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Introduction

Even though color is of paramount importance in vision, image processing has progressed
in grey levels. However, with the advances in computer world and the proliferation of
image collection devices, such as digital cameras or scanners, this reality is changing. In
the last three decades, color image processing and analysis has been, and now is, a very
active field of research. Nowadays, the amount of color image processing and analysis
methods is growing quickly. A large number of algorithms can be classified in this field,
which give solution to problems such as color image segmentation [87], compression [82],
enhancement [76], indexing [85],...

Some of these techniques, such as color image segmentation, are natural operations for
the human visual system ([51]). This complex system is a perfect interconnection network
between the environment and our brain. A basic task of this system is image description.
Given an image, our visual system is able to detect the meaningful objects in the image
and to describe the image by means of these elements. In the color case, color names are
associated to these meaningful objects improving the description of the image.

Computationally speaking, the automatic description of a color image by means of its
color names is a difficult task. It implies answering a lot of questions: what is color?,
how can we distinguish between similar colors?, what is the best representation of color
information?, which is the best way of naming colors?, why some colors represent better
an image than others?,... In this thesis we try to give an answer to all these questions.
The final goal is, given a color image, to obtain the list of meaningful colors which allow
the image description. Figure 1 illustrates this goal.

1 Color image description problem

Attaining this aim supposes a long way. As we have mentioned, different questions about
color, color perception, color representation,... have to be answered to face the problem
computationally.

First, we need a deep knowlegde of color. How can we “look for” a property of an
image when we do not have enough knowledge about it? Therefore we must study aspects
of color such as color creation, color perception,... In short, an exhaustive analysis of color
from different points of views. An important point in this theorethical study is the color
representation analysis. A wide variety of color spaces exists in literature ([37]). Our
analysis has to allow us the selection of the best color codification to reach our goal. In
this sense, only three tridimensional color spaces are analysed, RGB, HSI and CIFE Lab.

The RGB space is indispensable since the starting point in the proposed work is a
digital color image ([60]). Digital color images consist of little squares or pixels, each one
of them associated to three values, which are interpreted as color coordinates in some color
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deepreddishorange

strongyellowgreen

moderategreenishyellow

darkreddishbrown

moderateolive

il

verylightyellowishgreen

deepyellowishbrown

grayishgreenishyellow

brownishpink

verypalegreen

lightbluishgreen

Figure 1: The original image “Peppers” and the list of names of meaningful colors in
the image, the final goal of this thesis.

space. The RGB color space is commonly used in computer displays then, we assume
that the initial data are provided in RGB color space. In order to be able to describe
the image we need to use a color space closer to the human perception than RGB. We
need a color space which provides the color information clearly. One of the drawbacks
of the RG B space is that the color information is provided by the mixture of the three
components. If we consider only the red channel, for example, we cannot distinguish one
color from another (see the first row in Figure 2). From these premises we decided to use
the HSI (hue, saturation and intensity) color space. Each variable in the HST color space
provides a basic information about the colors, which can be interpreted separately of the
other variables. In the second row of Figure 2, a representation of the HSI variables of
Figure “Peppers” is shown. We also need a color space to correctly measure the distance
between colors. The RGB and HSI spaces are not appropriate for this task for this reason
we consider the C'I E Lab space, the usest uniform space, to perform this operation.

The previous stage provides us with a theoretical knowledge of color. The next stage is
to acquire a “practical” knowledge of color. We want to answer questions such as: what
shape has the distribution of image colors (or “clouds”) in the different color spaces?,
what transformations can we apply to the image colors?, what components provide more
information about the colors in an image?, what colors are more common in the real
word?,... Therefore, we need to develop a useful color-image editing and processing tool to
analyse and to understand the basis of color. The main contributions of this development
are the representation of the color pixels in an image by means of different color spaces
and of histograms of different color space components.

The analysis of the color clouds in the RGB cube provides us with an interessant
information. In Figure 3 we can observe an example of this fact. The color clouds are the
basical information about the colors in the image. In the example we can see a kernel of
colors and different “branchs” corresponding to the different colors in the image. We have
observed that, normally, the color clouds present these characteristic shapes, “branchs”
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()

Figure 2: Channels in RGB cube and HSI spaces. (a) R component, (b) G component,
(¢) B component, (d) H component, (e) S component, (f) I component. Each image of
the second row provides more information about the colors individually than the ones of
the first row. For example, by seeing the image of red components we cannot say that the
two main peppers in front are of the same color. On the other hand, in the image of hue
components this fact is clear (Taking into account that the hue component is circular and
then the black values are similar to the white values)
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Figure 3: Ezample of color clouds: (a) Original image “Stravinski”, (b)—(d) Three point
of view of the color clouds of the image pixels in the RGB cube.

of pixels corresponding to a same color whose initial point is the black color and the final
point is the white color. These “branchs” have a fish-like shape. The “fishes” provide a lot
of visual information about color, but their extraction from the color clouds is a difficult
task. The different “fishes” hide each other, the central “fishes” are hidden behind the
external ones. Moreover an important information is not provided by the “fishes”: the
amount of pixels corresponding to each color.

Due to these drawbacks, we need a tool, different from color clouds, which provides
the basic color information of the “fishes”, but which reports the quantity information,
too. It is worth noting the need of a good color space in which this tool can be used. It is
clear that when using the HSI space we do not lose the “fishes” information. Quite the
contrary, the hue component of the H ST space allows us to separate the different “fishes”.

Quantitative information about the color contents of an image is obtained with the
help of histograms. Histograms provide us the quantitative information clear and visually,
they indicate the amount of pixels that are associated with a given color component. It is
worth noting that we want to obtain the list of meaningful colors by considering only the
color information of the image, we will not use spatial information. As we have mentioned,
each component in the HSTI space provides individually a basic information about color.
For this reason 1D histograms of hue, saturation and intensity are used to analyse the
image colors. Moreover, the computational processing cost is reduced with respect to the
use of 3D histograms.

In the histograms, the information is given by their modes, that is, the intervals where
data concentrate. The meaningful colors will be obtained from the meaningful modes in
the hue, saturation and intensity histograms. Therefore, we need a histogram segmen-
tation algorithm, which gives these meaningful modes. But, what means “meaningful”?
What is a “meaningful” color? What is a “meaningful” mode? We base the proposed
algorithm on the quantitative study of the Gestalt theory. From this study, proposed
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first by A. Desolneux, L. Moisan and J.M. Morel in 2000 ([32], [33]), we can define the
meaningfulness of different geometric objects. In our case, we develop a theory about
meaningful intervals in a histogram. In a first reasoning, we define meaningful intervals
and gaps and the segmentation is achieved by detection against an a contrario law. A
second proposition defines meaningful rejections and the algorithm confirms the hypoth-
esis of an a contrario law. The proposed histogram segmentation algorithm is coherent
with our goal of finding the more representative colors in a image even if some of them
correspond to small details. Other segmentation methods in literature ([35, 29]) are not
able to detect the little peaks in the histogram which may correspond to these details. A
clear example is represented in Figure 4. Reaching our goal supposes to consider the red
color in the final list for this image. We observe in the hue histogram (Figure 4(b)) that
the ladybird represents a little mode on the right. It is clear that this little mode has
to be detected as a meaningful mode. The proposed algorithm segments the histogram
into three modes, one corresponding to the red mode. Classical histogram segmentation
methods, such as Gaussian Mixture estimation with EM algorithm, are not able to de-
tect the small peak as a separate mode if we want to consider only three modes (see
Figure 4(d)-(e)). On the other hand, the intensity histogram (Figure 4(d)) presents a
lot of little peaks that do not correspond to meaningful modes in the histogram. The
proposed algorithm segments it into six modes only. Other approaches which detect the
local maxima without estimating the underlying density, such as [20], would detect too
many peaks in this histogram. The new approach is a powerful tool in the sense that
avoids under and over-segmentation of the histograms.

Once we dispose of a histogram segmentation algorithm and three components that
provide us with the color information we are ready to face the last stage of the research
project. In this last stage we have to develop the algorithm that obtains the color palette
of a given image, which, similarly to the color palette of a painter, defines the colors “used”
for “painting” the given image. The proposed approach considers a hierarchical ordering
of the three color components, hue, saturation and intensity. Thus, the color palette
algorithm has three different steps. Each step has as input the results in the previous
one. Therefore, we obtain a hierarchical color palette, where the amount of color and the
accuracy in the image representation grows at each step. In Figure 5 we can observe the
hierarchical palette of the initial example. The final list, presented in Figure 1, is the
result of associating each color in the palette to a dictionary color name.

