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Resum (en català)

En aquesta tesi es presenten els resultats obtinguts en tres ĺınies de recerca diferents,
totes elles relacionades amb l’anàlisi de dades per a la detecció directa d’ones gravitatòries
emeses per sistemes binaris d’objectes compactes (forats negres, estels de neutrons, nanes
blanques) de massa similar.

Per una banda, hem estudiat quina serà l’estimació de paràmetres que es podrà fer quan
s’observin les ones gravitatòries emeses pels xocs entre dos forats negres supermassius
(normalment, situats als centres de les galàxies) en la seva fase inspiral amb el futur detec-
tor interferomètric espacial d’ones gravitatòries, LISA. En particular, estudiem l’impacte
que té la inclusió de tots els harmònics de la senyal en l’estimació de paràmetres, i ho
comparem amb el resultat clàssic allà on només es considerava l’harmònic dominant de
la senyal (el corresponent a una freqüència 2forb); veure Cap. 4. Els resultats obtinguts
confirmen la gran importància d’emprar la senyal completa (amb tots els harmònics),
bàsicament per dos motius: en primer lloc, ja que incrementen el rang de masses en el
que LISA podrà detectar senyals d’ones gravitatòries procedents d’aquests objectes; però
principalment, perquè la seva inclusió augmenta la riquesa dels detalls de la senyal re-
buda, de manera que es fa més fàcil distingir entre dues senyals amb distints paràmetres
i per tant, es redueixen significativament (fins a diversos ordres de magnitud) els errors
en la seva estimació. A conseqüència d’aquest important resultat, també hem estudiat el
nombre esperat de fonts que LISA detectarà cada any amb un cert error donat [tant en la
determinació de la distància, com de la posició al cel], i en funció del model de formació
de galàxies que es considera per al nostre Univers; i per altra banda, la precisió amb la
què podŕıem mesurar l’equació d’estat de l’energia fosca a partir d’una única observació de
LISA (veure Cap. 5). Les conclusions d’aquests dos darrers estudis és que LISA observarà
cada any, unes 20 fonts (només de xocs entre forats negres supermassius) amb precisió de
fins al 10% en la mesura de la distància, 10 fonts amb una resolució al cel millor de 10 deg2

i el que és més interessant, esperem observar 1 − 3 fonts amb una exel·lent precisió, tant
en la determinació de la posició al cel (millor que 1 deg2) com de la distància (millor de
l’1%); tot plegat ens permetrà emprar LISA per a realitzar cosmografia de precisió, sempre
i quan puguem eliminar l’efecte de lents gravitatòries creat pels objectes que hi ha entre
nosaltres i les fonts que volem estudiar a 0.5 < z < 1.

Per altra banda, hem desenvolupat un algorisme de cerca de senyals gravitatòries proce-
dents de sistemes binaris estel·lars situats dins la nostra pròpia galàxia. Aquest algorisme
està basat en la interpretació Bayesiana de la probabilitat i empra tècniques d’integració
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per Monte Carlo mitjançant cadenes de Markov (MCMC) de manera que ens permet, no
només detectar les senyals, sinó que alhora estimem la distributició de probabilitat dels
paràmetres que caracteritzen la font. S’espera que el detector LISA observi simultàniament
desenes de milers d’aquestes senyals, aix́ı doncs, la distinció entre cadascuna d’elles és una
tasca que es realitza amb l’anàlisi de dades posterior. En aquesta tesi, hem implementat
un mètode que serveix tant per cercar una única senyal dins les dades, com un nombre
fixat d’elles (veure Cap. 6). A més, hem desenvolupat un algorisme totalment general i que
preserva el caràcter Markovià de la cadena que es genera, basat en el Delayed Rejection
per tal de mostrejar eficientment funcions que presenten una estructura multimodal (és a
dir, que tenen diversos màxims relatius separats per una certa distància); veure Cap. 7.
Aquest tipus d’estructures són molt comuns en un nombre molt divers d’aplicacions del
MCMC (no només en l’area d’anàlisi de dades d’ones gravitatòries, ni tan sols únicament
en l’àrea de F́ısica) i la presència de diversos màxims de la funció pot reduir consider-
ablement l’eficiència dels mètodes de mostreig. L’algorisme que nosaltres hem dissenyat,
esperem que pugui solventar aquest tipus de situacions, que són particularment comuns i
rellevants en l’anàlisi de dades per LISA.

Finalment, la tercera ĺınia de recerca portada a terme durant el doctorat ha consistit
en estudiar el rang de validesa dels models de patrons d’ones gravitatòries (emeses per
sistemes binaris compactes) més ràpids de generar computacionalment que existeixen,
però que alhora contenen certes aproximacions. El context d’aquest estudi es troba en les
cerques que actualment es fan amb els detectors interferomètrics terrestres (LIGO i Virgo)
d’una de les fonts més prometedores de ser detectada: el xoc entre dos forats negres (o
estels de neutrons) de fins a 500M�. Tots els mètodes de cerca emprats es basen comparar
les dades mesurades, amb els patrons teòrics que esperem que estiguin continguts dins
aquestes en cas de que hi hagi una senyal (matched filtering); com més s’ajustin aquests
patrons a la senyal real, més possibilitats hi ha de reconèixer-la d’entre el renou. Aix́ı
doncs, per una banda necessitem que els patrons emprats en la cerca siguin el més precisos
possible, però per l’altra, resulta que hem cobrir tot l’espai de paràmetres, el que implica
la generació de molts d’aquests patrons, aix́ı que també requerirem que siguin ràpids de
generar. En el Cap. 8 definim matemàticament quins són els requisits mı́nims de precisió
que han de satisfer els models de patrons d’ones gravitatòries i estudiem per quin rang
de masses es poden emprar els models més ràpids, aquells que directament ens donen una
expressió anaĺıtica tancada per als patrons. Les conclusions que obtenim són que aquests
models ràpids ens garanteixen (per sistemes amb una relació de masses entre 1:1 i 4:1) no
perdre més de 6% de les possibles senyals quan es consideren els detectors actuals i no més
del 9% quan es consideren detectors avançats. Per sistemes amb un quocient de masses
major i en qualsevol cas en què un estigui interessat no només en detectar la senyal, sinó
també en extreure informació crëıble sobre els paràmetres f́ısics mesurats; aleshores serà
necessari emprar models més precisos.
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padrins, . . . Heu estat sempre allà en els moments dif́ıcils, preocupant-vos i assessorant-me
per trobar el camı́ que m’ha permès arribar fins aqúı.
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Preface

This thesis is divided in two different parts, clearly separating what corresponds to Intro-
ductory notions from the Original (published) scientific results. Since most of the results
produced during the doctorate were already published in refereed international scientific
journals, or about to be accepted, we decided that this second part would consist in the
inclusion of the publications produced by the applicant. There are several reasons behind
this decision that, in our opinion, benefit all the parts that will ‘interact’ with this PhD
thesis. On one hand, it gives more time to the applicant to focus on the introductory no-
tions and on better understanding the basics related with the field they have been working
on during the last years. On the other hand, it also easies the referee process as the origi-
nal scientific results are written as they were originally published, instead of repeating the
same information with other words. And finally, it is also useful for future readers of this
thesis, as they can clearly distinguish between what are the side results only produced for
the thesis and what has been published in a refereed journal and therefore spread to the
wide scientific community.

In the first three chapters of the thesis, comprising Part I, we first give (Chapter 1) a
brief introduction to the research field and then, in Chapters 2 and 3 we try to derive
and understand the basic expressions that form the well-stablished basics of GW data
analysis, at the same time that justify the scientific studies that are presented in Part II.
Of course, all the results derived in Part I can be found in many other publications, and
for this reason they would never be accepted in a refereed journal; however, we consider
that the knowledge acquired from deriving all the expressions from scratch and using a
uniform notation can be extremely useful for the applicant in his future scientific career
and we wish that also this material could be useful for future students entering this field.

The scientific results presented in this thesis (Part II) can be divided into three different
research lines (see Tab. 9.1 for a summary), all of them related to data analysis stud-
ies of gravitational waves emitted by compact binary objects. Our main conclusions are
summarized in Chapter 9.

• First, we perform parameter estimation studies (Chapter 4) of supermassive binary
black hole inspirals observed with LISA (the future gravitational wave space antenna)
using post-Newtonian waveforms that include all the harmonics and we compare the
output with the classical results where only the dominant (` = 2,m = ±2) was
present. Then, we also study what are the consequences of this improvement on the

xiii



xiv Preface

science that LISA will be able to do, in particular, we study what is the expected
number of SMBH sources that LISA will observe with a particular error and also,
the precision on the estimation of the dark energy equation of state (Chapter 5)

• Second, we develop a search method for galactic binary signals with LISA based on
Bayesian probability and Markov chain Monte Carlo techniques and apply it to a
number of simulated data sets containing one or several overlapping signals (Chap-
ter 6). On the way, we shall face the problem of efficiently sampling a multimodal
distribution, and the solution we propose in Chapter 7 is a completely Markovian
and fully general algorithm, based on a technique called Delayed Rejection, that we
successfully implement for the search of galactic binaries with LISA. We belief that
this general method can be applied to a number of problems in a variety of fields.

• Finally, we study the accuracy and effectualness of some model waveforms used in
searches for compact binary coalescences with ground-based interferometric detec-
tors. In particular, we study the validity range of the fastest (but also approximated)
waveform models either when they are used just for detection, or also for measure-
ment purposes (Chapter 8).

As it is usual within the scientific community working on GR problems, in most of the
situations we will use so-called geometrized units in which c ≡ 1

[
1 s = c̃ m ' 3× 108 m

]
and G ≡ 1

[
1 s =

c̃3

G̃
kg ' 4× 1035 kg

]
, so we shall be effectively measuring length and

mass in units of time. Working with astrophysical problems, some significant relation to
have in mind are the following,

106M� = 4.93 s ; 1 AU = 499 s ; 1 Gpc = 1.03× 1017 s

We also would like to take this opportunity to define some very common quantities that
appear throughout all the thesis and that sometimes it is useful to have all of them defined
in the same place.

• Total mass: M ≡ m1 +m2;

• Mass difference: δm ≡ m2 −m1;

• Reduced mass: µ ≡ m1 ·m2

m1 +m2
;

• Symmetric mass ratio: ν ≡ µ

M
=

m1 ·m2

(m1 +m2)2
[sometimes designated by η];

• Chirp mass: M≡Mν3/5;

• Characteristic velocity of a CBC inspiral: v ≡ (πfM)1/3;

• Post-Newtonian expansion parameter: x = (πfM)2/3 = v2;

• Characteristic velocity at the (test-mass particle) last stable orbit: vlso = 1/
√

6.
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Chapter1
Introduction

According to Einstein’s theory of general relativity (GR), compact concentrations of energy
[e.g. neutron stars (NSs) and black holes (BHs)] should wrap spacetime strongly, and
whenever such an energy concentration changes shape, it should create a dynamically
changing spacetime warpage that propagates out through the Universe at the speed of
light. This propagating warpage is called a gravitational wave — a name, that arises from
GR’s description of gravity as a consequence of spacetime warpage.

Although gravitational waves (GWs) have not yet been detected directly, their first indirect
evidence was found in the observed inspiral of the binary pulsar PSR 1913+16, discovered
by Hulse and Taylor [1]. Taylor (and colleagues) demonstrated [2, 3] that the observed NSs
are spiraling together at just the rate predicted by GR’s theory of gravitational radiation
reaction; the computed and observed inspiral rates agree to within the experimental accu-
racy, which is better than one per cent. In 1993, the Nobel Prize in physics was awarded to
Hulse and Taylor for their discovery. This is a great triumph for Einstein’s theory, however
it is not a firm proof that GR is correct in all aspects. Other relativistic theories of gravity
(i.e. compatible with special relativity) also predict the existence of GWs; and some of
them predict the same inspiral rate for PSR 1913+16 as GR, to within the experimental
accuracy [4, 5].

The emission of detectable GWs is related to catastrophic, high-energetic events in the
Universe, such as supernovae explosions, compact binary coalescences (CBCs), rapidly
spinning NSs or even the Big Bang. Some of these events have already been observed
through their electromagnetic emission; although if we compare the energy emitted as
GWs to the electromagnetic counter-part, it turns out that the gravitational radiation
luminosity is many order of magnitudes larger. The reason behind is because spacetime is
a very “stiff” medium, i.e. large amounts of energy are carried by GWs of small amplitude.
This fact can be easily seen, for instance, considering one among the most promising sources
for GW detectors [it is also the source considered in all the studies of this thesis], which
is the (similar mass) compact binary coalescences (CBCs), including from stellar-mass
compact systems (NSs and BHs), up to supermassive black holes (SMBHs). Within the
Newtonian approximation, the GW luminosity (or “flux”), Fgw, and amplitude, agw, can

3



4 Chapter 1: Introduction

be written as [6]

Fgw, n =
32c5

5G
ν2v10 and |agw, n| = 4

νM

DL
v2 , (1.1)

whereG and c are the gravitational constant and speed of light, respectively1;M = m1+m2

is the total mass of the system, ν = m1m2
M2 is the symmetric mass ratio, DL is the luminosity

distance to the source and v = (πfM)1/3 is a characteristic speed of the two orbiting
objects. Taking a typical equal-mass (ν = 1/4) BH-BH coalescence (M = 20M�) within
the Virgo supercluster (DL = 30 Mpc) at its last stable orbit, LSO (vlso = 6−1/2), we
obtain a GW luminosity Fgw, n ' 2× 1048 W ' 5× 1021L�, whereas the GW amplitude
(which directly represents the relative length changes induced by the GW) is |agw, n| =

2 |∆L|L ' 5× 10−21. These are typical values for the expected GW sources and they explain
why we have been able to indirectly measure the effect of gravitational radiation in terms
of energy losses, but it is so hard to directly observe them. Notice from Eq. (1.1) that the
GW luminosity of a CBC at the last stable orbit (LSO) is independent of the total mass,
i.e. the power emitted by two stellar-mass BHs is the same as a 107M� − 107M� system;
what is different is the amount of time that such luminosity is held (the time scales of
massive systems are much longer).

Recent years have seen a shift in the technologies used in GW searches, as the first genera-
tion of large GW interferometers has begun operation at, or near, their design sensitivities,
taking up the baton from the bar detectors that pioneered the search for the first direct
detection of GWs. In particular, an international network of ground-based multi-kilometer
scale interferometers is currently operating and fundings are already approved to built
an advanced generation of the current interferometers, which should provide an order of
magnitude improvement in their sensitivity.

The direct detection of GWs will represent a confirmation of the GR’s predictions, but
more importantly, it will open the exciting new field of GW astronomy which will provide
answers to a number of questions in various different areas [7]. In particular, we expect to
get answers to questions for

• Fundamental Physics and General Relativity: What are the properties of GWs? Is
GR the correct theory of gravity, and is it still valid under strong-gravity conditions?
How does matter behave under extremes of density and pressure?

• Astronomy and Astrophysics: How abundant are stellar-mass BHs? What is the cen-
tral engine behind gamma-ray bursts? Do intermediate mass BHs exist? Where and
when do massive BHs form and how are the connected to the formation of galaxies?
How massive can a NS be and how is their interior? What is the history of star
formation rate in the Universe?

• Cosmology: What is the history of the accelerating expansion of the Universe? Were
there phase transitions in the early Universe?

1In most situations throughout this thesis, we shall use so-called geometrized units in which G = c = 1;
however, here they are written explicitly in order to be able to compute quantities in SI units.
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1.1 Gravitational waves

GWs are oscillations of the spacetime propagating away from the source that generated
them as waves at the speed of light. There is an enormous difference [8] between GWs,
and the electromagnetic (EM) waves on which our present knowledge of the Universe is
based, and indeed are these differences what make the information brought to us by GWs
to be very different from (almost “orthogonal to”) that carried by EM waves, i.e. it is
usually said that GW astronomy will be a completely new window to observe the Universe
through.

• EM waves are oscillations of the EM field that propagate through spacetime; whereas
GWs are oscillations of the “fabric” of spacetime itself.

• GWs are produced by coherent, bulk motions of huge amounts of mass/energy and
the wavelengths are comparable to, or larger than, the emitting sources; kilometric
ground-based detectors will observe GW signals within the λ ∈ [10, 105] km range,
whereas the 5 × 106 km long future space antenna will have the observable range
within λ ∈ [106, 109] km; which, in both cases, correspond to the typical size of the
sources. On the other hand, EM waves are almost always incoherent superpositions of
emission from individual electrons, atoms or molecules, with much smaller emission
wavelengths.

• EM waves are easily absorbed, scattered, and dispersed by matter. Despite the huge
amount of energy carried by GWs, they almost do not interact with matter, this
is why it is so hard to detect them, but at the same time this also means that the
information from the emitting source is preserved almost unaltered.

1.1.1 Einstein’s equations for a weak gravitational field

The existence of GWs was a prediction of theory of GR, and from it one can derive the
main (general) properties that characterize them. As an introductory chapter, here we
just present a brief derivation of the main properties of GWs, which are covered in much
greater depth in Refs. [8–12]; this section has been written mainly following Ref. [13].

We shall start by considering a GW as a ‘weak’ perturbation of a flat spacetime, which
can be expressed mathematically as

gαβ = ηαβ + hαβ , (1.2)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric of Special Relativity and |hαβ| � 1
for all α and β. The coordinate system in which the metric components of a ‘nearly’ flat
spacetime can be written as in Eq.(1.2) is not unique. Actually, once it has been identified
a coordinates system in which the metric components can be written in such way, it is
possible to find an infinite family of other coordinates systems that also have the metric
components written as Eq. (1.2); for instance, the Lorentz and gauge transformations are
two changes of coordinates that preserve such general expression. Then, it is possible to
demonstrate2 that in a free space (i.e. Tµν = 0) and making the appropriated coordinate

2Since this is an introductory chapter, we shall not go through all the details needed to finally obtain
the wave equation for hαβ . See Refs. [9, 10] for further details.
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transformations, Einstein’s equations for the propagation of a metric perturbation can be
written as � h̄µν = 0, or in other words,(

− ∂2

∂t2
+∇2

)
h̄µν = 0 . (1.3)

This Equation (1.3) is nothing but a waves equation with a propagation velocity equal to
1 ≡ c, i.e. it is found that the metric perturbations propagate at the speed of light through
free space.

1.1.2 Independent components of hµν

The simplest solution to Eq. (1.3) is a superposition of plane waves, that can be written
as

h̄µν = Re [Aµν exp(ikαx
α)] , (1.4)

where the constant components Aµν and kα are known as the wave amplitude and wave
vector respectively. These two quantities are not arbitrary; instead, they must satisfy some
conditions that shall reduce the number of independent components from 16 to only 2:

• Aµν is symmetric, since h̄µν is symmetric; this immediately reduces the number of
independent components from 16 to 10. Also, it is easy to show that the wave vector,
kα, is a null vector.

• From the Lorentz gauge condition [which has been applied to obtain Eq. (1.3)], it
can also be seen that the wave amplitude components must be orthogonal to the
wave vector: Aµαk

α = 0, reducing the number of independent components from 10
to 6.

• It can be shown [9, 10] that the choice of coordinates that satisfy the Lorentz gauge
is not unique. This provides the freedom to choose a coordinates system in which
h̄µν , and therefore Aµν , can be written in an even more simplified way. In particular,
we shall work with the transverse-traceless gauge3 (TT), where four more amplitude
components are fixed, leaving only 2 independent components.

Hence, after all these considerations and arbitrarily setting the propagation direction of
the GW to be parallel to the z-axis, we have that

h̄(tt)µν = A(tt)
µν cos [ω(t− z)] , (1.5)

where only two amplitude components are independent

A(tt)
µν =


0 0 0 0

0 A
(tt)
xx A

(tt)
xy 0

0 A
(tt)
xy −A(tt)

xx 0
0 0 0 0

 . (1.6)

3With this choice of coordinates, one finds that the trace of Aµν is null, besides that their components
are perpendicular to the wave’s propagation direction (i.e. it is a transverse wave).
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Figure 1.1: Cartoon of the effects that the two independent polarizations of a GW traveling in the
direction perpendicular to the paper sheet produce over an annular distribution of mass. The top panel is
obtained by setting A

(tt)
xx 6= 0 ; A

(tt)
xy = 0 and it corresponds to the ’+’ polarization; whereas in the bottom

panel, we are setting A
(tt)
xx = 0 ; A

(tt)
xy 6= 0, getting the ’×’ polarization. [Diagrams: own production based

on [13]]

1.1.3 Effect of gravitational waves on free particles

We have just obtained a solution to Einstein’s equations for a metric perturbation propa-
gating in free space. Now, we want to understand the effect that a GW produces when it
passes through matter and hence, to understand the significance of the two independent

amplitude components, A
(tt)
xx and A

(tt)
xy , obtained in Eq. (1.5).

A free particle initially at rest, will remain at rest indefinitely. However, ‘being at rest’ in
this context simply means that the coordinates of the particle do not change when a GW
passes through. What will manifest the effect of the gravitational radiation is the change
in the proper distance between two free particles. Hence, the effect of GWs is to modify the
proper distance between two free masses, and indeed the relative length change is directly
related to the perturbation’s amplitude, ∆L

L = h
2 . It is essentially this change in the proper

distance between test particles what GW detectors attempt to measure.

Suppose a GW that passes through a ring of test particles and first assume that A
(tt)
xx 6= 0 ;

A
(tt)
xy = 0, and then assume the opposite case; with this, we shall be able to see the effect

of each of the independent amplitude components of the wave. In Fig. 1.1 we can observe
the time evolution of the system in each case, the former usually known as ’+’ polarization
and the latter as ’×’ polarization. Hence, in general any GW propagating along the z-axis
can be expressed as a linear combination of two independent polarization states,

h = h+e+ + h×e× , (1.7)

where h+ and h× are the two independent components of the GW, and e+ and e× are the
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polarization tensors

e+ ≡


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ; e× ≡


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (1.8)

We can see from the panels in Fig. 1.1 that the distortion produced by a gravitational
wave is quadrupolar. Moreover, at any instant, a GW is invariant under a rotation of 180◦

about its direction of propagation4 and the two independent polarization states can be
seen as inclined 45◦ with respect each other. Putting all pieces together5 is consistent with
the fact that a hypothetical graviton particle (which it is, as yet undiscovered, since we do
not have a fully developed theory of quantum gravity) must be a spin S = 2 particle.

1.1.4 Production of gravitational waves

In order to study the propagation of GWs in the vacuum, we have made use of the weak
field approximation, besides assuming the energy momentum tensor to be null; and under
these assumptions we have been able to find an analytical expression for the propagation of
a metric perturbation. Difficulties appear when one is interested in studying the production
of GWs, since now one has to describe the metric close to the compact source, where the
weak field approximation is not valid. In the best scenario, it will not be necessary to
solve the full Einstein’s equations, instead it could be enough by making post-Newtonian
(PN) approximations; however, in a number of problems one will have to solve Einstein’s
equations numerically.

A crude estimation of orders of magnitude and dominant contributions to the luminosity
emitted by a source as gravitational radiation, can be done [13] by drawing analogies with
the formulae that describe electromagnetic radiation in terms of the multipolar expansion,
but replacing e2 ↔ −m2, in order to go from electrostatic’s Coulomb force to Newton’s
law6.

• In electromagnetic theory, the dominant form of radiation from a moving charge is
the electric dipole radiation, whose luminosity (or “flux”) is given by

Felectric dipole = (2/3) d̈2 ,

where d is the dipole moment and the dots denote time derivatives. The gravitational
analogue of the electric dipole moment is the mass dipole moment, summed over a
distribution of particles, {Ai}

d =
∑
a

maxa .

4By contrast, an electromagnetic wave is invariant under a rotation of 360◦, and a neutrino wave is
invariant under a rotation of 720◦.

5In general, the classical radiation field of a particle of spin, S, is invariant under a rotation of 360◦/S,
besides that the different polarization states are inclined to each other at an angle of 90◦/S.

6This procedure treats gravity as vectorial field instead of a tensorial fields, but it is good enough for
our present purposes.
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Now, we realize that the first derivative of the mass dipole moment is the total linear
momentum of the system, ḋ = p. Since the linear momentum is conserved, it follows
that there can be no mass dipole radiation from any source.

• The next strongest types of electromagnetic radiation are magnetic dipole and electric
quadrupole radiation. The magnetic dipole radiation is proportional to the second
time derivative of the magnetic dipole, µ̈. As before, its gravitational analogue also
corresponds to a preserved quantity, in this case the total angular momentum

µ =
∑
a

ra × (mva) = J ,

hence, there is no radiation either; in other words, there can be no dipole radiation
of any sort from a gravitational source.

• In order to find the first not null contribution to gravitational radiation, one must
consider the quadrupole term. The emitted luminosity predicted by electromagnetism
is

Felectric quadrupole =
1

20

...
Qjk

...
Qjk ,

Qjk ≡
∑
a

ea

(
xajxak −

1

3
δjkr

2
a

)
.

And the gravitational analogue,

Fmass quadrupole =
1

5

〈 ...
J (TT )
jk

...
J (TT )
jk

〉
, (1.9)

J (TT )
jk ≡

∑
a

ma

(
xajxak −

1

3
δjkr

2
a

)
=

∫
ρ

(
xjxk −

1

3
δjkr

2

)
d3x , (1.10)

where J (TT )
jk is known as the reduced quadrupole moment, the factor 1/5 that appears

instead of the 1/20 is due to the tensorial nature of the gravitational field and “〈·〉”
denotes the average over several periods of the source.

We see from these results that a perfectly axisymmetric object rotating around its sym-
metry axis will not emit GWs, as its quadrupole moment is constant in time. Only objects
with some sort of axial asymmetry (even if it is small) will produce gravitational radiation.
This means that not all the objects in the Universe are candidates to be GW sources, only
stellar-core collapses, CBCs, rapidly spinning NSs, the Big Bang. . . (see Fig. 1.2). We
shall discuss more about astronomical GW sources in Sec. 1.2.

1.2 Astronomical gravitational wave sources

From the wide variety of objects that we find in the Universe, it will be good candi-
dates only those ones being compact, rapidly moving and presenting some sort of axial
asymmetry (see Sec. 1.1.4). This provides a wide range of possible sources, from NSs
(M . 2M� and R ∼ RT ) with very short orbital periods, up to galaxy mergers or even
the Big Bang. In order to estimate the emission frequency of such objects, we can assume
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High frequency sources (ground-based detectors)

Stellar core collapses Stellar-mass binary
(SNs, newborn BH/NS) Pulsars coalescences Stochastic background

Low frequency sources (space-based detectors)

Supermassive black
Galactic binaries EMRIs hole coalescences Stochastic background

Figure 1.2: Artistic representation of some of the expected GW sources in the high and low frequency
bands. [Images: various sources]

that a gravitational-wave (compact) source of mass M cannot be much smaller than its
gravitational radius, 2GM/c2, and cannot emit strongly at periods much smaller than the
light-travel time 4πGM/c3 around this gravitational radius. Correspondingly, the frequen-
cies at which it emits are [8]

f .
1

4πGM/c3
∼ 104 Hz

M�
M

. (1.11)

To achieve a size of order its gravitational radius and thereby emit near this maxi-
mum frequency, an object presumably must be heavier than the Chandrasekhar limit,
i.e. M & 1.44M�. Thus, the highest frequency expected for strong GWs is fmax ∼ 104 Hz.
This define the upper edge of the high-frequency GW band, which spans up to frequencies
20 orders of magnitude smaller than fmax. So, this results into a very wide frequency range,
that is usually divided into different bands depending on the kind of sources and detection
methods used in each case. For instance, Ref. [8] distinguish between the high-frequency
band (f ∼ 104 − 1 Hz), the low-frequency band (f ∼ 1− 10−4 Hz), the very-low-frequency
band (f ∼ 10−7−10−9 Hz) and the extremely-low-frequency band (f ∼ 10−15−10−18 Hz). In
Fig. 1.2 it is shown some of the expected sources in the high-frequency and low-frequency
bands.

High-Frequency band, 1− 104 Hz

The high-frequency band is the domain of Earth-based GW detectors: laser interferometers
and resonant mass antennas. At frequencies below about 1 Hz, the noise produced either
by fluctuating Newtonian gravity gradients (e.g. due to inhomogeneities in the Earth’s
atmosphere which move overhead with the wind) or by Earth seismic vibrations (which
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are extremely difficult to filter our mechanically below ∼ Hz) become very important. In
order to detect waves below this frequency, one must fly the detectors into space.

A number of interesting GW sources fall in the high-frequency band, mainly objects with
masses similar to the Sun:

• the stellar collapse to a NS or BH in our Galaxy (or galaxies nearby). Sometimes,
they trigger supernovae, in which case one could also observe their electromagnetic
counter-parts;

• the rotation and vibration of NSs (pulsars) in our Galaxy;

• the coalescence of NSs and stellar-mass BHs (i.e. M < 1000M�) binaries in distant
galaxies;

• stochastic background generated by vibrating loops of cosmic strings, phase transi-
tions in the early Universe, or even the Big Bang.

Low-Frequency band, 10−4 − 1 Hz

The low-frequency band is the domain of the detectors flown in space, either in Earth
orbit or in interplanetary orbit. In the 1970s, NASA tried to measure the GW effects by
Doppler tracking a spacecraft via microwave signals sent from Earth to the spacecraft
and there transponded back to Earth, although they did not success. Currently, a joint
NASA/ESA project is under development in order to send the Laser Interferometer Space
Antenna (LISA) into space over the next decade (2020+). As we shall see, LISA will be
able to observe a wide variety of sources, some of them located at very high redshifts.
Many of the studies performed during this thesis are related to LISA observations.

