they are widely
used in reasoning and artificial intelligence problems. Ontologies are formal
representations of knowledge, as a set of concepts within a domain, and the
relationships among them. Due to their implicit logic, they are easily used for
reasoning processes based on classifications.

Ontologies offer an opportunity to significantly improve knowledge man-
agement capabilities. Therefore, we considered using them as a possible im-
plementation of our adaptive core. Problems related to resource and compu-
tational requirements made us to reject their use, but we obtained some inter-
esting contributions that we are highlighting in this section. The work done in
this phase involved: the definition of the system architecture to enable the use
of ontologies; the definition of the ontologies for the different domains of the
problem; and, a simple reasoning process to monitor its resource consumption.
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For the integration of an ontology-based solution, we proposed an archi-
tecture which is the same to the one proposed in Section 3.3, but including
some singularities of the ontological systems. Gathering modules were pro-
posed in order to obtain the data to build the ontologies and their instances.
A reasoning module was also defined in order to use the knowledge expressed
in the ontologies.

The architecture is based on ontologies to model all the elements in the sys-
tem (Web System Elements Knowledge Base) and the behaviour of the users
(Behaviour Knowledge Base). The reasoner analyses the knowledge provided
by both knowledge bases in order to define the configuration of the system
that obtains the highest performance. Due to the similarities to the final ar-
chitecture and because this solution was not finally considered as the right one
for our system, we avoid giving the details, but they are explained in [35, 37].
The next ontologies for our specific knowledge domains were defined:

• Content aggregation system domain. This domain represents the knowl-
edge related to the content aggregation web pages and applications. The
concepts of this domain represent the content elements, the content frag-
ments, the fragment design, the aggregation relationship, etc.
• User behaviour domain. This domain represents the knowledge related to

how the users interact with the system, their content preferences, and how
they configure their custom web pages.
• Web performance domain. This domain represents knowledge about how

the system behaves and about the performance metrics of different hard-
ware and software elements of the system.
• Web architecture domain. This domain represents the knowledge about

the elements of the architecture (hardware and software) which take part
in a content aggregation web application.

The details of the ontologies that we created for each domain are explained
in [39, 38].

Finally, some tools based on ontologies were created to reason using the in-
stances of the models. We have shown that these techniques are valid to solve
our problem. However, we noticed problems regarding with resource consump-
tions. High demand was generated over computational and space resources.
Thus, one of the most important requirements of the solution, simplicity and
low overhead, was not accomplished. We decided to investigate other tech-
niques to implement the adaptive core of the framework.

4.3.2 Genetic algorithms

Genetic algorithms (GA) are heuristic search tools [3]. They are based on the
process of natural evolution. The solution search is based on changes over a
population of solutions. The changes are addressed by the application of op-
erations. These operations are inheritance, crossover, mutation and selection.
A very brief explanation of the genetic evolution is:
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• Two individuals (solutions) are selected from the population (group of
solutions). The selection process is done randomly, but not uniformly.
Each individual has associated a probability of being selected and these
probabilities are assigned using a fitness function.
• These two individuals are combined with a crossover operation. The re-

sulting solution is created by combining parts from each of the two parent
solutions.
• In some cases, a small part of the resulting solution is changed randomly.

This is a mutation process, and it takes place with small probabilities.
• The worst solution from the population, individual with the lowest fitness

value, is replaced by the new solution.

The creation of genetic algorithms involves decisions about how to rep-
resent the solutions of the problem, how to define the genetic operations
(crossover and mutation), and how to define the fitness function. The rest
of the section is devoted to explain the application of these three steps in our
problem.

GAs usually represent the solution of the problem as a string of 0s and
1s, but other encodings are also possible. The solution of our system is a
DAG with labelled edges. The number of different labels for the edges is 2.
A graph can be modelled as a matrix of NxN elements that represents the
edges between vertexes [9]. This type of representation fits perfectly in GA.

Therefore, the solution of our problem can be represented using a string
of size NxN , where N is the number of content elements in the CAS, and
the possible values for each element are -1 (join state), 1 (split state), and
0 (no aggregation relationship between these content elements). But not all
the strings are solutions in our case, only the acyclic graphs representations.
Moreover, the structure of the pages, or content page model, does not change
while the optimal solution is been searched. Therefore, all the possible solu-
tions should be DAGs with the same edges. The differences between them are
the states of the edges, i.e., the 0-value positions of the strings remain equal.

In the initialization phase, many single solutions are randomly generated
to create an initial population. The graph structure of all these solutions
should be the same to the one of the content page model. All the solutions
are generated using a graph mask which represent the real structure of the
content page model. The edges, which correspond to aggregation relationships
in the graph mask, are randomly labelled with 1 or -1. Once this is ensured,
it is not necessary to check it again each time that an operation is applied.
Only elements with values 1 or -1 can evolve. Conceptually, the population
evolves by changing the fragment design, the values of the edge labels, not
by changing the content structure, creating or removing edges. Therefore,
changes in 0 elements are not considered.

Next step in the design of the system is to define the evolving operations:
crossover and mutation. As we have explained in previous paragraphs, the 0
elements of the solutions are not changed by any operation. The mutation
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operator randomly selects one of the edges of the graph, and changes the
value of the label of this edge, its state. A second alternative for the mutation
operator is to change the state of all the descendant edges instead of only the
selected one. Analysing the results of some experiments, we concluded that
this second method is better to avoid local minimums in the solution search.

The crossover operator creates a new individual from the combination
of the information of two given father elements. In our case, this results in
taking some edge labels from one of the father elements, and the rest of labels
from the other one. We studied two alternative crossover operators. One of
them takes the definition of one father solution and replaces all the elements
between two random indexes with the elements in the other father solution.
This operator behaves as the most basic crossover operator in GA.

In the second crossover operator, the replacement process is based on the
structure of the graph instead of the solution string. The solution of one of the
father individuals is taken as the reference solution, and a node is randomly
selected. The values of all the descendant edges of this node are replaced by
the element values in the other father solution. Our experiments showed that
this last operator achieves an optimal solution more quickly.

Finally, the definition of the fitness function should be done. This phase
made us to reject the use of GA in the deployment of the adaptive core. In fact,
the designing of the fitness function is the hardest work in GA. Fitness function
maps the individuals of the population in an ordered set. Since the population
has a high number of individuals, the fitness value should be calculated very
easily and quickly. Some of our experiments were addressed to calculate the
fitness value by measuring the real performance for each solution. Obviously,
this is not a quick and easy method to measure the suitability of each solution.
Therefore, the measurement of the performance for each solution was rejected
as a fitness function.

We used the parameters explained in Section 3.5 in order to create the
fitness function. Our preliminary study proved that the characterization pa-
rameters can be used to decide the state in which two fragments generate
the highest performance. But this study did not conclude anything about
the mathematical relationship among the parameter values and the perfor-
mance values, and even less about some kind of sort function. In fact, we
observed that the relation between the characterization parameters and the
aggregations states is defined by patterns instead of a direct mathematical
relationship. Therefore, we finally tried data mining techniques to classify the
aggregation relationships.

4.3.3 Data mining

Data mining is a set of techniques to discover knowledge in large data sets. The
emphasis of data mining lies on the discovery of previous unknown patterns.
One of our dissertation goals is to prove that this previous patterns can be
used to improve the performance in the future, i.e., that a predictive analysis
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can be used to improve the performance of a CAS, by classifying new data
instances.

Data mining is a task of a more general technique, Knowledge Discovery
(KD). We have generally called data mining to all the phases involved in the
KD, despite we have actually deployed a complete KD process. This is because
we wanted to focus the explanation of our work in the task of mining the data
but, in a more precise way, we should call it as knowledge discover instead of
data mining.

A group of tasks and phases should be done when knowledge discovery
techniques are applied to a specific problem [27]: (a) Selection or target data
definition; (b) Preprocessing or data properties analysis; (c) Transformation
of the target data: data cleaning, and instance representation; (d) Data min-
ing algorithm selection; (e) Evaluation and coverage study (testing data set).
Figure 4.2 also shows the phases of the KD process.

Information

Patterns

Preprocessing

Data Mining

Interpretation /
Evaluation

Transformation

Selection

--- --- ---
--- --- ---
--- --- ---

Knowledge

Preprocessed Data

Data

Fig. 4.2. An overview of the steps that composes the Knowledge Discovery process
(source: [27]).

The target data definition consists in defining the independent attributes,
the class attribute, and the available data samples. The class attribute is de-
fined or classified by the patterns extracted using data mining. In our case,
this attribute is the state of the aggregation relationship of two content ele-
ments. The independent attributes are used to decide the value of the class
one. We previously showed correlation among characterization parameters of
the content elements and the aggregation state, so these are our independent
attributes. We created a big enough data set in a synthetically way in order
to use them as the data samples. The samples were created by simulating
content page models in a real web system.

The data properties analysis consists in analysing the histograms and the
scatter plots, and in detecting atypical values. In our research process, we
graphically analysed the data obtained from the emulation results. By this
analysis, we observed patterns in the data. This fact supported the idea of
using data mining techniques and knowledge discovery in our problem resolu-
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tion. We created an initial solution by creating association rules straight from
the observation of the data, and we obtained good results.

In the phase of the transformation of the target data, we took into account
more than one data representation. Since we previously proved that we can
use both entire values of the characterization parameters or mathematical
relations among their values, we created four different data representation
sets. These sets combine entire representations with other ones where values
are represented by mathematical relationships obtained with low processor
overhead.

After the transformation of the data, we need to select a data mining algo-
rithm which generates a classification structure. Decision trees and association
rules are usual implementations for process of classification [47]. We need to
obtain the structure, or classification algorithm, which uses less computational
resources to classify the data instances.

Finally, the evaluation and coverage study is used to check the suitability
of the obtained knowledge. In our case, experiments with real systems have
been done because a coverage analysis is not enough. A coverage analysis
only gives information about the number of well-classified instances using the
knowledge obtained in the data mining process.

Since we have finally implemented the solution to our system with data
mining techniques and knowledge discovery, the details of each knowledge
discovery phase have not been explained in this section. They are in the next
section (Section 4.4).

4.4 Adaptive core deployment via knowledge discovery

In the initial steps of the research work, we explored different alternatives
to deploy the adaptive core. Finally, we decided to implement a data mining
based solution. In the previous section, some details about the knowledge
discovery process have been explained.

This section is addressed to give the details of the whole process. The sec-
tion is divided in subsections which correspond to each of the phases involved
in a knowledge discovery process. The details of the adaptation of each of
these phases to our particular problem are explained.

4.4.1 Target data definition

In the data definition phase, the independent attributes and the class ones
are defined. We have previously studied suitable attributes in order to detect
patterns in the performance behaviour of the system. We analysed the relation
between the best aggregation state, from a performance point of view, and the
characterization parameters of two related content elements in Section 3.5.

The objective of the adaptive core is to determine the fragment design
in which the system experiments the highest performance. Fragment designs
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are defined by the state in which the single aggregation relationship is classi-
fied or the edge label, if we refer to the ODGex model. Thus, the output of
the adaptive core is the state, or edge label, of each aggregation. Our class
attribute is a state of the aggregation relationship.

Finally, the independent attributes are used to predict or classified the
class attribute. As we have mentioned before, we proved that a set of char-
acterization metrics of the content elements can predict the best state, from
a performance point of view, of each aggregation relationship. Therefore, the
independent attributes are: request rate, update rate, size, number of fathers,
and number of children.

Obviously, the knowledge extracted for the data obtained in an architec-
ture would not be the same than for a different architecture. This difference
is mainly based on the hardware, the tools to deploy the system, the soft-
ware, the operating system, the setup of the system, etc., i.e. on the system
architecture. A clear consequence of this is that a new data mining process
should be done when a change in the architecture occurs, in order to update
the patterns that are used in the predictions.

The attributes that take part in the process are the same, either the inde-
pendent ones as the class one, but the data sets (data instances) are not equal
in scenarios for different architectures. Therefore, we should define a system-
atic process in order to obtain the training data set. The steps to obtain this
data set are:

• Creation of a content model (set of content elements, content fragments
and web pages) with a wide range of values for the characterization pa-
rameters of the content elements: content size, request rate, update rate,
number of aggregators (fathers) and number of aggregations (children).
• Definition of a random fragment design over the page model, i.e., assig-

nation of the values of the edges of the ODGex model.
• Emulation of the content model. During the emulation, the values of some

edges of the ODGex model are changed periodically.
• Gathering the performance metrics from the emulation. The performance

metrics are related to the latency.
• Comparison of the latencies among the web pages in which only the value

of one state is different. The state with the shortest latency is selected as
the best one.
• Creation of the data instances using the best state and the characteri-

zation parameters of the two content elements involved in the analysed
aggregation relationship.

Two important issues to be solved in this process are the creation of the
ODGex model to be emulated and the condition to finish the emulation. These
two phases are explained below.

Firstly, we focus on the creation of a synthetic data set for the training
phase of the data mining process. These data are obtained from a random
content model, or ODGex model. The knowledge extracted from the data set



52 4 Definition of the core for the adaptation of content fragment designs

needs to represent as many patterns as possible, and not only patterns of the
most usual cases. Therefore, we are interested in creating an ODGex model
which covers a wide range of values for the characterization parameters, i.e.,
we are interested in a homogeneous model —all the values have the same
relative importance— and we need to use uniform distributions to create the
model.

It is impossible to create a general ODGex model useful for all the cases,
because the number of cases is infinite. Some value limits need to be fixed
before the creation of the model. We need to have some details of the charac-
teristics of the content elements we are going to manage in the real system.

The model is composed of three characterization metrics —size, request
rate and update rate of a content element— and two structure metrics —
number of aggregations (children) and number of aggregators (fathers) of a
content element—. We need to create all of them in a uniformly way.

The uniform statistical distribution is the mathematical tool in order to
create uniform distributed data instances of a variable. The parameters of a
uniform distribution are the maximum and minimum values of the random
variable. Therefore, we need to know the maximum and minimum values for
the size, the request rate and the update rate of the content elements.

The creation of a uniform structure is more complex than the case of
samples from a random variable. The structure that represents an ODGex is
a directed acyclic graph (DAG), so we need to use some kind of algorithm to
create uniform graphs. Some of the most usual algorithms to create random
graphs are defined by Barabási [4], Kumar [57] and Broder [10].

These new models, which are focused in the creation of random Web-like
graph models, strongly differ from the classic view of random graph mod-
els. All they are better approximations to represent real networks and graph
structures. But, as we have mentioned before, we are more interested in a
model to cover a wide range of values.

Classic models (Gn,p) consider a fixed number of n vertexes and each
edge occurs independently of all other edges with a fixed probability p. The
properties of these classic models are deeply studied and analysed [24, 25,
7]. These publications define the Erdös-Rényi model in which the process
of creating a uniform random graph is defined. Since we are interested in a
directed acyclic one, some modifications over the general process have been
done.

Summarizing, the process in order to create the ODGex model is stated
by the next steps:

1. Consider a set of n vertexes (content elements).
2. Generate randomly the samples for the size and the update rate of each

vertex (but not the request rate). Uniform distributions, with their partic-
ular maximum and minimum parameters, are used to generate the sam-
ples.
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3. Create a directed edge (aggregation relationship) connecting two random
vertexes (content elements). The new edge has to be rejected if it connects
two previously connected vertexes, or when it creates a cycle in the graph.
Finally, assign randomly the label (aggregation state) to the edge.

4. Repeat the last step until the total number of edges N is reached.

The case of the request rate is particular. It is more difficult to predict
the request rate for single content elements than for web pages. Thus, we
randomly assign the request rate of the source vertexes of the graph using a
uniform distribution. Once the creation of the ODGex model has finished, we
walk the graph and we recalculate the single content element request rates of
each single vertex by adding the request rates of all its fathers.

Table 4.1. Parametrization of the process to create the training data set.

Parameter Description

minsize Minimum size of a content element
maxsize Maximal size of a content element
minreq Minimum request rate of a CAS web page
maxreq Maximal request rate of a CAS web page
minupd Minimum update rate of a content element
maxupd Maximal update rate of a content element
totalce Total number of content elements in the ODGex model
totalag Total number of content aggregations in the ODGex model

Table 4.1 lists the setup values we need to know from the real content
model in the time of creating the training data set. The six first characteristics
correspond to the parameters of uniform distributions.

The other two characteristics to be used in the creation of the training data
set are the total number of content elements and aggregation relationships. If
we assign to the total number of vertexes n and of edges N the real values
of these two parameters, we would not probably obtain an enough number of
data instances to extract a proper knowledge. We need to scale the number
of elements in the content in order to create an big enough training data set.
The main issue of this scaling process is to keep constant the average degree
or valency of the graph, by multiplying both values with the same number s
(n = s ∗ totalce;N = s ∗ totalag).

In our experiments, the value of s was assigned arbitrarily (around s =
1000) and it resulted in a high enough value. Probably, it might be smaller
but experimentation is the only way that we have to determine this value.
Further research work should be done in order to define some kind of formula
to calculate the value of s more accurately. This formula should consider
interval distances of the setup parameters related with the size, the update
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rate and the request rate. We consider this work is out of the bounds of our
dissertation and it remains as future research work.

Secondly, we focus on the determination of the end condition of the emu-
lation. The data instances of our training data sets are composed by a class
attribute that is determined by comparing the latencies of the two possible
states of an aggregation relationship. Web latencies are not deterministic and
they may vary with external conditions of the system as, for example, net-
work traffic, operating system processes, etc. The measures of the performance
(user-perceived latency) of the emulator should be done in an isolated envi-
ronment. But a complete isolated environment cannot be achieved. Therefore,
we need more than a single measure for the latency of each web page. The
main issue is to determine the number of measures that we should do to get
reliable values.

In order to guarantee the reliability of the results, we have used a multiple
replica method. In this type of methods, experiments are repeated several
times. Each repetition is called replica. The accuracy of the results gets higher
as the number of replicas is increased (n). The bias decreases as the number
of samples of the replicas is increased (m).

In statistics, a confidence interval (CI) is a particular kind of interval esti-
mation of a population parameter. We have used it to indicate the reliability
of the metric we want to estimate, the average latency of the web pages. In our
case, we have calculated the reliability of the average latencies of the samples
of a given replica, and also the reliability of the averages latencies of the same
requests (samples) among different replicas.

In the case of the average latencies for the samples of a replica, the latency
of the web pages varies between requests of the same web page. This is because
of the influence of the hit and miss ratios of the content fragment elements
that compose a web page. Therefore, we are not able to work only with one
average value of the latency. We have analysed it separately for each individual
case. We have studied the average latency for each content fragment element
and we have divided them into two cases: cache hits and misses. In the case
of the requests among different replicas, we have calculated the single latency
of each single sample or request.

In both cases, we have calculated the 95% confidence level for the average
times. We have considered reliable results when the CI is smaller than ±1.25%
of the average latency. When this was not accomplished for all the samples of
the experiments, the size of the experiment —number of replicas n and number
of samples in a replica m— was increased. We experimentally discovered that
the size of the experiment got too big if this requirement had to be achieved
by all the elements of the experiment. We relaxed the requirement so we
considered to achieve this in only the 90% of the elements of the experiment.
In this case, the size of the experiments resulted in manageable terms.

The transient period is the period of time in which the initial state of
the experiment has influence on the results, i.e., it is the time during which
a given metric shows alterations in its value. The samples of this period are
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not considered for the statistical studies, and only those of the steady state
period are used. The components of a system are not in the same state in the
starting point than in the steady state. For example, in our case, the cache is
completely empty when the system starts. Thus, the hit ratio of the cache is 0
when the system starts the execution. The cache is filled as the web pages are
requested by users. During this period of time the hit ratio is increased until
a constant value is reached. In fact, the hit ratio is the performance metric
we have used to define the size of the transient period (l).

The transient period can be determined by visual analysis or by some
mathematical relation —the difference of the two last values is less than a
given value x—. We have used a mathematical method to determine the size
l of the transient period. The metric we have analysed is the hit ratio of the
cache. We consider the steady state has been reached when the value of the
hit ratio remains with small alterations. Different execution replicas, using the
same content page model (ODGex), have been considered in order to define
the transient state. The first l samples of the future replicas have to be rejected
in order to study the mean latency.

4.4.2 Preprocessing and data properties analysis

This phase is addressed to prove the relation between the variables used for
the independent attributes and the class attribute. This analysis can be done
by observing graphical representations of the data (histograms, scatter plots,
etc.) or by the use of multivariate statistics, as linear regression or correlation.
Our research work covers both types of analysis.

On the one hand, we have already presented a multivariate analysis in
Section 3.6. We analysed the correlation between some characterization pa-
rameters and the state in which the highest performance is experimented. This
preliminary study helped us to reject the use of some of the initial param-
eters and to take into account six characterization parameters (size, request
rate and update rate of the father and the child content elements, number
of aggregations in the father, and number of aggregators of the child). The
suitability of the remaining ones needs to be tested in the validation phase.
Therefore, we have created and analysed more than one target data set. Each
of these sets removes one of the attributes. Thus, we can compare the results
that are obtained when a given attribute is used or not.

On the other hand, the properties of the data were analysed by the use
of graphical representation. There is usually a big number of independent
parameters involved in data mining process. Multidimensional representation
is needed to analyse graphically the data. Scatter plots are not multivariate
representation, but we can use several bivariate representations, in which the
multivariate data are projected into multiple two-dimensional plots. Figure 4.3
is an example of this type of representation.

The analysis of the scatter plots gave us some clues about the patterns that
could be obtained from the training data. We used this information in order
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Fig. 4.3. Example of a multivariate scatter plot representation.

to create a small preliminary experiment. This initial experiment used an
association rule system to classify the data instances. The rules were created
by observing the scatter plots. The results were quite good despite using a
small training data set and of creating the rules by only the observation of
the scatter plots.

The association rule set was very simple with a very small number of rules.
We have represented graphically the rules that we created in Figure 4.4. The
rules are represented as a tree structure because it is possible to represent
association rules as decision trees and vice versa. We published the details of
this previous work and the results in [40]. The list of the rules is:

• If the update rates of the child and father elements are higher than the
request rates, then the state is set to join.
• If only one of the element has its update rate higher than the request rate,

then the state is set to split.
• If neither of the update rates is higher than the request rate:
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– If the child content element has more than one aggregator (father
vertices), then the state is set to split.

– If the previous condition is not accomplished and the number of ag-
gregations (children vertices) of the father element is 1, then the state
is set to join.

– If neither of both previous conditions is accomplished and the size of
the child content element is bigger than 25 KB, then the state is set
to split, but if the size is smaller than 25 KB, then the state is set to
join.

Fig. 4.4. Graphical representation of the association rules for the preliminary test.

4.4.3 Transformation of the target data: data cleaning, and
instance representation

We have mentioned previously, in Section 3.6, that further investigation over
the independent attributes should be conducted. There are two main issues
to be validated: the suitability of all the independent parameters and the
best way to represent them —by entire values or by related ones—. We have
designed an experiment in which different instance representations are taken
into account depending on these two issues.

We proved that the correlation among aggregation states and character-
ization parameters exists both when the values of the common attributes



58 4 Definition of the core for the adaptation of content fragment designs

are expressed using entire values and when they are expressed as a math-
ematical relationship. The common parameters are those present in father
and child content elements (CEsize,father, CEsize,child, CErequestRate,father,
CErequestRate,child, CEupdateRate,father, CEupdateRate,child). The other param-
eters are the individual ones and they are only considered for one of the content
elements (CEchildrenNumber,father, CEfathersNumber,child).

The data instances are represented in four different ways, regarding with
the relation of the attributes:

• Entire, the common parameters are expressed independently.
{CEattribute,father, CEattribute,child}
• Ratio, the common parameters are expressed as a division.
{CEattribute,father

CEattribute,child
}

• Difference, the common parameters are expressed as a difference.
{CEattribute,father − CEattribute,child}
• Distance, the common parameters are expressed as the absolute value of

their differences.
{|CEattribute,father − CEattribute,child|}

The individual parameters are expressed independently in the four patterns.
All these attributes are the independent ones, and all of them are numerical
attributes. Finally, each data instance is completed with the class attribute,
corresponding to the best state, from a performance point of view. The class
attribute has only two possible values, both states of an edge (split or join).
Table 4.2 includes examples of the four representations.

The second issue to consider is the validation of all the attributes. This
issue generates the creation of six data representations where some attributes
are removed. The common attributes are removed together. Thus, there are
six target data representations: one in which all the attributes are considered;
three more in which the pair of attributes corresponding to the request rate,
update rate and size are removed; one in which the number of fathers is
removed; and, finally, one in which the number of children is removed.

Considering both discussed issues, the total number of data instance
representation is 24. In order to identify the data sets, they are called
as DataSetrelationPattern,removedAttribute where relationPattern indicates the
type of mathematical relation among common attributes (Entire, Ratio, Dif-
ference and Distance) and removedAttribute indicates the attribute which
has been removed from the vector. Its value is ∅ if none attribute has been
removed. For example, DataSetratio,updateRate is the data instance represen-
tation in which common attributes are expressed as a division and the update
rate attributes have been removed. DataSetratio,∅ is the same case, but with-
out removing any attribute.

Each of the 24 different representations for the target data is used to
represent the instances of one of the 24 different training data sets. Afterwards,
these data sets are mined and knowledge is extracted from them. The results
are studied in an experimental environment and the performance results are
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Table 4.2. Data instances representation for the training data sets.

Entire representation

{CErequestRate,father, CErequestRate,child,
CEupdateRate,father, CEupdateRate,child, CEsize,father, CEsize,child,
CEchildrenNumber,father, CEfathersNumber,child, StateBestPerf }
Ex.: {2.1, 3.0, 1, 0.5, 324, 250, 5, 3, split}

Ratio representation

{CErequestRate,father / CErequestRate,child,
CEupdateRate,father / CEupdateRate,child, CEsize,father / CEsize,child,
CEchildrenNumber,father, CEfathersNumber,child, StateBestPerf }
Ex.: {0.7, 2, 1.296, 5, 3, split}

Difference representation

{CErequestRate,father - CErequestRate,child,
CEupdateRate,father - CEupdateRate,child, CEsize,father - CEsize,child,
CEchildrenNumber,father, CEfathersNumber,child, StateBestPerf }
Ex.: {-0.9, 0.5, 74, 5, 3, split}

Distance representation

{|CErequestRate,father - CErequestRate,child|,
|CEupdateRate,father - CEupdateRate,child|, |CEsize,father - CEsize,child|,
CEchildrenNumber,father, CEfathersNumber,child, StateBestPerf }
Ex.:{0.9, 0.5, 74, 5, 3, split}

compared among them. If the best results correspond to data representation
in which a particular attribute has been removed, we will be able to conclude
that the removed attribute does not have influence on the performance. On the
contrary, all the attributes will be important if the best results are obtained
in the experiments where all the attributes are used. The same analysis can
be done for the experiments in which different mathematical relations have
been used for the common attributes.

4.4.4 Data mining algorithm selection

We are interested in the creation of a classification algorithm which predicts
the class membership of new instances based on a series of measurements in
that instance. There are many methods available in order to create classifica-
tion algorithms [59, 47]. But there is not a general guideline to select the best
method.

The usual criterion to decide the best algorithm or method is the perfor-
mance of the process (related to the time to create the classification algorithm)
and the coverage of the created classification algorithm. Our problem has some
particular features which make us to consider another criteria in the decision.
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The performance of creating the classification algorithm is not a problem be-
cause this is an off-line task that does not have influence on the performance
in running time. The main issue is that the execution of the classification
process should take the shortest time, in order to reduce the overhead of the
system. Finally, the coverage of the classification is important.

In order to select the best algorithm, we have analysed the performance of
the classification process. We have used several training data set, created by
the process explained in Section 4.4.1. We have applied several data mining
algorithm over these training data sets. We have finally studied the coverage
and the classification time of these classification algorithms. Both metrics have
been calculated over the same data sets used as training sets.

The criterion to select the data mining algorithm is to obtain the shortest
classification time and the highest coverage. We have analysed the most usual
data mining algorithms for general purpose. The results for each algorithm
are presented in Table 4.3.

Table 4.3. Comparative analysis among data mining algorithms.

Type Name Classification time (ms) Coverage (%)

Tree J48 3.349 90.258
Tree NBTree 20.221 90.552
Tree RandomForest 35.639 85.414
Tree RepTree 3.832 86.814
Rules DecisionTable 9.675 90.552
Rules JRip 2.913 86.544
Rules OneR 2.906 84.042
Rules PART 4.830 89.600

Weka [84] has been used to create all the knowledge representation for each
data mining algorithm. Weka (Waikato Environment for Knowledge Analysis)
is a popular suite of machine learning software written in Java, developed at
the University of Waikato, New Zealand.

In Table 4.3, the mean classification time of one instance and the coverage
of the classification process are presented. After the analysis of the results, we
have selected the J48 algorithm as the most suitable in our case. It is in the
set of the three best algorithms in both criteria. J48 is the implementation
of Weka for C4.5 algorithm, which was developed by Quinlan [70]. C4.5 is
probably the most popular data mining algorithm to create tree classifiers.

4.4.5 Evaluation and coverage study

One of the quality metrics of the resulting algorithm of a data mining process
is the coverage. The coverage is the percentage of instances that are classified
correctly. Thus, it is needed a data set in which the class attributes of the



4.5 Summary 61

instances are previously known. This set is usually called as testing data set.
The number of data instances of the testing data set is usually significantly
smaller than the number of the training one. The classification algorithm
is executed using the data instances of the training data set as inputs, and
the classification results are compared with the correct class attribute. The
number of hits and misses in the classification is evaluated and, finally, the
percentage of hits, or coverage, is calculated. In some cases, a reduce number
of data instances from the training data set are used to evaluate the resulting
algorithm, but it is recommended not to use the same data instances in both
processes.