The proposed algorithm can be considered as a segmentation algorithm, since sa eg-
mentation is the partition of a digital image into multiple regions (sets of pixels), according
to some criterion ([90]). In our case, the criterion is the meaningful colors in the image.
Most of the segmentation algorithm make use of spatial information (region-based [17],
edge-based [83] and hybrid [99] techniques). The proposed method would be included
in the pixel-based techniques since only the color information is considered to face the
segmentation. But, the goal of this kind of methods is to detect semantic visual objects
in the image (see [16] for details). The goal of the proposed method is very different,
in fact, in most of the resulting images the semantic visual objects are not associated to
a unique color. Due to this fact, the comparison with existent segmentation methods is
very difficult. Since the goals are different, the results will be different and incomparable.

On the other hand, the presented method can be considered as a quantization method,
since quantization is the process of approximating a very large set of values by a relatively-
small set of discrete symbols or integer values ([79]). But, in this case again, the goal
of the proposed approach is very different from the goal of classical methods. In these
methods the goal is to obtain a pleasant visual representation with a reduced number of
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Figure 4: Two examples of the histogram segmentation algorithm. (a) Original image
“ladybird”. (b) Hue histogram segmented with the proposed algorithm. We obtain three
different modes, separated by dashed lines. (c¢) Segmented image, associating to each mode
resulting in the hue histogram segmentation a different color. (d) Resulting approximation
(red line) to the hue histogram with three components in a Gaussian Mizture estimation
with EM algorithm, (e) Zoom of the red rectangle in image (d). The mode corresponding
to the red hue is not well estimated. (f) Intensity histogram segmented with the proposed
algorithm. We obtain six different modes, separated by dashed lines. (g) Segmented image,
associating to each mode resulting in the intensity histogram segmentation a different
color.
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Figure 5: Original image “Peppers” and the hierarchical palette. Each row in the palette
corresponds to one of the steps in the process. At each step, the amount of colors in the
palette grows.

colors. Normally, in these methods, the amount of colors has to be selected by the user. In
the proposed method, the amount of colors is computed automatically and the goal is the
qualitative description of the image. The proposed algorithm is compared to two known
quantization methods ([48]) for the obtention of computer graphics color palettes. We can
conclude that the proposed approach does not obtain a visual representation as pleasant
as the computer graphics color palettes, but the results are more accurate, allowing the
representation of the little details in the image.

2 Plan of the thesis

This thesis is developed in a pedagogical way. The different stages to obtain the proposed
goal are explained with detail in the different chapters.

Chapter 1 is a short introduction to the color world. The first sections of the chapter
are devoted to the physical description of colors and the psychophysiological mechanisms
in the human visual system involved in the perception of color. The two main mechanisms
that encode the color information from the colored object to the brain together with the
main characteristics of color perception are described in this chapter. Methods for creating
colors from mixtures of lights or inks are also reviewed. Next, different color representation
mechanisms are analysed. Three tridimensional spaces are presented. These color spaces
will be the tools used in the next chapters for obtaining a description of the color images.
Finally, a new research project aiming at the analysis of real life colors is briefly presented.
The preliminary results of this study indicate that the more abundant colors in real life
are reds, oranges and yellows.

Histograms permit a quantitative study of the color information contained in a digital
image. Colors are represented in some of the 3D color spaces described in Chapter 1 and
the analysis of the 1D histograms associated to each one of the space components allow
us to obtain the main features characterizing the color image. A basic description of the
1D histograms is given by the list of its modes, i.e. the intervals of values around which
data concentrate. In Chapter 2 we propose a new approach to segment a 1D-histogram
without any a priori assumption about the underlying density function. The theorical
justification of the approach is presented in two steps, considering two different points of
view. The method is based on the definition of meaningful events, modes and gaps in
a first approach, and of meaningful rejections in a second approach. The final result is
a fast and parameter free algorithm, the Fine to Coarse (FTC) algorithm, which avoids
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under and over-segmentation. Some properties of the method are remarked at the end of
the chapter.

In Chapter 3 some results and applications of the FTC algorihtm are studied. Firstly,
the FTC results are checked on synthetic data, showing that the FTC algorithm can
detect the modes of a mixture of unimodal laws without any a priori parametric model.
In the next section, the meaningful rejections, introduced in the previous chapter, are
used as a goodness-of-fit test and compared to other tests of this kind. In this same
section, the adequacy of Gaussian mixtures for fitting the intensity and hue histograms is
questioned. In the following sections are analysed two applications of the FTC algorithm:
grey level image segmentation and text documents segmentation. For both applications,
some results are shown, trying to improve the existent algorithms in literature. Mainly
in text documents analysis, the characteristics of the proposed algorithm (parameter-free
and optimum conditions for small modes detection) allow us to obtain excellent results.
The method is sensible to factors such as noise and illumination changes. These factors
modify the histogram shape and the mode detections is more difficult. These factors
and their influence on the FTC algorithm results are analysed. Finally, the application
of the algorithm to the camera stabilization problem is studied. In this case, the stud-
ied histogram is the gradients orientation histogram and the modes detected by FTC
indicate the rotation of the image with respect to the horizontal and vertical directions.
The camera stabilization application, together with some of the theoretical results of the
previous chapter, have been presented in [24]. Some of the experiments on the analysis
of text documents and a theorical explanation represent the main part of the submitted
publication [27].

Chapter 4 represents the final step in the search of a qualitative description of the
image. In this chapter, a method for the automatic construction of the color palette of an
image is described. This method, based on the FTC algorithm of the previous chapter and
a hierarchical ordering of the components of the HSI color space, obtains automatically, in
three steps, the minimum number of colors that describe an image. We call this minimal
set “color palette”. The experimental results seem to endorse the capacity of the method
to obtain the most significant colors in the image, even if they belong to small details in the
scene. The obtained palette can be combined with a dictionary of color names in order
to provide a qualitative description of the image. In the chapter are studied different
computer graphics color palettes found in literature, to which the proposed palette is
compared. The results show that classical computer graphics palettes obtain a better
visualization of the image, but they obviate the small details in the scene. To avoid some
problems of over-segmentation in some images, at the end of the chapter, a modified
version of the algorithm, that includes the use of morphological operators is presented.
Some contents of this chapter and Chapter 2 have been presented in the VIIP [23], the
IEEE ICIPO05 [25] and the IbPRIA [26] conferences.

CProcess (which stands for Color Processing) is a useful color-image editing and pro-
cessing software tool to analyse and to understand the basis of color. This tool has been
created to cover the different needs that arise in the study of color. The first of these
needs is to have a good representation of the colors in an image. This representation can
be created by means of the different color spaces, or, by means of others tools such as
histogram representations. In Chapter 5 we present a brief user’s manual for the CProcess
software. The different options are explained and some examples are shown.

Finally, the last chapter is devoted to develop some conclusions and the planning of
the future research.

This thesis is completed with the inclusion of three appendices that provide a deeper
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insight on some of the concepts commented in the previous chapters. The EM algorithm
and some known goodness-of-fit tests are described in Appendix A. Appendix B is devoted
to a brief presentation of the Gestalt theory concepts. And, finally, a brief reviewer of
some binarization techniques for histogram segmentation is developed in Appendix C.
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Chapter 1

Color: description and rep-
resentation

Abstract. This chapter is a short introduction to the color world. The
first sections of the chapter are devoted to the physical description of colors
and the psychophysiological mechanisms in the human visual system involved
in the perception of color. The two main mechanisms that encode the color
information from the colored object to the brain together with the main char-
acteristics of color perception are described in this chapter. Methods for cre-
ating colors from mixtures of lights or inks are also reviewed. Next, different
color representation mechanisms are analysed. Three tridimensional spaces
are presented. These color spaces will be the tools used in next chapters for
obtaining a description of the color images. Finally, a new research project
aiming at the analysis of real life colors is briefly presented. The preliminary
results of this study indicate that the more abundant colors in real life are
reds, oranges and yellows.

1.1 Introduction

The study of Color involves several branches of knowledge: physics, psychology, mathe-

matics, art, biology, physiology,... Each one of these disciplines contributes with different

informations, but the way towards the absolute understanding of color has just begun.
According to the Collins dictionary (2000): “Color is:

a. an attribute of things that results from the light they reflect, transmit, or emit in
so far as this light causes a visual sensation that depends on its wavelength,

b. the aspect of visual perception by which an observer recognizes this attribute,
c. the quality of the light producing this aspect of visual perception.”