The ∼ 10−4 Hz lower edge of this frequency band is defined by expected severe difficulties
at lower frequencies in isolating the spacecraft from the buffeting forces of fluctuating solar
radiation pressure, solar wind and cosmic rays.

The low-frequency band should be populated by GWs from

• short-period binary stars in our own Galaxy, such as main-sequence stars, white-
dwarfs, NSs. . . ;

• white dwarfs, NSs and small BHs inspiraling into massive BHs (M ∼ 3 × 105−
3× 107M�), so-called extreme mass ratio inspirals (EMRIs), in distant galaxies;

• SMBHs coalescences (M ∼ 105 − 109M�);

• it is also expected to observe a low-frequency component of the stochastic background
radiation generated in the early Universe.

Very-Low-Frequency band, 10−9 − 10−7 Hz

In order to detect such very-low-frequency signals, it would be necessary to build detectors
larger than the Solar System, what makes to think in different detection techniques. In
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particular, Joseph Taylor and others suggested to accurately measure the evolution of the
emitting period of several known pulsars located in our own Galaxy over several decades:
the idea behind is that when a GW passes over the Earth, it perturbs our rate of flow of
time and thence the ticking rates of our clocks relative to the clocks outside the wave. The
deviations between the predicted and the observed time of arrivals (TOAs) are known as
the pulsar ‘timing residuals’ and indicate unmodelled effects. In particular, GW signals are
not included in the pulsar timing model, hence, if these residuals are seen simultaneously
in the timing of several different pulsars, then the cause could well be GWs bathing the
Earth.

Unfortunately, the expected signal induced by GWs is small, with typical residuals being
< 100 ns. The TOA precision achievable for the majority of pulsars is ∼ 1 ms and most
pulsars show long-term timing irregularities that would make the detection of the expected
GW signal difficult or impossible [14]. However, a sub-set of the pulsar population, the
millisecond pulsars, have very high spin rates, much smaller timing irregularities and can
be observed with much greater TOA precision (∼ 30 ns).

The recently created International Pulsar Timing Array project [15] combines observations
of millisecond pulsars from both northern and southern hemisphere observatories with the
main aim of detecting GWs in this very-low-frequency band. Given the current theoretical
models, it is likely that these GWs will be detected by pulsar timing experiments within 5−
10 years. The first detections are expected to be of an isotropic, stochastic GW background
created by coalescing SMBH systems [16, 17].

Extremely-Low-Frequency band, 10−18 − 10−15 Hz

GWs in the extremely-low-frequency band should produce anisotropies in the cosmic mi-
crowave background radiation. Thus, these GW signals could be (indirectly) detected by
studying the cosmic microwave background radiation maps obtained with missions like
COBE7, WMAP8 and the on-going PLANCK9.

1.3 Direct detection of gravitational waves (from High- and
Low-Frequency bands)

It is now 50 years since J. Weber initiated his pioneering development of GW detectors
[18] and 40 years since R. Forward [19] and R. Weiss [20] initiated work on interferometric
detectors. Since then, hundreds of experimental physicists have worked to improve the
sensitivities of these instruments, at the same time that theoretical physicists have explored
in detail which GR predictions will be able to be tested with these detectors. The current
sensitivities achieved by the interferometric detectors, place GW science on the verge of
direct observation of the waves predicted by Einstein’s theory of GR and opening the
exciting new field of GW astronomy. It is hoped that the first direct observation of GWs
will be made in the next few years.

7http://lambda.gsfc.nasa.gov/product/cobe/
8http://wmap.gsfc.nasa.gov/
9www.esa.int/planck/
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The aim of this section is to give a very brief introduction to the most relevant properties of
the two most important kind of GW detectors built up to now (cryogenic resonant-mass
detectors and interferometric detectors, these last ones both ground- and space-based),
which are their main noise sources, what are their current sensitivities, future plans. . .

1.3.1 Cryogenic resonant-mass detectors

Following J. Weber’s efforts in the 1960s and after many years of investigations, in 1986
three cryogenic antennas in Stanford, Baton Rouge (ALLEGRO) and at CERN in Geneva
(EXPLORER, built by the University of Rome) operated in coincidence for three months;
and for increasingly longer periods in the following years. Unfortunately, the Stanford
group withdrew from the field, after the untimely death of W. Fairbanks and as a conse-
quence of the damage of their detector during the earthquake of 17 October 1989. However,
two other groups joined the search, the University of Perth in Australia (NIOBI) and the
University of Padova in Italy (AURIGA); and the Rome group designed and assembled
a new generation of resonant detector (NAUTILUS) that used a 3He − 4He dilution re-
frigerator to cool down the 2500 kg aluminum bar to 0.1 K. Thus, in the 1990s and up
to 2006, there was five such resonant-mass instruments around the world [21] working in
cooperation in the so-called, IGEC10 (International Gravitational Event Collaboration).
Currently, both AURIGA and NAUTILUS antennas are still in operation, permanently on
watch in case a supernovae event in our galaxy is detected, covering with their observations
the periods when all other gravitational wave antennas on the world are offline.

A resonant-mass detector (colloquially known as bar) consists of a solid body, usually a
cylinder (though spheres are also being considered) of about 3 meters long and a few tons of
weight that vibrates “considerably” when a GW with a frequency similar to its resonance
passes through. The resonant mass is typically made from an alloy of aluminum, but
some have been made of niobium or single-crystal silicon or sapphire. To control thermal
noise, all the resonant-mass detectors are cryogenically cooled down to temperatures, T ∼
0.1−6 K, depending on the detector. For instance, the ultra-cryogenic detector NAUTILUS
showed a capability of reaching a temperature as low as 0.1 K being equipped with a
3He− 4He dilution refrigerator [22].

In comparison to the interferometric detectors, current resonant-mass detectors are char-
acterized to be sensitive in a narrow frequency band (a bandwidth of about 30 Hz) in the
uppermost reaches of the high frequency band ∼ 103 to 104 Hz, where photon shot noise
debilitates the performance of interferometric detectors. Thus, resonant-mass detectors
have observational frequency windows complementary to the interferometric GW detec-
tors. Current detectors present spectral strain sensitivities of h̃ ∼ 3× 10−21 Hz−1/2, which
corresponds to a conventional (1 ms) amplitude of GW bursts h ∼ 4× 10−19.

Future detectors may reach sensitivities up to h ∼ 10−21, which corresponds to the quan-
tum limit directly obtained from the Heisenberg uncertainty principle. This lower limit in
the sensitivity of the resonant-mass detectors is what propitiated, already 30 years ago,
that most of the efforts in designing and building GW detectors were put on the inter-
ferometers, which have this lower bound much below. Anyway, resonant-mass detectors
have their importance even in the LIGO/Virgo era, since they provide the opportunity to

10http://igec.lnl.infn.it
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Figure 1.3: Basic diagram of an interferomet-
ric detector: four masses (test masses) isolated
from external vibrations, two of them located close
together in the vertex of the ’L’ shaped struc-
ture and the other two at the end of each of
the interferometer’s arms. By studying via inter-
ferometry techniques, the dephasing between the
laser beams that have traveled along each of the
arms, we can obtain precise measures of how the
length difference between the two arms changes
over time. In practice, these “masses” are mirrors
with a reflectivity (for the frequency of the laser
beam) close to 1. [Image: LIGO]

search for GW signals in very high frequency regions, where the interferometer detectors
are not that sensitive.

1.3.2 Interferometric gravitational wave detectors

Given the quadrupolar nature of the gravitational waves (see Fig. 1.1), the best approach to
directly detect such waves would be to monitor the time dependency of the length difference
between two orthogonal directions. With this, since the relative length change produced
by a GW in each direction is ∆L

L = h
2 ; when the GW plane is aligned with the detector’s

plane, we will have Lx = L + ∆L and Ly = L −∆L, hence ∆Larms
L ≡ Lx−Ly

L = 2∆L
L = h.

Moreover, the longer the distance L we are measuring length differences over is, the higher
the sensitivity in measuring GWs, for a fixed ∆L precision, will be.

These arguments made scientists think about the Michelson-Morley interferometer as the
starting design to built alternative (to resonant-mass bars) and more sensitive GW de-
tectors. The basic diagram of an interferometric (ground-based) detector consists in four
masses (test masses) suspended as pendula using seismic isolation systems, distributed
as it is shown in Fig. 1.3 and the corresponding optical system to monitor the separa-
tion between masses. Two masses are located very close together, in the vertex of the ‘L’
shaped structure, whereas the other two are at the end of each interferometer’s arms11.
In ground-based detectors, these “masses” are mirrors with an extremely high reflectivity
and therefore they are already part of the optical system.

To measure the relative length difference of the arms, a single laser beam is split at the
intersection of the two arms (beam splitter mirror). Half of the laser light is transmitted
into one arm while the other half is reflected into the second arm. Laser light in each arm
bounces back and forth between these mirrors (test masses) forming a Fabry-Perot cavity,
and finally returns to the intersection, where it interferes with light from the other arm. If
the lengths of both arms have remained unchanged, then the two combining light waves
should completely subtract each other (destructively interfere) and there will be no light
observed at the output of the detector (photodetector). However, if a GW were to slightly
[assuming h ∼ 10−21 and L = 4 km, then ∆L ∼ 2 × 10−18 m ∼ 1/1000 the diameter of
a proton] stretch one arm and compress the other, the two light beams would no longer

11The arms of the interferometer do not have to be orthogonal, although this is the optimal configuration
and indeed, the one used in all ground-based detectors. However, the future Laser Interferometer Space
Antenna, for design reasons, will have 60◦ arms and it will consist in 6 free masses, instead of 4.
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completely subtract each other, yielding light patterns at the detector output. Encoded in
these light patterns is the information about the relative length change between the two
arms, which in turn tells us about what produced the GWs.

Many things on Earth are constantly causing very small relative length changes in the
arms of the interferometers. These every-present terrestrial signals are regarded as noise.
The goal when designing a GW detector is to reduce this noise contributions to levels
below the expected GW amplitudes and current technology is on the verge of reaching
these levels.

• One of the most important parts in any ground-based GW detector are the seismic
isolation systems. On one hand, there are tiny magnets attached to the back of each
mirror, and the positions of these magnets are sensed by the shadows they cast from
LED light sources. If the mirrors are moving too much, an electromagnet creates a
countering magnetic field to push or pull the magnets and mirror back into position
[this method is not only good for countering the motion of the mirrors due to local
vibrations, but also to counter the tidal force of the Sun and the Moon]. Externally,
there are very sophisticated hydraulic systems that filter out the Earth’s surface
vibrations.

• Also, all the optical components are placed inside a vacuum. On the superficial
level this keeps air current from disturbing the mirrors, but mainly this is to ensure
that the laser light will travel a straight path in the ∼ kilometer arms [notice that
slight temperature differences across the arm would cause the light to bend due to
temperature dependent index of refraction].

• First generation of detectors include an extra mirror between the laser source and
the beam splitter, called power recycling mirror. Its purpose is to coherently re-inject
the fraction of power that the detector is sending back to the laser source and that,
otherwise would be wasted. With this, one gets more power into the detector’s arms
and reduces some of the noise contributions. Also, GEO-600 has been testing a signal
recycling mirror, which has the same purpose as the former, but this one re-injects
a fraction of the power sent to the photodetector. It is planned that Adv. LIGO is
going to incorporate this extra mirror.

• A lot of development has also been done in the laser technology. The laser beam
injected into the arms is previously frequency and amplitude stabilized [a changing
laser frequency would add noise in the output of detector], and also they add some
secondary modes necessary to lock the different Fabry-Perot cavities that are formed
between the mirrors that compose the interferometer.

• Also, there are some on-going investigations towards building cryogenic interfer-
ometric GW detectors, e.g. the japanese Large Cryogenic Gravitational Telescope
(LCGT)12 or the european 3rd generation GW interferometer project, called Einstein
Telescope (ET).

Current and future interferometric GW detector projects are (see also, Fig. 1.4):

12http://tamago.mtk.nao.ac.jp/spacetime/lcgt e.html
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LIGO Hanford observatory Einstein Telescope (ET) LISA

Figure 1.4: Pictures (or artistic representations) of some interferometric GW detectors. [Images: institu-
tional web pages]

• The Laser Interferometer Gravitational-wave Observatory (LIGO) consists in three
detectors, two colocated interferometers (with 2 km and 4 km arms, respectively) in
Hanford (WA) and another 4 km detector in Livingston (LA). Currently they are the
most sensitive GW detectors in the world and they were operating in science mode
up to Oct. 2010, when it concluded the sixth science mode run, called ‘S6’. Since
that date, all scientists and engineers are working on the implementation of what
will be the second generation of GW interferometric detectors, so-called Adv. LIGO.
Some of the enhancements of this new generation (like the output mode cleaner and
higher power mode) have been already tested during this very last science run, but
now much greater updates are being implemented. Adv. LIGO is expected to be
operational in about 4 years, with an improvement of almost an order of magnitude
in sensitivity, i.e. a factor 1000 in observable volume.

• The Virgo detector is the result of a french-italian collaboration and consists in a 3 km
interferometer located in Cascina (Italy). In general, the sensitivity of this detector is
a little bit worse than LIGO; however it has a more sophisticated suspension system
that provides better sensitivity at lower frequencies, where the inspiral signals from
CBCs within the Virgo supercluster are located. During the last decade, the network
LIGO-Virgo have been the most sensitive GW detectors in the world, and they have
tried to collaborate and have ‘science mode’ time in coincidence. Indeed, some years
ago the two scientific collaborations joined efforts creating the LIGO-Virgo Scientific
Collaboration. As in LIGO, Virgo is currently being upgraded to Adv. Virgo; also
an order of magnitude of improvement in sensitivity is expected from this second
generation detector.

• GEO-600 is a 600 m detector built as a collaboration between the United Kingdom
and Germany. The detector is located in Hannover (Germany) and, although it can
not compete with LIGO or Virgo, it has been used as a test bank for the technology
[mainly in collaboration with the LIGO Scientific Collaboration (LSC)] that, then,
is going to be implemented in the next generation of detectors. For instance, GEO-
600 has been running with a high power laser, output mode cleaner, signal recycling
mirror, monolithic suspensions and electrostatic test mass actuators [23]; that now
are planned to be installed in Adv. LIGO and Adv. Virgo. The future plans for
this detector is to improve its sensitivity curve with further experimental upgrades
in what will be GEO-HF, such as the tuned signal recycling and DC readout, the
implementation of an output mode cleaner, the injection of squeezed vacuum into the
anti-symmetric port, the reduction of the signal recycling mirror reflectivity and a
power increase. In comparison with its contemporary detectors (Adv. LIGO and Adv.
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Virgo), GEO-HF will be focused in improving its sensitivity in the high frequency
range.

• TAMA-300 is a 300 m interferometric japanese project built in the city of Tokyo. For
many years it was the most sensitive GW detector in the world, but now it is used
just as a bank test for the extremely ambitious project of building an underground,
cryogenic GW detector, the LCGT project.

• AIGO is an australian prototype for a GW detector. Currently, the most likely next
step will be to build an exact replica of one of the LIGO interferometers in Australia.
This is the cheapest solution and adding these new detector to the current network
would significantly increase the network’s sky resolution.

• Einstein Telescope (ET)13 is the european project to build a third generation GW
detector. GEO and Virgo members [and other european institutions] have joined
efforts in designing what should be the new generation of GW interferometric detec-
tors, possibly underground and using cryogenic techniques. Currently, ET is in its
design phase, but it is receiving a lot of attention from all the european GW scientific
community. Its design sensitivity should be an extra order of magnitude below the
advanced detectors noise curves.

• The Laser Interferometer Space Antenna (LISA) is the most ambitious project to
built an space-based interferometric GW detector to observe the Low-Frequency
band. The technology needed for this project is so demanding, that the two most
important space agencies, NASA and ESA, have joined their efforts to built LISA.
It will consist in a constellation of 3 free-falling spacecrafts forming an equilateral
triangle of 5× 106 km long each edge, and following the Earth in its motion around
the Sun, about 20◦ behind. The orbits have been designed in such a way that the
triangle constellation will also rotate 360◦ around its center every time it completes
an orbital cycle around the Sun (i.e. every year), by doing this, the detector obtains
more angular resolution. Although the main working principle of LISA is the same
as in the ground-based interferometers, the length of its arms (≈ 16.7 light-seconds),
the fact that each spacecraft can have its own independent movement besides the
effect of GWs and the impossibility of repairing anything once it has been launched
into space, make LISA’s design much more complicated. The expected launch date
of LISA is in 2020+, although in order to test the feasibility of its technology a
precursor mission fully managed and funded by European Space Agency (ESA),
LISA Pathfinder, is being launched in 2012.

• As a follow-on mission to LISA, the Big Bang Observer (BBO) is proposed to NASA
as a Beyond Einstein mission, targeted at detecting stochastic gravitational waves
from the very early universe in the band 0.03 Hz to 3 Hz [7]. BBO will also be sensitive
to the final year of binary compact body (NSs and stellar-mass BHs) inspirals out
to z < 8, mergers of intermediate mass black holes at any redshift, rapidly rotating
white dwarf, explosions from Type 1a supernovas at distances less than 1 Mpc and
< 1 Hz pulsars.

• While BBO is seen as a successor to LISA in the US and Europe, the DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese
space gravitational wave antenna [7]. The goal of DECIGO is to detect GWs from

13http://www.et-gw.eu/
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various kinds of sources mainly between 0.1 Hz and 10 Hz. The current plan is
for DECIGO to be a factor 2-3 less sensitive than BBO, but for an earlier launch.
DECIGO can play a role of follow-up for LISA by observing inspiral sources that
have moved above the LISA band, and can also play a role of predictor for terrestrial
detectors by observing inspiral sources that have not yet moved into the terrestrial
detector band. In order to increase the technical feasibility of DECIGO before its
planned launch in 2024, the Japanese are planning to launch two milestone missions:
DECIGO pathfinder and pre-DECIGO.

An important difference of the GW detectors in comparison to standard electromagnetic
telescopes is that the former are omnidirectional, i.e. with a single strain time series h(t),
we observe overlapped signals coming from any direction in the sky. The advantage is that
we are always making all-sky observations and therefore we will not miss any event because
of ‘not pointing’ at the right sky location. However, this also implies some disadvantages,
in particular, the sky resolution of GW detectors will be very poor compared to any
electromagnetic telescope; and also it can be a problem to observe too many overlapped
signals, which can even be indistinguishable becoming an extra source of noise (e.g. this
is case of galactic binaries with the LISA detector).

The angular resolution in GW detectors is basically given by three effects: (i) the time-
delay in observing an event from distant locations (this implies having several detectors
working in coincidence); (ii) the Doppler effect14 due to the relative motion of the detector
with the respect to the source and (iii) the anisotropic sensitivity of the GW detectors
(see, for instance, Fig. 2.2). Any of these effects require either long observation times so
that the velocity and orientation of the detector have substantially changed during the
observation, or the simultaneous observation of the same event with several detectors well
separated one from each other; a ‘burst’ signal observed by a single GW detector will imply
an unknown sky location. For these reasons, it has been built a network of ground-based
detectors located all over the world that work collaboratively in order to accumulate the
most coincidence observational time as possible. For the case of LISA, most of the expected
sources are long-lived sources in the LISA band and therefore, the yearly motion of the
detector around the Sun will provide a good sky resolution. For instance, in Fig. 1.5
we show the same inspiral signal from a 106M� − 107M� SMBH coalescence at different
locations, observed by LISA during the last year of inspiral phase; we see how the amplitude
modulations clearly allow one to localize long-lived GW signals. The Doppler shift, on the
other hand, can not be measured from signals in the Low-Frequency band since the typical
Doppler frequency shifts, ∆f = f vc , are smaller than the frequency resolution provided by
the observational time, δf = 1/Tobs.

In comparison to the resonant-mass detectors, the interferometers are wide-band detectors.
In particular, the km-scale ground-based detectors will cover the High-Frequency band
(1− 104 Hz) of GW sources, whereas the space missions (such as LISA) will be observing
signals from the Low-Frequency band (10−4−10−1 Hz) of the GW spectrum. The ground-
based detectors that have been in operation up to this date (first generation), have reached
spectral sensitivities15 of

√
Sn ∼ 3 × 10−23 Hz−1/2, and if one considers the LIGO-Virgo

network, the expected detection rates for NS-NS systems is 0.02 yr−1 [24]. Currently, the

14Actually, given the frequency resolution and typical velocities of the detectors, only the signals in the
High-Frequency band will produce measurable frequency shits, since ∆f = f v

c
.

15See a proper definition of the noise power spectral density in Sec. 3.1.
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Figure 1.5: Time-domain waveforms observed
by LISA from a SMBH binary system of 106M�−
107M� at redshift z = 1 during the last year of
the inspiral phase before the last stable orbit (in-
stant of time where we set t = 0). The three dif-
ferent curves represent the same source located at
different position in the sky, which clearly shows
the effect of the amplitude modulation in the ob-
served signals due to the anisotropic sensitivity of
the LISA detector. [Plot: own production]

new generation of ground-based detectors is being implemented and we expect them to
be operational by 2015; the expected spectral sensitivities of such advanced detectors is√
Sn ∼ 4× 10−24 Hz−1/2 [24], i.e. a factor almost 10 of improvement in comparison with

the first generation, which directly translates into a factor 10 of increase in the horizon
distance and therefore a factor 103 in ‘observable volume’. The (likely) expected events
rates for the Advanced LIGO-Virgo network for the same NS-NS systems is 40 yr−1 [24].
Finally, let us say that a third generation of GW interferometric is current in the designing
phase, and for instance, the expected sensitivity for ET is

√
Sn ∼ 3× 10−25 Hz−1/2 [25].

1.4 Compact Binary Coalescences

Among the different potential sources for interferometric GW detectors, compact binary
coalescences (CBCs) in the Universe are the most promising ones, both in terms of scientific
results and detectability, given the wide range of masses and distances that can be observed.
Ground-based detectors will observe NSs and stellar-mass BHs binary mergers (i.e.: the last
phase of the coalescence) at any point of the Virgo Supercluster, including the Local Group
and therefore the Milky Way. On the other hand, space-based detectors are sensitive to a
lower frequency band and therefore will observe mergers of SMBHs (more than 105 M�)
at any place in the Universe; besides tens of thousands of stellar-mass binaries located in
our Galaxy that are in an early stage of their coalescing evolution, slowly inspiraling one
around each other. See Sec. 3.5 for further details.

In order to detect all the signal-to-noise ratio (SNR) and to extract reliable physical
information from GW observations, an accurate representation of the dynamics of the
source and its emitted gravitational waveform is needed. The coalescence of a compact
binary can be divided into three successive phases according to its dynamics: (i) an initial
adiabatic inspiral phase where the emitted gravitational waveform is a chirping signal (i.e.:
frequency and amplitude slowly increasing over time) that can be analytically described as
a PN expansion; (ii) when the two objects are very close together, the velocities become
relativistic, the energy emitted importantly increases and the process is not adiabatic
anymore (merger phase); thus, full GR equations must be solved in order to provide a
faithful representation of the dynamics; finally, after the merger, (iii) the resulting excited
Kerr BH will settle down (ring-down phase) by emitting gravitational radiation analytically
described as a superposition of quasi-normal modes.
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It is known that the extremely long inspiral process that precedes the ‘visible’ (most
energetic) final stages of the evolution (late inspiral, merger and ring-down), tends to
circularize the orbits [26, 27]. This is the reason why one normally expects to find circular or
quasi-circular orbits in Nature. Only recent catastrophic events near the CBC, three-body
interactions or highly spinning compact objects can break this quasi-circular condition
[28–30]. In this thesis, we shall always assume circular orbits.

Also, we shall consider the particular case of non-spinning black holes (BHs) [or compact
starts with negligible effects coming from their equation of state]. Although this represents
a restriction with respect to what is expected to be found in the Universe, the current ‘state
of the art’ on source modeling is well-stablished for non-spinning BHs but it just starts
being developed for spinning compact objects with possible presence of matter. Some of
our future plans are related to the extension of the analyses performed in this thesis to
the more general case of spinning BHs or NSs with different equations of state.
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Chapter2
Observed gravitational signals:
from source emission to detected
signals

From the source simulation point of view, GWs are small perturbations of the surrounding
metric space that move away from the source, traveling at the speed of light. Along its
way between the source and the observer, the intensity carried by the GWs will obey an
inverse-square law (the emitted wavefront can be considered to be spherical) and, as with
all radiation fields, the amplitude of the GWs falls off as D−1

L far from the source [1]. Once
the gravitational wavefront reaches the observer (in our case an interferometric detector),
it modifies the metric of the surrounding space producing changes in the relative length
difference of the two interferometer arms, which can be measured with extremely good
accuracy making use of interferometric techniques.

The conversion process between the metric perturbation in the source frame and the
measured wave-induced relative length changes of the two arms, despite being based on
simple and well stablished spherical harmonics decomposition, coordinates transformations
and matrix projections; it contains some subtleties and convention elections that may be
relevant for any work related with GW data analysis. For this reason, we consider very
important to, at least once, carefully study and fully understand the whole process from
beginning to end. Indeed, this is the main purpose of the present chapter, where we will
consider the particular case of CBCs.

Following this idea, this chapter has been organized in four sections, where we shall start
from the raw output of a numerical simulation, this is, the Regge-Wheeler and Zerilli

functions, Ψ
(o)
`m and Ψ

(e)
`m; in order to then, add their corresponding angular dependence

in form of spin-weighted spherical harmonics (see Sec. 2.1); followed by their projection
into the detector’s arms (Sec. 2.2). Since we are interested in data analysis studies, we
shall write the final expression for the measured GW strain in its most compact form, as
a simple superposition of (co)sinusoidal functions of the different GW phase harmonics

23
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(Sec. 2.3). The following diagram schematizes the derivation process that we shall follow:{
Ψ

(o)
`m,Ψ

(e)
`m

}
Sec. 2.1−−−−−−→ {h+, h×} Sec. 2.2−−−−−−→ h(t) [formal]

Sec. 2.3−−−−−−→ h(t) [useful] .

Finally, in Sec. 2.4 we shall study some residual gauge-freedom in the measured GW strain,
h(t), that may create (exact or approximated) degeneracies between different regions in
the parameter space. If they are exact, we should be able to restrict the parameter space
and avoid exploring equivalent regions [this is indeed very useful in ‘blind’ searches, where
one has to explore the whole parameter space]; in case they are merely approximated or
valid in limit cases, then we won’t be able to reduce the parameter space volume, but,
in any case, the knowledge about their existence will help us to increase the efficiency of
Markov chain Monte Carlo searches (see Chapter 6).

Throughout this chapter, we have been very careful trying to always write the explicit
dependencies of the different quantities as they appear during the derivation process. If
a certain quantity is time-dependent, it is denoted by a t or τ , depending on whether
one is talking about the coordinate time t or the proper time at the source’s reference
frame τ , followed by a semicolon and the list of physical parameters it depends on,
e.g. an = an(τ ;λsrc). This should help the reader to keep track of where the dependencies
on different parameters come from.

2.1 Emitted gravitational wave signals from compact bina-
ries

We consider a GW signal traveling through the space in the −N̂ direction and generated by
a rotating system with angular momentum, L. In this notation, N̂ stands for the unitary
vector from the detector to the source (i.e. representing the source sky location), and
L̂ shall represent an unitary vector parallel to L (see Fig. 2.1). Let us denote the angle
between the angular momentum and the propagation direction of the GW as ι, that can
be univocally obtained by the following two scalar expressions:

cos ι = −L̂ · N̂ , sin ι = |L̂× N̂| (2.1)

Notice that sin ι is positive defined and therefore ι ∈ [0, π]. The other spherical polar angle
that univocally determine the −N̂ vector measured in the source reference frame (i.e. the
z axis parallel to the angular momentum, L, and x − y containing the orbital plane) is
β, which is measured over the orbital plane from an arbitrary, but fixed, direction in this
frame.

All the potential GW sources considered both for ground-based and space-based detectors
are far enough to neglect parallax effects due to the motion of the detectors around the
Sun and therefore, N̂ will be constant. On the other hand, fast rotating systems can
have precessing orbital planes in the observational time scale (specially, if one considers
spinning compact objects, where the PN coupling between the bodies’ spins and their
orbital angular momentum undergoes Lense-Thirring precession [2, 3]) and in these cases,
L̂ would be variable over the observation time. Thus, ι and β may not be constant for
some cases, although they are going to be in all the particular cases considered in this
thesis.
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In general, when solving the dynamics of a CBC, given the spherical symmetry of the
background metric space, the metric perturbations, h, can be expanded [4, 5] in multipoles
of odd or even parity according to their transformation properties under parity [this is,
(ι, β)→ (π− ι, π+ β)], leaving all the angular dependency for the spin-weighted spherical
harmonics. Concretely, the emitted GW signal can be written in terms of the Regge-
Wheeler and Zerilli functions, Ψ(o) and Ψ(e) respectively, which can be expanded in the
following way [4, 5]:

h+ − ih× =
1

DL

∞∑
`=2

∑̀
m=−`

√
(`+ 2)!

(`− 2)!