We need a second data set every time that we create a classification al-
gorithm. Therefore, the process explained in Section 4.4.1 needs to be done
twice: once to create the training data set and another one to create the testing
data set.

There is not a rule to define a minimum value for the coverage. The
strength of the coverage depends on the problem. Moreover, the coverage
is not a direct metric of the benefits of our solution. A correct classification
does not generate a higher performance on the system in some cases. So, we
consider that good coverages values are around 90%.

4.5 Summary

Our dissertation contributes with the definition of an architecture for content
aggregation systems in which the content fragments are adapted as the con-
tent elements change. The details about the proposed framework (interfaces,
modules, etc.) are given in the next chapter (Chapter 5). The most impor-
tant element of the framework is the adaptive core. This element is in charge
of determining the fragment design, the content elements which form a con-
tent fragment. The deployment and implementation of the adaptive core is
independent of the definition of the framework, i.e., the architecture is inde-
pendent of the algorithm that creates the content fragments. In this chapter,
we have studied different alternatives to implement this core.

The first part of the chapter is focused on the definition of the requirements
of the adaptive core. The core needs to manage the fragment design adaptation
as changes occur in the characterization parameters of the content elements.
Also, the overhead that the adaptive core generates over the system should
be as low as possible.

The second part of the chapter has been devoted to study the use of three
techniques to implement the adaptive core: ontologies, genetic algorithms and
knowledge discovery. This study helped us to select the last one as the most
suitable method to implement the adaptive core. The other two alternatives
presented important drawbacks. The reason to reject the use of ontologies
has been the high computational requirements to implement the solution.
Genetic algorithms have been rejected because of the difficulty to create a



62 4 Definition of the core for the adaptation of content fragment designs

fitness function and because of the long time between an update occurs and
a solution is found. In any case, we got some contributions from the results of
the analysis of the two rejected alternatives.

The latest part of the chapter has been devoted to give the details of all
the process for the deployment of the adaptive core using knowledge discovery.
The details of the adaptation to our case have been explained. We have ex-
plained how the phases of a knowledge discovery process have been addressed
to our particular case. We explain, in the next chapter, how the adaptive core
is included in the framework for the adaptation of the content fragments.

To summarize, the contributions of this chapter are:

• Definition of the requirements and features to be achieved by the adaptive
core.
• Study of the benefits and drawbacks of the use of ontologies to implement

the adaptive core. Ontologies were rejected because of their resource con-
sumption.
• Study of the benefits and drawbacks of the use of genetic algorithms to

implement the adaptive core. They were rejected because of the effort
in the definition of the fitness functions and the time taken to obtain a
solution.
• Definition of ontologies domain for content aggregation system, web per-

formance, web architecture and user behaviour.
• Definition and study of crossover and mutation operators for genetic al-

gorithm to find an optimized fragment design.
• Definition of a general method to create content page models to be used

in a emulation phase to obtain data about the relationship among the
characterization parameters of the content elements and the best assembly
points of each aggregation relationship.
• Definition of the data instances representations to be used as training data

sets.
• Selection of the data mining algorithm based on the instances classification

times and the coverage of the resulting structures.
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COFRADIAS: COntent FRagment
ADaptation In web Aggregation Systems

Cofrad́ıa f. Gremio, compañ́ıa o unión de gentes
para un fin determinado. (Guild, company or
union of people for a particular purpose.)
f. ant. Vecindario, unión de personas o pueblos
congregados entre śı para participar de ciertos
privilegios. (Neighborhood, union of people or
congregated towns to partake of certain privileges.)
—Real Academia Española—

Content Fragment Assembly of content
elements for a performance improvement purpose.

COFRADIAS framework is our proposal for a general framework which in-
cludes an adaptive core system in the basic scheme of a content aggregation
system. COFRADIAS framework is not only the definition of the interfaces
between the new adaptive core and the tiers of a traditional CAS system. It
is also the design solution taken in order to adapt the tiers of a CAS system
to the new type of elements: the content fragments.

In the first part of this chapter, we give details about the design of the
framework and general guidelines to implement the COFRADIAS framework.
We have also created a real implementation of the framework. We have devel-
oped an extension for Drupal CMS (Content Management System) in order
to manage aggregation of contents and to integrate it with our adaptive core
system. The details are explained in the second part of this chapter.

5.1 Introduction

In previous chapters, we have presented the problems of using web caching in
CAS systems. In order to improve the performance, fragments of the pages
are created and, in consequence, the hit ratios of the web cache are increased.
But the process of assembling these fragments adds overhead times to the
latency of the CAS system.

Therefore, we have proposed a technique to define content fragment designs
that balance the hit ratio of the cache with the overhead of the assembling
process. In the previous chapter (Chapter 4), we have explained the details of
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our technique to decide the content fragment design. This decision is based on
a classification algorithm extracted from off-line data mining process. Thus,
the content fragment design is adapted as the ODGex model changes.

We have obtained two main deliverables or contributions from a technolog-
ical point of view. The first one refers to the definition of a general architecture
of a CAS system where our core tool is integrated. The guidelines to adapt
an existing CAS system to our solution are defined. These guidelines detail
the data to be gathered from the CAS system, the new interfaces with the
adaptive core, the changes in the existing interfaces, and the updates in the
application tier. We have called COFRADIAS to the general framework that
adapts the fragment designs of the web pages.

The second contribution is a proof of concept (POC) of the general frame-
work. This POC is an extension of Drupal CMS to manage content aggregation
web pages and to integrate our adaptive tool in Drupal [26]. This POC is used
in the experimental phase of this Ph.D. dissertation.

5.2 Architecture of COFRADIAS framework

The architecture of COFRADIAS framework is based on the general layout
of a four-tiers web content aggregation system (Figure 2.2 and 3.2). The de-
tails about the creation of the core of COFRADIAS framework have been
explained in the previous chapter (Chapter 4), but this section is about the
design decisions taken in our framework. These design decisions are related to
the interfaces among CAS tiers and the module in charge of creating the frag-
mentation design. Changes in other interfaces between tiers of the CAS system
are also explained. These changes are done in order to allow the management
of content fragments in addition to content elements and web pages.

There are two new interfaces in COFRADIAS framework (the Gathering
Service and Fragment Design Service modules) and one of the interfaces in
the traditional scheme needs to be adapted to the new concept of content
fragment (the Fragment Manager module). All these interfaces use some sort
of XML structure to interchange data. The modules in charge of implementing
and interacting within these interfaces are shown in Figure 5.1.

On the one hand, the new interfaces are placed between the CAS system
and the adaptive core. The adaptive core is the responsible of creating the
adaptive fragment design by classifying the assembly point for each aggrega-
tion relationship. On the other hand, the interface which needs to be redefined
is the corresponding to the communication between the CAS system and the
cache proxy, because a new element type needs to be managed and identified:
the content fragment.

The output of the adaptive core is based on the values of the character-
ization parameters of the content elements. These values are the inputs of
the system and are gathered from different tiers of the web systems. Some of
the parameters are measured from the content elements (sizes and structure),
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Fig. 5.1. Architecture of the adaptive content fragment framework.

other ones from the web application system or the local database (request
rates) or from both sources (update rates). Modern web systems usually store
this sort of performance metrics [82, 18], so there is not any drawback to
gather these data.

Just some low workload processes need to be implemented to summarize
the already gathered data and to transmit them to the adaptive core sys-
tem. In COFRADIAS framework (Figure 5.1), the Characterization Monitor
module is the new module in charge of gathering and summarizing all these
performance data. This module is the data source for the Gathering Service
module, which sends these data to the adaptive core.

In the same way, the result of the classification process —the states of
the edges— needs to be transmitted to the application server in order to
change the content fragment design. The module in charge of transmitting
the ODGex is the Fragment Design Service. The Fragment Design module
is in charge of storing the fragments defined by the ODGex. Obviously, the
application server should be enabled to adapt its content fragment design and
to interact with our adaptive system. The Fragment Manager module uses
the data in the Fragment Design module and it adapts the fragments of the
content of the CAS.

5.2.1 Communication among COFRADIAS modules

The communication and transmission between the adaptive core and the CAS
can be done by using Web Services. These Web Services can be implemented
by using SOAP (Simple Object Access Protocol) or REST (Representational
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State Transfer) based communication, but the last one is implemented easier
and consumes less resources [1].

Even though these communication processes and services executions have
low overheads, the communication is not established regularly. The data can
be interchanged in periods of time (periodical mode) or when changes occur
in the content elements (event-driven mode).

w: web application a: adaptive system d: data layers

1: periodically content model retrieval

2: complete XML content model response

4: complete fragment design change

3: fragment design re-classification

(a) Periodical mode

w: web application a: adaptive system d: data layers

1: content change notification

3: partial fragment design change

2: single edge re-classification

(b) Event-driven mode

Fig. 5.2. Sequence diagrams for the communication between the content aggrega-
tion system tiers and the adaptive system.

The adaptive system behaves as the client component in the periodical
mode. The process is summarized in Figure 5.2(a). In this mode, the adap-
tive system core requests periodically, in fixed intervals of time, the ODGex
model —the extended content aggregation model— of the content elements
within the characterization parameters values. REST requests are sent from
the adaptive system (client) to the CAS tiers (servers). Once the core has
these data, it re-classifies all the edges of the ODGex model and, finally, it
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sends the new content fragment design, the states of the edges, to the appli-
cation server. A REST request is also used in this case to send the ODGex
model, and its edge states, from the adaptive system (client) to the web ap-
plication (server). In this mode, the adaptive system always behaves as the
client element.

In the case of event-driven mode, Figure 5.2(b), a REST request notifica-
tion is sent between the CAS tiers (client) and the adaptive system (server)
every time a content element changes, instead of requesting the ODGex model
in fixed periods of time. This event is followed by a re-classification of only
the involved aggregation relationships. Finally, only the affected edges, the
updated ones, are sent to the web application (server) by the adaptive system
(client). In this mode, the adaptive system behaves alternatively as a client
and as a server.

The advantage of the event-driven mode is that the size of the data trans-
mitted among the elements of the architecture is significantly smaller than
in the periodical mode. In this last case, all the ODGex structure is sent in
each communication process. On the contrary, the number of communication
events is bigger for the event-driven mode.

5.2.2 Format of the interchanged data

The last issue about the interfaces between the elements or the architec-
ture is the representation of the data interchanged among them. The inter-
changed data are content structure and content characteristics represented by
an ODGex model (Section 3.7). As the usual way to interchange data between
web services is the use of structure data in XML files, we need to represent
the ODGex model in some standard XML language.

The survey of Rodriguez [75] states that the best XML schemas to rep-
resent graphs are Heidi, GraphML and XGMML. He makes a comparison of
the three schemas based on their expressibility, extendability, simplicity and
robustness. He concludes that GraphML has the best skills in these four as-
pects. For us, the XML schema is only a tool so we do not need to make a
deeper analysis among the alternatives. GraphML can be extended in order
to represent the characterization parameters and the edges states, so it is a
good choice for us.

GraphML allows us to define additional attributes to the vertex and to
the edges. We define the state of the aggregation relationship using an edge
attribute, and the characterization parameters as vertex attributes. Listing 5.1
shows an example of two related nodes. The example corresponds to three
vertexes: one father vertex with two children.

The number of children and fathers of a vertex is easily calculated by the
analysis of a DAG. We only need to count the incoming and outgoing edges.
Despite this, we have included two attributes (d4 and d5 in the example)
to represent this information in the XML structure. This is needed in the
case of event-driven mode. In this mode, only a partial ODGex structure is
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Listing 5.1. Example of GraphML that represents our ODGex model.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<graphml xmlns=” h t t p : // graphml . graphdrawing . org /xmlns”
xmlns :x s i=” h t tp : //www. w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=” ht t p : // graphml . graphdrawing . org /xmlns
h t t p : // graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>
<key id=”d0” f o r=”node” a t t r . name=” req . r a t e ”

a t t r . type=” double ”/>
<key id=”d1” f o r=”node” a t t r . name=”upd . ra t e ”

a t t r . type=” double ”/>
<key id=”d2” f o r=”node” a t t r . name=” s i z e ”

a t t r . type=” double ”/>
<key id=”d3” f o r=”node” a t t r . name=”n . parents ”

a t t r . type=” i n t e g e r ”/>
<key id=”d4” f o r=”node” a t t r . name=”n . c h i l d s ”

a t t r . type=” i n t e g e r ”/>
<key id=”d5” f o r=” edge ” a t t r . name=” j o i n ”

a t t r . type=” i n t e g e r ”/>
<graph id=” feedmaster ” edgede f au l t=” d i r e c t e d ”>
<node id=”4”>
<data key=”d0”>0</ data>
<data key=”d1”>2</ data>
<data key=”d2”>32512</ data>

</node>
<node id=”5”>
<data key=”d0”>0</ data>
<data key=”d1”>2</ data>
<data key=”d2”>3974</ data>

</node>
<node id=”6”>
<data key=”d0”>0</ data>
<data key=”d1”>2</ data>
<data key=”d2”>12345</ data>

</node>
<edge id=”0” source=”4” t a r g e t=”5”>
<data key=”d5”>1</ data>

</ edge>
<edge id=”1” source=”4” t a r g e t=”6”>
<data key=”d5”>0</ data>

</ edge>
</graph>

</graphml>
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sent between CAS tiers and the adaptive core, so not all of the incoming
and outgoing edges are included in this partial XML file. The other three
parameters (request rate, update rate and content size) are always explicitly
represented by using d0, d1 and d3 attributes. The names of the attributes
are defined arbitrarily.

The structure of the graph is represented by defining each graph vertex
with the tag node and, after that, each edge with the tag edge. In the example
in Listing 5.1, the states are represented as integer values 0 and 1.

The two interfaces of COFRADIAS, Fragment Design Service and Gath-
ering Service, do not need all the data in the XML file. The Fragment Design
Service module only needs the data related to the edges and their states
(edge tags). The Gathering Service module only needs the data related to the
vertexes and their characterization values (node tags).

5.2.3 Content aggregation systems modifications

Once we have explained the details of the two new interfaces, we are going
to explain how the interface between the web cache proxy and the applica-
tion server has been modified. This interface is called Fragment Manager in
COFRADIAS framework.

Traditionally, the interaction between proxy caches and web servers has
been done using HTTP requests and responses. In the case of content aggre-
gation systems (CAS), this remains valid. The only difference between both
cases is that, in the last one, there are content element requests besides web
page requests.

In CAS systems, the interaction between the proxy and the application
server is based on HTTP and HTML. The web cache requests elements (pages,
templates or content elements) by using HTTP requests. The application
server also responds by using the HTTP protocol. The application server
includes data inside the HTML code of the HTTP response. This new code
informs to the cache proxy about which other content elements should be
requested to create the whole web page. These data are codified using ESI
(Edge Side Includes) tags. Every time a HTTP response arrives to the cache
proxy, it parses the HTML code to find ESI tags. These tags are translated
into the proper action. This proper action is, in most of the cases, a new
HTTP request to the application server. The HTML of the server response
replaces the ESI tag. Previously to this replacement, the HTML code of the
response has been also parsed in order to find new ESI tags.

Figure 5.3 shows the process explained in the previous paragraph. Each of
the content elements is identified by a unique identifier. This identifier is added
to the include ESI tag within an URL. The web server uses the pair URL and
identifier to select the content element to be retrieved. In our proposed system,
the difference in the interaction between the cache and the web server is that
the cache requests content fragments instead of content elements. A content
fragment is a set of one or more content elements which are pre-assembled in
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u: user p: proxy cache a: application server

1: user request
2: template request

3: HTML + ESI tags file

4: template parsing

5: content element request

6: HTML + ESI tags file

7: content element parsing

For each 

ESI:INCLUDE

tag in each

content element

8: HTML file

Fig. 5.3. Sequence diagram for an ESI-enabled proxy cache.

the application server. In COFRADIAS, the interaction also takes place using
HTTP requests and responses, HTML code and ESI tags. The only problem
to solve is how to identify these content fragments.

Content fragments are defined as a connected sub-graph with only one
source vertex, the representative one (Section 3.7). If we had created a new
identifier in order to request all the different content fragments, the manage-
ment of these identifiers would be complex. Instead of creating new identifiers,
we use the representative vertex for each content fragment. We can observe
an example in Figure 5.4 where the identifiers of the content elements and of
the content fragments are shown.

When the cache requests to the application server a content fragment by
using the identifier of the representative vertex, the server retrieves the content
of the corresponding content element and all its children. This process is done
by the Fragment Manager module. The module retrieves and assembles the
content for each child in join state. The information about the states of the
aggregation relationships is obtained from the Fragment Design module. This
process is recursively repeated for each child until all the content elements of
the content fragment are pre-assembled.

For example, in Figure 5.4, if the content fragment CF2 is requested, its
content and its children (CE3 and CE4) are retrieved. After that, the con-
tents of CE3 and CE4 are retrieved and assembled with the previous content.
Finally, the child of content element CE6 is retrieved and assembled. In this
way, it is easy to manage the identifiers of the content fragments and to create
the content fragments in the web server.
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Fig. 5.4. Example of fragment element identification.

5.3 Real system implementation:
DRUPAL-COFRADIAS extension

Besides the definition of a general architecture of a content fragment adaptive
aggregation system, we have adapted a real and commercial system in order
to validate the proposed architecture. This implementation has been also used
in the experimental phase. Results obtained from a wide-used tool are always
more reliable and they are extrapolated more easily than in the case of using
a tool developed for a specific experimental process.

There are several popular content aggregation web sites. Some of them
are only content aggregators, and others are also applications, services or
widgets aggregators. All of them are considered as personal web portals, start
pages, customized dashboard publishing platform or customized content feeds
aggregators.

Other types of web applications also behave as a content aggregator sys-
tem, but without all the features of a CAS system, for example, news web
sites. In this type of applications, the news and their contents are obtained
from remote providers and they are published in several pages of the web site.
Thus, these systems share the same content in different web pages. The main
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difference is the customization of the web pages. News web sites do not usu-
ally allow users to set up their own web pages. Anyway, content management
systems (CMS) have similar features to CAS systems.

In order to integrate our proposed system (COFRADIAS) in a real web
system, we need to study current CAS systems in order to select one of
them. Most popular web content aggregation systems are iGoogle, Pageflakes,
Netvibes and My Yahoo! [64]. These web systems are only available on-line
and they cannot be extended in any way.

Another important requirement is to isolate the system from other work-
loads in order to create the same conditions among the experiment executions.
We need to select a tool which can be deployed in our own servers in order to
control the environment. Finally, we also need to modify the web application
in order to allow it to manage content fragments, to pre-assemble content el-
ements and to interact with the adaptive core. Therefore, we need to choose
a tool whose source code is available.

Any of the most usual CAS web sites allows users to download the web
application and, in consequence, we are not either allowed to modify or extend
the tool and its source code. From our own knowledge, there is not any CAS
system available as a downloadable and installable system. CMS are the most
similar tools to CAS systems. Furthermore, there are a lot of distributions of
CMS which can be downloaded and installed. The most common open source
ones are Joomla, Drupal and Wordpress [77].

The criteria, to select one of the three CMS, are based on the next issues:

• Extendibility. This feature considers how easy it is to develop new modules
or functionality in the system.
• Availability of user and programming documentation. An important fea-

ture is the documentation available on-line or in references. This is im-
portant for the programming process.
• User friendliness. How easy it is, from the user point of view, the way in

which the system is managed and the contents created.

After comparing the tree CMS, we conclude that Wordpress is the most
user friendly. The problem with Wordpress is its extendibility. On the contrary,
Joomla is the most extendible, but it is clearly the less user friendly. Finally,
Drupal has more documentation available than the other two. Its level of
friendliness is close to the Worpress one and, from far, it is easier than Joomla.
Thus, from our point of view, Drupal is the best balanced among the three
criteria.

The necessary work to adapt Drupal to COFRADIAS is divided into four
main tasks, and they are related to each of the new modules of COFRADIAS
framework:

(1) Aggregation Manager Module. To extend Drupal in order to be able to
create web pages from aggregation of remote content. This task involves
to adapt Drupal to behave as a CAS instead of a CMS.
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(2) Fragment Manager Module. To allow Drupal to manage content fragments
and to create them using the content fragment designs. This task is related
to the implementation of the Fragment Manager and Fragment Design
modules.

(3) Characterization Manager Module. To allow Drupal to gather data about
the characterization parameters of the content elements. This task in-
volves the implementation of the Characterization Monitor module.

(4) Adaptive Core Services Module. To create several interfaces in order to
send to the adaptive core the ODGex model and in order to receive the
content fragment designs from it. This task is related to the implementa-
tion of the Fragment Design Service and Gathering Service modules.

We have developed Drupal modules —module is the common name for
extensions of the CMS— in order to cover all the new requirements of the
tool. Figure 5.5 shows the typical Drupal architecture and we have highlighted
the modules and changes we have developed. The modules were developed for
Drupal version 6.20. The files of the modules are organized in folders with the
name of the module (/<moduleName>/). There are three main files:

• <moduleName>.info, the textual description of the module.
• <moduleName>.install, the tasks that are executed when the module is

installed. The creation of the Fragment Design database is done by this
file when the Fragment Manager module is installed.

• <moduleName>.module, the source code for the implementation of all the
functions of the module.
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Fig. 5.5. Architecture of Drupal with the modules for COFRADIAS.
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Once the first task is implemented, the Drupal administrator is able to
manage remote content sources. Only this administrator role is allowed to add
new content sources. The other users are allowed to create unlimited aggre-
gation designs by defining which content sources are included and their struc-
tures, i.e., the users create their own DAG of content aggregations. Changes
in the database of Drupal have been done in order to store the data of the
content sources and of the aggregation structures.

The second task involves the analysis of the user requests that arrive to
Drupal. If the request corresponds to one of the new page types, content aggre-
gation pages, the structure of the content aggregations needs to be retrieved.
The content aggregations need to be sent back to the proxy cache within
the content fragments defined in the content fragment design. Therefore, the
database does not only need to store data about the aggregation structure,
it also needs to store the content fragment design by using the states of the
aggregation relationships (edges). All these requirements are defined in the
Fragment Design module of COFRADIAS framework. Thus, Drupal has to
manage three different types of requests: (a) Requests for traditional CMS
pages; (b) Requests for templates of content aggregation pages; (c) Requests
for content fragment elements.

In order to include the web page design information in the web pages, ESI
tags have been included in the web content. A new tool script has been created
to answer the content fragment requests. The script recursively generates the
content fragments by retrieving all the content elements related by edges in
state join. This script corresponds to the implementation, in Drupal, of the
Fragment Manager module of COFRADIAS framework.

The third task involves gathering the values of the size, the request rate,
the update rate, and the content structure of the content elements. This corre-
sponds to the Characterization Monitor module of COFRADIAS framework.
On the one hand, some of the parameters (size, request rate and content struc-
ture) are gathered directly from Drupal databases, the proxy cache and from
the own content elements. On the other hand, we do not have access to the
logs of the remote content services. The information about the update rates
is in these logs. Therefore, we need to approximate the update rates. We have
two ways to do that:

(a) Using the HTTP headers of the documents received from the remote con-
tent services. Sometimes, the HTTP response headers have information
about the invalidation time of the contents (Expires) or their last up-
dates (Last-Modified). We may calculate the update rate by using the
values of these parameters among different content response.

(b) When the values of these parameters are missed in the headers, we can
only compare the content among different requests over the same services
and detect changes among the content of these requests.

Finally, the interactions between the tiers of Drupal and the adaptive core
are done by the interchange of XML files. These XML files use GraphML
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to represent the ODGex model. We have implemented both communication
methods: event-driven and periodical mode. For the periodical mode, two
REST web services have been deployed: one to request the ODGex model
from Drupal —Gathering Service module— and the other one to send the
fragmentation design to the application tier of Drupal —Fragment Design
Service module—. In the case of event-driven mode, a request to the adaptive
core is sent every time the processes, in charge of gathering the characteriza-
tion parameters, detect a change in the contents.

For both cases, the integration of these REST web services in Drupal have
been implemented as scripts which are totally independent to the Drupal
modules. These new scripts only need to interact with the data tier of Drupal,
and that could be done by using the Drupal data libraries.

The implementation of DRUPAL-COFRADIAS extension has been pub-
lished in the repository of Drupal modules. It is available for the community
in order to deploy it, change its source code or re-use portions of it [26].

This description of the Drupal extension is only an overview since the
details are not interesting for this dissertation. Although, it is very impor-
tant and remarkable that the contributions of the Ph.D. research have been
implemented in a commercial tool and are available to the community.

5.4 Summary

In this chapter we have defined the general guidelines to integrate our adap-
tive system in CAS architectures. COFRADIAS is the name for the framework
created for the integration of our adaptive core tool in a CAS system. The
guidelines define the changes in the interfaces among tiers of the CAS archi-
tecture, the changes in the application tier, and the changes in the interfaces
between the CAS architecture and the adaptive core.

Finally, a proof of concept (a concrete development) of COFRADIAS
framework has been explained. Just some general details have been explained
about the deployment of the tool because deep details of the process are not
interesting from a research and innovation point of view. The proof of concept
has been built as a module for Drupal CMS in order to take profit of all the
available tools and modules. The interfaces have been deployed by using web
services. The ODGex models have been expressed in XML format by using
GraphML. We have also changed some parts of the application tier in order
to allow Drupal to manage a new type of elements: content fragments.

To summarize, the main contributions explained in this chapter are two:

• Definition of a general framework to integrate a technique to improve the
performance of CAS systems based on the adaptation of content fragment.
The name of the framework is COFRADIAS.
• Development of a proof of concept of the COFRADIAS framework by

using Drupal, a commercial content management system.
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Validation





6

Experimentation design

Insanity is doing the same thing, over and over
again, but expecting different results.
—Albert Einstein—

The validation of our work has been done by the execution of experiments on
a test-bed. These experiments have been changed in different ways in order
to cover several cases and situations. In this chapter we describe the features
that define an experiment, and how the values of these features have been
changed.

6.1 Introduction

We have experimented with a real web application to validate the contribu-
tions of this dissertation. The real web system is developed as an extension of
Drupal (Section 5.3). This real system is part of the deployment of a test-bed
environment for the emulation of the experiments.

To design the experiments, we have firstly identified the features which
define them. And secondly, we have defined the variation of these features to
create different cases. These cases are defined to cover different situations to
validate our contributions.

The experimentation is not only the definition of the features that can
vary, but also the metrics we want to measure from the system. These metrics
are related to the performance and the system resource consumption.

Finally, it is important to define the execution patterns of the experiments.
In order to obtain more reliable values, the experiments should be repeated
several times. The size of the experiment should be big enough to get reliable
results.

6.2 Validation of the research contributions

All the experiment phases are addressed to validate the contributions of our
research work (Part II). We summarize, in this section, the issues to be vali-
dated by experimentation:
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• Validate the use of data mining and decision trees. COFRADIAS frame-
work is based on an adaptive core which classifies the aggregation relation-
ship by assigning a state (or assembly point). This core has been imple-
mented with decision trees obtained from a data mining process. Suitable
experiments need to be done to validate the improvement obtained with
this approach.
Firstly, the improvement of the system needs to be compared with the two
traditional scenarios. These scenarios correspond to the content elements
that are assembled in the proxy cache or in the web server. And secondly,
the results should be compared with other approach. In our case, the re-
search work done by Hassan in [50, 48]. Hassan presented a solution called
MACE to improve the performance of the cache in CAS systems. We have
used the algorithm suggested in MACE to implement the adaptive core
of the COFRADIAS framework. We have compared the results obtained
with the adaptive core based on decision trees with those obtained with
the MACE implementation.
• Validate the process of creation of the training data set. We have proposed

a method to create synthetic training data sets. Data mining techniques
are applied over these sets in order to obtain a knowledge representation
based on decision trees. The creation process of the data sets defines the
way that the data should be obtained from the real system. The valida-
tion of this process needs to be done by studying the performance results
obtained from architectures with different configurations. Therefore, sev-
eral mining processes are done over the synthetic data created in different
architectures or hardware conditions.
• Validate the representation of the data instances and the independent at-

tributes. Several data representations (entire, ratio, difference and dis-
tance) and several independent attributes (update rates, request rates,
size, number of aggregators, and number of aggregations) have been pro-
posed to be the independent attributes. We need to study their validity
and to find which ones are more suitable to be used. This objective can be
achieved by comparing the performance results of the CAS system using
different decision trees to deploy the adaptive core. These decision trees
are generated from different training data sets in which the independent
attributes have been represented in different ways and, in some of the
cases, some of the attributes have been removed.
• Validate the low overhead of the system. One of the most important re-

quirements of the solution is the necessity of generating a low overhead.
This requirement has affected to the entire definition of COFRADIAS
framework, and the implementation of the adaptive core of COFRADIAS.
We need to study if our proposal generates, or not, a low overhead over
the system. We have studied the performance that our solution generates,
in comparison with the overhead of MACE approach [50, 48], and with
traditional scenarios.
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6.3 Definition of the experiments

We have identified the features that define an experiment and we have varied
the setup of the experiments by changing these features. We have considered
five different features: (a) the CAS hardware architecture; (b) the algorithm
to define the content fragment designs; (c) the content page model; (d) the
user behaviour and load activity; and (e) the changes in the values of the
independent attributes. In the next subsections we describe each experiment
feature.

