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Abstract

In this thesis we address several analytical and numerical problems related with
the study of general relativistic black holes and boson stars.

The task of solving numerically the Einstein equations (Gab = κTab) has
turned out to be a very complex problem. Various reductions to first-order-in-
time hyperbolic systems appear in the literature, but there is no general recipe that
prescribes the optimal technique for any given situation, which leads to a variety
of formulations.

In the first part of this thesis, we present an analytical and numerical compar-
ison between three different formulations of the Einstein equations. A detailed
analysis of these systems is performed, marking the weak points and proposing
improvements, in the form of constraint adjustments and damping terms.

Black holes are considered to be some of the most interesting astrophysical
compact objects. They are vacuum solutions of the Einstein equations. The chal-
lenge of dealing with black hole (BH) simulations comes from the fact that they
hide a space-time singularity, a point where the attraction becomes so intense that
an observer would get trapped and absorbed into it. As a consequence, one of
the main problems that needed to be overcome were the steep gradients appearing
around the BH apparent horizon, marking the region between the outer nearly in-
ertial wave zone and the highly accelerated behavior of the inner plunging zone.
To this purpose, we developed a new centered finite volume (CFV) method based
on the flux splitting approach. This algorithm is the first one in the class of fi-
nite volume methods which allows third order accuracy by only piece-wise linear
reconstruction.

The finite volume methods are commonly used in the numerical study of rel-
ativistic astrophysical systems which contain matter sources, in order to deal with
shocks or any other type of discontinuities. However, in most cases one does not
require the use of limiters and the CFV method can be efficiently used in the form
of an adaptive dissipation algorithm, in order to deal with the steep gradients. We
present a comparison between our CFV method and the standard finite difference
plus dissipation techniques, and show that our method allows longer and more
accurate BH evolutions, even at low resolutions.

In this thesis, we discuss the techniques for dealing with the singularity, steep
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viii Abstract

gradients and apparent horizon location, in the context of a single Schwarzschild
BH, in both spherically symmetric and full 3D simulations. Our treatment of the
singularity involves scalar field stuffing, which consists in matching a scalar field in
the inner region of the BH, such that the metric becomes regular inside the horizon.
Additionally, for comparison, we appeal to the puncture technique, which reduces
the singularity to a point, while the interior BH region is maintained sufficiently
regular for numerical purposes. Even though the singularity is no longer a problem
in the initial data, it can become a problem in a finite amount of time, if one does
not choose suitable coordinate conditions.

We perform BH evolutions using the ’1+log’ singularity avoiding slicing,
which ensures that the coordinate time rate is slowing down in the strongly col-
lapsing regions, but it keeps flowing at the same rate as proper time in the wave
zone. In this context, we develop a geometrical picture of the slicings approaching
the stationary state, for situations where the treatment of the singularity involves
both scalar field stuffing and the puncture technique. Our 3D numerical results
show the first long term simulation of a Schwarzschild BH in normal coordinates,
without the need to excise the singularity from the computational domain.

The family of singularity avoiding slicing conditions which are currently used
in BH evolutions, have been shown to produce gauge instabilities. We extend this
study and show that, contrary to previous claims, these instabilities are not generic
for evolved gauge conditions. We follow the behavior of the slicing in evolutions
of Schwarzschild spacetime and perform a detailed study of the pathologies which
can arise from two models: perturbing the initial slice and perturbing the initial
lapse. A comparison with the results available in the literature allows us to identify
most instabilities and propose a cure.

Regarding the choice of space coordinate conditions, we developed an alterna-
tive to the current prescriptions, based on a generalized Almost Killing Equation
(AKE). This condition is expected to adapt the coordinates to the symmetry of the
problem under study. The 3-covariant AKE shift can be used in combination with
any slicing, without loosing its quasi-stationary properties. Our numerical tests
address harmonic and black hole spacetimes.

Our research work extends also to the study of regular spacetimes with mat-
ter. We explore boson star configurations as dark matter models and focus on
Mixed State Boson Stars (MSBS) configurations constructed in the context of
General Relativity. Contrary to previous studies, where bosons populate only the
ground state, in our case different excited states are coexisting simultaneously. We
performed the first general relativistic study of MSBS configurations, using the
Einstein-Klein-Gordon system in spherical symmetry. Following the evolution of
MSBS under massless scalar field perturbations, we identify the unstable models
and find a criteria of separation between stable and unstable configurations. Our
conclusions regarding the long term stability of MSBS configurations, suggest that
they can be suitable candidates for dark matter models.
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Chapter 1

Overview

The theory of General Relativity describes gravity as a geometric property of the
spacetime. It had a very important impact in modern physics, as it changed our un-
derstanding of the notion of time, the geometry of space, the motion of bodies and
the propagation of light. Its predictions are fully consistent with the current obser-
vations and experiments. Some of the most important results are the prediction of
black holes and gravitational waves.

General Relativity is based on the Einstein field equations, which relate the
curvature of spacetime with the matter content. In practice, the theory has proven
to be very complex, as it relies on a system of ten coupled, nonlinear, partial differ-
ential equations in four dimensions. Exact solutions are known only in cases with
high symmetry in space (spherical or axial symmetry) or in time (static or station-
ary solutions). The study of astrophysical relevant systems, has led to the field of
Numerical Relativity, which deals with solving the Einstein equations numerically.

Even though Numerical Relativity appeared as an independent field of research
in the 1960’s, only recently the computational power has allowed extensive numer-
ical studies. A better understanding of the theoretical issues and the development
of numerical methods, allowed the study of complex problems, from single stars
and black holes, to collisions of compact objects, gravitational collapse and singu-
larity structure.

One of the most important results in the field, has been the ability to pre-
dict gravitational radiation signals from binary black hole and neutron star simu-
lations. This progress provides significant support for the new generation of grav-
itational wave detectors, as accurate gravitational waveform templates for astro-
physical sources are crucial in the search strategy. Hybrid-templates are now con-
structed from analytical post-Newtonian approximations and numerical solutions
of the Einstein field equations. Detection of gravitational radiation is expected to
soon open a new window to the universe.
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4 Overview

Theoretical framework

General Relativity’s basic principles imply that Einstein’s field equations should
ensure causal propagation of the gravitational field. According to the causality
principle, two events causally correlated can not happen at the same time, but
the cause must precede the effect. Correspondingly, we expect that the partial
differential equations which propagate initial data of the Einstein equations, or
any other relativistic field theory, exclude instantaneous propagation of physical
degrees of freedom, in other words, that they are hyperbolic in a suitable sense.
Because of the covariant form of the Einstein equations, the hyperbolicity is not
manifested in an immediate sense.

The Einstein field equations (Gab = κTab) can be written as a second order
quasi-linear system of partial differential equations. In order to perform numerical
time evolutions, the evolution equations are often written as a first-order-in-time
system. An important aspect of the work in the field of Numerical Relativity is
finding hyperbolic reduction techniques which lead to the most suitable Einstein
system. The main idea is to convert the initial value problem (IVP) for Einstein’s
equations into an IVP for a hyperbolic system of partial differential equations, for
which the IVP is well-posed. Various hyperbolic reductions appear in the litera-
ture, but there is no general recipe that prescribes the optimal technique for any
given situation, which leads to a variety of formulations.

In Numerical Relativity, one commonly uses the 3+1 decomposition of the
Einstein system, which leads to evolution and constraint equations, elliptic equa-
tions that can be interpreted as first integrals of the basic evolution system. The
initial data is specified at some hypersurface of constant time and then evolved
into the future by equations of hyperbolic character. When specifying the initial
data, the solution is subjected to constraints, which are preserved by the continuum
evolution equations, but not by the discretized evolution system.

The usualfree evolutionapproach consists in using the constraints just for
monitoring the quality of the simulation, with no mechanism for moderating the
growth of the constraint violation modes. This approach is not proper, as unsta-
ble constraint violation modes can arise due to the non-linear source terms. In
order to obtain accurate long term numerical simulations one could take into ac-
count adjustments to the formulations of the field equations, in the form of suitable
damping terms [1,2].

The Einstein theory leaves four degrees of freedom undetermined, correspond-
ing to the choice of the coordinate system. In order to complete the evolution sys-
tem, one needs to specify both the slicing condition, namely an equation for the
lapse which provides the foliation of the spacetime in space-like hypersurfaces,
and an equation for the shift, which dictates how the spatial coordinates are car-
ried from one slice to the other. An essential problem in the numerical treatment
of black hole systems has been finding the most suitable gauge conditions.
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Black holes

An important break-through in the field of Numerical Relativity has been solving
the binary black hole problem. This success relies on two formulations of the Ein-
stein equations: the generalized harmonic [3–6] and the BSSN system [7,8]. Their
approach towards the treatment of the black hole (BH) singularity is different, due
to the analytical structure of these systems and the related gauge choice.

The problem of finding a suitable gauge conditions has proven to be one of the
main challenges faced by the numerical relativity community. The harmonic im-
plementations usually require the excision technique in order to remove the BH in-
terior from the computational domain, as their slicing condition is only marginally
singularity avoiding (the singularity is reached in a finite amount of time). The
control of dynamical excision involves serious technical problems, as the collapse
region grows and moves across the computational grid, so one needs to repopulate
the grid points in a consistent way [6]. An alternative to excision is thestuffedBH
approach, where the interior region black hole region is covered by a scalar field
that eventually collapses [9].

The codes based on the BSSN system use the ’moving puncture’ approach,
where the interior BH region is maintained sufficiently regular for numerical pur-
poses. They employ a strong singularity avoiding slicing condition, which ensures
that the coordinate time rate is slowing down in the strongly collapsing regions,
but it keeps flowing at the same rate as proper time in the wave zone. Even in sce-
narios in which a physical singularity is formed in a finite amount of proper time,
one never sees it happen in coordinate (computer) time. This feature is crucial
for the puncture technique, as otherwise they could grow by accreting neighboring
time lines [10]. A key ingredient in the BSSN simulations is the ’Gamma driver’
shift, a gauge condition that dynamically adapts the time lines to the symmetry of
the problem, such that the evolution reaches a stationary state. The moving punc-
ture technique can be viewed as anexcision by under-resolution, as in the limit of
infinite resolution the data never becomes stationary [11].

The challenge of dealing with BH simulations comes from the fact that they
hide a space-time singularity, a point where the attraction becomes so intense that
an observer would get trapped and absorbed into it. As a consequence, one of
the main problems that needed to be overcome were the steep gradients appearing
around the BH apparent horizon, marking the region between the outer nearly in-
ertial wave zone and the highly accelerated behavior of the inner plunging zone
[12]. This behavior can be dealt with by advanced numerical methods, or by
adding more resolution in the affected areas, employing Fixed or Adaptive Mesh
Refinement. These techniques produce higher resolution subgrids in the dynami-
cal region, while keeping a computationally affordable grid resolution in the outer
regions [13–15].

Binary black hole systems are now a major area of research in numerical rel-
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ativity, as they are considered one of the most promising sources of gravitational
waves. In the last years, important progress has been made starting with the first
simulation done by Pretorius [9], followed by the Brownsville and Goddard numer-
ical relativity groups which marked the moving punctures breakthrough [16–19].
The availability of gravitational waves templates opened the way to fruitful collab-
orations with the data analysis community.

However, this impressive progress marks only a stage of maturity in the oth-
erwise young research field of Numerical Relativity. The geometric picture of
the ’moving punctures’ evolutions has been only recently understood [11], in the
context of a time independent representation of a Schwarzschild black hole using
maximal slices. The result was extended to the hyperbolic slicing conditions com-
monly used in numerical relativity. There are further gauge issues that need to be
clarified, related with the behavior of these singularity avoiding slicing conditions
and related instabilities. Alternatives to the ’Gamma driver’ shift condition are still
explored for different 3+1 formulations of the Einstein equations [20], including
generalized harmonic formulations [21]. We are still in need of robust numerical
codes for non-stationary scenarios, which allow various choices of gauge condi-
tions.

Matter spacetimes

The numerical simulation of black hole spacetimes involve the vacuum Einstein
equations. However, most relativistic astrophysical systems contain matter sources
and require in addition the theory of fluid dynamics. The simulation of matter
spacetimes require special numerical methods, due to the non-linearities in the
Euler equations which give rise to propagating discontinuities arising even from
smooth initial data. These discontinuities take the form of steep gradients in the
variables.

A particularly useful approach to solving non-linear systems of evolution equa-
tions is the method of lines (MoL), which decouples the treatment of space and
time. It is based on the idea of discretizing first the spatial dimensions, while leav-
ing the time dimension continuous, leading to a semi-discrete system. Then one
can solve the resulting system of coupled ordinary differential equations using a
time integration method. The standard spatial discretization methods rely on fi-
nite difference (FD) algorithms or finite volumes (FV), which reduce to FD plus a
special form of numerical dissipation. The development of high resolution shock
capturing algorithms which require only the characteristic speeds [22,23], has sig-
nificantly increased the efficiency of the codes. The adaptive numerical viscosity
terms are also very efficient in dealing with steep gradients that appear in the black
hole simulations [24].

Considerable progress has been achieved in the last two years in extracting
gravitational wave signals from binary neutron star systems [25–27]. Systematic
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studies present the dynamics of the inspiral and merger phases, while last phase
reveals a black hole surrounded by a torus [28]. However, questions related, for
example, with the mechanism responsible for gamma ray bursts require further
investigation. Furthermore, the numerical modeling of astrophysical processes
involving highly dynamical magnetic fields, for which resistive effects play an
important role, can not be dealt with by ideal magneto-hydro-dynamic (MHD)
formulation. The development of numerical techniques that allow a solution to
the relativistic resistive MHD equations, opens new possibilities of investigation
[29,30].

An interesting topic in General Relativity is the study of dark matter, which
lies at the interface between the fields of observational astrophysics, cosmology
and numerical relativity. Scalar field dark matter models, in which the dark matter
particle is a spin-0 boson, are becoming a serious candidate. The boson particles
can collapse into the same quantum state of the gravitational potential to form a
Bose Einstein condensate. One of these Bose Einstein condensate is a compact
gravitating object, named boson star.

Boson stars are self-gravitating scalar field objects, for which the gravity at-
traction balances the dispersive character of the scalar field. Their numerical mod-
eling is more straightforward than for fluid stars, as the evolution of smooth initial
data for a scalar field tends to stay smooth, in contrast with hydrodynamical fluid
evolutions.

Previous relativistic studies regarding the stability of boson stars, showed that
the only stable configurations are made of ground state scalar fields [31]. The
associated mass density profiles decay exponentially asr → ∞, making it difficult
to fit the flat rotational curves of most galaxies. However, a generalization of boson
stars configurations has been proposed [32], which considers a system of bosons
formed by particles coexisting in ground and excited states. These Mixed State
Boson Star can be seen as a collection of complex scalar fields, one for each state,
coupled only through gravity. The different composition of ground and excited
states could explain why the galaxy halos have so different masses and sizes, and
could allow a more accurate fit of the rotational curves of the stars in galaxies [33].

Some of the major topics in the field of Numerical Relativity are the devel-
opment and improvement of numerical methods, boundary conditions and gauge
choices that allow long and accurate numerical evolutions. The current studies are
modeling real astrophysical situations and allow extraction of gravitational wave
templates.

1.1 Thesis Organization

This thesis is organized in six parts: introduction in the field of Numerical Rela-
tivity, an analytical and numerical comparison to 3+1 formulations of the Einstein
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equations, the development of numerical methods employed inrelativistic simula-
tions and their application in the numerical study of black holes and boson stars,
the choice of gauge conditions for black hole evolutions, concluding remarks and
an appendix. The description of the subsequent chapters proceeds as follows:

• The first chapter offers a brief overview on some current topics in the field of
Numerical Relativity and sets the conventions that will be used throughout
the thesis.

• The second chapter contains general notions of differential geometry, with
the purpose of setting the notation and conventions for the basic mathemat-
ical objects that are used in this thesis. The basic steps of a 3+1 decom-
position of Einstein’s field equations and the main ideas of the theory of
well-posed evolution systems are briefly pointed out.

• The third chapter deals with 3+1 formulations of the Einstein equations. We
present three systems based on the metric (Z3, Z4 and BSSN) and one on
the tetrad formalism (Friedrich-Nagy), followed by a brief comparison of
the systems at an analytical level.

• The fourth chapter is based on the Apples with Apples Alliance (AwA)
tests, the first community effort to produce cross-validation in Numerical
Relativity. We are focusing on numerical results obtained with the Kranc
implementations of the Z4, BSSN and FN systems. A detailed analysis of
the behavior of these systems is performed, marking the weak points and
proposing improvements.

• The fifth chapter concerns new techniques currently used in Numerical Rel-
ativity in order to solve the discretized Einstein equations. We present a new
centered finite volume algorithm based on the flux splitting approach. This
algorithm is the first one in the class of finite volume methods which allows
third order accuracy by only piece-wise linear reconstruction. In the vari-
ant without limiters, the centered finite volume method leads to an adaptive
dissipation algorithm, which can be used in combination with the standard
finite difference methods.

• The sixth chapter presents numerical evolutions of black hole spacetimes.
The techniques for dealing with the singularity, steep gradients and appar-
ent horizon locations are discussed in the context of a single Schwarzschild
black hole, in both spherically symmetric and full 3D simulations. We
present a comparison between our centered finite volume method and the
standard finite difference plus dissipation techniques, when dealing with
steep gradients in normal coordinates. We perform evolutions using the
’1+log’ slicing and develop a geometrical picture of the approach to the
stationary state, for both scalar field stuffing and puncture techniques. Our
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3D numerical results based on the Z4 system, show the first longterm simu-
lation of a Schwarzschild black hole in normal coordinates without excision.

• The seventh chapter is focused on boson stars, as models for dark matter.
We present evolutions performed with the Einstein-Klein-Gordon system,
using as initial data several complex scalar fields, following the classical
approximation. The study is focused on two models. In the first one, we
add a massless scalar field perturbation to a model of ground configuration
and follow the evolution in order to see the effect of the perturbation on
the stability of the configuration. In the second one, we perform the first
general relativistic study of Mixed State Boson Stars evolutions. Using per-
turbations, we identify the unstable models and find a criteria of separation
between stable and unstable configurations.

• The eighth chapter refers to time coordinate (lapse) conditions and related
instabilities. Our investigation is focused on a singularity avoiding slicing
condition currently used in binary black hole evolutions, namely the ’1+log’
slicing. We follow the behavior of the slicing in evolutions of Schwarzschild
spacetime and perform a detailed study of the pathologies which can arise
from two models: perturbing the initial slice and perturbing the initial lapse.
A comparison with the results available in the literature allows us to identify
most instabilities and propose a cure.

• The ninth chapter concentrates on the choice of space coordinate condi-
tions (shift) well suited for black hole evolutions. We develop a generalized
Almost Killing Equation (AKE), based on considerations of approximative
symmetries in the spacetime. We show that the 3-covariant AKE shift equa-
tion can be used in combination with any slicing condition, without loosing
its quasi-stationary properties. Our numerical tests address harmonic and
black hole spacetimes.

• The tenth chapter contains concluding remarks.

The Appendix presents a summary of numerical methods and the explicit form
of Einstein evolution systems employed in this thesis.