(
Ψ

(e)
`m(τ ;λsrc) + iΨ

(o)
`m(τ ;λsrc)

)
−2
Y `m(ι, β)

≡
∞∑
`=2

∑̀
m=−`

h`m(τ ;λsrc) −2Y
`m(ι, β) . (2.2)

In this previous expression, h(+,×) ≡ h(+,×)(τ ;λsrc, ι, β), where λsrc = {m1,m2, DL, spins . . .}
are the source physical parameters and DL the luminosity distance. Moreover, −2Y

`m(ι, β)
are the (s = −2) spin-weighted spherical harmonics [5, 6] (see also Sec. 2.1.1) and h`m
are simply the spin-weighted spherical harmonic components, as they are defined in [4].
Finally, let us notice that the sum over ` starts at ` = 2, because we are only focused
on the radiative degrees of freedom of the perturbation; it turns out that the monopole
component of the metric for a vacuum perturbation (` = 0) represents a variation in the
mass-parameter of the Schwarzschild solution, whereas the dipole component (` = 1) can
be removed either by means of a suitable gauge transformation (when it has even parity) or
by introducing an angular momentum onto the background metric (for odd-parity metric
perturbations).

2.1.1 Spin (s = −2) weighted spherical harmonics

The analytical expressions to compute the (s = −2) spin-weighted spherical harmonics in
terms of the scalar spherical harmonics are given, for instance, by Nagar and Rezzolla [5]
in terms of the standard scalar spherical harmonics:

−2Y
`m(ι, β) ≡

√
(`− 2)!

(`+ 2)!

(
W `m(ι, β)− iX

`m(ι, β)

sin ι

)
, (2.3)

where

W `m(ι, β) ≡ ∂2
ι Y

`m − cot ι ∂ιY
`m − 1

sin2 θ
∂2
βY

`m (2.4)

X`m(ι, β) ≡ 2
(
∂2
ιβY

`m − cot ι ∂ιY
`m
)
, (2.5)

Y `m ≡ Y `m(ι, β) being the standard scalar spherical harmonics and ∂xf(x) representing
the partial derivative of the function f(x) with respect to the variable x. While these
expressions can easily be reproduced with straightforward algebra, they are tedious to
derive and hard to find in the literature; for these reasons we have decided to include
their explicit expressions in Table 2.1. By combining two symmetry properties of the
general spin-weighted spherical harmonics: sY

`m ∗ = (−1)s+m−sY
`−m and sY

`m(π− ι, π+
β) = (−1)`−sY

`m(ι, β) and fixing s = −2, we can relate the ±m modes through a parity
transformation:

−2Y
`−m(ι, β) = (−1)`+m−2Y

`m ∗(π − ι, π + β) , (2.6)
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where the asterisk denotes complex conjugate.

For instance, the particular explicit expressions for the (`,m) = (2,±2) spin-weighted
spherical harmonics read

−2Y
22(ι, β) =

1√
4!

ei2β√ 15

32π
(3 + cos 2ι)− i

iei2β
√

15
8π sin 2ι

sin ι


=

1

16

√
5

π
ei2β (3 + cos 2ι+ 4 cos ι)

=
1

2

√
5

π
cos4 ι

2
ei2β (2.7)

and

−2Y
2−2(ι, β) = −2Y

22 ∗(π − ι, π + β) =
1

2

√
5

π
sin4 ι

2
e−i2β . (2.8)

The rest of the (s = −2) spin-weighted spherical harmonics (up to ` = 6) are listed in
Table 2.1.

2.1.2 General expression for h+ and h×

In this thesis we consider non-spinning compact objects coalescing in near circular orbits.
For these systems, Kidder [4] makes use of the fact that the mass [current] multipoles only
contribute to components with `+m even [odd], together with other symmetry properties
to determine the relation between the h`m and h`−m components,

h`−m = (−1)`h∗`m . (2.9)

Moreover, one can, in general, write the (spin-weighted) spherical harmonic components
of the gravitational emission, h`m, as a complex amplitude times a complex exponential
function of the (minus) m-th harmonic of the orbital phase [4]. This is,

h`m ≡ (hR`m + ihI`m)e−imφorb (2.10)

h`−m = (−1)`h∗`m = (−1)`(hR`m − ihI`m)e+imφorb , (2.11)

where h
(R,I)
`m ≡ h

(R,I)
`m (τ ;λsrc) are real quantites; φorb ≡ φorb(τ ;λsrc) is the orbital phase

of the binary and we have used Eq. (2.9) to obtain the general expression for h`−m. We
refer the reader to Ref. [4] for the explicit expressions of h`m as a PN expansion up to the
maximum known PN order.

Comment on the way to proceed and its alternative

At this point, it is important to notice that we could proceed in two different ways. From
Eq. (2.10), we have h`m = (hR`m + ihI`m)e−imφorb , consisting in a complex amplitude that
depends on the particular (`,m) mode that one is considering, and a real phase independent
of ` and with a trivial dependency on m. On the other hand, one might be interested in
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Table 2.1: (s = −2) spin-weighted spherical harmonics, −2Y
`m ≡ −2Y

`m(ι, β), up to ` = 6, obtained from
the explicit expression Eq. (2.3). The harmonics with m < 0 can be obtained from these ones, making use
of Eq. (2.6).
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having a real amplitude and phase values, but adding the (`,m) dependency also to the
phase:

h`m = |h`m|e−iε`m , (2.12)

where

|h`m| ≡
√

(hR`m)2 + (hI`m)2 , (2.13)

ε`m ≡ mφorb − arctan
(
hI`m
hR`m

)
. (2.14)

In this thesis we shall proceed using Eq. (2.10) since, indeed, we shall make use of its trivial
phase dependency with {`,m}, but it is important to notice that in a different context, it
might be more useful to proceed with the other generic way (2.12) of writing things.

Dominant (2, 2) mode

By combining Eqs. (2.6) and (2.10)-(2.11) and introducing them into (2.2) we shall obtain
below the generic expressions for h+ and h×, but before doing this and for pedagogical
reasons, let us start first deriving results for the dominant (` = 2,m = ±2) modes [usually
referred to them just as the (2,2) mode]. Thus, we proceed by introducing the explicit
expressions of the spin-weighted spherical harmonics for these modes [Eqs. (2.7)-(2.8) and
(2.10)-(2.11)] into Eq. (2.2),

h+ − ih× = h22(τ ;λsrc) −2Y
22(ι, β) + h2−2(τ ;λsrc) −2Y

2−2(ι, β)

=
1

2

√
5

π

[
(hR22 + ihI22)e−i(2φorb−2β) cos4 ι

2
+ (hR22 − ihI22)ei(2φorb−2β) sin4 ι

2

]
,

and, after some basic algebra one can finally get

h+(τ ;λsrc, ι, ��β) =
1

2

√
5

π

(
1 + cos2 ι

2

)[
hR22 cos(2φorb − 2β) + hI22 sin(2φorb − 2β)

]
,

h×(τ ;λsrc, ι, ��β) =
1

2

√
5

π
cos ι

[
hR22 sin(2φorb − 2β)− hI22 cos(2φorb − 2β)

]
, (2.15)

where we recall the explicit dependencies, h
(R,I)
22 ≡ h(R,I)

22 (τ ;λsrc) and φorb ≡ φorb(τ ;λsrc).
Notice that, since we are considering a m = 2 mode, the GW signal contains the second
harmonic of the orbital phase, always combined with the spherical angle measured over
the orbital plane, β, in the same way. We shall see that this is satisfied in the general case
and, since the (2, 2) mode is the one carrying most of the GW energy1, this is why

φgw(τ ;λsrc, ��β) ≡ 2φorb(τ ;λsrc)− 2β (2.16)

is usually defined as the GW phase, and the only dependency of the measured GW signal
with the angle β can be absorbed with the arbitrary initial orbital phase, namely φ0 ≡
φgw(t = 0), if we assume β to be constant. For this reason, we represent the β-dependency
of φgw as ‘��β’. Note in (2.16) the factor 2 with respect to the orbital phase; which shall
also be present when one talks about the GW frequency, F ≡ φ̇gw/(2π), being twice the
orbital frequency [when β is constant].

1At least, for non-spinning sources in quasi-circular orbits.
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For many data analysis purposes, it is enough to just consider the dominant (2, 2) mode
of the spherical harmonic decomposition and, as a matter of fact, one, normally, only
considers the leading order from the PN expansion of h22, obtaining what is usually called
restricted post-Newtonian approximation. Under this approximation, the GW amplitude
turns out to be,

hR22(τ ;λsrc) = 2

√
π

5
an ; hI22(τ ;λsrc) = 0

[where the subscript ‘N’ stands for ‘Newtonian’, as the leading order in the PN expansion],
whereas the GW phase, φgw, incorporates all the known PN corrections. The use of the
restricted PN approximation is justified in a number of cases, since it simplifies significantly
the expression of the gravitational waveform while keeping all the PN corrections to the
phase, which is the most sensitive quantity when describing long GW signals, as any
dephasing error is accumulated over many cycles. However, as we shall see in Chapter 4,
in some cases the inclusion of full information from all the modes may significantly improve
the detection and, specially, the parameter estimation of GW signals. The reason behind
this fact is rather not because of adding PN corrections to the amplitude of the dominant
harmonic, but because of adding contributions to higher harmonics of the signal [to 3forb,
4forb, . . . ] which (despite being subdominant) increase the richness of the waveform.

With this, in the restricted PN approximation, the GW signal observed from the Solar
System Barycenter (SSB) takes the following simple form:

h+(τ ;λsrc, ι) =

[
1 + cos2 ι

2

]
an cosφgw ,

h×(τ ;λsrc, ι) = [cos ι] an sinφgw . (2.17)

In general, all quantities may change over time, although in the case of short-lived, non-
precessing binaries, the angle ι will be constant and therefore, the time dependence will
come from an = an(τ ;λsrc) and φgw = φgw(τ ;λsrc) in the form of a chirping signal, i.e. a
sinusoidal signal with amplitude and frequency increasing with time (see Chapter 3 for
further details).

Looking at the leading order in the PN expansion for h22, e.g. in [4], we obtain that

an(τ ;λsrc) = −4
νM

DL
v2 , (2.18)

where M = m1 + m2 is the total mass of the system, ν = m1m2
M2 is the symmetric mass

ratio, DL is the luminosity distance to the source and v = (πfM)1/3 is a characteristic
velocity of the two orbiting objects which also has the role of a PN expansion parameter.
Here we keep an explicit negative sign coming from the second derivative of a complex
exponential function.

Including all (`,m) modes

Let us now consider the most general case, where all the spherical harmonic components are
included in the gravitational waveform. Formally, this calculation is equivalent to what we
have done previously to obtain Eq. (2.15) and indeed the first thing that we shall consider
is the relation between the h`±m components given by (2.9). Moreover, we notice that any
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of the (s = −2) spin-weighted spherical harmonics listed in Table 2.1 can be generally
written as

−2Y
`m(ι, β) = −2Y

`m(ι, 0)eimβ (2.19)

where −2Y
`m(ι, 0) is always a real quantity2; therefore, making use of (2.6),

−2Y
`−m(ι, β) = (−1)` −2Y

`m(π − ι, 0)e−imβ . (2.20)

With these results, we can expand the expression given in Eq. (2.2) and in particular, we
shall write the contribution from a particular ` and ±m 6= 0 (both signs) values as

−2Y
`m h`m + −2Y

`−m h`−m = [hR`m + ihI`m] −2Y
`m(ι, 0)e−im(φorb−β) (2.21)

+(−1)2`[hR`m − ihI`m] −2Y
`m(π − ι, 0)eim(φorb−β) ,

and taking into account that ` is an integer number and doing some basic algebra, one
finally obtains the following result:

(2.21) = S`m(ι)
(
hR`m cos[m(φorb − β)] + hI`m sin[m(φorb − β)]

)
−i D`m(ι)

(
hR`m sin[m(φorb − β)]− hI`m cos[m(φorb − β)]

)
, (2.22)

where the real functions S`m(ι) and D`m(ι) have been defined as(S`m
D`m

)
(ι) ≡ −2Y

`m(ι, 0)± −2Y
`m(π − ι, 0) , (2.23)

with S standing for ‘sum’ and D for ‘difference’. Given the explicit expressions of the spin-
weighted spherical harmonics in Tab. 2.1, it is straightforward to obtain the analytical
expressions of these two functions too (see Table 2.2 for the expressions up to ` = 6).

Equation (2.22) is nothing but a generalization, for arbitrary (`,m) values, of the re-
sult presented above [Eq. (2.15)] for the (2, 2) mode. All the (m-th) modes contribute as
(co)sinusoidal functions of m

2 φgw, so all the dependency on the angle β [we recall that
it is an angle measured over the orbital plane from a fixed direction] can be absorbed in
the definition of the GW phase (2.16). Moreover, one can see directly from the definition
of S`m(ι) and D`m(ι) that the ‘+’ polarizations [sum over real parts of (2.22)] and ‘×’
polarizations [sum over (minus) imaginary parts of (2.22)] will satisfy, in general [recall
the definition in Eq. (2.2)], the same symmetry property, under the transformation of the
angle ι into its supplementary, as the S`m(ι) and D`m(ι) functions, i.e. :

h(+
×)(τ ;λsrc, π − ι) =

(
+
−
)
h(+
×)(τ ;λsrc, ι) . (2.24)

This general property, that has naturally appeared in our calculations, will be very im-
portant from a data analysis point of view, on the one hand because it will reduce the
parameter space to be explored by a factor two, going from a possible range of ι ∈ [0, π] [we
recall that ι was a mod(π) angle by definition: angle between two directions] to the prac-
tical range ι ∈ [0, π/2] and, on the other hand, because it may create some degeneracies
in the parameter space.

2Indeed, this can be formally demonstrated from the definition of the (s = −2) spin-weighted spherical
harmonics, Eq. (2.3).
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The cases with m = 0 do not require to sum the positive and negative indexes as they are
just one single term. However, they can be formally written as Eq. (2.22) [with just one
term in the l.h.s.] by defining

S`0(ι) = D`0(ι) ≡ −2Y
`0(ι, 0) . (2.25)

Finally, the generic sum given at the very beginning of this discussion, Eq. (2.2), can be
rewritten as sums of sinusoidal functions of the different harmonics of the orbital phase;
obtaining:

h+(τ ;λsrc, ι) ≡
∞∑
m=0

[
u+,m cos

(
m
2 φgw

)
+ w+,m sin

(
m
2 φgw

)]
,

h×(τ ;λsrc, ι) ≡
∞∑
m=0

[
u×,m cos

(
m
2 φgw

)
+ w×,m sin

(
m
2 φgw

)]
, (2.26)

where the factors (u,w)(+,×),m can be obtained from the spin-weighted spherical harmon-
ics, h`m, explicitly given in Ref. [4] and the ‘sum’ and ‘difference’ angular functions written
in Tab. 2.2. Let us recall that all the dependency on β has been absorbed in the definition
of the GW phase φgw(τ ;λsrc), see Eq. (2.16), and the amplitude terms can be written as

u+,m(τ ;λsrc, ι) ≡
∑

` S`m(ι) hR`m(τ ;λsrc) ,

u×,m(τ ;λsrc, ι) ≡ −∑`D`m(ι) hI`m(τ ;λsrc) ,

w+,m(τ ;λsrc, ι) ≡
∑

` S`m(ι) hI`m(τ ;λsrc) ,

w×,m(τ ;λsrc, ι) ≡
∑

`D`m(ι) hR`m(τ ;λsrc) ,

(2.27)

where have used a shortened notation for the sum symbol,
∑

` ≡
∑∞

`=max(2,m). Moreover,
note that in the previous expressions, the double sum over ` and m has been rewritten
from the original

∑∞
`=2

∑`
m=0 in Eq. (2.2) after pairing the ±m terms off, to the equivalent∑∞

m=0

∑∞
`=max(2,m).

When one is working with the PN formalism, each spherical harmonic component h`m is
written as a PN expansion series [4] and therefore, each of the quantities that appear in
Eqs. (2.27) is indeed a sum over ` and over the PN order, n.

After a careful study of the quantities in Eq. (2.27), either within the effective-one-body
(EOB) formalism or looking directly at the PN expansion terms, one finds out that there
are some common terms that can be factored out. On the one hand, we shall factor
the ‘Newtonian’ amplitude out, an [see definition in Eq. (2.18)], since it contains all the
information about the order of magnitude and units of the GW amplitude; on the other
hand, there are several factors common to all the u(+,×),m and w(+,×),m functions of a
particular m-th harmonic [7] and we shall see later that it is indeed very convenient to
also factor them out, mainly because these factors may be zero at some point and having
them explicitly factorized will help avoiding possible numerical divergences. In particular,
we shall define a new û(+,×),m and ŵ(+,×),m functions as follows:(

u(τ ;λsrc, ι)

w(τ ;λsrc, ι)

)
(+,×),m

≡ an(τ ;λsrc)Υm(λsrc, ι)

(
û(τ ;λsrc, ι)

ŵ(τ ;λsrc, ι)

)
(+,×),m

, (2.28)
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where the functions Υm (for m ≤ 8) are defined as

Υm=0(λsrc, ι) ≡ 1 Υm=1(λsrc, ι) ≡ δm
M sin ι

Υm=2(λsrc, ι) ≡ 1 Υm=3(λsrc, ι) ≡ δm
M sin ι

Υm=4(λsrc, ι) ≡ sin2 ι Υm=5(λsrc, ι) ≡ δm
M sin3 ι

Υm=6(λsrc, ι) ≡ sin4 ι Υm=7(λsrc, ι) ≡ δm
M sin5 ι

Υm=8(λsrc, ι) ≡ sin6 ι

. (2.29)

[We recall that M = m1 + m2 is the total mass of the binary system, and δm = m2 −
m1 is the mass difference.] Besides this, we have noticed that properly (trigonometric)
expanding all the D`m(ι) functions, they turn out to be proportional to ‘cos ι’ and so all
‘×’ polarization terms are, i.e. (u,w)×,m ∝ cos ι for all m. We do not write it explicitly
since we shall not use this property, although we found useful to let the reader know about
it.

We shall see below that the notation used in Eqs. (2.26) and (2.28) is very convenient when
expressing the measured strain in a GW detector as a single cosine function [see Eq. (2.55)
below] and therefore, this formal expression for h+ and h× as an harmonics expansion is
sometimes taken as the starting point for many data analysis studies [7–11]. Since from
now on, there shall not be any more explicit references to the spherical harmonics, and
in order to not confuse the m-th harmonic with the any ‘mass’ parameter, a change of
notation is usually adopted at this point, replacing m by j. Thus, from this moment on,
we shall refer any of the terms of the sum in Eq. (2.26) as the j-th harmonic of the GW
signal:

j ≡ m . (2.30)

2.2 Detected gravitational wave strain

The GW signal described in the previous section as the superposition of two orthogonal
polarizations, will travel, as it is predicted by the theory of general relativity, almost
unaltered [given the almost null interaction of gravitational radiation with matter] at the
speed of light from the violent source that generated it to the observer at Earth. Thus, in
a Cartesian coordinate system tied to the wave’s propagation, {x′, y′, z′}, where the GW
travels in the +z′ direction and the perturbations are contained within the x′ − y′ plane,
with the x′ direction being the main axis of the ‘+’ polarization, the GW tensor in simply
given by (see Sec. 1.1)

H ′ = h+ [x̂′ ⊗ x̂′ − ŷ′ ⊗ ŷ′] + h× [x̂′ ⊗ ŷ′ + ŷ′ ⊗ x̂′] , (2.31)

where x̂′ / ŷ′ represents a unit vector parallel to the x′ / y′ axis, ‘⊗’ denotes the tensorial
product and h(+,×) ≡ h(+,×)(τ ;λsrc, ι) are the orthogonal polarizations given in Eq. (2.26)
as a function of the orientation angle, ι; the GW phase, φgw(τ ;λsrc); and the different
spherical harmonics components, h`m(τ ;λsrc).

As a metric perturbation, the effects of a GW consist on stretching and compressing
the space in a perpendicular plane to the propagation direction. These are, precisely, the
effects that one will measure with an interferometric detector and in particular, the length
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√
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√
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Table 2.2: ‘Sum’ [S`m ≡ S`m(ι)] and ‘difference’ [D`m ≡ D`m(ι)] functions defined in Eq. (2.23) and
computed from the explicit expressions of the (s = −2) spin-weighted spherical harmonics listed in Tab. 2.1
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difference between the two arms of the interferometer. The aim of this section is to translate
the general tensor expression for a gravitational signal written in the wave Cartesian
coordinate system, Eq. (2.31), into the measured differences between the wave-induced
relative length changes of the two interferometer arms, which is an scalar3 quantity. The
response of a laser interferometric detector to a weak, plane, GW on the long wavelength
approximation (LWA) (i.e. when the size of the detector is much smaller than the reduced
wavelength λ/(2π) of the wave) is well known [12] and can be computed as4

h(t) ≡ ∆Larms(t)

L
=

1

2
n̂T1 ·H · n̂1 −

1

2
n̂T2 ·H · n̂2 . (2.32)

Here, n̂1 and n̂2 denote the unit vectors parallel to the two detector’s arms (the order
of arms is defined such that the vector n̂1 × n̂2 points outwards from the surface of the
Earth), H is the 3-dimensional matrix of the spatial metric perturbation produced by the
wave, and a dot stands for the standard scalar product in the 3-dimensional Cartesian
space. Notice that, since Eq. (2.32) is an scalar expression, it can be computed in any
coordinates system.

The long wavelength approximation is completely valid for current and advanced ground-
based interferometers, as they are [at most] 4 km long and their frequency window’s high-
end, f < 2000 Hz, translates into a reduced wavelength of λ

2π > 24 km. The future 3rd
generation interferometers, such as ET, are planned to be Let = 10 km long, and therefore
one might consider going beyond the LWA for very high frequency sources. LISA, on the
other hand, is going to have an arm-length of Llisa = 5 × 106 km and it is expected
to observe signals up to f < 0.1 Hz, which translates into λ

2π > 0.45 × 106 km. Thus,
LISA is going to have a non-negligible fraction of its frequency window where one must
take into account the GW phase variation as the laser light of the interferometer travels
between the two mirrors. The resulting response of a laser interferometric detector beyond
the LWA is also well-known [13], namely the time delay interferometry (TDI), and involve
the evaluation of the GW waveform at different instants. We shall not go into any more
details about TDI in this thesis, since the LWA has been assumed to be valid in all the
studies we have performed, which is strictly true for all the ground-based detectors studies
(Chapter 8) and a very good approximation for all the LISA studies that we have carried
out (Chapters 4-7), since most of the sources considered lie at the very low part of the
LISA’s frequency window: f ∼ 10−4 Hz, which means λ

2π ∼ 500× 106 km� Llisa.

Before proceeding with the derivations, let us properly introduce the three Cartesian co-
ordinate systems that we shall consider: a wave coordinate system {x′, y′, z′} in where the
GW travels in the +z′ direction; the “barred” coordinates {x, y, z} tied to the detector;
and the “unbarred” coordinates {x, y, z} fixed to the ecliptic plane and therefore, untied
to the detector’s motion. In particular,

• {x′, y′, z′} is the wave Cartesian coordinate system, where the GW travels in the +z′

direction and the node direction of the ’+’ polarization is parallel to the x′ axis. In
this frame, the 3-dimensional matrix of the spatial metric perturbation, H ′, is simply

3By scalar, we mean that the result is invariant under Cartesian coordinate transformations.
4We recall that the relative length change produced by a GW is ∆L

L
= h

2
. Now, considering a two-arms

interferometer and given the quadrupole nature of gravitational radiation, when one arm is stretched in
a certain direction, it is compressed in the orthogonal one; i.e. Lx = L + ∆L and Ly = L − ∆L, hence
∆Larms

L
≡ Lx−Ly

L
= 2 ∆L

L
= h.
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Figure 2.1: Two different perspectives from a 3-dimensional diagram representing the most useful co-
ordinates systems and angles to describe the generation (source coordinate system), propagation (wave
Cartesian coordinate system, {x′, y′, z′}) and detection (frame {x, y, z} attached to the GW detector) of
GW signals. [Diagrams: own production]
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Eq. (2.31) and, in matrix form

H ′ =

 h+ h× 0
h× −h+ 0
0 0 0

 . (2.33)

• {x, y, z} is a reference frame attached to the GW detector, having the detector’s plane
contained inside the x − y plane and the z axis pointing toward zenith. Following
Cutler’s [3] criterion, the two detector’s arms, assumed to form an arbitrary angle ζ;
are ”symmetrically placed” inside the x− y axes (see Fig. 2.1), i.e. both, detector’s
arms and x− y axes, share the angle bisector.

• Finally, {x, y, z} is an ecliptic Cartesian coordinates system centered at the SSB and
with the x− y plane tied to the ecliptic (i.e. the plane of the Earth’s motion around
the Sun). The x axis points toward an arbitrary but fixed direction in the sky and
z is chosen in order to have the Earth’s angular momentum around the Sun to be
parallel to the +z direction.

2.2.1 Gravitational wave strain in the detector’s coordinates frame

In Fig. 2.1 we represent {x′, y′, z′} and {x, y, z} frames and the relevant angles that take
part in the coordinates transformation. In particular, the 3-dimensional orthogonal matrix
of transformation, M , (from the wave Cartesian coordinates {x′, y′, z′} to the Cartesian
coordinates {x, y, z} in the detector’s proper frame) can be expressed as a composition
of Euler rotations [14] within the Z-Y-Z form (the most common convention in GW data
analysis). Moreover, since z′ is parallel to the −N̂ vector, it turns out that the {θ, φ}
Euler angles of transformation from {x, y, z} to {x′, y′, z′}, coincide (modulo π) with the
polar angles, {θn, φn}, of the unit vector N̂ in the detector’s reference frame. The third
Euler angle, ψ, is the polarization angle and is the angle (see Ref. [2]) from the principal
direction of the ’+’ polarization: ±N̂× L̂; to the direction of constant azimuth (φn) over
the x′ − y′ plane: ±N̂× (N̂× ẑ), where ẑ is the unit vector parallel to the z axis. Since ψ
is defined as an angle between two directions, it will be modulo π and we arbitrarily set it
to be ψ ∈ [0, π], i.e. its sine is positive defined. Making use of the properties of the scalar
and vectorial products between vectors in a 3-dimensional Cartesian space, we obtain the
following scalar expressions to determine the polarization angle:

cosψ = N̂ · (L̂× ẑ) , sinψ = |L̂ · ẑ− (L̂ · N̂)(ẑ · N̂)| . (2.34)

With this, the orthogonal matrix that transforms {x′, y′, z′} 7→ {x̄, ȳ, z̄}, M , can be ex-
pressed as the product of three Euler rotation matrices5 [14]:

M = Rz(−φn) ·Ry(−θn + π) ·Rz(ψ)

=

 cos(−φn) − sin(−φn) 0

sin(−φn) cos(−φn) 0
0 0 1

 ·
 cos(−θn + π) 0 sin(−θn + π)

0 1 0

− sin(−θn + π) 0 cos(−θn + π)

 ·
 cosψ − sinψ 0

sinψ cosψ 0
0 0 1



=

 − cosφn cos θn cosψ + sinφn sinψ sinφn cosψ + cosφn cos θn sinψ cosφn sin θn
sinφn cos θn cosψ + cosφn sinψ cosφn cosψ − sinφn cos θn sinψ − sinφn sin θn

− sin θn cosψ sin θn sinψ − cos θn

 .

(2.35)

5Note that since N̂ = −ẑ′, the angles appearing in the rotation matrices are not the trivial ones.
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In the detector’s Cartesian coordinate system {x, y, z}, the 3-dimensional matrix of the
spatial perturbation produced by the wave can be expressed as a coordinates transforma-
tion of the GW signal in the wave’s frame, H ′, written in Eq. (2.33):

H = M ·H ′ ·MT , (2.36)

and the unit vectors parallel to the arms, n̂1 and n̂2, can be straightforwardly written as

n̂1 =

 cos(π4 −
ζ
2)

sin(π4 −
ζ
2)

0

 n̂2 =

 sin(π4 −
ζ
2)

cos(π4 −
ζ
2)

0

 . (2.37)

With this, we have all the quantities needed to compute the measured scalar GW strain in
the interferometer, h(t) [see Eq. (2.32)], expressed in the very same coordinates, {x, y, z}.
Putting Eqs. (2.32)-(2.37) together, we obtain the following final expression for h(t)

h(t;λsrc, N̂, ι, ψ, ζ) = F+(t; N̂, ψ, ζ) h+(τ(t);λsrc, ι) + F×(t; N̂, ψ, ζ) h×(τ(t);λsrc, ι) ,
(2.38)

where we recall that h(+,×) are the orthogonal polarizations given in Eq. (2.26), and

F+(t; N̂, ψ, ζ) = sin ζ
[

1
2(1 + cos2 θn) cos(2φn) cos(2ψ)− cos θn sin(2φn) sin(2ψ)

]
F×(t; N̂, ψ, ζ) = − sin ζ

[
1
2(1 + cos2 θn) cos(2φn) sin(2ψ) + cos θn sin(2φn) cos(2ψ)

]
(2.39)

are the so-called antenna beam patterns and they depend on the sky position of the GW
source [θn(t), φn(t)], the polarization angle [ψ(t)] and the angle between the two interfer-
ometer’s arms [ζ]. Notice that having the interferometer’s arms with an angle smaller than
90◦, i.e. ζ > 0, is equivalent as having a 90◦ arms with an effective length equal to L sin ζ.
In other articles, for instance Ref. [2, 3], the explicit minus sign that we are finding in front
of F× is absorbed in the definition of h×, Eqs. (2.17) or (2.26), moving the explicit minus
sign from F× to h×; in any case the final expression for measured strain is identical.