6.3.1 Hardware architecture

Alterations in the architecture of the CAS system generate different latencies.
These changes are not covered by the training data sets. Every time a change
in the elements of the architecture (hardware, software, operating system,
architecture, network elements, setups, etc.) occurs, we need to train again
the adaptive core, by generating new training data sets, doing a new data
mining process, and generating new decision trees. Therefore, the first feature
that defines an experiment is the architecture of the CAS system.

In particular, we have experimented with two hardware architectures. The
computers and servers used in each of them are different. The tiers of the
architecture and their configurations are also different. In one of them, the
proxy cache server and the web application server are placed in different com-
puters. We called this as distributed hardware architecture. In the other case,
we use the same computer to deploy the two tiers and we called it as central-
ized hardware architecture. The hardware characteristics of each computer
are indicated in Table 6.1 and 6.2.

The versions of the operating system, server software and applications are
the same in all the cases and computers. The operating system is Ubuntu
Server 10.04 LTS1. The web server applications are Apache 2.2 2 and PHP
5.2 3. The database management system is MySQL 5.1 4. The proxy cache is
Oracle Application Server Web Cache 10g5.

6.3.2 Algorithm for the creation of the content fragment designs

Several alternatives for the deployment of the adaptive core have been taken
into account. Three groups are differentiated: solutions based on a traditional
scheme (assembly points in the proxy cache or in the web application server);
solutions based on the use of one of the 24 proposed decision trees; and another

1 http://releases.ubuntu.com/lucid/
2 http://httpd.apache.org/docs/2.2/
3 http://php.net/releases/5 2 0.php
4 http://dev.mysql.com/doc/refman/5.1/en/
5 www.oracle.com/technetwork/middleware/ias/overview/index.html
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Table 6.1. Hardware characteristics of the centralized hardware architecture.

Cache proxy and Application server

Dell Precision T3400
Intel(R) Core(TM)2 Duo E6850 3.00GHz
DDR2 SDRAM 800MHz Dual Symetric 2.0GB
Serial ATA 250GB 7200RPM 3.0GB/s

Table 6.2. Hardware characteristics of the distributed hardware architecture.

Cache proxy

HP Proliant ML530 G2
Dual Processor PIII XEON 2.8 GHz
2.0GB DDR SDRAM PC1600-MHz
Ultra-Wide SCSI 146GB 7200RPM 40MB/s

Application server

HP DC5700 Microtower E4300
Intel(R) Core(TM)2 Duo E4300 1.80GHz
2.0GB DDR2 SDRAM 667MHz Dual Symetric 2.0GB
Serial ATA 250GB 7200RPM 3.0GB/s

approach, MACE. The identification of the experiments, for each algorithm
deployment, is done as follows:

1. split, for the traditional scheme in which the content elements are assem-
bled in the proxy cache.

2. join, for the traditional scheme in which the content elements are assem-
bled in the application server.

3. [relationPattern]/[removedAttribute], in the case in which decision trees
are used to implement the adaptive core. The [relationPattern] and the
[removedAttribute] are the indexes of the correspondent decision tree
names.

4. mace, for the deployment of the adaptive core by using the approach of
Hassan [50, 48].

6.3.3 Content page models

The validity of the framework and the implementation of the adaptive core
need to be studied in different CAS system types. Thus, different experiments
with different content page models (ODGex models) have been done. The
details of the content page models used in the experiments are given in the next
paragraphs. They have been based on different content aggregation system
types, and they have been extracted from real web sites.
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Content page models are created from real systems because the contents
are public and available for general users in most of the cases. By the creation
of a crawler, the content, its structure, and some of its characteristics are
harvested from web sites. We created an extension of JMeter [46] to extract
the content models from the web sites.

Our JMeter extension downloads a list of web pages from a web site. The
content of these web pages is downloaded at different points in time. The
structure of the contents —detection of content elements, size of the content
elements, aggregators and aggregations of content elements— are obtained
by the analysis of the downloaded web pages. The analysis from different
downloads could give us some clues about the update rates of the contents.
We have used this tool to obtain the content page model (ODGex) which has
been used in the experiments.

The first content page model was harvested from a news web site. News
sites are considered as an especial case of content management systems (CMS),
and these systems have a lot of similarities with CAS systems [23]. We selected
the page of The New York Times [80]. The contents of all the web pages of the
site were crawled during a week in March 2010. The obtained ODGex model
had 3082 vertexes —source content elements (web pages) and other content
elements (news)—. The news were aggregated in 482 different web pages, i.e.,
482 source vertexes in the ODGex. Finally, the relationships or edges of the
model (aggregations) between content elements were 13979. We called this
ODGex model as nytimes.

The second content page model was based on a personal dashboard or per-
sonal web portal. The most representative web sites, of this type, are iGoogle,
NetVibes, PageFlakes, myMessenger and Yahoo! Pipes. The one with a higher
number of users is iGoogle. The problem of this one is that the personal web
pages are not public for other users. Thus, the web page of Pageflakes [66]
was selected. The crawling of Pageflakes was done in October 2010. Instead
of crawling the new web pages (pagecasts) of a period of time, we considered
more interesting to crawl the 2000 web pages which were the most popular
at the time the crawling was done. These pages aggregated 14803 content
elements (widgets or flakes) using 24771 aggregation relationships. We called
this ODGex model as pageflakes.

The third content page model was also obtained from a real personal web
portal. In this case, it corresponds to Yahoo! Pipes [88]. This content page
model has been used to compare the results with other solution to our problem
(MACE). We called yahoopipes to this ODGex model.

This last page model was provided by the authors of MACE in a XML file
format. We do not have the details about how the model was created. In order
to work with this new model, we translated from the format of the XML into
the one used in our system. This new web page model has 2000 web pages,
9182 content elements and 14000 aggregation relationships. The details of the
content web pages are also included in Appendix B.
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6.3.4 User behaviour

Content models are crawled from real web sites, but the behaviour of the
users is not available. In researches not directly related to this thesis [30], we
have proposed the public and open used of the data related to the behaviour
of the users. This is achieved by creating centralized storages services, public
accessible with APIs and web services. Simple extensions for the browsers
are developed in order to monitor and store, in the centralized system, the
behaviour of the users. The problem with this type of proposals is to convince
the users to be monitored. Thus, we could not take profit of this tool.

Since user behaviour data were not available, we created a model based on
statistical studies. The update rate and the browsing patterns were generated
by using suitable statistical distributions due to it is not possible to determine
the frequencies which the contents are updated or requested with. These dis-
tributions are based on wide accepted research works [31, 15, 45, 23, 6, 5].

A user behaviour model is defined by the popularity of the files (objects)
and by the user session activity. Popularity is the request probability of a
page. The user session activity shows the number of pages a user requests
during a web session, the inter-request time –the time between two requests
in the same session– and the interarrival time –the time between the start of
two user sessions or user arrivals–.

Mostly of the researches of actual web sites agree in the distributions
which model the user session activity parameters. In modern web systems,
user interarrival times and inter-request times are modelled using exponential
distributions [31, 81]. The session length or number of requests in a session is
modelled by a Zipf distribution with parameter α = 1.765 [6, 5]. The values of
the parameters for the exponential distributions depend on the user load level
which the system needs to be loaded. Thus, these two values are particular
for each experiment execution of the scenarios. The popularity for each web
page is modelled by a Zipf distribution with α = 0.56 [31].

After the distributions selection, it is possible to create traces files with
the information about which user actions should be done in a given point in
time. Two traces files are used in each experiment, one for content requests
and another one for update requests. Content request traces file has only the
actions which correspond to user read requests. Update traces file has several
types of requests: modifications of the content elements (size or aggregation
relationships) and modifications of the page popularity. To create a more
dynamic behaviour of the users, the popularity assigned to each page has been
changed randomly over time. Thus, the request and update rates changed over
time.

Using an update traces file, all the characterization parameters of the ODG
model change throughout the experiment, and therefore, the effect of these
changes (transient periods) on the performance results can be analysed. The
use of traces files to model the user behaviour also allows us to repeat the
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same behaviour in different experiment executions and to compare the results
among them.

The first parameter to define, in order to generate the traces file, is the
total number of web pages in the ODGex model and the identifiers to request
each of them. The second parameter is the size of the traces file, i.e., the
number of requests in the file. The parameters of the statistical distributions
have always the same values. A time value is assigned to each request in the
traces file. If we need to modify the update and request rates, we only need
to scale this basic unit of time. We identified the different traces files, or user
behaviour models, using the values of the update and request rate with a rate
unit. For example, 0.5/0.01/s−1 corresponds to an experiment with a request
rate of 0.5 req./s and an update rate of 0.01 req./s.

6.3.5 Changes in the values of the independent attributes

If the values of the independent attributes of two content elements change,
the output of the classification algorithm also changes. Changes in the inde-
pendent attributes cause the change of the state of the edge in the ODGex.
This results in new fragment designs.

Changes in the fragment design generate small and partial transient phases
in the web cache. The old cached fragments are not requested again —they
are evicted when their expiration times are reached—, and the new fragments
are stored in the web cache only after they are requested.

We are interested in creating some experiments in which these partial tran-
sient phases are omitted. We have called this feature as dynamism. Therefore,
we have defined experiments in which do not occur changes in the values of
the independent attributes, which we call as static experiments, and other
ones in which the values are continually updated, they are called as dynamic
experiments.

It is necessary to explain that the dynamism of the experiments does not
have any relation with the update rate of the content elements. Updates in
the contents are also done in a static scenario. These updates only change the
content, but not the values of the characterization parameters. In consequence,
these contents have to be invalidated in the cache, but the fragment design
does not have to be updated because the independent attributes have not
been changed. In the case of a static scenario, the update traces file only
contains requests corresponding to updates of the content elements. In case
of a dynamic scenario, the update traces file contains all the types of update
requests explained in the previous subsection.

Besides the problem of no generation of partial transient phases, the static
scenarios do not reflect the behaviour of real environments because they only
classify the aggregation relationship once at the beginning of the experiments.
If the values of the characterization parameters remain constant, the classifi-
cation results will also remain constant and, in consequence, only one classi-
fication process is needed.
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Although static experiments do not reflect a real behaviour of the system,
they are very interesting for us. They are used in the preliminary experiments
to study the benefits of our solution isolated from their main drawbacks:
overhead and transient states.

In all the dynamic experiments that we have designed, the adaptation of
the fragment designs are done in event-driven mode, i.e., every time that a
characterization parameter occurs, the classification process of the involved
edges are executed.

6.3.6 Experiments identification

The experiments are determined by the parameters and features described in
the previous subsections. We have identified the experiments using a 5-tuple:
<[arquitecture], [algorithm], [pageModel], [userModel], [dynamism]>.
This identifier gives enough information to know the values of the features of
an experiment.

An example of identifier is <distributed, distance/size, nytimes,
0.1/0.001/s−1, static> in which: the servers are deployed in different com-
puters; the optimization algorithm is a decision tree with the attributes ex-
pressed as a distance values and the size attribute is not used; the ODGex
model is based on the data extracted from the web site of the The New York
Times; the request rate is 0.1 req./s and the update rate is 0.001 req./s; and,
finally, changes in the characterization parameters values do not occur.

6.4 Design of the experiments

The experiments have been distributed in experiment sets. These sets are
created in order to study some goal by comparing the behaviour of different
experiments. We have designed five experiment sets. Each experiment execu-
tion is defined by the features of the experiments. Table 6.3 is a summary of
all the values of the experiment features for our particular experiment design.
The rest of the section is devoted to explain the goal of each experiment set
and the experiments which are part of the set.

The goal of the experiment set 1 is to compare the traditional use of the
CAS system with the use of the adaptive core based on decision trees. As
traditional use, we mean the two basic scenarios in which the assembly point
for all the content elements is the web proxy cache or it is the web application
server. For the adaptive core, we have selected the decision tree with all the
independent attributes expressed as entire values. We have used two hardware
architectures and two page content models. Thus, three experiments subsets
have been created. Table 6.4 indicates the experiments of each of the subsets.

Each experiment subset has three experiments: one for the use of decision
trees as implementation of the adaptive core; other for the use of a split
approach; and the last one for the join approach. In this first experiment set,
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Table 6.3. Features of the experiment design.

Feature Values

Hardware architecture distributed, centralized
Definition of the fragment designs split, join, mace, entire/∅, entire/reques-

tRate, entire/updateRate, entire/size,
entire/fathersNumber, entire/childrenNum-
ber, ratio/∅, ratio/requestRate, ratio/up-
dateRate, ratio/size, ratio/fathersNumber,
ratio/childrenNumber, distance/∅, dis-
tance/requestRate, distance/updateRate,
distance/size, distance/fathersNumber, dis-
tance/childrenNumber, difference/∅, differ-
ence/requestRate, difference/updateRate,
difference/size, difference/fathersNumber,
difference/childrenNumber

Content page model nytimes, pageflakes, yahoopipes
Request rate 2, 4, 6, 8, 10 (req./s)
Update rate 0.5, 1, 1.5, 2, 2.5 (req./s)
Characterization parameters changes static, dynamic

Table 6.4. Design of the experiment set 1.

Experiment Experiment identification
subset

1A <distributed, entire/∅, nytimes, 4/0.1/s−1, static>

<distributed, split, nytimes, 4/0.1/s−1, static>

<distributed, join, nytimes, 4/0.1/s−1, static>

1B <centralized, entire/∅, nytimes, 4/0.1/s−1, static>

<centralized, split, nytimes, 4/0.1/s−1, static>

<centralized, join, nytimes, 4/0.1/s−1, static>

1C <centralized, entire/∅, pageflakes, 4/0.1/s−1, static>

<centralized, split, pageflakes, 4/0.1/s−1, static>

<centralized, join, pageflakes, 4/0.1/s−1, static>

the user load level of the system remains the same in all the experiments, and
the characterization parameters values do not change.

The second experiment set (Table 6.5) is addressed to study and explore
the behaviour of the adaptive core by using several decision trees and they
are compared with one of the basic scenarios (split). In Section 4.4.3, we
mentioned that several decision trees are generated from several training data
sets, by modifying the number of independent attributes and the way they
are expressed. An experiment for each of these decision trees is done. Two
more variations have been added to the experiment set. In the second subset
of experiments, the request load level of the system is changed (4.0 req./s
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Table 6.5. Design of the experiment set 2.

Experiment Experiment identification
subset

2A <distributed, *1/*2, nytimes, 4/0.1/s−1, static>

<distributed, split, nytimes, 4/0.1/s−1, static>

2B <distributed, *1/*2, nytimes, 0.7/0.1/s−1, static>

<distributed, split, nytimes, 0.7/0.1/s−1, static>

2C <centralized, *1/*2, nytimes, 4/0.1/s−1, static>

<centralized, split, nytimes, 4/0.1/s−1, static>

*1 entire, ratio, distance, difference.
*2 ∅, requestRate, updateRate, size, fathersNumber, childrenNumber.

Table 6.6. Design of the experiment set 3.

Experiment Experiment identification
subset

3A <distributed, *1/*2, pageflakes, 2/0.4/s−1, dynamic>

<distributed, split, pageflakes, 2/0.4/s−1, dynamic>

3B <distributed, *1/*2, pageflakes, 0.5/0.1/s−1, dynamic>

<distributed, split, pageflakes, 0.5/0.1/s−1, dynamic>

*1 entire, ratio, distance, difference.
*2 ∅, requestRate, updateRate, size, fathersNumber, childrenNumber.

and 0.7 req./s). In the last subset, the other hardware architecture is tested
(centralized instead of distributed). There is not any change in the values of
the characterization parameters (static experiment) of these experiments.

In the experiment set 3 (Table 6.6), the effect of updates on the character-
ization parameters values is included in the study. The experiment explores
the use of several decision trees with different user load levels, both in requests
and updates. They are compared with one of the basic scenarios (split).

The fourth experiment set is addressed to study the variations of the user
load levels (Table 6.7). The most representative of the decision trees is com-
pared with the most representative of the basic scenarios. The load levels,
both requests and updates, are varied in a wide range of values, for a total
number of 25 cases.

Finally, the experiment set 5 is addressed to compare our solution with
similar approaches of other authors (Table 6.8). The most similar approach
is MACE framework [50, 48]. The design of the experiment is similar to the
previous one, number 4. Instead of using the ODGex model of pageflakes,
yahoopipes is used.
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Table 6.7. Design of the experiment set 4.

Experiment Experiment identification
subset

4A <centralized, entire/∅, pageflakes, *3/*4/s−1, dynamic>

<centralized, split, pageflakes, *3/*4/s−1, dynamic>

*3 2, 4, 6, 8, 10.
*4 0.5, 1, 1.5, 2, 2.5.

Table 6.8. Design of the experiment set 5.

Experiment Experiment identification
subset

5A <centralized, entire/∅, yahoopipes, *3/*4/s−1, dynamic>

<centralized, mace, yahoopipes, *3/*4/s−1, dynamic>

*3 2, 4, 6, 8, 10.
*4 0.5, 1, 1.5, 2, 2.5.

6.5 Definition of the metrics to be monitored

The contributions of our dissertation are addressed to improve the perfor-
mance without increasing significantly its overhead. Therefore, the metrics
to be measured during the experimentation should refer to performance and
system overhead.

The performance improvement of our solution is addressed to reduce the
user-perceived latency. This latency time is only measured in the user side, so
the user emulation tools should measure and store these values.

A second performance metric, in web cache environments, is the hit ratio
or percentage of web requests that are stored and served locally by the cache
proxy. This metric is created by analysing the number of requests, cache hit
ratio, or by the size of the requests, cache byte hit ratio [12]. These values
are obtained by the analysis of logs generated by the cache proxy (Oracle
Application Server Web Cache).

There are two different logs, one for the web pages requests, and other for
the ESI fragments request. In both cases, the size of the elements is indicated.
Each log line corresponds to a request, and it indicates if the request has
been a hit or a miss. By the programming of a simple tool, the log lines are
processed and hits, requests and bytes are calculated.

The overhead is measured by the utilization of the resources in the com-
puter servers. We have focused on the CPU and memory utilizations. Vmstat
and top [54] were the monitoring tools we used to gather the utilization values.
They are system monitoring tools that summarize performance information.
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Top differentiates the CPU and memory utilization for each process in the
system. Thus, we could distinguish the workload generated by the web cache,
the application server and the DBMS. Vmstat summarizes the utilization val-
ues for all the processes in the system. Both of them gather the utilization
values in fixed periods of time. In our case, they were configured to gather the
values each 5 seconds.

6.6 Test-bed architecture

All the experiments have been executed using a test-bed. The test-bed is
divided into two parts: use of real tools and tools to emulate the behaviour
of some elements (Figure 6.1). The figure of the architecture of the test-bed
is almost identical to Figure 3.2, but it indicates the names of the particular
tools of our experimental environment.

The experiments should be executed isolated, in order to create replica-
ble experiments. Therefore, the users of the system and the content service
providers need to be emulated to repeat their behaviour in successive experi-
ments.

We have created user traces files which indicate the actions (request or
updates) that different users do in given points in time. Thus, their behaviour
can be repeated as many times as it is necessary. We have implemented a
Java tool in charge of reading the traces files and creating threads in order to
emulate the different user sessions. The available user actions are the request
of web pages or the update, creation and removal of content elements or
aggregation relationships.

The content service providers have been emulated with web services which
deliver the content elements. These web services have been implemented with
the same PHP scripts using a RESTful web API. The databases of these web
services have been populated with the content elements modelled in the differ-
ent ODGex models of the experiments (yahoopipes, nytimes, and pageflakes).

The other tiers of the test-bed architecture have been deployed with real
systems or tools. The web cache proxy has been deployed using Oracle Appli-
cation Server Web Cache 10g. The application tier has been deployed using
Drupal and the extension that we developed, which is explained in Section 5.3.
The databases of the customized web pages and the aggregations structure
of the web pages (Fragment Design database) have been populated with the
data from the ODGex models.

The adaptive core has been developed using Java and the API of Weka.
The different decision trees, from the two studied hardware architecture and
from all the data instances representations, have been implemented in the
adaptive core. They can be selected individually for each experiment.

In order to create an unattended execution of the test-bed, experiments
are driven by a scheduling file. We have implemented Java Remote Method
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Fig. 6.1. Architecture of the test-bed.

Invocation (Java RMI) modules in all of the tiers. Java RMI [33] is the Java
programming interface which implements remote procedure calls (RPC).

We have used RMI to coordinate all the tiers of the test-bed in order
to restart the web proxy cache and the application server, to copy the log
files with the performance data, to select the decision trees in the adaptive
core, to select the user traces files in the user emulator, and to select the
ODGex module in the applications server. A central RMI client is in charge
of coordinating all the tiers by starting and stopping the tools and software
in each of the tiers in the correct point in time. This client has the schedule
of all the executions of the experiments.

6.7 Experiment execution

The execution time of the experiment is given by the number of requests of
the traces files. All the traces files have 36000 requests. The time to execute
the emulation depends on the request rate. For example, in the case of the
experiment sets 4 and 5, the two extreme execution times would be one hour
in the case of 10 req./s and five hours in the case of 2 req./s.

The traces files corresponding to the update actions have 45000 update
requests. Not all of these requests are executed in all the experiments, just in
those with the enough time to execute them. For example, in the experiments
with 5 hours of execution and an update rate of 2.5 req./s, all the updates
take places. But in an experiment of one hour of execution time and update
rate of 0.5 req./s, just the first 1800 requests are done.
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The performance of web caches is directly affected by the eviction algo-
rithm. Our proposed system works independently to the eviction algorithm
used in the cache. Therefore, we are not interested in studying the influence
of the eviction policy. In order to avoid this influence, the total store size of
the web cache has been configured high enough that all the content elements
and fragment elements could be stored in the cache. Thus, the eviction from
the cache is only caused because of the invalidation of the contents.

But the most important issue in the execution of the experiments is to
guarantee the reliability of the results. We have used a similar method to the
explained for creating the training data sets (Section 4.4.1). We have repeated
the experiments several times (replicas) and we have studied the confidence
interval for the means of requests among different replicas.

We have created the same number of replicas of each experiment, and we
have checked if the 95% confidence level is smaller than the 2.5% of the average
latency in the 90% of the samples of the replicas. If the experiment replicas
did not fulfil this condition, the number of replicas for all the experiments in
an experiment set was increased.

For example, in the case of the experiment set 5, the number of replicas of
the experiment was 10. This experiment set is composed by 25 experiments,
and the time to execute all of them is approximately 57 hours. So, the total
emulation time for this experiment set, considering 10 replicas, is 570 hours,
or, 24 days.

The confidence interval value, for samples in a replica, would be very high
because of the high variation in the values of the latencies for a given web
page. This variation is due to the influence of the cache proxy on the latency.

In the process of the calculation of the mean value, samples with cache hits
and samples with cache misses are mixed, so, the values are very different.
These alterations are increased in the experiments in which updates in the
characterization parameters of the contents are taken into account. In these
cases, the same web page request has different content characteristics (size,
number of content elements, etc.) during the same experiment execution.

6.8 Summary

This chapter has been devoted to explain the experiments to validate the
contributions of the dissertation. These experiments have been addressed to
study performance metrics of the system in several conditions and variations
of the test-bed environment. The results of the experiments are explained in
next chapters.

The performance metrics to be studied in the experiments are related to
the user and to the system. The user-perceived latency is studied to validate
the improvement obtained with our solution. The system metrics, as CPU
utilization, are analysed in order to validate the low overhead generated by
the solution.
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The details of the variations of the experiments have been explained. These
variations are addressed to study our solution in different environments and
with different conditions. Variations in the page models, user behaviour, and
system architecture have been done.

The experiments have been executed in a test-bed environment. The tiers
of the test-bed have been deployed using commercial and emulation tools.
Some elements, as users or content services providers, have been emulated.
The others tiers of the system have been deployed using commercial tools. We
have also defined the execution conditions in order to obtain reliable results
in the performance metrics.
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Cache and user performance analysis

There are three principal means of acquiring
knowledge available to us: observation of nature,
reflection, and experimentation. Observation col-
lects facts; reflection combines them; experimenta-
tion verifies the result of that combination.
—Denis Diderot—

This chapter is about the analysis of the results of the experimental phase.
There are two main analysis blocks, the performance improvement and the
overhead generated by the solution.

In this chapter, the conclusions about the performance improvement ob-
tained with our solution are explained. The performance analysis is done using
a user metric, the user-perceived latency, and two system metrics, the cache
hit ratio and the cache byte hit ratio.

7.1 Introduction

The analysis of the results obtained in the experimental phase has been ad-
dressed to two fields: the performance improvement and the overhead gen-
erated. This chapter is devoted to explain the first one. The analysis of the
performance improvement is done separately for each experiment set presented
in the previous section. Firstly, we present the results of the data mining pro-
cess over the two hardware architectures that we have taken into account:
centralized and distributed.

It is important to remind that the objective of COFRADIAS framework
is to improve the user perceived-latency. We have previously explained that
the improvement of the latency is obtained in spite of a reduction of the
performance of the cache (hit ratios). Therefore, the strength of our solution
will be validated if the experiments show that our solution reduces the latency
in comparison with the traditional CAS cache schemes or with other research
studies. Besides this, we have also analysed the behaviour of the cache hit
ratios in order to get more accurate conclusions.
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7.2 Results of the data mining process

The first analysis of the results is related to the decision trees used in the
classification algorithm of the adaptive core. We need to create a different
version of the decision trees for each hardware architecture of the experiments.
As we mentioned in Section 4.4, different hardware architectures require of
different training process. We have used two different hardware architectures
(centralized and distributed). Therefore, two processes of creation of decision
trees have been done.

We have created one synthetic content model in order to obtain the per-
formance results and to mine them. The parameterization of the setup for the
creation of the synthetic model have been done generally enough in order to
cover all the values ranges of the three content page models of the experiments
(nytimes, pageflakes and yahoopipes). The features of the crawled web sites
have been used to define the setup of the creation process. These values are
indicated in Appendix B.

Table 7.1. Decision trees obtained from the distributed architecture.

Decision Tree Selected Size Leaves Coverage(%) Notes

<entire/∅> X 91 46 92.14
<entire/updateRate> X 5 3 81.04
<entire/requestRate> X 19 10 90.78
<entire/size> 1 1 65.21 1 state
<entire/childrenNumber> 1 1 65.21 1 state
<entire/fathersNumber> 1 1 65.21 1 state
<ratio/∅> X 63 32 92.72
<ratio/updateRate> X 13 7 88.33
<ratio/requestRate> X 9 5 82.18
<ratio/size> X 49 25 89.99
<ratio/childrenNumber> 1 1 65.21 1 state
<ratio/fathersNumber> X 27 14 91.08
<diff./∅> X 7 4 81.11
<diff./updateRate> 7 4 81.11 <diff./∅>
<diff./requestRate> X 9 5 93.84
<diff./size> 7 4 81.11 <diff./∅>
<diff./childrenNumber> 1 1 65.21 1 state
<diff./fathersNumber> 7 4 81.11 <diff./∅>
<dist./∅> 1 1 65.21 1 state
<dist./updateRate> 1 1 65.21 1 state
<dist./requestRate> X 3 2 79.73
<dist./size> 1 1 65.21 1 state
<dist./childrenNumber> 1 1 65.21 1 state
<dist./fathersNumber> 1 1 65.21 1 state
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Because of the variations in the number of independent attributes of the
data instances, and in the way that these attributes are expressed, we obtain
a maximum of 24 decision trees. As an example of a decision tree, we can
observe the graphical representation of the ratio/∅ of the distributed hard-
ware architecture in Figure 7.1. The other decision trees are presented in
Appendix A.

Fig. 7.1. Decision tree corresponding to the ratio/∅ of the distributed hardware
architecture.

After the mining process, we realised that some of the obtained trees had
to be rejected. This is because, in some of the cases, the obtained tree has a
size of 1. And this means that all the instances are classified in same state, i.e.,
the ODGex model obtained with one of these trees would behave in the same
way that one of the traditional schemes —where all the content fragments are
assembled in the web cache or in the web application—. We do not have to
execute the experiments corresponding to these decision trees because their
performance results would be the same that using split or join experiments.

We interpreted the trees with size 1 as cases where the data instances
do not offer enough information to create a suitable decision tree, and the
algorithm considers, as the best option, to classify all the instances in the
same class. This is because the C4.5 algorithm cannot find any independent
attribute that splits the samples into two subsets effectively, or, the candidate
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attributes split the samples into two subsets with less coverage than the case
of classifying all the samples in a same class [86, 47].

Tables 7.1 and 7.2 list all the decision trees and, in particular, those re-
jected because of their sizes. These tables indicate the total number of nodes
(size) and the number of nodes that assign a state (leaves nodes). The trees,
which always assign the same state, have only 1 leave node. This situation
has been labelled as 1 state in the column Notes of the tables.

We have neither considered the experiments with the same decision tree
than a previous one. This mainly occurs when the size of the tree is small and
few independent attributes are really used in the decision tree. The trees that
are equal to other ones have the name of their equivalent trees in the column
Notes.

Finally, the coverage value of the tree is also indicated in the table. The
coverage value is the ratio of instances from the test data set that have been
classified correctly by the use of the decision tree.

Table 7.2. Decision trees obtained from the centralized architecture.