1.2 Conventions

Throughout this thesis, we are using the system ofgeometric units, where the speed
of light c and Newton’s gravitational constantG are set equal to one, so they will
be omitted from the formulas. All quantities will be given a dimension of a power
of length. In order to recover the standard SI units, one has to multiply the quantity
with the corresponding powers ofc andG. The conversion factor for a quantity
with dimension of time isc (e.g. t → ct), while for a quantity with dimension of
mass isG/c2.
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All physical quantities will be measured in meters, for example a meter of time
being equal to the time it takes light to travel one meter (around3× 10−6 meters).
A meter of mass is defined as the mass of a point particle that in Newton’s theory
has an escape velocity equal to the speed of light at a distance of two meters.

Our unit of length will be the mass of the system. For example in a black hole
simulation, the time and distance will be measured in units ofM , whereM is the
mass of the black hole.

The covariant derivative of a quantityQ is noted as:∇µQ and the partial
derivate:∂Q/∂xµ = ∂µQ.

The following conventions are considered throughout the thesis:

• Lorentzian signature of space-time:

(−,+,+,+);

• Definition of the Riemann tensor:

(∇a∇b −∇b∇a)vc = Rabc
dvd;

• The 3D Ricci tensor:

Rij = ∂kΓ
k
ij − ∂iΓ

k
kj + Γk

krΓ
r
ij − Γk

riΓ
r
kj;

• The commutator:

∇(a∇b) =
1

2
(∇b∇a + ∇a∇b);

• The anti-commutator:

∇[a∇b] =
1

2
(∇b∇a −∇a∇b);

∇[a∇|b|∇c] =
1

2
(∇c∇b∇a −∇a∇b∇c);

• TheL2-norm:

‖uuu‖ =

√

∑

m

|uuum|2;

Indices notation:

• four dimensional indices (Greek alphabet):

µ, ν, τ, ρ, ... = 0, 1, 2, 3;
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• three dimensional indices (Latin alphabet):

a, b, c, d, ... = 1, 2, 3;

• three dimensional indices:

a′, b′, c′... = 0, 1, 2;

• two dimensional indices:

a′′, b′′, c′′... = 1, 2;

Einstein’s summation rule applies, namely repeated indices are summed over
all their possible values.





Chapter 2

General Concepts in
Relativity

In this chapter, we briefly present the basic mathematical objects that occur in the
geometrical constructions of the theory of General Relativity (just for fixing the
notation and nomenclature).

2.1 Geometrical Concepts

In General Relativity the space of physical events is described by a real smooth D-
dimensional manifoldMD with local coordinatesxµ, provided with smooth vector
fields and linear forms in the local coordinate system, as well as other geometrical
objects such as tensors and a connection.

2.1.1 Notions of Local Differential Geometry

Differential geometry is based on the notion of a differential manifold, a contin-
uous and smooth space ofn dimensions. AmanifoldM is a space that can be
covered by a collection of charts (one-to-one mappings fromRn toM ).

The curvexα = xα(λ) in terms of a set of coordinatesxα, is defined as a
function from a segment of the real line into the manifold.Vectorsare derivative
operators along a given curve. At each point, D linearly independent vectors form a
linear space, called thetangent spaceofMD. One usually chooses as acoordinate
basisthose vectors that are tangent to the coordinate lines.

A one-formis a linear, real-valued function of one vector. Also calledcovec-
tors, they form a vector space of the same dimension as the manifold, named the
dual tangent space. One can introduce two independent fundamental structural
objects on a manifold.

13
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The distanceds between two infinitesimally close points onMD, correspond-
ing to the temporal and spatial distances, is calculated from the themetric tensor
gµν as:

ds2 = gµνdx
µdxν .

The metric, also known as the first fundamental form, is a symmetric tensor field
gµν = g(µν) with D(D + 1)/2 components, called Riemannian if its eigenvalues
are positive (negative) definite, and Lorentzian if its signature is±(D − 2).

I will consider in the following space-times of dimensionD = 4, with symmet-
ric and Lorentzian metric (signaturesig(g) = 2). The metric is non-degenerate,
namely its components form an invertible matrixgµνgντ = δµ

τ .
The metric tensor defines the scalar product between two vectors as

g(~v, ~u) = ~v ~u = gµνv
µuν ,

and a one-to-one mapping between vectors and one-forms:

vµ = gµνv
ν .

Two vectors are orthogonal if their scalar product vanishes.
Considering a timelike unit vector~n, the projection operator onto a local tan-

gent space orthogonal to~n is defined as

Pµ
ν = δµ

ν + nµn
ν .

TheLie derivative,
L~v~u = [~v, ~u],

with [~v, ~u]µ = vν∂νu
µ − uν∂νu

µ, can be interpreted as a way to write partial
derivatives along the direction of a given vector field, in a way that is indepen-
dent of the coordinates. If a manifold has a specific symmetry, then the metric is
invariant under Lie dragging with respect to a vector field~ξ, calledKilling field,

L~ξ
g = 0.

The second structure that can be introduced is the linear connection, a de-
vice for establishing a comparison of vectors in different points of the manifold.
This covariant derivativeoperator∇ must be linear, obey the Leibnitz rule for
the derivative of a product and it must reduce to the standard partial derivative for
scalar functions. A manifold with only one linear connection is called affine space.
A manifold carrying both metric and connection is called metric affine space. A
connection for which the metricity condition holds, namely the scalar product of
two vectors is preserved under parallel transport

∇ρgµν = 0,
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is called metric-compatible.
The Riemannian geometry is a subclass with vanishing torsion of a metric-

affine geometry with metric-compatible connection [34]. For any vector fields
Xµ, Y ν , the torsion tensor can be defined as

T ρ
µνX

µY ν = Xµ∇µY
ρ − Y µ∇µX

ρ − [X,Y ]ρ. (2.1)

2.1.2 Spacetime Geometry

In the following, I will only consider the case of Riemannian geometry, for which
one has two main conditions: the torsion-freeness,T ρ

µν = 0, and the condition
for the connection to be metric compatible,∇ρgµν = 0. Then the connection is
uniquely defined and it is called the Levi Civita connection,

∇µgνρ = ∂µgνρ − Γα
µνgαρ − Γα

µρgνα = 0,

whereΓα
µν is calledChristoffel symbol. This symbol is symmetric in the last two

indices

Γµ
νρ =

1

2
gµτ (∂ρgτν + ∂νgτρ − ∂τgνρ).

The torsion-free condition can be written in terms of the Christoffel symbols as

T µ
νρ = Γµ

ρν − Γµ
νρ = 0. (2.2)

The Riemann curvature tensorarises because the covariant derivative is not
commutative, which can be interpreted as the failure of a global notion of paral-
lelism in curved space. This tensor is defined through its action on an arbitrary
covectorvµ:

(∇µ∇ν −∇ν∇µ)vρ = Rµνρ
τvτ .

The relation leads to the following symmetryRµνρ
τ = −Rνµρ

τ . Applying this
definition to the metric tensor

0 = (∇µ∇ν −∇ν∇µ)gρτ = Rµνρ
αgατ +Rµντ

αgρα = Rµνρτ +Rµντρ,

one notes another symmetryRµνρτ = −Rµντρ.
A relation between the Riemann tensor and the connection can be derived using

the torsion-free condition Eq. (2.2),

Rµ
νρτ = ∂ρΓ

µ
τν − ∂τΓ

µ
ρν + Γµ

ραΓα
τν − Γµ

ταΓα
ρν . (2.3)

Writing the definition of the Riemann tensor in three cases

(∇µ∇ν −∇ν∇µ)vρ = Rµνρ
τvτ ,

(∇ρ∇µ −∇µ∇ρ)vν = Rρµν
τvτ ,

(∇ν∇ρ −∇ρ∇ν)vµ = Rνρµ
τvτ ,
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one obtains

∇[µ∇νvρ] = −1

2
R[µνρ]

τvτ ,

which leads toR[µνρ]
τ = 0. From this relation and the two symmetries of the

Riemann tensor, it follows that the tensor also satisfies the symmetry property
Rµνρτ = Rρτµν .

Considering the definitions for the Riemann tensor written as

2∇[µ∇ν]∇ρv
τ = −Rµνρ

β∇βv
τ +Rµνα

τ∇ρv
α,

2∇[µ∇ν∇ρ]v
τ = R[µν|α|

τ∇ρ]v
α

and comparing with

2∇µ∇[ν∇ρ]v
τ = vα∇µRνρα

τ +Rνρα
τ∇µv

α,

2∇[µ∇ν∇ρ]v
τ = ∇[µRνρ]α

τvα +R[νρ|α|
τ∇µ]v

α,

we obtain∇[µRνρ]α
τvα = 0. This relation is known as theBianchi identity

∇µRνρτα + ∇νRρµτα + ∇ρRµντα = 0. (2.4)

Contracting it withgµτgρα and using the metricity condition, we arrive at

∇µRµν − 1

2
∇νR = 0, (2.5)

where theRicci curvature tensoris defined as trace of the Riemann tensor over the
second and the forth (or equivalently, the first and the third) indicesRµν = Rµρν

ρ.
The trace of the Ricci tensorR = Rµνg

µν is theRicci scalar curvature.

2.1.3 The Field Equations

Defining theEinstein tensoras

Gµν = Rµν − 1

2
Rgµν , (2.6)

the contracted Bianchi identity leads to

∇µG
µν = 0. (2.7)

This is a convenient form of writing the field equations in vacuum.
In cases where matter is considered, one needs to include the conservation laws

of energy and momentum in differential form

∇µT
µν = 0, (2.8)
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whereTµν is theenergy-momentumtensor, with the following components:T 00

energy density,T 0i momentum density,T ij stress tensor.
The Einstein equations which govern General Relativity, express the relation

between the spacetime geometry and the matter content

Gµν = κTµν , (2.9)

where the factorκ = 8π is derived from the Newtonian gravitational limit, calcu-
lated in geometric units.

One can picture the Einstein equations as a set of differential equations that
one must solve for the spacetime metric, once the energy content of the spacetime
is known. Then the resulting deformed geometry will determine the movement of
the energy content. In this view, Eq. (2.9) can be equivalently written as

Rµν = 8π(Tµν − 1

2
Tρ

ρgµν).

Allowing for Eq. (2.3), we can express the relation in terms of the connection
coefficients

∂νΓν
µρ − ∂µΓν

νρ + Γτ
µρΓ

ν
ντ − Γτ

νρΓ
ν
µτ = 8π(Tµν − 1

2
Tρ

ρgµν). (2.10)

The Bianchi identity Eq. (2.5) can also be written as

∇0(G
0µ − 8πT 0µ) + ∇k(G

kµ − 8πT kµ) = 0,

where the four Einstein equations

G0µ = 8πT 0µ,

are first integrals of the system, so they get preserved forever provided that the
other 6 equations hold true everywhere. This means that only 6 of the 10 Einstein
equations are independent, and one can not determine all the metric coefficients.
The 4 missing equations correspond to a choice of the coordinate system and they
are provided by thegauge conditions. This freedom corresponds to the fact that
the equations are invariant under general coordinate transformations, namely their
physical meaning does not change when we adopt different coordinate systems.

The Einstein equations take only an apparently simple form, as they are a sys-
tem of coupled non-linear second order partial differential equations, with thou-
sands of terms when expanded in an arbitrary coordinate system. They describe
the evolution of the spacetime geometry and the matter content. Einstein’s theory
describes the way in which the gravitational field propagates in space. Assuming
that perturbations propagate as a wave, it predicts the existence of gravitational
waves which travel at the speed of light.
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2.1.4 Elements of 3+1 Decomposition

The Einstein equations presented in the previous section make no distinction be-
tween space and time, as they are written in a 4-covariant form. In order to obtain a
more intuitive picture, one can write them as the evolution of the gravitational field
in time, starting from a specific initial data. There are several approaches in this
direction, namely the 3+1 formulations (which include the harmonic systems), the
characteristic and conformal formalisms. I will present in the following the 3+1
approach, which is most commonly used in numerical relativity.

The 3+1 approach consists in foliating the space-time into a one-parameter
family of space-like hypersurfaces. The successive hypersurfaces, on which one
gives the geometry, are most conveniently described by successive values of a time
parametert. This decomposition is convenient for the systems that one wants to
evolve numerically, as the analysis of the dynamics along the evolution can be
done directly on the system variables, which have physical meaning.

We choose coordinates adapted to the 3+1 split, that denote the lower (earlier)
hypersurface of{t = constant} and the upper (later) hypersurface of{t + dt =
constant}. The data set necessary for this construction is:

• the metric of the 3-geometry on the lower hypersurface

hij(t, x, y, z)dx
idxj ,

that measures the distance between two points in that hypersurface;

• the metric on the upper hypersurface

hij(t+ dt, x, y, z)dxidxj ;

• the lapse of proper time between the lower and the upper hypersurfaces mea-
sured by the observers moving along the normal direction to the hypersur-
faces

dτ = α(t, x, y, z)dt;

• a formula that connects an event on the upper hypersurface with its corre-
sponding event on the lower hypersurface

xi
upper = xi

lower − βi(t, x, y, z)dt,

whereα is the lapse function andβi denotes the shift vector.

The lapse and shift account for the gauge conditions. They are not unique and must
be specified in a numerical evolution, asα fixes the foliation of the spacetime, and
βi the way in which spatial coordinate system propagates from one hypersurface
to the next.



2.1 Geometrical Concepts 19

The proper distance betweenxµ = (t, xi) andxµ + dxµ = (t+ dt, xi + dxi)
is given by

ds2 = −(αdt)2 + hij(dx
i + βidt)(dxj + βjdt).

More explicitly, writing the general formula for the 4-metric as

ds2 = gµνdx
µdxν ,

one obtains the following components:

g00 = (βjβ
j − α2), g00 = −1/α2,

g0i = βi, g0j = βj/α2,

gj0 = βj , gi0 = βi/α2,

gij = hij , gji = hji − βiβj/α2,

wheregµνg
ντ = δµ

τ .
One can consider a time-like unit vectornµ normal to the 3-hypersurfaces of

{t = constant} in the 4-geometry. Performing the decomposition with respect to
this vector is convenient, as one can introduce the 3+1 quantities in a way that is
independent of the coordinate system. The vector is normalized asnµnµ = −1.

The hypersurfaces of{t = constant} can be locally described by a one-form

Ωµ = ∇µt,

normalized as

gµνΩµΩν = − 1

α2
.

Then the unit normal to the hypersurface can be written

nµ = αΩµ = α∇µt.

One can consider a future pointing vector fieldξµ that is not tangent to the
spatial hypersurfaces, namely satisfies the condition

ξµ∇µt = 1.

This represents the flow of time through spacetime, as it is the tangent vector to
the time lines (lines of constant spatial coordinates). Decomposing it into parts
normal and tangential to the 3-hypersurfaces, one finds that the lapse function, the
shift vector and the unit normal can be written in terms of the time flow as

α = ξµnµ = −(nµ∇µt)
−1,

βµ = hµνξ
ν ,

nµ = − 1

α
(ξµ − βµ),
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wherehµν is the spatial metric.
The lapse, shift and 3-metric determine the components of the unit normal in

covariantnµ = (α, 0, 0, 0) and contravariant formnµ = (−1/α, βi/α).
A useful relation is writing the acceleration in terms of the lapse function as

aµ = Dµlnα. (2.11)

This equality is proved in the following

aµ = nρ∇ρnµ = αΩρ∇ρ(αΩµ) = αΩρ(∇ρα)Ωµ + α2∇ρt(∇ρ∇µt)

= αΩρ(∇ρα)Ωµ +
1

2
α2∇µ(∇ρt∇ρt) = αΩρ(∇ρα)Ωµ + α−1∇µα

and

Dµ lnα = hρ
µ∇ρ lnα = (δρ

µ + nρnµ)(α−1∇ρα) = α−1∇µα+ αΩρ(∇ρα)Ωµ.

One has now all the ingredients for performing a 3+1 decomposition of various
space-time tensors into ”spatial” and ”temporal” parts. In the following, I will
present a summary of the main geometrical objects and the equations used in the
3+1 numerical evolutions of the Einstein equations.

2.2 The 3+1 Form of the Einstein Equations

2.2.1 Basic Geometrical Objects

We consider a 4-dimensional Lorentzian manifold (M, g) and a time-like unit vec-
tor field nµ (with nµnµ = −1), in respect to which the reduction will be done.
Any vectorS from the tangential space can be decomposed in parts perpendicular
and parallel ton as follows

Sµ = S̃µ − nµS,

where byS̃µ we denote the spatial part of the vector, withS̃µnµ = 0, and by
S = Sµnµ the temporal part. We will refer to the vectors as “spatial” if they are
orthogonal, or “temporal” if they are parallel in respect ton.

The decomposition of the 4-metric gives rise to a spatial metrichµν ,

gµν = hµν − nµnν ,

where the ”−” sign follows from the signature(−,+,+,+) on the spacetime. For
simplicity reasons, we will restrict the following calculations to normal coordi-
nates (g0i = 0) and considern to be hypersurface orthogonal.

The spatial part of the tensors can be obtained by applying the space projector

hµ
νhν

ρ = hµ
ρ,

hµ
ρ = δµ

ρ + nµnρ,
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to every free tensor index. By construction we havenµhµ
ν = 0.

The decomposition of the derivative of the unit normal described by

∇νnρ = D̃νnρ − nνDnρ,

defines two derivative operators, that were denoted asD̃µ = hµ
ν∇ν andD =

nν∇ν . One can write the natural derivative operator for spatial tensors as

hν
αh

ρ
δD̃µhνρ = Dµhαδ = hν

αh
ρ
δh

τ
µ∇τ (gνρ + nνnρ) =

= hν
αh

ρ
δh

τ
µ(nν∇τnρ + nρ∇τnν) =

= hν
αh

ρ
δ(nνKµρ + nρKµν) = 0,

whereDµ is compatible with the spatial metric, so it is the unique derivative oper-
ator associated withhµν .

The hypersurface orthogonal part defines the 4-acceleration

aρ = Dnρ,

while the hypersurface tangential part defines the extrinsic curvature of the 3-
geometry

Kνρ = D̃νnρ, (2.12)

which accounts for the change of the normal vector~n, when it is parallel trans-
ported from one point of the hypersurface to the other. The concept of extrinsic
curvature exists in the context of a 3-geometry embedded as a well-defined slice
in a well-defined spacetime and measures the curvature of the slice relative to the
enveloping 4-geometry.

The extrinsic curvature, also called the second fundamental form, is a symmet-
ric tensor. This can be proved starting from Frobenius’s theorem which states that
the necessary and sufficient condition fornµ to be hypersurface orthogonal is

n[µ∇νnρ] = 0,

that projected withhµαhνδ leads to

hµαhνδnρ∇µnν − hµαhνδnρ∇νnµ = 0,

hνδKα
ν − hµαKδ

µ = 0,

Kαδ = Kδα.