Making use of the straightforward properties:

(i) F+(ψ′ = π
4 + ψ) = F×(ψ) and (ii) F+,×(π2 + ψ) = −F+,×(ψ) ;

we represent in Figs. 2.2 and 2.3 the plots of the antenna beam pattern functions (in
absolute value) over the sky for a single 90◦ arms’ detector and considering several values
of the angle ψ. Notice that, in each hemisphere, there are two [approximated] azimuthal
and orthogonal directions where the detector is most sensitive and two directions [rotated
π/4 with respect to the first ones] where the sensitivity is minimum. Indeed, these angles
can be obtained analytically; in particular for the |F×| function, the maxima for the zenith
[θ = 0] and nadir [θ = π] are found at φθ=0 = −ψ + π

4 + nπ2 and φθ=π = ψ + π
4 + nπ2 ,

respectively, n being an integer number. [The minima are rotated π/4 with respect to these
directions.] Notice that the angle difference between the maxima directions at the nadir
and the zenith is (φθ=π − φθ=0) = modπ

2
(2ψ); as it can be seen in Figs. 2.2 and 2.3.
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�

Figure 2.2: Plot of a single detector’s antenna beam pattern function (in absolute value) over the sky
from three different view angles. In particular, we are plotting the following two equivalent functions of
the spherical angles: |F×(θ, φ, ψ = π

8
, ζ = π

2
)| = |F+(θ, φ, ψ′ = 3π

8
, ζ = π

2
)|. [Plot: own production]

ψ = 0 ψ = π
12 ψ = π

6 ψ = π
4 ψ = π

3 ψ = 5π
12 ψ = π

2 or 0

ψ′ = π
4 ψ′ = π

3 ψ′ = 5π
12 ψ′ = π

2 or 0 ψ′ = π
12 ψ′ = π

6 ψ′ = π
4

Figure 2.3: Sequence of graphical representations of the antenna beam patterns functions (in absolute
value) for a single 90◦ arms’ detector, |F×(ψ)| = |F+(ψ′ = π

4
+ ψ)| [see Eq. (2.39) and Fig. 2.2], plotted

over the sky and for different values of the polarization angle ψ. Since, F+,×(π
2

+ ψ) = �F+,×(ψ) we just
represent the interval ψ ∈ [0, π

2
]. [Plots: own production]
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2.2.2 Change of apparent sky location and polarization due to detector’s
motion

Equation (2.38) represents the general expression of the measured GW strain in an inter-
ferometric detector in the long wavelength approximation (LWA). This result is written
in terms of angles measured at the detector’s Cartesian coordinate system, which follows
the detector’s movement around the Sun; thus, the “barred” angles {θn, φn, ψ} will change
over the observation time when this is long enough (ζ is constant). In particular, ground-
based detectors are expected to only observe the late inspiral and merger parts of the
CBC evolution, which represents, at most, the last ∼ 200 cycles of the GW signal. Since
the lowest frequency that ground-based detectors can observe is ≈ 20 Hz, this means that
the longest6 CBC signal observed in Earth will last 10 sec, over which the Earth’s motion
can be completely neglected. Thus, for ground-based observations of CBC signals, the an-
tenna beam patterns can be considered as constant functions in time, that only depend
on the particular interferometer and date time of the observation at hand. For long-lived
sources, such as the stochastic background and the gravitational emission of rapidly spin-
ning pulsars, the antenna beam patterns become a time dependent functions that provide
information about the sky location of the source. We refer the reader to Ref. [12] for a
detailed explanation about how to include the Earth’s motion in long-lived GW signals
for ground-based detectors.

The LISA case, however, is a completely different story; mainly for two reasons. First,
because LISA will observe a much lower frequency window, [10−5, 0.1] Hz, but keeping the
same intrinsic orbital period of 1 yr, since LISA is following the Earth in its motion around
the Sun; this means that the same 200 GW cycles would last up to ≈ 8 months. Second,
because LISA will observe CBC signals coming from supermassive black-hole systems with
signal-to-noise ratios of several hundreds, which means that it can observe signals that are
still far from the merger (inspiral-only signals), which may span several thousands of cycles
[this is the case, for instance, of the inspiral signals that we shall study in Chapters 4 and
5 and the galactic binaries of Chapter 6]. Thus, LISA observations of CBC may last the
whole mission life-time and therefore we must consider the detector’s motion around the
Sun. This problem has been studied in detail by Cutler [3] and here we just quote their
main results [making a careful conversion between their and our notation] that explicitly
express the time dependence of the “barred” angles {θn, φn, ψ} in terms of the constant
angles measured from the SSB.

cos θn(t; N̂,λlisa) =
1

2
cos θn −

√
3

2
sin θn cos[φlisa(t;λlisa)− φn] , and (2.40)

φn(t; N̂,λlisa) = α0 +
2πt

Tlisa
+ arctan

(√
3 cos θn + sin θn cos[φlisa(t;λlisa)− φn]

2 sin θn sin[φlisa(t;λlisa)− φn]

)
,

(2.41)
where Tlisa = 1 yr represents LISA’s orbital period, φlisa(t;λlisa) = φlisa, 0 + 2πt

Tlisa
is the

angular position of LISA over its orbital plane, and φlisa, 0 and α0 are just constants
specifying, respectively, the detector’s location in the orbital plane and the orientation of
the arms at time t = 0.

6These are very conservative numbers. In reality typical CBC observations in ground-based GW detec-
tors will last fractions of a second.
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Finally, the polarization angle, ψ(t; N̂, L̂,λlisa), can be computed from its scalar definition
in Eq. (2.34), taking into account that the vectors that appear in there can be expressed
in the SSB reference frame as,

N̂ =

 sin θn cosφn
sin θn sinφn

cos θn

 ; L̂ =

 sin θl cosφl
sin θl sinφl

cos θl

 ; ẑ =

 −
√

3
2 cosφlisa(t;λlisa)

−
√

3
2 sinφlisa(t;λlisa)

1
2

 ,

(2.42)
where one has used the fact that the normal to the detector plane, ẑ, is at a constant 60◦

angle to ẑ, and ẑ precesses around ẑ at a constant rate. The explicit expressions for ‘sinψ’
and ‘cosψ’ can be found in Eqs. (3.19)-(3.22) of Ref. [3].

2.2.3 Doppler shift due to relativistic effects and relative motion source
– detector

All the expressions for the emitted GW signal derived in Sec. 2.1 are given in terms of the
proper timing of the source’s barycenter reference frame, τ ≡ τe. Thus, we must consider
the relativistic effects that link this proper time of emission, τe, to the proper time of
arrival, τa, at the detector’s reference frame. In order to do so, we shall make use of the
knowledge acquired in the 1980s about ‘timing’ relations when studying the experimental
data from the binary pulsar PSR 1913+16; in particular we shall use as reference the
articles [15, 16].

Assuming a system of harmonic coordinates at rest with respect to the SSB, the ‘timing
formula’ linking the proper time of emission, τe, to the coordinate time of arrival at the
detector, t̄a, can be written as [15, 16]

D τe = t̄a −∆S +
rifo · N̂

c
+ ∆E,� −

DL

c
. (2.43)

Here, ∆S denotes the general-relativistic Shapiro time-delay due to the propagation of the
GW signal in a curved space-time caused by any gravitational field in the path between
the source and the detector (e.g. the Sun); rifo ·N̂/c is the (coordinate) Roemer time-delay,
i.e. the travel time along rifo ≡ rifo(t), from the SSB to the detector; and ∆E,� is the
so-called Einstein time-delay in the solar system, which represents a combined effect of
gravitational redshift and time dilation due to motions of the Earth and other bodies [16].
The last term in the expression is just a constant distance between the source barycenter
and the SSB at a given time, since all the time dependency of the distance separation
between the two barycenters is included in the Doppler factor, D, [15]

D ≡ 1 + vsrc·N̂
c√

1− v2
src
c2

= γ
(

1 + vsrc·N̂
c

)
≡ (1 + z) , (2.44)

where z is simply the redshift.

The effects of both Shapiro and Einstein time-delays are generally much smaller than the
Newtonian Roemer-delay, and therefore the ‘timing relation’ used in GW data analysis of
signals from the High- and Low-Frequency bands is simply

D τe = t̄a +
rifo · N̂

c
+ const. (2.45)
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This relation has basically two effects on the measured GW signal:

• On one hand, we are measuring redshifted time and frequency quantities; i.e. the
observed measurements will be related to the physical ones (as measured in the
source reference frame) as follows:

tobs = (1 + z) tphys ; fobs =
fphys
1 + z

,

where we recall that (1 + z) ≡ D. Given the fact that all the CBC dynamics is
formulated in terms of the adimensional time and frequency variables, t/M and fM ,
respectively (see Chapter 3); this redshift effect is normally absorbed by defining
observed redshifted masses, which are related to the physical ones simply as

mobs = (1 + z)mphys , (2.46)

‘m’ being any dimensionful mass, i.e. total mass M , mass difference δm, individual
masses {m1,m2}, reduced mass µ, or chirp mass M. Of course, the dimensionless
mass quantities, such as the mass ratio q or the symmetric mass ratio ν, are not
redshifted.

• On the other hand, the Roemer time-delay will produce a Doppler shift in the ob-
served GW phase, that generally can be represented as

φgw(τ) = φgw(τ(t̄a)) = φgw

(
t̄a+rifo·N̂/c

D

)
. (2.47)

– For low frequency signals (such as LISA band), the GW phase does not change
very much during the travel time along rifo, which makes possible to series
expand φgw and represent the Doppler-shift effect as an additive phase:

φgw(τ) = φgw

(
t̄a
D

)
+

rifo · N̂
c

φ̇gw

(
t̄a
D

)
+O

[
rifo
c

]2 ' φgw + ϕd , (2.48)

where we have neglected second-order Doppler corrections since they are of or-
der (vifo/c)|ϕd(t)| . 3×10−4(f/10−3) rad [3]. The dot denotes a time-derivative
in the detector’s reference frame (i.e. with respect to t̄) and the Doppler phase
ϕd is defined as

ϕd(t) =
2πF (t)

c
rifo · N̂ , (2.49)

where F (t) ≡ φ̇gw(t)
2π is the (redshifted) GW frequency.

Making use of the explicit expression for the position of the LISA detector as a
function of time [3],

rlisa(t) = Rlisa

 cosφlisa(t)
sinφlisa(t)

0

 , (2.50)

where Rlisa = 1 AU and φlisa(t) is the angular position of LISA over its orbital
plane [see paragraph right after Eq. (2.41)]; one can get an explicit expression
for the Doppler phase for LISA [3]:

ϕd, lisa(t) =
2πF (t)

c
Rlisa sin θn cos(φlisa(t)− φn) . (2.51)
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– For higher frequency signals (e.g. ground-based detectors band), one can not use
the expansion in (2.48), although similar expressions can be obtained when the
explicit time dependency of the phase is known; see, for instance, the derivation
in Appendix A of [12] for GW signals from spinning NSs.

2.3 Putting all pieces together: measured GW strain as a
sum of cosine functions

In this chapter we have gone from the raw output of a numerical simulation, or a PN

calculation (the Regge-Wheeler and Zerilli functions, Ψ
(o)
`m and Ψ

(e)
`m), to the very ‘end

product’, this is the time series GW strain measured in the detector, h(t). The process can
be summarized in two steps; first, an expansion over the spin-weighted spherical harmonics
that provide the GW components with the corresponding angular dependency, here is
where we have defined the (û, ŵ)(+,×),m functions that expand h+ and h× in terms of
harmonics of the GW phase; and second, a projection of the GW spatial tensor into
the detector’s frame, which has defined the antenna beam patterns and has added the
dependency on the sky location and the detector’s motion to the measured signal, h(t).

At this point, it is time to place everything in order and to write explicitly the general
expression for a time-domain GW signal emitted by a CBC and measured by an interfer-
ometric GW detector. This is, indeed, the purpose of this section.

Let us start considering the restricted PN approximation, where h+ and h× are given by
Eq. (2.17); the former containing just a ‘cosφgw’ and the latter with a sine of the same
phase. Making use of the general expression for the measured differences between the wave-
induced relative length of the two interferometer arms, Eq. (2.38), and basic trigonometric
relations, one can write h(t;λsrc, N̂, ι, ψ, ζ) ≡ h(t) as

h(t) =

[
1 + cos2 ι

2

]
F+ an cos(φgw + ϕd) + [cos ι] F× an sin(φgw + ϕd)

≡ Cp an cos(φgw + ϕp + ϕd) , (2.52)

where

Cp ≡
1

2

√
(1 + cos2 ι)F 2

+ + 4 cos2 ιF 2
× , (2.53)

ϕp ≡ arctan

[ −2F× cos ι

F+(1 + cos2 ι)

]
. (2.54)

The subscript ‘p’ stands for polarization and ϕp is called polarization phase. If we were con-
sidering observations from multiple detectors, the amplitude and phase differences between
the various detected strains would involve different Cp and ϕp values through the antenna
beam patterns of each detector, and therefore we could infer the sky location {θn, φn} and
polarization angle ψ of the source. Also, if we are observing a GW signal for a long time
period (e.g. CBCs with LISA), the time dependence of these two values, Cp and ϕp, can
be used to estimate the position of the source. Finally, if one considers short-lived signals
detected by a single interferometer, Cp and ϕp will be numerical constants and absorbed,
respectively, into an effective distance, Deff ≡ DL/Cp [where DL is the luminosity distance]
and the arbitrary initial phase of the signal, φ0 ≡ φgw(t = 0).
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A similar derivation can be done for the general case, where h(t) is written as the superpo-
sition of different harmonics of the orbital phase, see Eq. (2.26). Let us recall that usually,
in the data analysis articles, the different harmonics are denoted with the letter j instead
of the m used in Sec. 2.1 [see Eq. (2.30)]. In this case, one shall find a different factor Cp,j
and polarization phase, ϕp,j , for each harmonic:

h(t) = an

∞∑
j=0

Υj

[
(F+ û+,j + F× û×,j) cos( j2φgw + ϕd) + (F+ ŵ+,j + F× ŵ×,j) sin( j2φgw + ϕd)

]
≡ an

∞∑
j=0

Υj Cp,j cos( j2φgw + ϕp,j + ϕd) , (2.55)

where

Cp,j ≡
√

(F+ û+,j + F× û×,j)2 + (F+ ŵ+,j + F× ŵ×,j)2 , (2.56)

ϕp,j ≡ arctan

[−(F+ ŵ+,j + F× ŵ×,j)

(F+ û+,j + F× û×,j)

]
. (2.57)

Here is where the benefits of factorizing the common terms out of (u,w)(+,×),j become
relevant since (i) an appears in the explicit expression of h(t) carrying the units and order
of magnitude of the amplitude and (ii) the Υj functions cancel out in the definition of the
polarization phase, which shall prevent potential numerical divergencies in cases where δm
or ι are close to zero [see Eqs. (2.29)].

Let us notice that, both in Eqs. (2.54) and (2.57), the sign of the fraction inside the ‘arctan’
function is explicitly written in the numerator in order to remove the mod(π) degeneracy
of the polarization phase, by making explicit that the sign of ‘sinϕp,j ’ is the sign of the
numerator, and the same for ‘cosϕp,j ’ and the denominator. Sometimes, this two-argument
‘arctan’ function is called “atan2”.

2.4 Residual gauge-freedom in the measured GW strain

The measured GW strain depends on a lot of parameters. Some of them, such as {λifo, ζ}
are fixed by the detector’s geometry and motion; others, such as λsrc depend only on
the physical properties of the source; and finally, {N̂, φ0, ι, ψ} depend on the relative
orientation of the detector with respect to angular momentum of the compact binary. It
is, precisely, this last set of parameters, the ones that explicitly appear in the relation
between the measured h(t) and the emitted spherical harmonics components h`m, and
they contain some residual gauge-freedom (symmetries) that will make the measured GW
strain [approximately] invariant under certain transformations of these parameters.

Studying and restricting this residual gauge-freedom in h(t) is essential in order to remove
equivalences or degeneracies between different regions of the parameter space. We shall
see that some of the symmetries are exact, and therefore we shall be talking about equiv-
alence between different regions; whereas some of them will be valid just as a limit case
or approximately, in this case, we shall talk about degeneracies in the parameter space.
The benefits of detecting such symmetries are two-fold; on the one hand, by finding two
equivalent regions of the parameter space, one shall be able to restrict the range of some
the parameters and therefore, to reduce the search volume of parameter space; on the
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other hand, knowing before-hand about the existence of degeneracies in the parameter
spaces will help understanding the results out from a blind search, as well as improving
the search method itself.

We shall analyze the symmetries of each of the functions that take part into the calculation
of h(t), making always clear whether they are valid in general or simply under certain cir-
cumstances. After that, we shall combine these symmetries in order to obtain the different
invariant transformations.

• Let us start by the general and formally proven [see Eq. (2.24)] symmetry relation
that satisfy h+ and h× with respect to the orientation angle, ι:

(1) ι→ π − ι , h(+
×) → ±h(+

×)

• Another symmetry related to the traveling GW signal that still does not involve the
projection of the GW tensor in terms of the antenna beam patterns, is related with
the arbitrary initial GW phase, φ0,

(2) φ0 → φ0 + π , h(+
×) → −h(+

×)

However, this property (in the time-domain) is only valid for the j = 2 dominant
harmonic, which is the only one not involving harmonics of φgw. Since the next
dominant harmonics [4] are the j = {1, 3} and j = 4, with amplitudes smaller than
the j = 2 one by factors ∝ v δmM and ∝ v2, respectively [v� 1 being a PN expansion
parameter]; we can consider (2) as a good approximation, although not strictly true.

• Finally, the rest of symmetry relations come from the antenna beam patterns. In
particular, we shall write them schematically as two summands and then study how
does their sign change for different transformations of the angles {θn, φn, ψ},

F+ = sin ζ
[

1
2(1 + cos2 θn) cos(2φn) cos(2ψ)− cos θn sin(2φn) sin(2ψ)

]
≡ a○ + b○ ,

F× = − sin ζ
[

1
2(1 + cos2 θn) cos(2φn) sin(2ψ) + cos θn sin(2φn) cos(2ψ)

]
≡ c○ + d○ .

Now, we consider all possible (but not repeated) angle transformations that change
the signs in front of { a○ , b○ , c○ , d○}, but do not swap between these terms. They
are summarized in the following table:

a○ b○ c○ d○

original + + + +

(3) ψ → π
2 − ψ − + + −

(4) ψ → π
2 + ψ − − − −

(5) θn → π − θn + − + −
(6) φn → π

2 − φn − + − +

(7) φn → π
2 + φn − − − −

By combining (3)+(4) we would get that ψ → π − ψ gives [+ − −+] and similar
results could be obtained with (6)+(7) and (7)+(7); however we do not consider
them in the previous table since they can be obtained from a combination of others
already included. Indeed, given the dependency of F+,× always with 2φn, we have
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that the amplitudes are invariant under φn → π + φn; this is (7)+(7). The same
thing happens with the polarization angle, ψ.

The three angles that we are considering are measured in the time-varying “barred”
reference system, which means that the symmetry relations may not be valid when
one considers the constant “unbarred” angles, tied to the ecliptic reference frame
{x, y, z}. Moreover, one must take into account that the angles characterizing the
sky location of the source, N̂, also affect the signal’s Doppler effect, which means
there may be angle transformations that leave the amplitudes invariant, but change
the phase and frequency of the observed signal. In particular,

– (3) and (4) will be valid when the signal (or most of the SNR) is observed
for a short time [e.g. CBC observations with ground-based detectors (or signals
including the merger with LISA)]; or the normal to the detector’s plane, ẑ, is on
average, during Tobs, parallel to the ecliptic’s normal direction, ẑ; which is the
case of LISA. In the former, the symmetry will be valid for the instantaneous
ψ, whereas in the latter it will be for the invariant ψ.

– The dependency of the Doppler phase due to (5) is null if the perpendicular
component to the ecliptic of the detector’s velocity is zero or can be neglected.
This is the case for LISA and a very good approximation for ground-based
detectors, where the perpendicular component can only come from the daily
spinning motion of the Earth; which, at most, can produce relative frequency
changes of ∆f

f ∼ 10−7. Thus, (5) will be valid in almost all typical cases con-
sidered in GW data analysis.

– (6) and (7), on the other hand, involve transformations on φn that do affect
significatively the Doppler phase. This means that although the amplitudes may
remain invariant, the observed phase will change unless it is compensated by
also changing some of the source physical parameters λsrc that can modify the
GW phase, φgw. Thus, despite being transformations that may add degeneracies
to the parameter space (as we shall see in practice in the following chapters),
we won’t consider them here as residual gauge-freedom.

Finally, let us note that there are also transformations that allow one to swap F+

for F×; in particular the ones involving {ψ → π
4 ± ψ ; ψ → 3π

4 ± ψ}. Also, by
doing {φ0 → π

2 ± φ0} or {φ0 → 3π
2 ± φ0}, one can swap the ‘sinφgw’s for ‘cosφgw’s.

However, we are not considering them because we found not possible to then have
an equivalent transformation in ι to also swap u+ for w×; and w+ for u×; i.e. S`m(ι)
for D`m(ι) [here, the pairs are chosen so that they share hR`m or hI`m, see Eq. (2.27)].

With this, we find that symmetries (1)-(5), involving transformations on {ι, φ0, ψ, θn}, are
valid in good approximation. We discard the transformations involving φn, (6) and (7),
because despite being valid for the amplitude terms, they also have a significant impact
on the Doppler phase, that then should be compensated by modifying the source physical
parameters, λsrc.

At the end of the day, those five symmetry relations just can be combined in the following
two ways in order to leave the GW signal (2.38) invariant:

(a) : (2) + (4) −→ {φ0 → π + φ0 ; ψ → π
2 + ψ}

(b) : (1) + (3) + (4) + (5) −→ {ι→ π − ι ; ψ → π − ψ ; θn → π − θn}
(2.58)
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Figure 2.4: Diagram exemplifying
how invariant transformation ‘(a)’,
{φ0 → π+φ0;ψ → π

2
+ψ}, is trans-

lated into equivalence between dif-
ferent quadrants of the parameter
space, in particular I ↔ III and
II↔ IV. [Plot: own production]

We recall that the initial phase, φ0, is defined in the [0, 2π)
range, whereas the other four angles {ι, ψ, θn} are mod(π).
Each of these two invariant transformations establish a
one-to-one mapping between two halves of the parameter
space. For instance, in Fig. 2.4 we exemplify the invariant
transformation ‘(a)’, involving the angles φ0 and ψ. Any
point in the quadrant I has its equivalent [i.e. that pro-
duces the same h(t)] in the quadrant III and the same
happens between quadrants II and IV; thus we can say
that quadrants I - III are equivalent and also II - IV.
In light of these results, it is obvious that carrying a
search over the entire parameter space, φ0 ∈ [0, 2π) and
ψ ∈ [0, π], would be inefficient, since we would be consid-
ering all template waveforms twice.

Therefore, the invariant transformation ‘(a)’ allows us to
restrict one of the angles involved to half its original range.
This represents reducing the volume of the parameter
space [and also the computational time to explore it] by a
factor 2. The same argument is applicable for ‘(b)’.
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Chapter3
Gravitational wave data analysis
for Compact Binary Coalescences

3.1 Gravitational wave signals buried in noise

The signal described in the previous chapter will be buried in the noise of a detector. Thus,
we are faced with the problem of detecting the signal and estimating its parameters from
the noisy observed strain. By assuming additive noise, the output strain of a detector,
s(t), can be expressed as the sum of the GW signal characterized by the ‘true’ parameters
λx, hx(t,λx) (here, and in the following, the subscript x stands for ‘exact’), and the noise,
n(t);

s(t) = n(t) + hx(t;λx) . (3.1)

The noise is also assumed to be uncorrelated, stationary and with zero mean; and it is
characterized by its (one-sided) power spectral density (PSD), Sn(f), which is defined as

ñ∗(f)ñ(f ′) =
1

2
Sn(f)δ(f − f ′) . (3.2)

Here, the overline denotes the ensemble average, the superscript star indicates complex
conjugation, δ(f) represents the Dirac’s delta function and the tilde denotes the Fourier
transform,

ñ(f) =

∫ ∞
−∞

n(t)e−2πiftdt . (3.3)

Note that we use here the LSC sign convention for the Fourier transform, with a factor∫
dt e−2πift(...). This sign convention is what we shall use in Chapters 6 and 8; but opposite

to what we use in our parameter estimation studies including higher harmonics of the
inspiral signal (Chapter 4). In the literature, there are also discrepancies between the LSC
sign convention and the one used in many early GW papers (such as Refs. [1–3]) which
used the (theoretical-physics) convention

∫
dt e+2πift(...).

According to this sign convention, the measured GW signal in the Fourier domain is usually
represented in the following generic way,

h̃(f) ≡ A(f)e−iψ(f) , (3.4)

49
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where the amplitudeA(f) and the phase ψ(f) are real quantities. [Notice that the frequency-
domain phase is denoted with the same symbol ‘ψ’ as the polarization angle; we shall always
write the explicit frequency dependency of ψ(f) when referring to the frequency-domain
phase.]

The assumed Gaussian and zero-mean properties of the noise, lead one to write that the
probability that an individual, ni, is a sampling of the random process n(t) is given by [4]

p(ni) = [2πCn(0)]−1/2 exp

[
−1

2

(ni − 0)2

Cn(0)

]
,

where Cn(τ) is the correlation function of noise. Following the same arguments, the prob-
ability that the ordered set n ≡ {ni : i = 1, . . . , N} is a sampling of n(t) will be

p(n) = [(2π)N det ||Cn,jk||]−1/2 exp

−1

2

N∑
j,k=1

C−1
n,jknjnk


where Cn,jk ≡ Cn[(j − k)∆t] and δjk ≡

∑
iCn,jiC

−1
n,ik; δjk being the Kronecker’s delta.

Taking into account that the previously defined (one-sided) noise PSD, Sn(f), is (twice)
the Fourier transform of the correlation function, Cn(τ); Finn [4] shows that the previous
expression for the probability of having the realization of a particular noise series, n(t), in
the continuum limit of ∆t→ 0 and T →∞, can be written as

p(n) ∝ e−
1
2 (n|n) , (3.5)

where the inner product (‘Wiener scalar product’) between two (real) time series, namely
a(t) and b(t), has been defined as

(a|b) ≡
∫ ∞
−∞

df
ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f)
= 2 Re

∫ ∞
−∞

df
ã∗(f)b̃(f)

Sn(f)
= 4 Re

∫ ∞
0

df
ã∗(f)b̃(f)

Sn(f)
.

(3.6)
In defining this inner product, we use the fact that the Fourier transform of the real time-
domain gravitational wave strain h(t) satisfies h̃(f) = h̃∗(−f) [also, the one-sided noise
PSD satisfies Sn(−f) = Sn(f)], thus allowing us to define the inner product as an integral
over positive frequencies only. This Wiener scalar product is real and symmetric, and the
associated norm, say

|a|2 ≡ (a|a) = 4 Re

∫ ∞
0

df
ã∗(f)ã(f)

Sn(f)
= 4

∫ ∞
0

df
|ã(f)|2
Sn(f)

. (3.7)

is positive definite, and endows the space of (real) signals with an Euclidean structure. Also
notice that the inner product is normalized such that, |n|2 ≡ 1; and, from the definition
of Sn(f) in Eq. (3.2), we get the useful property (a|n)(n|b) = (a|b).

In matched-filtering theory [5], the signal-to-noise ratio (SNR), ρ(λ), is defined as the
ratio between the filtered signal and the root-mean-squared (r.m.s.) of the filtered noise.
Assuming ‘hm ≡ hm(λ)’ to be our best model template and using the definition of the
Wiener scalar product,

ρ(λ) =
(hm|s)

r.m.s.[(hm|n)]
=

(hm|s)√
(hm|n)(n|hm)

=
(hm|s)√
(hm|hm)

≡ (ĥm|s) , (3.8)
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Here, we are using a hat to denote normalized templates ĥ = h
(h|h)1/2 , so that (ĥ|ĥ) ≡ 1.

Below, we shall see that, from a frequentist point of view, the optimal test statistics is
given by the likelihood ratio (see Eq. (3.14) below); although Echeverria [6] showed that
maximizing the likelihood ratio is equivalent to maximizing the SNR function defined
above, and therefore ρ(λ) = (ĥm|s) is an optimal search statistic.

We shall use the ensemble average of ρ(λ) to perform data analysis studies such as pa-
rameter estimation, analyze template accuracies, or the computation of expected SNRs,

ρm ≡ ρ(λ) = (ĥm|s) = (ĥm|hx) +��
��*

0

(ĥm|n) = (ĥm|hx) . (3.9)

The optimal SNR will be obtained when the template used hm is the exact signal hx that
we want to detect, i.e.

ρopt = (ĥx|hx) =
(hx|hx)

(hx|hx)1/2
= (hx|hx)1/2 . (3.10)

3.2 Detection and parameter estimation

There are two different ways of proceeding from this point, depending on the paradigm of
statistics used: frequentist or Bayesian. These approaches yield sometimes similar-looking
answers for detection and parameter estimation (especially in Gaussian noise), but they
are based on fundamentally different interpretations and provide different tools in practice.
The conceptual difference between the two frameworks lies in the meaning of “probability”,
while the axioms for calculating with those probabilities are the same in both cases.