Decision Tree Selected Size Leaves Coverage(%) Notes

<entire/∅> X 51 26 91.26
<entire/updateRate> 1 1 59.88 1 state
<entire/requestRate> X 25 13 93.19
<entire/size> X 7 4 85.16
<entire/childrenNumber> 1 1 59.88 1 state
<entire/fathersNumber> 7 4 85.16 <entire/size>

<ratio/∅> X 51 26 95.73
<ratio/updateRate> X 43 22 92.84
<ratio/requestRate> X 15 8 90.12
<ratio/size> X 35 18 96.07
<ratio/childrenNumber> 1 1 59.88 1 state
<ratio/fathersNumber> 1 1 59.88 1 state
<diff./∅> X 17 9 89.60
<diff./updateRate> X 11 6 88.99
<diff./requestRate> 11 6 88.99 <diff./upd.Rate>

<diff./size> 1 1 59.88 1 state
<diff./childrenNumber> 1 1 59.88 1 state
<diff./fathersNumber> 1 1 59.88 1 state
<dist./∅> X 9 5 87.75
<dist./updateRate> X 5 3 81.09
<dist./requestRate> 5 3 81.09 <dist./upd.Rate>

<dist./size> X 9 5 86.45
<dist./childrenNumber> 1 1 59.88 1 state
<dist./fathersNumber> 1 1 59.88 1 state
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By observing the sizes of the trees, we will be able to differentiate the
trees corresponding to entire and ratio from difference and distance. The
group of the first two has, in general terms, bigger sizes. This is quite reason-
able because there are data losses with the two second representation groups.
Indeed, the last group, distance, has the smallest tree sizes and it is the rep-
resentation with less information about the independent attributes, only the
absolute value of the difference of the common attributes. By observing the
performance results of the experiments, we will be able to state if it is ob-
tained, or not, a higher performance with experiments using bigger decision
trees. Initially, ratio and entire representations seem to be the best ones.

About the number of independent attributes, we can observed that there
is a high number of cases of decision tree sizes equal to 1 when childrenNumber
and fathersNumber are removed from the samples. This may be interpreted
as these two attributes are very correlated with the highest performance state
because a suitable decision tree cannot be created when they are removed.

To summarize, only the experiments corresponding to the decision trees
with a tick symbol (X) in the tables are executed. The other experiments are
rejected because their results would be the same than the traditional schemes.

7.3 Performance results

This section is devoted to the analysis of performance results of the ex-
periments. The experiments have been organized as they were presented in
the experiment design (Section 6.4). We present information about the user-
perceived latency and about the web cache performance metrics for each ex-
periment subset.

The results of the user-perceived latency are shown as speed-ups. Instead of
showing the absolute latency times, we considered that the value of the speed-
up of each execution related to a common execution case is more illustrative.
In almost all the experiment sets, this common execution case is one of the
corresponding to the traditional schemes —content fragments assembled in
web cache split or assembled in web application join—, except for the final
experiment in which we have compared the results of the experiments of our
proposal with the obtained by using a solution of other researchers, the MACE
approach [48].

Despite the user-perceived results are expressed as speed-ups compared
with a basic common experiment, we are also going to show the latency values
in one of the experiments (experiment subset 1A) to show the magnitude of
their absolute values. Our analysis is done independently of the latency value
because we are interested in the improvement of our solution compared with
other solutions.

In our experiments, we request web pages that are completely different
among them. They have a wide range of values of their characterization param-
eters. Thus, the response times of different web pages are very heterogeneous,
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and the improvement of using our solution is also very different between web
pages. For example, we can obtain greater improvements in pages with higher
number of content elements. A higher number of content elements generate
a higher number of possible fragment designs and, in consequence, a greater
scope to improve the single latency of the page. Therefore, we prefer to show
all the single improvements of all different web pages.

We have represented the speed-ups in a rank order plot. Each point of the
plot is the speed-up of a single web page. The y-axis, of the rank order plot,
represents the value of the speed-up in relation with the common experiment.
The x-axis represents the position of a web page in a rank order of the speed-
ups. The value n of the x-axis is the web page with the n-th improvement. The
first element in the x-axis (x = 1) is the page with the smallest improvement,
the last element in the x-axis (for example x = 481) is the web page with
the greatest improvement. The element with x = n has n− 1 web pages with
smaller improvements, and it is in the n-th place in an ordered list based on
the speed-up of the web pages.

Speed− up =
UPL(commonExecutionWebPage)

UPL(analysedExecutionWebPage)
(7.1)

The speed-up is calculated as the Equation (7.1) where UPL is the user-
perceived latency. Speed-ups of value 1.0 are the cases where the latency is the
same in the analysed execution and in the common execution. If the speed-
up is above 1.0, the latency of the web page is shorter when the solution of
the analysed execution is used. If the value is below 1.0, the solution of the
common execution case has a shorter latency. In all of the experiments we have
considered that the analysed execution latencies correspond to the latencies
of our proposed solution. The common execution latencies correspond to the
cases which we are comparing with, one of the traditional schemes or, in the
last experiment set, the MACE solution.

An experiment execution is better than other one when the plot of the
first one is above of the plot of the second one, i.e., when the speed-ups are
bigger. The problem appears when the previous fact only occurs in a subset
of all the web pages of an experiment. We have also calculated the mean value
of the web pages speed-ups of an experiment execution in order to compare
it with other executions. We noticed that the speed-ups values of the extreme
cases —the web pages associated with the best speed-ups and with the worse
ones— sometimes have a great weight in the results. Therefore, we have also
considered to calculate the mean value of the speed-ups of the samples between
the 10th percentile (P10) and the 90th percentile (P90). We use these mean
values only to compare the experiments themselves. We are not interested in
the dispersion of the data, so we have not considered calculating the variance
of the standard deviation of the speed-ups of the set of web pages of an
experiment.

Each experiment execution has been repeated several times (replicas) in
order to avoid data alterations because of temporal system anomalies. The
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minimum number of executions has been already explained in Section 6.7. To
calculate the mean values of the latencies, we have calculated first the mean
value of the same samples (requests) among the replicas of an experiment.
This is possible because the order of the requests is always the same. Thus,
we get mean latency value of each request of an experiment. In the case of
static experiments, we can finally calculate the mean value of a given web
page, considering all the requests of the same page during the execution. But
in the case of the dynamic experiments, the web pages change their structure
and size (number of content elements, size of the content elements, etc.) during
the execution, so the content of the response of a given request is completely
different along the time. In these cases, we have analysed the latency of each
single request independently. On the contrary, in static experiments, we have
analysed the latency of web pages.

The metrics related to the performance of the web cache that we have
analysed are the hit ratio and the byte hit ratio. They are, respectively, the
percentage of requests and the percentage of bytes that have been served
from the web cache. We have calculated both ratios for each replica of an
experiment and, finally, we have calculated the mean value of the hit and
byte hit ratio of the replicas of each experiment. The standard deviation has
been also calculated. It is important to remind that the invalidations in the
cache are only due to the expiration of the contents, i.e., the cache misses are
only generated because the content elements have changed. This is because
the size of the cache has been assigned big enough to store all the possible
fragments of the content page model.

Finally, we have also considered the size of the transient state. The tran-
sient state is the period of time at the beginning of an experiment execution.
To detect this period, we have analysed the mean value of the cache hit ratio.
The transient state finishes when the cache hit ratio keeps inside a small range
of values. The samples in the transient state are rejected. We have analysed
the transient state using the means among replicas of an experiment.

7.3.1 First experiment set

The experiment set 1 is addressed to study if our proposed system obtains
shorter user-perceived latencies than with the use of traditional schemes —all
the assemblies of the content elements occur in the web cache or in the web
application—. Thus, three different experiment subsets have been defined in
order to study the improvement in different hardware architectures and page
models (Table 6.4). We presented similar and partial results in [44]. But in
this publication, the experimental phase was done with shorter emulation time
and using only one replica execution. The results presented in this dissertation
are quite more reliable.

In the first experiment subset (1A) we have used the page model extracted
from a news site (nytimes), the emulation have been executed in a distributed
hardware architecture —the web cache and the web applications are deployed
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Fig. 7.2. Speed-up of the user perceived latency in experiment subset 1A.
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Table 7.3. Speed-ups of the user-perceived latency for experiment subset 1A.

Speed-up = UPL(<ExId>)/UPL(<entire/∅>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<join> 7.7031 2.3016–14.3103 7.0028
<split> 6.7306 1.8639–12.6024 6.0618

in different computers—, and the request rate is high, in comparison with
the update rate (4.0 req./s and 0.1 req./s respectively). The results of the
emulation are in Figure 7.2 and Table 7.3.

As this experiment subset is static, we can show the mean latency time for
each web page. Therefore, the rank order plot shows the speed-ups for the 481
web pages of the page model. We can clearly observe that most of the samples
show better latencies when the execution has been done with our proposed
adaptive fragment design, and this occurs both in comparison with the join
scenario and the split scenario. The obtained speed-ups are significant, but
it is important to remind that this is a static experiment without overhead
from the classification process (it is done at the beginning of the emulation)
and without temporal and partial transient states due to the changes in the
structure and characteristics of the content elements and web pages.

This execution cannot be considered the example for a real environment,
but it allows us to check that our proposal is promising and it offers important
improvements. The extreme cases —the web pages with smallest and greatest
improvements— are very different to the regular ones, but they do not have
much influence on the mean values because both mean values —considering
all the web pages or only the web pages inside P10-P90 range— are quite
similar.

An important conclusion, to be validated with the next two experiments
is that the scenario in which all the content elements are assembled in the
web cache (split) obtains shorter latencies than the join scenario. We observe
that the improvement of our solution is greater when we compared it with the
join scenario.

As an example, we have also represented the latencies of the split and
entire/∅ experiments. We are interested in the improvement of the latencies
instead of the values of these latencies. Therefore, we are not going to show
the values of the latencies in the next experiments. But we have considered
that, in order to have a complete view of the system, it could be interesting to
show the latencies of some of the experiments. We can observe the latencies
of the web pages of this experiment subset in the plot of Figure 7.3. There are
three data series in the plot. Two of the series correspond to the latencies of
the web pages for the experiments entire/∅ and split in an ordered way. The
x-axis represents the web pages, but, for these two series, the same x-values
of two points do not mean that they are the latencies of the same web page.



104 7 Cache and user performance analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250  300  350  400  450

U
se

r-
pe

rc
ei

ve
d 

la
te

nc
y 

(m
s)

Web pages

Entire/emptyset ordered latencies
Split ordered latencies
Split related latencies

Fig. 7.3. User-perceived latencies of the experiment subset 1A for the experiment
executions split and entire/∅.

This is because the data series are ordered by the latency values, and the web
page orders are not the same for the two experiments. The last data series
corresponds to the split scenario latencies of the web pages in relation to the
same web page of the ordered series of the entire/∅, i.e., for these two data
series, two points with the same x-value correspond to the same web page.

The web cache metrics results for experiment subset 1A are presented in
Table 7.4. As expected, the best hit ratio and byte hit ratio are obtained with
the split scenario because it has the smallest fragment elements. Our solution
worsens the hit ratio in order to reduce the overhead times of the assembling
process. The join scenario shows worse hit ratios because each content update
invalidates a whole web page.

Our dissertation is focussed on reducing the overhead times of the as-
sembling process, balancing this improvement with the hit ratio losses of pre-
assembling some content elements in the web application tier. As we explained
in Section 2.3.2, these overhead times correspond to database connections,
data transmission, network delays, content parsing, etc. In a centralized archi-
tecture, some of these overheads are practically nil because the communication
process among the system tiers takes place inside the same computer.

The second experiment subset (1B) is addressed to evaluate our solution
in an environment with lower overhead, as the centralized hardware architec-
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Table 7.4. Cache performance for the executions of the experiment subset 1A.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 94.9456 0.9471 91.9454 0.8741 1100
<join> 86.1592 0.8421 80.3284 0.9712 900
<split> 95.8284 0.8412 92.2621 0.7411 850

ture. The only difference between experiments 1A and 1B is the hardware
architecture. The data mining off-line process and the use of decision trees
are also validated, because the decision trees are obtained in both different
data mining process for both hardware architectures.

The improvement of our solution, in terms of user-perceived latency, are
shown in Figure 7.4 and in Table 7.5. As in the first experiment, the speed-up
values of almost all the web pages are above 1.0. So the suitability of our pro-
posal is also validated in the centralized scenario. But, as expected, the mean
speed-ups are significantly smaller, because of the reduction of the overhead
times. If the overhead times are shorter, the improvements of our solution are
smaller. This mainly affects the improvements over the split scenario. Despite
this, our solution is still better than the two traditional scenarios, and the
split scenario is again better than the join one.

Once again, the extreme values do not have much influence on the mean
value of the speed-ups of all the web pages. This is because the worse cases
balance the best ones, i.e., there are a very similar number of both cases and
with an inversely proportional relationship.

Table 7.5. Speed-ups of the user-perceived latency for experiment subset 1B.

Speed-up = UPL(<ExId>)/UPL(<entire/∅>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<join> 4.7665 1.7059–10.4026 4.3252
<split> 1.4113 1.0347–1.7665 1.3106

The results of the web cache metrics (Table 7.6) validate again the expla-
nations given in experiment 1A. The split scenario shows the best hit ratio,
and our proposal worsens the hit ratio, but it improves the user-perceived la-
tency. Indeed, the hit ratios, for the executions of the split and join scenarios
of this experiment, should be identical to the results of experiment 1A. This is
because the user behaviour model for the emulation (request log and update
log) is the same.
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Fig. 7.4. Speed-up of the user perceived latency in experiment subset 1B.
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Table 7.6. Cache performance for the executions of the experiment subset 1B.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 93.7201 0.5788 91.0390 0.4781 950
<join> 86.4017 0.0019 79.4391 0.9741 1000
<split> 96.1629 0.6174 92.0072 0.7120 900

Finally, the experiment is repeated in a centralized scenario, but using a
second content page model. Once we have studied the validity of our solution
in two different hardware architectures, we want to know if the solution is
also valid for other content page models. We have done the comparison with
the worst scenario for our solution, the centralized one. The new page model
corresponds to pageflakes and this affects in the plots because now there are
2000 web pages in the model instead of 481. The x-axis of the plots represents
the list of the pages ordered by their improvement. The results are presented
in Table 7.7 and Figure 7.5.

Through the observation of the plots, the improvement obtained by our
solution seems to be smaller than in the previous cases. However, if we analyse
the mean values of the speed-ups we observe that the mean values of experi-
ment 1B and 1C are quite similar. The main difference is in the extreme cases.
For this experiment the speed-ups values of the extreme cases are more similar
to the regular ones. Probably, the setup of the web pages and the fragment
designs generated by the decision tree are more similar among the pages. Or
it can be even explained by the user behaviour emulation. The user behaviour
log for this experiment is different to those generated for experiments 1A and
1B because of the use of a different page model.

In any case, we observe levels of general improvement similar to experiment
1B and lower to the 1A. This is explained again by the use of a centralized
hardware architecture.

This experiment uses a different user behaviour model to the two previous
ones. Therefore, the cache performance is different to the cases 1A and 1B
(Table 7.8). But these differences are minimal. The pattern of the best ratios
in the split scenario and the worst ratios in the join one is repeated again.

Table 7.7. Speed-ups of the user-perceived latency for experiment subset 1C.

Speed-up = UPL(<ExId>)/UPL(<entire/∅>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<join> 1.6666 1.1770–2.1701 1.6489
<split> 1.3052 0.9907–1.6145 1.2915
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Fig. 7.5. Speed-up of the user perceived latency in experiment subset 1C.
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Table 7.8. Cache performance for the executions of the experiment subset 1C.

Decision Cache hit Cache byte Samples
tree ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 88.7300 0.0148 88.1943 0.1008 950
<join> 80.2731 0.8124 78.8818 0.4178 1000
<split> 91.7204 0.0513 90.1782 0.6178 900

After the analysis of the results of the first experiment set we have vali-
dated that:

• Our solution improves the performance, in terms of user-perceived latency,
in spite of it worsens the hit ratio of the cache.
• The scenarios using a split approach have better performance results than

the other traditional solution for CAS systems.
• Our solution shows greater improvement in the hardware architectures in

which the assembling overheads are higher.

Therefore, in the next experiments, we are going to compare the experi-
ment based on our approach only with the better traditional scenario split.

7.3.2 Second experiment set

The second experiment set is addressed to explore the decision trees obtained
by the variation on the training data set representations and on the number
of the independent attributes of these data sets. Its experiment subsets and
executions were shown in Table 6.5. We have also taken into account the
variations in the hardware architecture and in the user load level of the user
requests.

The experiment subsets are executed in a static configuration and with
the same page model, nytimes. The results of this experiment set have been
partially published in [42] and in [43].

The results for the latencies speed-ups of the first experiment subset (2A)
are presented in Table 7.9 and Figure 7.6. For a better analysis, the identifiers
of the figure legend are ordered as the mean values presented in the table. All
the speed-ups have been calculated in relation with the latency results of the
execution in the split traditional scenario.

There are two experiment executions —entire/∅ and to entire/requestRate
decision trees— with a considerable higher performance than the rest of ex-
ecutions. On the contrary, the execution which uses the distance/requestRate
decision tree shows the smallest improvements. The rest of executions have
similar performance.

In Table 7.1, there were 11 decision trees selected to be analysed in the
experiment executions. But we have presented only the performance of 8 of
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Fig. 7.6. Speed-up of the user perceived latency in experiment subset 2A.
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Table 7.9. Speed-ups of the user-perceived latency for experiment subset 2A.

Speed-up = UPL(<split>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅> 6.7306 1.8639–12.6024 6.0618
<entire/requestRate> 5.6883 1.1832–12.0783 4.9182
<ratio/∅> 4.1893 1.6855–9.2910 3.4624
<ratio/updateRate> 3.1301 1.3359–6.7255 2.6026
<ratio/requestRate> 2.9116 1.1637–6.4018 2.4000
<ratio/size> 3.4745 1.4630–7.3901 2.9200
<difference/requestRate> 2.7168 1.0086–6.0691 2.2156
<distance/requestRate> 1.5766 1.2309–2.0213 1.5523

them. This experiment is based on a static execution and, in consequence, the
classification process is done just one time at the beginning of the emulation.
We observed, in this classification process, that the three remaining trees
classified all the edges of the content page model in the same state, i.e., the
result of the classification is one of the traditional scenarios. This is the reason
for rejecting the use of these decision trees in the experiments in which the
nytimes page model is used in combination with a static execution.

If we compare the performance obtained in the emulation and the charac-
teristics of the decision trees for the distributed hardware architecture, we do
not observe any relationship between the size, and the coverage, of the tree
with the speed-ups obtained. It is true that the best experiment execution
corresponds to the decision tree with the biggest size (entire/∅ with 91 ver-
texes). But, for example, the execution using the third biggest decision tree
(ratio/size with 49 vertexes) shows a regular performance. Its performance is
very similar to the execution of the difference/∅, which has only a size of 7
vertexes, and it is quite smaller than the performance of entire/requestRate,
which only has 19 vertexes.

The data about the web cache results are presented in Table 7.10. As ex-
pected, the split scenario has the highest cache ratios, and all the executions
based on decision trees have lower ones. The decision tree with the best la-
tencies (entire/emptyset) also has the best hit ratio, except for the split one.
Therefore, we could think that the benefits, in terms of latency, are achieved
because of the hit ratio instead of the benefits of our solution. But the hit ratios
of the second and third best decision trees (entire/requestRate and ratio/∅)
are the worse ones. Therefore, there is not a direct relationship between the
performance of the cache and the improvement of the latencies. The hit ra-
tio has influence on the user-perceived latency, but also the overhead of the
assembling process. Indeed, the results of the experiments show us that the
latency can be improved in spite of our proposed solution obtains lower hit
ratios than the split scenario.
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Table 7.10. Cache performance for the executions of the experiment subset 2A.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 94.9456 0.9471 91.9454 0.8741 1100
<entire/requestRate> 82.1692 0.0587 78.5413 0.3577 1200
<ratio/∅> 78.9625 0.6417 74.9054 0.2884 800
<ratio/updateRate> 85.6546 0.5005 74.6698 0.9471 950
<ratio/requestRate> 90.1876 0.7142 80.5245 0.2844 900
<ratio/size> 89.5868 0.8471 80.2355 0.9841 1000
<diff./requestRate> 86.6386 0.0984 76.8914 0.1007 900
<dist./requestRate> 80.8227 0.7142 74.6325 0.7418 950
<split> 95.8284 0.8412 92.2621 0.7411 850

The setup of the second experiment (2B) is almost identical to the first one,
but we have changed the user load level of the system. This second experiment
studies the behaviour of the decision trees in low load levels, with 0.7 read
requests per second and 0.1 update requests per second. We are interested
in studying if the improvement order of the trees remains equal in different
hardware and load conditions.

The results of this experiment are in Figure 7.7 and Table 7.11. For a
better analysis, the identifiers of the figure legends are ordered as the mean
values presented in the table.

The first conclusion of the analysis of the results is that in low level con-
ditions the benefits of our proposed solution are smaller. We can observe that
all the experiments based on decision trees shows smaller speed-ups in this
experiment than in experiment 2A, and the only difference between both ex-
periments is the user load level. Therefore, the clear explanation of these losses
in the improvement is related to this change in the user load level.

The second conclusion is that the differences between the improvements of
the decision trees have been reduced. This is probably because the reduction
in the user load level. In order to validate this, further experiments are done
in experiment set 3.

In the previous experiment there were three different groups of decision
trees, based on their improvements. The best results are now experimented
by the cases of ratio/∅ and ratio/size, but entire/∅ remains as one of the three
best experiments. The worst results are obtained with the same trees than in
the previous experiment (difference/requestRate and distance/requestRate).

The results related to web cache are presented in Table 7.12. Once again,
there is not relation between the cache performance (hit and byte hit ratios)
and the speed-ups obtained by the trees of our proposed system. The values
of the hit ratios are smaller than in the previous experiment (2A), because the
request rate of 2B is lower than in 2A, and the update rate remains constant.
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Fig. 7.7. Speed-up of the user perceived latency in experiment subset 2B.
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Table 7.11. Speed-ups of the user-perceived latency for experiment subset 2B.

Speed-up = UPL(<split>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅> 1.0926 0.8416–1.3625 1.0517
<entire/requestRate> 1.0377 0.8066–1.2484 1.0144
<ratio/∅> 1.1157 0.8123–1.5207 1.0849
<ratio/updateRate> 1.0884 0.8251–1.3416 1.0639
<ratio/requestRate> 1.0347 0.7948–1.2773 1.0110
<ratio/size> 1.1884 0.8801–1.5539 1.1525
<difference/requestRate> 0.9924 0.7745–1.1906 0.9676
<distance/requestRate> 0.9064 0.7715–1.1253 0.8927

And, finally, the ratios of the split scenario are bigger than the rest of the
cases.

The last experiment (2C) of this experiment set is defined to study the be-
haviour with another hardware architecture. Thus, experiment 2C is identical
to the first one (2A) except that 2C uses a centralized hardware architecture.
As the hardware architecture is different to the previous ones, the selected
decision trees are also different. We obtained 12 suitable trees for the central-
ized architecture, but we have executed only the experiments corresponding
to 6 of them because, in the other cases, all the aggregations (edges) were
classified in the same state, i.e., the result of the classifications was one of
the traditional scenarios (split or join). The results of this experiment are in
Figure 7.8 and Table 7.13. For a better analysis, the identifiers of the figure
legend are ordered as the mean values presented in the table.

As it was observed in the experiment set 1, the results of experiments with
a centralized hardware architecture show worse results than in the case of the

Table 7.12. Cache performance for the executions of the experiment subset 2B.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 87.1274 0.7496 84.1742 0.9748 1000
<entire/requestRate> 79.7719 0.6684 73.4812 0.4178 900
<ratio/∅> 74.8744 0.4591 71.9527 0.3991 950
<ratio/updateRate> 80.8347 0.5711 71.8338 0.3011 1050
<ratio/requestRate> 84.4400 0.1289 78.1749 0.3675 1000
<ratio/size> 83.1937 0.0571 73.7492 0.1878 900
<diff./requestRate> 80.7433 0.1794 74.0081 0.5574 1100
<dist./requestRate> 77.8477 0.7415 73.7198 0.5946 1050
<split> 90.1748 0.0770 87.1664 0.0911 800
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Fig. 7.8. Speed-up of the user perceived latency in experiment subset 2C.
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distributed one. Thus, the hypothesis of greater improvement in the cases
with higher assembling overheads is validated again with the experiment set
2. Experiment 2A shows better results than 2C and the only difference is the
hardware architecture.

Once again, the experiments based on the entire/∅ and ratio/∅ trees are
in the group of cases with best results. Therefore, it seems that these two
decision trees are the best ones to implement the classification algorithm of
the adaptive core. They show the greatest improvements of the user-perceived
latency independently of the conditions of the experiment. Although the mean
latency values of ratio/∅ are quite interesting, it shows longer latencies than
the reference scenario (split) in 137 web pages (around the 28.5% of web
pages).

Finally, the improvement of the decision trees does not seem to have any
relation with the size or the coverage of the trees. For example, the size of
the tree ratio/size is smaller than entire/requestRate, but the performance
is higher for the second one. On the contrary, the two biggest trees (entire/∅
and ratio/∅) correspond to the experiments with the highest performance. We
cannot finally conclude any clear statement about the relation of the sizes of
the trees and the improvement of their corresponding experiments. Further
research work could be addressed in this direction.

Table 7.13. Speed-ups of the user-perceived latency for experiment subset 2C.

Speed-up = UPL(<split>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅> 1.4113 1.0347–1.7665 1.3106
<entire/requestRate> 1.2353 0.8089–1.6405 1.1848
<ratio/∅> 1.4282 0.7320–2.1365 1.3445
<ratio/updateRate> 1.1180 0.9588–1.2882 1.0994
<ratio/size> 1.1565 0.9446–1.4358 1.1138
<difference/∅> 1.1619 1.0262–1.2929 1.1637

The patterns of the results for the cache performance (Table 7.14) remain
similar to all the previous experiments: the highest hit ratios correspond to
the split experiments and there is not relationship between the hit ratios and
the improvement, in terms of latency, of the experiments based on the use of
decision trees.

The summary of the conclusions for the second experiment are:

• Our solution improves the performance, in terms of user-perceived latency,
in spite of it worsens the hit ratio of the cache.
• Our solution shows greater improvement in the hardware architectures in

which the assembling process overheads are higher.
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Table 7.14. Cache performance for the executions of the experiment subset 2C.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅> 93.7201 0.5788 91.0390 0.4781 950
<entire/requestRate> 85.3192 0.0345 81.0745 0.2341 1050
<ratio/∅> 80.1734 0.7100 75.3391 0.8001 950
<ratio/updateRate> 85.2810 0.9176 79.9347 0.7342 1000
<ratio/size> 86.3347 0.3748 82.9455 0.2841 950
<difference/∅> 88.2174 0.4117 85.4700 0.4318 1000
<split> 96.1629 0.6174 92.0072 0.7120 900

• The adaptive cores of the experiments with the greatest latency are im-
plemented with entire/∅ and ratio/∅.
• The latency improvements of our proposal are independent from the im-

provements or the decrease of the cache hit ratios.
• Our solution obtains greater improvements as the user load level gets

higher.
• The size and coverage values of the decision trees are not clearly related

to the improvement obtained in the execution of the experiments.

7.3.3 Third experiment set

The goal of the experiment set 3 (Table 6.6) is the same that the previous one,
but with important changes in the experiment setup. The page model and the
user load levels are different in this case. This experiment is focused on the
study of the decision trees behaviour for the distributed hardware architecture
using the pageflakes content page model. But this experiment is a dynamic
one, another important difference with the previous experiment.

Dynamic experiments are the cases in which changes in the characteristics
of the content elements occurs. This means that content elements do not have
the same values for their sizes, update rates, request rates, number of ag-
gregations and number of aggregators during the execution of the emulation.
This supposes a continuous re-evaluation of the aggregation state relation-
ships. Thus, the classification process should be executed continuously during
the emulation. This adds overhead times to the system and it also creates
partial transient states between the point in time that the fragment design is
changed and the new fragment elements are requested and stored in the cache.
Dynamic experiments better reflect a real system and the improvement of our
solution should be reduced in comparison with static ones.

As a consequence of the changes in the content elements (structure and
size), during the experiment, we cannot compare the latencies of a given web
pages in different points in time. In this case, the latencies do not only vary
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because of the cached elements or the defined fragment elements, but also
because of the changes of the web pages themselves. The results are expressed
as the mean values of each request among the replicas of the same experi-
ment. Therefore, the x-axis of the plots, and consequently the points of the
plots, corresponds to requests instead of web pages. Therefore, the plots of
the dynamic experiments have 36.000 points.

This experiment set is divided into two experiment subsets, one with high
user load level and another one with low level. The aim is to validate the
previous hypothesis about our solution obtains greater improvements as the
load of the system increases. In this experiment, we study the 11 decision
trees corresponding to the distributed hardware architecture. We monitored
the classification results during the experiment executions and we observed
that the edges were classified in different states.

Table 7.15. Speed-ups of the user-perceived latency for experiment subset 3A.