This definition illustrates the complexity of the notion of color and roughly sketches the
three factors on which color depends: light, physical objects and our visual system.

Color does not exist by itself; only colored objects exist ([90]). Three elements are
necessary for the existence of color:

e A light source, to light the scene.
e The objects, which reflect, spread, absorb or diffract the light.

e A receptor, which captures the spectrum reflected by the object.

11
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Color basically depends on these three elements, in such a way that, if one of them is not
present, then we are not able to perceive color. On one hand, color is a physical attribute,
due to its dependence on a light source and on physical characteristics of the objects; on
the other hand, it is a psychophysical and physiological attribute, since it depends on our
visual perception.

In the next sections, we will take a brief look at the human visual system and at the
principal characteristics of color. In Section 1.5 different systems for the representation of
color information are presented. Finally, the last section is devoted to present the “Very
Large Cube”, a starting project for the analysis of the existing colors in real life scenes.

1.2 How do we see color?

Briefly, vision is an active process depending both on the operations of the brain, per-
formed thanks to eye information, and on the external, physical environment. The human
eye and brain together translate light into color. But, how is this conversion done?

Light consists of a flux of particles called photons, which can be regarded as tiny
electromagnetic waves ([96]). These waves must have a length between 380nm and 780nm
to stimulate our visual system. The wavelength content of a light beam can be assessed
by measuring how much light energy is contained in a series of small frequency intervals.
The light can then be described by its spectral distribution of energy.

This spectral distribution characterizes each light source. For instance, the distribution
of solar light is virtually flat since it has the same quantity of all visible wavelengths ([42]).
The distribution of the light emitted by a light bulb or tungsten is more intense for the
longer wavelengths than for the short ones. Our perception of color may change depending
on the scene illumination, since the wavelengths reflected by the objects depend on the
light source. Section 1.4 describes how our visual system adapts to changes of the light
source.

The color of an object is defined and measured by its reflection spectrum ([96]). When
light hits an object, the following three phenomena can happen: the light can be absorbed
and the energy converted to heat, as when the sun warms something; it can pass through
the object, as when the sun’s rays hit water or glass; or it can be reflected, as in the case
of a mirror or any light-colored object. Often two or all three of these phenomena occur
simultaneously. Moreover, the same object can have different “colors”, depending on the
light source, on the geometry of the light devices, or on the change of some of its physical
characteristics.

Finally, the receptor can be of different nature, for example, a photographic camera, a
video camera, the eyes,... These last ones are the receptors in the human vision, they are
the “gateway” for external information and this is the beginning of a large and complicated
process which we explain in detail in the next subsections.

1.2.1 Human vision

In the human vision system, the information related with color perception is encoded at
two fundamental levels ([69]). The first level occurs in the receptors which are located
on the retina. It is a level related with the existence of three types of receptors called
cones. Their responses are the starting point for the second level, which is based on the
activity of three opponent mechanisms. We start by describing the first level, also called
the trichromatic level.
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In human vision, cones and rods in the eyes are the receptors of information from
the external world. In particular, the rods are responsible for our ability to see in dim
light and the cones are the color receptors. The number of rods and cones is different,
and it differs depending on the part of the retina where they are located; rods generally
outnumber cones by more than 10 to 1, except in the center of the retina, the fovea. In
Figure 1.1 we can see a graphical representation of the distribution of rods and cones in
the eye. The cones are concentrated in the so-called fovea centralis. Rods are absent there
but dense elsewhere. We can note the absence of both rods and cones between -15 and
-19 degrees of visual angle. This is the region of the blind spot where there are no cones
or rods and the collected ganglion axons exit the retina as the optic nerve.

Structure of the human retina
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Figure 1.1: Approximate distribution of rods and cones across the retina. Cone distri-
bution is signified by the line with the circle markers and the rod distribution is signified
by the square markers.

Each rod or cone contains a pigment that absorbs some wavelengths better than others.
Depending on the absortion peak of the pigment, we can distinguish three different types
of cones: L, for the long wavelengths; M, for the medium wavelengths; and S, for the
short ones (see Fig. 1.2). Due to the overlap between the curves, the wavelengths which
affect one particular cone affect the other ones, too.

These cones are wrongly called blue, green and red cones, respectively, due to their
absorption peaks: at 440 nm for cone S, at 545 nm for cone M and at 580 for cone L (see
Fig. 1.2). These names are wrong because monochromatic lights, whose wavelengths are
440, 545 and 580 are not blue, green and red, but violet, blue-green and yellow-green. For
this reason, if we were to stimulate cones of just one type, we would not see blue, green
and red but, probably violet, green and yellowish-red instead.

We talk of tristimulus values to refer to the joint response of the three types of cones to
an input light. It turns out that the human visual system cannot distinguish between two
physically different color lights as long as they produce the same tristimulus values. Colors
with different spectral power distribution but the same tristimulus values are known as
metameric color stimuli ([19]) and they match in color for a given observer. Metamerism
is what makes color encoding possible: there is no need to reproduce the exact spectrum
of a stimulus. It is sufficient to produce a stimulus that is visually equivalent to the
original one. This yields a principle for color reproduction, for instance, in televisions or
printers (see Section 1.3).
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Figure 1.2: Absorption spectra for the three classes of cones in the retina.

The color equivalence phenomenon can be formulated in quantitative colometric terms.
A stimulus S()) is determined by the spectral distribution of radiation projected on the
object (the light source) I(\) and the spectral reflectance characteristics of the object
R(\). We can write ([67])
S(A) =1(N) - R()N).

Two metameric color stimuli whose different spectral radiant power distributions are
denoted by S7(\) and Sy(\) respectively satisfy the following equations:

SIIN AN = [ So(\I(N)dA,
A A
/ Si(A)m(A\)dA = / Sy(\)m(A)dA,
Si(A)sANdA = [ Sa(N)s(A\)d,
A A

where [(A), m(X) and s(\) represent the spectral sensibility of cones L, M and S respec-
tively. We can conclude that two metameric colors stimulate the long, medium and short
wavelengths receptors in the same proportion, since the integral [, S(A)z(A)d\ represents
the response of the cone of type x for stimulus S(A). An example can be seen in Figure
1.3.

There are two important points to consider concerning Figure 1.2. First, the fact
that the spectral responses of the medium and long cones are very similar. They broadly
overlap ([37]). Second, the range of the three spectra is very wide. It fills almost the
whole visible spectrum. The absorption spectrum for the three types of cones explains
the resulting color that we perceive in front of a determined mixture of colored light.
For example, we perceive the yellow color when the medium and long cones have a high
activation and the short cones have a small response (see [42] and [51] for more details).
If we consider monochromatic light, we perceive yellow with a light of approximately
600nm. This explains why our perception of red is always non-luminous, because the
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Figure 1.3: Spectral distribution of two metameric stimuli, and the level response in the
S, L and M cones.

light of pure red is the light of 680nm and it activates the long cones in the right extreme
of the spectrum, where the response is very small. On the contrary, we can perceive bright
yellow or bright blue, since the monochromatic light of these colors falls over the peak
of maximum activity. We want to emphasize that the sensation of “white” (the result
of an approximately equal stimulation of the three cones) can be brought about in many
different ways: by using broad-band light or by using a mixture of narrow-band lights,
such as yellow and blue or red and blue-green.

Finally, we have to consider that the number of each type of cones in our retina is
different. As a consequence, the eye response to blue light is much weaker than its response
to red or green, because almost 2/3 of the cones process the longer light wavelengths (reds,
oranges and yellows).

This theory about the three types of receptors in our retina does not explain some
psychophysical observations, which can be understood by considering the existence of a
second level of information processing provided by the cones. The psychophysical obser-
vations that support the existence of this second perception level are ([61]):

e There are certain color combinations that cannot exist in the phenomenological
world. Blue and yellow cannot exist together in the same color (can we imagine a
yellowish blue?) The same happens with red and green colors.

e Post-image. When we look at a red square for a long time and then we fix our eyes
on a white area, we can see a post-image of the square, but its color is green. The
same happens when we look at the sun directly, after what we see blue patches. We
can observe this phenomenon by looking at Figure 1.4 for 45 seconds. Then, if we
gaze at a white area, we will see the same image but the colors are changed (the red
zone will be changed with the green zone, and the blue zone will be changed with
the yellow zone).

e Simultaneous contrast. If a red background surrounds a grey material, the material
seems green. In the same way a blue background converts the grey into a yellowish
color. Figure 1.5 shows this phenomenon.
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e (Color blindness. As we will see later, red-blind people are green-blind too; and
yellow-blind people are blue-blind too.