This section has been written following the guidance of several reference articles in the
field; in particular, the paragraphs discussing the parameter measurement accuracy are
based on Refs. [4, 7–9], whereas we use Refs. [10–13] for the discussion between frequentist
and Bayesian frameworks.

3.2.1 Frequentist framework

The frequentist approach is based in viewing probabilities essentially as the relative fre-
quencies of outcomes in repeated experiments: the probability p(A) of an event A is defined
as the limiting fraction of events in a infinite number of “identical”1 trials.

Given the detector data s, consisting in the sum of the true signal hx = h(λx) [where the λx
is the vector of the true system parameters] plus additive noise n; we select a point estimator
λ̂(s): that is, a vector function of detector data that (hopefully) approximates the true
values of the source parameters, except for the statistical errors due to the presence of noise.
We shall see below that an important point estimator is the maximum likelihood (ML)

estimator λ̂
ml

, which maximizes the likelihood ratio p(s|hx)/p(s|0). The estimator λ̂ is
usually chosen according to one or more criteria of optimality: for instance, unbiasedness

requires that λ̂(s) (the ensemble average of the estimator) to be equal to λx.

1Obviously, the trials cannot truly be identical or they would always yield the same result.
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Also, the statistical errors within the frequentist framework are characterized as the fluc-
tuations of λ̂(s) computed over a very long series of independent experiments where the
source parameters are kept fixed, while the detector noise n is sampled from its assumed
probability distribution. Mathematically, this can be represented for a generic parameter,
λi, as

varλ̂i =
(
λ̂i(s)− λ̂i(s)

)2
. (frequentist) (3.11)

The frequentist detection problem is formulated as one of hypothesis testing between H0

(no signal) or H1 (there is a signal). Then, a detection statistic Λ(s) is built and H0 is
accepted if Λ(s) < Λ∗; whereas if Λ(s) ≥ Λ∗ we accept H1. Of course, there may be cases
where

• Λ(s) ≥ Λ∗, but there is no signal: false alarm probability, namely

α(Λ∗) ≡
∫ ∞

Λ∗
p(Λ(s)|H0) dΛ , (3.12)

which is the probability of a threshold crossing despite H0 being true; and

• Λ(s) < Λ∗, but there was actually a signal: false dismissal probability,

β(Λ∗|hx) ≡
∫ Λ∗

−∞
p(Λ(s)|H1) dΛ , (3.13)

which is the probability that the threshold is not crossed, even though H1 is true.
The detection probability η is simply the complement, namely η(Λ∗|hx) = 1− β.

The test Λ(s) should maximize the detection probability, η, at a given false alarm rate,
α. According to the Neyman-Pearson lemma, this optimal test is the so-called likelihood
ratio, which is defined as

Λ(s;hx) =
p(s|H1)

p(s|H0)
=
p(s|hx)

p(s|0)
(3.14)

Since p(n) ∝ exp[−1
2(n|n)] and n = s− hx, we have that

p(s|hx) ∝ e−
1
2 (s−hx|s−hx) and p(s|0) ∝ e−

1
2 (s|s)

and therefore, the optimal test within the frequentist framework can be written in terms
of the inner product as

log Λ(s;hx) = (s|hx)− 1
2(hx|hx) , (3.15)

which is the well-known expression for the matched-filtering amplitude. Given a measured
data set s and the exact waveform model hx(λ) with unknown parameters, one has to find
the maximum of the log-likelihood function, log Λ, as function of the unknown parameters.
With this, one has defined the maximum likelihood (ML) estimator, λ̂

ml
.

The exploration of the parameter space searching for the maximum of the likelihood ratio
is at the very heart of every GW search within the frequentist framework. When the
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dimensionality of the parameter space is low and the computation of the likelihood ratio
(3.15) is not very expensive in computational terms, one normally uses a uniform grid to
place the templates to be explored. When the problem is computationally more demanding
(usually because of the high number of dimensions in the parameter space), different
techniques have been explored in order to place the finite number of templates in the most
‘interesting’2 parts of the parameter space, such as defining curved metric spaces [14–17],
‘stochastic template banks’ [18–20], or using random template bank strategies [21].

As it has been previously mentioned, Echeverria [6] showed that maximizing the likelihood
ratio (3.15) is equivalent to maximizing the SNR function (3.8), so both functionals can
be used as optimal search statistics.

It is needless to say that the threshold Λ∗ to determine whether a signal has been detected
or not, will be set, for each particular problem, by fixing the maximum allowed values
given a false alarm and false dismissal probabilities, see Eqs. (3.12) and (3.13).

3.2.2 Bayesian framework

Bayesian statistics is built on a different concept of probability, quantifying the degree of
certainty (‘degree of belief’) of a statement being true. So, one can assign probabilities
p(A|M) ∈ [0, 1] to any statement A given a certain model M, quantifying one’s (possibly
incomplete) knowledge about the truth of A. In particular, for GW data analysis prob-
lems in the Bayesian approach, we simply compute the posterior probability distribution
function p(h|s,M) for the waveforms h of the model hypothesis M, and the associated
model evidence p(s|M). These are related by Bayes’ theorem to the likelihood p(s|h,M)
of our observed strain s with our model waveform and the prior information p(h|M) as

p(h|s,M) =
p(h|M) p(s|h,M)

p(s|M)
, (3.16)

the model evidence being

p(s|M) =

∫
p(h|M) p(s|h,M)dh . (3.17)

Here, the likelihood function p(s|h,M) is the same as in the previous section, which [mak-
ing use of the Gaussianity of the noise] is p(s|h,Mx) ≡ p(s|hx) ∝ exp[−1

2(s− hx|s− hx)]
if one assumes that has access to the exact model. In reality, we only know an approxi-
mation to the exact templates, and therefore the likelihood will be simply computed as
p(s|h,M) ∝ exp[−1

2(s− hm|s− hm)].

Everything we want to know about the waveform model hm is contained in the posterior
distribution, while the evidence allows for comparisons to be made between alternative
models (e.g. whether a GW signal is present or not; models with different number or kind
of sources. . . ). It is important to emphasize that in the Bayesian approach, the output is
only as good as the inputs, in the sense that we are converting a prior knowledge about
any statement into a posterior one throughout the likelihood of the measure s and our
template waveforms h; but if the waveform model or the likelihood function is flawed,
then the conclusion will also be flawed. The hope or expectation, both at the parameter

2With higher likelihood ratio values.
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level and model level, is that data will be obtained of sufficient quality to overturn incorrect
prior hypotheses.

The Bayesian evidence (3.17) sets up a tension between the ability of a model to fit the data
and the prior predictiveness3 of the model, in a quantitative implementation of Occam’s
razor [22]. The models that do best are the ones that make specific predictions that later
turn out to fit the data well. Less predictive models, even if they can fit the data as well,
score more poorly.

Any waveform model is characterized by a set of parameters (h|M) ≡ hm ≡ hm(λ), thus
in Bayesian inference all the probability density functions (PDFs) shall be written as PDFs
of the model parameters, which are taken as random variables: the priors p(h|M) ≡ p(λ);
the likelihood function p(s|h,M) ≡ p(s|hm(λ)); and the posterior p(h|s,M) ≡ p(λ|s).
Also, the integrals over h are, indeed, multidimensional integrals over all the parameters
set, for instance the evidence (3.17) is computed as

p(s|M) =

∫
p(λ) p(s|hm(λ))dλ . (3.18)

The output of the Bayes’ theorem is the joint PDF of all the parameters that characterize
our model λ = {λ1, . . . , λN}, but one can easily obtain the posterior PDF of a given sub-
set of parameters, say λ1, . . . , λn with n < N , by marginalizing the original joint posterior
probability

p(λ1, . . . , λn|s) =

∫
dλn+1 . . .

∫
dλN

p(λ) p(s|hm(λ))

p(s|M)
. (3.19)

With this, we can obtain the posterior PDF of any parameter or set of parameters and con-
sequently, compute the posterior mean of a given parameter λi [we recall that in Bayesian
inference, model parameters are taken as random variables],

〈λi〉p ≡
∫
λip(λi|s)dλi

/∫
p(λ|s)dλ (3.20)

and the quadratic moment

〈λiλj〉p ≡
∫
λiλj p(λi, λj |s) dλidλj

/∫
p(λ|s)dλ (3.21)

where “〈·〉p” denotes integration over the posterior PDF, p(λ|s). The variance varλi = σ2
i

in the estimation of the parameter λi [σi being the root-mean-square of λi] can then be
calculated as

varλi = σ2
i = 〈(∆λi)2〉p = 〈(λi − 〈λi〉p)2〉p = 〈λ2

i 〉p − 〈λi〉2p , (Bayesian) (3.22)

and the correlation coefficients cij between two parameters λi and λj are given by

cij =
〈∆λi∆λj〉p

σiσj
=
〈λiλj〉p − 〈λi〉p 〈λj〉p

σiσj
. (Bayesian) (3.23)

3Which is not necessarily directly related to, for instance, the number of parameters.
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Of course, equivalent expressions could be written for any higher moment. In case we
are always considering the same model M, the associated model evidence will play the
simple role of a normalization constant in Eq. (3.16), and the same thing happens with
the integrals in the denominator of the previous equations: (3.20) and (3.21). Thus, we
can see how Bayesian parameter estimation can be naturally performed directly from the
posterior PDFs, either by directly quoting them, or by computing parameter ranges within
a certain confidence level, or just by computing variances.

The Bayesian detection problem turns out to be a simple model selection problem: we
compare the odds of the data being more consistent with our model of the gravitational
signal and instrument noise, or our model of the instrument noise alone. This forces us
to explicitly define an instrumental noise model and, if our particular model is poor – for
instance, not allowing for occasional glitches if they may happen – then the odds may favor
the detection hypothesis even when no signal is present in the data [12]. Again, Bayes’
theorem can be applied to update a prior model probability by the evidence (3.18) and
obtain the probability of the model M given the data s. In particular, since computing
actual probability values for a certain model over all its competing models would require
a prior knowledge of all possible models testable by our experiment, which is impractical;
what we compute is the odds ratio for one model over another:

O10 ≡
p(M1|s)
p(M0|s)

=
p(M1)

p(M0)

p(s|M1)

p(s|M0)
≡ P10 B10 . (3.24)

O10 is the odds ratio for models M1 and M0; an odds ratio & 3 favors M1 [23]. The
odds ratio has been written as the product of the prior odds P10 and the Bayes factor
B10 (also known as the evidence ratio or marginal likelihood ratio). The former reflect any
preference between the models before the experiment is conducted, thus if we are to adopt
one model over the other, the Bayes factor must overwhelm the prior odds, signaling the
data are sufficiently informative to distinguish between competing hypotheses.

Littenberg and Cornish [12] point out an important note of caution here, which is that a
Bayesian analysis is not answering the question “Is there a gravitational wave signal present
in the data, or is it just instrument noise?”, but rather, “Are the data most consistent
with our model of the gravitational wave signal and instrument noise, or our model of the
instrument noise alone?”.

Markov chain Monte Carlo

In typical GW data analysis applications the number of parameters needed to describe the
signal and noise models can be very large (ranging from tens to hundreds of thousands),
and the regions of significant posterior weight generally occupy a minute fraction of the
total prior volume. Resolving the peaks in the posterior distribution function requires a
very fine sampling of the parameter space, but if this sampling is extended over the entire
prior volume, the total number of samples can become astronomically large, discarding
any possibility to sample posterior PDFs using grid-based methods.

The Markov chain Monte Carlo (MCMC) approach encompasses a powerful set of tech-
niques for producing gridless samples from the posterior distribution, focussing their at-
tention on regions of high posterior weight, and neatly avoiding the problem of computing
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model evidence. The latter feature becomes less desirable when one is interested in model
selection and therefore, in computing Bayes factors. One solution is to generalize the tran-
sitions between steps in the Markov chain (see below for a definition) to include “transdi-
mensional” moves between different models, resulting in what are termed reversible jump
Markov chain Monte Carlo (RJMCMC) algorithms. All the results presented in this thesis
(see, in particular, Chapter 6) consider a single model, though the next step for future
work is to implement RJMCMC in the search for an unknown number of galactic binary
signals with LISA.

In general, MCMC methods are based on constructing a Markov chain that has the desired
distribution (target distribution, π) as its equilibrium distribution. The state of the chain
(or value of the parameters λ describing the problem at hand) after a large number of steps
is then used as a sample from the desired distribution and, in particular, it can be used to
compute marginalization integrals such as the ones represented above [see e.g. Eqs. (3.17)-
(3.21)] via Monte Carlo integration [24], when one fixes the target distribution to be the
joint posterior PDF of all parameters, π(λ) ≡ p(λ|s).

Metropolis-Hastings (MH) algorithms are employed in the overwhelming majority of the
practical implementations of MCMC methods in order to construct a Markov chain with
the desired properties. In MH updates, given a state of the Markov chain λ, one proposes
a new state λ′ drawn from a proposal distribution (or transition kernel) q(λ,λ′). This new
state is accepted with probability

α(λ,λ′) = 1 ∧
{
π(λ′) q(λ′,λ)

π(λ) q(λ,λ′)

}
, (3.25)

and the chain remains at λ with probability 1 − α(λ,λ′). In the previous equation, the
notation a ∧ b (for any real numbers a and b) stands for the minimum between a and b,
and as a consequence the acceptance probability is limited to unity in the case where the
ratio is > 1. The iteration of this process constitutes the core for constructing a Markov
chain whose equilibrium distribution, after an initial ‘burn-in’ period that is discarded in
the generation of the resulting PDFs, coincides with the target distribution, π; in our case
being the joint posterior PDFs of all the parameters. A (renormalized) histogram of some
of the parameter values characterizing the elements of the resulting chain represents their
posterior PDF, and an average along the sample path of the Markov chain of a function f
of the parameters, will be an asymptotically unbiased estimator of

∫
f(λ)π(λ)dλ. Let us

notice that MCMC algorithms prevent us to compute the model evidence since, for a fixed
model, it only plays of a normalization constant. As we said, in case one were interested
in computing evidence ratios, then they should consider “transdimensional” moves and
RJMCMC.

The convergence to the target distribution π is guaranteed through the acceptance prob-
ability (3.25), but the convergence rate or efficiency of the chain is highly dependent on
the choice of the transition kernel q; indeed, its choice is one of the most critical stages
in actually implementing a MH-MCMC algorithm. If the proposed jumps are too short,
the simulation moves very slowly through the target distribution; whereas if we jumps
are too big, most of the new proposed states lie into low-probability areas of the target
distribution, causing the Markov chain to stand still most of the time. In a very interesting
work, Gelman et al. [25] study what are the most efficient [having defined ‘efficiency’ as the
relative variance of an estimator from the MH-MCMC output compared to independent
sampling] symmetric jumping kernels for simulating a normal target distribution using
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the Metropolis algorithm. For a d-dimensional spherical multivariate normal problem, the
optimal symmetric jumping kernel has its scale ≈ 2.4/

√
d times the scale of the target dis-

tribution and the acceptance rate of the associated Metropolis algorithm is approximately
44% for d = 1 and declines to 23% as d→∞ [the efficiency of the Metropolis algorithm,
compared to independent samples from the target distribution, is approximately 0.3/d].

In Chapter 6, we shall implement an algorithm based on MCMC in order to search for,
first single and then multiple, galactic binary signals buried in LISA noise. On the way, we
shall face the problem of a dramatic reduction in the convergence rate of the standard MH-
MCMC implementation, due to the presence of multiple secondary maxima in the target
distribution along several dimensions of the parameter space. This is an extended issue
present in many MCMC applications. The solution proposed in Chapter 7 is a completely
Markovian and fully general algorithm based on a technique called Delayed Rejection.

3.2.3 Fisher information matrix formalism

Over the last two decades, in the absence of confirmed GW detections, the prevailing
attitude in the GW source-modeling community has been on exploring which astrophysical
systems, and which of their properties, would become accessible to GW observations with
the sensitivities afforded by planned future experiments, with the purpose of committing
theoretical effort to the most promising sources, and of directing public advocacy to the
most promising detectors. In this context, the expected accuracy of GW source parameters
is often employed as a proxy for the amount of physical information that could be obtained
from GW observations. Currently, these kind of studies are being performed for the third
generation ground-based detectors (e.g. the european Einstein Telescope), as well as the
future interferometer space-based antenna, LISA.

Predicting the parameter-estimation performance of future observations is a complex mat-
ter, mainly because there are a few analytical tools that can be applied generally to the
problem. In the source-modeling community, the analytical tool of choice has been the
Fisher information matrix (FIM), defined in terms of the Wiener scalar product as fol-
lows,

Fij [h] ≡
(
∂h

∂λi

∣∣∣∣ ∂h∂λj
)
. (3.26)

The FIM formalism has been extensively used in GW data analysis providing very useful
information about the expected physics that shall be obtained from GW observations;
however, as Vallisneri points out in Ref. [10], one must be aware to not “abuse” of the FIM
which could lead to misinterpretations. Vallisneri provides three different interpretations
(all correct) of the meaning of the FIM and, in particular, of its inverse matrix F−1

ij [hx],
that we quote here:

1. The inverse Fisher matrix F−1
ij [hx] is a lower bound (generally known as the Cramér-

Rao bound) for the error covariance of any unbiased estimator of the true source
parameters; thus it is a frequentist error.

2. The inverse Fisher matrix F−1
ij [hx] is the frequentist error covariance for the max-

imum likelihood (ML) parameter estimator λ̂ml, assuming Gaussian noise, in the
limit of strong signals (i.e. high SNR) or, equivalently, in the limit in which the
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waveforms can be considered as linear functions of source parameters [sometimes
called linearized-signal approximation (LSA)].

3. The inverse Fisher matrix F−1
ij [hx] represents the covariance (i.e. the multidimen-

sional spread around the mode) of the posterior probability distribution p(λx|s) for
the true source parameters λx, as inferred (within the Bayesian framework) from
a single experiment with true signal hx, assuming Gaussian noise, in the high SNR
limit (or in the LSA), and in the case where any prior probabilities for the parameters
are constant over the parameter range of interest. Properly speaking, in this case the
inverse Fisher matrix would be a measure of uncertainty rather than error, since in
any experiment the mode will be displaced from the true parameters by an unknown
amount due to noise.

As pointed out by Jaynes [26], while the numerical identity of these three different error-
like quantities has given rise to much confusion, it arises almost trivially from the fact
that in a neighborhood of its maximum, the signal likelihood p(s|λx) is approximated by
a normal PDF with covariance Σij = F−1

ij . Let us recall that, given the covariance matrix
Σij , the root-mean-square error σk in the estimation of the parameter λk can then be
calculated by taking the square root of the diagonal elements of the covariance matrix,

σk = 〈(∆λk)2〉1/2 =
√

Σkk , (3.27)

and the correlation coefficients cjk between two parameters λj and λk are given by

cjk =
〈∆λj∆λk〉
σjσk

=
Σjk√
ΣjjΣkk

. (3.28)

Here, the angle brackets denote an average either over noise realizations 〈·〉n if one considers
the frequentist interpretation, or over the posterior PDF 〈·〉p in the Bayesian framework.

In some cases, the Fisher matrix can be singular, so that the attempts to invert it nu-
merically yield warnings that it is badly conditioned. In this case, the solution relies in
removing the eigenvectors with null eigenvalues from the Fisher information matrix, as
they represent combinations of parameters that leave the waveform unaltered. What is
more common in practice, is to have high correlations between parameters (without being
exact degeneracies) that give rise to ill-conditioned Fisher matrices, which inverse can be
computed, but may be difficult to. In particular, one can find an extreme sensitivity of the
inverse Fisher matrix results to the small numerical errors in the input; which is why one
must be very cautious when computing the elements of the Fisher matrix: always trying to
do as much of analytical calculations as possible, simplifying the expressions if possible and
adopting higher-precision arithmetics. In particular, Fisher matrices computed from CBCs
waveforms are frequently ill-conditioned4 and therefore one must be extremely careful in
the calculations (see Chapter 4). One way to check whether one is obtaining reliable results
is to add small random perturbations, Monte Carlo-style, to the Fisher-matrix elements
and then verify the change in the covariance matrix.

In particular, in this thesis (Chapter 4) we have used the FIM formalism to study the
impact in the parameter estimation of adding the higher harmonics to the inspiral CBC

4Waveforms are characterized by a number of parameters which, in some places of the parameter space,
can become degenerated.
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waveform observed with LISA. We also use these results to estimate the precision in
measuring the dark energy equation of state with single LISA observations of SMBHs
coalescence events (Chapter 5), i.e. we explore the repercussions of LISA observations in
cosmology. In all these studies, several actions have been carried out in order to prevent
the possible effects from having ill-conditioned Fisher matrices and ensure the reliability
of the FIM output results; in particular,

• the analytical expressions of the waveforms have been factorized in order to identify
common factors and facilitate the derivation;

• all the waveform derivatives have been computed analytically; simplifying and fac-
torizing the final expressions in order to eliminate possible numerical divergences;

• all the variables in the numerical code are “double precision” and the inversion
process is done using the Cholesky decomposition implemented in gsl;

• the covariance matrix results have been generated over a grid in the parameter space
and the output results present a smooth variation rather than strong oscillations;

• our results have been validated by the LISA Performance Evaluation (Taskforce)
(LISA PE) [27].

Finally, let us recall that the FIM represents a fast and analytical tool to estimate the
covariance matrix under certain assumptions (high SNR or LSA) and it can be very useful
to obtain first approximations or to compare results when using different waveform models.
However, results of posterior PDFs obtained within the Bayesian framework, despite being
much more expensive to obtain in terms of CPU time, will always be more faithful and
realistic than FIM. For extensive parameter estimation studies, normally what it is done
is to use the FIM formalism to explore all the parameter space and just compute Bayesian
posterior PDFs for a very limited number of cases in order to check the validity of FIM
results.

Another important application of the FIM formalism is precisely to build the proposal
jumps in MH-MCMC algorithms that sample posterior PDFs. As it is said in Sec. 3.2.2,
for a d-dimensional spherical multivariate normal problem, the optimal symmetric jumping
kernel has its scale ≈ 2.4/

√
d times the scale of the target distribution. The inverse Fisher

matrix can indeed provide an estimation of this scale beforehand.

3.3 Modeling gravitational waveforms from Compact Bi-
nary Coalescences

During the last 5-10 years our knowledge of the dynamics of coalescing binary black hole
(BBH) systems and their gravitational emission has experienced a huge progress, both with
the improvement of analytical methods, namely PN expansions and EOB approaches, and
the breakthroughs that occurred in Numerical Relativity (NR). The purpose of this section
is to describe the main features and properties of such methods and to give references for
further information. Since all the topics worked out in this thesis are focussed on data
analysis (we have not contributed to the development of CBC waveforms), we shall present
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here the different waveform models basically from an “end-user” perspective, without
entering too much into details.

According to their validity range, work domain and method used to solve the dynamics;
we can classify the different currently available model waveforms into several categories:

• time-domain PN models (either using closed-form expressions or integrating ordinary
differential equations (ODEs)), which consist in expanding Einstein’s equations in
Taylor series of some PN expansion parameter (usually a characteristic velocity, v)
and solving them term by term. They provide a faithful description of the dynamics
in the inspiral part of the evolution, where the motion is still adiabatic. However,
they fail describing the late-inspiral, merger and ring-down parts, where the velocities
become highly relativistic;

• closed-form, frequency-domain models which are only accurate in a limited range
of the evolution. Into this category would fit either the analytically Fourier trans-
formed PN models (using the Stationary Phase Approximation, see Sec. 3.3.1) and
the (NR-fitted) phenomenological models, which try to extend their validity range
by combining information coming from closed-form PN (for the inspiral part) and
ringdown models, and some NR simulations (for the merger part and in order to link
late-inspiral and ring-down);

• EOB models, which incorporate information from both PN theory and NR simu-
lations into an accurate description of the full dynamics of a CBC, from the early
inspiral up to the end of the merger. They are defined in the time-domain by inte-
grating ODEs;

• full NR simulations, which are necessary for describing the nonperturbative physics
around the merger, but can only cover a limited number of orbits (. 15) because
they are very time consuming in terms of computational costs;

• various types of hybrid models, joining together (either in the time-domain, or in the
frequency-domain) early PN-type waveforms to later NR waveforms, so as to cover
the whole evolution.

The time needed to generate a waveform in one of these categories varies by many orders of
magnitude between, say, a closed-form frequency-domain waveform (a fraction of a second
on a single CPU); an EOB waveform (several seconds, also, on a single CPU); or, a full
NR simulation (∼ a month on a computer cluster with several hundreds of CPUs). Also, of
course, the accuracy of the waveforms produced by each of these models varies inversely;
having the NR waveforms to be the most accurate (one could indeed think that the exact
waveform would be contained within the numerical errors), then the EOB ones, and finally
the less accurate are the closed-form waveforms (either PN or phenomenological). From
the data-analysis point of view, it would be quite useful to be able to generate waveforms
as fast as possible, though the real issue is to be able to access a dense bank of them
very fast. Thus, though some trade off between fastness and accuracy can be allowed for,
there are minimal accuracy requirements that waveforms have to satisfy. In Chapter 8 we
perform a detailed analysis of the accuracy of the fastest existing waveforms, namely the
closed-form, frequency-domain ones.
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Let us now summarize the recent progress made on the different approaches and point out
some references for further information. Finally, in Sec. 3.3.1, we shall describe an ana-
lytical (and approximated) procedure to obtain Fourier transformed expressions of time-
domain chirping signals [such as the inspiral part of CBC waveforms], called Stationary
Phase Approximation (SPA).

Post-Newtonian models

The post-Newtonian approximation computes the evolution of the GW phase φgw(t) (twice
the orbital phase φorb, see Chapter 2) of a compact binary as a perturbative expansion in a
small parameter, typically taken as the characteristic velocity in the binary, v = (πMF )1/3,
or x ≡ v2, although other variants exist. We recall that M = m1 + m2 is the total mass
of the binary and F = φ̇gw/(2π) is the GW frequency. PN evolution is based on the so-
called adiabatic approximation, according to which the fractional change in the orbital
frequency over each orbital period is negligibly small, i.e. Ḟorb/F

2
orb = Ḟgw/(2F

2
gw) � 1.

This assumption is valid during most of the evolution, but starts to fail as the system
approaches the last stable orbit (LSO), where vlso = 1/

√
6.

Given PN expansions of the motion of, and gravitational radiation from, a binary system,
one needs to compute the “phasing formula” for φgw(t;λsrc). In the adiabatic approxima-
tion, the phasing formula is easily derived from the energy and flux functions by a pair of
differential equations,

φ̇gw(t) = 2v3/M and v̇ = −F(v)/E′(v) ,

where F(v) is the GW luminosity and E′(v) is the derivative of the binding energy with re-
spect to v. Different PN families arise because one can choose to treat the ratio F(v)/E′(v)
differently starting formally from the same PN order inputs [3]. For instance, one can re-
tain the PN expansions of the luminosity F(v) and E′(v) as they appear (the so-called
TaylorT1 model), or expand the rational polynomial F(v)/E′(v) in v to consistent PN
order (the TaylorT4 model [28]), recast as a pair of parametric equations φgw(t) and t(v)
(the TaylorT2 model), or the phasing could be written as an explicit function of time φ(t)
(the TaylorT3 model). These different representations are made possible because one is
dealing with a perturbative series. Therefore, one is at liberty to “resum” or “re-expand”
the series in any way one wishes (as long as one keeps terms to the correct order in the
perturbation expansions), or even retain the expression as the quotient of two polynomials
and treat them numerically. There is also the freedom of writing the series in a different
variable, say (suitably dimensional) E (the so-called TaylorEt model [29–31]).

The description of CBCs through PN expansions theory has been developed for many
years and currently, the evolution of the orbital phase is known up to 3.5PN order (i.e. up
to O(v7) in the PN expansion) for non-spinning systems in circular orbits [3, 32–39];
see, in particular, Ref. [3] for a complete summary of useful expressions. Moreover, the
amplitude of the dominant (2, 2) mode can be computed up to 3PN order [40], whereas
the remaining components (up to ` = 8) are also known up to lower PN orders (see also
Ref. [40] for explicit expressions). Also, a lot of work has been done describing the spin
effects within the PN approximation [32–34, 41–48]; in particular, we know the leading
and next-to-leading order spin-orbit effects [42–44] and the spin-spin effects that appear
at relative 2PN order [44–46], these latter only valid when the compact objects are BHs.
The amplitude corrections for spinning objects are presented in Ref. [47, 48].
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By combining PN expansions with an approximated way to compute the Fourier transform
(FT) of a chirping signal, namely the SPA (see below, Sec. 3.3.1), one can obtain closed-
form expressions directly in the Fourier domain. Here too, there are many inequivalent ways
in which the phasing ψ(f) [see Eq. (3.4)] can be worked out; the most popular ones consist
either in substituting for the energy and flux functions their PN expansions without doing
any re-expansion or resummation (the TaylorF1 model), or in using the PN expansions
of energy and flux but re-expand the ratio F(v)/E′(v) (the so-called TaylorF2 model) in
which case the integral can be solved explicitly, leading to an explicit, Taylor-like, Fourier
domain phasing formula: ψ(f) = 2πftref − φref + 3

128ηv5

∑N
k=0 αkv

k [see Ref. [49] for the

explicit expression of the αk coefficients up to 3.5PN order]. The terms tref and φref are
simple reference time and phase values.