2.2.2 Evolution Equations

Considering the definition of the extrinsic curvature Eq. (2.12), the spatial compo-
nents of the identity

L~ngµν = ∇µnν + ∇νnµ,
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allow us to write the second fundamental form as the Lie derivative of the metric
in the direction of the unit normal

Kij =
1

2
L~nhij .

ThenKij can be interpreted as the variation of the induced metrichij in the space-
time manifold. This provides an evolution equation for the spatial metric

∂thij = −2αKij . (2.13)

An evolution equation for the extrinsic curvature can be obtained from the
following projections of the Riemann tensor

hδ
µnνhγ

ρRµνρ
τnτ = nνhδ

µhγ
ρ[(∇µ∇ν −∇ν∇µ)nρ],

where the first term in the right side of the equality is computed as

nνhδ
µhγ

ρ[∇µ∇νnρ] =

= hδ
µhγ

λ∇µ[hλ
ρnν∇νnρ] − hδ

µhγ
λ[∇νnρ][∇µ(nνhλ

ρ)] =

= hδ
µhγ

λ∇µaλ − hδ
µhγ

λ[∇νnρ][hλ
ρ∇µn

ν − nν∇µ(nλn
ρ)] =

= Dδaγ −Kδ
αKαγ ,

and the second term leads to

nνhδ
µhγ

ρ[∇ν∇µnρ] =

= nνhδ
χhγ

λ∇ν [hχ
µhλ

ρ∇µnρ] − nνhδ
χhγ

λ[∇µnρ][∇ν(hχ
µhλ

ρ)] =

= nνhδ
χhγ

λ∇νKχλ − nνhδ
χhγ

λ[∇µnρ][hχ
µ∇ν(nλn

ρ) + hλ
ρ∇ν(nχn

µ)] =

= nνhδ
χhγ

λ∇νKχλ + aγaδ.

From the above relations symmetrized, one obtains

hδ
χhγ

λnν∇νKχλ +Dδaγ +Kδ
αKαγ = hδ

µnνhγ
ρRµνρ

τnτ .

Using the Eq. (2.11) in order to replace the acceleration, one finds

∂tKδγ = −DδDγα+ α(−KρδKγ
ρ + hδ

µnνhγ
ρRµνρ

τnτ ). (2.14)

2.2.3 Constraint Equations

The intrinsic curvature of the hypersurfaces, given by the spatial Riemann tensor
Rµνρ

τ , describes the internal geometry and depends on the 3-metric. Consider-
ing the 4-dimensional Riemann curvature tensor defined through its action on an
arbitrary spatial vectorSµ

(∇µ∇ν −∇ν∇µ)Sρ = Rµνρ
τSτ ,
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the intrinsic curvature of the three-dimensional hypersurfaces can be defined as

(DµDν −DνDµ)Sρ = Rµνρ
τSτ .

One can calculate the following projection of the 4-Riemann

hα
µhξ

νhγ
ρRµνρ

τSτ = hα
µhξ

νhγ
ρ(∇µ∇ν −∇ν∇µ)Sρ,

where the first term in the right side of the equality can be written as

hα
µhξ

νhγ
ρ∇µ∇νSρ =

= hα
µhξ

δhγ
λ∇µ(hδ

νhλ
ρ∇νSρ) − hα

µhξ
δhγ

λ(∇νSρ)[∇µ(hδ
νhλ

ρ)] =

= DαDξSγ − hα
µhξ

δhγ
λ(∇νSρ)[hλ

ρ∇µ(nδn
ν) + hδ

ν∇µ(nλn
ρ)] =

= DαDξSγ −Kαξhγ
ρDSρ +KαγKξ

ρSρ,

and a similar calculation for the second term leads to

hα
µhξ

νhγ
ρ∇ν∇µSρ =

= hξ
νhα

δhγ
λ∇ν(hδ

µhλ
ρ∇µSρ) − hξ

νhα
δhγ

λ(∇µSρ)[∇ν(hδ
µhλ

ρ)] =

= DξDαSγ − hξ
νhα

δhγ
λ(∇µSρ)[hλ

ρ∇ν(nδn
µ) + hδ

µ∇ν(nλn
ρ)] =

= DξDαSγ −Kξαhγ
ρDSρ +KξγKα

ρSρ.

So one obtains a first projection of the Riemann tensor

hα
µhξ

νhγ
ρhδ

τRµνρτ = Rαξγδ +KαγKξδ −KξγKαδ. (2.15)

The evolution equation of the extrinsic curvature Eq. (2.14), can be rewritten
using the equation above as

∂tKij = −DiDjα+ α(Rij +KKij − 2KipKj
p). (2.16)

One can consider as a second projection, the equation

hα
µhδ

νhγ
ρRµνρ

τnτ = hα
µhδ

νhγ
ρ(∇µ∇ν −∇ν∇µ)nρ,

where the first term can written as

hα
µhδ

νhγ
ρ∇µ∇νnρ =

= hα
µhδ

ξhγ
ρ∇µ(hξ

ν∇νnρ) − hα
µhδ

ξhγ
ρ(∇νnρ)(∇µhξ

ν) =

= DαKδγ − hα
µhδ

ξhγ
ρ(∇νnρ)[∇µ(nξn

ν)] =

= DαKδγ −Kαδaγ ,
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and a similar calculation for the second term leads to

hα
µhδ

νhγ
ρ∇ν∇µnρ =

= hα
ξhδ

νhγ
ρ∇ν(hξ

µ∇µnρ) − hα
ξhδ

νhγ
ρ(∇µnρ)(∇νhξ

µ) =

= DδKαγ − hα
ξhδ

νhγ
ρ(∇µnρ)[∇ν(nξn

µ)] =

= DδKαγ −Kδαaγ .

A second projection for the Riemann tensor is

hα
µhδ

νhγ
ρRµνρ

τnτ = DαKδγ −DδKαγ . (2.17)

The Eqs. (2.15) and (2.17) are known as the Gauss-Codazzi equations. We will
use them in the following, in order to compute the constraints.

Starting from the Einstein vacuum field equations Eq. (2.9), one can derive the
Hamiltonian constraint as

Gµρn
µnρ = 8πTµρn

µnρ,

nµnρ(Rµρ −
1

2
gµρR) = 8πτ,

Rµρ(n
µnρ + hµρ) = 16πτ,

Rµνρτ (hντ − nνnτ )(nµnρ + hµρ) = 16πτ,

hµρhντRµνρτ = 16πτ.

Calculating double trace of the Gauss equation Eq. (2.15), we obtain

R +K2 −Kα
ξK

ξ
α = 16πτ. (2.18)

The Momentum constraint can be derived from Eq. (2.9) as

hδ
µGµρn

ρ = hδ
µTµρn

ρ,

hδ
µnρ(Rµρ −

1

2
gµρR) = 8πSδ,

hδ
µnρRµρ = 8πSδ,

hδ
µhντnρRνµτρ = 8πSδ.

Calculating the trace of the Codazzi equation Eq. (2.17), we obtain

DαKδα −DδK = 8πSδ. (2.19)

The decomposition of the matter terms as a result of splitting the stress energy
tensorTµν into longitudinal and transversal parts, led to the following projections:
the energy density,

τ = Tµνn
µnν, (2.20)
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the momentum density
Sρ = T µ

νnµh
ν
ρ, (2.21)

and the stress energy tensor,

Sντ = Tµνh
µ

ρh
ν
τ . (2.22)

The Hamiltonian and Momentum constraints, Eqs. (2.18) and (2.19) with the
matter terms included

R +K2 −Kp
qK

q
p − 16πτ = 0, (2.23)

Dp(Ki
p − δi

pK) − 8πSi = 0, (2.24)

are constraint equations which must be satisfied by the fundamental variables
hij ,Kij at all times (on all the slices) [35].

In numerical evolutions, one typically uses only the evolution equations (free
evolutionapproach), and the constraints are monitored to assess the accuracy of
the numerical solution. The constraints however, play a very important role in the
construction of the initial data, as one can not freely specify all the components
of the spatial metric and extrinsic curvature as initial conditions. The data must
satisfy the constraints, initially and at later times, otherwise one is not solving
the Einstein equations. The constraints are also important in the construction of
well-posed systems of evolution equations, as described in Section 2.3.

2.2.4 Gauge Degrees of Freedom

The Einstein theory leaves four degrees of freedom undetermined, corresponding
to the choice of the coordinate system. In order to obtain a full evolution system,
one needs to complete it with equations for the lapse functionα and the shift vec-
tor βi. Ideally one should choose gauge conditions which simplify the evolution
equations, or make the solution better behaved. There is no clear prescription for
the appropriate gauge in general situations, so the choice of gauge will depend on
the physical problem under study.

As the Chapters 8,9 are dedicated to various gauge choices and related prob-
lems, I will mention here briefly the most common prescriptions.

The most simple gauge choice is known asgeodesicor Gauss coordinates,
which translate intoα = 1, βi = 0. It consists in choosing the time coordinate to
coincide with the proper time of the Eulerian observers, who will have zero accel-
eration according to Eq. (2.11) and will follow timelike geodesics. This foliation
proves to be unpractical in numerical simulations, as in a non-uniform gravitational
field such observers will end up colliding, which amounts to the coordinate system
becoming singular (one point has more than one set of coordinates associated to
it).
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The second natural choice would be to choose a slicing such that the volume
elements associated with the Eulerian observers remain constant,

∂t

√
h = 0,

which according to Eq. (2.13) can be equivalently written as

K = ∂tK = 0.

Then the lapse must satisfy an elliptic equation of the type

DpD
pα = α[KpqK

pq + 4π(ρ+ trS)],

called maximal slicing. This gauge has two important advantages: singularity
avoidance, as it does not allow the spatial hypersurfaces to come arbitrarily close
to the singularity, and the fact that Eulerian observers will not focus. The big
disadvantage of this slicing is that one has to solve an elliptic equation in 3D,
which is a very slow computational process. The best option for the moment seem
to be the hyperbolic slicing conditions.

Historically, the first prescriptions used were the harmonic coordinates

�xτ = gµν∇µ∇νx
τ = 0,

which allow the Einstein equations to be written as wave equations for the metric
components. This idea stands at the foundation of harmonic formulations of the
field equations. Translated in adapted coordinates, the condition reads

Γτ = gµνΓτ
µν = 0. (2.25)

In 3+1 language, theτ = 0 component leads to aharmonic slicing

(∂t − Lβ)α = −α2K, (2.26)

while theτ = i component provides a prescription for theharmonic shift

(∂t − Lβ)βi = −α2(hip∂p lnα+ hpqΓi
pq). (2.27)

TheBona-Massofamily of slicing conditions can be viewed as a generalization
of the harmonic slicing, for which the lapse has to satisfy

(∂t − Lβ)α = −α2f(α)K, (2.28)

with f(α) positive. The casef = 1 corresponds to the harmonic slicing, and
f = 2/α is called ’1+log’ slicing. This foliation is the most common choice in
current numerical relativity simulations, as it ensures singularity avoidance and it
has been found to be very robust in black hole simulations.
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The most simple choice for the shift vector are thenormal coordinates, namely

βi = 0. (2.29)

Even though taking the shift equal to zero works well in many cases, there are
prescriptions for how to choose a more convenient shift vector in specific situa-
tions. For example, evolving black hole spacetimes with vanishing shift causes
the black hole horizon to grow rapidly in coordinate space, such that soon all the
computational domain will be inside the black hole. For long term evolutions, it
is convenient to have an outward pointing shift vector, that will prevent the time
lines from falling into the black hole. Also for systems with angular momentum
(rotating neutron stars or black holes), the dragging of inertial frames can be severe
and one needs a shift in order to avoid large shears in the spatial metric.

One of the first proposals, by Smar and York, has been theminimal strainshift
condition. This gauge minimizes a global measure of the change in the volume
elements associated with the time lines. An even better option seemed to be using
the shift in order to minimize only the changes in the shape of the volume elements,
independently of their size, which led to theminimal distortionshift condition.
However, as these conditions lead to three coupled elliptic equations, they have
not been extensively used in numerical simulations.

The minimal distortion equation can also be written as

∂j(∂th̃
ij) = 0,

whereh̃ij is the conformal metric. Then the condition is equivalent to

∂tΓ̃
i = 0,

whereΓ̃i = −∂jh̃
ij are the conformal connection functions. This choice is called

Gamma freezing, as it freezes three of the independent degrees of freedom. The
above condition is not 3-covariant, as starting from the same geometry but with
different spatial coordinates (for example spherical coordinates), one will get a
different evolution of the shift vector.

In practice, one prefers to evolve hyperbolic equations. TheGamma driveris
a hyperbolic version of the Gamma freezing shift [36,37],

∂2
0β

i = F∂0Γ̃
i, (2.30)

where∂0 = (∂t − Lβ). It is used in combination with a damping term−η∂0β
i in

order to avoid strong oscillations in the shift. This gauge choice, withF = 3
4 , has

been found extremely robust and well-behaved in binary black hole simulations
with puncture initial data performed with the BSSN formulation of the Einstein
equations, as it controls both the slice stretching and the shear due to the rotation
of the hole [11,38].
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2.3 Well-Posed Evolution Problems

2.3.1 Well-Posed Systems

Einstein’s equationsGµν = 8πTµν contain second derivatives of the metric and are
classified in the category of quasilinear hyperbolic partial differential equations.
They can be written in the form

AAAµν∂µ∂νwww = SSS(www, ∂www).

A reduction to a hyperbolic system of first order differential equations can be ob-
tained by extending the set of evolution variables, such that it includes first deriva-
tivesuuu = {www, ∂νwww}. Then the system takes the form

Â̂ÂAµ∂µuuu = Ŝ̂ŜS(uuu),

whereÂ̂ÂAµ = Â̂ÂAµ(www) andŜ̂ŜS does not depend on derivatives ofuuu.
In Numerical Relativity one formulates the evolution of a physical system

∂tuuu = AAAi∂iuuu+SSS(uuu),

as an initial value problem (IVP), also called Cauchy problem. This means that
given proper initial and boundary conditionsuuu(t = 0, x), the equations must pre-
dict the future evolution of the systemuuu(t, x).

As presented in the previous subsections, one writes the Einstein equations as
a Cauchy problem by splitting the roles of space and time. This leads to a non-
unique system of evolution equations, as one can arbitrarily add them multiples
of the constraints. It changes the nature of the free evolution problem, but the
physical solutions (the ones satisfying the constraints) remain the same.

In the physical theory of relativity, changing the initial conditions should only
change the outcome by an amount that can be controlled by making the change in
the initial conditions smaller. This crucial property, which ensures that the formu-
lation is well behaved in numerical simulations, depends on thewell-posednessof
its system of partial differential equations.

The definition of well-posedness for a system requires that a solution exists,
is unique and it depends continuously on the initial data. If the ratio between a
chosen discrete norm at timet and its initial value

‖uuu(t, x)‖
‖uuu(0, x)‖ ≤ Keαt

is bounded by some constantsα andK, which are independent of the initial data,
then the system is well-posed in respect to that norm [39]. For first order hyper-
bolic systems theL2-norm is usually used [40].
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2.3.2 Strongly Hyperbolic Systems

An important property of the hyperbolic systems of evolution equations used in
Numerical Relativity, is the fact that they have a finite past domain of dependence
(finite propagation speed of the signals) in agreement with the causality principle.

A hyperbolic system can be shown to be well-posed under very general con-
ditions. Is has been proven that a system with source termsSSS(uuu) linear in the
variablesuuu is well-posed, if the system without the sources is well-posed [39]. In
the case of the Einstein equations, the sources contain terms which are quadratic
in the variables, so the hyperbolicity of the principal part is a necessary, but not
sufficient condition for well-posedness.

Applying a reduction to first order, the field evolution equations can be brought
in the form

∂tuuu+AAAi∂iuuu+SSS(uuu) = 0.

The system is said to bestrongly hyperbolicif the matrixMMM = AAAini is diago-
nalizable, namely it has a complete set of linearly independent eigenvectors, and
real eigenvalues for each directionni. For this class of systems, one can construct
energy estimates that bound the solution at later times, such that the growth of the
errors can not be more than linear.

If all the eigenvalues are real but the matrix does not have a complete set of
eigenvectors, the system is calledweakly hyperbolic. These systems allow expo-
nentially growing modes and are not well suited for numerical simulations.

Analyzing the matrixMMM , one can find a positive HermitianHHH(n) such that

HHH(n)MMM −MMMHHH(n) = 0,

for k−1III ≤ HHH(n) ≤ kIII (k constant),(∀)ni with |ni| = 1. HHH(n) is called sym-
metrizer. If the operatorHHH does not depend on the directionni, then the system
is calledsymmetric hyperbolic. The condition reduces then toMMM being symmetric
for any direction, soAAAi is symmetric with respect toHHH. Energy estimates can be
used to prove well-posedness of the initial boundary value problem (IBVP) for this
type of systems.

First order systems of equations can be conveniently written in a Flux Conser-
vative form. This means that theprincipal part, the terms containing the highest
order derivatives, can be arranged as

∂tuuu+ ∂iFFF
i = ...,

where the flux termsFFF i = AAAiuuu depend only on the fields and the source terms on
the right-hand-side do not contain derivatives. The systems in this form are also
calledbalance laws, as the change of the fields in a volume element can be viewed
as a balance between the fluxes entering or leaving through the element boundary
and the sources.
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The Einstein equations, written as a system of balance laws, can be viewed
like a standard system in Fluid Dynamics, with the principal part terms describ-
ing transport and the remaining ones acting as sources. The field equations can
be physically interpreted as follows: the stress-energy tensor describes sources of
non-gravitational nature and the quadratic metric terms describe the action of the
gravitational field itself, acting as its own source. One of the main advantages of
using a first order flux conservative formulation of the field equations is the fact
that one can apply the numerical algorithms developed in the field of Computa-
tional Fluid Dynamics.

2.3.3 Boundary Conditions

The problem of choosing proper boundary conditions extends beyond Numerical
Relativity. At an analytical level, the IBVP is not well understood for General
Relativity. Given Cauchy data on a spacelike hypersurface, and boundary data on
a timelike hypersurface, the problem is to determine the solution in the appropriate
domain of dependence.

In Numerical Relativity, due to limited computational power, artificial time-
like boundaries are used for restricting the calculations to finite grids. The proce-
dure can be described as cutting the piece of space-time that one wants to study
and evolve it as a separate system, complemented by initial and boundary condi-
tions in order for a solution to exist and be unique [40]. A strongly hyperbolic
evolution system is a necessary and sufficient condition for the Cauchy problem
to be well-posed, while a symmetric hyperbolic system allows one to formulate a
well-posed IBVP.

In the 3+1 formalism, the well-posed Cauchy problem for the system of evo-
lution equations can become ill-posed if the boundary conditions (IBVP) are not
properly chosen [3, 41]. The boundary is not intrinsically imposed by the nature
of the geometry, but it is ’put in by hand’. The main conditions that the bound-
aries have to satisfy, are that the full IBVP remains well-posed, the boundaries
are consistent with the constraints and with the physical information flux (e.g. no
incoming radiation).

The current development of mesh refinement techniques allows setting the
boundaries sufficiently far away, so they remain for a while disconnected from
the inner dynamical region. This approach however, is computationally expensive.
A similar effect can be obtained by choosing coordinates which transform a finite
grid distance into an arbitrarily large spatial distance (fish-eyetechnique) [42,43].
As long as one is not using elliptic equations, for example elliptic gauge conditions
or constrained evolution, the boundary effects can not propagate at infinite speed
and affect all the computational domain. So one can ignore the dissipative (or
other type of unphysical) effects that the boundary might produce. In general, this
is not a safe procedure, as the waves traveling outwards become less resolved in
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the computational grid, so they can get backscattered and canproduce instabilities
and unphysical solutions.

Some of the most common types of boundary conditions are radiative, maxi-
mally dissipative and constraint preserving. Theradiative boundaries, commonly
used for the BSSN variables, are based on the assumptions that the spacetime is
asymptotically flat, the source of gravitational field is localized in a small region,
such that there is a spherical front of gravitational waves at the boundary, and the
shift is small, such that its effect on the characteristic speed can be ignored [36].