Speed-up = UPL(<split>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅ > 3.8487 1.8998–5.4800 3.8734
<entire/updateRate> 3.2594 1.6771–4.5889 3.1283
<entire/requestRate> 5.6229 2.1410–9.4709 5.3264
<ratio/∅ > 3.1904 1.5762–4.4749 3.0352
<ratio/updateRate> 3.8999 1.7841–5.8664 3.6933
<ratio/requestRate> 3.2637 1.5942–4.5418 3.0778
<ratio/size> 3.1780 1.5580–4.4675 3.0114
<ratio/fathersNumber> 3.1874 1.6480–4.4869 3.0458
<difference/∅ > 3.5199 1.8242–5.9422 3.3569
<difference/requestRate> 3.2481 1.3838–4.6575 3.0916
<distance/requestRate> 2.2290 1.1688–3.4317 2.0417

Figure 7.9 and Table 7.15 show the results of the latency speed-ups for
the experiment subset 3A. For a better analysis, the identifiers of the figure
legend are ordered as the mean values presented in the table. In previous
experiments, entire/∅ and ratio/∅ seem to be the best decision trees to imple-
ment the classification algorithm of the adaptive core. But in this experiment,
the improvements of the second tree are reduced considerably. On the con-
trary, the first tree, entire/∅, is again in the group of the trees which obtain
the highest performances, mainly if we analysed the mean improvement values
for the P10-P90 samples.

Comparing the results with previous experiments, we observe that the gen-
eral speed-ups are smaller than in experiment 2A. This is not only explained
by the differences in the user load level, but also because experiment 3A is
a dynamic one. Anyway, the general improvement for experiment 3A is big-
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Fig. 7.9. Speed-up of the user perceived latency in experiment subset 3A.
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Table 7.16. Cache performance for the executions of the experiment subset 3A.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅ > 87.9668 0.9471 86.1132 0.5178 2100
<entire/updateRate> 87.7047 0.5113 83.1533 0.3178 1800
<entire/requestRate> 77.5086 1.0079 73.1432 0.7911 1500
<ratio/∅ > 83.9661 0.3941 80.9942 0.3314 1750
<ratio/updateRate> 83.6284 0.4077 80.8725 0.2834 1800
<ratio/requestRate> 84.0230 0.9811 81.3173 0.7761 1850
<ratio/size> 83.6467 0.3411 79.7570 0.0847 2000
<ratio/fathersNumber> 90.9688 0.1947 88.9542 0.1200 2050
<difference/∅ > 83.8249 0.3361 80.3958 0.1124 1650
<diff./requestRate> 78.3011 0.9714 75.2860 0.8140 1450
<dist./requestRate> 80.5348 0.2111 78.3667 0.1392 1800
<split> 91.2277 0.6006 88.7846 0.4381 1000

ger than for experiment 2C, which is static, but with a centralized hardware
architecture. It seems that the benefits of our solution are more affected by
the assembling overhead times than by the dynamism of the characterization
parameters, the overheads generated by the classifications and the partial
transient states.

The cache metrics of this experiment (Table 7.16) present significantly
smaller hit ratios than, for example, the corresponding to experiments 2A
and 2B. This is not only due to the creation of bigger fragments, but also
because there are more update requests in experiment 3A than in the other
two.

As in the previous experiments, split experiment shows the best hit ratios.
Once again, there is not a relationship between the hit ratios of the experi-
ments based on decision trees and the latency improvements obtained in these
experiments.

The results of experiment 3B (Table 7.17 and Figure 7.10) show that the
improvements of all the trees are now almost identical. For a better analysis,
the identifiers of the figure legend are ordered as the mean values presented
in the table. The significant differences of experiment 3A have disappeared
between them, and the only variation between the experiments is the user
load level. As in experiment 2B, the benefits of the use of the decision trees
are reduced as the user load level is reduced. Therefore, we conclude that the
differences in the improvements among the decision trees get equal as the user
load level of the system decreases.

If we compare the improvement mean values of experiments 3A and 3B
we also observe that the latency speed-ups are higher in the first one. This
is explained again because of the difference in the user load level. We also
detected this pattern in experiment set 2. This was entirely expected, because
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Fig. 7.10. Speed-up of the user perceived latency in experiment subset 3B.
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Table 7.17. Speed-ups of the user-perceived latency for experiment subset 3B.

Speed-up = UPL(<split>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅ > 1.8134 1.0724–2.0665 1.5979
<entire/updateRate> 1.7985 1.0618–2.0733 1.6008
<entire/requestRate> 1.8248 1.0943–2.0797 1.6065
<ratio/∅ > 1.7995 1.1365–2.0114 1.5877
<ratio/updateRate> 1.8014 1.1241–2.0305 1.5836
<ratio/requestRate> 1.7993 1.1230–2.0106 1.5797
<ratio/size> 1.7959 1.1305–2.0074 1.5802
<ratio/fathersNumber> 1.8067 1.1446–2.0401 1.5831
<difference/∅ > 1.8014 1.1162–2.0337 1.5877
<difference/requestRate> 1.8065 1.0972–2.0652 1.5976
<distance/requestRate> 1.7682 1.1778–1.9519 1.5595

the overhead times of the assembling process (transmission times, database
connections, etc.) are increased as the load of the system increases. And our so-
lution shows greater improvements in environments with long overhead times.

The values of the web cache metrics are presented in Table 7.18. In exper-
iments 3A and 3B, the user behaviour model is the same, but the cache ratios
have some variations. The user load levels are different, but the proportion of
request and update rates keeps constant, so we should think that the cache
ratios would be the same. The fragment design of the content elements and
web pages has a great influence on the cache ratios, and this is the explanation
for the changes in the cache ratios between 3A and 3B. 3A shows higher cache
performance. If we compare the hit ratios among the experiment executions
of this experiment, the pattern of previous experiments is shown again.

The results of the third experiment set help us to conclude, reinforce or
validate that:

• Our solution improves the performance, in terms of user-perceived latency,
in spite of it worsens the hit ratio of the cache.
• Our solution obtains greater improvements as the load level gets higher.
• Our solution shows greater improvement in the hardware architectures in

which the assembling process overheads are higher.
• Our solution shows greater improvement in scenarios in which there are

not changes in the characterization parameters of the content elements.
• The reduction of the benefits of our solution, in terms of user-perceived

latency, is more influenced by the reduction of the assembling overhead
times than by the increase of the number of the classification executions.
• The entire/∅ is finally considered as the decision tree which best imple-

ments the classification algorithm of the adaptive core in order to achieve
the best latencies speed-ups. The ratio/∅ is finally rejected as one of the
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Table 7.18. Cache performance for the executions of the experiment subset 3B.

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<entire/∅ > 86.8704 0.4789 84.6294 0.3441 750
<entire/updateRate> 86.1267 0.9471 81.0551 0.7134 650
<entire/requestRate> 78.3043 0.0542 74.0385 0.2471 700
<ratio/∅ > 83.4756 0.3599 80.5949 0.5714 600
<ratio/updateRate> 82.3988 0.3298 78.5299 0.4754 700
<ratio/requestRate> 82.5616 0.1794 79.5415 0.3554 750
<ratio/size> 80.4010 0.9778 78.4936 1.0741 700
<ratio/fathersNumber> 89.6449 0.9471 87.9965 0.7993 750
<difference/∅ > 82.3796 0.7913 79.8796 0.8519 800
<diff./requestRate> 78.0753 0.5863 73.9665 0.7465 800
<dist./requestRate> 79.9374 0.1685 77.9502 0.3500 700
<split> 90.1339 0.7438 87.4143 0.5547 600

best decision trees because its low performance in the last set of experi-
ments.
• The latency improvements of our proposal are independent from the im-

provements or the decrease of the cache hit ratios.
• The differences of the improvements of our proposed adaptive core, among

the decision trees, are reduced as the load level of the system is reduced.
• The cache hit ratios are not affected only by the proportion of the update

and read request and the system load level, but also by the design of the
fragment elements.

As a consequence of these results, the adaptive core is going to be im-
plemented only by the use of the entire/∅ decision tree in the rest of the
experiments. We have contrasted that it is the best, or one of the best, trees
in most of the cases.

7.3.4 Fourth experiment set

The experiment set 4 is designed to study how the benefits of our approach
change as the system load level is modified, in comparison with the split tra-
ditional scheme (Table 6.7). All the experiment executions of this experiment
set are identical except for the system load level, i.e., the request and update
rates. The request rate has been varied from 2 req./s up to 10 req./s in steps
of 2. The update rate has been varied from 0.5 req./s up to 2.5 req./s in steps
of 0.5. Thus, the experiment is composed of 25 executions where our solution
is used, and 25 pairs of executions. The entire/∅ decision tree is used to im-
plement the adaptive core of the framework in all of the executions using our
solution.
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Fig. 7.11. Speed-up of the user perceived latency in experiment subset 4A.

The experiment has been designed in order to reproduce an environment
(web system) with the features where our solution presents the worst be-
haviour. This means that we have decided to execute this experiment set in a
dynamic system with the centralized hardware architecture. Since the solution
has experimented similar improvements when the pageflakes and nytimes have
been used, we have arbitrarily selected the first of them. If our solution shows
improvement under this execution conditions, we ensure that our solution is
validated to be used in CAS systems.

Due to the high number of experiments, we have decided not to present the
speed-up values corresponding to each request of each experiment execution.
We have previously observed that, in general terms, an experiment in which
the mean value of all the request speed-ups is bigger than in other experiment,
the single speed-ups of the first one are also bigger for almost all the requests.
It means that the mean value of all the speed-ups is representative of the
improvements of an experiment. Therefore, we are going to show only the
mean values of all the requests, but also the means of the requests inside P10-
P90, for each of the 50 experiment executions of this experiment set. These
results are in Figure 7.11 and Table 7.19.

Observing the graphical results (Figure 7.11), it is easy to check that the
improvements of our solution get great as the request rate is increased. This
increase is observed in any of the studied update rates. The increase is more



7.3 Performance results 125

exacerbated for the two highest request rates (8 and 10 req./s). The difference
between the mean values of all the requests and the P10-P90 requests is also
increased with the two highest request rates. This reflects that there is a high
number of positive extreme values, requests with highest speed-ups, at these
request levels.

On the contrary, the update rates increases affect inversely to the speed-
ups improvements. When the update rate gets higher, the improvement
showed by our solution is smaller. Anyway, this decrease is smaller than the
observed with the increases of the request rates. In the case of having more
updates than requests (request rate = 2.0 req./s and update rate = 2.5 req./s)
our solution does not experiment any improvement (speed-ups equal to 1.0),
even it shows longer latencies than the split traditional scenario.

Table 7.19. Speed-ups of the user-perceived latency for experiment subset 4A.

Speed-up = UPL(<split,*/*/s−1>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅,2.0/0.5/s−1> 1.1409 0.8829–1.3989 1.0877
<entire/∅,2.0/1.0/s−1> 1.0738 0.8254–1.3222 1.0621
<entire/∅,2.0/1.5/s−1> 1.0668 0.7993–1.3342 1.0668
<entire/∅,2.0/2.0/s−1> 1.0856 0.7517–1.3679 1.0633
<entire/∅,2.0/2.5/s−1> 0.9946 0.6745–1.3148 0.9450
<entire/∅,4.0/0.5/s−1> 1.2129 0.8728–1.5531 1.1638
<entire/∅,4.0/1.0/s−1> 1.1531 0.8389–1.4672 1.0835
<entire/∅,4.0/1.5/s−1> 1.1729 0.8276–1.5181 1.1134
<entire/∅,4.0/2.0/s−1> 1.1500 0.7851–1.4691 1.0921
<entire/∅,4.0/2.5/s−1> 1.1131 0.7665–1.5157 1.1647
<entire/∅,6.0/0.5/s−1> 1.2933 0.8387–1.6717 1.2552
<entire/∅,6.0/1.0/s−1> 1.2407 0.8339–1.6476 1.1170
<entire/∅,6.0/1.5/s−1> 1.2122 0.8298–1.5947 1.1195
<entire/∅,6.0/2.0/s−1> 1.2072 0.7930–1.6114 1.1421
<entire/∅,6.0/2.5/s−1> 1.0912 0.7560–1.5975 1.0711
<entire/∅,8.0/0.5/s−1> 2.3077 0.8018–2.0737 1.4377
<entire/∅,8.0/1.0/s−1> 1.4288 0.7625–1.8609 1.3117
<entire/∅,8.0/1.5/s−1> 1.4381 0.7706–2.0667 1.4186
<entire/∅,8.0/2.0/s−1> 1.3575 0.7540–1.7997 1.3134
<entire/∅,8.0/2.5/s−1> 1.1926 0.7297–1.8129 1.0328
<entire/∅,10.0/0.5/s−1> 2.7754 0.9001–3.2119 1.9801
<entire/∅,10.0/1.0/s−1> 2.6032 0.8836–2.8227 1.5757
<entire/∅,10.0/1.5/s−1> 2.4442 0.2629–2.2580 1.2604
<entire/∅,10.0/2.0/s−1> 1.1485 0.3809–3.0552 1.4892
<entire/∅,10.0/2.5/s−1> 1.6526 0.3417–3.0814 1.0680
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The decrease of the improvement of our solution when the update rate
gets higher is logical because of the behaviour of the cache ratios. When the
update rate is increased, the cache hit ratios are reduced.

In Tables 7.21 and 7.22 and Figure 7.12, we observe how the differences
between the cache ratios, either hit ratio and byte hit ratio, of the split solution
and the solution based on the adaptive core are increased when the update
rate is increased. The differences are also increased when the number of update
requests, in proportion to the number of read requests, is bigger. Therefore,
our solution experiments more significant reductions of hit ratios when the
update rate is increased.

The reduction of the hit ratios is bigger in the case of our solution be-
cause the fragment elements are bigger than in the split scenario. Part of this
increase is counteracted, in terms of latency, with our solution.

But as the update rate is increased, the difference gets greater and the
weight of the benefit obtained with our solution gets smaller. This benefit is
reduced to the level in which the losses in web cache ratios are more signifi-
cant and, in consequence, our solution experiments bigger latencies than the
traditional scenario.

The list of conclusions of this experiment are summarized as:

• Our solution shows shorter latencies independently of the load level of the
system. The latencies of the web pages using our solution get equal to the
latencies in the split scenario when the update rate and the request rate
are almost equal.
• The improvements of our solution are greater as the request rate is in-

creased and the update rate is decreased.
• The reductions of the hit ratios are bigger when our approach is used.
• Our solution counteracts better the effect of the loss of hit ratio, compared

with the split scenario, when the update rates are low and the request rates
are high.
• The improvement obtained with our solution is not associated to the web

cache hit ratios.

7.3.5 Fifth experiment set

The last experiment set is addressed to compare our solution with a solution
proposed by other researches. We have selected MACE, proposed in [50, 48],
because it is the only research work, from our knowledge, that also bases the
problem of web caching on CAS system on defining adaptive fragments of
the content of a web page. They try to find cacheable points using a cost
function. Cacheable points are vertices of the ODGex web page model for
which their content and the content of their children are cached all together.
The cost functions are based on the cost of caching a part of the web page, the
cost of retrieve the content from the web server and the cost of keeping the
consistence of the contents in the cache. Their solution recursively calculates
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Fig. 7.12. Cache performance for the executions of the experiment subset 4A.
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the cost associated to each vertex and it decides which ones are the best from
a performance point of view.

The experiment set 5 (Table 6.8) has been designed with the same fea-
tures of the previous one. We have selected the hardware architecture more
unfavourable, the centralized one, in a dynamic execution context. The web
page model was provided by the authors of MACE. We considered using their
web page model in order to compare with a third one. This web page model
is based on Yahoo! Pipes, a personal data mashup that aggregates web feeds,
web pages, and other services, creating Web-based apps from various sources.
The latencies of both approaches have been studied at different system load
levels by changing the request and update rates in the same way than in
experiment set 4.

As in 4A, we have decided to show only the global speed-up values instead
of the speed-ups of each single request due to the high number of experiment
executions of this set. The compared latencies of both experiments are shown
in Figure 7.13 and Table 7.20. For these cases, the latencies of our proposed
solution are compared with the latencies obtained with MACE instead of the
split scenario. Thus, the common and reference latency values —the values of
the numerator of the division to calculate the speed-up— correspond to the
MACE executions.
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Fig. 7.13. Speed-up of the user perceived latency in experiment subset 5A.
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By the analysis of the results of the experiment, we observe that our ap-
proach obtains shorter latencies for all the values of the system load. There is
not a pattern between the values of request and update rates and the values
of the speed-up, but the speed-up is always higher than 1.0, so our solution is
better in terms of user-perceived latency.

But the improvements are reduced if we considered only the P10-P90 sam-
ples instead of all the samples. This is explained because the extreme cases
—the web pages with highest and smallest speed-ups— are more favourable
for our solution. Anyway, most of the P10-P90 mean values are bigger than 1.0,
and the smaller ones are very close to this frontier value. There are only three
cases with significant losses: 2.0/1.0/s−1, 2.0/2.5/s−1 and 6.0/1.5/s−1.
There are six cases in which our solution is less than 1% faster or slower. And
finally, for the other 15 cases, our solution is better. It is important to re-
mind that the design experiment has been done taking into account the most
unfavourable conditions for our approach.

Table 7.20. Speed-ups of the user-perceived latency for experiment subset 5A.

Speed-up = UPL(<mace,*/*/s−1>)/UPL(<ExId>)

Execution Mean P10-P90 P10-P90

id. (ExId) range mean

<entire/∅,2.0/0.5/s−1> 1.2362 0.6269–1.3370 0.9920
<entire/∅,2.0/1.0/s−1> 1.1880 0.6361–1.2877 0.9619
<entire/∅,2.0/1.5/s−1> 1.3004 0.6849–1.3023 0.9936
<entire/∅,2.0/2.0/s−1> 1.1886 0.7092–1.2629 0.9960
<entire/∅,2.0/2.5/s−1> 1.1173 0.7131–1.1769 0.9450
<entire/∅,4.0/0.5/s−1> 1.1312 0.6913–1.3467 1.0190
<entire/∅,4.0/1.0/s−1> 1.3513 0.6272–1.3683 0.9978
<entire/∅,4.0/1.5/s−1> 1.8778 0.6210–1.6101 1.1156
<entire/∅,4.0/2.0/s−1> 1.8900 0.6503–1.9427 1.2965
<entire/∅,4.0/2.5/s−1> 2.1220 0.6320–1.6973 1.1647
<entire/∅,6.0/0.5/s−1> 1.8585 0.7636–1.4240 1.0938
<entire/∅,6.0/1.0/s−1> 1.1035 0.6444–1.3349 0.9997
<entire/∅,6.0/1.5/s−1> 1.1850 0.5871–1.3614 0.9842
<entire/∅,6.0/2.0/s−1> 1.3017 0.5602–1.4672 1.0137
<entire/∅,6.0/2.5/s−1> 1.6478 0.5748–1.5675 1.0711
<entire/∅,8.0/0.5/s−1> 1.5949 0.8197–1.4912 1.1555
<entire/∅,8.0/1.0/s−1> 1.1484 0.6683–1.3428 1.0055
<entire/∅,8.0/1.5/s−1> 1.4575 0.6518–1.4501 1.0509
<entire/∅,8.0/2.0/s−1> 1.3023 0.5705–1.4181 1.0289
<entire/∅,8.0/2.5/s−1> 1.4217 0.5247–1.5409 1.0328
<entire/∅,10.0/0.5/s−1> 1.2166 0.5140–1.3569 1.0195
<entire/∅,10.0/1.0/s−1> 1.1274 0.6903–1.3554 1.0228
<entire/∅,10.0/1.5/s−1> 1.1496 0.6370–1.3617 1.0347
<entire/∅,10.0/2.0/s−1> 1.3327 0.6241–1.4945 1.0593
<entire/∅,10.0/2.5/s−1> 1.6718 0.5283–1.6078 1.0680
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If we analysed the results for the hit ratio and the byte hit ratio (Fig-
ure 7.14 and Tables 7.23 and 7.22) we observe that MACE obtains higher
ratios in both metrics than our solution, based on the use of decision trees.
Indeed, the differences between both solutions are bigger in the case of the
byte hit ratio.

The trend of the results shows better cache ratios when the update rate is
reduced and the request rate is increased. This trend is shown in the results of
both solutions and for both metrics. In any case, the influence of the update
and request rate seems to be higher on the results of our solution. The cache
performance results for MACE are more homogeneous.

Finally, in all the previous scenarios and experiments, the hit ratio has
been higher than the byte hit ratio. But in the case of MACE, this has been
swapped, and it shows higher byte hit ratios than hit ratios.

Therefore, MACE approach seems to have a higher performance from the
point of view of the cache system. It also seems to be less influenced by the
changes in the update and request rates.

The conclusions extracted from the analysis of the results of experiment
set 5 are summarized as:

• Our solution is better, in terms of user-perceived latency, than MACE.
• It seems not to be a pattern between the update and request rates and

the improvement of the latencies between our approach and MACE.
• Our solution is higher influenced, in its improvements, by the speed-ups

obtained in the extreme cases.
• MACE solution is better, in terms of web cache performance, than our

solution.
• Our approach obtains higher hit ratios than byte hit ratios.
• MACE solution obtains higher byte hit ratios than hit ratios.

7.4 Summary

This section has been devoted to study and to analyse the results of the differ-
ent experiment sets. We have studied the improvement in the user-perceived
latency and the variations in the cache hit ratios. The latency improvement
has been expressed as speed-ups, comparing the latencies when our solution
is used to when a traditional scheme, or other solution, is used.

After the experiment analysis we conclude that, in general terms, our solu-
tion shows shorter user-perceived latency in comparison with the traditional
CAS system cache schemes (join and split) and in comparison with other re-
search solution, MACE approach. Therefore, it is validated that our proposal
can be used to reduce the user-perceived latency in CAS system with a web
cache.

But other important conclusions have been also done. In relation to our
solution, we have concluded that it presents the best results when the times
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Fig. 7.14. Cache performance for the executions of the experiment subset 5A.
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of the assemblies are longer. The improvement of our solution is also greater
when the load of the system, in terms of read request, is higher. On the
contrary, when the update rates are increased, our solution shows smaller im-
provements in comparison with other solutions. In any case, our solution shows
shorter latencies, than the traditional scenarios. And, obviously, our solution
obtains greater improvement when there are not changes in the characteri-
zation parameters of the content elements, because it means that transient
cache state does not appear.

As it was expected, the improvement in the latency of our solution is
obtained in spite of a reduction in the cache hit ratios. This is because the
reduction of the overhead times counteracts the losses in the hit ratios. It
had been also shown that the improvement of our solution is not due to the
changes in the cache hit ratios, thus the changes in the fragment designs help
to reduce the latencies.

As conclusions from the exploring of several decision trees to implement
the classification algorithm of the adaptive core, we have observed that, in
general terms, the experiment executions with the best results use the entire/∅
decision tree. This is the decision tree which uses all the independent attributes
and expresses them as entire values.

We have also observed that the differences of improvement among the
decision trees are reduced when the load of the system, in terms of request rate,
is reduced. We have not been able to conclude anything about the relation
between the sizes and coverages of the decision trees and the improvement
obtained with them. This point remains as part of the future work.

After comparing our solution with other approach (MACE), we concluded
that our solution is better than MACE in terms of user-perceived latency.
On the contrary, MACE improves the cache hit ratio and byte hit ratio in
comparison with our solution.

These analysis conclusions are used to validate a part of the contributions
of our dissertation. Firstly, we have validated the use of a data mining and de-
cision trees. We have reduced the user-perceived latencies, in comparison with
other solution and traditional schemes, in a several number of experiments.
These experiments have used a knowledge extracted from a previous data
mining process to classify the aggregation relationships and, in consequence,
to create adaptive fragment designs. The knowledge has been extracted from
an off-line mining of performance data obtained from the emulation, in a
real system, of synthetic web page content models. We have represented the
extracted knowledge using decision trees.

Consequently, it is also validated the guidelines that we have defined to
create the synthetic content model. As the latency results are better than
using other solutions, all the processes and phases of our solution have been
validated.

Finally, the use of the five characterization parameters as inputs of our
adaptive core is suitable because the experiments with the best results are
those based in the entire/∅ decision tree. This decision tree uses all the at-
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tributes that we initially considered, so the use of all of them is validated. This
is reinforced because the second best decision tree, ratio/∅, also uses all the
independent attributes. Concerning to the representation of the independent
attributes, it seems that the entire representation is the best one, and it is
explained because this representation has a higher amount of information.
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Table 7.21. Cache performance for the executions of the experiment subset 4A
(entire/∅ experiments).

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<ent./∅,2.0/0.5/s−1> 87.9073 0.2405 86.1467 0.4159 2050
<ent./∅,2.0/1.0/s−1> 86.5095 0.2237 84.9632 0.3399 1800
<ent./∅,2.0/1.5/s−1> 85.3633 0.3693 79.5733 0.3672 2100
<ent./∅,2.0/2.0/s−1> 84.2012 0.2583 77.2480 0.3333 2300
<ent./∅,2.0/2.5/s−1> 82.9833 0.5630 75.5893 0.4989 2150
<ent./∅,4.0/0.5/s−1> 88.2916 0.4146 87.2279 0.3348 1950
<ent./∅,4.0/1.0/s−1> 87.5529 0.3073 85.2386 0.4545 2000
<ent./∅,4.0/1.5/s−1> 86.7389 0.3100 83.2200 0.1466 1950
<ent./∅,4.0/2.0/s−1> 86.3049 0.6550 82.0025 0.2186 2150
<ent./∅,4.0/2.5/s−1> 85.6017 0.9401 80.6327 0.3242 2100
<ent./∅,6.0/0.5/s−1> 88.7259 0.5020 87.9816 0.0516 1850
<ent./∅,6.0/1.0/s−1> 87.7848 0.7428 86.4948 0.1813 2000
<ent./∅,6.0/1.5/s−1> 87.2630 1.0404 85.3905 0.1921 2300
<ent./∅,6.0/2.0/s−1> 86.9356 0.3095 83.6567 0.0767 2150
<ent./∅,6.0/2.5/s−1> 86.1510 1.3893 82.8987 0.2710 1900
<ent./∅,8.0/0.5/s−1> 88.0907 0.6220 88.2884 0.0263 1850
<ent./∅,8.0/1.0/s−1> 87.8511 1.4210 86.9030 0.3709 2100
<ent./∅,8.0/1.5/s−1> 87.5090 0.9250 86.3848 0.3195 2100
<ent./∅,8.0/2.0/s−1> 87.0280 0.4516 85.2734 0.2297 2200
<ent./∅,8.0/2.5/s−1> 86.6811 0.3412 83.9649 0.1436 2350
<ent./∅,10.0/0.5/s−1> 89.3789 0.1013 88.4819 0.1217 1900
<ent./∅,10.0/1.0/s−1> 88.5267 0.9974 87.2278 0.1624 2200
<ent./∅,10.0/1.5/s−1> 87.8811 0.1395 86.9611 0.2411 2200
<ent./∅,10.0/2.0/s−1> 87.4978 0.2694 85.7059 0.2460 1950
<ent./∅,10.0/2.5/s−1> 86.9569 2.6826 84.8085 0.8700 2150
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Table 7.22. Cache performance for the executions of the experiment subset 4A
(split experiments).

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<split,2.0/0.5/s−1> 91.1180 0.0449 88.6983 0.0846 1500
<split,2.0/1.0/s−1> 90.2182 0.0374 87.5806 0.1915 1450
<split,2.0/1.5/s−1> 89.5391 0.0893 86.8236 0.1908 1500
<split,2.0/2.0/s−1> 89.0105 0.0665 86.1445 0.0379 1650
<split,2.0/2.5/s−1> 88.3754 0.0877 85.6045 0.0638 1450
<split,4.0/0.5/s−1> 91.5884 0.3058 88.9954 0.0787 1400
<split,4.0/1.0/s−1> 90.4253 0.1340 88.1310 0.0968 1750
<split,4.0/1.5/s−1> 90.1478 0.0553 87.2015 0.1708 1600
<split,4.0/2.0/s−1> 89.5832 0.0322 86.9786 0.1033 1600
<split,4.0/2.5/s−1> 89.3718 0.0309 86.6848 0.0625 1350
<split,6.0/0.5/s−1> 91.9219 0.4608 89.0489 0.3035 1400
<split,6.0/1.0/s−1> 90.1368 0.0739 88.4896 0.0424 1400
<split,6.0/1.5/s−1> 90.1908 0.4914 87.6860 0.3334 1650
<split,6.0/2.0/s−1> 89.9198 0.3082 87.3131 0.2001 1350
<split,6.0/2.5/s−1> 89.6652 0.3897 87.0172 0.1507 1650
<split,8.0/0.5/s−1> 91.3576 0.4086 89.1636 0.4039 1450
<split,8.0/1.0/s−1> 90.9293 0.0133 88.0000 0.1140 1500
<split,8.0/1.5/s−1> 90.6597 0.2361 87.9094 0.0585 1350
<split,8.0/2.0/s−1> 90.0634 0.0297 87.8712 0.1910 1550
<split,8.0/2.5/s−1> 89.9648 0.1350 87.5804 0.0076 1450
<split,10.0/0.5/s−1> 92.5196 0.6012 89.5644 0.9663 1550
<split,10.0/1.0/s−1> 91.2229 0.3655 88.5968 0.5030 1500
<split,10.0/1.5/s−1> 90.9475 0.1884 88.0739 0.0396 1350
<split,10.0/2.0/s−1> 90.5797 0.3363 87.9152 0.5015 1400
<split,10.0/2.5/s−1> 90.2808 0.5758 87.2997 0.5043 1550
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Table 7.23. Cache performance for the executions of the experiment subset 5A
(entire/∅ experiments).