Figure 1.4: Ezperiment of post-image phenomenon.

Figure 1.5: Simultaneous contrast example. The diagonal bars over the blue background
seems more yellowhish than that over the yellow background.

All these observations have led to a theory called the opponent process theory which
proposes that trichromatic signals from the cones feed into a subsequent neural stage
and exhibit three major classes of information processing in the superior cells of the
retina. Three different biochemical mechanisms occur at this level, which respond in an
opponent way to different wavelengths ([68]). The first mechanism is red-green, which
responds positively to red and negatively to green; the second one is yellow-blue, which
responds positively to yellow and negatively to blue; and, the third one is white-black,
which responds positively to white and negatively to black. Positive response means a
biochemical process in the receptors that produces a chemical substance; whereas, negative
response means the breakdown of this chemical molecule.

In Figure 1.6 we can see the connection between the trichromatic phase and the op-
ponent process phase. There, we can observe how the S; M and L cones are connected
to the bipolar cells to produce the opponent responses. The blue-yellow bipolar cells are
excited by the medium and long cones and inhibited by the short cones. The red-green
cells are excited by the long and short cones and inhibited by the medium cones.

The opponent response mechanism can be studied with the help of the so-called op-
ponent process curves, which were first used by Hurvich and Jameson ([53]). The first
step in their experimental work was to identify the shortest wavelength that represents
the pure blue. Then yellow light was added to that wavelength until the blue hue was
canceled out. The same operation was repeated with other wavelengths. At about 500nm
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Figure 1.6: Diagram of the connection between the three cones and the opponent cells.

the light was neither blue nor yellow. From this wavelength, more blue light was added for
canceling out yellow light. The results of this experiment were represented with a graph
where the wavelength values were placed in an axis and the amount of blue or yellow in
the other axis. The same experiment was done with red and green light. The resulting
curves, shown in Figure 1.7, have three peaks: two for red (on the right and on the left)
and one for green (in the middle).
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Figure 1.7: Opponent process curves.

In Figure 1.7 the positive and negative values are arbitrarily assigned. They are as-
signed to represent the opponent characteristics of colors. The chromatic values represent
the amount of color seen at different wavelengths. For example, at 450 nm the blue value
is approximately -1.0 and the red value is approximately 0.2. These values indicate that
the perceived color should be blue with a small red component. From the opponent pro-
cess curves, we can observe that pure red cannot be obtained with a single wavelength.
In fact, to obtain pure red one must take a long wavelength (e.g. 700nm) and mix it with
a little bit of blue to cancel out the perception of yellow.
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1.3 Creating colors

There exist two different methods of mixing colors ([59]): the first one is additive mixture,
which is the addition of different wavelengths and is produced by light mixture. The
second one is subtractive mixture, which is the subtraction or cancelation of bands of
wavelengths by the combination of light absorbing materials. It is produced by mixing
paints.

In additive mixing ([65]), we start the mixture with the absence of color stimuli, and
we add three lights (“colors”) of different wavelengths, that cover different parts of the
spectrum, to stimulate the S, M and L cones receptors in the eye. Any three colors that
are linearly independent (i.e., none of them can be obtained as a mixture of the other two)
can be considered in order to obtain an additive mixture. These three colors are called
primary colors. Red, green and blue are the most commonly used as additive primary
colors (see Fig. 1.8). In this type of mixture, the black color is the result of no colors
mixed at all. On the contrary, the addition of these three primary colors yields the white
color.

By means of this kind of mixture, color is produced on a color display such as a
television or computer monitor. The surface of a color display is made up of hundreds of
tiny dots of phosphor ([68]). Phosphors are chemical substances that emit light when they
are bombarded with electrons and the amount of light given off depends on the strength
of the electron beam. The phosphors on the screen are in groups of three, one bluish (for
the short wavelengths), one greenish (for the medium wavelengths) and one reddish (for
the long wavelengths). By varying the intensity levels of the phosphors, different levels
of lightness are achieved. The human eye does not have enough resolution to distinguish
each isolated element. For this reason the perception is a light beam with the three
primary colors blending at each point, creating any hue.

Subtractive mixing is the process of filtering parts of the spectrum of the reflected
light. It is based on the capacity of the surface to reflect some wavelengths and absorb
others ([65]). When a surface is painted with a pigment or dye, a new reflectance char-
acteristic is developed based on the capacity of the pigment or dye to reflect and absorb
the different wavelengths of light. An example shall help to better understand this kind
of mixture. Consider a surface painted with a yellow pigment which reflects wavelengths
570-580nm and another surface painted with cyan pigment which reflects 440-540nm. The
color resulting from the mixture of both pigments will be green. This is because the yel-
low pigment absorbs the shorter wavelengths and the cyan pigment absorbs the entire
longer wavelengths. As a consequence the only reflected wavelengths are some medium
wavelengths, which create the sensation of green. Yellow, cyan and magenta are the most
commonly used subtractive primary colors (see Fig. 1.8). As mentioned above, the yellow
ink absorbs the short wavelengths and the cyan ink absorbs the long wavelengths, while
the magenta ink absorbs the medium wavelengths. They are called the secondary colors
and they are obtained by adding two primary colors. Yellow is obtained from red and
green, cyan from green and blue, and magenta from red and blue. Here white is the re-
sult of no mixing (the entire spectrum is reflected) whereas mixing the three subtractive
primary colors yields no reflection of light, i.e., black.

Some mechanical devices, such as printers, use the secondary colors to obtain the rest
of colors ([74]). In printers, the original image is separated into its cyan, yellow and
magenta components. A film is made for each separation and then a plate is produced
from the film. White paper (which reflects all wavelengths) is run through the stations of
a color press to accept layers of ink from each plate. The different quantity of ink mixed
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produces a higher or lower level of absorption in the short, medium and long wavelengths.
In theory, it is possible to create any reflective color by mixing a combination of cyan,
magenta and yellow. In practice, however, the inks that printers use are not perfect. This
becomes more obvious when all three colors are mixed to obtain black color. The color
that results is muddy brown, due to the impurities in the inks. That is why printers use
black ink to get the best results.

Figure 1.8: Additive and subtractive mizture.

These two mixture processes can be represented with color algebra. If we consider the
three primary colors, we can write the following formulas:

Additive mixture (Light) Subtractive mixture (Ink)

Red +7r —g—2b
Green +g —r—>0
Blue +b —r—g
Cyan +g+b —r
Magenta +r+0b —qg
Yellow +g+r —b

W hite +r+g+0 0
Black 0 —r—g—=»

where the symbol — in front of some color means that this color is absorbed, and the
symbol + means that the color light is projected. In the substractive mixture the white
light is diffused. We can obtain all colors from these combinations, obtaining the level of
intensity from the mixture level.

By looking at these formulas we can observe that the addition of blue and yellow light
results in white light, and their subtractive mixture results in black ink. This fact can
surprise us because we have the idea that blue plus yellow is green. The problem starts
in childhood, when we are taught that yellow plus blue equals green. The mixing only
works because the colors produced by pigments have a broad spectral content and the
used paints are not monochromatic yellow and blue colors. Then, yellow and blue paints
used together absorb everything in the light except greens, which are reflected ([51]).

The traditional primary colors that painters have used are red, yellow and blue. This
confusion comes from 19th century theories and it has lasted for nearly two centuries.

1.3.1 Historical notes

The study of the perception of color is historically intertwined with the study of the
physical nature of light. The early discoveries in optics were made on the basis of direct
observations, confounding the effects of perception with the physical nature of light.
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The first studies about color were done by Newton ([61]). He noted that light passing
through a prism was affected in such a way that different colors of light were refracted
at different angles and he deduced that the white light is composed of various colors.
Newton also suggested that the perception of color was due to some differential impact
of something like the frequency of light upon the eye. Furthermore, he observed that
by mixing yellow powder and blue powder together one obtained an apparently green
powder. He thus confused additive and subtractive colors.

This confusion persisted among the next color researchers. One of them, Thomas
Young observed that “The sensation of different colors depends on the different frequency
of vibrations, excited by light in the retina”([97]). Furthermore, he suggested that the
retina might be only sensitive to three principal colors (red, yellow and blue) and that
the whole appearance of color might be attributable to varying degrees of excitation of
these three receptors. Then, David Brewster exposed that each portion of the spectrum
was actually composed of three individual types of light which had the primary colors of
red, yellow and blue ([9]).