Numerical Relativity simulations

Since the initial breakthroughs in 2005 [50–52], there has been dramatic progress in NR
simulations for GW astronomy, including many more orbits before merger, greater accu-
racy and a growing sampling of the BH binary parameter space. There are now several
groups around the world with codes capable of performing BBH simulations [51–62]. There
are two analytic forms of the Einstein equations (BSSN [63–65] and the Generalized Har-
monic [51, 66, 67]), and various numerical methods (high order finite differencing, pseudo-
spectral, adaptive mesh refinement, multi-block) in use in the community. A summary
of the published “long” waveforms is given in the review [68], and a complete catalog of
waveforms is being compiled in [69]; more recent work is summarized in [70]. NR results
are now accurate enough for GW astronomy applications over the next few years [71], and
have started playing a role in GW searches [72, 73].

Accurate NR simulations will produce the most accurate and faithful results of any of the
methods we summarize here. However, the computational cost to perform a single NR
simulation is about a month on a computer cluster with several hundred of CPUs (this
is a factor ∼ 108 longer [in actual CPU time] than EOB; and much more compared to
closed-form frequency domain waveforms) and the longest NR BBH waveform produced
so far lasts for 15 orbits, includes the merger and ringdown phases and corresponds to an
equal-mass case [74, 75]. Moreover, for a 3D NR code, one of the most challenging problems
is the simulation of BHs of very different masses, and the reason is that, for a fixed total
mass M = m1 + m2, the gravitational wavelength remains approximately constant with
varying the mass ratio q, but the length and time scales required to resolve the smaller
hole scales approximately with q. Indeed, the highest mass ratio that has been simulated
is q = 10 [70].

Thus, there are several practical limitations that avoid NR waveforms to be extensively
used for GW astronomy, namely (i) the extremely high computational cost, (ii) number of
orbits . 15 and (iii) mass ratios q ≤ 10. For this reason, different groups are working on
several approaches to make use of the information from NR simulations in order to build
approximated, but much faster, models (see below).
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Effective-One-Body approach

The EOB formalism [76–78] has the unique feature of being able to incorporate information
coming both from PN theory and NR simulations into an accurate description of the full
dynamics and GW radiation of a CBC, from the early inspiral up to the end of the
merger. In particular, besides incorporating the full PN information available, the EOB
formalism goes beyond PN theory, even during inspiral, in several ways: (i) it replaces the
PN-expanded results by resummed expressions that have shown to be more accurate in
various cases; (ii) it includes more physical effects, notably those associated with the non
adiabatic aspects of the inspiral. We recall that all the PN models presently considered in
the literature make the approximation that the GW phase can be computed in an adiabatic
manner, by simply using the balance between the GW energy flux, F(v), and the adiabatic
loss of binding energy of the binary system, E(v), (see above). In addition to improving
any PN model (even in the inspiral part), the EOB formalism naturally introduces the
leading order of the unknown parameters to be calibrated using a very reduced number of
NR simulations. All these improvements have made the currently most accurate version
of the EOB waveforms [79] to agree, within the numerical error bars, with the currently
most accurate NR waveform [74, 75, 80].

Originally, the EOB formalism was introduced by Buonanno and Damour in Ref. [76] as an
extension to the non-adiabatic regime of the inspiral and right after, they were able to add
the ring-down phase [77] and therefore to have a representation of the full dynamics, from
the early inspiral up to the end of the merger. The extension of the EOB Hamiltonian
to spinning systems was first done in Ref. [46], which then was enhanced by including
next-to-leading order spin-orbit coupling effects [81].

Over the last years, it has become possible to improve the EOB waveform by comparing it
to the results of accurate NR simulations and by using the natural ‘flexibility’ of the EOB
formalism to ‘calibrate’ some EOB parameters representing either higher-order perturba-
tive effects that have not yet been analytically calculated, or non-perturbative effects that
can only be accessed by NR simulations [79, 80, 82–85]. A similar work has recently been
done using some spinning, non-precessing and equal-mass NR simulations [86]. In addi-
tion, several theoretical improvements have been brought in the EOB formalism, notably
concerning new ways of resumming the GW waveform [83, 87], and the GW radiation
reaction [79].

Phenomenological models

The coalescing process of a compact binary system is divided into three consecutive phases:
inspiral, merger and ringdown. We have seen that PN models are accurate describing the
adiabatic inspiral phase of the evolution which covers the major part of the coalescence:
from the beginning of the inspiraling process up to several orbits before the merger. How-
ever, it is during these very last orbits (late inspiral – merger – ringdown phases) where
most of the (GW) luminosity is emitted and therefore, they play a crucial role for GW
detection. An accurate description of these very last, highly relativistic orbits in the coales-
cence process is obtained from NR simulations, which provide the most faithful description
of the actual dynamics but they just can cover a limited number of simulated orbits.
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When there exists a frequency range in the late inspiral phase, where (i) PN models are still
accurate enough and (ii) it is close enough to the merger so that NR simulations already
cover it; then one can build hybrid waveforms and obtain a waveform valid in all the stages
of the evolution. [These hybrid waveforms are also build even when one is working with
EOB and wants to have access to the very low frequency part of the waveform, in the deep
inspiral, where the evolution is so slow and adiabatic that there is absolutely no need to
use anything else than PN (see Chapter 8).]

Given the computational cost of producing NR simulations, the number of hybrid wave-
forms that one has access to is finite. What Ajith et al. [88, 89] and Santamaria et al. [90]
propose is to take a discrete sample of these hybrid waveforms in the frequency domain
and build closed-form phenomenological waveform models, i.e. using the known functional
forms that better represent the different stages (e.g. a PN expansion for the GW phase
and inspiral part of the GW amplitude, or a Lorentzian function for the amplitude during
the ring-down), but considering the phenomenological coefficients that best matched each
of the original hybrid waveforms. A simple polynomial fitting of each coefficient along the
different dimensions of the parameter space completes the construction of the closed-form
phenomenological model. At the end, A(f) and ψ(f) are functions of the phenomenological
parameters, which at the same time are given in terms of the physical parameters (mass
ratio, spins, . . . ).

3.3.1 Stationary Phase Approximation

Einstein’s equations are usually solved in the time domain and so are expressed the re-
sulting waveforms. However, data analysts normally work in the frequency domain as the
reader must have noticed from all the derivations made above in Secs. 3.1 and 3.2 [the
reason relies in that most of the GW signals are quasi-monochromatic and so they can
be expressed in a more compact way in the frequency domain]. Thus, the first step in
any data analysis study will consist in Fourier transforming the time-domain waveforms.
Normally, this can be done very fast using the Fast Fourier Transform (FFT) [91], which
is an efficient numerical algorithm to compute the discrete version of the FT expressed
in Eq. (3.3) in O(N logN) instead of the O(N2) arithmetical operations that would be
required by making use of its raw definition,

x̃k =
N−1∑
j=0

xj e
−i2π jkN where

{
xi ≡ x(ti)

ti = i∆t
and

{
x̃k ≡ 1

∆t x̃(fk)

fk = k
Tobs
≡ k

N∆t ≡ k∆f
.

(3.29)

Indeed, the FFT is what shall be used to obtain EOB or NR waveforms in the frequency
domain, because the integration process to obtain the time-domain waveforms is much
longer than the FFT, and also because these models are normally used to simulate the
late-inspiral, merger and ringdown parts of the evolution, where the dynamics are highly
relativistic. However, PN waveforms are a whole different story: (a) they can be written
as closed-form Taylor series, making their evaluation process extremely fast; (b) they are
valid from t → −∞ up to a certain point before the last stable orbit, which means that
(i) the dynamics are in an adiabatic regime and (ii) one can generate extremely long
PN waveforms starting from the deep-inspiral that will require a huge number of data
points to proper sample them in the time-domain. These two reasons make the FFT (for
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PN waveforms) a slow process in comparison to the waveform’s evaluation time and it is
highly recommended to look for an analytical alternative.

The Stationary Phase Approximation (SPA) is a simple, explicit, analytic approximation
to the FT of a highly oscillating time-domain signal, such as a chirp. More precisely the
SPA is valid when the amplitude and frequency of the signal evolve on time scales much
longer than the orbital period: εa = ȧ(t)/(a(t)φ̇(t)) � 1 and εf = φ̈(t)/φ̇2(t) � 1. For a
coalescing binary system, the time scale of evolution of the GW amplitude and frequency
is the radiation-reaction time scale so that εa ∼ εf ∼ νv5 stays much smaller than 1
essentially up to the end of the inspiral.

The SPA is as follows. Let us consider a generic time-domain oscillating signal,

h(t) = a(t) cosφ(t) =
1

2
a(t)(eiφ(t) + e−iφ(t)) , (3.30)

where φ(t) changes in a time scale much shorter than a(t) and φ̇(t) ≡ 2πF (t). Then, its
FT can be computed as [see Eq. (3.3)]

h̃(f) ≡
∫ ∞
−∞

dt h(t)e−i2πft =

∫ ∞
−∞

dt
a(t)

2

(
ei(φ(t)−2πft) + e−i(φ(t)+2πft)

)
. (3.31)

The integrands of h̃(f) are violently oscillating and therefore, their dominant contributions
come from the vicinity of the stationary points of their phase (when such points exist).

When F (t) = φ̇(t)
2π > 0 (which we shall henceforth assume), only the ei(φ(t)−2πft) ≡ eiξ(t)

term has such saddle point,

d
dt(φ(t) + 2πft) = 0 ⇒ φ̇ = −2πf ⇒ 2πF (t) = −2πf ⇒ F (t) = −f

[ not possible

F (t)>0

]
,

d
dt(φ(t)− 2πft) = 0 ⇒ φ̇ = 2πf ⇒ 2πF (t) = 2πf ⇒ F (t) = f [→ tf ] .

By expanding a(t) and ξ(t) ≡ φ(t)− 2πft around the saddle point, tf [with ξ̇(tf ) ≡ 0],

a(t) = a(tf ) + ȧ(tf )(t− tf ) + · · · , (3.32)

ξ(t) = ξ(tf ) +���
���

�
ξ̇(tf )(t− tf ) + 1

2 ξ̈(tf )(t− tf )2 + · · · , (3.33)

we can finally write the well-known expression for the usual SPA:

h̃(f) ≈
∫ ∞
−∞

dt 1
2 [a(tf ) + ȧ(tf )(t− tf )] ei[ξ(tf )+

1
2 ξ̈(tf )(t−tf )2] [t−tf≡t]

=

=
1

2
eiξ(tf )a(tf )

∫ ∞
−∞

dt ei
1
2 ξ̈(tf )t2 +

1

2
eiξ(tf )ȧ(tf )

���
���

���
�:0∫ ∞

−∞
dt t ei

1
2 ξ̈(tf )t2

=
1

2
eiξ(tf )a(tf )

√
π

|2πḞ |
(1 + i)

[ξ=φ−2πft]
=

=
1

2
√
Ḟ (tf )

a(tf )e−i(2πftf−
π
4−φ(tf )) , (SPA) (3.34)

where we recall that tf is defined as the saddle point where F (tf ) = f .

For GW signals emitted by CBCs, the signal’s phase consists in the sum of the GW phase
φgw, plus the Doppler ϕd and polarization ϕp phases [see Eq. (2.52)]. This also means,
that F (t) shall have contributions from the time derivatives of the three components.
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The generalization of Eq. (3.34) to a time-domain signal consisting in the sum of several
harmonics is straightforward. Let us write the generic time-domain expression as in (2.55),
i.e. in terms of a signal’s phase φ(t) twice the orbital phase [also the signal’s frequency is

F (t) = φ̇
2π = 2forb]; hence the signal h(t) shall be written as

h(t) =
∑
j

aj(t) cos j2φ(t) . (3.35)

By applying the same arguments as before, the generic SPA expression for a time-domain
signal with multiple harmonics can be written as

h̃(f) ≈
∑
j

 1

2
√

j
2 Ḟ (t

(j)
f )

aj(t
(j)
f ) e

−i
(

2πft
(j)
f −

π
4−

j
2φ(t

(j)
f )

) , (SPA) (3.36)

where it is important to note that t
(j)
f is different for each harmonic, j, and can be com-

puted as F (t
(j)
f ) = 2f/j. Also notice that in Eq. (3.35) we have included all the phase

contributions into j
2φ(t); by comparison to Eq. (2.55) of a CBC gravitational waveform,

we have that

φ(t) ≡ φgw + 2
jϕp,j + 2

jϕd . (3.37)

From the definition of F (t) = φ̇
2π we could also obtain its dependency in terms of the

physical quantities defined in Chapter 2.

Finally, let us emphasize that this derivations correspond to the SPA just up to the leading
order, which is more than enough for all the practical purposes that we shall consider in
this thesis. However, Damour et al. in Ref. [2] [also Droz et al. [92]] go beyond the leading
order and show that by keeping two more terms in both Taylor expansion of Eqs. (3.32)
and (3.33), the new SPA expression is simply the same as in (3.34) with a phase correcting
factor eiδ, where

δ ≡ 1

2πḞ (tf )

−1

2

ä

a
+

1

2

ȧ

a

F̈

Ḟ
+

1

8

...
F

Ḟ
− 5

24

(
F̈

Ḟ

)2

t=tf

. (3.38)

3.4 Visualizing gravitational waveforms from CBCs

The coalescing process of a compact binary system, when it is still far away from the
merger consists in a slow, adiabatic rotation of each of the compact objects around the
center of mass of the system. As they approach each other due to the energy emission
[mainly in form of GWs], the orbital frequency increases as well as the amplitude of the
emitted gravitational signal. Finally, the two compact objects merge to form a single
excited Kerr black hole (if their total mass is high enough), which shall still be emitting
GWs in a form of quasi-normal modes until it reaches the fundamental state of a Kerr
BH. The resulting gravitational waveform emitted in the overall process can be described
by a highly oscillating ‘chirping’ signal [the signal of the dominant mode oscillates with a
frequency twice the orbital frequency], i.e. whose amplitude and frequency increase with
time.
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Figure 3.1: Trajectory of the last 10 orbits of an equal-mass, non-spinning BBH system in polar co-
ordinates obtained from an EOB simulation. The right panels represent the time evolution of the two
polar coordinates (r,ϕorb). [Plots: own production, using an EOB simulation courtesy of A. Nagar and
T. Damour]
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Figure 3.2: Time-domain gravitational waveform emitted by an equal-mass, non-spinning BBH system
(see also Fig. 3.1). Left panels represent snapshots of the real part of h22(t) [see Eqs. (2.2) and (2.10)] at
three different time range levels; whereas the right panels show the amplitude, phase [see Eq. (2.12) for
definition and discussion of ε`m(t)] and phase derivative of its (2, 2) mode as a function of time. [Plots:
own production, using an EOB simulation courtesy of A. Nagar and T. Damour]
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Figure 3.3: Frequency-domain gravitational waveform emitted by an equal-mass, non-spinning BBH sys-
tem (see also Figs. 3.1 and 3.2); in particular, we write h̃22(f) ≡ A22(f)e−iψ22(f) [see Eq. (3.4)]. The
overprinted segments should help visualizing how ‘time’ (for M = 100M�) and ‘number of orbits’ ranges
translate into the frequency-domain. [Plots: own production, using an EOB simulation courtesy of A. Nagar
and T. Damour]

100M� 1s 1min 1h 1d 7d 10−1 Hz 102 Hz

10M� 0.1s 6s 6min 2h 24min 16h 48min 1 Hz 1000 Hz
103M� 10s 10min 10h 10d 2m 9d 0.01 Hz 10 Hz
105M� 16min 40s 16h 40min 1m 11d 2yr 9m 19yr 2m 10−4 Hz 0.1 Hz
107M� 1d 4h 2m 8d 11yr 5m 275yr 1.9kyr 10−6 Hz 10−3 Hz
109M� 3m 24d 19yr 1.15kyr 27kyr 192kyr 10−8 Hz 10−5 Hz

Table 3.1: All the plots included in Figs. 3.1, 3.2 and 3.3 use the M = 100M� system as reference,
i.e. we plot t× 100M�

M
and f × M

100M�
. This table “translates” some of those ‘time’ and ‘frequency’ values

for different M , keeping t/M and fM fixed. Note that heavier systems have longer time scales and lower
emission frequency.
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In general, the intrinsic parameters that characterize a BBH coalescence are the total mass
of the system M , the mass ratio q and the two spins of the BHs S1 and S2. In case of
considering NSs or other compact objects with presence of matter, then one has to also
consider some extra parameters characterizing its equation of state. In this thesis, we only
consider non-spinning BHs (or NSs far away from the merger, where the equation of state
parameters are irrelevant) and therefore, the two only intrinsic parameters will be {M, q}.
Moreover, it turns out that after writing Einstein’s equations in their adimensional form,
the total mass M only plays the role of a scale factor, and therefore one considers5 an
adimensional time, t/M , an adimensional frequency, fM , etc. This means that a certain
process that happens in a given amount of (adimensional) time t/M , will be slower in
actual ‘seconds’ as the total mass of the system increases. The opposite happens for the
(adimensional) frequency; this is, heavier systems emit at lower frequencies (see Tab. 3.1
and the explanation below for further details).

Figures 3.1, 3.2 and 3.3 graphically represent all the relevant quantities of a CBC process,
both, in the time and frequency domains. The results have been generated for a non-
spinning, equal-mass system; using the EOB approach [87] to generate the last 1500 orbits
prior the merger, plus the merger and ring-down phases [the simulation took ≈ 500 sec
running on a single core of a 2.40 GHz Intel Core 2 Duo desktop machine with 2 Gb of
RAM]; and joining6 in front of it the PN-SPA result, which is perfectly valid ∼ 1000 orbits
before the merger. Assuming a fiducial M = 100M�, the last 10 orbits plotted in Fig. 3.1
would last 1 sec and, as it can be seen in Fig. 3.3, the merger would be emitted at around
100 Hz. Taking into account the fact that the total mass M simply plays the role of a scale
factor in Einstein’s equations, this time and frequency values can be easily converted to
other M values, and this is indeed what has been done in Tab. 3.1. Notice that observable
mergers (say, from 15 orbits before merger up to the end) in the LIGO frequency band
(10 − 104 Hz) will correspond to systems with a total mass M ∈ [2, 100]M� and they
will last less than 1 second; considering the LISA band (10−5 − 10−1 Hz), on the other
hand, the systems will have a mass M ∈ [2× 105, 108]M� and the events will last at least
30 minutes and typically more than a day. These numbers are important to understand
some of the approximations made in the previous sections, such as assuming the ground-
based detectors antenna patterns (whose variation is due to the Earth’s motion) to be
constant during the observation time of a merger (see Sec. 2.2.2).

The dependency of the emitted waveforms with the mass ratio q is not straightforward, and
one has to run a new simulation every time that changes q. Qualitatively, given a certain
separation distance between the compact objects, the evolution is slower [and so is larger
the number of orbits before merger] as the mass ratio increases. Figure 3 of Chapter 8
shows an example of amplitudes and phases in the frequency domain of EOB waveforms
for q = {1, 2, 4, 10} cases.

Also notice, in the right panels of Fig. 3.2, that the most important changes both in
frequency and amplitude are produced in the last instants before merger, however the
evolution of these two quantities during the whole inspiral stage up to several orbits before
merger remains very slow. This slow chirping of the signal during most of the time of the
evolution makes the frequency domain representation very useful, especially because of its
compactness: note, for instance, the simple behavior of A22(f) and ψ22(f) in Fig. 3.3 at

5We recall that we are always working with units such that G = c = 1.
6See Section IV of Chapter 8 for further details.
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low frequencies and the high number of orbits (and time) that this part represents. Indeed,
for data analysis purposes one usually works in the frequency domain.

Although the time-domain amplitude of a chirping signal increases with time, this is not
necessarily the case in the frequency domain (see left panel of Fig. 3.3). The reason is
because the frequency-domain amplitude represents the amount of energy accumulated in
a certain frequency bin; thus, even if one has lower amplitude values in the deep inspiral
stage, since the frequency evolution is also much slower, the system remains in that fre-
quency bin for many more orbits, accumulating more energy and therefore having higher
frequency-domain amplitudes.

3.5 Effective/characteristic amplitudes and observable sources

In the previous section we have represented and analyzed all the relevant quantities char-
acterizing the gravitational waveform emitted by a CBC (see Figs. 3.1-3.3). We have ob-
served how the frequency-domain representation of the waveform is a much more compact
and simpler way to visualize the emission, although one always have to have in mind the
highly non-linear relation that exists between the time and frequency. Thus, for instance,
a M = 100M� system needs just 1 second (15 orbits) to increase their emission frequency
by an order of magnitude (from 10 Hz to 100 Hz) when it is close to the merger, but it
needed ≈ 1 hour (1500 orbits) to go from 1 Hz to 10 Hz. These facts become important
when one considers finite observation times. The aim of this section is to discuss about
the best way to represent the signals’ amplitudes together with the detector’s sensitivity
curves, and quickly get an idea of the expected SNR that a certain signal observed with
a given interferometer would have; this is, we shall talk about effective and characteristic
amplitudes.

This topic was addressed many years ago [2, 93] and several authors proposed different
definitions for the effective amplitude depending on the nature of the signal; or, in partic-
ular, depending whether the signal is observed as a continuous wave (i.e. Tobs � signal’s
duration) or a burst-like signal (i.e. Tobs � signal’s duration). Since signals from CBCs
can be seen in either ways depending on the total mass, luminosity distance and detector,
we shall consider here a combination of the various “effective” amplitudes defined in the
literature.

The main purpose in defining effective quantities is that they have to provide intuitive
information about the observed SNR. Let us start recalling which is the definition of the
optimal SNR (squared) given a certain waveform, h, in terms of the frequency domain
signal and the noise PSD [see Eq. (3.10)],

ρ2
opt = (h|h) = 4

∫ F (t0+Tobs)

F (t0)
df
|h̃(f)|2
Sn(f)

=

∫ F (t0+Tobs)

F (t0)

df

f

f2|h̃(f)|2
f
4Sn(f)

. (3.39)

Here, we have explicitly written the integration intervals for a given finite observational
time, Tobs, starting the observation at t0, and F (t) being the GW frequency [here we only
consider the (2, 2) mode, though the extension to higher harmonics would be straightfor-
ward]. Moreover, on the r.h.s. of Eq. (3.39) we have rewritten the integral expression of
the optimal SNR so that each of the terms are adimensional:
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• First, we have written the integral over the (adimensional) logarithmic frequency,
df
f = d log f , so that in the usually represented log-scale plots, integrals shall be

intuitively computed as the ‘area below the integrand’.

• Despite the time-domain GW amplitude, h(t), being adimensional [as it represents
the relative length changes of the two interferometer arms, see Eq. (2.32)]; the defini-
tion of the Fourier transform, Eq. (3.3), adds units of time to the frequency-domain
signal, h̃(f). Hence, f2|h̃(f)|2 is adimensional and we shall define it as the (squared)
effective gravitational signal [2],

h2
s(f) ≡ f2|h̃(f)|2 . (effective signal) (3.40)

• Finally, the detector noise PSD, Sn(f), has also units of time, which will cancel out
when it is multiplied by f . The factor 1

4 comes from the fact that we are considering
one-sided noise PSDs [the two-sided noise PSD would have just a factor 1

2 ]. Thus,
we define the effective GW noise [2] (or, also called characteristic noise amplitude
[93]) as

hn(f) ≡
√

f
4Sn(f) . (effective noise or characteristic noise) (3.41)

With these definitions, the optimal SNR (squared), given in Eq. (3.39), can be written
simply as the logarithmic frequency integral of the squared ratio of the (adimensional)
effective signal and noise,

ρ2
opt =

∫ F (t0+Tobs)

F (t0)

df

f

h2
s(f)

h2
n(f)

. (3.42)

Now, the usefulness of the ratio hs
hn

as indicator of the SNR will depend of the frequency
variation during the observational time. If one considers a CBC signal in the last stages
of the evolution (with a significant frequency variation) and observed for a sufficient long
time so that the frequency changes by, at least, one of order of magnitude, then the ratio
of effective signal and noise will provide an intuitive idea of the optimal SNR. However,
if one considers a quasi-monochromatic signal (e.g. a CBC in the deep inspiral phase),
then the frequency variation during Tobs will be negligible, so the integrand will be almost
constant and the result of the integral in Eq. (3.42) will basically be ∆(logF )× ( hshn )2 with

∆(logF ) ≡ log Fend
F0
� 1 and therefore ( hshn )2 � ρ2

opt.

For cases like the latter, namely ∆(logF ) � 1; it is far more useful to work with char-
acteristic quantities [93], rather than the effective ones defined in (3.40). In particular,
the characteristic noise is equal to the effective noise [see Eq. (3.41) above] and since we
are integrating it in a narrow frequency band, it can be taken as constant and factorized
out of the integral. The remaining part is defined as the (squared) characteristic signal
amplitude,

h2
c(f) ≡

∫ F (t0+Tobs)

F (t0)

df

f
h2
s(f) =

∫ F (t0+Tobs)

F (t0)

df

f
f2|h̃(f)|2 . (characteristic signal)

(3.43)
Then, the characteristic frequency can be computed as

fc ≡
∫ F (t0+Tobs)
F (t0)

df
f f

2|h̃(f)|2f∫ F (t0+Tobs)
F (t0)

df
f f

2|h̃(f)|2
. (3.44)
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Characteristic: h2c(F0) ≡
∫ Fend

F0

df
f f

2|h̃(f)|2 ; (Fend ≈ F0) ; ρ2opt(F0) ≈
[
hc(F0)
hn(F0)

]2
Effective: h2s(f) ≡ f2|h̃(f)|2 ; (Fend � F0) ; ρ2opt(F0) ≈

∫∞
F0

df
f

[
hs(f)
hn(f)

]2
Table 3.2: Summary of the characteristic and effective signals: definition, range of applicability and
relation to the optimal SNR. See discussion in Sec. 3.5 for further details; we recall that the effective (or

characteristic) noise amplitude is defined in (3.41): hn(f) ≡
√

f
4
Sn(f).

Under these assumptions of narrow frequency band, the optimal SNR is simply the ratio
of characteristic signal and noise,

ρ2
opt =

h2
c(fc)

h2
n(fc)

. (when ∆(logF )� 1) (3.45)

In conclusion, effective and characteristic signals and noise consist in a more useful way
to (graphically) represent amplitudes and noise levels, respectively; first, because they are
adimensional and second, because their ratio is directly related with the observed optimal
SNR.

• When we are considering signals whose frequency evolution during the observational
time can be actually appreciated in a log-scale plot spanning several orders of mag-
nitude (for instance, Fig. 3.3), then we shall plot the effective signal amplitude (3.40)
together with the effective noise, h2

n (3.41) and their squared ratio will represent the
integrand [over the log-frequency] of ρ2

opt (3.42); the integral can be estimated as the
area below the curve, assuming the log f variable as the base.

• On the other hand, when the frequency evolution (during a given observational time)
is too small to be appreciated in a ‘log f ’ plot, then we shall compute the SNR integral
beforehand (assuming the effective noise level to be constant during that interval),
resulting into the characteristic signal amplitude (3.43); then, the optimal SNR will
be just the ratio between the characteristic signal and the effective noise (3.45).

When considering GW signals from CBCs, it turns out that the same gravitational signal
can be in either of the two regimes, depending on the observational time and, mainly, on
the stage of the evolution that is being observed. Moreover, given the “abrupt” transition
in the frequency evolution close to the merger (see, for instance, bottom-right panel of
Fig. 3.2), the transition zone between the two regimes will be very narrow. Hence, we shall
normally be observing either [Table 3.2 provides a summary of this discussion]

1. inspiral, quasi-monochromatic signals with F0 ≡ F (t0) ≈ F (t0 + Tobs) ≈ fc and that
will be represented by their characteristic signal, hc(F0); or

2. the late-inspiral and the whole merger and ringdown stages of the coalescence, in
which case, the frequency can vary by several orders of magnitude and hence, the
effective signal, hs(f), is providing a better representation of the signal (in terms of
relating it to the SNR). In this case, since the coalescences are observed until the
end, the upper limit of integration in Eq. (3.42), F (t0 +Tobs) ≡ Fend, can be replaced
by infinity.
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In the intermediate (and narrow) zone where ∆(logF ) > 1 but not by too much [in CBCs,
when t0 + Tobs ≈ tmerger and F (t0 + Tobs) ��→ ∞], the two representations (effective and
characteristic) will still be valid within their definitions, i.e. the (squared) ratio of effective
quantities as integrand and the (squared) ratio of characteristic amplitudes as integral
expressions of the SNR2. Of course, they are not going to numerically coincide, as they
represent different quantities7, besides that each of them will have its own limitations in
that zone: (i) for characteristic amplitudes, as we go to higher frequencies, hc(F0) will
represent an integral between a wide interval [F0, Fend] and the factorization of noise
level out of the integral as hn(F0) will start being no longer valid; and (ii) for effective
amplitudes, as we go to lower frequency values, the upper limit of the integral will not be
infinity anymore, and ∆(log f) will start being sufficiently small to make computation of
the (now, very narrow) area below the curve less intuitive. The point where hc = hs, despite
not having any special meaning, will be in this intermediate zone and it will represent the
frequency F0 value where the ‘effective’ ∆ logF = 1, i.e. Fend/F0 ∼ e.