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<ent./∅,2.0/0.5/s−1> 83.6303 0.9222 79.0315 0.5611 3800
<ent./∅,2.0/1.0/s−1> 80.5801 0.7731 78.6977 0.1538 3200
<ent./∅,2.0/1.5/s−1> 80.1115 1.2557 76.7795 0.5760 3650
<ent./∅,2.0/2.0/s−1> 78.4802 1.2419 76.3739 0.1177 2800
<ent./∅,2.0/2.5/s−1> 77.8283 0.9331 76.1694 0.0570 4050
<ent./∅,4.0/0.5/s−1> 87.2272 0.7990 83.7999 0.2294 2550
<ent./∅,4.0/1.0/s−1> 86.7239 0.7676 80.1560 0.2198 3400
<ent./∅,4.0/1.5/s−1> 84.1320 0.8777 79.9110 0.6778 3150
<ent./∅,4.0/2.0/s−1> 83.2060 0.8055 79.1531 0.2733 3100
<ent./∅,4.0/2.5/s−1> 83.3061 0.8743 78.2638 0.1788 2950
<ent./∅,6.0/0.5/s−1> 89.1376 1.0601 86.3714 0.1930 2300
<ent./∅,6.0/1.0/s−1> 88.7332 1.0404 84.8833 0.0966 3900
<ent./∅,6.0/1.5/s−1> 88.4086 1.1129 83.5024 0.5956 3550
<ent./∅,6.0/2.0/s−1> 87.7449 0.9310 82.3807 0.0813 3650
<ent./∅,6.0/2.5/s−1> 87.2129 1.1913 81.3921 0.3853 2350
<ent./∅,8.0/0.5/s−1> 90.8181 0.5374 86.7150 0.0667 3500
<ent./∅,8.0/1.0/s−1> 89.6862 1.1143 85.6215 0.0577 2750
<ent./∅,8.0/1.5/s−1> 88.5838 1.0274 83.7840 0.0671 3000
<ent./∅,8.0/2.0/s−1> 87.7599 1.0358 83.4851 0.2868 3650
<ent./∅,8.0/2.5/s−1> 88.4823 1.1064 83.1705 0.2656 3150
<ent./∅,10.0/0.5/s−1> 91.1267 1.3329 89.3921 2.0476 2950
<ent./∅,10.0/1.0/s−1> 90.8931 0.9919 87.7407 0.0777 3500
<ent./∅,10.0/1.5/s−1> 90.1011 0.9277 86.1600 0.2095 3050
<ent./∅,10.0/2.0/s−1> 89.3721 1.0633 83.4427 0.0431 2850
<ent./∅,10.0/2.5/s−1> 88.9520 0.8549 83.3835 0.3378 3600
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Table 7.24. Cache performance for the executions of the experiment subset 5A
(MACE experiments).

Experiment Cache hit Cache byte Samples
identification ratio (%) hit ratio (%) in tran-

Mean Deviation Mean Deviation sient state

<mace,2.0/0.5/s−1> 87.5619 0.0736 88.0274 0.0106 3250
<mace,2.0/1.0/s−1> 86.8467 0.0766 85.9120 0.0103 2350
<mace,2.0/1.5/s−1> 86.2013 0.0924 83.7664 0.0201 1950
<mace,2.0/2.0/s−1> 85.6476 0.0900 82.5640 0.0179 2050
<mace,2.0/2.5/s−1> 85.0534 0.1155 81.2424 0.0264 2100
<mace,4.0/0.5/s−1> 89.4871 0.1501 90.6407 0.0069 3150
<mace,4.0/1.0/s−1> 89.0811 0.1800 89.0708 0.0661 2850
<mace,4.0/1.5/s−1> 88.7910 0.1817 88.7544 0.0309 2050
<mace,4.0/2.0/s−1> 88.4163 0.1521 88.8372 0.1058 3000
<mace,4.0/2.5/s−1> 88.0120 0.1515 86.4253 0.0323 2600
<mace,6.0/0.5/s−1> 90.1708 0.2230 91.9732 0.3303 2450
<mace,6.0/1.0/s−1> 89.8920 0.2431 90.3323 0.0073 2300
<mace,6.0/1.5/s−1> 89.6812 0.2751 90.0947 0.0599 2650
<mace,6.0/2.0/s−1> 88.5104 0.2998 89.8981 0.0140 2250
<mace,6.0/2.5/s−1> 88.4004 0.2610 88.3633 0.0393 3100
<mace,8.0/0.5/s−1> 91.7053 0.2977 91.8149 0.9612 2400
<mace,8.0/1.0/s−1> 91.5139 0.2817 91.6155 0.0111 2250
<mace,8.0/1.5/s−1> 90.4159 0.3613 90.8873 0.2177 2100
<mace,8.0/2.0/s−1> 89.2087 0.2962 90.1130 0.0078 3150
<mace,8.0/2.5/s−1> 88.4278 0.3589 89.2480 0.0675 3000
<mace,10.0/0.5/s−1> 92.8851 0.3070 93.4223 0.0740 3050
<mace,10.0/1.0/s−1> 92.6833 0.4442 92.7626 0.0378 2400
<mace,10.0/1.5/s−1> 91.4636 0.3537 92.5208 0.0202 2200
<mace,10.0/2.0/s−1> 90.3842 0.4906 91.0883 0.0329 2150
<mace,10.0/2.5/s−1> 89.2310 0.4377 90.0382 0.0535 2700
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System overhead analysis

It’s hardware that makes a machine fast. It’s soft-
ware that makes a fast machine slow.
—Craig Bruce—

The improvements obtained with our solution are achieved due to an increase
of the operations and calculations performed by the system. This additional
workload, or overhead, is concentrated in the server tiers of the system. New
operations are done in the web cache, the DBMS (Database Management
System) and a new module is deployed, the adaptive core. In this chapter, we
are going to study the workload generated by each of these software elements.

8.1 Introduction

This chapter is devoted to evaluate the overhead generated by our solution
over the system, in terms of CPU utilization. The evaluation has been done
over the same experiments than in the previous chapter. But, from the point
of view of the overhead analysis, the experiments with dynamic schemes are
more interesting. The static experiments only execute the classification pro-
cess at the beginning of the execution. The dynamic experiments execute the
classification algorithm every time that a change is detected in the character-
ization parameters of the content elements. Thus, it is more realistic to study
the overhead in dynamic environments. Experiments sets 3, 4 and 5 are the
dynamic ones. But we have studied only the two last sets because they are
focussed on the study of several user load levels.

The data for the utilization study have been gathered using top. Top is
a system monitoring tool which provides system summary information about
the computer processes in execution. It provides the units of time that each
process consumes of the CPU and the size of the memory assigned to each
process. We have been executing top during the experiment executions in
order to create file logs with usage information. We have gathered only in-
formation of the processes of the software involved in the deployment of the
CAS system tiers, i.e., the web server (apache2 service), the web cache (web-
cached daemon), the DBMS (mysqld daemon) and the adaptive core (the java
application).
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Traditional workload studies analyse the CPU, I/O and memory consump-
tion. In our case, all the processes had a fix size of memory, thus there were
not changes in the memory size during the experiment executions, neither be-
tween the executions with different approaches. I/O accesses of CAS system
are usually done over the tables of the databases. This type of load is bet-
ter studied by the CPU utilization of the DBMS process instead of using the
number of disk accesses. This is because DBMS usually has an important part
of the databases tables in memory in order to improve the performance and,
under these conditions, the accesses to the disk do not reflect the real workload
over the DBMS. Therefore, we have studied only the CPU utilization.

The process to calculate the CPU utilization values was firstly to calculate
the percentage of the total time of an experiment execution that a process
occupied the CPU. Finally, we calculated the mean value among all the repli-
cas of the same experiment. The standard deviation among the replicas of the
same experiment has been also calculated. The analysis of the usage results
is done from two points of view: on the one hand, it is done by considering
the utilization percentage of a process in relation with the total time of the
experiment execution, the global percentages; on the other hand, it is done
by considering the percentage of the time of a process in relation with the
sum of the times of the web cache, web server, DBMS and adaptive core, the
particular percentages. These particular percentages show the weight of each
process in the total usage time for the processes related to the CAS system.

This chapter is divided into two sections, one for each of both evaluated
experiment sets. The two first parts of each section are devoted to the anal-
ysis of the evolution of the utilization values for one of the approaches (split
scenario, adaptive core based on decision trees or MACE). The last parts of
the subsections are devoted to compare the solutions between them.

8.2 Overhead analysis of the fourth experiment set

Our first evaluation is done over the executions of the experiment set 4. This
experiment set is composed by experiments in which the split scenario and
the entire/∅ decision tree are used. Several experiments are created by the
variation of values of the update and request rates.

The hardware architecture is centralized, which means that the web appli-
cation, the web cache and the adaptive core are installed in the same computer.
Therefore, the maximum value for the sum of the CPU utilization values of
the processes is 100%.

The utilization percentage is given in two different ways. On the one hand,
the results are presented as global percentage. The values indicates the real
CPU consumption in terms of percentages, i.e., the utilization values indicate
the percentage of time that a given process has occupied the CPU in compari-
son with the total execution time of an experiment. The results corresponding
to the global percentages are shown in Tables 8.1 and 8.2. On the other hand,
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the results are presented as particular percentages. The percentages are cal-
culated in relation with the total time that the CPU has been occupied by
some of the processes used to deploy the CAS system (web server, web cache,
DBMS and adaptive core). Therefore, the sum of the particular percentages
of the four processes is 100%. The values of this second case are presented in
Tables 8.3 and 8.4.

The analysis of the utilization is going to be analysed in two different
phases. Firstly, we are going to analyse the workload when the system load
conditions change and, secondly, comparing the overhead among different ap-
proaches.

Table 8.1. Global utilization ratios (%) of the different application process for
entire/∅ in experiment subset 4A.

Experiment Web Cache Adaptive Apache DBMS Total
core

µ σ µ σ µ σ µ σ

<ent./∅,2.0/0.5/s−1> 0.990 0.110 0.161 0.020 0.007 0.003 0.422 0.019 1.581
<ent./∅,2.0/1.0/s−1> 0.944 0.093 0.281 0.020 0.012 0.005 0.638 0.009 1.876
<ent./∅,2.0/1.5/s−1> 1.012 0.107 0.379 0.023 0.032 0.021 0.864 0.011 2.289
<ent./∅,2.0/2.0/s−1> 1.046 0.085 0.485 0.029 0.017 0.003 1.073 0.012 2.622
<ent./∅,2.0/2.5/s−1> 1.021 0.038 0.663 0.091 0.013 0.003 1.256 0.020 2.954
<ent./∅,4.0/0.5/s−1> 1.120 0.044 0.200 0.041 0.032 0.018 0.628 0.050 1.981
<ent./∅,4.0/1.0/s−1> 1.093 0.056 0.328 0.041 0.043 0.018 0.865 0.029 2.331
<ent./∅,4.0/1.5/s−1> 1.325 0.087 0.411 0.061 0.042 0.021 1.053 0.035 2.833
<ent./∅,4.0/2.0/s−1> 1.249 0.120 0.425 0.025 0.042 0.014 1.194 0.027 2.912
<ent./∅,4.0/2.5/s−1> 1.145 0.134 0.608 0.063 0.063 0.021 1.465 0.032 3.284
<ent./∅,6.0/0.5/s−1> 1.387 0.019 0.313 0.063 0.124 0.054 0.831 0.015 2.655
<ent./∅,6.0/1.0/s−1> 1.614 0.098 0.309 0.072 0.078 0.064 1.014 0.041 3.017
<ent./∅,6.0/1.5/s−1> 1.651 0.084 0.502 0.082 0.312 0.259 1.310 0.077 3.776
<ent./∅,6.0/2.0/s−1> 1.770 0.040 0.648 0.091 0.152 0.075 1.580 0.060 4.151
<ent./∅,6.0/2.5/s−1> 1.644 0.080 0.527 0.025 0.072 0.021 1.593 0.041 3.837
<ent./∅,8.0/0.5/s−1> 1.848 0.190 0.436 0.072 0.170 0.009 1.100 0.000 3.556
<ent./∅,8.0/1.0/s−1> 1.680 0.286 0.559 0.057 0.325 0.023 1.485 0.069 4.051
<ent./∅,8.0/1.5/s−1> 1.927 0.142 0.515 0.114 0.144 0.021 1.460 0.041 4.047
<ent./∅,8.0/2.0/s−1> 2.078 0.011 0.561 0.104 0.228 0.075 1.690 0.111 4.557
<ent./∅,8.0/2.5/s−1> 1.700 0.000 0.486 0.000 0.067 0.000 1.648 0.000 3.903
<ent./∅,10.0/0.5/s−1> 2.280 0.132 0.397 0.125 0.175 0.052 1.280 0.072 4.133
<ent./∅,10.0/1.0/s−1> 2.478 0.116 0.256 0.047 0.288 0.030 1.314 0.027 4.337
<ent./∅,10.0/1.5/s−1> 2.485 0.005 0.489 0.007 0.289 0.068 1.714 0.005 4.978
<ent./∅,10.0/2.0/s−1> 2.498 0.064 0.711 0.072 0.141 0.060 1.946 0.003 5.297
<ent./∅,10.0/2.5/s−1> 2.659 0.000 1.069 0.000 0.159 0.000 2.495 0.000 6.384
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Table 8.2. Global utilization ratios (%) of the different application processes for
the split scenario in experiment subset 4A.

Experiment Web Cache Adaptive Apache DBMS Total
core

µ σ µ σ µ σ µ σ

<split,2.0/0.5/s−1> 0.965 0.007 0 0 0.026 0.016 0.318 0.013 1.308
<split,2.0/1.0/s−1> 0.983 0.162 0 0 0.019 0.021 0.424 0.024 1.425
<split,2.0/1.5/s−1> 1.061 0.048 0 0 0.015 0.013 0.571 0.020 1.647
<split,2.0/2.0/s−1> 1.022 0.119 0 0 0.013 0.005 0.705 0.018 1.740
<split,2.0/2.5/s−1> 1.018 0.051 0 0 0.223 0.298 0.827 0.011 2.067
<split,4.0/0.5/s−1> 1.398 0.096 0 0 0.044 0.008 0.462 0.037 1.904
<split,4.0/1.0/s−1> 1.242 0.051 0 0 0.050 0.011 0.632 0.022 1.924
<split,4.0/1.5/s−1> 1.251 0.142 0 0 0.065 0.028 0.700 0.023 2.016
<split,4.0/2.0/s−1> 1.268 0.000 0 0 0.054 0.025 0.878 0.022 2.199
<split,4.0/2.5/s−1> 1.347 0.083 0 0 0.042 0.017 0.964 0.053 2.353
<split,6.0/0.5/s−1> 1.751 0.040 0 0 0.091 0.007 0.567 0.026 2.409
<split,6.0/1.0/s−1> 1.627 0.124 0 0 0.133 0.063 0.717 0.038 2.477
<split,6.0/1.5/s−1> 1.663 0.102 0 0 0.396 0.371 0.935 0.052 2.994
<split,6.0/2.0/s−1> 1.638 0.111 0 0 0.184 0.059 1.091 0.048 2.913
<split,6.0/2.5/s−1> 1.594 0.150 0 0 0.184 0.041 1.102 0.054 2.880
<split,8.0/0.5/s−1> 2.051 0.148 0 0 0.367 0.048 0.912 0.094 3.330
<split,8.0/1.0/s−1> 1.844 0.173 0 0 0.162 0.011 1.042 0.046 3.049
<split,8.0/1.5/s−1> 1.904 0.024 0 0 0.123 0.056 1.131 0.037 3.157
<split,8.0/2.0/s−1> 2.039 0.132 0 0 0.583 0.333 1.312 0.014 3.934
<split,8.0/2.5/s−1> 2.043 0.138 0 0 0.179 0.005 1.408 0.016 3.630
<split,10.0/0.5/s−1> 2.876 0.359 0 0 0.239 0.021 1.278 0.139 4.393
<split,10.0/1.0/s−1> 2.389 0.120 0 0 0.280 0.171 1.162 0.027 3.831
<split,10.0/1.5/s−1> 2.399 0.115 0 0 0.339 0.163 1.314 0.074 4.052
<split,10.0/2.0/s−1> 2.406 0.106 0 0 0.177 0.082 1.416 0.007 3.999
<split,10.0/2.5/s−1> 2.404 0.195 0 0 0.369 0.135 1.551 0.158 4.324

8.2.1 Analysis of the workload generated by the adaptive core
based on the use of decision trees

The results are firstly analysed using the utilization percentage in relation
with all the processes of the system and (global utilizations), secondly, in
relation with the utilization generated by the application of the CAS system
(particular utilizations). The results for the global utilization are shown in
Figure 8.1(a) and, for the particular utilizations, in Figure 8.1(b).

The first conclusion of observing the plots is that the web cache is the ap-
plication which consumes more CPU resources; the second one is the database,
followed by the adaptive core, and finally, the web server.

The usage generated by the web server is almost negligible although small
increases are detected. These small increases are larger as the rates get higher.
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Table 8.3. Particular utilization ratios (%) of the different application processes
for entire/∅ in experiment subset 4A.

Experiment Web Cache Adaptive Apache DBMS
core

<entire/∅,2.0/0.5/s−1> 62.617 10.222 0.443 26.718
<entire/∅,2.0/1.0/s−1> 50.314 14.983 0.680 34.023
<entire/∅,2.0/1.5/s−1> 44.245 16.584 1.407 37.764
<entire/∅,2.0/2.0/s−1> 39.898 18.517 0.654 40.931
<entire/∅,2.0/2.5/s−1> 34.582 22.438 0.448 42.532
<entire/∅,4.0/0.5/s−1> 56.515 10.128 1.629 31.727
<entire/∅,4.0/1.0/s−1> 46.917 14.081 1.878 37.124
<entire/∅,4.0/1.5/s−1> 46.796 14.536 1.488 37.180
<entire/∅,4.0/2.0/s−1> 42.898 14.625 1.456 41.020
<entire/∅,4.0/2.5/s−1> 34.881 18.543 1.944 44.631
<entire/∅,6.0/0.5/s−1> 52.225 11.810 4.675 31.290
<entire/∅,6.0/1.0/s−1> 53.503 10.267 2.615 33.616
<entire/∅,6.0/1.5/s−1> 43.740 13.302 8.262 34.696
<entire/∅,6.0/2.0/s−1> 42.650 15.628 3.665 38.057
<entire/∅,6.0/2.5/s−1> 42.856 13.749 1.883 41.512
<entire/∅,8.0/0.5/s−1> 51.979 12.273 4.802 30.945
<entire/∅,8.0/1.0/s−1> 41.484 13.801 8.044 36.670
<entire/∅,8.0/1.5/s−1> 47.615 12.740 3.560 36.086
<entire/∅,8.0/2.0/s−1> 45.599 12.311 5.004 37.086
<entire/∅,8.0/2.5/s−1> 43.559 12.472 1.731 42.238
<entire/∅,10.0/0.5/s−1> 55.177 9.6220 4.233 30.967
<entire/∅,10.0/1.0/s−1> 57.135 5.9180 6.651 30.297
<entire/∅,10.0/1.5/s−1> 49.923 9.8330 5.808 34.435
<entire/∅,10.0/2.0/s−1> 47.162 13.424 2.676 36.737
<entire/∅,10.0/2.5/s−1> 41.655 16.755 2.502 39.088

These web server utilization increases are more significant when the request
rate increases. In fact, not clear trend is detected when the updates increase.

The trend observed in the web server is also presented in the web cache.
The usage increases as the request rate increases. The update requests have
not an important influence on the web cache CPU utilization. This behaviour
is quite logical because these two tiers increase the amount of processing time
as the number of requests that arrive to the system is bigger.

On the contrary, the adaptive core shows quite uniform CPU utilization
values. This is because it does not depend on the number of requests (update
or read ones) that arrive to the system. The resource consumption of the
adaptive core depends more in the changes in the characterization parameters.
And these changes are not related to the number of update or read request
over the system.

The DBMS (Database Management System) utilization is not only gen-
erated by the database accesses that retrieve information about the content
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Table 8.4. Particular Utilization ratios (%) of the different application processes
for the split scenario in experiment subset 4A.

Experiment Web Cache Adaptive Apache DBMS
core

<entire/∅,2.0/0.5/s−1> 73.731 0 1.996 24.273
<entire/∅,2.0/1.0/s−1> 68.966 0 1.302 29.732
<entire/∅,2.0/1.5/s−1> 64.408 0 0.922 34.670
<entire/∅,2.0/2.0/s−1> 58.744 0 0.740 40.516
<entire/∅,2.0/2.5/s−1> 49.229 0 10.775 39.996
<entire/∅,4.0/0.5/s−1> 73.449 0 2.290 24.261
<entire/∅,4.0/1.0/s−1> 64.577 0 2.590 32.833
<entire/∅,4.0/1.5/s−1> 62.055 0 3.228 34.717
<entire/∅,4.0/2.0/s−1> 57.665 0 2.435 39.900
<entire/∅,4.0/2.5/s−1> 57.227 0 1.791 40.982
<entire/∅,6.0/0.5/s−1> 72.665 0 3.784 23.551
<entire/∅,6.0/1.0/s−1> 65.703 0 5.354 28.943
<entire/∅,6.0/1.5/s−1> 55.562 0 13.215 31.223
<entire/∅,6.0/2.0/s−1> 56.233 0 6.308 37.459
<entire/∅,6.0/2.5/s−1> 55.355 0 6.384 38.260
<entire/∅,8.0/0.5/s−1> 61.588 0 11.022 27.390
<entire/∅,8.0/1.0/s−1> 60.492 0 5.314 34.194
<entire/∅,8.0/1.5/s−1> 60.303 0 3.886 35.811
<entire/∅,8.0/2.0/s−1> 51.826 0 14.817 33.357
<entire/∅,8.0/2.5/s−1> 56.270 0 4.940 38.790
<entire/∅,10.0/0.5/s−1> 65.457 0 5.450 29.093
<entire/∅,10.0/1.0/s−1> 62.369 0 7.300 30.331
<entire/∅,10.0/1.5/s−1> 59.201 0 8.371 32.428
<entire/∅,10.0/2.0/s−1> 60.151 0 4.435 35.414
<entire/∅,10.0/2.5/s−1> 55.601 0 8.534 35.865

elements and web pages, but also by the database accesses to update and to
retrieve the fragment designs. Every time a classification is done, the values of
the characterization parameters are retrieved, and the states of the aggrega-
tion relations are updated. The system monitors are not able to differentiate
among both types of workload generated over the DBMS. The increase in the
DBMS utilization is due to the higher number of requests that arrives to the
system, so that the overload generated by the adaptive core is quite constant.

The analysis of the particular utilizations also gives us some interesting
information (Figure 8.1(b)). We observe that the values of the utilization for
the adaptive core and web server remain quite uniform. But the increase of
the update rates results in that the relative workload generated by the DBMS
gets equal to the web cache. Therefore, the increase of the utilization of the
DBMS when the update rate increases is more significant for the DBMS than
for the web cache. On the contrary, when the increase occurs in the request
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rate, the DBMS and web cache increases are similar. Thus, the increases of
both process consumptions have the same weight.

8.2.2 Analysis of the workload generated by split scenario

The behaviour of the split scenario is quite similar to our approach, but with
an important difference (Figure 8.2). In the case of the split scenario the
process of the adaptive core is not present because there is not adaptation of
the fragment designs.

In general terms, all the processes increase their CPU consumption as the
request rate is higher. Higher update rates produce that the three processes
have different behaviours. First, the web cache keeps its CPU utilization in
similar values. Second, the DBMS increases the utilization as the update ratio
gets high. And, finally, the web server does not show a relation among the
user load level and its resource consumption.

If we analysed the results corresponding to the CPU utilization particular
percentages in Figure 8.2(b) —the percentage utilization of a process in rela-
tion with the total CPU consumption of only the processes corresponding to
software used to deploy the CAS system—, the web server also experiments a
strange behaviour not explained by the user load level. The database increases
its weight in the total usage as the request rate and update rate are increased.

8.2.3 Comparison between entire/∅ and the split scenario

In Figure 8.3, we observe the total CPU utilization values for the split scenario
and the use of entire/∅ decision tree. The CPU consumption is higher in the
case of using the adaptive core. But the difference is very small. Thus, we
consider that the increase of the overhead of our solution is counteracted by
the improvement obtained in the user-perceived latency.

In general terms, we observe that the difference between both solutions
increases as the update rate is increasing, but not with increases of the re-
quest rate. If we remind the results of the latency improvements, we conclude
that our solution behaves better as the update rate is decreased, because the
improvement is greater and the overhead is lower.

8.3 Overhead analysis of the fifth experiment set

The second evaluation of the system overhead generated by our solution is
done by using the experiment set 5. In this experiment, the executions using
our adaptive core implementation are compared with the case in which MACE
is used. As in the previous experiment, the executions are changed in terms
of update and request rates. The hardware architecture is also centralized. All
the processes are executed in the same computer.
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Fig. 8.1. CPU utilization percentage for entire/∅ in experiment set 4.



8.3 Overhead analysis of the fifth experiment set 147

 0.5
 1

 1.5
 2

 2.5 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

CPU utilization
(%)

Web cache
Web server

DBMS

Update rate
(req./s)

Request rate
(req./s)

CPU utilization
(%)

(a) Percentage considering all the processes of the system

 0.5
 1

 1.5
 2

 2.5 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 10
 20
 30
 40
 50
 60
 70
 80

CPU utilization
(%)

Web cache
Web server

DBMS

Update rate
(req./s)

Request rate
(req./s)

CPU utilization
(%)

(b) Percentage considering only the processes in relation with the CAS system

Fig. 8.2. CPU utilization percentage for the split scenario in experiment set 4.



148 8 System overhead analysis

 0.5
 1

 1.5
 2

 2.5 2
 3

 4
 5

 6
 7

 8
 9

 10

 1

 2

 3

 4

 5

 6

 7

CPU utilization
(%)

Split
Entire/emptyset

Update rate
(req./s)

Request rate
(req./s)

CPU utilization
(%)

Fig. 8.3. Comparison of the overhead of entire/∅ with the split scenario in experi-
ment set 4.

In this analysis, the utilization percentage is also presented and analysed as
global and particular percentages, as in the previous experiment. The values
of the global percentages are shown in Tables 8.5 and 8.6, and the results of
the particular values in Tables 8.7 and 8.8.

The analysis of the utilization is also going to be done in two different
phases. Firstly, we are going to analyse the workload when the system load
conditions changes and, secondly, comparing the overhead among different
approaches.

8.3.1 Analysis of the workload generated by the adaptive core
based on the use of decision trees

Firstly, we compare the results of this experiment with the previous workload
analysis of our proposed implementation of the adaptive core. If we compare
the usage plots for the global percentages of the experiment set 5 (Figure 8.4)
with those of the previous experiment (Figure 8.1), we observe that almost
all the processes have a similar behaviour. The trends of the data series cor-
responding to the web cache, adaptive core and DBMS are quite similar,
although, in this last experiment, the evolution of the usage is less ordered.

The problem appears with the data series of the web server CPU utiliza-
tion. In experiment set 5, the web server increases its usage considerably as
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Table 8.5. Global utilization ratios (%) of the different application processes for
entire/∅ in experiment subset 5A.

Experiment Web Cache Adaptive Apache DBMS Total
core

µ σ µ σ µ σ µ σ

<ent./∅,2.0/0.5/s−1> 0.761 0.005 0.152 0.006 0.097 0.009 0.329 0.000 1.341
<ent./∅,2.0/1.0/s−1> 0.909 0.002 0.225 0.008 0.164 0.049 0.543 0.000 2.184
<ent./∅,2.0/1.5/s−1> 1.064 0.026 0.330 0.001 0.018 0.021 0.772 0.003 2.184
<ent./∅,2.0/2.0/s−1> 1.220 0.080 0.412 0.006 0.091 0.021 0.932 0.000 2.657
<ent./∅,2.0/2.5/s−1> 1.256 0.035 0.500 0.007 0.063 0.012 1.080 0.001 2.901
<ent./∅,4.0/0.5/s−1> 0.837 0.014 0.204 0.006 0.070 0.015 0.404 0.002 1.517
<ent./∅,4.0/1.0/s−1> 0.926 0.054 0.271 0.014 0.108 0.061 0.638 0.005 1.945
<ent./∅,4.0/1.5/s−1> 1.039 0.000 0.002 0.000 0.001 0.063 0.878 0.001 1.922
<ent./∅,4.0/2.0/s−1> 1.315 0.064 0.422 0.005 0.537 0.111 1.055 0.001 3.330
<ent./∅,4.0/2.5/s−1> 1.481 0.122 0.494 0.019 0.340 0.345 1.250 0.000 3.566
<ent./∅,6.0/0.5/s−1> 0.923 0.032 0.154 0.006 0.085 0.017 0.404 0.006 1.567
<ent./∅,6.0/1.0/s−1> 0.834 0.016 0.291 0.015 0.432 0.347 0.648 0.009 2.206
<ent./∅,6.0/1.5/s−1> 1.196 0.042 0.397 0.041 0.848 0.439 0.901 0.002 3.344
<ent./∅,6.0/2.0/s−1> 1.282 0.045 0.506 0.049 0.545 0.208 1.132 0.003 3.466
<ent./∅,6.0/2.5/s−1> 1.340 0.017 0.525 0.014 0.159 0.539 1.214 0.009 3.239
<ent./∅,8.0/0.5/s−1> 0.926 0.085 0.266 0.018 0.461 0.112 0.518 0.004 2.172
<ent./∅,8.0/1.0/s−1> 0.903 0.041 0.368 0.024 0.568 0.355 0.807 0.014 2.648
<ent./∅,8.0/1.5/s−1> 0.987 0.030 0.392 0.043 1.129 0.565 0.905 0.005 3.415
<ent./∅,8.0/2.0/s−1> 1.204 0.033 0.514 0.047 0.916 0.847 1.208 0.006 3.842
<ent./∅,8.0/2.5/s−1> 1.314 0.046 0.552 0.007 0.260 0.181 1.295 0.009 3.423
<ent./∅,10.0/0.5/s−1> 1.121 0.146 0.322 0.083 0.862 0.435 0.607 0.019 2.914
<ent./∅,10.0/1.0/s−1> 1.067 0.203 0.293 0.019 0.911 0.552 0.708 0.009 2.980
<ent./∅,10.0/1.5/s−1> 0.986 0.028 0.457 0.006 1.205 0.679 1.050 0.006 3.700
<ent./∅,10.0/2.0/s−1> 1.434 0.191 0.532 0.037 1.506 0.683 1.141 0.013 4.615
<ent./∅,10.0/2.5/s−1> 1.482 0.169 0.676 0.007 1.647 0.683 1.501 0.003 5.307

the request rate gets higher. This behaviour is not present in experiment set 4.
The web server was the process with less CPU consumption in experiment 4.
It also occurs in this experiment, but only in the cases with the lowest request
rates. For the highest request rates, the web server involves to values of the
web cache process (the process with the highest resource consumptions). Fur-
thermore, in the previous experiment, the CPU utilization of the web server
was very constant, but this does not occur in this case.