Finally Hermann von Helmholtz brought to an end both confusions, the confusion
of additive versus subtractive colors and the confusion of the perceptual phenomenon of
color. He demonstrated that green and red spectral colors added to make yellow, while
yellow and blue added to make white ([92]). He further observed that white light could
be composed from choices of three spectral colors.

Even though after the Helmholtz theory red, yellow and blue are no more considered
primary colors, they are still considered as such by the painters.

1.4 Characteristics of color perception

The human visual system does not discriminate all the colors with the same efficiency
and if two colors are very close perceptually, they can be confused. In the perceptual
system, the sensitivity to the distance between colors is not related to the photoreceptors
behavior in an uniform way ([90]).

Dynamic adaption mechanism

One of the main characteristics of color perception is the dynamic mechanism of adap-
tation that serves to optimize the visual response to the particular viewing environment.
Three different mechanisms of adaptation are of particular relevance to the study of color
appearance, the dark, the light and the chromatic adaptation.

The dark and light adaptations are the changes in visual sensitivity that occur when
the prevailing illumination level is decreased or increased suddenly, respectively. In this
process, the visual system response becomes more sensitive, depleting or regenerating the
photopigment in the cones and the rods. The rods have a longer recovery time than the
cones and, as a consequence, the adaptation to bright light is faster than the adaptation
to a dark enviroment (see [37] and [42]).

Chromatic adaption

In reference to the chromatic adaptation, the visual system has the capacity to adapt to
the average luminosity of the environment. This phenomenon can be seen in Figure 1.9.
In this figure there are three images. The first image is the original image with a yellow
towel. In the second image a blue filter has been put only on the towel. Then we can see
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that the color is now green. In the third image the same filter as in the second image has
been put on the whole image. Then we again see the towel with a yellow color, because
our visual system has adapted to the luminosity change. This phenomenon, called color
constancy, can be described as the fact that if a scene is lighted up from a given source
and this light source is changed, then the object colors are not changed for the observer.
On the contrary, if the illumination change only affects one object, then the object color
is changed. In other words, an observer adapts his colors perception in reference to the
whole visual field.

Figure 1.9: Color constancy phenomenon.

The color constancy phenomenon can also be observed by examining a white piece
of paper under various types of illumination, for example, daylight and tungsten light.
We have mentioned before that the spectral distribution of these two illuminants is very
different. Thus, the paper color should look different under the different illuminants. It
turns out that the paper retains its white appearance under both light sources. This is due
to the fact that the cones adapt their response to the reflectance level in the environment.
In the case of a tungsten light, the light has a higher intensity in the long wavelengths
than in the short ones. Thus, the objects that are illuminated by tungsten light reflect
more long light wavelengths than those illuminated by daylight. The eye adapts to the
long wavelengths, which are more present, and this adaptation decreases the sensibility
of the eye to reds and yellows. Then, the white paper, which should look yellow, is
perceived as white. We can conclude that the visual mechanism to perceive the contrast
of the colors depends on the relative proportions between the different illuminations in
the image ([42]).

This phenomenon does not affect the display devices, since they emit their own light,
unless there is a colored light source illuminating them.

Simultaneous contrast phenomenon

Another characteristic of the visual system is the simultaneous contrast phenomenon,
which is apparent in different cases, for instance ([90]):

1. Two colors, one in front and the other behind, seem more contrasted than if they
are seen separately.

2. The same color, put on different backgrounds, tends to be perceived as different
colors.

3. Two colors, put on the same background, tend to seem more contrasted when their
surface grows.

This phenomenon can be seen in Figures 1.10 and 1.11.
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Figure 1.10: Simultaneous contrast phenomenon. In the first image there are only three
colors, the colors in the diagonal bars are the same in the two rectangles. The background
color changes their perception. In the second image, the fact that the color contrast depends
on the background is patent.
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Figure 1.11: Simultaneous contrast phenomenon. The little brown square in the middle
of the superior face (marked with a red rectangle) has ezxactly the same color as the little
brown square in the middle of the frontal face (marked with a red rectangle). The intensity
netgborhood difference produces an color effect different in both squares.

Color-vision deficiencies

Some color-vision deficiencies are caused by the lack of a particular type of cone photopig-
ment. Since there are three types of cone photopigments, there are three general classes
of these color-vision deficiencies: protanopia, deuteranopia and tritanopia ([42] and [61]).
The protanopes and the deuteranopes are also called daltonic.

A subject with protanopia is missing the L-cone photopigment and therefore is un-
able to distinguish between reddish and greenish hues, due to the fact that the red-green
opponent mechanism does not have the correct information. A deuteranope is miss-
ing the M-cone photopigment and cannot distinguish reddish and greenish hues, either.
Protanopes and deuteranopes can be distinguished by their relative luminous sensitivity.
Finally, a tritanope is missing the S-cone photopigment and cannot distinguish between
yellowish and bluish hues due to the lack of a yellow-blue opponent mechanism.

There are other types of color-vision deficiencies, such as some cases of cone monochro-
matism (people that have only one cone type) or rod monochromatism (no cone re-
sponses).
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An 8% of the male population and slightly less than 1% of the female population suffer
from some of these color deficiencies. This disparity between the occurrence in males and
females can be traced to the genetic basis of such deficiencies. Given the fairly high
rate of occurrences of color-vision deficiencies, various tests are available to make critical
color-appearance or color-matching judgements. In Figure 1.12, we can see one of these
tests.
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Figure 1.12: Subjects with normal vision are capable to see a green number in the im-
age center. Instead protanopes and deuteranopes do mot see the number, due to their
impossibility to distinguish reddish and greenish hues.

1.5 Color spaces

In order to use color as a visual cue in image processing, an appropriate method for
representing the color signals is needed. The different color specification systems or color
models (colors spaces or solids) address this need. Color spaces provide a rational method
to specify, order, manipulate and effectively display the object colors taken into consid-
eration. The color space choice depends on the previous knowledge that we have about
“color” and on the application that we want to give to this information (for example,
defining colors, discriminating between colors, judging similarity between colors,...).

The color models are normally three-dimensional spaces, due to the fact that our per-
ception of color is trichromatic. The different spaces differ in the choice of the coordinate
system, which defines the space. In the classical literature, four basic color model families
can be distinguished ([76]):

1. Physiologically inspired color models, which are based on the three primary
colors which stimulate the three types of cones in the human retina. The RG B color
space is the best-known example of a physiologically inspired color model.

2. Colorimetric color models, which are based on physical measurements of spectral
reflectance. Three primary color filters and a photometer are usually needed to
obtain these measurements. The C'IE chromacity diagram is an example of these
models.

3. Psychophysical color models, which are based on the human perception of color.
Such models are either based on subjective observation criteria or are built by taking
into account the human perception of color.
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4. Opponent color models, which are based on perception experiments, utilizing
mainly pairwise opponent primary colors.

In this chapter, we present three color spaces which are the most commonly used in the
image processing field. Each one of them has certain essential characteristics, in contrast
with the other one’s.

1.5.1 RGB Color Space

The red, green and blue receptors in the retina define a trichromatic space whose basis is
composed by pure colors in the short, medium and high portions of the visible spectrum.
As we have mentioned in Section 1.3, it is possible to reproduce a large number of colors
by additive mixture using the three primary colors.

The RG B model is the most natural space and the most commonly used in image pro-
cessing, computer graphics and multimedia systems. This is due to the fact that display
devices use the addition mixture and the three primary colors to reproduce and “encode”
the different hues (see Section 1.3). This model is based on the cartesian coordinate sys-
tem ([59]). The pixel’s red, green and blue values in a digital color image are the three
coordinates of the model and they are represented by a cube, since the three values are
non-negative and they are considered as independent variables. Pure red, green and blue
are situated in three vertices of the cube, while the other three vertices correspond to
pure yellow, cyan and magenta (see Fig. 1.13). Black has coordinates (0,0, 0) and, at the
opposite vertex, stands the white color. We call the line that joins the black vertex to
the white vertex the grey azis, in which the three coordinate values are equal. In mathe-
matical terms, the RGB cube is made up of all points of three coordinates, (r, g,b), with
0<r, g, b < M. The range of the three coordinates is usually from 0 to 255. The space
is sometimes normalized so that M = 1.

Figure 1.13: The RGB color model.

The main disadvantage of this space is the perceptual non-uniformity, i.e. the low
correlation between the perceived difference of two colours and the Euclidean distance
in this space. Its psychological non-uniformity is another problem. in this space, the
information about the chromaticity (hue and saturation) and intensity components of
color is not independent. Finally, considering the representation of a natural image in
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the RG B space, we observe a powerful correlation between the different coordinates. It
is due to the special distributions of the sensors in the camera and to the post-processing
operations. Therefore independent operations over each coordinate are not possible.