3.5.1 Analytical calculations within the Newtonian approximation

Before analyzing the effective and characteristic amplitudes obtained from the full EOB
waveforms already plotted in Figs. 3.1, 3.2 and 3.3, it is very interesting to start analyzing
what kind of behavior do we expect. This can be easily (and analytically) done by just
taking the solution of the CBC dynamics to the leading Newtonian order [3]. This is,

|h̃(f)| =

√
5π

24

ν1/2M2

Deff
(πfM)−7/6 ≡ |A|f−7/6 ; (3.46)

F (t) =
θ3

8πM
, where θ =

[ ν

5M
(tref − t)

]−1/8
; (3.47)

t(F ) = tref −
5M

256νv8
, where v = (πFM)1/3 . (3.48)

In the previous equations, F is the GW frequency, M the total mass, ν = m1m2
M2 the

symmetric mass ratio and tref represents the (reference) time such that the PN GW fre-
quency diverges; of course this divergence does not occur when one considers full Einstein’s
equations, hence the PN validity range always ends well before tref .

Effective and characteristic amplitudes

The effective amplitude signal, hs, is simply |h̃(f)| times f , so

h2
s(f) = f2|h̃(f)|2 = f2|A|2f−7/3 = |A|2f−1/3 . (Newtonian) (3.49)

The computation of the characteristic signal, hc, actually involves an integral (3.43). We
shall consider two limit cases. On the one hand, we assume that we are close enough to
the merger so that Fend ≡ F (t0 + Tobs) > Fmerg and it can be considered as infinite,

h2
c(F0) =

∫ ∞
F0

df

f
|A|2f−1/3 = 3|A|2F−1/3

0 = 3h2
s(F0) . (Newtonian; Fend →∞)

(3.50)

7In fact, we shall see that in the Newtonian limit and assuming F (t0 + Tobs) → ∞, the two signal
amplitudes are related as h2

c = 3h2
s; see Eq. (3.50).
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On the other hand, we can consider a system in the inspiral stage of the evolution, with
small frequency variations, ∆(logF )� 1,

h2
c(F0) =

∫ F (t0+Tobs)

F (t0)

df

f
|A|2f−1/3

= 3|A|2
[
F (t0)−1/3 − F (t0 + Tobs)

−1/3
]

= 3|A|2(8πM)1/3
( ν

5M

)1/8
(tref − t0)1/8

[
1−

(
1− Tobs

tref − t0

)1/8
]

≈ 3|A|2(8πM)1/3
( ν

5M

)1/8
(tref − t0)1/8 1

8

Tobs

tref − t0
= [· · · ] =

4ν2

D2
eff

MTobs

π
(πF0M)7/3 ;

finally,

hc(F0) =
2ν

Deff

(
MTobs

π

)1/2

(πF0M)7/6 . (Newtonian; ∆(logF )� 1) (3.51)

To summarize, the effective signal, hs(F0)
nwt∝ F

−1/6
0 , provides intuitive information in

cases where there is a significant frequency change (in CBCs, when the observational time
includes the merger and ringdown, Fend > Fmerg), whereas the characteristic signal am-

plitude, hc(F0)
nwt∝ F

7/6
0 , shall be used to represent quasi-monochromatic signals in the

(deep) inspiral regime. In the transition zone, where F (t0 + Tobs) ≈ Fmerg, both represen-
tations [with their respective meanings] will be valid and indeed, in Eq. (3.50) we see how
h2
c will end up being 3h2

s.

Transition and Last-Stable-Orbit zones

Given a certain observational time, Tobs, we shall start observing the merger stage of the
evolution when F (t0 +Tobs) = Fmerg. The F0 ≡ F (t0) value associated with this condition,
let us call it F̃0, will define the “transition zone” between considering quasi-monochromatic
signals [and therefore, using hc] to considering observations up to the end of the ring-down
[and using hs]. We can compute these F̃0 values within the Newtonian approximation by
using Eq. (3.47) and assuming the PN merge to occur at tref ,

F̃0 ≡ F (tref − Tobs) =
1

8πM

( ν

5M
Tobs

)−3/8
=

1

8πM5/8

(
5

ν Tobs

)3/8

. (3.52)

The effective amplitude associated to these F̃0 values, will be

hs(F̃0) =
5

32π2Deff

1√
6Tobs

F̃
−3/2
0 . (Newtonian) (3.53)

Notice that all the dependency on M and ν remains implicit within F̃0, so we shall be
getting the same ‘transition curves’ for all (ν,M) values (see Fig. 3.4).
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Also, we can obtain the effective amplitude associated to the (test-mass particle) LSO,
which is given by vlso = 1/

√
6 or, in other words, Flso = 1/(63/2πM),

hs(Flso) =

√
5ν

π3

1

63/4

1

12Deff
F−1
lso . (Newtonian) (3.54)

The previous expression has already been written explicitly in terms of Flso, but there still
remains a dependency on ν that will give different ‘LSO curves’ depending on the mass
ratio. We also considered the possibility of using the mass-ratio-dependent expression for
the LSO given in Ref. [1], but the results we were obtaining were too complicated.

3.5.2 Plotting the effective/characteristic amplitudes

After defining which are the most appropriate quantities to intuitively represent signal
and noise amplitudes, let us now take the frequency-domain amplitude of the gravitational
waveform plotted in Fig. 3.3 [corresponding to an EOB simulation of an equal-mass, non-
spinning BBH system including all stages of the evolution], and compute its associated
effective and characteristic amplitudes. Results considering a fiducial effective distance of
Deff = 1 Gpc, an observational time of Tobs = 1 year and several total mass values, are
plotted in Fig. 3.4.

In particular, we consider twelve different total mass values, M/M� = {3, 15, 50, 200, 1000,
104, 5× 104, 3× 105, 2× 106, 107, 5× 107, 3× 108}; which basically respond to a log-scale
uniform grid from stellar-mass systems up to supermassive ones. However, there are some
of the intermediate values that correspond to systems that have never been observed in
the Universe: from stellar evolution we know that BHs up to 20M� [94] can exist and also,
there are strong evidences to accept the presence of SMBHs in the center of every Galaxy
with individual masses above ∼ 104M�. Hence, for equal-mass CBCs there is a total mass
range M ∈ (40M�, 2× 104M�), where it is unknown whether these systems can actually
exist; we denote them as lighter blue curves in Fig. 3.4.

The evolution of the amplitude curves with the total mass of the system M , that can be
observed in Fig. 3.4, can be easily understood as a combination of two effects: on one hand,
the signal’s amplitude increases with M , as |h̃(f)| ∝ M5/6 [see Eq. (3.46)]; on the other
hand, the amplitude curves shift to lower frequencies as M increases, since the solution to
Einstein’s equations is generally obtained in terms of the adimensional frequency, fM .

The orange thick lines plotted in the same figure represent the transition zone from where
Fend = F (t0 + Tobs) > Fmerg, i.e. if the observation starts at some point in the right hand
side of the orange line, it means that one shall observe the whole coalescing process up
to merger within Tobs. The green thick line, on the other hand, represents the merger
position (defined as the instant where the time-domain amplitude becomes maximum).
Both loci have been numerically computed using the EOB waveform, but we observe
that their general behavior is consistent with the analytical calculations done within the
Newtonian approximation in the previous section: Eqs. (3.53) and (3.54), respectively.
Also, the general trends of the effective and characteristic amplitudes, hs and hc, during
the inspiral stage of the evolution are in concordance with the Newtonian predictions,
Eq. (3.49) and (3.51), respectively. In particular, we recall that the effective amplitude,
hs, consists simply in an adimensionalization of the original amplitude and it still decreases
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Figure 3.4: Summary plot of the detectability of (equal-mass) CBCs (of any total mass) with current and
future interferometric GW detectors. The thick green line represents the locus where the merger (defined as
the instant where the time-domain amplitude is maximum) occurs, for different total mass values; whereas
the thick orange line represents the frequency and amplitude values such that F (t0 + Tobs) = Fmerg,
assuming Tobs = 1 yr; in other words, it represents the transition zone of usefulness of the characteristic
and effective signals definitions (see discussion and further details in the main text). In particular, the
blue lines (both light and dark blue) represent characteristic signal amplitudes, hc, in the left hand side
of the thick orange line and effective amplitudes, hs, in the right hand side; always considering equal-
mass systems at a fiducial effective distance of Deff = 1 Gpc and twelve different total mass values,
M/M� = {3, 15, 50, 200, 1000, 104, 5× 104, 3× 105, 2× 106, 107, 5× 107, 3× 108}. The darkness level of the
blue lines gives an idea of the odds of finding this kind of systems in the Universe. We also overprint the
effective noise amplitude, hn, of both ground- and space-based interferometric GW detectors. Finally, the
green segments on the top-right corner give an idea of what a factor 10 and e are in the ‘y’ and ‘x’ axis,
respectively. [Plot: own production, using an EOB simulation courtesy of A. Nagar and T. Damour]



3.5. Effective/characteristic amplitudes and observable sources 77

10
−4

10
−2

10
0

10
2

10
4

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

f (Hz)

E
ff
e
c
ti
v
e
 o

r 
c
h
a
ra

c
te

ri
s
ti
c
 a

m
p
lit

u
d
e
s

 

 
iLIGO

aLIGO

LISA

x10

x e

10
−4

10
−2

10
0

10
2

10
4

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

f (Hz)

E
ff
e
c
ti
v
e
 o

r 
c
h
a
ra

c
te

ri
s
ti
c
 a

m
p
lit

u
d
e
s

 

 
iLIGO

aLIGO

LISA

x10

x e

10
−4

10
−2

10
0

10
2

10
4

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

f (Hz)

E
ff
e
c
ti
v
e
 o

r 
c
h
a
ra

c
te

ri
s
ti
c
 a

m
p
lit

u
d
e
s

 

 
iLIGO

aLIGO

LISA

x10

x e

(a) Deff = 0.15 Mpc (b) Deff = 30 Mpc (c) Deff = 6.3 Gpc; (z = 1)
[Galactic realm] [Virgo supercluster] [‘cosmological’ distances]

Figure 3.5: Similar plots to Fig. 3.4, but considering three particular effective distance values, Deff , that
represent the typical size of astronomical structures that contain the Solar System within. We use three
different darkness levels for the (blue) signal’s amplitude curves, in order to represent (in an approximate
and qualitative way) the odds of having CBCs of such total mass, M , within the different volumes. We
consider the same twelve M values as in Fig. 3.4. [Plots: own production, using an EOB simulation courtesy
of A. Nagar and T. Damour]

with frequency; however, the characteristic amplitude hc represents already an integrated
quantity over a fixed Tobs. So, despite the fact that the original amplitude in the frequency-
domain was higher at lower frequencies, the frequency variation (for a fixed Tobs) becomes
smaller as one moves to smaller frequency values, making the integral expression, hc, to
decrease as we move to lower frequencies.

As we have seen in Sec. 3.4, the emission frequency of a CBC is monotonically increasing,
but not at a constant rate, very slowly in the early stages of the evolution and much faster
as one gets close to the merger. In terms of the amplitude curves represented in Fig. 3.4, this
one-to-one relation between frequency and time means that any coalescing binary system
(with a fixed total mass8, M) moves along a single line during its lifetime: the higher
the frequency is, the closer to the merger. Furthermore, the increase on the frequency
derivative as the system approaches the merger, translates into a changing velocity of
how the system moves along the amplitude curves. For instance, by definition any system
spends Tobs = 1 yr to go from the orange line up to merger, but during this very same time,
when the system is at some point at the l.h.s. of the orange line, one can not even notice
the frequency variation. Indeed, at the l.h.s. of the orange line we can find systems that are
from millions of years, up to one year, prior their merger; whereas at the r.h.s. all systems
have less than one year left of life time. This is very important in order to understand
the population distribution of sources along the amplitude curves: if we assume a uniform
distribution of CBC ages, we shall expect millions of times more sources at the l.h.s. of
the orange thick line than at the r.h.s.

In the same plot in Fig. 3.4, we also show the effective (or characteristic) noise amplitudes
of both ground and space based GW interferometric detectors, in particular initial LIGO
[95], advanced LIGO [95] and LISA [96].

With all the information presented in a figure like Fig. 3.4 and undestanding the meaning of
effective and characteristic amplitudes (see Tab. 3.2 for a summary), one can easily obtain

8If we assume that the emitted energy is small compared with the total mass of the system; which is
not true in reality.
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very useful information about (i) the systems that will be observable in each detector, (ii)
which parts of the coalescing process will be visible and (iii) the typical SNR values at
a given effective distance. Given the inverse proportional relation between h̃(f) and Deff ,
an increase of an order of magnitude in the effective luminosity distance would represent
a decrease on both effective and characteristic signals by the same factor. In particular,
assuming a fiducial effective distance of 1 Gpc as it is done in Fig. 3.4 [which represents
a volume ∼ 104 larger than the size of the Virgo supercluster]; we see that Adv. LIGO
could observe the late inspiral of a system with M = 15M� and the merger would become
visible for higher mass systems, such as M = 50M� and M = 200M�. LISA, on the other
hand, would be able to observe the quasi-monochromatic signals from the deep inspiral
regime of systems with M ∈ (200M�, 107M�) and the actual mergers of systems with
M > 5× 104. Moreover, the expected SNRs observed by LISA would be much higher that
what we expect in ground-based detectors.

The effective distance considered in Fig. 3.4 is arbitrarily chosen. In fact, we think that
somehow one can obtain even more useful information when one considers astronomically
motivated Deff values and also total mass ranges according to the expected population.
Indeed, this study is what it is done in Fig. 3.5, considering three different scenarios: (a)
the Galactic realm [Deff = 0.15 Mpc], (b) the Local (Virgo) supercluster [Deff = 30 Mpc]
and (c) ‘cosmological’ distances [Deff = 6.3 Gpc]. With these plots and some astronomical
arguments, we shall be able to predict which are the gravitational signals generated from
(similar-mass) CBCs that are expected to be observed in the ground-based or space-based
frequency bands, and also their properties and origin.

• Galactic realm. Massive BHs are located at the center of galaxies [97–99] (for in-
stance, we know that there is a 4.5 × 106M� SMBH at the center of our galaxy,
see e.g. [100]), so massive events will be related to galaxy mergers [101] and we do
not expect such events at distances of the order of the Milky Way scale and neither
in the Local supercluster [thus, in Fig. 3.5a-b we shall represent these systems with
the lightest blue color]. What we do expect is to have an important population of
stellar-mass BHs generated as the end product of massive stars evolutions. An small
fraction of these BHs can be in binary systems and therefore emit GWs.

In principle, we see that the same systems could be observed by LISA in their deep-
inspiral stage (with SNRs from tens up to hundreds) and also by LIGO when they
are close to the merger (SNR ∼ 100 − 1000). The coalescence rate of BBH systems
is 0.4 Myr−1 per Milky Way Equivalent Galaxy [95], so we do not expect to observe
any BBH merger from our galaxy; however LISA will observe such systems (indeed,
millions of them) in an early stage of their evolution, where they remain for a very
long time and therefore, they have a much greater population.

Thus, the only (similar-mass) CBCs that we expect to observe from our galaxy are
stellar-mass objects in their deep inspiral stage of the evolution, emitting quasi-
monochromatic signals; we shall refer to them as galactic binaries. Despite being
a CBC, they are too far away from merger that their gravitational waveform for
Tobs = 1 yr, can be modeled as a monochromatic signal plus an spin-up parameter
representing the first frequency derivative. Galactic binaries are by far the most nu-
merous among LISA sources, and indeed most of them will be unresolvable becoming
an extra source of noise, so-called confusion noise. Trying to resolve them represents
one of the major challenges for LISA data analysis, not only in order to obtain indi-
vidual information from them, but also to remove them from the data and therefore
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reduce the confusion noise that also affects other LISA sources. We expect to be able
to identify several thousands of such systems during LISA’s mission life time.

In this thesis, we have developed MCMC-based methods to search for a fixed number
of galactic binary signals buried in LISA noise, and also we have participated in the
Mock LISA Data Challenges (MLDC) [102, 103]. (see Chapters 6 and 7 for further
details).

• Local (Virgo) supercluster. We don’t expect to observe any SMBH binary merger
event coming from the Local supercluster neither, but having increased the volume
by a factor 8 × 106 compared to the Galactic realm increases the chances to ob-
serve stellar-mass BBH mergers. Indeed, the expected CBC signals to be observed
by ground-based detectors will be located within the Local supercluster and even
a bit beyond. We observe in Fig. 3.5b how the expected SNR is still high enough
to make observations and the CBC rates start being close to 1 yr−1. In particular,
recently in Ref. [95] the LIGO and Virgo Collaborations have revisited the issue
of predictions for the rates of CBC observable by ground-based detectors, assuming
horizon distances of 161 Mpc/2187 Mpc for BH-BH inspirals in the Initial/Advanced
LIGO-Virgo networks, and obtaining detection rates of 0.007 yr−1/20 yr−1, respec-
tively. Notice that for very low mass systems (M . 10M�) only the late inspiral part
of the waveform will be observable, but as we increase a little bit the total mass, the
merger part becomes relevant. Indeed, this has been the main motivation for scien-
tists working on Numerical and Analytical Relativity problems over the last years
in order to obtain an accurate description of the dynamics of CBC systems around
the merger. Indeed, part of the work done during this thesis has been devoted to
study the performance (in terms of accuracy and effectualness) of the (fast) closed-
form, frequency domain waveform models in comparison to the slower, but more
accurate, EOB templates, see Chapter 8; with this study we get to know the range
of applicability of the fastest waveform models, either for detection or measurement
purposes.

Part of the extragalactic stellar-mass compact systems in the deep-inspiral regime are
still visible in the LISA band and indeed, there is also an extragalactic component of
confusion noise. However, looking at Fig. 3.5b, at these distances, one has to consider
somehow high M values in order to obtain ‘observable’ (> 10) SNR values, and the
LISA noise curve plotted here does not contain the contribution from confusion noise.
In conclusion, there is an extragalactic component to the confusion noise, but we do
not expect to individually resolve any extragalactic stellar-mass binary.

• ‘Cosmological distances’. Assuming a spatially flat Friedman-Lemâıtre-Robertson-
Walker (FLRW) universe with H0 = 75 km s−1Mpc−1, ΩM = 0.27, ΩDE = 0.73,
and w = −1, a luminosity distance of Deff = 6.3 Gpc corresponds to a redshift
z = 1; and we could even consider longer distances, such as Deff = 15 Gpc (z = 2),
Deff = 45 Gpc (z = 5) or Deff = 100 Gpc (z = 10). In Fig. 3.5c, we see that
LISA will be able to observe massive and supermassive BBHs coalescences from any
mass within M ∈ (104M�, 108M�), at almost any distance, with SNRs of hundreds
and even thousands. In most of the systems, the merger part can have a significant
contribution to the SNR (if Tobs is long enough), so it will be also important to include
information from either EOB or NR simulations. Given the fact that the detection
problem of SMBHs signals with LISA is relatively easy [because of the high SNR
values]; during the past years, data analysts have focussed on parameter estimation
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studies. In particular, one of the main topics of this thesis (Chapter 4) have been
to study the impact on parameter estimation of adding the higher harmonics of
the orbital frequency to the inspiral PN signal, finding significant improvements on
relevant parameters.

With long observational times (∼ months), one of the parameters that LISA can
directly measure is the luminosity distance. This is not normally the case with other
(electromagnetic) astronomical measurements, where one obtains accurate measure-
ments of the redshift by looking at the emitted spectra, but it is very hard to directly
measure luminosity distances. This LISA’s feature, combined with the fact that it
will observe SMBHs coalescence events from anywhere in the Universe, makes the
spaced-based detector a powerful tool to do cosmography. In particular, during the
thesis, we have studied LISA’s performance in measuring the dark energy equation
of state from a single SMBHs inspiral event at z ≤ 1 (Chapter 5).

Advanced ground-based detectors and, specially, the planned third generation of
interferometers, might also observe some merger events at ‘cosmological distances’,
Deff ∼ Gpc. We can see in Fig. 3.5c how the late inspiral, merger and ringdown
parts of the waveform will have a key role in these observations; thus, the better our
understanding of the signals emitted in that regime is (including higher harmonics,
spins, precession, etc.), the better the cosmological outstanding of the advanced
ground-based detectors will be.

In conclusion, LISA will observe thousands of stellar-mass BBHs coalescences from our
galaxy when they are still in the deep-inspiral stage of the evolution (galactic binaries),
i.e. emitting quasi-monochromatic signals; also it will observe SMBHs inspirals and merg-
ers from almost any place of the Universe [up to z = 10− 15]. Ground-based detectors, on
the other hand, will observe the late inspiral, merger and ringdown phases of stellar-mass
and up to several hundreds of solar masses CBCs produced within ∼ 150 Mpc (2000 Mpc),
when one considers Initial (Advanced) detectors; this represents a volume ∼ 100 (105)
times larger than the Virgo supercluster.
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Addendum to Chapter 7. Toy examples to illustrate and
quantify the efficiency of DR MCMC chains

The benefit of DR is that it increases the efficiency of sampling by delaying a possible a
rejection, at the same time that it allows us to propose a new candidate that can be drawn
using the information of the past stages. Indeed, Mira et al. [1, 2] demonstrate from a
formal point of view that DR increases the transition probability of the states of the chain
within the different parts of the parameter space, improving the mixing of the chain and
leading to a reduction [3] of the asymptotic variance of any estimator, say λ̄.

The purpose of this addendum is to ‘illustrate’ this efficiency increase in some toy examples,
by estimating and comparing the variance of chains generated with and without DR. We
are fully aware that all the results that we shall obtain in this addendum are merely tests
of validity, applied to simple examples, of the general result formally demonstrated by Mira
et al. [1, 2] and therefore the conclusions we shall obtain here, are not new. However, we
think that it may be useful to observe the benefits of DR in some actual examples, at the
same time that we obtain a quantitative measurement of this efficiency increase in terms
of the variances of the resulting chains.

Intuitively, it may be difficult to see that DR actually increases the efficiency of the chain
at a given computational cost1 because, on the one hand, it reduces the number of repeated
elements of a chain by delaying a possible rejection; but on the other hand, the number
of elements of the resulting chain (for a fixed computational cost, i.e. number of new
proposed states2) will be smaller. Since the variance of the chain involves the ratio between
the correlation function and the number of elements of the chain [see Eq. (7.8) below], it
is not clear which of the two effects shall dominate, or whether this can depend on the
particular problem at hand. Thus, the question that we want to answer in this addendum
is: “Is there a benefit (in terms of reducing the variance of the estimate) from removing
some repeated elements of a chain?”.

Preliminary considerations

Suppose we wish to estimate the expectation

I ≡ 〈f〉π =
s∑
i=0

f(i)πi , (7.1)

where π = (π0, π1, . . . , πs) is a positive probability distribution, i.e. πi > 0 for all i, and
f(·) is a non-constant function defined on the states {0, 1, . . . , s} of an irreducible Markov
chain determined by the transition matrix P = {pij}. If P is chosen so that π is its unique
stationary distribution, then after simulating the Markov chain for times t = 1, . . . , N , an
estimate of the expectation I is given by

Ī =
N∑
t=1

f{λ(t)}/N , (7.2)

1We assume that evaluating the likelihood function is the most demanding calculation in terms of com-
putational time, and therefore we shall estimate ‘computational costs’ directly as the number of likelihood
evaluations.

2Each new proposed state requires a likelihood evaluation.
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where λ(t) denotes the state occupied by the chain at time t.

The performance in the MCMC sampling can be measured through two quantities: (i)
the bias of the estimate Ī, defined as limN→∞

[
E(Ī)− I

]
, represents the accuracy of the

sampling; and (ii) the variance of the estimate, which represents its precision. As Peskun
[3] points out, since var(Ī) is O(N−1) and the bias squared is O(N−2), for an appropriate
distribution of the initial state λ(0), the bias has a negligible effect (at least, it decreases
faster) on the accuracy of the estimate Ī. Moreover, we can highly reduce the bias by
neglecting the points from the ‘burn-in’ period. We shall thus confine our discussions to
the precision (variance), rather than the accuracy (bias), of the estimate Ī.

In particular, the variance of the estimate Ī can be computed in terms of the autocorrela-
tion function of the Markov chain [4–6] as

var(Ī) =
1

N2

N∑
r,s=1

Cff (r − s) , (7.3)

where Cff (t) is the (unnormalized) autocorrelation function of the function f{λ} at lag t,
defined as

Cff (t) ≡ 〈fsfs+t〉 − Ī2 = 〈f{λ(s)}f{λ(s+ t)}〉 − Ī2 . (7.4)

The normalized autocorrelation function is then

ρff (t) ≡ Cff (t)/Cff (0) . (7.5)

Typically, ρff (t) decays exponentially for large t; this defines the exponential autocorrela-
tion time, τexp, [4]

ρff (t) ∼ e−|t|/τexp . (7.6)

When the number of elements of the Markov chain, N , is large enough; the variance
of the estimate Ī given by equation (7.3) can be rewritten in terms of the integrated
autocorrelation time [4],

τint ≡
1

2

N∑
n=−N

ρff (n) =
1

2
+

N∑
n=1

ρff (n) , (7.7)

as

var(Ī) ' 2 τint Cff (0)

N
. (7.8)

The factor of 1
2 in the definition of the integrated autocorrelation time (7.7) is purely a

matter of convention; it is inserted so that τint ≈ τexp for τ � 1.

In what follows, we shall consider several toy examples in which we shall assume to have a
hypothetical Markov chain with a certain number of repeated elements (namely, chain A)
that could be removed by using DR, resulting into a shorter, but less correlated, chain (let
us call it chain B). Given the simplicity (and periodicity) of the Markov chains considered
in these toy examples, we shall be able to compute, in a theoretical way and using Eqs. (7.7)
and (7.8), the variance of an arbitrary estimate Ī from the chain B, varB(Ī), in terms of the
variance of the same estimate from the chain A, varA(Ī). Despite being just toy examples,
we aim to provide a quantitative illustration of the benefits of using DR.
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Chain A (duplicated elements): ① ① ② ② ③ ③ ④ ④ ⑤ ⑤ ⑥ ⑥ ⑦ ⑦ ⑧ ⑧ ⑨ ⑨ ⑩ ⑩ …

Chain B:  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ …

Figure 7.1: Case I. Example of two Markov chains, one of them with all its elements duplicated.

Case I: Duplicate all elements of a chain

We shall start considering a very simple scenario, which consists in assuming that only one
every second proposed state is accepted, resulting into a Markov chain with all its elements
duplicated, as every time one proposal is rejected the chain remains at the original state.
In this case, a two-stages DR algorithm could be used in order to remove all the repeated
elements of the chain. Fig. 7.1 provides an schematic representation of the two chains,
using repeated circled numbers to denote repeated elements of the chain.

Without loss of generality, we shall assume a zero-mean estimator, i.e. Ī = 0, so that the
autocorrelation function at lag t, Eq. (7.4), is simply Cff (t) = 〈fsfs+t〉 = 1

N−t
∑N−t

s=1 fsfs+t.

From Fig. 7.1, and assuming that the chains only have the finite number of elements
explicitly shown in the figure, we can explicitly compute the autocorrelation function of
the two different chains and look for a relation between the different values.

CB(0) =
1

10

(
1○2 + 2○2 + 3○2 + 4○2 + · · ·+ 10○2

)
(7.9)

CA(0) =
1

20

(
2 1○2 + 2 2○2 + 2 3○2 + 2 4○2 + · · ·+ 2 10○2

)
= CB(0)

CB(1) =
1

9
( 1○ 2○ + 2○ 3○ + 3○ 4○ + 4○ 5○ + · · ·+ 9○ 10○) (7.10)

CA(1) =
1

19

(
1○2 + 1○ 2○ + 2○2 + 2○ 3○ + · · ·+ 9○ 10○ + 10○2

)
=

1

19
[10CB(0) + 9CB(1)]

CB(2) =
1

8
( 1○ 3○ + 2○ 4○ + 3○ 5○ + 4○ 6○ + · · ·+ 8○ 10○) (7.11)

CA(2) =
1

18
( 1○ 2○ + 1○ 2○ + 2○ 3○ + 2○ 3○ + · · ·+ 9○ 10○ + 9○ 10○) = CB(1)

CB(3) =
1

7
( 1○ 4○ + 2○ 5○ + 3○ 6○ + 4○ 7○ + · · ·+ 7○ 10○) (7.12)

CA(3) =
1

17
( 1○ 2○ + 1○ 3○ + 2○ 3○ + 2○ 4○ + · · ·+ 8○ 10○ + 9○ 10○) =

1

17
[9CB(1) + 8CB(2)]

CB(4) =
1

6
( 1○ 5○ + 2○ 6○ + 3○ 7○ + 4○ 8○ + · · ·+ 6○ 10○) (7.13)

CA(4) =
1

16
( 1○ 3○ + 1○ 3○ + 2○ 4○ + 2○ 4○ + · · ·+ 8○ 10○ + 8○ 10○) = CB(2)

CB(5) =
1

5
( 1○ 6○ + 2○ 7○ + 3○ 8○ + 4○ 9○ + 5○ 10○) (7.14)

CA(5) =
1

15
( 1○ 3○ + 1○ 4○ + 2○ 4○ + 2○ 5○ + · · ·+ 7○ 10○ + 8○ 10○) =

1

15
[8CB(2) + 7CB(3)]

· · ·
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Chain A (duplicated elements): ① ② ② ③ ④ ④ ⑤ ⑥ ⑥ ⑦ ⑧ ⑧ ⑨ ⑩ ⑩ …

Chain B:  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ …

Figure 7.2: Case II. Example of two Markov chains, one of them with its even elements duplicated.