Maximally dissipativeboundary conditions require the characteristic decom-
position of the system, as they are applied on the incoming and outgoing modes
(eigenvectors) [44]. This method has been extended to the nonlinear IBVP with
boundaries containing characteristics, such as occurs in symmetric hyperbolic for-
mulations of General Relativity [45, 46]. Friedrich and Nagy applied the max-
imally dissipative boundaries in order to develop the first proof of a well-posed
IBVP for Einstein’s equations [47]. Their formulation of the field equations is
quite different from the ADM based systems implemented in the current codes,
and it is not apparent how to extend this work to other formalisms. The general
principles can be carried over, provided that formulation is written in a symmetric
hyperbolic form. Recently it has been applied to the IBVP of a harmonic formula-
tion in order to show that it is well-posed [48].

Constraint preservingboundaries seem to be the most accurate choice. They
impose conditions on the eigenfields and the subsidiary system. There are very
few codes which have these boundaries implemented [49,50] and variants are still
under development.
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Chapter 3

Einstein Evolution Systems

This chapter concerns formulations of the Einstein equations based on the 3+1 de-
composition. These formulations take advantage of the fact that the constraints are
first integrals of the system and allow for afree evolutionapproach. This means
that if one enforces the constraints on the initial data and initial boundary data,
then the constraints are guaranteed to be preserved during the evolution (at a con-
tinuum level). In numerical simulations however, as they are not enforced by the
evolution algorithm, the constraints are not preserved due to discretization errors
and limited resolution. This ’unconstrained’ evolution introduces a discrimination
in the formalism, that breaks the general covariance of the Einstein equations.

In the 3+1 formulations, the field equations of General Relativity are written
as a Cauchy problem (Section 2.2). The form of the 3+1 evolution equations, as
presented in the previous chapter, is not unique. One can add them constraints in
order to obtain various forms of the evolution system. The resulting formulations
have the same physical solutions, but they can have different mathematical proper-
ties. This freedom of modifying the 3+1 evolution equations led to a large number
of alternative systems. The only ones suited, from the numerical behavior point,
are the well-posed strongly hyperbolic or symmetric hyperbolic formulations, as
they ensure numerical stability (Section 2.3).

In the following, we will present three systems based on the metric (Z3, Z4
and BSSN) and one on the tetrad formalism (Friedrich-Nagy). This brief overview
offers a comparison of the systems at an analytical level, which is necessary in
order to understand the different behavior of the systems when subjected even to
simple numerical tests, like the standard Numerical Relativity testbeds presented
in Chapter 4.

35



36 Einstein Evolution Systems

3.1 The 3+1 Metric based Systems

The ADM based systems use the 3+1 decomposition and consider the metric and
extrinsic curvature as basic evolution variables. They derive from the standard
ADM (Arnowitt, Deser, Misner) [51] equations rewritten by York.

The ADM system contains evolution equations for the basic dynamical fields:
the spatial metrichij Eq. (2.13) and the extrinsic curvatureKij Eq. (2.16),

(∂t − Lβ)hij = −2αKij ,

(∂t − Lβ)Kij = −∇i∇jα+ α[Rij −K2
ij +KKij +

+8π(−Sij +
hij

2
(trS − τ))],

plus the momentum and energy constraints Eqs. (2.24) and (2.23),

∇p(Ki
p − δi

pK) − 8πSi = 0,

R +K2 − tr(K2) − 16πτ = 0.

An important concept used by York when rewriting the ADM system, is the well-
posedness of the evolution system of the constraints, which guarantees that if the
constraints are satisfied initially, they will remain satisfied during the evolution.
Despite this feature, the resulting main evolution system of Einstein equations
written in ADM form is weakly hyperbolic (even though all the eigenvalues are
real, there is not a complete set of eigenvectors), so it can not be used to construct
robust numerical evolutions.

3.1.1 The Z Systems

3.1.1.a The Z4 system

The Z systems, developed by Bona et al. [52], use the full Einstein equations,
by inclosing the constraints into the dynamical system in a covariant way. The
constraints become evolution equations for some extra variables.

The Z4 system is based on an extension of the solution space of the original
Einstein field equations by introducing an extra vectorZµ,

Rµν + ∇µZν + ∇νZµ = 8π(Tµν − 1

2
Tgµν), (3.1)

so the new set of basic fields is(gµν , Zµ). The solutions of the original Einstein
equations can be recovered whenZµ is a Killing vector. In the generic case, the
Killing equation has only the trivial solution

Zµ = 0. (3.2)
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TheZ variables can be interpreted as a measure of the constraint violation in nu-
merical simulations.

The divergence of Eq. (3.1), the conservation laws of the Einstein tensor Eq.
(2.7) and stress energy tensor Eq. (2.8), lead to an equation for theZµ vector

�Zµ +RµνZ
µ = 0. (3.3)

This relation represents the subsidiary system, namely the evolution system of the
constraints. In order to preserve it during the evolution, one needs to impose at
the initial slice both the vanishing ofZµ and its first time derivative. This implies
that the set of initial data for the true Einstein equations must satisfy the energy
and momentum constraints, and additionally a zero initial value for the four-vector
Zµ.

The full system can be obtained from Eq. (3.1), written in 3+1 form:

(∂t − Lβ)Kij = −∇i∇jα+ α[Rij + ∇iZj + ∇jZi − 2K2
ij +

+(K − 2θ)Kij + 8π(−Sij +
hij

2
(trS − τ))], (3.4)

(∂t − Lβ)θ =
α

2
[R + 2∇kZ

k + (K − 2θ)K − tr(K2) −

−2Zk∇kα

α
− 16πτ ], (3.5)

(∂t − Lβ)Zi = α[∇j(Ki
j − δi

jK) + ∂iθ − 2Ki
jZj − θ

∇iα

α
−

−8πSi], (3.6)

whereθ is the projection ofZµ along the unit normal (defined in Section 2.1.4),

θ = nµZ
µ = αZ0.

The Z4 system consists of 10 evolution equations (3.4) - (3.6), the only constraints
being Eq. (3.2), so the whole set of field equations is used during evolution.

The standard 3+1 decomposition leads to a system of mixed order, as it con-
tains both first and second order space derivatives. We perform a reduction to first
order in space, by defining the derivative of the lapse, shift and metric as indepen-
dent evolution variables,

Ai =
1

α
∂iα, (3.7)

Bi
j = ∂iβ

j , (3.8)

Dijk =
1

2
∂ihjk. (3.9)
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The resulting first order in space system will describe the same physical dynamics
as the second order one.

The system is completed by suitable evolution equations for the lapse and shift.
At this point we prefer to keep the gauge choice open and define the evolution of
the metric components in a general way,

∂tα = −α2Q, (3.10)

∂tβ
i = −αQi, (3.11)

∂thij = −2αQij , (3.12)

whereQ andQi can be a combination of other dynamical fields, or evolution
variables themselves, and

Qij = Kij −
1

2α
(Bij +Bji) −

1

α
βpDpij ,

is just a shorthand for the right hand side of Eq. (2.13).

3.1.1.b The Z3 system

The Z3 system can be obtained from the Z4 by a mechanism calledsymmetry
breaking. One considers the following recombination

K̃ij → Kij +
n

2
θhij,

which leads to a similar system, but expressed in a different basis of dynamical
fields. Then enforcing the algebraic constraintθ = 0 and suppressingθ as a dy-
namical quantity, one obtains a one-parameter family of non-equivalent extended
systems, that will contain only the three componentsZi of the 4-vectorZµ as sup-
plementary quantities.

The Z3 family of systems can be written as:

(∂t − Lβ)hij = −2αKij ,

(∂t − Lβ)Kij = −∇i∇jα+ α[Rij + ∇iZj + ∇jZi − 2K2
ij +KKij +

+8π(−Sij +
hij

2
(trS − τ))] − n

4
αhij [R + 2∇kZ

k +

+K2 − tr(K2) − 2Zk∇kα

α
− 16πτ ],

(∂t − Lβ)Zi = α[∇j(Ki
j − δi

jK) − 2Ki
jZj − 8πSi].

The symmetry of the Z4 system is broken in this transition, as the equivalent
of the energy constraintθ, is no longer part of the evolution system. Different
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values of then parameter will lead to different systems from the family of the Z3
evolution systems [53].

In order to complete the system, one has to specify gauge conditions. We
keep the gauge choice open for now, as it is not the main focus of this chapter,
mentioning that the Eqs. (3.10) - (3.12) can be used in combination with any of
the Z systems.

3.1.1.c Ordering Constraints

In order to bring the Z systems into a fully first order form, we introduced as
additional evolution variables the spatial derivatives of the lapse, shift and metric,
Eqs. (3.7) - (3.9). We provide evolution equations, by applying a time derivative
to their definitions and then commuting the space and time derivatives,

∂tAi + ∂p[δi
pαQ] = 0, (3.13)

∂tBi
j + ∂p[δi

pαQj ] = 0, (3.14)

∂tDkij + ∂p[δk
pαQij ] = 0. (3.15)

The original definitions become now a set of first order constraints,

Ai = Ai − ∂i lnα = 0, (3.16)

Bi
j = Bi

j − ∂iβ
j = 0, (3.17)

Dijk = Dijk − 1

2
∂ihjk = 0. (3.18)

The ordering of the second derivatives introduces an additional set of constraints,

Cij = ∂iAj − ∂jAi = ∂iAj − ∂jAi = 0, (3.19)

Cij
k = ∂iBj

k − ∂jBi
k = ∂iBj

k − ∂jBi
k = 0, (3.20)

Cijkl = ∂iDjkl − ∂jDikl = ∂iDjkl − ∂jDikl = 0. (3.21)

One can notice that in the Eqs. (3.13) - (3.15), the transversal components
of the first order derivative variables have zero characteristic speeds, namely their
characteristic lines will be the time lines. This can lead to a degeneracy problem in
black hole evolutions, as the system becomes weakly hyperbolic. The characteris-
tic cone of the second order system is the light cone, with (−βn ±α) characteristic
speed, and the time lines can cross the light cone. In order to avoid this, one can
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use the ordering constraints Eq. (3.20) and rewrite the equations as

∂tAi + ∂p[−βpAi + δi
p(αQ+ βqAq)] =

= Bi
pAp − trBAi, (3.22)

∂tBi
j + ∂p[−βpBi

j + δi
p(αQj + βqBq

j)] =

= Bi
pBp

j − trBBi
j, (3.23)

∂tDkij + ∂p[−βpDkij + δk
p(αQij + βqDqij)] =

= Bk
pDpij − trBDkij. (3.24)

The characteristic lines of the transversal derivative components are now the
normal lines, with (−βn) characteristic speed, so the characteristic crossing is
avoided. This ordering adjustment, currently used also by first order harmonic
formulations, turned out to be very important in long term simulations with dy-
namical shift (Chapter 9).

3.1.1.d Damping terms

The use of constraint-violation damping terms is another important ingredient for
long term black hole simulations. In hyperbolic formulations, the error associated
with constraint violation grows at a bounded rate. However, this can still be very
fast in numerical simulations and these growing modes can produce instabilities.
Recent studies [1] show that by adding suitable lower-order terms to the Z4 formu-
lation, all constraint violation modes except for constant modes, can be damped.
The same prescription can be applied to the harmonic formulations of the Einstein
equations, as their constraint evolution system is similar.

The energy and momentum constraint violations can be damped using terms
described in [1]. For the first order constraints, we can introduce in Eqs. (3.22) -
(3.24) damping terms of the type

−ηAAi evolution of A, (3.25)

−ηBBi
j evolution of B, (3.26)

−ηDDkij evolution of D. (3.27)

Theη damping parameter can be chosen in the range0 < η << 1
∆t in order to

ensure numerical stability, as larger values would lead to a stiff system.
The use of this type of damping terms is justified by an analysis of the sub-

sidiary system. Considering the time derivative of Eq. (3.16), taking into account
the definition Eq. (3.22) and the constraints Eqs. (3.17), (3.19), we obtain the
propagation of the first order constraint ofAi,

∂tAk − βp(∂pAk − ∂kAp) = Bk
pAp − Bp

pAk.
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The normal and transverse components of the system above, in respect to any
spatial directionn can be written as

∂tAn + β⊥(∂nA⊥) = 0,

∂tA⊥ − βn(∂nA⊥) = 0.

The eigenvalues are(0,−βn), which means that the system is weakly hyperbolic
for any space direction orthogonal to the shift vector. This should not affect the
stability of the system, but it may lead to linearly growing first order constraint
violations which affect the accuracy of long term simulations.

These considerations justify the use of the damping terms (3.25) - (3.27),
which will have an exponential damping effect in the subsidiary system.

3.1.1.e Ordering ambiguities

The shift ordering constraint Eq. (3.20) can be used for adjusting the first-order
evolution equation of theZi vector,

(∂t − Lβ)Zi = α[∇j(Ki
j − δi

jK) + ∂iθ − 2Ki
jZj − θ

∇iα

α
− 8πSi] −

−µ(∂pBi
p − ∂iBp

p).

The ordering constraints Eq. (3.21) appear in the two forms of the three-
dimensional Ricci tensor, namely the standard Ricci decomposition,

Rij = ∂pΓ
p
ij − ∂iΓ

p
pj + Γp

pqΓ
q
ij − Γq

piΓ
p
qj,

and the DeDonder decomposition,

Rij = −∂pD
p
ij + ∂(iΓj)p

p − 2Dp
pqDqij + 4Dpq

iDpqj − ΓipqΓj
pq − ΓpijΓ

pq
q.

Any combination of the two definitions can be used in the principal part of the
evolution equation for the extrinsic curvature Eq. (2.16). We introduce an ordering
parameterξ, whereξ = 1 corresponds to the Ricci decomposition andξ = −1 to
the DeDonder one.

The values ofξ andµ are free for the Z4 system, as they do not affect the prin-
cipal part of the system, or the form of the subsidiary system. There are though
some special choices, likeξ = 0 which ensures that the first order version of the
system contains only symmetric combinations of second derivatives of the space
metric. It is also worth mentioning that the choiceµ = 1/2, ξ = −1 allows an
equivalence between the first order version of the generalized harmonic formula-
tion and the Z4 system [1].

The numerical simulations presented in this thesis, were performed using the
valuesξ = −1 andµ = 1 for the Z4 system, even though we tested also other
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combinations that lead to long-term stability. The choice ofthe µ parameter is
fixed in the case of the Z3 system, asµ = 1 is the only value which ensures strong
hyperbolicity.

3.1.2 The BSSN System

The BSSN (Baumgarte, Shapiro, Shibata, Nakamura) system [7,8] is currently one
of the most popular formulations of the Einstein equations, used in numerical sim-
ulations both with and without matter. Also called the ’conformalΓ formulation’,
the BSSN is based on the ADM equations in 3+1 form. The particularities of this
system are the fact that it introduces a new evolved field (the contracted Christof-
fel symbolsΓi), a conformal decomposition and adds constraints to the evolution
equations.

The BSSN considers a conformal rescaling of the metric

h̃ij = ψ−4hij ,

whereψ is the conformal factor, chosen is such a way that the conformal metric
has unit determinantdeth = 1. Then the evolution equation for the determinant of
the metric leads to an evolution equation for the conformal factor, taken that the
relationψ4 = h1/3 remains satisfied during the evolution.

One evolves in practice the logarithm of the conformal factor

φ = lnψ = lnh/12.

Then the conformal metric can be written as

h̃ij = e−4φhij ,

and the evolution equation for the natural logarithm of the conformal factor takes
the form

∂tφ = −1

6
(α K − ∂pβ

p) + βp∂pφ.

The extrinsic curvature is split into trace and trace-free parts

Aij = Kij −
1

3
hijK,

and one applies a conformal rescaling to the traceless part

Ãij = e−4φAij.

Due to numerical stability reasons, the constrainttrÃ = 0 is directly imposed
during the evolution.
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The Christoffel symbols of the conformal metric

Γ̃i = h̃pqΓ̃i
pq = −∂ph̃

ip, (3.28)

are introduced as auxiliary variables. Their evolution can be derived from the
definition above and the evolution equation for the metric as

(∂t − Lβ)Γ̃i = h̃pq∂p∂qβ
i +

1

3
h̃ip∂p∂qβ

q − 2(α∂pÃ
ip + Ãip∂pα). (3.29)

However, this form is known to lead to unstable evolutions. One fixes the problem
by using the momentum constraint

∂pÃ
ip = −Γ̃i

pqÃ
pq − 6Ãip∂pφ+

2

3
h̃ip∂pK + 8πS̃i,

in order to replace the divergence ofÃij in the Eq. (3.29).
The system of evolution equations can be obtained from the ADM equations

applying the modifications mentioned above, namely

(∂t − Lβ)h̃ij = −2αÃij ,

(∂t − Lβ)φ = −1

6
α K,

(∂t − Lβ)Ãij = e−4φ{−DiDjα+ αRij + 4πα[hij(trS − ρ) − 2Sij ]}TF +

+α(KÃij − 2ÃipÃ
p
j),

(∂t − Lβ)K = −DpD
pα+ α(ÃijÃ

ij +
1

3
K2) + 4πα(ρ+ trS),

(∂t − Lβ)Γ̃i = h̃pq∂p∂qβ
i +

1

3
h̃ip∂p∂qβ

q − 2Ãip∂pα+

+2α(Γ̃i
pqÃ

pq + 6Ãip∂pφ− 2

3
h̃ip∂pK − 8πS̃i),

whereTF denotes the trace-free part of the expression.
This form of the system is successfully used in numerical simulations. One

of the key ingredients of BSSN is the use of the momentum constraint to modify
the dynamical system. Some additional modifications, related with the way the
constraints are treated during the numerical evolution, appear in different imple-
mentations and consist in:

• ensuring that the conformal metric has unit determinant

h̃ij →
h̃ij

deth̃1/3
,
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• ensuring that the trace-free part of the extrinsic curvature remains trace-free

Ãij → Ãij −
1

3
Ãpqh̃

p
ih̃

q
j ,

• dividing Ãij by the same factor used to remove thedeth̃ij

Ãij →
Ãij

deth̃1/3
.

Another modification adopted by some groups consists in replacing∂ph
ip with

the correspondingΓi, only if the expression appears under a derivative. These
specific choices lead to a family of BSSN formulations, with different ’flavors’ of
the numerical implementation.

3.2 The 3+1 Tetrad based Systems

There are also alternative formulations of the Einstein equations, which are not
based on the ADM system. I will present in this section a particular system based
on the frame formalism, in which the 3+1 decomposition is performed with respect
to the components of an orthonormal tetrad. The basic evolution variables are the
tetrad components(ei)µ, the four dimensional connection coefficientsγi

j
k and the

electricEij and magneticBij components of the Weyl tensor.

3.2.1 Notions of Frame Formalism

3.2.1.a The Tetrad

The metric tensorgµ may be defined indirectly, through D vectors forming an
orthonormal D-leg(bν)µ. Then the spacetime metric can be written using the one-
formsbν = (bν)µdx

µ as
gµν = ηρτ (bρ)µ(bτ )ν .

The frame indices, counting the number of ”legs” spanning the cotangent space at
each point, are moved with the Minkowski metric.

In the case of tetrad-theories (D = 4) described by the concept of fiber bundle,
the (bν)µ are considered to be the basic geometrical variables satisfying the field
equations (not the metric). The fiber at each point of the manifold contains all
orthonormal tetrads related to each other by transformations of the Lorentz group.