1.5.2 HSI Color space

The RGB space is not easy for user specification and recognition of colors. The user
cannot easily specify a desired color in the RGB model. Models based on lightness, hue
and saturation are considered to be better suited for human interaction. These three color
features are defined as ([96]):

e Intensity or lightness is the visual sensation through which a surface that is
illuminated by a given luminous source seems to project more or less light. It
corresponds to light, dark or faint terms. In some sense, lightness may be referred
to as relative brightness.

e Hue is the visual sensation that corresponds to the color purity. The hue is defined
by the dominant wavelength in the spectral distribution.

e Saturation measures the proportion on which the pure color is diluted with white
light. It corresponds to pale, faded or brilliant terms.

The HSI color model owes its usefulness to two main facts. First, the intensity com-
ponent is decoupled from the chrominance information represented as hue and saturation.
Second, hue is invariant with respect to shadows and reflections. This is due to the fact
that hue is the dominant wavelength in the spectral distribution and is independent on
the intensity of the white light. We would wish the three variables to be independent.
However, saturation depends on the intensity. If the intensity level is very high or very
low, then, the saturation variable can only take very low values.

The HSI color space can be described geometrically from the RG'B cube (Fig. 1.14).
It is constructed by placing an axis between the black point and the white point in the
RGB space, that is the diagonal of the RGB cube. As we have mentioned before, this axis
is often referred to as the grey azis. Any color point on the HSI space is defined by its
three components with respect to this axis: hue, which is the angle between a reference line
and the line passing through the color point and orthogonal to the grey axis; saturation,
which is the radial distance from the point to the grey axis; and intensity, which is the
magnitude of the orthogonal projection of the color point onto the grey axis.

The main drawback of this representation in the continuous case is that the hue has a
nonremovable singularity on the grey axis. This singularity occurs whenever R = G = B.

We have indicated in Section 1.2.1 that the perception of the white color is the result
of an approximately equal stimulation of the S, M and L cones. We know that the grey
axis is composed of the colors which have the three variables identical, i.e. R =G = B.
Then, we can conclude that the greys are not colors, or that they are colors without hue,
since the white and the grey are just differentiated by their intensity level.
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Figure 1.14: Representation of the HSI space.

Conversion Formulas

In the literature, there are various formulas of conversion from RGB to HSI. The more
usual ones are ([72]):

s[(R—G)+ (R - B)]

H =
I (R= G2+ (R- B)(G - B2’
3 .
; _ B+G+B
= 3

where RGB and SI values range between 0 and 1 and H = 360° — H, if B/I > G/I.
Hue is not well defined when the saturation is zero. Similarly, saturation is undefined if
intensity is zero.

We note that these formulas are not adequate because they are defined with respect to
the Maxwell triangle, defined in the next section, wich is not an adequate representation of
the color, as we will discuss later. Moreover, they do not take into account the definitions
of hue, intensity and saturation given at the beginning of Section 1.5.2. Other color models
use similar parameters, HSV or HLS for example, but they have inherent problems in
describing saturated pixels ([58]). We propose a definition of the HSI space (similar to
the one presented in [58]).

We will redefine the conversion formulas with respect to the definitions of hue, satura-
tion and intensity given at the beginning of this section. We denote by O the origin point
in the RGB cube, and by M = (R, G, B) the point of color in the cube (see Fig. 1.14).
The intensity component is the arithmetic mean of the R, GG, and B values, obtaining the
same formula as before,

R+G+ B
3 .
Now, consider the projection point from M to the grey axis, P

] =
(I,1,I), where P =

—_— = — — — —
(OM-U)-U, and U is the unitary vector of the grey axis U = (%, %, %) The saturation
component is the distance of the point M to its projection P, that is, the module of the

—
vector M P,

S=[OM - OP||=\(R—12+ (G- 1)+ (B 1"
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—
Finally, the hue component is calculated as the angle between the vector difference OM —
—

OP and an orthonormal vector to the grey axis, for example, the unitary vector v =

(0, %, —-L). Thus,
H = arccos (<G—” - <B—”) .

1
V2 V2

If we compare the new formulas for H, S and I with the formulas (1.1), we observe
that the expressions of the components H and S are different. A simple computation
shows that the formula for H is basically the same with the only difference consisting
in the fact that in (1.1) the reference vector is (2,—1, —1) while in our expression it is

1 1

0.7 ~33) o | | |
In the case of the inversion formulas, we want to obtain the value of point M, that is,

the position in the RG B cube from the point that is defined by the H, S and I values. To

—
get the point M is equivalent to find the vector OM. Using the projection point P on the
P—— — — —
grey axis, it follows that OM = OP + PM. By hypothesis, we have that OP = (I, 1,1)
—

and therefore, we only need to compute the vector PM. If we consider the vectors 7 and

7 as two unitary vectors orthonormal between them and orthonormal to the grey axis, we

can define PM = S -cos(H)7+ S -sin(H)7. The vector 7’ has to be the orthonormal vector

—

used in the conversion formulas from RGB to HSI, that is, © = (0, %, —%) As the

vector 7 has to be orthonormal to 7’and to grey axis and unitary, then 7= (—%, %, %)
Finally, the conversion formulas from HSI to RGB are

R = [—i—S-(%lg(H))a

¢ < s (S i)

B = I+5- (_C(\)/S;H) + Sm(é{)).

1.5.3 Two-dimensional spaces

Working with three-dimensional spaces presents some difficulties, as their representation,
interpretation, storing, processing,... To solve these problems, different two-dimensional
spaces have been proposed. We can distinguish two main representation systems: the
Maxwell triangle and the HS' space.

The Maxwell triangle is the plane of the RG B cube on which all color points satisfy the
equation R+G+ B = a, where a = {1,255}, depending on whether the data is normalized
or not ([76]). This triangle joins the three primary colors in the cube. Moreover, all points
in this plane have the same intensity, as, also, in all the planes parallel to it. In Figure 1.15
we can see the triangle location in the RGB cube and, in Figure 1.16, its representation.

The main disadvantage of the Maxwell triangle is that the primary color area is bigger
than the secondary one. This model attaches much more importance to the primary
colors than to the secondary colors. For example, it is difficult to see in Figure 1.16 the
pixels related to the yellow area. We conclude that this representation is not accurate
enough and inappropriate to recognize the colors. For this reason the classical conversion
formulas between HSI and RGB spaces, which are based on the Maxwell triangle, are not
suited for our purposes, as pointed out in the previous section.
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Figure 1.15: Maxwell triangle in the cube RGB.

Figure 1.16: Representation of the Mazwell Triangle.

The HS space is the conversion from the HST space to a two-dimensional space. This
two-dimensional space is defined as a plane of the HSI space. There are different ways
to create this space, either by considering the pixels belonging to a plane with a fixed
intensity, or by projecting all the color points in this same plane.

However, this system does not give an accurate representation, either because a lot
of information is lost or because different color points can be represented by the same
coordinates in the space.

1.5.4 CIE Color Spaces

In 1931, the Commission Internationale de L’Eclairage (CIE) created a new color space
called CIE XY Z color space. XY Z is a device independent color space that is excep-
tionally useful for color management purposes. It is based on direct measurements of the
human eye. In this space the coordinates X, Y and Z are called the tristimulus values,
which are also roughly red, green and blue, respectivaly. Any color can be described by
the XY Z coordinates ([96]). The C'IE color specification system is based on the descrip-
tion of color as the luminance component Y and the chromaticity information, given by

two additional components x and y, which are functions of all three tristimulus values X,

Y and 7 :
X Y

r=—=———, ==\
X+Y+7Z T Xty iz

Figure 1.17 shows the related chromaticity diagram. The outer curved boundary is

the spectral locus, with wavelengths shown in nanometers. Note that the chromaticity

diagram is a tool to specify how the human eye will experience light with a given spectrum.

This diagram represents the  and y coordinates with Y constant. Less saturated colours
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appear in the interior of the figure, with white at the centre. If one chooses any two points
on the chromaticity diagram, then all colors that can be formed by mixing these two colors
lie between those two points, on a straight line connecting them. It follows that the gamut
of colors must be convex in shape. All colors that can be formed by mixing three sources
are found inside the triangle formed by the source points on the chromaticity diagram,
and so on for multiple sources. Moreover, the mixture of two equally bright colors will
not generally lie on the midpoint of that line segment. In more general terms, a distance
on the xy chromaticity diagram does not correspond to the degree of difference between
two colors. Other color spaces (CIFELuv and C'IE Lab in particular) have been designed
to solve this problem.