When we will analyse the CPU consumption of MACE, we will observe
that these high increase of the web server process is also present. Thus, we
can explain this due to the user behaviour model or to the web page model
used in this experiment, because both features are the only differences with
the experiment set 4.

In the case of the particular utilization percentage, calculating the utiliza-
tion percentage over the total time of the four processes instead of over the
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Table 8.6. Global utilization ratios (%) of the different application processes for
MACE in experiment subset 5A.

Experiment Web Cache Adaptive Apache DBMS Total
core

µ σ µ σ µ σ µ σ

<mace,2.0/0.5/s−1> 0.869 0.110 0.132 0.008 0.037 0.040 0.183 0.001 1.222
<mace,2.0/1.0/s−1> 0.875 0.088 0.175 0.005 0.025 0.016 0.279 0.000 1.355
<mace,2.0/1.5/s−1> 0.984 0.045 0.267 0.006 0.007 0.055 0.411 0.001 1.671
<mace,2.0/2.0/s−1> 0.989 0.040 0.328 0.008 0.020 0.042 0.503 0.001 1.841
<mace,2.0/2.5/s−1> 0.981 0.073 0.390 0.016 0.012 0.036 0.599 0.002 1.983
<mace,4.0/0.5/s−1> 0.904 0.018 0.171 0.013 0.050 0.050 0.253 0.001 1.379
<mace,4.0/1.0/s−1> 0.999 0.078 0.212 0.010 0.021 0.091 0.356 0.001 1.589
<mace,4.0/1.5/s−1> 0.976 0.132 0.269 0.010 0.025 0.062 0.450 0.001 1.721
<mace,4.0/2.0/s−1> 1.239 0.135 0.337 0.023 0.156 0.063 0.548 0.001 2.282
<mace,4.0/2.5/s−1> 1.189 0.103 0.394 0.012 0.233 0.145 0.648 0.003 2.465
<mace,6.0/0.5/s−1> 1.148 0.144 0.172 0.004 0.447 0.368 0.268 0.003 2.036
<mace,6.0/1.0/s−1> 1.136 0.130 0.229 0.028 0.235 0.061 0.401 0.001 2.002
<mace,6.0/1.5/s−1> 1.181 0.121 0.329 0.026 0.288 0.092 0.537 0.003 2.335
<mace,6.0/2.0/s−1> 1.307 0.121 0.412 0.003 0.153 0.127 0.659 0.004 2.532
<mace,6.0/2.5/s−1> 1.228 0.227 0.400 0.016 0.101 0.284 0.692 0.002 2.423
<mace,8.0/0.5/s−1> 1.095 0.146 0.197 0.013 0.616 0.329 0.353 0.009 2.263
<mace,8.0/1.0/s−1> 1.335 0.154 0.309 0.028 0.552 0.180 0.514 0.000 2.711
<mace,8.0/1.5/s−1> 1.280 0.151 0.302 0.019 0.208 0.189 0.552 0.006 2.344
<mace,8.0/2.0/s−1> 1.233 0.076 0.443 0.015 0.253 0.328 0.722 0.007 2.653
<mace,8.0/2.5/s−1> 1.411 0.257 0.431 0.020 0.378 0.541 0.750 0.006 2.973
<mace,10.0/0.5/s−1> 0.983 0.138 0.281 0.055 0.993 0.695 0.426 0.011 2.685
<mace,10.0/1.0/s−1> 1.218 0.134 0.240 0.034 0.332 0.140 0.461 0.012 2.253
<mace,10.0/1.5/s−1> 1.204 0.289 0.358 0.023 0.267 0.035 0.659 0.011 2.490
<mace,10.0/2.0/s−1> 1.223 0.084 0.399 0.013 0.486 0.137 0.698 0.012 2.808
<mace,10.0/2.5/s−1> 1.502 0.151 0.537 0.044 0.516 0.197 0.900 0.006 3.457

total time of the experiment, the trend for the web cache, the adaptive core
and the DBMS is also the same than in experiment 4, but with less smooth
values again. As it is expected because of the analysis of the global percent-
age, the web server increases its weight, in the total percentages of the four
processes, as the request rates are increased.

8.3.2 Analysis of the workload generated by MACE

The order of the values of the CPU consumption of the four processes is the
same in MACE than in the other approaches. The trend of the results of
MACE (Figure 8.5) is more similar to the case of our adaptive core in experi-
ment set 5 than to the cases of experiment set 4. The web server process also
increases its CPU consumption as the request rate gets higher, the opposite
to the experiment set 4, in which the web server CPU consumption remained
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Table 8.7. Particular utilization ratios (%) of the different application processes
for entire/∅ in experiment subset 5A.

Experiment Web Cache Adaptive Apache DBMS
core

<entire/∅,2.0/0.5/s−1> 56.798 11.336 7.282 24.585
<entire/∅,2.0/1.0/s−1> 49.351 12.250 8.940 29.458
<entire/∅,2.0/1.5/s−1> 48.724 15.107 0.833 35.336
<entire/∅,2.0/2.0/s−1> 45.925 15.521 3.451 35.103
<entire/∅,2.0/2.5/s−1> 43.313 17.247 2.199 37.242
<entire/∅,4.0/0.5/s−1> 55.185 13.498 4.643 26.674
<entire/∅,4.0/1.0/s−1> 47.608 13.976 5.574 32.841
<entire/∅,4.0/1.5/s−1> 54.089 0.113 0.084 45.714
<entire/∅,4.0/2.0/s−1> 39.497 12.672 16.147 31.684
<entire/∅,4.0/2.5/s−1> 41.535 13.873 9.543 35.049
<entire/∅,6.0/0.5/s−1> 58.895 9.842 5.434 25.829
<entire/∅,6.0/1.0/s−1> 37.812 13.195 19.590 29.404
<entire/∅,6.0/1.5/s−1> 35.771 11.895 25.368 26.965
<entire/∅,6.0/2.0/s−1> 36.980 14.608 15.742 32.670
<entire/∅,6.0/2.5/s−1> 41.376 16.212 4.913 37.499
<entire/∅,8.0/0.5/s−1> 42.634 12.263 21.232 23.871
<entire/∅,8.0/1.0/s−1> 34.121 13.929 21.463 30.487
<entire/∅,8.0/1.5/s−1> 28.912 11.498 33.086 26.504
<entire/∅,8.0/2.0/s−1> 31.333 13.387 23.847 31.434
<entire/∅,8.0/2.5/s−1> 38.408 16.140 7.621 37.831
<entire/∅,10.0/0.5/s−1> 38.492 11.055 29.605 20.847
<entire/∅,10.0/1.0/s−1> 35.803 9.836 30.590 23.770
<entire/∅,10.0/1.5/s−1> 26.662 12.359 32.584 28.396
<entire/∅,10.0/2.0/s−1> 31.081 11.528 32.649 24.741
<entire/∅,10.0/2.5/s−1> 27.925 12.740 31.044 28.291

constant. The different behaviour of this process among the scenarios of ex-
periment set 4 and 5 could be explained because of the user behaviour model
or the web page model. In any case, the increase of the usage of the web server
is smaller in MACE than in the case of using our adaptive core.

8.3.3 Comparison between the adaptive core based on decision
trees and MACE

The main issue of the analysis of this experiment set is the comparison be-
tween the usages generated by each approach. This comparison has been done
comparing the total consumption of the four processes and the consumption of
the adaptive core. The extension of the CAS system with a module to adapt
the fragment design using a classification algorithm does not only generate
the overhead corresponding to the execution of the classification process (the
adaptive core process), but also because the changes in the other tiers of the
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Fig. 8.5. CPU utilization percentage for MACE in experiment set 5.
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Table 8.8. Particular utilization ratios (%) of the different application processes
for MACE in experiment subset 5A.

Experiment Web Cache Adaptive Apache DBMS
core

<mace,2.0/0.5/s−1> 71.079 10.800 3.081 15.041
<mace,2.0/1.0/s−1> 64.536 12.940 1.877 20.647
<mace,2.0/1.5/s−1> 58.894 16.011 0.477 24.619
<mace,2.0/2.0/s−1> 53.729 17.818 1.086 27.367
<mace,2.0/2.5/s−1> 49.502 19.677 0.621 30.200
<mace,4.0/0.5/s−1> 65.584 12.428 3.639 18.350
<mace,4.0/1.0/s−1> 62.883 13.361 1.347 22.409
<mace,4.0/1.5/s−1> 56.699 15.654 1.471 26.176
<mace,4.0/2.0/s−1> 54.302 14.808 6.846 24.044
<mace,4.0/2.5/s−1> 48.230 16.005 9.484 26.282
<mace,6.0/0.5/s−1> 56.387 8.456 21.995 13.162
<mace,6.0/1.0/s−1> 56.759 11.445 11.756 20.041
<mace,6.0/1.5/s−1> 50.563 14.105 12.333 23.000
<mace,6.0/2.0/s−1> 51.619 16.292 6.057 26.032
<mace,6.0/2.5/s−1> 50.716 16.529 4.180 28.575
<mace,8.0/0.5/s−1> 48.403 8.736 27.220 15.632
<mace,8.0/1.0/s−1> 49.258 11.428 20.350 18.958
<mace,8.0/1.5/s−1> 54.622 12.919 8.910 23.548
<mace,8.0/2.0/s−1> 46.501 16.702 9.556 27.241
<mace,8.0/2.5/s−1> 47.475 14.526 12.745 25.253
<mace,10.0/0.5/s−1> 36.638 10.474 37.001 15.887
<mace,10.0/1.0/s−1> 54.064 10.660 14.774 20.502
<mace,10.0/1.5/s−1> 48.381 14.393 10.742 26.484
<mace,10.0/2.0/s−1> 43.583 14.218 17.311 24.888
<mace,10.0/2.5/s−1> 43.449 15.544 14.947 26.059

CAS architecture, for example, the DBMS due to the updates of the fragment
designs stored in its database. Thus, we have considered it is interesting to
compare the adaptive core in an isolated way, and the total CPU utilization
of the processes of the CAS system.

Figure 8.6 shows the total utilization of the four CAS processes for our
approach and for MACE. We observe that the utilization values are practically
equals for the experiments with update rate equal to 0.5, independently of
the request rate. As the update rate is increased, the difference between the
utilization of both solutions is exacerbated. On the contrary, the differences
between the utilization values as the increases of request rate remain constant.
Once again, we observe that the increase of the update rates penalizes the
results of our solution.

If we focus in the utilization values of the four processes (Tables 8.5
and 8.6), we can see that the differences between our solution and MACE
are mainly concentrated in the process of the web server and the DBMS. This
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Fig. 8.6. Comparison of the overhead of entire/∅ scenario with MACE.

could be explained because the MACE algorithm only creates a cache point
for each web page. On the contrary, our solution does not have a limited num-
ber of possible cacheable points and the classifications are done for each of the
aggregation relationships. This is translated in a smaller number of parameter
requests (DBMS read requests) and state updates (DBMS update requests)
in the case of using MACE.

Finally, we are going to compare both solutions in terms of the utilization
of the adaptive core. There is not a pattern in relation with the utilization val-
ues of both approaches, in the case of global percentage (Figure 8.7(a)). Some
of the experiments show the lowest utilization in the case of our adaptive core
approach and, in other ones, in the case of MACE. We cannot conclude which
of the adaptive cores of both experiments generates less CPU consumption.

If we study the plot of the particular percentage values (Figure 8.7(b)), we
observe that, in general terms, the core of MACE has a greater weight over
the total workload of the CAS processes than in the case of our adaptive core.
This can be caused because the adaptive core utilization is higher, or because
the utilization of the other three processes is lower. As we have stated in the
previous paragraph, there is not a clear difference between the core utilization
of both solutions, so MACE generates smaller utilizations in the web cache,
web server and DBMS.
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8.4 Summary

In this chapter, we have analysed the workload generated by three cache
scenarios of CAS system: split, the use of the entire/∅ decision tree and MACE.
Several experiments for each scenario have been studied. The variations among
the experiments are based on the user load level by the changes in the update
and request rates.

After the analysis, we have concluded that the web cache is the software
element that generates the most important part of the workload for the three
scenarios. But in the case of our solution, the weight of the DBMS increases
considerably as the update rate gets higher. We consider that one important
improvement for our solution is to study the way of reducing the utilization
generated by the DBMS.

The adaptive core has been deployed in event-driven mode in all the ex-
periments (Section 5.2). It means a classification process and an update of
the fragment designs are done every time that a characterization parameter
of a content element changes. Probably, a periodical mode would reduce the
workload of our solution. It would also reduce the improvement in terms of
user-perceived latencies due to the time between a content change and the
fragment design adaptation. Interesting future works emerge from these two
concepts: the reduction of the number of accesses to the database and the
behaviour of a periodical mode deployment of the CAS system.

In any case, the overhead of the CPU utilization, experimented in the case
of using decision trees, is bigger than the workload generated by the traditional
split scenario, but this difference is quite small. In comparison with MACE,
our solution also generates more CPU consumption in total terms. On the
contrary, the workload generated by only the adaptive core of our solution is
smaller than in the case of MACE. This is because our approach generates a
larger increase in the rest of processes (mainly in the web server and DBMS).
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Conclusions and open problems

¿Qué es la vida? Un freneśı.
¿Qué es la vida? Una ilusión,
una sombra, una ficción,
y el mayor bien es pequeño;
que toda la vida es sueño,
y los sueños, sueños son.
—Calderón de la Barca—

This final chapter summarizes the statements, concepts, contributions, exper-
iments and results of this thesis. It lists main contributions we have identified
and opens a discussion about future work and further research lines.

9.1 Thesis summary

This thesis demonstrated that the user-perceived latency of a content ag-
gregation systems can be reduced by adapting the fragment elements that
are managed and stored independently in the web cache. Chapter 2 included
the introduction to the general architecture for content aggregation web ap-
plications and the explanation to the performance limitations that these new
applications generate in the web caches. The chapter also included a survey of
the fragment-based web caching techniques and another one of the use of data
mining in web performance engineering. In Chapter 3, we proposed a formal
definition of a model for content aggregated web pages. This model is based
on a DAG and it represents the content fragments by indicating the assembly
point (web server or web cache) of each pair of aggregated content elements.
We also proposed to reduce the user-perceived latency by adapting the con-
tent fragments as the characteristics of the contents change. We studied the
relationship among a set of content element characterization parameters and
the assembly point in which the shortest latency values are observed. These
characterization parameters were selected as inputs of the algorithm which
classifies the assembly points (states) of each aggregation relationship. Chap-
ter 4 included the details of the core of the proposed solution. We explained
the inputs, outputs and process to be done by the adaptive core of the system.
The adjective of adaptive is used because the core is in charge of deciding the
changes of the content fragments, i.e., the adaptation of the fragment designs
to improve the latency of the system. Several implementations of the core
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were considered, but finally rejected, as the use of ontologies or genetic al-
gorithms. The second part of the chapter was devoted to explain the details
of the solution selected to implement the core of the system, data mining
and decision trees. The details of the phases of a knowledge discovery process
based on data mining, and the details for our particular case, were explained
in the chapter. The first part of Chapter 5 included the general definition of a
framework to improve the user-perceived latency in content aggregation sys-
tem using an adaptive core, COFRADIAS framework. The implementation of
the adaptive core was addressed as a classification algorithm implemented with
decision trees. The knowledge represented by the decision trees was mined in
an off-line training phase using a data set obtained from the emulation of
synthetic web content page models. The second part of the chapter was de-
voted to the implementation details of an example of the general framework.
We adapted a commercial and wide-used web application, Drupal, to include
the management of content aggregations and to include the adaptive core of
COFRADIAS. Chapter 6 detailed the design of the experiments to evaluate
and to validate our approach. The experiments were designed by defining a set
of features. They were executed in different environment conditions in order
to evaluate the influences of these features on the benefits obtained by our
solution. Five different experiment sets, with a total number of 10 experiment
subsets were defined. The details of the test-bed, in which the experiments
were executed, were also explained in that chapter. Chapters 7 and 8 were
devoted to analyse the results of the experiments. Finally, 158 experiment
executions, with their correspondent replicas, were done. Our approach was
evaluated in terms of user-perceived latency reduction, web cache hit ratios
and produced overhead. Our approach was also compared with other tradi-
tional solutions to implement web caches in content aggregation systems and
with approaches of other researches (MACE framework). Our solution showed
smaller latencies than the other approaches in almost all the experiment con-
figurations. On the contrary, the cache hit ratio was worse than in the other
solutions. But the benefits of reducing the assembling times counteracted the
losses in the hit ratios. Finally, we concluded that the overhead increase of
our solution, in front of other approaches, was small enough to consider our
framework as a suitable solution for the problem of web caching in content
aggregation systems and to reduce the user-perceived latencies.

9.2 Contributions

We have identified the next contributions:

• Definition of a methodology to deal with the problem of web caching in
content aggregation systems. In order to solve the initial problem of our re-
search, we have proposed and followed a methodology divided into phases.
This methodology could be used again to address similar problems in con-
tent aggregation systems or similar systems.



9.2 Contributions 163

• Proposal of the adaptation of the content fragments managed by the web
cache to solve the cache performance degradation problem in content ag-
gregation systems. This dissertation proposes a framework to counteract
the limitations of cache performance in environments with high update
rates and web pages with a high level of user customization. The frame-
work bases the contributions in adapting dynamically the fragment designs
using knowledge extracted from synthetic data. These fragment designs
define the assembly point of the content elements.
• Definition of a formal model for content aggregation structure, content

element characterization parameters, and content fragment designs. Con-
tent aggregation pages can be modelled by the use of Directed Acyclic
Graphs (DAG). We have based our model definition on an existing one,
ODG (Object Dependency Graph), but we have extended it (ODGex, ex-
tended Object Dependency Graph) to allow the representation of content
element characterization parameters —by the use of vertex attributes cor-
responding to the inputs of our adaptive core— and of content fragment
designs —by the use of edge labels corresponding to the outputs of the
adaptive core, i.e., the assembly point or state of an edge—.

• Validation that characterization parameters of content elements can be
used to predict the assembly point which generates a shorter user-perceived
latency. We have done several experiments to validate that the user-
perceived latencies are affected by changes in the content fragment. These
experiments have been also used to demonstrate that the values of the
characterization parameters of the content elements are important to de-
termine the assembly point that generates a higher performance.
• Definition of a set of parameters to be used to define the content fragment

designs. Once the previous contribution was validated, we researched the
metrics that have influence on the performance of a fragment design. We
have validated that a set of characterization parameters of two aggregated
content elements can predict the assembly point for which the latency of
the web page is shorter. These attributes are the content size, the content
update rate, the content request rate, the number of aggregators (fathers)
of the aggregated content element (child) and the number of aggregations
(children) of the aggregator content element (father). These characteriza-
tion parameters have been used as the independent attributes, or inputs,
of the classification algorithm of the adaptive core of COFRADIAS.
• Design of a core in charge of adapting the fragment designs. We have

stated that the adaptation of the fragment designs can solve the problem
of caching in content aggregation systems. We have called adaptive core to
the element in charge of defining these fragment designs. We have defined
the requirements and features of this adaptive core.
• Study of several techniques for the deployment of the adaptive core. On-

tologies and genetic algorithms have been evaluated as core of our frame-
work. The benefits and drawbacks have been stated, and we have finally
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rejected both of them. Some conclusions and results have been obtained
from this study.
• Definition of the process to adapt fragment designs of a content aggre-

gation system with knowledge discovery and data mining techniques. We
have used data mining to deploy the core of the solution. This involves
several phases and contributions. Firstly, we have defined a procedure
to create content models to be emulated in order to extract data about
the assembly points that generate higher performance in relation with
the characterization parameters of the content elements in CAS systems.
Secondly, we have designed the data instances representations which best
include the data obtained from the previous emulation phase. This design
includes the definition of the independent attributes and their numerical
representation in order to create the training data sets. And, finally, we
have studied the algorithms and knowledge representations that best suit
in our process. We selected C4.5 and decision trees as the best algorithm
and knowledge representation.
• Design of a general framework to integrate the adaptation of content frag-

ments in web content aggregation systems. We have called COFRADIAS
to this general framework. This framework defines the changes in the tiers
and in the modules of the content aggregation systems and the new inter-
faces among the modules of the CAS system and the adaptive core. The
design of the framework is independent of the deployment of the adap-
tive core. This framework can be used independently of the techniques or
solution used to adapt the fragment designs.
• Development of a COFRADIAS framework example. We have extended

Drupal, a commercial content management system. Thus, it manages con-
tent aggregation and it includes COFRADIAS framework. This extension
has been done by the implementation of a Drupal module. Two different
implementations of the adaptive core have been used into the COFRA-
DIAS implementation: one with our adaptive core solution based on de-
cision trees, and another one with the MACE algorithm based on cost
functions.
• Performance study of COFRADIAS framework. Several experiments have

been presented to evaluate the benefits of our solution. We have com-
pared the results of our approach with the two traditional cache schemes
of CAS systems (assembling all the content elements in the web cache or
in the web application) and with a similar approach proposed by Has-
san et al., MACE framework. The evaluation has been done in terms of
user-perceived latency speed-ups and in terms of system CPU overhead.
Our solution has shown great latency improvements and it obtained these
improvements generating low overheads in the CPU consumption of the
servers.
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9.3 Future work and open problems

Despite the contributions of this dissertation, there are several open problems
that are planned as future work:

• To investigate the relationship between the characteristics of the decision
trees (size and coverage) and the improvement of the performance they
achieve when they are used in the adaptive core. We have not observed
any relationship between the size and the coverage of a decision tree, and
the improvement it offers to the system. Thus, we can only choose among
different trees by executing them in the COFRADIAS framework. This
analysis could be based on the size or coverage of the decision trees, or
even other tree characteristics.
• To investigate how to reduce the overhead of the system. One of the most

overloaded parts of the system is the DBMS. We have studied these over-
heads in an event-driven mode, fragments are adapted in each charac-
terization change. It would be interesting to study the overhead and the
benefits of the solution in a periodical mode, fragment adaptation is done
in intervals of times. Also other improvements for the process of updating
the fragment designs in the DBMS could be studied.
• To study in which points in time a training phase should be done. We have

considered that it is enough to train the system —to extract the knowledge
and to create the decision trees— when changes in the architecture are
done. This is because our training models cover a wide range of content
characteristics changes and user behaviour cases. Further research could
be done.

The expertise obtained through this research allows us to propose new
research challenges, even the use of the results and findings of this thesis in
some applications. These applications and challenges include, but they are
not limited to:

• Integration of all the phases of the data mining process in a software suite.
This tool should automatically execute all the phases involves since the
selection of content aggregation system and the best decision tree is se-
lected. All the tasks to be executed involve: (a) the crawling of the content
of the goal web site; (b) the use of the parameters extracted from the web
site to create the synthetic content page model; (c) the emulation of the
system using the content page model and the monitoring of the perfor-
mance metrics; (d) the creation of the data instances of the data training
set; (e) the extraction of the knowledge and the creation of the decision
trees; (f) the selection of the best decision tree, which generate shortest
latencies, by evaluating them in a set of experiments. In fact, some of
these tasks have been done. For example, the application of automatic
crawling of content web sites is finished, and it have been used in some
tasks of our research work.
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• Evaluation of the use of other techniques in the deployment of the adaptive
core. We have considered other techniques to deploy the adaptive core,
for example the multi-criteria optimization, but we have not investigated
enough in this direction in order to make conclusions. Further research
could be done in the use of this or other techniques.
• Use of the methodology followed in this dissertation to study the inclusion

of new input parameters in the adaptive core. Even, to study the possibility
of using this method to achieve the improvement of different metrics to
the user-perceived latency.
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Decision trees specification

This appendix shows the structure of the decision trees for all the training data
sets created by the monitoring of the performance for the emulation of the
synthetic web content models. For each tree, it is presented the independent
attributes and the structure of the decision tree —leave vertices assign the
state to the aggregation relationship and the other vertices are evaluations of
the values of the independent attributes—.

A.1 Distributed hardware architecture

A.1.1 Entire/∅

Attributes: 9

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

frequestrate <= 63.7904

| fatherChildNumber <= 5: J

| fatherChildNumber > 5

| | frequestrate <= 9.69782

| | | crequestrate <= 1.2795: J



170 A Decision trees specification

| | | crequestrate > 1.2795

| | | | fatherSize <= 259: S

| | | | fatherSize > 259

| | | | | crequestrate <= 1.33426: S

| | | | | crequestrate > 1.33426

| | | | | | childFatherNumber <= 4

| | | | | | | childSize <= 1550: J

| | | | | | | childSize > 1550

| | | | | | | | childFatherNumber <= 2: S

| | | | | | | | childFatherNumber > 2: J

| | | | | | childFatherNumber > 4

| | | | | | | childFatherNumber <= 8

| | | | | | | | childFatherNumber <= 7

| | | | | | | | | childFatherNumber <= 6

| | | | | | | | | | frequestrate <= 7.88797

| | | | | | | | | | | cupdaterate <= 573

| | | | | | | | | | | | fatherChildNumber <= 7

| | | | | | | | | | | | | childSize <= 992: J

| | | | | | | | | | | | | childSize > 992: S

| | | | | | | | | | | | fatherChildNumber > 7: S

| | | | | | | | | | | cupdaterate > 573: J

| | | | | | | | | | frequestrate > 7.88797: J

| | | | | | | | | childFatherNumber > 6: S

| | | | | | | | childFatherNumber > 7: J

| | | | | | | childFatherNumber > 8: S

| | frequestrate > 9.69782

| | | childFatherNumber <= 4

| | | | childFatherNumber <= 3

| | | | | fatherChildNumber <= 8

| | | | | | childSize <= 576

| | | | | | | fatherChildNumber <= 6

| | | | | | | | childSize <= 466: S

| | | | | | | | childSize > 466: J

| | | | | | | fatherChildNumber > 6

| | | | | | | | childSize <= 267: J

| | | | | | | | childSize > 267: S

| | | | | | childSize > 576

| | | | | | | childSize <= 1504: J

| | | | | | | childSize > 1504

| | | | | | | | fupdaterate <= 840

| | | | | | | | | childFatherNumber <= 2

| | | | | | | | | | childSize <= 1584: J

| | | | | | | | | | childSize > 1584

| | | | | | | | | | | frequestrate <= 36.0784: S

| | | | | | | | | | | frequestrate > 36.0784
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| | | | | | | | | | | | fupdaterate <= 275: S

| | | | | | | | | | | | fupdaterate > 275: J

| | | | | | | | | childFatherNumber > 2

| | | | | | | | | | fupdaterate <= 695

| | | | | | | | | | | fupdaterate <= 93: S

| | | | | | | | | | | fupdaterate > 93

| | | | | | | | | | | | crequestrate <= 16.17: J

| | | | | | | | | | | | crequestrate > 16.17

| | | | | | | | | | | | | fatherSize <= 595: J

| | | | | | | | | | | | | fatherSize > 595: S

| | | | | | | | | | fupdaterate > 695: S

| | | | | | | | fupdaterate > 840: J

| | | | | fatherChildNumber > 8

| | | | | | childFatherNumber <= 2

| | | | | | | frequestrate <= 26.5896: J

| | | | | | | frequestrate > 26.5896

| | | | | | | | crequestrate <= 26.4706: S

| | | | | | | | crequestrate > 26.4706: J

| | | | | | childFatherNumber > 2

| | | | | | | crequestrate <= 12.1265

| | | | | | | | crequestrate <= 8.18101

| | | | | | | | | cupdaterate <= 269: S

| | | | | | | | | cupdaterate > 269: J

| | | | | | | | crequestrate > 8.18101: S

| | | | | | | crequestrate > 12.1265: J

| | | | childFatherNumber > 3: J

| | | childFatherNumber > 4: J

frequestrate > 63.7904

| fatherChildNumber <= 9: J

| fatherChildNumber > 9

| | fupdaterate <= 219

| | | fupdaterate <= 157

| | | | childFatherNumber <= 5

| | | | | cupdaterate <= 80: S

| | | | | cupdaterate > 80: J

| | | | childFatherNumber > 5: S

| | | fupdaterate > 157: J

| | fupdaterate > 219

| | | childSize <= 586: J

| | | childSize > 586: S

Number of Leaves : 46

Size of the tree : 91
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A.1.2 Entire/updateRate