The basis is defined as(eρ)µ(bτ )µ = δρ
τ and (eρ)

µ(bρ)ν = hµ
ν . Then the

4-metric can be represented in terms of the frame(eρ)
µ as follows

gµν = ηρτ (eρ)
µ(eτ )ν ,
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g(eµ, eν) = ηµν = diag(−1, 1, 1, 1).

The functions(eρ)µ = eρ(x
µ) are the coefficients of the frame in a chosen coordi-

nate system.
The 4-dimensional connection-coefficients in this frameγµ

ν
τ are defined as

γτ
ρ
ξ = (bρ)ν(eτ )

µ∇µ(eξ)
ν .

The fact that the connection is metric (∇µgνρ = 0) is expressed through the anti-
symmetry of the connection-coefficients in their last two indices.

The torsion-free condition translated into

(bτ )ν(eρ)
µ∂µ(eα)ν − (bτ )ν(eα)µ∂µ(eρ)

ν + γρα
τ − γαρ

τ = 0,

provides a constraint equation for the spatial vectors of the tetrad

(bk)ξ(ej)
δ∂δ(ei)

ξ − (bk)ξ(ei)
δ∂δ(ej)

ξ − Γij
k + Γji

k = 0.

The projections of the 4-dimensional connection-coefficients are calculated as

aj = γ0
j
0 = (bj)µ(e0)

ρ∇ρ(e0)
µ,

χi
j = γi

j
0 = (bj)µ(ei)

ρ∇ρ(e0)
µ,

Λj
i = γ0

j
i = (bj)µ(e0)

ρ∇ρ(ei)
µ,

Γk
j
i = γk

j
i = (bj)µ(ek)

ρ∇ρ(ei)
µ,

where bothΛj
i andΓk

j
i are spatial and antisymmetric in their last two indices.

The components ofaj (3), χi
j (9), Λj

i (3) andΓk
j
i (9), account for the 24 con-

nection coefficients of the four-dimensional connection∇ in respect to the chosen
tetrad.

The Einstein vacuum field equations imply the equality between the Riemann
and the Weyl tensor

Rµνρτ = Cµνρτ .

The Weyl tensor can be decomposed

Cµνρτ = −(e0)µ(e0)τEνρ + (e0)ν(e0)τEµρ + (e0)µ(e0)ρEντ − (e0)ν(e0)ρEµτ

− ǫµνξE
ξδǫδρτ − (e0)µBν

ξǫξρτ + (e0)νBµ
ξǫξρτ + ǫµν

ξBξρ(e0)τ −
− ǫµν

ξBξτ (e0)ρ,

in terms of its electric part

Eντ = Cµνρτ (e0)
µ(e0)

ρ,

and magnetic part

Bµα =
1

2
Cµνρτ (e0)

νǫρτ
αξ(e0)

ξ.

BothEµν andBµν are symmetric and trace-free.
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3.2.1.b Gauge choice

We present in the following a particular way of adapting the tetrad to the geom-
etry and a gauge prescription that can be used in order to simplify the system.
These gauge choices are just an example, that we adopt here in order to make the
comparison with the 3+1 metric formalism more intuitive.

One can consider the standard 3+1 decomposition presented in Chapter 2 and
choose(e0)

µ to be the equivalent ofnµ, namely the unit vector field orthogo-
nal to the spatial hypersurfaces. Then one extendse0 to an orthonormal basis
{(e0)µ, (ei)µ}, with (ei)

µ(e0)µ = 0 and the ’spatial’ components of the tetrad can
not have components in the ’zero’ direction

(ei)
0 = 0.

Theχij connection coefficient becomes a symmetric two tensor, the equivalent of
the extrinsic curvatureKij in the metric formalism.

Assuming that the frame is Fermi propagated in the direction ofe0, one can
write the law of transport for a non-rotating tetrad of basis vectors(eµ) carried by
an accelerated observer as

∇e0(ei)
c = ((e0)

cap − (e0)
pac)(ei)p.

This leads to the simplificationΛj
i = 0. Furthermore one can choose a time slicing

determined by a wave equation

f0(t, xµ) = −∇µ∇µt.

Then the evolution equation for the lapse takes the form

∂tα = βk(ek)
p∂pα+Kp

pα2 − f0α3.

3.2.1.c Evolution and Constraints for the Connection Coefficients

One can replace thea connection coefficient withAi = αai. Then using the
definition of the acceleration in respect to the lapse function, we find the following
constraint

(ei)
p∂pα−Ai = 0,

and evolution equation

∂tAj = −(α3)(ej)
p∂pf

0 + (α2)(ek)p∂pKj
k + βk(ek)p∂pAj + 2Kp

pαAj −
−3f0(α2)Aj − αApKj

p + α2Kp
qΓqj

p − α2KpjΓq
pq.

The standard evolutions and constraints of the metric formalism find corre-
spondent in to the following projections of the Riemann tensor:
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• hλ
µhα

νhξ
ρRµνρ

τ (e0)τ → the Momentum constraint,

(ej)
p∂pKik − (ek)

p∂pKij +Bi
pǫpjk+

+KpkΓji
p +KpiΓjk

p −KpjΓki
p −KpiΓkj

p = 0;

• (e0)
µhξ

νhα
ρRµνρ

τ (e0)τ → the evolution equation for the extrinsic curva-
ture,

∂tKij = βk(ek)
p∂pKij + (1/2)(ej)

p∂pAi + (1/2)(ei)
p∂pAj −

−αEij − αKpjKi
p + (1/2)ApΓij

p + (1/2)ApΓji
p;

• hλ
µhξ

νhτ
ρRµνρ

τ (bi)τ → the Hamiltonian constraint,

(el)
p∂pΓkj

i − (ek)
p∂pΓlj

i +KjlKk
i −KjkKl

i+
+El

iδjk − Ek
iδjl − Ejlδk

i + Ejkδl
i−

−Γpj
iΓkl

p − Γkj
pΓlp

i + Γkp
iΓlj

p + Γpj
iΓlk

p = 0;

• (e0)
µhξ

νhτ
ρRµνρ

τ (bi)τ → the evolution equation for the connection coef-
ficients,

∂tΓjk
i = βl(el)

p∂pΓjk
i − αKj

pΓpk
i +AiKjk −AkKj

i − αBpjǫk
pi.

The evolution of the spatial vectors of the frame can be written as a Lie deriva-
tive in the direction of the time-flow acting onei, which translates into

∂t(ej)
a = −(ek)

a(ej)
p∂pβ

k − (ek)
aβqΓqj

k + (ek)
aβqΓjq

k − α(ek)aKj
k,

3.2.1.d Evolution and Constraints for the Weyl tensor

The contracted Bianchi identity

∇µCµνρτ = 0.

provides evolution and constraint equations forE andB applying the following
procedure:

• Projecting with(e0)
τhν

ih
ρ
j and the symmetrizing in the(i, j) indices→

evolution equation forE,

∂tEij = (α/2)ǫkj
q(ek)

p∂pBqi + (α/2)ǫki
q(ek)p∂pBqj +

+βk(ek)p∂pEij − 2Kp
pαEij −ApBj

qǫpqi −ApBi
qǫpqj +

+(3/2)αEpjKi
p + (3/2)αEpiKj

p − αEpqK
pqδij +

+(α/2)Bpjǫqi
rΓq

r
p + (α/2)Bpiǫqj

rΓq
r
p +

+(α/2)Bpqǫrj
pΓr

i
q + (α/2)Bpqǫri

pΓr
j
q;
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• Multiplying with ǫαρτhν
jhαi and symmetrizing in the(i, j) indices→ evo-

lution equation forB,

∂tBij = (α/2)ǫkqj(ek)
p∂pEi

q + (α/2)ǫkqi(ek)p∂pEj
q +

+βk(ek)p∂pBij − 2Kp
pαBij +ApEj

qǫpqi +ApEi
qǫpqj +

+(3/2)αBj
pKpi + (3/2)αBi

pKpj − αBp
qKq

pδij +

+(α/2)EpqǫqrjΓ
r
pi + (α/2)EpqǫqriΓ

r
pj +

+(α/2)Ej
pǫqriΓ

r
p
q + (α/2)Ei

pǫqrjΓ
r
p
q;

• Contracting with(e0)τ (e0)
νhρ

i → constraint equation forE,

(ek)
p∂pE

k
i + EpiΓ

q
q
p + EpqΓ

q
i
p −Bp

qǫqriK
pr = 0;

• Contracting with(e0)νǫiρτ → constraint equation forB,

(ek)p∂pB
ki −Bp

qΓp
q
i +Bp

iΓq
q
p + Epqǫ

priKr
q = 0.

Using the projection and orthogonality rules in respect toe0 and the definitions
for the connection-coefficients, one obtains a system of 38 evolution equations in
component form, for the lapse (1), spatial derivative of the lapse (3), spatial vec-
tors of the tetrad (9), extrinsic curvature (6), connection-coefficients (9), the elec-
tric (5) and magnetic (5) components of the Weyl tensor, and related constraints.
The system above, although it has a very simple algebraic structure compared to
that of many other reduced systems in tetrad formalism, offers all the informa-
tion about the four-dimensional metric given in terms of the frame coefficients, the
four-dimensional connection, the Weyl tensor, the geometry of the slices and their
embedding.

3.2.2 The FN System

The Friedrich-Nagy system is a frame based first order formulation of the Einstein
equations, that has been shown to yield a well-posed initial boundary value prob-
lem. The system is based on the 3+1 tetrad decomposition, where the time-like unit
vector fielde0, in respect to which the decomposition is performed, is extended to
an orthonormal frame((e0)µ, (ei)µ). The metricgµν and all the other fields are
represented in terms of the frameeν .

The FN formulation is based on the Einstein vacuum equations (translated into:
the curvature of the connection is the Weyl curvature), the contracted Bianchi iden-
tity and the torsion-free condition for the connection. Performing a hyperbolic re-
duction, similar to the one presented in Section 3.2.1, one obtains a representation
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of the Einstein equations in the form of a symmetric hyperbolic system of evolu-
tion equations. Moreover one chooses anadapted gauge, motivated by the choice
of maximally dissipative boundary conditions.

One assumes a boundary at{z = constant} and foliates the interior do-
main by time-like hypersurfacesTc given by{z = constant}. The tetrad will
be adapted to this foliation such thate3 is orthogonal toTc, which implies

(ei′)
3 = 0,

ande33 > 0. As e3 is chosen to be the unit normal, the extrinsic curvatureγi′
3
j′

onTc has to be a symmetric tensor

Γi′′
3
j′′ − Γj′′

3
i′′ = 0,

Λ3
j′′ − χj′′

3 = 0.

The mean extrinsic curvature ofTc is prescribed as a function of the coordinates
and used to eliminate the connection coefficientγ0

3
0 from the equations

a3 = Γ1
3
1 + Γ2

3
2 + f.

The variation ofe0 within Tc is prescribed by the functionsF i′′ , according to
De0e0 = F i′′ei′′ . This fixes the connection coefficientsγ0

i′′
0 as

ai′′ = F i′′ .

The condition for the frame vectorsei′′ to be Fermi transported with respect to the
induced connection onTc translates intoγ0

i′′
j′′ = 0, namely

Λi′′
j′′ = 0.

The tetrad vectore0 represents the time-flow

(e0)
µ = e0(x

µ) = δ0
µ.

The resulting system (see Appendix 9.8 for the full system) takes the form

A
0∂tu + A

i∂iu + B(u, F ) = 0,

whereF = (f, FA, ∂µf, ∂µF
A) represents the gauge source functions and their

derivatives. The matricesA0,Ai are symmetric and depend on the coordinate
components of the frame.

As shown by Friedrich and Nagy [47], the FN evolution equations form a
symmetric hyperbolic system, with derivatives transversal to the boundary con-
tained only in the Weyl subsystem, to which we can impose maximally dissipative
boundary conditions. The IBVP for the evolution system is well-posed, which
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means that if one chooses initial data on the hypersurface S, that satisfies the con-
straints, and solves the symmetric hyperbolic system of evolution equations, with
maximally dissipative boundary conditions, one obtains a unique solution of the
Einstein equation that depends continuously on the initial data. Moreover, the
symmetric hyperbolic subsidiary system leads to a unique solution, therefore the
constraints will be satisfied at all times if they are satisfied initially.

3.3 Discussion

We presented an overview of various formulations of the Einstein equations used
in Numerical Relativity. Our choice of systems includes three metric based for-
mulations: the Z3, the Z4 (first order in space) and the BSSN (second order in
space), and a tetrad based formulation, the FN (first order in space). The ap-
parently small differences in their analytical structure, will translate into obvious
differences when subjected to numerical tests, as we will see in the following chap-
ters.

We found that the Z3 system provides an approach that is especially well
suited for numerical evolutions in spherical symmetry, as it allows stable long term
black hole evolutions in normal coordinates (Chapter 6). The system can be easily
brought into a spherically symmetric form, without the complications present in
the BSSN, as it does not use a conformal decomposition.

An equivalence between the BSSN and the Z3 system (withn = 4/3), can be
obtained if one considers the following transformation

Γ̃i = −h̃ip∂qh̃
pq + 2Zi,

which is consistent with the definition of̃Γi Eq. (3.28) for the physical solutions
(Zi = 0).

The BSSN is currently the most used formulation in binary black hole evolu-
tions. Despite this success, questions regarding the properties and behavior of this
formulations are raised by the poor results obtained in standard numerical relativity
tests (Chapter 4).

Even though the Z3 represents an improvement over the standard ADM sys-
tem, as it introduces the momentum constraint as extra dynamical field into the
evolution formalism, general covariance is still broken for this system. In this
respect, the Z4 is superior, as it incorporates also the energy constraint in the evo-
lution system, through a covariant four-vectorZµ. The ’zero’ vectorZµ should
vanish for the true Einstein solutions, the only constraints are algebraic, and the
full set of field equations is used during the evolution.

However, monitoring theZµ vector in numerical evolutions, we noticed that it
deviates from the initial zero value. Due to truncation errors, the resulting numer-
ical code will actually deal with the extended set of Einstein solutions. This the
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price one generally has to pay for performing an unconstrained evolution. But the
advantage that the Z systems offer, over other 3+1 metric systems like the BSSN,
is controlling the growth of these constraint violations. The Z4 proved to be very
robust for long term 3D black hole simulations in normal coordinates (Chapter 6).

A different style of 3+1 formulation is the FN system, a first order in space and
time tetrad based formalism. However, there are some common points between the
FN and the ADM based metric systems, as the structure of the FN implies a free
evolution approach and it uses the technique of adding constraints to evolution
equations in order to obtain a symmetric hyperbolic formulation. The main ad-
vantage of the FN system relies in the fact that the IBVP for the evolution system
has been proven to be well-posed. Even though it performs well in the standard
numerical tests (Chapter 4), this system is not currently used in production runs.
One of the reasons could be the fact that this formulation is valid only the vacuum
case, whereRµνρτ = Cµνρτ . Extensions of the FN system which include matter
terms have not yet been explored.





Chapter 4

Standard Testbeds for
Numerical Relativity

The Apples with Apples Alliance (AwA) has been the first community effort to
produce a project for cross-validation of Numerical Relativity codes. The results,
published in 2003 and 2008, follow two projects of code comparison, realized
with a broad participation of the community. The data was gathered and organized
in a CVS repository for checking in test results and via the web pages of AwA
(http://www.ApplesWithApples.org).

This pioneering work had a double success. First, it offered an objective view
over the status of the formulations and implementations used in Numerical Rel-
ativity, impulsing improvements on an analytical level, like constraint damping
algorithms, and the development of numerical methods. Second, it opened the
way for new large scale collaborations, like the current comparison projects for
gravitational wave templates.

In this chapter, we present a review of the AwA tests and the main results that
followed. We focus on numerical simulations performed with the formulations
presented in Chapter 3, namely the Kranc implementation of the Z4, BSSN and
FN systems [54], [55], [56].

4.1 Overview of Numerical Tests

As presented in Chapter 3, the decomposition of the Einstein equations does not
lead to a unique formulation of the evolution system. Most formalisms currently
used in Numerical Relativity (NR) simulations are based on the free evolution
approach.

The problem of choosing the best suited formalism for numerical evolutions
proved to be a complicated task. A fair comparison between different formula-
tions, had to concentrate on the behavior of the systems of evolution equations in

53
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an identical numerical set-up, in order to minimize the difference coming from
various choices of gauge, boundaries and numerical methods.

The first effort of providing a practical collection of standard tests for NR was
proposed in [57]. After analyzing the results of these tests, a second round of
comparison has been proposed in [55], using the original testbeds with revised
specifications and an additional test.

The purpose of the AwA tests was to give a comparison between various for-
mulations in a standard setting. In order to make the tests computationally afford-
able to all the NR groups, they were limited to vacuum spacetimes and periodic
boundaries.

The criteria proposed for code comparison were:

• Stabilityimplies that the growth of the errors should be less than exponential;

• Accuracywhich depends on the analytic formulation, for example on the
treatment of the constraints;

• Robustnessrequires that a code should behave well in a variety of space-
times, using different gauges;

• Efficiencyis related to the computational costs of a specific implementation;

• Degree of mathematical understandingconsists in the possibility to mathe-
matically prove certain features of the evolution systems, like well-posedness.

The standard tests proposed by the AwA community focus mainly on stability,
accuracy and robustness.

The tests address a broad range of formulations. The output variables are cho-
sen such that they offer inside about the characteristic behavior of the specific
system and allow a comparison with other codes solving the same problem. The
time a code runs before crash is not an accepted criteria, unless it is accompanied
by an indication of how accurate the code still reproduces the intended physics.

4.2 Implementation and Results

The four tests chosen for code comparison in the initial round were: the Robust
Stability, the Gauge Wave, the Linearized Wave and the Gowdy Wave.

The Robust Stability test uses random constraint violating initial data in the
linearized regime, which simulates machine error. The noise is added as pertur-
bations around Minkowski space and it proved to be very efficient in revealing
unstable modes.

The Gauge Wave testbed is based on an exact wave-like solution, constructed
as a nonlinear gauge transformation of the Minkowski spacetime. Nonlinear ef-
fects and nontrivial geometry can trigger continuum instabilities in the equations.
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The Linearized Wave test proposes as initial data a solution to the linearized
Einstein equations. It has physical importance, as it can be used to check the
amplitude and phase errors of a gravitational wave as it propagates on the 3-torus.

The Polarized Gowdy testbeds are non-linear wave tests based on exact so-
lutions describing an expanding universe containing plain polarized gravitational
waves. The test is carried both in the expanding and collapsing time directions.

In the second round of tests, an additional shifted version of the Gauge Wave
test has been included, in which a non-vanishing shift is used to complete the four
original tests with periodic boundary conditions.

The initial data is specified by providing the 4-metric of the space-time, or
the Cauchy data (3-metric and extrinsic curvature) and the choice of gauge. The
physical domain is a cube and the evolution is performed in a specific direction
(x, y, z) or diagonal, so the 3D simulations reduce to 1D or 2D runs. All tests
use periodic boundary conditions, equivalent to an evolution on a compact spatial
manifold with the topology of a 3-torus in the absence of boundaries.

The time evolution algorithms are a third order Runge Kutta integrator or a
second order iterative Crank-Nicholson method. The spatial discretization is per-
formed using finite difference algorithms plus Kreiss Oliger dissipation. The sim-
ulation domain is a cube of sided, equal to one wavelength, set up to extend an
equal distance in the positive and negative directions of each axis. The resolution
along a given direction isdx = d/n, wheren is the number of points. For the tests
with one-dimensional features, one considers a minimum number of points in the
trivial directions. The size of the time step is given in terms of the grid size, such
that the Courant limit is satisfied. A final time for the tests is chosen asT = 1000
crossing times (CT), i.e.2× 105ρ time steps, whereρ = 1 is the lowest resolution
andρ = 4 the highest. The standard output is set to every 10 CT and the output
quantities have physical or numerical motivations.