Figure 1.17: Representation CIE chromaticity diagram.

The linear RGB color space can be transformed to and from the CIE XY Z color
space by using a simple linear transform (see next section).

In image processing, it is of particular interest the use of perceptually uniform color
spaces where a small perturbation in a component value is approximately equally per-
ceptible along the range of that value. The color specification systems discussed until
now are far from this uniform property. In 1976, CIFE standardized two spaces, Lab and
Luw, as perceptually uniform ([52]). Both spaces work well in perceptual uniformity and
provide very good estimates of color differences between two color vectors, because this
difference is calculated with the Euclidean distance.

In both spaces, the coordinate L represents the luminance axis, which is equivalent to
the grey axis. The coordinates (a,b) and (u,v) represent the chrominance, considering a
constant luminance.

The axis a corresponds to the antagonist pair green-red and the axis b corresponds to
the pair blue-yellow.

A disadvantage of these uniform color systems is that both color spaces are computa-
tionally expensive to transform to and from the linear as well as non-linear color spaces.
Moreover, the different conversion formulas present singularities and rounding problems,
where the formulas are not well defined.

Conversion Formulas

Conversion from RGB to CIFELab or C'IFE Luv consists of two steps. In a first step, the
RGB components are transformed to CIE XY Z using the appropriate matrix. Then,
the particular formulas to transform from CIE XY Z to CIELab or CIE Luv are used.
These formulas depend on the physical luminance of the white reference point.
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The transformation matrix between XY Z and RGB is ([36]):

R 3.240479 —1.537150 —0.498535 X
G | = —0.96926 1.875992  0.041556 Y
B 0.055648 —0.204043  1.057311 A

The inverse transformation matrix, i.e. from RGB to XY Z, is:

X 0.412453 0.357580 0.180423 R
Y | =1 0.212671 0.715160 0.072169 G
A 0.019334 0.119193 0.950227 B

The coordinates of a XY Z color point in the C'I E' Lab space can be obtained by using
the following relations ([96]):

. If —~ > 0.008856, then:

L — 116 Y)

1/3 1/3
b= 200 (%) _(Z%) )

o If - < 0.008856, then:
L* = 903.3 L)

Yn
@ = 7787 (5 - &)
b= TIST(E - £)

In both cases X,,, Y,, and Z,, are the standard values of X, Y and Z for the white color.
The inverse transform from CIFELab to RGB is only allowed when Y% > 0.008856,
and it can be calculated using the next formulas:

X = X, (P+2
Y = Y,pP?
Z = Z,(P—- LX)

200

500 )

_ L*+16
where P = e -

Normally, C'I ELab coordinates are converted to classical HSI coordinates, since the
conversion formulas are much simpler

I = L~
H = arctan (b)
S = (CL*)2 + (b*)2

The C'I ELuv space coordinates of a XY Z color point are computed as

1/3

L+ = 116 (YX) if £ >0.008856
903.33- if 3 <0.008856
u* 13L* (v — ul)

vt = 13L*(v =)

=
I
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where
/ 4X , )%

YT X isv+3z U T Xty 432

and u,, v/, are the corresponding values of v’ and v’ for X,,, Y,, and Z,.

In the same way than for the C'I E'Lab transformation, we use an inverse transformation
from CIFE Luv space to HSI space, obtaining the same equations as in the previous case
by replacing the coordinate a by the coordinate v and b by v.

1.6 Colors in real life

We cannot finish this chapter without talking about the colors that we find around us.
What colors are predominant in the nature? Are there any colors which we cannot find
around us? What proportion of red exists in the real life? Answering these questions
and other similar is the aim of the project “Very Large Cube” (VLC), which is still in
progress, but whose preliminar results are presented in this section.

The idea of this study is to accumulate the colors of a lot of pictures in a same RGB
color cube. These pictures come from “real life” scenes: landscapes, photographies of an-
imals, people, daily life, objects,.. That is, varied photographies with different conditions
of illuminants and different characteristics. Different frames of films can be considered
as pictures too. We do not consider synthetic pictures, that is, digital pictures whose
colors have been normally selected by an artist or graphic designer. The RGB values of
the pixels in each picture are stored in the same data file (the “Very Large Cube” file).
Currently, we have accumulated values for over 15.800 images. Our aim is obtaining at
least 30.000 pictures.

When the “Very Large Cube” is completely filled, we will be able to study the theorical
distribution of the colors that are around us and to use this information to analyse the
color images.

From this partial work, we already can extract some conclusions. Firstly, we can
observe in Figure 1.18 the red, green and blue histograms extracted from the “Very Large
Cube”. We can observe that the three histograms have a similar shape. The histograms
present high peaks in the extreme values, that is in the lighter and darker colors. Moreover,
we observe that the darker colors are more abundant than the lighter ones. We observe
in the three histograms little peaks that are repeated periodically. This phenomenon
requires a more profound study, but we can hypothesize that they are due to the JPG
compression effect.

The hue histogram from the “Very Large Cube”, Figure 1.19, provides us a very
important information. We can observe that the more abundant hue among these 15.800
pictures is the red-orange hue, followed by the blue hues. We can also observe that the
magenta and cyan hues are presented in relatively few pixels.

Finally, we have visualized the 3D distribution of the colors of the VLC in the RGB
space. We have observed that this distribution almost fills the color space, except for a
few gaps in the saturated colors. The direct observation of the cube is a hard task, since
the exterior colors in the cube hide the interior information. Due to this fact, we have
decided to study the cube by representing the color information for different fixed intensity
planes, see Figure 1.20. In this image we can observe nine planes of the Cube. We observe
that almost all the colors in the planes of low and high intensity are present in the Cube.
While the other planes present gaps in some saturated colors, such as magentas, cyans or
some greens.
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Figure 1.18: Red, green and blue histograms from the “Very Large Cube”, respectively.

s 2 e

Figure 1.19: Hue histogram from the “Very Large Cube”.

Finally, we can analise the Cube by removing the colors that have a small value in
the histogram of the “Very Large Cube”. These colors appear in few pictures and are
not very meaningful around us. The results of this action can be observed in Figure 1.21.
In the first row we can see the “Very Large Cube” from three different viewpoints. Only
the colors with a histogram value higher than 100 are displayed. In the second row the
colors that have a histogram value lower than 1000 have been eliminated , and in the third
row the threshold for the histogram value is set to 10000. It is clear that the colors with
high histogram values are the low saturated colors, the colors close to the grey cylinder.
Moreover, this figure underlines the gaps in the Cube observed in the previous figure. By
adding more pictures we will obtain a more uniform cube.
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Figure 1.20: Fized intensity planes of the “Very Large Cube”. These nine planes rep-
resent clearly the “Very Large Cube”. We can observe the gaps in the Cube, that is, the
colors that are not present around us (at least in a large set of images from the real world).
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Figure 1.21: Results of removing colors in the “Very Large Cube”. The first row repre-
sents three different points of view of the colors in the “Very Large Cube” with histogram
values higher than 100. In the second row we have two points of view of the colors in the
“Very Large Cube” with histogram values higher then 1000. And, finally, in the third row
we display the colors with histogram values higher then 10000. We observe that in the
third row the remaining colors are the ones with low saturation values.



Chapter 2

Histogram segmentation

Abstract. Histograms permit a quantitative study of the color informa-
tion contained in a digital image. Colors are represented in some of the 3D
color spaces described in Chapter 1 and the analysis of the 1D histograms
associated to each one of the space components allow us to obtain the main
features characterizing the color image. A basic description of the 1D his-
tograms is given by the list of its modes, i.e. the intervals of values around
which data concentrate. In this chapter we propose a new approach to seg-
ment a 1D-histogram without a prior: assumption about the underlying den-
sity function. The theorical justification of the approach is presented in two
steps, considering two different points of view. The method is based on the
definition of meaningful events, modes and gaps in a first approach, presented
in the first section of this chapter, and of meaningful rejections in a second
approach, and in the second section. The final result is a fast and parameter
free algorithm, the Fine to Coarse algorithm, which avoids under and over-
segmentation. Some properties of the method are remarked at the end of the
chapter.