Attributes: 7

frequestrate

crequestrate

fatherChildNumber

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| crequestrate <= 3.29264: S

| crequestrate > 3.29264: J

Number of Leaves : 3

Size of the tree : 5

A.1.3 Entire/requestRate

Attributes: 7

fupdaterate

cupdaterate

fatherChildNumber

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 10: J

fatherChildNumber > 10

| fupdaterate <= 455

| | fatherChildNumber <= 11

| | | childFatherNumber <= 5

| | | | fupdaterate <= 206

| | | | | cupdaterate <= 80: S

| | | | | cupdaterate > 80: J

| | | | fupdaterate > 206
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| | | | | childSize <= 586: J

| | | | | childSize > 586: S

| | | childFatherNumber > 5: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | childSize <= 1618: S

| | | | childSize > 1618: J

| | | childFatherNumber > 7: J

| fupdaterate > 455: J

Number of Leaves : 10

Size of the tree : 19

A.1.4 Entire/size

Attributes: 8

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.5 Entire/childrenNumber

Attributes: 7

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------
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: J

Number of Leaves : 1

Size of the tree : 1

A.1.6 Entire/fatherNumber

Attributes: 8

fupdaterate

cupdaterate

frequestrate

crequestrate

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.7 Ratio/∅

Attributes: 6

updaterate

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 4

| fatherChildNumber <= 2: J

| fatherChildNumber > 2

| | requestrate <= 7.570455: J

| | requestrate > 7.570455

| | | updaterate <= 10.8293

| | | | requestrate <= 7.906367: S

| | | | requestrate > 7.906367
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| | | | | childFatherNumber <= 7: J

| | | | | childFatherNumber > 7

| | | | | | updaterate <= 1.4633

| | | | | | | childFatherNumber <= 9

| | | | | | | | updaterate <= 0.7794: J

| | | | | | | | updaterate > 0.7794: S

| | | | | | | childFatherNumber > 9

| | | | | | | | Size <= 0.3288: S

| | | | | | | | Size > 0.3288: J

| | | | | | updaterate > 1.4633

| | | | | | | fatherChildNumber <= 3

| | | | | | | | requestrate <= 42.803118

| | | | | | | | | childFatherNumber <= 8

| | | | | | | | | | updaterate <= 1.7745: J

| | | | | | | | | | updaterate > 1.7745

| | | | | | | | | | | requestrate <= 14.555: J

| | | | | | | | | | | requestrate > 14.555: S

| | | | | | | | | childFatherNumber > 8: J

| | | | | | | | requestrate > 42.803118: J

| | | | | | | fatherChildNumber > 3

| | | | | | | | childFatherNumber <= 8: J

| | | | | | | | childFatherNumber > 8

| | | | | | | | | requestrate <= 28.551851

| | | | | | | | | | Size <= 0.7799

| | | | | | | | | | | childFatherNumber <= 9: S

| | | | | | | | | | | childFatherNumber > 9: J

| | | | | | | | | | Size > 0.7799: J

| | | | | | | | | requestrate > 28.551851

| | | | | | | | | | requestrate <= 179.202936: S

| | | | | | | | | | requestrate > 179.202936: J

| | | updaterate > 10.8293

| | | | fatherChildNumber <= 3: S

| | | | fatherChildNumber > 3

| | | | | Size <= 0.74

| | | | | | childFatherNumber <= 4: J

| | | | | | childFatherNumber > 4

| | | | | | | updaterate <= 11.3636: S

| | | | | | | updaterate > 11.3636

| | | | | | | | Size <= 0.5132: S

| | | | | | | | Size > 0.5132: J

| | | | | Size > 0.74: S

fatherChildNumber > 4

| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | fatherChildNumber <= 11
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| | | childFatherNumber <= 5

| | | | requestrate <= 58.837999: J

| | | | requestrate > 58.837999: S

| | | childFatherNumber > 5: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= 0.8286: J

| | | | Size > 0.8286: S

| | | childFatherNumber > 7: J

Number of Leaves : 32

Size of the tree : 63

A.1.8 Ratio/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 10: J

fatherChildNumber > 10

| fatherChildNumber <= 11

| | childFatherNumber <= 5

| | | requestrate <= 58.837999: J

| | | requestrate > 58.837999: S

| | childFatherNumber > 5: S

| fatherChildNumber > 11

| | childFatherNumber <= 7

| | | Size <= 0.8286: J

| | | Size > 0.8286: S

| | childFatherNumber > 7: J

Number of Leaves : 7

Size of the tree : 13

A.1.9 Ratio/requestRate

Attributes: 5

updaterate



A.1 Distributed hardware architecture 177

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 10: J

fatherChildNumber > 10

| fatherChildNumber <= 11: S

| fatherChildNumber > 11

| | childFatherNumber <= 7

| | | Size <= 0.8286: J

| | | Size > 0.8286: S

| | childFatherNumber > 7: J

Number of Leaves : 5

Size of the tree : 9

A.1.10 Ratio/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 4

| fatherChildNumber <= 2: J

| fatherChildNumber > 2

| | requestrate <= 7.570455: J

| | requestrate > 7.570455

| | | updaterate <= 10.8293

| | | | requestrate <= 7.906367: S

| | | | requestrate > 7.906367

| | | | | childFatherNumber <= 7: J

| | | | | childFatherNumber > 7

| | | | | | updaterate <= 1.4633

| | | | | | | childFatherNumber <= 9

| | | | | | | | updaterate <= 0.7794: J
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| | | | | | | | updaterate > 0.7794: S

| | | | | | | childFatherNumber > 9: J

| | | | | | updaterate > 1.4633

| | | | | | | fatherChildNumber <= 3

| | | | | | | | requestrate <= 42.803118

| | | | | | | | | childFatherNumber <= 8

| | | | | | | | | | updaterate <= 1.7745: J

| | | | | | | | | | updaterate > 1.7745

| | | | | | | | | | | requestrate <= 14.555: J

| | | | | | | | | | | requestrate > 14.555: S

| | | | | | | | | childFatherNumber > 8: J

| | | | | | | | requestrate > 42.803118: J

| | | | | | | fatherChildNumber > 3

| | | | | | | | childFatherNumber <= 8: J

| | | | | | | | childFatherNumber > 8

| | | | | | | | | requestrate <= 28.551851

| | | | | | | | | | childFatherNumber <= 9

| | | | | | | | | | | requestrate <= 13.457064: S

| | | | | | | | | | | requestrate > 13.457064: J

| | | | | | | | | | childFatherNumber > 9: J

| | | | | | | | | requestrate > 28.551851

| | | | | | | | | | requestrate <= 179.202936: S

| | | | | | | | | | requestrate > 179.202936: J

| | | updaterate > 10.8293: S

fatherChildNumber > 4

| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | fatherChildNumber <= 11

| | | childFatherNumber <= 5

| | | | requestrate <= 58.837999: J

| | | | requestrate > 58.837999: S

| | | childFatherNumber > 5: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7: S

| | | childFatherNumber > 7: J

Number of Leaves : 25

Size of the tree : 49

A.1.11 Ratio/childrenNumber

Attributes: 5

updaterate

requestrate

childFatherNumber
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Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.12 Ratio/fatherNumber

Attributes: 5

updaterate

requestrate

fatherChildNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 4

| fatherChildNumber <= 2: J

| fatherChildNumber > 2

| | requestrate <= 7.570455: J

| | requestrate > 7.570455

| | | updaterate <= 10.8293

| | | | requestrate <= 7.906367

| | | | | requestrate <= 7.693931

| | | | | | requestrate <= 7.64: S

| | | | | | requestrate > 7.64: J

| | | | | requestrate > 7.693931: S

| | | | requestrate > 7.906367: J

| | | updaterate > 10.8293

| | | | Size <= 0.74

| | | | | updaterate <= 11.3636: S

| | | | | updaterate > 11.3636: J

| | | | Size > 0.74: S

fatherChildNumber > 4

| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | requestrate <= 20.727041: J

| | requestrate > 20.727041

| | | Size <= 1.5501: S
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| | | Size > 1.5501

| | | | Size <= 3.083: J

| | | | Size > 3.083: S

Number of Leaves : 14

Size of the tree : 27

A.1.13 Difference/∅

Attributes: 6

updaterate

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | requestrate <= 165.55097: J

| | requestrate > 165.55097: S

Number of Leaves : 4

Size of the tree : 7

A.1.14 Difference/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| fatherChildNumber <= 10: J
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| fatherChildNumber > 10

| | requestrate <= 165.55097: J

| | requestrate > 165.55097: S

Number of Leaves : 4

Size of the tree : 7

A.1.15 Difference/requestRate

Attributes: 5

updaterate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 10: J

fatherChildNumber > 10

| fatherChildNumber <= 11: S

| fatherChildNumber > 11

| | childFatherNumber <= 7

| | | Size <= -277: J

| | | Size > -277: S

| | childFatherNumber > 7: J

Number of Leaves : 5

Size of the tree : 9

A.1.16 Difference/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9
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| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | requestrate <= 165.55097: J

| | requestrate > 165.55097: S

Number of Leaves : 4

Size of the tree : 7

A.1.17 Difference/childrenNumber

Attributes: 5

updaterate

requestrate

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.18 Difference/fatherNumber

Attributes: 5

updaterate

requestrate

fatherChildNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| fatherChildNumber <= 10: J

| fatherChildNumber > 10

| | requestrate <= 165.55097: J

| | requestrate > 165.55097: S

Number of Leaves : 4

Size of the tree : 7
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A.1.19 Distance/∅

Attributes: 6

updaterate

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.20 Distance/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.21 Distance/requestRate

Attributes: 5

updaterate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------
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fatherChildNumber <= 10: J

fatherChildNumber > 10: S

Number of Leaves : 2

Size of the tree : 3

A.1.22 Distance/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.23 Distance/childrenNumber

Attributes: 5

updaterate

requestrate

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.1.24 Distance/fatherNumber

Attributes: 5

updaterate

requestrate

childFatherNumber
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Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2 Centralized hardware architecture

A.2.1 Entire/∅

Attributes: 9

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

frequestrate <= 63.7413: J

frequestrate > 63.7413

| fatherChildNumber <= 2

| | fatherChildNumber <= 1: J

| | fatherChildNumber > 1

| | | childFatherNumber <= 6

| | | | childFatherNumber <= 4

| | | | | cupdaterate <= 463

| | | | | | crequestrate <= 33.8097: S

| | | | | | crequestrate > 33.8097: J

| | | | | cupdaterate > 463

| | | | | | frequestrate <= 138.462: J

| | | | | | frequestrate > 138.462

| | | | | | | childFatherNumber <= 2: S

| | | | | | | childFatherNumber > 2

| | | | | | | | crequestrate <= 1.83841: S
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| | | | | | | | crequestrate > 1.83841: J

| | | | childFatherNumber > 4

| | | | | cupdaterate <= 523: J

| | | | | cupdaterate > 523

| | | | | | fupdaterate <= 897

| | | | | | | crequestrate <= 16.9049: J

| | | | | | | crequestrate > 16.9049

| | | | | | | | crequestrate <= 19.3639: S

| | | | | | | | crequestrate > 19.3639: J

| | | | | | fupdaterate > 897: S

| | | childFatherNumber > 6

| | | | fupdaterate <= 542

| | | | | childFatherNumber <= 8

| | | | | | crequestrate <= 8.41121: S

| | | | | | crequestrate > 8.41121

| | | | | | | frequestrate <= 107.254: S

| | | | | | | frequestrate > 107.254: J

| | | | | childFatherNumber > 8: J

| | | | fupdaterate > 542

| | | | | crequestrate <= 7.55268: J

| | | | | crequestrate > 7.55268

| | | | | | fupdaterate <= 907: S

| | | | | | fupdaterate > 907: J

| fatherChildNumber > 2

| | fatherChildNumber <= 8

| | | cupdaterate <= 201

| | | | cupdaterate <= 9

| | | | | crequestrate <= 8.38396: J

| | | | | crequestrate > 8.38396

| | | | | | cupdaterate <= 4: S

| | | | | | cupdaterate > 4: J

| | | | cupdaterate > 9: S

| | | cupdaterate > 201: J

| | fatherChildNumber > 8: S

Number of Leaves : 26

Size of the tree : 51

A.2.2 Entire/updateRate

Attributes: 7

frequestrate

crequestrate

fatherChildNumber

childFatherNumber
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fatherSize

childSize

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.3 Entire/requestRate

Attributes: 7

fupdaterate

cupdaterate

fatherChildNumber

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9

| fatherSize <= 53

| | fatherSize <= 13

| | | childFatherNumber <= 5

| | | | childSize <= 1716: J

| | | | childSize > 1716: S

| | | childFatherNumber > 5: S

| | fatherSize > 13: J

| fatherSize > 53

| | fatherChildNumber <= 5: J

| | fatherChildNumber > 5

| | | fatherChildNumber <= 6

| | | | childSize <= 1908: J

| | | | childSize > 1908: S

| | | fatherChildNumber > 6: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11: S

| | fatherChildNumber > 11
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| | | childFatherNumber <= 7

| | | | childSize <= 1618: S

| | | | childSize > 1618: J

| | | childFatherNumber > 7: J

Number of Leaves : 13

Size of the tree : 25

A.2.4 Entire/size

Attributes: 7

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

frequestrate <= 68.8852: J

frequestrate > 68.8852

| fatherChildNumber <= 4: J

| fatherChildNumber > 4

| | cupdaterate <= 201: S

| | cupdaterate > 201: J

Number of Leaves : 4

Size of the tree : 7

A.2.5 Entire/childrenNumber

Attributes: 8

fupdaterate

cupdaterate

frequestrate

crequestrate

childFatherNumber

fatherSize

childSize

improvingclass

J48 pruned tree
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------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.6 Entire/fatherNumber

Attributes: 8

fupdaterate

cupdaterate

frequestrate

crequestrate

fatherChildNumber

fatherSize

childSize

improvingclass

J48 pruned tree

------------------

frequestrate <= 68.8852: J

frequestrate > 68.8852

| fatherChildNumber <= 4: J

| fatherChildNumber > 4

| | cupdaterate <= 201: S

| | cupdaterate > 201: J

Number of Leaves : 4

Size of the tree : 7

A.2.7 Ratio/∅

Attributes: 6

updaterate

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9



190 A Decision trees specification

| fatherChildNumber <= 7: J

| fatherChildNumber > 7

| | childFatherNumber <= 4

| | | childFatherNumber <= 2

| | | | updaterate <= 0.5578: S

| | | | updaterate > 0.5578: J

| | | childFatherNumber > 2

| | | | childFatherNumber <= 3

| | | | | Size <= 0.2067: S

| | | | | Size > 0.2067: J

| | | | childFatherNumber > 3: J

| | childFatherNumber > 4

| | | fatherChildNumber <= 8

| | | | requestrate <= 45.467104

| | | | | childFatherNumber <= 7

| | | | | | requestrate <= 4.402947: J

| | | | | | requestrate > 4.402947: S

| | | | | childFatherNumber > 7

| | | | | | Size <= 0.3088: J

| | | | | | Size > 0.3088

| | | | | | | childFatherNumber <= 8

| | | | | | | | Size <= 0.5522: S

| | | | | | | | Size > 0.5522

| | | | | | | | | requestrate <= 16.056561: J

| | | | | | | | | requestrate > 16.056561: S

| | | | | | | childFatherNumber > 8: S

| | | | requestrate > 45.467104

| | | | | childFatherNumber <= 8: J

| | | | | childFatherNumber > 8: S

| | | fatherChildNumber > 8: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11

| | | Size <= 2.6814

| | | | Size <= 1.6844

| | | | | requestrate <= 42.424847

| | | | | | childFatherNumber <= 5

| | | | | | | fatherChildNumber <= 10: S

| | | | | | | fatherChildNumber > 10: J

| | | | | | childFatherNumber > 5: J

| | | | | requestrate > 42.424847: S

| | | | Size > 1.6844: J

| | | Size > 2.6814: S

| | fatherChildNumber > 11



A.2 Centralized hardware architecture 191

| | | childFatherNumber <= 7

| | | | Size <= 0.8286: J

| | | | Size > 0.8286: S

| | | childFatherNumber > 7: J

Number of Leaves : 26

Size of the tree : 51

A.2.8 Ratio/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9

| fatherChildNumber <= 7: J

| fatherChildNumber > 7

| | childFatherNumber <= 4: J

| | childFatherNumber > 4

| | | fatherChildNumber <= 8

| | | | requestrate <= 45.467104

| | | | | childFatherNumber <= 7

| | | | | | requestrate <= 4.402947: J

| | | | | | requestrate > 4.402947: S

| | | | | childFatherNumber > 7

| | | | | | Size <= 0.3088: J

| | | | | | Size > 0.3088

| | | | | | | childFatherNumber <= 8

| | | | | | | | Size <= 0.5522: S

| | | | | | | | Size > 0.5522

| | | | | | | | | requestrate <= 16.056561: J

| | | | | | | | | requestrate > 16.056561: S

| | | | | | | childFatherNumber > 8: S

| | | | requestrate > 45.467104

| | | | | childFatherNumber <= 8: J

| | | | | childFatherNumber > 8: S

| | | fatherChildNumber > 8: J

fatherChildNumber > 9

| childFatherNumber <= 2: J
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| childFatherNumber > 2

| | fatherChildNumber <= 11

| | | Size <= 2.6814

| | | | Size <= 1.6844

| | | | | requestrate <= 42.424847

| | | | | | childFatherNumber <= 5

| | | | | | | fatherChildNumber <= 10: S

| | | | | | | fatherChildNumber > 10: J

| | | | | | childFatherNumber > 5: J

| | | | | requestrate > 42.424847: S

| | | | Size > 1.6844: J

| | | Size > 2.6814: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= 0.8286: J

| | | | Size > 0.8286: S

| | | childFatherNumber > 7: J

Number of Leaves : 22

Size of the tree : 43

A.2.9 Ratio/requestRate

Attributes: 5

updaterate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11

| | | Size <= 2.6814

| | | | Size <= 1.6844: S

| | | | Size > 1.6844: J

| | | Size > 2.6814: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= 0.8286: J
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| | | | Size > 0.8286: S

| | | childFatherNumber > 7: J

Number of Leaves : 8

Size of the tree : 15

A.2.10 Ratio/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9

| fatherChildNumber <= 7: J

| fatherChildNumber > 7

| | childFatherNumber <= 4

| | | childFatherNumber <= 2

| | | | updaterate <= 0.5578: S

| | | | updaterate > 0.5578: J

| | | childFatherNumber > 2: J

| | childFatherNumber > 4

| | | fatherChildNumber <= 8

| | | | requestrate <= 45.467104

| | | | | childFatherNumber <= 7

| | | | | | requestrate <= 4.402947: J

| | | | | | requestrate > 4.402947: S

| | | | | childFatherNumber > 7: J

| | | | requestrate > 45.467104

| | | | | childFatherNumber <= 8: J

| | | | | childFatherNumber > 8: S

| | | fatherChildNumber > 8: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11

| | | fatherChildNumber <= 10

| | | | updaterate <= 1.6756: S

| | | | updaterate > 1.6756: J

| | | fatherChildNumber > 10
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| | | | childFatherNumber <= 5

| | | | | requestrate <= 58.754758: J

| | | | | requestrate > 58.754758: S

| | | | childFatherNumber > 5: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7: S

| | | childFatherNumber > 7: J

Number of Leaves : 18

Size of the tree : 35

A.2.11 Ratio/childrenNumber

Attributes: 5

updaterate

requestrate

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.12 Ratio/fatherNumber

Attributes: 5

updaterate

requestrate

fatherChildNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.13 Differences/∅

Attributes: 6
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updaterate

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9

| requestrate <= 76.371375: J

| requestrate > 76.371375

| | fatherChildNumber <= 5: J

| | fatherChildNumber > 5

| | | updaterate <= 381: J

| | | updaterate > 381: S

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= -277: J

| | | | Size > -277: S

| | | childFatherNumber > 7: J

Number of Leaves : 9

Size of the tree : 17

A.2.14 Differences/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J
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| childFatherNumber > 2

| | fatherChildNumber <= 11: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= -277: J

| | | | Size > -277: S

| | | childFatherNumber > 7: J

Number of Leaves : 6

Size of the tree : 11

A.2.15 Differences/requestRate

Attributes: 5

updaterate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 11: S

| | fatherChildNumber > 11

| | | childFatherNumber <= 7

| | | | Size <= -277: J

| | | | Size > -277: S

| | | childFatherNumber > 7: J

Number of Leaves : 6

Size of the tree : 11

A.2.16 Differences/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass
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J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.17 Differences/childrenNumber

Attributes: 5

updaterate

requestrate

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.18 Differences/fatherNumber

Attributes: 5

updaterate

requestrate

fatherChildNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.19 Distance/∅

Attributes: 6

updaterate
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requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 10

| | | updaterate <= 429: S

| | | updaterate > 429: J

| | fatherChildNumber > 10: S

Number of Leaves : 5

Size of the tree : 9

A.2.20 Distance/updateRate

Attributes: 5

requestrate

fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2: S

Number of Leaves : 3

Size of the tree : 5

A.2.21 Distance/requestRate

Attributes: 5

requestrate
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fatherChildNumber

childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2: S

Number of Leaves : 3

Size of the tree : 5

A.2.22 Distance/size

Attributes: 5

updaterate

requestrate

fatherChildNumber

childFatherNumber

improvingclass

J48 pruned tree

------------------

fatherChildNumber <= 9: J

fatherChildNumber > 9

| childFatherNumber <= 2: J

| childFatherNumber > 2

| | fatherChildNumber <= 10

| | | updaterate <= 429: S

| | | updaterate > 429: J

| | fatherChildNumber > 10: S

Number of Leaves : 5

Size of the tree : 9

A.2.23 Distance/childrenNumber

Attributes: 5

updaterate

requestrate
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childFatherNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1

A.2.24 Distance/fatherNumber

Attributes: 5

updaterate

requestrate

fatherChildNumber

Size

improvingclass

J48 pruned tree

------------------

: J

Number of Leaves : 1

Size of the tree : 1



B

Synthetic content page model features

Table B.1. Features of the nytimes content page model extracted from The New
York Times web site.

Parameter Value

minsize 138 bytes
maxsize 97008 bytes
minreq –
maxreq –
minupd –
maxupd –
totalce 3082
totalag 13979
web pages number 482

Table B.2. Features of the pageflakes content page model extracted from Page-
Flakes web site.

Parameter Value

minsize 391 bytes
maxsize 3633 bytes
minreq –
maxreq –
minupd –
maxupd –
totalce 16803
totalag 24771
web pages number 2000
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Table B.3. Features of the yahoopipes content page model extracted from Yahoo
Pipes! web site.

Parameter Value

minsize 1008 bytes
maxsize 62093 bytes
minreq –
maxreq –
minupd –
maxupd –
totalce 9182
totalag 14000
web pages number 2000

Table B.4. Parametrizations used for the creation of the synthetic web page model.

Parameter Value

minsize 138 bytes
maxsize 97008 bytes
minreq 2.0 req./s
maxreq 10.0 req./s
minupd 0.5 req./s
maxupd 2.5 req./s
totalce 29067
totalag 52755
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25. P. Erdös and A. Rényi. On the evolution of random graphs. In Publication of
the Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61,
1960.

26. Joan Espina. Extension development to allow Drupal to manage content aggre-
gations and to adapt content fragment designs. Master dissertation, Universitat
de les Illes Balears, Palma, SPAIN, 2010.

27. Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth. From data
mining to knowledge discovery in databases. AI Magazine, 17:37–54, 1996.

28. Yingjie Fu, Haohuan Fu, and Pui on Au. An integration approach of data min-
ing with web cache pre-fetching. In Jiannong Cao, Laurence Tianruo Yang,



References 211

Minyi Guo, and Francis Chi-Moon Lau, editors, Parallel and Distributed Pro-
cessing and Applications, Second InternationalSymposium, ISPA 2004, Hong
Kong, China, December 13-15, 2004, Proceedings, volume 3358 of Lecture Notes
in Computer Science, pages 59–63. Springer, 2004.

29. Syam Gadde. Proxycizer. http://www.cs.duke.edu/ari/cisi/proxycizer/. Tech-
nical report, Duke University Computer Science Department, 2001.

30. Jose Maria Gago, Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Web
mining service (wms), a public and free service for web data mining. Internet
and Web Applications and Services, International Conference on, 0:351–356,
2009.

31. Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic
characterization: a view from the edge. In IMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 15–28, New York, NY,
USA, 2007. ACM.

32. Google Corp. igoogle. URL http://www.google.com/ig.
33. William Grosso. Java RMI. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

1st edition, 2001.
34. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Estudio de viabilidad

de esi en aplicaciones web dinámicas. In Conferencia IADIS Ibero-Americana
WWW/Internet 2006, 2006.

35. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Dynamic web fragment
architecture. In J. L. lvarez, J. L. Arjona, R. Corchuelo, and D. Ruiz, editors,
Actas de los Talleres de las Jornadas de Ingeniera del Software y Bases de Datos
(TJISBD), volume 1. Sistedes, 2007.

36. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. The Applicability of Bal-
anced ESI for Web Caching - A proposed algorithm and a case of study. In
WEBIST 2007 Third International Conference on Web Information Systems
and Technologies, pages 197–203. 2007.

37. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Using Ontologies to Im-
prove Performance in a Web System. A Web Caching System Case of Study.
In Proceedings of the Fourth International Conference on Web Information Sys-
tems and Technologies WEBIST 2008, pages 117–122. 2008.

38. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Web performance and
behavior ontology. Complex, Intelligent and Software Intensive Systems, Inter-
national Conference, 0:219–225, 2008.

39. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Web performance engi-
neering based on ontological languages and semantic web. Int. J. Comput. Appl.
Technol., 33:300–311, January 2008.

40. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Rule-based system to
improve performance on mash-up web applications. In DCAI, volume 79 of
Advances in Soft Computing, pages 577–584. Springer, 2010.

41. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Web cache performance
correlation with content characterization parameters in content aggregation sys-
tems. In Proceedings of the XXXVIth Latin American Informatics Conference,
2010.

42. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Evaluation of a fragment-
optimized content aggregation web system. In The Fourth International Con-
ference on Internet Technologies and Applications (ITA 2011), pages 48–55.
Glyndwr University, April 2011.



212 References

43. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Improving web cache per-
formance via adaptive content fragmentation design. In Proceedings of The
Tenth IEEE International Symposium on Networking Computing and Applica-
tions, NCA 2011, pages 310–313. IEEE Computer Society, 2011.

44. Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner. Mining web usage and
content structure data to improve web cache performance in content aggregation
systems. In The Sixth International Conference on Digital Telecommunications
(ICDT 2011), pages 123–130. IARIA, April 2011.

45. Lei Guo, Enhua Tan, Songqing Chen, Xiaodong Zhang, and Yihong (Eric) Zhao.
Analyzing patterns of user content generation in online social networks. In
KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 369–378, New York, NY, USA,
2009. ACM.

46. Emily Halili. Apache JMeter. Packt Publishing, 2008.
47. David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Min-

ing. The MIT Press, August 2001.
48. Osama Al-Haj Hassan, L Ramaswamy, and J A Miller. The mace approach for

caching mashups. International Journal of Web Services Research, 7(4):64–88,
2010.

49. Osama Al-Haj Hassan, Lakshmish Ramaswamy, and John A. Miller. Mace:
A dynamic caching framework for mashups. In Proceedings of the 2009 IEEE
International Conference on Web Services, ICWS ’09, pages 75–82, Washington,
DC, USA, 2009. IEEE Computer Society.

50. Osama Al-Haj Hassan, Lakshmish Ramaswamy, and John A Miller. Mace: A
dynamic caching framework for mashups. 2009 IEEE International Conference
on Web Services, pages 75–82, 2009.

51. Osama Al-Haj Hassan, Lakshmish Ramaswamy, and John A. Miller. The mace
approach for caching mashups. International Journal of Web Services Research,
7(4):64–88, 2010.

52. Yin-Fu Huang and Jhao-Min Hsu. Mining web logs to improve hit ratios of
prefetching and caching. Know.-Based Syst., 21:62–69, February 2008.

53. Aye Aye Khaing and Ni Lar Thein. Efficiently creating dynamic web content:
A fragment based approach. In Proceedingsof the 6th Asia-Pacific Symposium
on Information and Telecommunication Technologies, pages 154 – 159, 2005.

54. Patrick Killelea. Web Performance Tuning. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2nd edition, 2002.

55. Patrick Killelea. Web performance tuning - speeding up the web (2. ed.). O’Reilly,
2002.

56. Chetan Kumar and John B. Norris. A new approach for a proxy-level web
caching mechanism. Decis. Support Syst., 46:52–60, December 2008.

57. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Up-
fal. Stochastic models for the Web graph. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 57–65. IEEE Computer
Society, 2000.

58. Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre. Programming PHP.
O’Reilly Media, Inc., 2 edition, April 2006.

59. Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new classification
algorithms. Mach. Learn., 40:203–228, September 2000.



References 213

60. Xiang Liu. Developing high performance applica-
tions with oracle9ias web cache and esi. URL
http://www.oracle.com/technetwork/middleware/ias/9iaswebcache-esi-twp-
133927.pdf.

61. Priyanka Makkar and Payal Gulati. A novel approach for predicting user behav-
ior for improving web performance. International Journal on Computer Science
and Engineering, 2:1233–1236, July 2010.

62. Johann Marquez, Josep Domenech, Jose Gil, and Ana Pont. A Web Caching
and Prefetching Simulator. In 16th IEEE International Conference on Software,
Telecommunications and Computer Networks, SoftCOM, pages 346–350, Split,
Croacia, September 2008. FESB.
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