One considers for the gauge evolution a harmonic slicing Eq. (2.26) and nor-
mal coordinates Eq. (2.29), in all the tests beside the Shifted Gauge Wave, where
the evolution of the shift is given by the harmonic condition Eq. (2.27).

4.2.1 The Linear Wave Testbed

In the Linear Wave Test specifications, the initial spatial metric and extrinsic cur-
vature are given by a transverse, trace-free perturbation with components

ds2 = −dt2 + dx2 + (1 +H) dy2 + (1 −H) dz2, (4.1)

where

H = A sin

(

2π(x− t)

d

)

. (4.2)

It describes a linearized plane wave traveling in thex-direction.
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Figure 4.1. Illustration of thegyy variable on the x-axis, in a 1D Linear Wave test with
amplitudeA = 0.1 and resolutionρ = 4, at time = 1000 CT when the simulation was
stopped. Upper panel: Performance of the codes using 2nd order finite differencing. The plots
correspond to the analytic solution (black continuous), FN (dark-grey long-dashed), BSSN
(medium-grey medium-dashed), Z4 (light-grey short-dashed). Lower panel: Performance of
the Z4 code using 4th order finite differencing plus 3rd order dissipation. The plots correspond
to the analytic solution (black continuous) and Z4 (grey dashed).
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Figure 4.2. Illustration of the error ingyy variable on the x-axis, in a 1D Linear Wave test
with amplitudeA = 0.1 and resolutionρ = 4, at time = 1000 CT, when the simulation
was stopped. Upper panel: Performance of the codes using 2nd order finite differencing. The
plots correspond to the FN (light-grey long-dashed), BSSN (medium-grey medium-dashed),
Z4 (black short-dashed). Lower panel: Performance of the Z4 code using 4th order finite
differencing plus 3rd order dissipation.
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The nontrivial components of extrinsic curvature are

Kyy = −1

2
∂tH, Kzz =

1

2
∂tH. (4.3)

The test is performed with amplitudeA = 10−8, so that quadratic terms are of the
order of numerical round-off.

The Linearized Wave test checks the ability of a code to propagate a linearized
gravitational wave, which is a necessary attribute for reliable wave extraction. One
is interested in the accuracy of the code when propagating the amplitude and phase
of the wave.

4.2.1.a Numerical Results and Comparison

The harmonic codes (Abigel harm and HarmNaive) show the best behavior in
wave tests [55]. They provide a benchmark for the accuracy that can be obtained
with a specific resolution. An interesting result is that a weakly hyperbolic imple-
mentation of the generalized harmonic system (HarmNaive), does not introduce
large errors in this test. This illustrates that linearized tests are not efficient in
pointing instabilities related with weakly hyperbolic systems, as the polynomial
modes grow only secularly in time. The Linear Wave Test should be viewed as a
double check for stability, as it can reveal whether excessive dissipation was used
in the Robust Stability Test in order to obtain long term performance.

In Fig. (4.1) one can see a comparison of the 1D wave profiles after 1000
CT, plotted with the exact wave for reference. The numerical results show a good
match in the amplitude, but they all suffer a phase delay. This kind of error, spe-
cific to the simulations using a 2nd order in space algorithm, can be decreased by
employing higher order finite differencing, as exemplified in Fig. (4.2) for the Z4
system.

The Z4, BSSN and FN systems show a good accuracy for the amplitude of the
wave, but the FN shows much larger errors for the phase. There are no signs of
rapidly growing Hamiltonian constraint violations, which indicate that the imple-
mentations are stable.

4.2.2 The Gauge Wave Testbed

The Gauge Wave test is based on the 4-metric

ds2 = (1 −H)(−dt2 + dx2) + dy2 + dz2, (4.4)
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whereH is given by Eq. (4.2), obtained from the Minkowski metricds2 = −dt̂2+
dx̂2 + dŷ2 + dẑ2 by a nonlinear gauge transformation of the type

t̂ = t− Ad
4π cos

(

2π(x−t)
d

)

,

x̂ = x+ Ad
4π cos

(

2π(x−t)
d

)

,

ŷ = y,
ẑ = z.

This describes a sinusoidal gauge wave of amplitudeA, propagating along the
x-axis. The extrinsic curvature, calculated asKij = − 1

2αLthij is given by

Kxx =
∂tH

2
√

1 −H
= −πA

d

cos
(

2π(x−t)
d

)

√

1 −A sin
(

2π(x−t)
d

)

,

Kij = 0 otherwise. (4.5)

The original test specified the amplitudesA = 0.01 andA = 0.1. Later, a higher
amplitudeA = 0.5 was proposed in order to test the non-linear regime. The time
coordinatet in the metric is harmonic and the gauge speed is the speed of light.

The test contains several sources of growing errors coming from the solutions
of the continuum problem [2]. One complication comes from the related flat metric

ds2 = eλt(1 −H)(−dt2 + dx2) + dy2 + dz2,

which obeys the harmonic coordinate conditions for anyλ. Even though the ini-
tial data for the Gauge Wave test impliesλ = 0, the numerical errors excite this
instability and lead to an exponential growth in the amplitude of the wave. So
H → eλtH represents a harmonic gauge instability of the Minkowski space with
periodic boundary conditions. Other instabilities depend on the particular formu-
lation. The discretization schemes can also introduce instabilities in the form of
high frequency modes, which in the case of well-posed systems can be cured by
artificial dissipation.

4.2.2.a Numerical Results and Comparison

As in the case of the Linear Wave test, the harmonic codes show the best be-
havior. The reason could be the analytical structure of these systems, which use
the harmonic coordinates to transform the Hamiltonian constraint into an evolution
equation. A comparison between the flux conservative (FC) (Abigel harm) and the
non-FC (HarmNaive) forms of the harmonic system, leads to the conclusion that
the exponential modes of the formeλtH are suppressed in the FC implementation
[55]. The main source of errors is the phase error, which converges to zero.
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Figure 4.3. Illustration of the Z4gxx variable on the x-axis, in a 1D Gauge Wave test with
amplitudesA = 0.1 (upper panel) andA = 0.5 (lower panel), for resolutionρ = 4. The
continuous plot corresponds to the analytic solution, the short-dashed plot to 2nd order finite
differencing and the long-dashed plot to 4th order finite differencing plus 3rd order dissipation,
at time = 1000 CT when the simulation was stopped.
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Figure 4.4. Illustration of the KrancBSSNgxx variable on the x-axis, in a 1D Gauge Wave
test with amplitudeA = 0.1 and resolutionρ = 4. The continuous plot corresponds to the
analytic solution, the dashed one to 2nd order finite differencing attime = 20 CT (left panel)
and 4th order finite differencing plus 3rd order dissipation, attime = 80 CT (right panel).

The Gauge Wave results of the Z4 system are as remarkable as the FC version
of the generalized harmonic codes (Abigail harm). The left panel in Fig. (4.3)
shows the case of medium amplitudeA = 0.1. One can notice the significant
dissipation and dispersion errors when using a second order finite differencing
method. The problems diminish when passing to a third order method, which gets
rid of the dispersion error and only a very small amount of numerical dissipation is
visible. The right panel in Fig. (4.3) shows the large amplitude caseA = 0.5, well
inside the non-linear regime. The only errors that we could notice, were a small
amplitude damping in the wave profile and a small decrease in the mean value of
the lapse.

The Z4 exhibits the best behavior when compared with other systems in the
same class, like versions of the BSSN, NOR [58], or KST [59] systems. Recent
KST results with the Gauge Wave initial dataA = 0.5, show a phase shift due
to cumulative dispersion errors after 500 crossing times, and a growing amplitude
mode [60], comparable with the one reported for harmonic systems which do not
have a flux conservative form.

The KrancBSSN implementation shows a rapid growth of the Hamiltonian
constraint violation. One can observe in Fig. (4.4) the behavior of the wave profile
for thegxx component of the metric. The runs were performed with 2nd and 4th
order finite difference methods, plus KO dissipation in order to damp the high
frequency modes. The use of higher order discretization schemes led to longer
evolutions, but it could not prevent the crash.

Actually none of the BSSN implementations showed satisfactory behavior in
this test. Analyzing results obtained with other BSSN implementations, one can
conclude that this test is a clear example of a case where running1000 crossing
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Figure 4.5. Illustration of the FNgxx variable on the x-axis, in a 1D Gauge Wave test with
amplitudeA = 0.1, resolutionρ = 4. The continuous plot corresponds to the analytic solution
and the dashed one to 2nd order finite differencing, attime = 1000 CT when the simulation
was stopped.

times, with an apparent stable evolution, does not mean that the implementation
actually passed the test. The results should be accompanied by a comparison with
the exact solution, or plots of the error in the wave form, as presented in [55].
The problem with the BSSN in this test seems to be mainly theeλtH instability,
related with the choice of harmonic gauge, and the failure to control the growth of
the constraint violations in the BSSN formulation.

Besides the generalized harmonic and the Z4 flux conservative implementa-
tions, the FN was the only other code that was able to run the full test up to 1000
crossing times, with the mediumA = 0.1 amplitude. However, one can notice
in Fig. (4.5) the long-wavelength growth due to theeλtH instability of the wave
amplitude.

4.2.3 The Shifted Gauge Wave Testbed

The shifted gauge wave can be obtained from the Minkowski metricds2 = −dt̂2+
dx̂2 + dŷ2 + dẑ2 using a harmonic coordinate transformation of the type

t̂ = t− Ad
4π cos

(

2π(x−t)
d

)

,

x̂ = x− Ad
4π cos

(

2π(x−t)
d

)

,

ŷ = y,
ẑ = z.
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This leads to the following Kerr-Schild metric

ds2 = −(1 −H)dt2 + (1 +H)dx2 − 2H dx dt+ dy2 + dz2,

whereβ = − H
1+H , α = 1√

1+H
, andH is given by Eq. (4.2). The extrinsic

curvature is calculated as

Kxx =
∂tH

2
√

1 +H
,

Kij = 0 otherwise. (4.6)

This metric describes a shifted gauge wave propagating along thex-axis. The test
is run in a harmonic gauge with amplitudeA = 0.1 in 1D form.

The Shifted Gauge Wave test identifies two types of instabilities. One is similar
to the gauge wave case and arises from theλ-parameter family of vacuum metrics,
which reduces to the shifted gauge wave forλ = 0,

ds2λ = eλt(−dt2 + dx2) + dy2 + dz2 +Hkαkβdx
αdxβ,

wherekα = ∂α(x − t) = (−1, 1, 0, 0). This metric has a harmonic driving term
Γα = −λHkα. A gauge satisfying this condition is expected to excite instabilities.

Another type of instability is specific to implementations based on a standard
reduction of the Einstein equations to harmonic form, where the metric

dŝ2λ = −dt2 + dx2 + dy2 + dz2 +

(

H − 1 + eλt̂

)

kαkβdx
αdxβ , (4.7)

satisfies the reduced harmonic equations, but violates the harmonic constraints, as
Γµ = λeλt̂kµ. Ref. [2] offers a detailed discussion of these instabilities and a way
of constructing constraint adjustments for harmonic formulations. These damping
terms proved to be very efficient when tested with theAbigail harm implementa-
tion, as the growing modes were suppressed in long term evolutions.

In the standard harmonic formulations, the Einstein equations are satisfied only
indirectly, through the harmonic conditionsΓµ = 0. Errors inΓµ, of the form
described above, are expected to excite instabilities. This is also the case for the
Z4 formalism, as the equivalence with the harmonic systems can be translated into
Zµ = −Γµ/2.

4.2.3.a Numerical Results and Comparison

As in the Gauge Wave test, the KrancBSSN results are not satisfactory. One can
see in Fig. (4.6) results of the Hamiltonian constraint violation for an amplitude
A = 0.1. The code shows second order convergence only for a few crossing
times. An instability develops that crashes the code rather quickly. The other
BSSN implementations show similar problems.
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Figure 4.6. Illustration of the BSSN performance in a 1D Shifted Gauge Wave test with
amplitudeA = 0.1 and 2nd order finite differencing plus 3rd order dissipation. Left Panel:
TheL2-norm of the Hamiltonian constraint on a logarithmic scale plotted as a function of time,
for resolutionsρ = 1 (light-grey short-dashed),ρ = 2 (dark-grey long-dashed),ρ = 4 (black
continuous). Right Panel: Convergence test in theL2-norm of the Hamiltonian constraint
plotted as a function of time for resolutionsρ = 1, 2, 4. Second order convergence is lost after
a few crossing times.

The Z4 results are good, but not so satisfactory as for the Gauge Wave Test.
We were able to pass the test performing runs until1000 crossing times, in the
case of medium amplitudeA = 0.1, high resolutionρ = 4 and fourth order finite
differencing, plus third order dissipation. One can see in Fig. (4.7) the behavior of
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Figure 4.7. Illustration of the Z4gxx variable on the x-axis, in a 1D Shifted Gauge Wave
test with amplitudeA = 0.1, resolutionρ = 4. The continuous plot corresponds to the
analytic solution and the dashed one to 4th order finite differencing plus 3rd order dissipation,
at time = 1000 CT when the simulation was stopped.
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the wave profile for thegxx component of the metric, which has a higher dispersion
error than in similar runs with the Gauge Waves test.

In the caseA = 0.5, one can notice the presence of strong violations in the
momentum and energy constraints (Zi, θ variables) and instabilities similar to the
ones reported by the harmonic systems. The time at which the code crashes grows
with resolution and the implementation exhibits a convergent behavior.

4.2.4 Other Tests

The Robust Stability (RS) test was designed to detect unstable evolution algo-
rithms. It was a crucial test in the first AwA paper, in a context where the theory
of well-posedness existed only for fully first order systems. The development of
a well-posedness theory for first order in time, second order in space formulations
of the Einstein equations, offers now solid ground for numerical stability criteria.
As the test involves just the principal part of the evolution system, it can be used
to detect weakly hyperbolic systems. In the case of well-posed continuum formu-
lations, the RS test can give a ’pass’ or ’fail’ result for the numerical algorithm.

In practice, one tests the numerical stability in the linear constant coefficient
regime. Perturbations around Minkowski space are generated with random num-
bers applied at each grid point, to every variable. The idea behind the RS test is: if a
code that can not stably evolve such random noise, at machine precision (±10−10),
will not be able to evolve smooth initial data. All three systems considered here
for comparison passed this test.

The Gowdy Wave test uses as initial data an exact solution for an expanding
vacuum universe containing a polarized gravitational wave propagating around a
3-torusT 3. The metric has the form

ds2 = t−1/2eλ/2(−dt2 + dz2) + t(eP dx2 + e−P dy2), (4.8)

whereP (t, z) andλ(t, z) depend periodically onz and the time coordinatet in-
creases as the universe expands, with a cosmological type singularity att = 0.
Detailed specifications can be found in the second AwA paper, and were designed
so that neither very large nor very small numbers enter in the initial data.

The Gowdy test is run in both future and past time directions, as analytical
studies [61] and numerical experiments [62] indicate that the sign of the extrinsic
curvature may have important consequences for constraint violation. The sub-
sidiary system governing constraint propagation can lead to departure from the
constraint hypersurface. A negative value ofK (the expanding case) tends to damp
constraint violation whereas a positive value (the collapsing case) can trigger con-
straint violating instabilities.

A comparison of the specific three systems considered above is not possible for
this test. The results obtained with the KrancBSSN code show an unsatisfactory
performance, while for the FN system are completely missing, as it is non-trivial
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to specify the initial data in terms of the tetrad. One can see [55] the for results
obtained with other systems.

4.3 Discussion

In a time when the binary black hole problem is solved in Numerical Relativity and
the community supplies waveforms for gravitational wave detectors, one can ask
what is point of this code comparison and if one can still extract useful information
out of it. The first round of AwA tests were designed to exhibit code instability
and inaccuracy. Even though there are codes which can evolve binary black holes
without signs of instabilities, the same implementations have difficulties or even
fail with some of the testbeds presented above. The theoretical understanding of
what works in numerical relativity is still an open problem.

The continuous development of numerical methods in parallel with formula-
tions of the continuum problem, the construction of physically relevant initial data
and the analysis of the physics behind the results, are current investigation tasks.
The lack of comparison with the experiment, make the problems even more diffi-
cult.

This first round of tests was a good start for establishing methods of code verifi-
cation. The tests were conceived such that they provide useful and relevant results,
but they are in the same time easy to implement and cheap in terms for compu-
tational time and resources. The analysis of the output led to an improvement of
the tests and to a better understanding of the systems. New benchmarks have been
established for the performance of the codes in the wave tests. Deficiencies were
revealed for various implementations.

The Robust Stability test is a pass/fail test, which was passed by all three well-
posed implementations considered above. The Linear Wave test provided a good
comparison of the amplitude and phase errors in the wave profiles. All the for-
mulations showed a satisfactory behavior, which could be further improved by
employing higher order numerical methods. The Gauge Wave test was a check for
the capacity of the formulations to suppress the long wavelength nonlinear insta-
bilities arising from the analytical problem and the Shifted Gauge wave provides a
full comparison of formulations, when shift is involved.

The BSSN implementations showed unsatisfactory results for the last two tests.
This problem is most likely related with the fail to control the Hamiltonian con-
straint violation and maybe to the fact that system is not written is flux conservative
form.

The Z4 formalism shows good results, comparable with the generalized har-
monic formulations. This success could be explained by the analytical form of the
Z4 system, which transforms the constraints into evolution equations for the extra
Z variables, allowing for a mechanism to control the errors. The equivalence with
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the harmonic systemsZµ = −Γµ/2 suggests that similar constraint adjustments
could be used to improve performance in the Shifted Gauge Wave high amplitude
case. The use of a flux conservative version of the system seems to be another
important ingredient for long term stable evolutions.

The analytical structure of the subsidiary system in the FN formulation allows
the preservation of the constraints in long term simulations. This explains the
positive results obtained in the wave tests. However, one can notice the long-
wavelength growth due to an instability in the wave amplitude, which is typically
excited by non-flux conservative formulations.

These results have already led to code improvements, stimulating the develop-
ment of numerical methods and the use of higher order finite difference schemes.
The wave tests show that a numerical algorithm with minimum third order accu-
racy should be used, in order to avoid large phase errors. A flux conservative form
of the system proved to be an important ingredient, especially in cases where the
shift is evolved. The need to carry out these tests with a variety of formulations
has led to the development of symbolic code generation (Kranc [63,64]).

The next generation of code comparison already addresses black hole prob-
lems. Even though there are only two formalisms (BSSN and generalized har-
monic) currently used in order to numerically generate wave-forms, a comparison
in the performance of different implementations is still an interesting subject. The
guidelines of the future Numerical Relativity effort for code comparison and im-
provement started with the Samurai project [65], focused on comparing binary-
black-hole waveforms, and continued with the NINJA (Numerical Injection Anal-
ysis) project [18]. Produced in collaboration with the data analysis community,
NINJA is the first study of the sensitivity of existing gravitational wave search al-
gorithms, using gravitational waveforms from binary black hole coalescence pro-
duced by ten numerical relativity groups. This work provides a foundation for
future analysis and extended projects.
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Chapter 5

Numerical Aspects

Fundamental field theories are most commonly formulated using tensor fields.
Mathematically, the fields are continuous functions of space and time and their
dynamics is studied using partial differential equations (PDE). An exact solution
to these PDE’s is known only for some idealized cases, so numerical approxima-
tions are required in order to solve the equations in general cases.