2.1 Introduction

Histograms have been extensively used in image analysis and more generally in data
analysis, mainly for two reasons. They provide a compact representation of large amounts
of data and it is often possible to infer global properties of the data from the behavior
of their histogram. One of the features that better describes a 1D-histogram is the list
of its modes, i.e. the intervals of values around which data concentrate. For example the
histogram of hues or intensities of an image made of different regions can exhibit different
peaks, each one of them ideally corresponding to a different region in the image. In this
case, a proper segmentation of the image can be obtained by computing the appropriate
thresholds that separate the modes in the histogram. However, it is not always easy to
quantify the amount of “data concentration” in an interval, and hence to separate modes.

Among the algorithms proposed for 1D histogram segmentation we can distinguish
two principal classes of methods. First, parametric approaches (see [35]) assume the set
of points to be samples of mixtures of k£ random variables of given distributions, as in the
Gaussian Mixture Models (see Appendix A). If k is known, optimization algorithms such
as the EM algorithm [29] can estimate efficiently the parameters of these distributions.
The estimated density can then be easily segmented to classify the original data. The main
objection to this approach is that histograms obtained from real data cannot always be
modeled as mixtures of Gaussians. This is for example the case for luminance histograms,

35
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as we shall see in Section 3.2. Other approaches give up any assumption on the underlying
density. Among them, bilevel or multilevel thresholding approaches intend to divide the
histogram into several segments in an optimal way according to some energy criterion
(variance ([2]), entropy of the histogram ([55]), entropy of the co-ocurrence matrix ([14]),
etc...).

Other approaches (for instance, mean shift [20]) find peaks (local maxima) of the
histogram without estimating the underlying density. These methods tend to detect too
many peaks in histograms coming from real data when they are noisy. Some criterion is
therefore needed to decide which of these peaks correspond to true modes ([93]). Indeed,
one of the main challenges of histogram analysis is the detection of small modes among
big ones (see, for example, Fig. 2.1).

In all of these cases, the choice of the number of segments is crucial. If the histogram
is constant, a bilevel thresholding based on entropy divides it at the median value. Yet
we know that a constant histogram is not bimodal. In the opposite way, modes can be
missed if the number given by the user is too small. This number can be specified a prior:
and becomes a method parameter. It can also be estimated if its a prior: distribution
is hypothesized. Generally, ad hoc procedures are used to estimate the actual number
of modes. For example, in energy-based approaches, they can consist in adding a term
penalizing the number of segments in the energy criterion, in order to reach a compromise
between the segmentation length and the local energy of the modes. Now, the choice of
the penalizing term and of its relative importance in the energy criterion is still user-
dependent.

The decision parameter can also be inherent to the method. In [40], Frederix et al. try
to fit the simplest density function compatible with the data. The repartition function
F,, of the data being known, they look for the repartition function F' which minimizes
J(F"(x))*dz, under the condition that F), is compatible with F' for a given statistical
test of significance level v (they use in their paper the Kolmogorov-Smirnov and Cramer-
von Mises tests). This method is globally quite convincing, but the choice of the data-
compatibility threshold « is again not formalized, and only justified by experiments.

The limitations observed in the previous histogram thresholding methods and the
advantage of Gestalt Theory (see Appendix B) for automatic detection have motivated
the development of a new non-parametric approach for histogram segmentation. This
method satisfies the following properties:

e it is parameter-free: given any 1D histogram, it automatically computes the number
and the locations of its modes,

e it is robust: small variations in the histogram due to noisy data or due to the
sampling procedure are not detected as modes,

e it is local, in the sense that it is able to detect as modes small concentrations of
values.

The obtention of this method can be done from two different points of view. In a
first approach, we consider an a contrario theory, in which the aim is the detection of
meaningful modes and meaningful gaps against an a contrario uniform law. From this first
step we obtain three algorithms, which segment adequately the histogram but yield under-
segmentation. The second point of view is related to the problem of density estimation.
A estimated density will be considered admissible if no meaningful gaps or modes can be
detected on the histogram where the density is hypothesized. Thus, the second point of
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view involves the same arguments as the first, but the detection method is used to accept
or to reject an hypothesized density. The result of this second approach is the Fine to
Coarse algorithm, that yields an admissible segmentation of the histogram.

The plan of the chapter is as follows. In the next section, we present the a contrario
approach, defining the concepts of meaningful and maximal meaningful mode and gap,
detailing the approach limitations and presenting the different results. In Section 2.3 the
density estimation approach is explained in three steps; and, finally, some properties and
new concepts are commented in Section 2.4.

2.2 An a contrario approach to histogram analysis

The approach that we present here is based on a method for the computation of locations
of interest (modes or gaps) of a histogram, recently proposed in [30]. It is based on the
idea that any event (either a geometric structure in an image or a mode in a histogram)
is meaningful if it is very unlikely to happen under a given a contrario hypothesis. For
a histogram, this hypothesis can be for example that the values of the data set follow a
uniform law: in this sense, the fact that a high percentage of the values concentrate in a
certain interval indicates that this interval is meaningful.

In the rest of the chapter, we will consider a discrete histogram h = (h;);=1.. 1, with V
samples on L bins {1,... L}. The number h; is the value of h in the bin 7. It follows that

For each discrete interval [a, b] of {1,... L}, let r(a,b) be the proportion of points in [a, b],

r(a,b) = % (Z hi> .

Definition 1. Let h be a histogram on {1, ..., L}. A segmentation S of h is a partition
l=s51 <8 <---<s,=L. The number n — 1 is termed length, or number of segments

of S.

2.2.1 Meaningful intervals and meaningful gaps of a histogram

Suppose a distribution function p, hypothesized over {1,...,L}. As planed, we want to
test the adequacy of the histogram h to the density p, where p is called the a contrario
distribution. The null hypothesis is that the N samples are distributed independently on
{1, ..., L} with the fixed distribution law p. For each interval [a, b] of {1, ..., L}, we denote
p(a, b) the probability for a point to be in that interval.

The rejection of the null hypothesis can be tested efficiently by considering all possible
excess or deficit intervals for h with respect to p. Assume for instance that some interval
la,b] has a density r(a,b) larger than p(a,b), is this excess meaningful or not? This
can be evaluated with the a contrario probability that [a,b] contains at least Nr(a,b)
points, among the N points sampled independently with law p, given by the binomial tail
B(N,Nr(a,b),p(a,b)), where

B(n, k,p) = i (?)pj(l -p)".

J=k
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Since, we perform multiple testing, a probability value is not adequate and we have to
control the number of false alarms of an interval [a,b] ([34]) defined by

L(L +1)

NFA([a, b)) = ==

B(N, Nr(a,b), pla, b)).
Fixing a maximal value for the false alarms, ¢, we say that an interval is interesting if
NFA([a,b]) <e.

With such a definition, the expectation of the number of interesting intervals in {1, ... L}
under the null hypothesis, the law p, is smaller than ¢ ([34]).

Theorem 1. Let R the random wvariable representing the exact number of interesting
intervals in {1,... L} under the null hypothesis, then
E(R) <e.

Before to give the proof, we recall without proof the following classical lemma,

Lemma 1. Let X be a real random variable and be H(X) = P(X > x). Then for all
t e [0,1]
PH(X)<t) <t

Proof: Let m(L) = @ be the total number of intervals in {1,...L}. For 0 <i <
m(L), let e; be the following event: “the i-th interval is interesting” and x., denotes the

characteristic function of the event e;. We have

Ply., = 1] = PINFA(i) < ],
where N FA(7) is the number of false alarm of the i-th interval. Since R = Z:i(f ) Xe;, the
expectation of R is

m(L) m(L) m(L)
E(R)=> E(xe) =Y Pl =1=Y_ P[NFA®i) <¢]

By definition we have
PINFA()<e]= P [%B(N, N (i), p(3)) < 5}

= P[BIN.Nv(i),p(0)) < 75y

If we consider X as the random variable representing the number of points in an
interval, then B(N, Nr(i),p(i)) = P(X > Nr(i)). From Lemma 1, we have

PBOVN0.00) < 1| < 1

L+D ST+

So that,
m(L)

2e
BRI ) pprn - ©

=0
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O

In the same way, we can consider that an interval [a,b] is an interesting “gap” if it
contains “fewer points” than the expected average in the sense that

2¢e

B(N,N(1—r(a,b)),1—p(a,b)) < O

In practice, we will always use € = 1, which means that we want on the average at most
one “false detection”. Now, these binomial expressions are not always easy to compute,
specially when N is large. The large deviation theory tells us (see [28] for example) that
for r > p,

1 1-—
NlogB(N, Nr,p) v —rlog% — (1 —r)log ] _;.

1—7r

Moreover, Hoeffding’s inequality ensures that B(N, Nr,p) < e~ N(rlos j+(1-M1og 155) g
r > p. In pra