From these explicit expressions, one can infer the general relation between CA(n) and
CB(n) for all n:

CA(0) = CB(0) ,

CA(2n) = CB(n) , (7.15)

CA(2n+ 1) =
1

2N − 2n− 1
[(N − n)CB(n) + (N − n− 1)CB(n+ 1)] .

Finally, we use Eq. (7.7) to compute the integrated autocorrelation time, that is directly
related to the variance of the estimate.

τint, B =
1

2
+

1

CB(0)

N∑
n=1

CB(n) ; (7.16)

τint, A =
1

2
+

1

CA(0)

2N∑
n=1

CA(n)

=
1

2
+

1

CB(0)

(
N∑
n=1

CA(2n) +

N−1∑
n=0

CA(2n+ 1)

)

=
1

2
+

1

CB(0)

(
N∑
n=1

CB(n) +
N−1∑
n=0

N − n
2N − 2n− 1

CB(n) +
N−1∑
n=0

N − n− 1

2N − 2n− 1
CB(n+ 1)

)

≈ 1

2
+

1

CB(0)

(
N∑
n=1

CB(n) +
1

2

N−1∑
n=0

CB(n) +
1

2

N−1∑
n=0

CB(n+ 1)

)

≈ 1

2
+

1

CB(0)

(
N∑
n=1

CB(n) +
N∑
n=1

CB(n) +
1

2
CB(0)

)
= 2 τint, B ; (7.17)

where we only have assumed N →∞, and that CB(n)→ 0 as n→ N .

Thus, in this case we obtain that by duplicating N ; τ also doubles, keeping the variance
(7.8) constant: varA(Ī) = varB(Ī). Hence, in this extremely simple example the use of DR
does not really increase the efficiency of the Markov chain since the effect of reducing its
correlations is compensated by the decrease on the number of elements of the chain (for
the same computational cost). We shall see in the following examples, that this is not the
general case and that normally, the use DR does increase the efficiency of the resulting
chains.

Case II: Duplicate one element every second

In this case, we go one step further and consider a chain that only its even elements are
duplicated (see Fig. 7.2). This case could exemplify a canonical situation where a proposal
is accepted twice every three iterations. With this, the explicit autocorrelation functions
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take the form,

CB(0) =
1

10

(
1○2 + 2○2 + 3○2 + 4○2 + · · ·+ 10○2

)
(7.18)

CA(0) =
1

15

(
1○2 + 2○2 + 2○2 + 3○2 + 4○2 + 4○2 + · · ·+ 9○2 + 10○2 + 10○2

) avg.≈ CB(0)

CB(1) =
1

9
( 1○ 2○ + 2○ 3○ + 3○ 4○ + 4○ 5○ + · · ·+ 9○ 10○) (7.19)

CA(1) =
1

14

(
1○ 2○ + 2○2 + 2○ 3○ + 3○ 4○ + 4○2 + · · ·+ 9○ 10○ + 10○2

) avg.≈ 1

14
[9CB(1) + 5CB(0)]

CB(2) =
1

8
( 1○ 3○ + 2○ 4○ + 3○ 5○ + 4○ 6○ + · · ·+ 8○ 10○) (7.20)

CA(2) =
1

13
( 1○ 2○ + 2○ 3○ + 2○ 4○ + 3○ 4○ + 4○ 5○ + 4○ 6○ + · · · ) avg.≈ 1

13
[9CB(1) + 4CB(2)]

CB(3) =
1

7
( 1○ 4○ + 2○ 5○ + 3○ 6○ + 4○ 7○ + · · ·+ 7○ 10○) (7.21)

CA(3) =
1

12
( 1○ 3○ + 2○ 4○ + 2○ 4○ + 3○ 5○ + 4○ 6○ + 4○ 6○ + · · · ) avg.≈ CB(2)

CB(4) =
1

6
( 1○ 5○ + 2○ 6○ + 3○ 7○ + 4○ 8○ + · · ·+ 6○ 10○) (7.22)

CA(4) =
1

11
( 1○ 4○ + 2○ 4○ + 2○ 5○ + 3○ 6○ + · · ·+ 7○ 10○ + 8○ 10○)

avg.≈ 1

11
[7CB(3) + 4CB(2)]

CB(5) =
1

5
( 1○ 6○ + 2○ 7○ + 3○ 8○ + 4○ 9○ + 5○ 10○) (7.23)

CA(5) =
1

10
( 1○ 4○ + 2○ 5○ + 2○ 6○ + 3○ 6○ + · · · ) avg.≈ 1

10
[7CB(3) + 3CB(4)]

CB(6) =
1

4
( 1○ 7○ + 2○ 8○ + 3○ 9○ + 4○ 10○) (7.24)

CA(6) =
1

9
( 1○ 5○ + 2○ 6○ + 2○ 6○ + 3○ 7○ + · · ·+ 6○ 10○)

avg.≈ CB(4)

· · ·

Here, in order to obtain the relations after the
avg.≈ symbol, we have used the fact that the

Markov chain samples an stationary distribution.

From these explicit expressions, one can infer the general relations between CA(n) and
CB(n) for all n:

CA(0) = CB(0) ,

CA(3n) = CB(2n) , (7.25)

CA(3n+ 1) = 1
3
2N−3n−1

[
(N − 2n− 1) CB(2n+ 1) +

(
N
2 − n

)
CB(2n)

]
,

CA(3n+ 2) = 1
3
2N−3n−2

[
(N − 2n− 1) CB(2n+ 1) +

(
N
2 − n− 1

)
CB(2n+ 2)

]
.
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Then, the general expressions for the integrated autocorrelation times will be given by

τint, B =
1

2
+

1

CB(0)

N∑
n=1

CB(n) (7.26)

τint, A =
1

2
+

1

CA(0)

3N/2∑
n=1

CA(n)

=
1

2
+

1

CB(0)

N/2∑
n=1

CA(3n) +

N
2 −1∑
n=0

CA(3n+ 1) +

N
2 −1∑
n=0

CA(3n+ 2)


=

1

2
+

1

CB(0)

N/2∑
n=1

CB(2n) +

N
2 −1∑
n=0

[
N − 2n− 1
3
2N − 3n− 1

CB(2n+ 1) +
N
2 − n

3
2N − 3n− 1

CB(2n)

+
N − 2n− 1
3
2N − 3n− 2

CB(2n+ 1) +
N
2 − 2n− 1

3
2N − 3n− 2

CB(2n+ 2)

])

≈ 1

2
+

1

CB(0)

N/2∑
n=1

CB(2n) +
1

3

N
2 −1∑
n=0

[2CB(2n+ 1) + CB(2n) + 2CB(2n+ 1) + CB(2n+ 2)]


=

1

2
+

1

CB(0)

N/2∑
n=1

CB(2n) +
4

3

N
2 −1∑
n=0

CB(2n+ 1) +
1

3
CB(0) +

2

3

N
2 −1∑
n=0

CB(2n+ 2)


=

1

2
+

1

CB(0)

4

3

N∑
n=1

CB(n) +
1

3

CB(0) +

N/2∑
n=1

CB(2n)


=

4

3
τint, B +

1

3

1

2
+

N/2∑
n=1

CB(2n)

CB(0)

 (7.27)

Making use of the definition of the exponential autocorrelation time in Equation (7.6),
we can rewrite τint, B and the sum that appears in the final result of (7.27), in a more
convenient way [here we shall define τexp,B ≡ τ and assume N � τ ]:

τint, B =
1

2
+

N∑
n=1

CB(n)

CB(0)
=

1

2
+

N∑
n=1

e−n/τ =
1

2
+

1

e1/τ − 1
=

1

2
coth

[
1

2τ

]
, (7.28)

(·) in (7.27) =
1

2
+

N/2∑
n=1

CB(2n)

CB(0)
=

1

2
+

N/2∑
n=1

e−2n/τ =
1

2
+

1

e2/τ − 1
=

1

2
coth

[
2

2τ

]
. (7.29)

Finally, we can put together all the results from Eqs. (7.26)-(7.29) into the definition of
the variance of the estimate Ī, Eq. (7.8), in order to obtain by how much the variance is
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reduced because of removing the repeated elements of the chain [we recall that NA = 3
2NB],

varA(Ī)− varB(Ī)

varB(Ī)
=

τint, A − NA
NB

τint, B
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NB

τint, B

=

4
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3

(
1
2 +

∑N/2
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CB(0)

)
− 3
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3
2 τintB

=
2

9
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1
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CB(0)

)
τint, B

− 1

9

=
1

9

(
2 coth

[
2
2τ

]
tanh

[
1
2τ

]
− 1
)
≥ 0 (7.30)

The main consequence of this result is that varB(Ī) ≤ varA(Ī) or, in other words, we
have just showed that DR always increases the efficiency of the resulting Markov chain
in terms of reducing the variance of any estimate. Moreover, the previous result allows
us to obtain quantitative measures of such improvement; in particular, we would obtain
a 2.4% reduction if τ = 1 ; 0.7% when τ = 2 ; 0.3% when τ = 3; . . . These are indeed
moderate improvements, but as we shall see below in Fig. 7.4, DR performance becomes
important when the needed number of stages within a DR sub-chain is much greater than
the autocorrelation time of the (main) chain.

Case III: Repeat M2 times one element every M1-th

Finally, let us consider a generalization of the two previous examples, where we shall
assume a chain consisting in a set of M2 repeated elements every M1-th, M1 and M2 being
integers. We see this toy model as a basic representation of a situation in which a Markov
chain is generated from two different proposals, P1 and P2, and one of them, say P2, has
a much lower acceptance probability (see Fig. 7.3). Then, as far as one is proposing from
P1, a chain is being built with a given autocorrelation time τ ; and once every M1 of these
proposals, one attempts P2 until it is accepted, which we assume that it is M2 times.
The resulting chain (A) will contain M2 completely correlated (repeated) elements every
M1 +M2 iterations, whose efficiency could be improved by grouping all these M2 elements
into a single one, using the DR algorithm (chain B in Fig. 7.3).

This particular example tries to emulate, in a sense, the situation described in the article
previously included in the current chapter; where P1 would be the unimodal Gaussian
proposals that explore the neighborhood of the original position, and P2 would represent
the trimodal distributions attempting big jumps in the parameter space. When the likeli-
hood function is characterized by several isolated maxima, the acceptance probability of
P1 will be much higher than P2. Another situation that could be well exemplified by the
current toy model is a case where we would use delayed rejection (DR) in combination
with RJMCMC in order to delay the possible rejection of transdimensional transitions;
in this case, P1 would be the proposals exploring the parameter space within the same
model, and P2 would represent the transdimensional proposals.

Following a similar approach than in the previous cases, we can compute the general
expressions that relate the autocorrelation functions of the two chains schematized in
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Chain A  (no DR):  ①  ②  ③  ④  ⑤  ⑥  ⑥  ⑥  ⑦  ⑧  ⑨  ⑩  ⑪  ⑫  ⑫  ⑫  ⑬  …

Chain B (with DR):  ①  ②  ③  ④  ⑤ ⑥ ⑦  ⑧  ⑨  ⑩  ⑪ ⑫ ⑬  …

Figure 7.3: Case III. Example of the Markov chains that would be generated in the theoretical case in
which every M1 elements drawn from a certain proposal, P1, M2 transitions from a second proposal, P2,
are attempted but accepted with lower probability. The Delayed Rejection algorithm attempts the same
number (M2) of transitions drawn from P2 as the standard MCMC, but it only stores the one that is
accepted. Different circled numbers represent possible different elements of the chain, whereas the repeated
ones explicitly denote the rejected transitions drawn from P2. In this example we are considering M1 = 5
and M2 = 3.

(a) (∆var/var)× 100 (b) M1 that maximizes (∆var/var)

Figure 7.4: Maximization of Eq. (7.31) over M1 assuming different values for M2 and τ . For a given
{M2, τ} values, contour plot ‘(a)’ shows the (maximized) percentage reduction of the variance when the
repeated elements of the chain are removed (i.e. when DR is used); whereas ‘(b)’ plots the M1 values that
maximized this variance reduction.

Fig. 7.3, A and B; then we use Eq. (7.7) to compute the integrated autocorrelation time for
each of the chains; and, finally, one makes use of Eq. (7.8) to compare the two variances.
The final result that it is obtained after adopting similar approximations as the ones
described in the previous cases is:

varA(Ī)− varB(Ī)

varB(Ī)
=

(
M2 − 1

M1 +M2

)2 [
(M1 + 1) coth

(
M1+1

2 τ

)
tanh

(
1

2 τ

)
− 1
]
≥ 0 , (7.31)

where we have used the definition of the exponential autocorrelation time, τexp,B ≡ τ ,
given in (7.6). In Fig. 7.4 we shall denote the quantity defined here, in Eq. (7.31), as
(∆var/var).

Notice that, although ‘a priori’ and intuitively it could be difficult to see which of the
effects related to the efficiency of the chain (to reduce the autocorrelation by removing
repeated elements; or to reduce the length of the chain for a fixed computational cost;
see discussion at the beginning of this addendum) would dominate; the result obtained in
Equation (7.31) shows that, for a fixed computational time, we always obtain a benefit from
removing repeated elements of a chain in terms of reducing the variance of any estimate.
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It is clear that the current toy model we are considering here is just a canonical represen-
tation of the chains usually found in actual applications of DR, but at least it provides
an approximated, and quantitative, result that supports the formal proofs provided by
Mira et al. [1, 2]. Besides obtaining that varB(Ī) ≤ varA(Ī), Eq. (7.31) also can be used to
obtain some quantitative information as a function of {M1,M2, τ}. In particular, we shall
consider {M2, τ} to be given by the problem at hand [M2 as a typical value for the in-
verse of the acceptance probability of the P2 proposal, and τ as the typical autocorrelation
time of the elements generated from P1], thus we are studying the variance reduction as a
function of M1 [we recall that this parameter represents how often a set of P2 proposals is
attempted]. It turns out that Eq. (7.31) always shows a single local maximum as a function
of M1 (keeping {M2, τ} fixed); and, indeed, Fig. 7.4 plots the result of this maximization
process [(a) the maximum values of the percentage variance reduction, and (b) the M1

values that maximized (∆var/var)] as a function of {M2, τ}. We observe that the most
important variance reductions are obtained when M2 is large and τ small, i.e. when the
acceptance probability of P2 is much smaller than P1’s. In these cases, we observe that the
reductions can be & 100%.
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Chapter8
Studying the accuracy and
effectualness of closed-form
waveform models

The following published article was included in this chapter of the thesis:

• T. Damour, A. Nagar and M. Trias, Accuracy and effectualness of closed-form,
f-dom waveforms for nonspinning BBHs, Physical Review D 83, 024006 (2011) [30
pages]
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Chapter9
Conclusions

The coalescence of similar-mass compact binary objects are among the most important
sources of GW radiation expected to be observed with current and future interferometric
detectors. The potential astronomical GW sources within similar-mass CBCs, cover a
very wide range of observable masses (from ∼ M� up to ∼ 107M�) and distances (from
the galactic vicinity up to cosmological distances), which is directly related to the great
scientific impact that such observations will have on the knowledge about our Universe. In
order to make all this possible, it is necessary to understand the dynamics that characterize
such events and to develop data analysis techniques for the detection of signals from the
noisy strain and the extraction of reliable physical information about the emitting source.

This PhD thesis is devoted to tackle several significant data analysis (DA) problems that
need to be solved in the current ‘pre-detection’ era. In particular, we have worked on
detection, parameter estimation and template accuracy studies following, basically, three
different research lines that are summarized in Table 9.1. Despite always considering the
same theoretical source [namely, the coalescence of (similar-mass) compact binary objects];
the astrophysical background of the sources, their stage of evolution (and therefore, the
model waveform that can be used), the GW detector and the data analysis technique
that have been considered are completely different in each of the cases, and cover a very
extensive range of possibilities within GW data analysis.

Source Detector Model wvf. DA technique Original contribution

SMBHs LISA PN FIM
Ch. 4: Impact of HHs

Ch. 5: Measuring DE EoS

gal.binaries LISA monochromatic MCMC
Ch. 6: MLDC search

Ch. 7: DR-MCMC algorithm

BBHs LIGO/Virgo eob,pn,phen.
accuracy/

Ch. 8: Model comparison
effectualness

Table 9.1: Summary of the source, detector, model waveform and data analysis technique used in each of
the chapters of this thesis.
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The election of the particular projects that have been carried out during the PhD period,
respond to a balance between pedagogical reasons and scientific relevance. On one hand, we
have tried to acquire a wide knowledge in GW data analysis problems by exploring different
sorts of data analysis techniques, using most of the model waveforms that currently exist
for CBCs and alternating both, ground-based and space-based detectors. On the other
hand, we have tried to produce relevant scientific results within the GW community.

In particular, in Chapter 1 we give a brief introduction to the GW data analysis field.
Chapter 2 is devoted to derive the expression of the GW strain measured at the detector,
h(t), in terms of the original, raw output of a numerical simulation; this is, the (spherical

harmonic components of the) Regge-Wheeler and Zerilli functions, Ψ
(o)
`m and Ψ

(e)
`m. In the

process, we are obtaining the explicit dependency of h(t) with all the orientation angles
involved [see Eqs. (2.52) and (2.55) for the end results].

Then, Chapter 3 introduces the basic nomenclature and main results used in GW data
analysis, and studies the mass and distance ranges of potential GW sources within the
similar mass CBCs, considering both ground- and space-based detectors. In particular, we
describe a very useful way to graphically represent signal and noise amplitudes, and to
intuitively visualize the expected SNR of the signals (see Figs. 3.4 and 3.5); and then we
provide astrophysical arguments to justify the expected population of (similar-mass) CBC
sources. In particular,

1. LISA is expected to observe the coalescence of SMBHs from any point in our Universe
with SNRs of several hundreds; these observations will help to understand the history
of galaxy mergers in our Universe and therefore the galaxy formation, but they also
can provide very useful cosmological information;

2. LISA will observe thousands of galactic stellar-mass binaries in very early stages of
their evolution, where their emitted GW radiation can be well defined as a simple
monochromatic signal, only modulated (in phase and amplitude) by the anisotropic
sensitivity of the detector and its motion around de Sun;

3. ground-based detectors are expected to observe the late-inspiral, merger and ring-
down stages of CBCs with total masses within M ∈ (1M�, 500M�), located in the
Virgo supercluster. In this case, the expected SNRs are very low and therefore, ac-
curate waveform representations will be required in order to extract the maximum
SNR from the measured strain.

These first three chapters form Part I of the thesis, devoted to introductory notions. In
Chapters 4-8 (Part II), we present all our original scientific results, whose conclusions are
summarized in the following three sections [organized according to the three research lines
carried out during the doctorate (see Tab. 9.1 for a summary)].

Parameter estimation of SMBHs inspiral signals

In the current (evaluation) stage of the LISA project, it is crucial to understand the science
that shall be extracted from LISA observations, thus, this is why parameter estimation
studies like the ones presented in Chapters 4 and 5 are so important.
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We have started by studying the impact of including all the harmonics of the SMBH inspiral
waveform on the parameter estimation, instead of only using the dominant (` = 2,m = ±2)
as it was done before. On one hand, the contribution of these new terms to higher harmonics
(HHs) of the orbital frequency increases LISA’s mass range of detectability of SMBHs to
more massive systems, which have their dominant mode (2forb) below the low-frequency
edge of the LISA noise PSD, but not the higher harmonics (3forb, 4forb, 5forb, . . .). On the
other hand, and more importantly, these new terms contribute to increase the richness of
the waveforms, breaking some degeneracies between the parameters and therefore, signif-
icantly improving the parameter estimation. The impact is found to be more important
in massive systems, M & 5× 106M�, obtaining improvements of several orders of magni-
tude in some parameters (like the reduced mass) and factors ∼ 10 − 50 of improvement
in the most relevant parameters (from the scientific point of view), such as the luminosity
distance and the sky resolution.

Moreover, we have found these improvements to make significant differences in terms of
the fraction of events that could be identified. If we recall the results in Tab. 2 of [1] (in
Chapter 4), we obtain that just by the inclusion of the HHs, we go from 0.8% to 19.3% of
SMBHs binary systems with ∆Ωn < (1◦ × 1◦) for (107M� + 107M�) systems located at
z = 1. The impact is also important when considering lower mass systems, e.g. from 10%
to 35% for (106M� + 105M�) systems located at the same fiducial distance.

Once learnt about the importance of including HHs in the SMBH inspiral signal, we have
studied the potential scientific results that could be achieved from LISA observations of
SMBHs. We first consider different models for the massive BH merger trees [2, 3], covering
several possible scenarios given the limited knowledge that there exists about the actual
formation history of SMBHs: small/large seeds and efficient/chaotic accretion. Results are
summarized in Tab. 5 of [4] (in Chapter 4), and our conclusions are that ∼ 30 (20) SMBHs
events should be detectable during one year of observation with LISA when considering
any small (large) seed scenario, which represents a fraction of ∼ 50% (100%) of the mergers
which occur in the universe during Tobs. From these events, there will be about 20 sources
with a modest distance measurement (to within 10%) and about 10 sources with a modest
sky resolution (10 deg2); even more interestingly, each year LISA may observe a few sources
with excellent sky resolution (1 deg2) and luminosity measurements (to within 1%).

In Chapter 5, we also study the possibility of using a single LISA observation of SMBH as a
new tool for precision cosmography, and in particular, for measuring the dark energy (DE)
equation of state, w. After establishing a criterion for localizability, we obtain (i) the
fraction of events at z = {0.55, 0.7, 1} whose host galaxy could be identified; (ii) the
impact on parameter estimation of removing the degeneracies with the sky position angles
and, finally, (iii) the associated error in the estimation of w from an observation of a single
SMBH merger event. Neglecting weak lensing effects and for a fiducial redshift of z = 0.7,
we find that ∆w ∼ 0.4%−5.5%, depending on the mass parameters of the event; however,
weak lensing effects at these distances are expected to induce a 4% error in the estimation
of DL, which translates into an 20% error in w. So, the clear conclusion here is that LISA’s
potential as a new tool for precision cosmography is limited by the weak lensing effects in
the redshift range 0.55 < z < 1 rather than by the statistical errors in its measures, and
therefore, further in-depth studies are urgently needed on ways to correct for weak lensing.
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Search for galactic binary systems with LISA using MCMC

Also, there has been a great effort within the LISA community [5–8] in developing search
tools. LISA will observe thousands of overlapped GW signals in a single strain time series,
h(t), and it will be a data analysis task to disentangle them and extract information about
physical parameters. The work presented in Chapters 6 and 7 goes in this direction and
in particular, we think that MCMC implementations (combined with RJMCMC in order
to deal with multiple sources in a Bayesian way; and enhanced with the DR algorithm to
efficiently explore multimodal distributions) can play an important role in LISA searches.

In this thesis we have started the implementation of a MCMC-based search algorithm for
single and multiple (but fixed number of) galactic binary signals (see Chapter 6). This is
still work in progress as we are currently testing an RJMCMC implementation that will
allow us to search for an unknown number of sources and even, to search for different kind
of signals simultaneously (e.g. galactic binaries, SMBH inspirals and EMRIs) and estimate
the number of them present in the data using all the power of Bayesian statistics. In parallel
to this effort, we have developed a completely general and fully Markovian method to
efficiently explore multimodal distributions based on the delayed rejection (see Chapter 7).
This algorithm can be used in any MCMC problem presenting a target distribution with a
(roughly known) multimodal structure [this was the motivation for submitting our article
presented in Chapter 7 to a more general journal on computational statistics and data
analysis]; and, in particular, we think that this algorithm can be applied to increase the
efficiency of the MCMC-search for most of LISA sources.

Accuracy and effectualness of BBH waveform models

Ground-based detectors have reached their design sensitivity and the first direct detection
of a GW should become a fact in the next few years, with CBCs being one of the most
promising sources. For this reason it is crucial to have available fast and accurate model
waveforms and, in any case, to understand the validity range of any approximated model
one has at hand. The study performed in Chapter 8 tries to establish, in a formal and
exhaustive way, these boundaries for the fastest, closed-form, frequency-domain model
waveforms (PN-SPA and phenomenological models), using EOB waveforms as reference
[which have shown to be more accurate than the former, though also slower to generate].

Our conclusions are that current closed-form models can be used for detection purposes
in searches for CBCs with mass ratio q ∈ (1, 4) and missing less than 6% of potential
events in case of initial detectors, and less than 9% when considering advanced detectors.
The construction of new phenomenological waveform models in a wider range of mass
ratios, could extend these results. When one is interested in extracting reliable physical
information [biases smaller than typical statistical errors] from the GW observations, then
more accurate models shall be required in any case.

We also have obtained the compatibility range between EOB and PN waveforms in terms of
frequency, separation distance and number of orbits before merger (see Fig. 4 in Chapter 8),
finding, for 4:1 and 10:1 systems, an important gap (of several tens of orbits) between the
upper limit of this range and the merger. Currently, the longest NR simulations only span
∼ 10− 15 orbits.
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We think that the results presented in this work should be useful for the LSC in order to
choose between the different waveform models that are used when performing a search.
We also wish that in future works, the accuracy standards introduced in Chapter 8 and by
other authors [9–12] are used rigorously (as they have been originally presented); remaining
faithful to their mathematical and physical meaning.

Future work and final remarks

All the studies performed in this PhD thesis have considered non-spinning compact objects
and, except for the galactic binary signals (which would be quasi-monochromatic anyway),
we have neglected a possible equation of state of the matter conforming the compact object;
which is valid in case of BHs, but just an approximation for NSs. Thus, the natural
extension of some of these results would be (i) to also consider spinning systems and
furthermore, (ii) to start investigating the potential astrophysics that can be done from
GW observations of NSs.

From the results obtained in Chapter 8, it seems clear that there is still a long road
ahead in order to obtain fast and accurate template banks. On one hand, for mass ratios
greater than 4:1, we have found a gap of several tens of orbital cycles between the high-
frequency end of the PN validity range and the merger, that will have to be filled using more
accurate analytical methods, such as EOB, given the fact that current NR simulations are
limited to ∼ 10− 15 orbits long. Also, on the other hand, the accuracy of the closed-form,
frequency-domain waveforms is not good enough to exploit all the scientific potential that
ground-based CBC observations have; thus, our future plans also include the investigation
of building EOB-based, or NR-based, template banks.

Also, we are in the process of upgrading our MCMC-based search algorithm to a ‘DR-
RJMCMC’ scheme that should represent the core of a search algorithm to deal with the
“whole enchilada” of GW sources that will be an actual LISA data set, and also the next
MLDC-4 [8].

Finally, let us point out that all the studies presented in this thesis are theoretical, in the
sense that no actual data from current GW detectors have been used. However, during this
period, the PhD candidate has also collaborated within the LSC in the search for contin-
uous waves emitted by rapidly rotating NSs using the Hough transform and he also took
part during three months of the LSC Astrowatch program for students to operate the 2 km
LIGO interferometer in Hanford (H2) between S5 and S6 science modes (February 2008 –
June 2009).

During these last four years of PhD, the LSC has published 39 scientific articles in which
the candidate appears as a co-author.
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List of Acronyms

ADM Hamiltonian formulation of GR developed by Arnowitt, Deser and Misner.

AP asymmetrical proposal

BBH binary black hole

BBO Big Bang Observer

BH black hole

BSSN Formalism developed by T. W. Baumgarte, S. L. Shapiro, M. Shibata and
T. Nakamura from 1987 to 1999, which is a modication of the ADM
formalism Hamiltonian formulation of GR.

CBC compact binary coalescence

CPU central processing unit (part of a computer system)

DA data analysis

DE dark energy

DECIGO DECi-hertz Interferometer Gravitational wave Observatory

DR delayed rejection

ECP evolution of the center of the proposal

EM electromagnetic

EMRI extreme mass ratio inspiral

EOB effective-one-body

EoS equation of state

ESA European Space Agency

ET Einstein Telescope

FFT Fast Fourier Transform

FIM Fisher information matrix

FLRW Friedman-Lemâıtre-Robertson-Walker

FT Fourier transform

FWF full waveform

GR general relativity

GW gravitational wave

HH higher harmonic

INFN Istituto Nazionale di Fisica Nucleare
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ISCO innermost stable circular orbit

LCGT Large Cryogenic Gravitational Telescope

l.h.s. left hand side

LIGO Laser Interferometer Gravitational-wave Observatory

LISA Laser Interferometer Space Antenna

LISA PE LISA Performance Evaluation (Taskforce)

LSA linearized-signal approximation

LSC LIGO Scientific Collaboration

LSO last stable orbit

LWA long wavelength approximation

MC Monte Carlo

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

ML maximum likelihood

MLDC Mock LISA Data Challenges

MM minimal match

NASA National Aeronautics and Space Administration

NR Numerical Relativity

NS neutron star

ODE ordinary differential equation

PDF probability density function

PN post-Newtonian

PSD power spectral density

r.h.s. right hand side

RJMCMC reversible jump Markov chain Monte Carlo

r.m.s. root-mean-squared

RWF restricted waveform

SMBBH supermassive binary black hole

SMBH supermassive black hole

SN supernova
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SNR signal-to-noise ratio

SPA Stationary Phase Approximation

SSB Solar System Barycenter

TDI time delay interferometry

TOA time of arrival

TT transverse-traceless

WD white dwarf
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