In this chapter, we present the basic ideas behind the numerical techniques
used in Numerical Relativity, focusing on the Centered Finite Volume method de-
veloped in the Palma Relativity group [23].

5.1 Standard Numerical Recipes

From all the currently known methods for spatial discretization, the Numerical
Relativity community focuses on the use of finite differencing (FD), finite vol-
umes (FV) and spectral methods. Spectral methods expand the solution as a linear
combination of some base functions and then solve for the coefficients of this ex-
pansion. FD and FV methods are based on the idea of discretizing the spacetime
using different strategies, as the FV replaces the continuum with a set of discrete
points which form a grid, while the FV split the domain of dependence of the
functions into elementary cells.

5.1.1 Space discretization and Time integration

The most popular approach to solving non-linear systems of evolution equations is
the method of lines (MoL), which decouples the treatment of space and time. It is
based on the idea of discretizing first the spatial dimensions, while leaving the time
dimension continuous, leading to a semi-discrete system. Then one can solve the
resulting system of coupled ordinary differential equations using a time integration
method. Some of the most common choices are the iterative Crank-Nicholson
(ICN) and the third and fourth order Runge Kutta (RK) methods (Appendix 9.4).
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Spatial discretization methods rely on finite difference algorithms or finite vol-
umes, which reduce to FD plus some type of numerical dissipation. The even order
methods (2nd, 4th, 6th order finite differencing) show mainly dispersion effects,
while the odd order methods (1st, 3rd, 5th order dissipation algorithms) have as
dominant error dissipative effects [39].

The FD numerical methods may become unstable when applied to solving
steep profiles, for example a step function. This translates into high frequency
oscillations. As these modes are already unresolved and furthermore accumulate
truncation error, they can eventually lead to code crash. In order to solve this
problem, one adds numerical dissipative terms to the finite difference operators,
which act as filters, by damping the modes with wavelength similar and higher
than the grid spacing. The standard way of adding dissipation is the Kreiss Oliger
(KO) dissipation algorithm (Appendix 9.5.2).

A special form of numerical dissipation is the numerical viscosity used to deal
with steep profiles in hydrodynamical simulations. The non-linearities in the Eu-
ler equations give rise to propagating discontinuities that arise even from smooth
initial data, for example shocks, which are associated with the crossing of the
characteristic lines. These discontinuities take the form of steep gradients in the
variables. The dissipation will smooth out the shock into a few grid cells, so that
it can be solved numerically.

The standard KO dissipation is not the best suited choice when dealing with
steep gradients, which sometimes occur even in vacuum relativistic cases, as a
dissipation method with constant coefficients will affect the numerical solution
everywhere. One needs an adaptive viscosity term, that becomes larger in regions
with steep profiles and minimal in the other regions. Special algorithms have been
developed to deal with these problems.

High resolution shock capturing (HRSC) algorithms are a class of numerical
methods specifically constructed to deal with discontinuous solutions in fluid dy-
namics. High order FV schemes of this type are designed to model piecewise
continuous solutions, which can contain shock waves or any other kind of discon-
tinuity that can be dynamically generated by the nonlinearities of the principal part
of the equations.

We will consider in the following analysis strongly hyperbolic systems of the
type

∂tuuu+ ∂iFFF
i = 0,

where the flux takes the formFFF i = FFF i(uuu). The success of Shock-Capturing meth-
ods for these systems can be granted in the 1D case, if for the space directionni

one can write

niAAA
i = ni

∂FFF i

∂uuu
,

and the characteristic matrixMMM = AAAini has real eigenvalues and a complete set of
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eigenvectors. This argument is not true in the multidimensional case, where every
axis has its own characteristic matrix. As these matrices do not commute, there is
no common base of eigenvectors that can be used. Strategies that try to mimic the
1D case are currently used in relativistic hydrodynamic codes.

5.1.2 Convergence and Stability

An important concept when dealing with approximate solutions is convergence.
A numerical solution is only an approximation to the real solution. One needs to
have an estimate of the error in the numerical calculation, in order to know how
close the result is to the correct solution.

The error can be computed through a convergence test. This consists in per-
forming the calculation for three resolutions (dx1, dx2 = 2dx1, dx4 = 4dx1) and
computing the relative errors between the solutions. The global convergence fac-
tor as a function of time, can be computed using theL2 norms of the difference
between the solutions as

c(t) =
‖udx1 − udx2‖
‖udx2 − udx4‖

.

A local convergence factor can also be obtained by the same procedure, using the
difference between the solutions (without taking theL2 norm). One expects a
factor of 2n for an ordern convergent scheme. Once the convergence factor is
determined, one can perform a Richardson extrapolation in order to improve the
rate of convergence [66].

Another important concept is stability, which implies that the solution should
remain bounded after a finite time. Stability is the discrete version of the definition
of well-posedness. As presented in Chapter 2, strongly hyperbolic systems are a
subclass of hyperbolic systems for which the initial-value problem is well-posed
in theL2 norm, defined as

‖uuun‖ =

√

√

√

√∆x

m
∑

k

|uuun
k |2

where∆x is the space discretization step,uuun
k is the variable at timen, grid pointk,

andm is total number of points. A system of discretized equations is stable, if the
norm of the numerical solution at a finite time is bounded by the norm att = 0.

A property of finite difference schemes is the Lax equivalence theorem, which
states that given a well-posed initial value problem and a consistent FD approxi-
mation, convergence to the exact solution is ensured by stability. The stability of
the FD scheme can be checked by performing a Von Newman analysis, which ver-
ifies that no spatial Fourier components in the system are growing exponentially
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with respect to time. One finds a condition which states that the numerical do-
main of dependence must be larger than the physical domain of dependence. This
translates into the Courant-Friedrich-Lewy condition (CFL),

max|λ|∆t ≤ ∆x, (5.1)

whereλ is the maximum eigenvalue of the characteristic matrix.

5.2 Centered Finite Volume Methods

The numerical study of the evolution of relativistic flows is a topic of great inter-
est in Astrophysics and Numerical Relativity (NR). The field of NR has recently
undergone an extraordinary progress after the development of robust codes able to
simulate real astrophysical scenarios, like stellar core collapse, collision of com-
pact objects and accretion onto compact objects.

The traditional approach in the numerical simulation of complex classical
flows are the HRSC. They are based on solutions of the local Riemann problem
(initial value problem with discontinuous initial data). HRSC have a reputation of
being computationally expensive, as they make explicit use of the characteristic
decomposition of the set of dynamical fields. They are commonly used only in the
evolution of matter fields in order to deal with shocks.

In the last years, simpler numerical schemes have been proposed, based on
centered finite volume (CFV) methods. These offer a more practical choice, as they
require only the values of the propagation speeds. Some complications still arise
if one tries to obtain more than second order space accuracy, as the reconstruction
process becomes computationally expensive.

These advanced methods have been developed for the field of Computational
Fluid Dynamics, but they can be adapted also to vacuum NR simulations when
dealing with steep gradients that mimic discontinuities [67]. Einstein’s vacuum
equations are quasilinear; it means that discontinuities can not spontaneously gen-
erate from smooth initial data. But this does not hold at a discrete level. If one
deals with steep gradient solutions, the jump between neighbor points can mimic
a discontinuous solution, leading to spurious oscillations that can crash the code.

We focused on developing a finite volume method that can be successfully
applied to both vacuum and matter general relativistic simulations, with limited
computational resources. Our CFV algorithm deals with piecewise continuous
solutions, arising in fluid dynamics, and with steep gradients, in black holes evo-
lutions. The method allows for third order space accuracy by using just piecewise
linear reconstruction. The proposed FV scheme come as an alternative to the fi-
nite differencing plus dissipation methods and can be interpreted as anadaptive
viscositygeneralization of the FD algorithms.



5.2 Centered Finite Volume Methods 75

5.2.1 Flux Formulae

The Einstein field equations can be expressed as a system of balance laws,

∂tuuu+ ∂iFFF
i = SSS.

This flux conservative form is well suited for FV discretization. The FV differs
from the FD approach, through the fact that one evolves the average of the dy-
namical fields in some elementary cells, instead of evolving just point values. For
simplicity reasons, the one-dimensional case will be presented in the following.

Figure 5.1. Schematic representation of a grid structure with elementary cells. The fluxFi in
each grid pointi is computed from the variablesui. The fluxFi+1/2 at an interface(i + 1/2)
can be calculated using the fluxesFi, Fi+1. Then the value of a variableui in the next time step
will be computed from the values of the fluxesFi−1/2, Fi+1/2 at the neighboring interfaces.

Considering a regular finite difference grid, the elementary cell can be chosen
as the interval(xi− 1

2
, xi+ 1

2
) centered in the grid pointxi. The dynamical fields

can be modeled as piecewise linear functions in every elementary cell, so that the
average values in the cells coincide with the value in the grid point enclosed in the
corresponding cell. The first order accurate FV discretization can be written as

uuun+1
i = uuun

i − ∆t

∆x
[FFF x

i+ 1
2

−FFF x
i− 1

2

] +SSSi∆t, (5.2)

whereuuun
i are the fields at timen, in the grid pointi, andFFF x are the corresponding

fluxes in the x direction, calculated at the interfaces of the cell centered in the grid
point i, Fig. (5.1).
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One can recover the standard second order FD method from this algorithm, by
choosing a simple average for the flux

FFF i+ 1
2

=
1

2
(FFF i +FFF i+1). (5.3)

These FD methods can not deal with steep gradients and in general develop high-
frequency noise that leads to instabilities. For that reason, FD is used in com-
bination with numerical dissipation, that suppresses the spurious high frequency
modes. The standard dissipation algorithms are not suited for dealing with discon-
tinuities.

An alternative to the FD approximation of hyperbolic conservation laws de-
signed to deal with discontinuous solutions, is based on the idea of solving the
Riemann problem at each cell interface. One example is the Godunov method,
a linear monotonicity preserving FV approximation which is only first order ac-
curate. In order to obtain higher order schemes, one had to construct non-linear
numerical methods, based on the concepts of slopes and limiters.

Figure 5.2. Schematic representation of the information computed at an interface. The left
predictionuL, of a variableu at the interface(i + 1/2), can be calculated using the variable
ui in the grid pointi and its slopeσi in the elementary cell(i − 1/2, i + 1/2). The right
predictionuR, of a variableu at the interface(i + 1/2), can be calculated using the variable
ui+1 in the grid point(i + 1) and its slopeσi+1 in the elementary cell(i − 1/2, i + 1/2).
The leftFL and rightFR fluxes at the interface are computed from the correspondinguL, uR

variables. Then the final fluxFi+1/2 at the interface is obtained fromFL, FR.

Instead of using Eq. (5.3), one can find a more general prescription for the
flux, of the form

FFF i+ 1
2

= f(uuuL,uuuR), (5.4)
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whereuuuL anduuuR are the left, respectively right, predictions of the dynamical field
at the chosen interface Fig. (5.2),

uuuL = uuui +
1

2
σi∆x, (5.5)

uuuR = uuui+1 −
1

2
σi+1∆x. (5.6)

They are calculated in respect to the slopeσ of the chosen field in the correspond-
ing cell Fig. (5.3). Following this idea, simple alternatives to HRSC schemes have
been proposed, for example the HLLE method, which require just the characteris-
tic speeds, not the full characteristic decomposition.

Figure 5.3. Schematic representation of the slopes. The slopeσi of a variable or flux in an
elementary cell(i − 1/2, i + 1/2), can be calculated using the corresponding leftσL and
right σR slopes. TheσL, σR can be computed from the values of the variables or fluxes in the
neighboring grid points.

An overview of flux formulas [22] can be enclosed in the following general
form:

fff(uuuL,uuuR) =
1

2
((I + ĨL)FFFL + (I − ĨR)FFFR + (QLuuuL −QRuuuR)), (5.7)

whereFFFL,R are the fluxes evaluated at the statesuuuL,R andI is the unit matrix. The
termsQL,R are referred in the literature asnumerical viscosity matrix.
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The matrices̃IL,R andQ̃L,R can be expressed as

ĨL,R =
d
∑

p=1

bplL,R
p rL,R

p ,

Q̃L,R =
d
∑

p=1

cplL,R
p rL,R

p ,

wherelp andrp are the left, respectively right eigenvectors, andd is the dimension
of the problem. For different flux formulae, the coefficientsbp andcp depend on
the eigenvaluesλp as follows:

bbbp cccp

HLLE :
ψ+ + ψ−
ψ+ − ψ−

,
1

2
(ψ+ − ψ−),

Roe : 0, | λp(ũuu) |,

Marquina : βp, αp(1 − β2
p),

MarquinaFF : 0, αp,

whereλ+ andλ− are the minimum and the maximum ofλp and

ψ+ = max(0, λR
+, λ

L
+),

ψ− = min(0, λR
−, λ

L
−),

αp = max(| λL
p |, | λR

p |),

βp =
1

2
(sgn(λL

p ), sgn(λR
p )).

The HLLE algorithm is the most simple case, as the coefficientsbp andcp are
independent ofp. Then taking into account the orthonormality relations between
the right and the left eigenvectors

d
∑

p=1

lprp = I,

the matrices̃IL,R andQ̃L,R are just the unit matrix multiplied by the corresponding
factors. The HLLE flux formula requires only the values of the maximum and
minimum propagation speeds, while the Roe and Marquina algorithms need the
full decomposition, namely the left and the right eigenvectors [22].
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Even simpler alternatives has been proposed, like the local Lax-Friedrichs
(LLF) flux formula

fff(uuuL,uuuR) =
1

2
[FFFL +FFFR + c(uuuL − uuuR)], (5.8)

where c depends on the characteristic speeds at the interface

c = max(λL, λR),

andλ is the absolute value of the highest characteristic speed.
A comparison with the centered FD methods leads to the conclusion that the

supplementary terms play the role of a numerical dissipation. It is worth notic-
ing that the values of the dissipation coefficients are prescribed by the numerical
algorithms, in contrast with the FD case where they are arbitrary parameters.

5.2.2 Flux Splitting Approach

Figure 5.4. Schematic representation of the flux splitting approach. The flux in a grid point
Fi is split in two components:F+ andF−. TheF− leads to a flux predictionFR, at the right
side of the interface(i − 1/2), using its slopeσ− in the elementary cell(i − 1/2, i + 1/2).
TheF+ leads to a flux predictionFL, at the left side of the interface(i +1/2), using its slope
σ+ in the elementary cell(i − 1/2, i + 1/2). Then the left and right predictions of the fluxes
FL, FR allow the calculation of the fluxesFi−1/2, Fi+1/2 at each interface.

In the flux formula Eq. (5.4) the information from the two sides of the interface
is combined in order to obtain a prediction of the flux at every interface. We
consider a different approach, in which the information is computed at the grid
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nodes, by selecting the components of the flux that will propagate in each direction.
This method is known as theflux splitting approach.

In view of this method, one can write the flux at a grid point as two simple
components

FFF+
i = FFF i + λiuuui, (5.9)

FFF−
i = FFF i − λiuuui, (5.10)

whereλi is the maximum eigenvalue computed in thei grid point. Then one
can reconstruct the flux at each neighbor interface by combining the one-sided
predictions

FFF i+ 1
2

=
1

2
(FFFL +FFFR). (5.11)

This method can be expressed as a modification of the LLF formula Eq. (5.8),
where the predictions from a grid pointi towards the left, respectively right inter-
faces are given by

fff(uuuL,uuuR) =
1

2
[FFFL +FFFR + λLuuuL − λRuuuR], (5.12)

and the left and the right fluxes can be written according to Eqs. (5.5) - (5.6) as

FFFL = FFF+
i +

1

2
σ+

i ∆x, (5.13)

FFFR = FFF−
i+1 −

1

2
σ−i+1∆x. (5.14)

The main difference is that in the flux splitting approach there is a clear separation
of the information coming from the left or right side of the interface. The informa-
tion for theF+

i propagates forward, as the one for theF−
i+1 backwards in respect

to the(i + 1
2) interface, Fig. (5.4). This offers a clear vision of the information

flux in the numerical algorithm.
There is still the problem of computing the slopes for the reconstruction of

each flux component. A linear piecewise reconstruction results generically into a
second order accurate algorithm [68], as given by the centered slope

σC =
1

2∆x
(uuui+1 − uuui−1). (5.15)

A more general second order algorithm can be obtained by using any average of
the left and right slopes

σL = (uuui − uuui−1)/∆x,

σR = (uuui+1 − uuui)/∆x.
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For some applications, second order accuracy is not enough, as the leading
third order error is of dispersion type, affecting the numerical propagation speeds.
As we saw in Chapter 4, the results of the standard numerical tests are significantly
improved when passing from second order FD to fourth order FD algorithms, com-
bined with third order accurate dissipation, where the result is a third order accu-
rate algorithm. In the standard FV approach, third-order accuracy can be obtained
by replacing the piecewise linear reconstruction with a piecewise parabolic one
(PPM). This increases the complexity of the algorithm and the computational cost
of the resulting implementation.

We use a simpler alternative, which takes advantage of the flux splitting ap-
proach Eqs. (5.9) - (5.10), and consider the resulting componentsFFF+ andFFF− as
independent dynamical fields, each one with its own slope, namely

σL
i = (FFF±

i −FFF±
i−1)/∆x, (5.16)

σR
i = (FFF±

i+1 −FFF±
i )/∆x. (5.17)

One can recover the second order accuracy by a combination

σ+
i =

1

2
σL

i +
1

2
σR

i , (5.18)

σ−i =
1

2
σL

i +
1

2
σR

i , (5.19)

but the surprising result is the slope choice

σ+
i =

1

3
σL

i +
2

3
σR

i , (5.20)

σ−i =
2

3
σL

i +
1

3
σR

i , (5.21)

that leads to a third order accurate algorithm (see the Appendix 9.5.3 for detailed
calculations). The choice of the coefficients is unique, any other combination leads
to second order accuracy.

Inserting the choice of slopes Eqs. (5.18) - (5.19) or Eqs. (5.20) - (5.21),
into the general slopes Eqs. (5.16) - (5.17), one can calculate the left and right
prediction Eqs. (5.13) - (5.14) and eventually the flux at the interface Eq. (5.11).
We can obtain this way third order accuracy by a piecewise linear reconstruction.
This result is a particularity of the flux splitting approach. The piecewise prefix
comes from the slope limiters that can be incorporated in order to deal with shocks
or other discontinuities.

This CFV algorithm [23] written in a simple form Eq. (5.2), can be easily
extended to the 3D case:

uuun+1
ijk = uuun

ijk −
∆t

∆x
[FFF x

i+ 1
2
−FFF x

i− 1
2
] − ∆t

∆y
[FFF y

j+ 1
2

−FFF y

j− 1
2

] −

−∆t

∆z
[FFF z

k+ 1
2

−FFF z
k− 1

2

] +SSSijk ∆t.
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One can view the 3D structure as a superposition of the 1D algorithm along every
space direction. The stability and monotonicity analysis presented in the following
subsection can also be generalized for the 3D case.

5.2.3 Adaptive Dissipation

One can notice that setting to zero theλ terms in Eqs. (5.9), (5.10), and using the
choice of slopes Eqs. (5.20), (5.21), the resulting algorithm is the standard fourth
order accurate FD method. The extraλ terms downgrade the space accuracy to
third order, the same effect that Kreiss Oliger dissipation terms have on the FD
scheme. These terms would be the correspondent of thenumerical viscosity matrix
from the HLLE formula Eq. (5.7).

The CFV derivative operator for the choice of slopes Eqs. (5.20), (5.21) can
be written in this simple form:

Dx(FFF i) =
1

12∆x
[−FFF i+2 + 8FFF i+1 − 8FFF i−1 +FFF i−2] +Dis(FFF i),

where the first part of the formula is just the centered fourth order FD algorithm.
The second part is a new dissipation term [24],

Disx(FFF i) =
1

12∆x
[λi+2uuui+2 − 4λi+1uuui+1 + 6λiuuui − 4λi−1uuui−1 + λi−2uuui−2],

which can be viewed as a generalization of the third order Kreiss Oliger dissipation
algorithm.

The standard second order FD algorithm can be recovered by setting to zero
both the slopes and theλ terms in Eqs. (5.9), (5.10), and it would be equivalent to
Eq. (5.3). The choice of slopes Eqs. (5.18), (5.19) leads to a derivative operator
equivalent to the standard second order FD, plus a dissipation term of the type
mentioned above.

This dissipation algorithm can be extended to the 3D case:

Disx(FFF x
i,j,k) =

1

12∆x
[λx

i+2,j,k uuui+2,j,k − 4λx
i+1,j,k uuui+1,j,k +

+ 6λx
i,j,k uuu

x
i,j,k − 4λx

i−1,j,k uuu
x
i−1,j,k + λx

i−2,j,k uuu
x
i−2,j,k],

whereλx is the maximum characteristic speed along the x axis, and analogous
formulae hold for the y and z axes.

Our CFV algorithm can be interpreted as anadaptive viscositymodification
of centered FD algorithms plus KO dissipation, offering a generalization of the
standard dissipation terms. As far as the slope limiters are not required, the CFV
method is just a centered FD plus a local dissipation term, which is automatically
adapted to the requirements of the numerical simulations.

This generalization procedure can be applied to Kreiss Oliger dissipation op-
erators, used in combination with FD methods, in order to obtain higher order
schemes.
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5.2.4 Stability and Monotonicity

We consider the Einstein equations in the form of a strongly hyperbolic system.
Then we have a complete set of eigenvectors and for each direction and we can
express the system as a set of simple advection equations for the characteristic
variables. In order to check the stability properties of our CFV algorithm described
in the previous subsections, it will be sufficient to consider a single advection
equation with a generic speedv. The corresponding flux can be written

F (uuu) = v uuu.

In a first order accurate approximation obtained with zero slopes, the corre-
sponding discretization will be given by replacing Eq. (5.11) in the general form
Eq. (5.2). The result is the linear three point algorithm:

uuun+1
i = uuun

i +
∆t

∆x

{

1

2
(λi+1 − vi+1)uuu

n
i+1 +

1

2
(λi−1 + vi−1)uuu

n
i−1 − λiuuu

n
i

}

.

(5.22)
Asλi is the absolute value of the maximum characteristic speed calculated in every
grid point, one can see that all the coefficients are positive if the Courant stability
condition Eq. (5.1) is satisfied. A more restrictive condition is necessary in the 3D
case, as we must consider all the spatial directions.

In the general case, the positivity the coefficients in the resulting CFV algo-
rithm, requires an extra factor in the Courant condition

λ
∆t

∆x
≤ 1

2
. (5.23)

At this point we take into account that we have considered just the elementary step
in the time evolution algorithm. The stability and monotonicity limits for the time
step will depend on the choice of the full evolution algorithm.

The positivity of all the coefficients ensure that the algorithm is monotonicity
preserving, no spurious numerical oscillations can appear, which implies stability.
The converse argument is not true, the stability of the algorithm does not ensure
monotonicity. The FD algorithms loose this property, as we can clearly see by
settingλ to zero in Eq. (5.22).

However, the monotonicity properties of the piecewise constant reconstruction
are not ensured in the piecewise linear case, as problems can arise in the steep
gradient regions. This could happen when the series of left{uL} or right {uR}
interface predictions show spurious peaks which were not present in the original
function. In the case of the centered slope Eq. (5.15), one can show that this will
occur only if the left and right slopes differ by a factor of three or more. This
would be the real meaning ofsteep gradientin the centered slope case.
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A way of preventing oscillations could be by enforcing that both left and right
predictions are in the interval limited by the left, respectively right point values.
This is equivalent of limited slopes

σlim = minmod(2σL, σ, 2σR), (5.24)

whereσ is the slope in a given cell. The limiters are constructed in such a way, as
to guarantee that the total variation of the numerical solution never increases. The
combined CFV plus limiter schemes are calledtotal variation diminishing(TVD),
as they do not allow spurious oscillations.

The TVD methods become only first order accurate near an extrema due to
the limiters. There exist other limiter methods that are essentially non oscillatory
(ENO) and allow for the variation to grow as long as it is bounded by an exponen-
tial. These methods are called total variation stable.

5.3 Discussion

We presented some of standard techniques currently used in Numerical Relativity
in order to solve the discretized Einstein equations. One commonly employs the
Method of Lines, where the spatial derivatives are provided by FD or FV methods
and the time integration is performed using Runge Kutta methods.

The main topic of this chapter refers to FV methods, in particular the CFV
algorithm developed by the Palma group. This algorithm is the first one in the
class of FV methods which allows third order accuracy by only piece-wise linear
reconstruction. It leads also to a generalized dissipation algorithm, which can be
successfully used in combination with FD methods.

This CVF algorithm used in combination with positive-coefficients RK meth-
ods, for example the third order RK (Appendix 9.4), ensures that the monotonicity
properties of the basic evolution step will be preserved by the resulting strong sta-
bility preserving algorithm (SSP). This nice property has though a disadvantage,
namely it imposes a limit on the∆t in order to preserve monotonicity Eq. (5.23).
In contrast, when one uses the FD methods for space discretization, the basic time
scheme is limited only by stability, not monotonicity. Moreover, the RK with non-
positive coefficients (for example the fourth order RK) used in combination with
the FD algorithms allows larger time steps.

The stability issues presented in this chapter, based on monotonicity results,
are valid only when applied to flux conservative systems. This is not entirely our
case, as the systems used in Numerical Relativity contain also source terms. These
terms do not belong to the principal part, so the positivity of the flux terms ensure
some form of stability. Nevertheless, the analogy with Fluid Dynamics is only
approximative and the use of slope limiters is a risk, as we could be removing
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from the flux part some features that are needed in order to compensate the source
part.

Our experience with the vacuum Einstein equations, based on numerical tests,
shows that more robust simulations are obtained when the limiters are switched off
and that the numerical dissipation built in the proposed CFV method [23] is suffi-
cient to control the high frequency modes and deal with steep gradients. Alterna-
tively, one can use the adaptive dissipation algorithm variant [24], in combination
with the standard FD methods.





Chapter 6

Black Hole Simulations

The study of black holes (BH) played for a long time a central role in Numerical
Relativity. This particular types of spacetime are the simplest models of gravitat-
ing bodies in General Relativity, as they represent vacuum solutions of the Einstein
equations. However, the numerical evolution of BH spacetimes implies complica-
tions associated with the presence of horizons, singularities and non-trivial topolo-
gies.

Black holes form starting from regular initial data, as they represent the final
state of the gravitational collapse of compact objects, like supernova core collapse
or neutron stars collisions. A problem of special interest in General Relativity
is that of binary black hole systems, which are considered to be one of the most
powerful sources of gravitational waves.

In this chapter, we consider different issues related with the numerical evolu-
tion of black hole spacetimes. The techniques for dealing with the BH singularity,
steep gradients formed in normal coordinates, and horizon location, are presented
in the context of a single black hole.

This chapter consists of two parts. The first part concerns the evolution of a
Schwarzschild BH in spherical symmetry. We study the approach to the stationary
state using the ’1+log’ slicing and the wormhole puncture technique for dealing
with the BH singularity. The central finite volume (CFV) methods presented in
Chapter 5 are employed for dealing with the steep gradients which arise in a BH
evolution with zero shift. We perform a comparison between our CFV scheme and
the standard finite difference (FD) method plus Kreiss Oliger (KO) dissipation,
and study the behavior in time of the convergence factor across the numerical grid,
inside and outside the apparent horizon.

The second part extends our study to a 3D Schwarzschild BH evolution. We
consider two approaches for dealing with the BH singularity, namely the puncture
technique and scalar field stuffing, and provide numerical evidence that they have
a similar approach to the stationary state, in the context of normal coordinates
and ’1+log’ slicing. We prove the efficiency of our CFV method and generalized

87
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dissipation algorithm in 3D simulations.

6.1 Black Hole in Spherical Symmetry

In this section we address problems related the evolution of a Schwarzschild black
hole in spherical symmetry.

In spherically symmetric spacetimes the equations of motion are greatly sim-
plified and the number of variables that must be evolved is significantly reduced.
Therefore it is relatively easy to study numerically the system, compared to three
dimensional simulations. Using high resolution is not a restriction, even without
employing complications related with mesh refinement (reflections arising from
refinement boundaries, interpolation between meshes). At the same time, of all
the symmetries that could be imposed to reduce the field equations to a set of par-
tial differential equations in one space dimension and time, spherical symmetry
is clearly the most appropriate for the study of isolated, gravitationally compact
objects.

6.1.1 Puncture Initial Data

The initial data for the typical puncture simulation is a black hole with a wormhole
topology Fig. (6.2). As we follow the coordinates toward one of the black holes,
we do not reach the black hole’s singularity but instead pass through a wormhole
to another exterior space and find another asymptotically flat region.

We consider such a puncture data in the form of the Schwarzschild metric in
isotropic coordinates, where the line element takes the form

ds2 = −
(

1 −M/(2r)

1 +M/(2r)

)2

dt2 +

(

1 +
M

2r

)4
(

dr2 + r2dΩ2
)

, (6.1)

anddΩ2 = dθ2 + (sin θ)2dφ2. The isotropic radial coordinater is related to the
Schwarzschild radial coordinate (area radius) byR =

√
gθθ.

One can notice thatR → ∞ for both large and smallr, so the isotropic coor-
dinater does not reach the physical singularity atR = 0. There is a minimum of
R = 2M at r = M/2. The two spaces are connected by a wormhole with a throat
atR = 2M . The pointr = 0, which represents the second asymptotically flat end
is referred to as the puncture.

Applying a coordinate transformation of the type

r =
M

2
exp(η),

one can obtain the form

ds2 = −(tanh η)2dt2 + 4M2(cosh η/2)4(dη2 + dΩ2). (6.2)
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Figure 6.1. Vertical section through an embedding diagram of a two-dimensional slice (t =
const., θ = π/2) of the Schwarzschild solution. The grey plot corresponds to the diagram
at time = 0, rescaled by a factor of 10, and the black one, attime = 100M. A wormhole
connects the two asymptotically flat ends. Notice how the throat of the wormhole stretches in
time forming a cylinder with radiusR ≈ 1.3M .

This choice aids in pushing the outer boundaries far from the (dynamical) region
of interest, as an evenly spaced grid inη corresponds to a geometrically increasing
spacing inr,

dr = rdη.

In these logarithmic coordinates the minimal surface is located atη = 0.
This type of initial data can be viewed as a wormhole connecting two asymp-

totically flat regions, where the isometry of the two sides of the wormhole is ex-
pressed by the reflection symmetry

η ↔ −η
Fig. (6.1). Numerical simulations can thus be restricted to positive values ofη and
one can use the reflection property in order to set proper inner boundary conditions
at the throat.

A very useful gauge-independent quantity in spherically symmetric spacetimes
is the mass aspect function, which approaches the ADM mass asr → ∞. It can
be computed in Schwarzschild coordinates(T,R), where the metric has a form

ds2 = −
(

1 − 2M

R

)

dT 2 +

(

1 − 2M

R

)−1

dR2 +R2dΩ2,
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Figure 6.2. Embedding diagram of a two-dimensional slice (t = 0, θ = π/2) of the
Schwarzschild solution. The distance to the rotation axis isR. A wormhole with the throat at
R = 2M connects the two asymptotically flat ends.
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Figure 6.3. Embedding diagram of a two-dimensional slice (t = 100, θ = π/2) of the
Schwarzschild solution. The distance to the rotation axis isR. The throat of the wormhole
stretches, forming a cylinder with radiusR ≈ 1.3M .
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and the constant M is the ADM mass of the system. Considering asgeometrical
invariant the square of the gradient of the areal radius,

∇aR∇aR = gab∇aR∇bR = gRR∇RR∇RR = 1 − 2M

R
,

the mass can be defined,

M =
R

2
(1 − gab∂aR∂bR).

In our coordinates it can be calculated as

M(t, η) =

√
gθθ

2
{1 + gθθ[(Kθ

θ)2 − gηη(Dηθ
θ)2]}, (6.3)

whereDηθ
θ = 1

2∂ηgθ
θ. The mass aspect function provides the mass inside a sphere

of radiusr at a fixed timet. It must be constant for a Schwarzschild spacetime in
any coordinate system, so it can be very useful in checking the accuracy of the
numerical simulations.

One can track the position of the apparent horizon using its definition, namely
a two-surface where outgoing light rays have zero expansion,

∇pñ
p +Kpqñ

pñq −K = 0. (6.4)

ñ is the outgoing unit normal, normalized asñkñk = 1 and

ñk =
nk

√

ninjgij
,

with nk = xpδk
p. In spherical symmetry, a simple calculation leads toñk =√

gηηδη
k. Then the location of the minimal surface can be calculated in this case

as the area where
f(η, t) = 2(

√
gηηDηθ

θ −Kθ
θ) = 0. (6.5)

6.1.2 Numerical Specifications and Gauge Choice

We perform numerical simulations with the Z3 system in spherical symmetry (see
Appendix 9.6.1 for the complete set of evolution equations). The free parameter
that couples the energy constraint in the evolution equation for the extrinsic curva-
ture isn = 1 (see Chapter 3). Similar results can be obtained with other values,
for examplen = 4/3, which leads to a system equivalent to a first order in space
variant of the BSSN, without the conformal decomposition.

The time evolution is performed with a third order Runge Kutta algorithm
(Appendix 9.4). We use for spatial discretization both finite difference plus Kreiss-
Oliger dissipation, and central volume methods (Appendix 9.5). The Courant fac-
tor isC = 0.5.
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Our evolution domain extends toη = 10M (r ≈ 11000M ). The treatment
of the boundaries is settled through a simple and standardghost pointtechnique.
In this approach, one populates the missing points at the boundary by copying the
time variation of the nearest neighbor, for every evolution variable.

The physical singularity associated with the black holes is not present in the
initial data, as our coordinates stop at the throat (η = 0 corresponds tor = M/2),
but it will be rapidly approached during the evolution, unless we choose a sin-
gularity avoiding condition. We choose as gauge conditions a slicing from the
Bona-Masso family Eq. (2.28) withf = 2/α, and normal coordinates Eq. (2.29).
The initial value of the lapse isα = 1.

6.1.3 Numerical Results and Comparison

The wormhole Fig. (6.2), can be pictured in an embedding diagram of a two-
dimensional slice (time = const., θ = π/2) of the Schwarzschild solution Fig.
(6.1). Initially, the throat is located atR = 2M .

We evolve the initial data using a foliation of the type,

∂tα = −2αK.

This can be viewed as an asymptotically maximal slicing condition, as it leads to
a time independent geometry that is maximally sliced (forK = 0 the lapse does
not evolve). During the evolution, the slices go the stationary ’1+log’ solution.
The throat stretches into an infinitely long cylinder with radiusR = 1.31241M ,
connecting the two asymptotically flat ends. The behavior illustrated in Fig. (6.3)
is in agreement with the one described in [69] for the wormhole geometry.

Performing long term simulations (up to 1000M) in this setting is a challenging
task, as the numerical methods have to deal with the steep profile of the lapse
function. Fig. (6.4) presents the lapse computed with our second and third order
CFV methods. The use of a higher order method leads to a steeper profile, the
same effect which appears by increasing the resolution, as the numerical solution
approaches the exact one.

A comparison between the CFV methods and the FD plus KO dissipation,
leads to the conclusion that the FD methods can not deal with steep gradients for
longer times. Even though the code does not crash, the FD plots in Fig. (6.4) show
that the numerical solution at 1000M has developed very large errors.

The lowest resolution used for our CFV method, that allows us to reach1000M
in this 1D BH simulations, isdx = 0.1. This is almost double than the minimum
resolution required by the FD methods in the same test. Even though the simula-
tion is performed in a low resolution grid, the profiles look smooth without the use
of slope limiters.

Studying the propagation speed profiles in Fig. (6.5), one can notice that the
maximum gauge speed decreases with time, as the lapse goes to zero in the interior
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Figure 6.4. Illustration of the Z3 lapse as a function of theη coordinate, for a Schwarzschild
black hole simulation in spherical symmetry. The plots represent the collapse of the lapse at
time = 50M and time = 1000M. Upper Panel: The lapse function is computed in sim-
ulations using the 2nd order CFV method, resolutiondx = 0.1 (continuous grey plot) and
dx = 0.05 (dashed grey plot), and the 3rd order CFV method, resolutiondx = 0.1 (dashed
black plot). Lower panel: The lapse function is computed in simulations using the 2nd order
FD method (grey plot) and the 4th order FD method plus 3rd order dissipation (black plot).
Both simulations were performed in a resolutiondx = 0.05, using 3rd order Kreiss Oliger
dissipation withσ = 0.02.
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Figure 6.5. Upper panel: Illustration of the maximum gauge speedα
p

f(α)gηη as a function
of the η coordinate, in a Schwarzschild black hole evolution using the ’1+log’ slicing. The
profiles are presented attime = 0 (black plot),time = 50M (dark-grey plot) andtime =
100M (light-grey plot). Lower panel: Illustration of the lapse function and apparent horizon
as a function of theη coordinate, in a Schwarzschild black hole evolution using the ’1+log’
slicing. The dashed plots represent the collapse front of the lapse and the vertical lines the
position of the apparent horizon, attime = 50M (black plots),time = 100M (dark-grey
plots),time = 1000M (light-grey plots).
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of the black hole. This feature appears because of our choice of radial coordinate.
A consequence is the fact that the Courant condition becomes less restrictive and it
allows for bigger time steps. However, we prefer to maintain the initial time step,
in order to have an extra safety factor.

6.1.4 Convergence and Error
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Figure 6.6. Illustration of theL2-norm of the error in the mass, plotted on a logarithmic scale
as a function of time. Left panel: The dark-grey plot correspond to a simulations using the
2nd order FD algorithm without dissipation, which crashes aroundtime = 100M. The light-
grey plot corresponds to the 2nd order FD method plus 3rd order Kreiss Oliger dissipation and
the black plot to the 2nd order CFV method. Right panel: The dark-grey plot corresponds
to a simulation using the 4th order FD algorithm without dissipation, which has the smallest
errors, but crashes aroundtime = 80M. The light-grey plot corresponds to the 4th order FD
method plus 3rd order accurate Kreiss Oliger dissipation, and the black plot to the 3rd order
CFV method.

We monitor the behavior of the error in the mass, by plotting theL2-norm of
the difference between the computed and the exact mass as a function of time Fig.
(6.6). One can notice that the smallest errors correspond to the standard second
order FD algorithm. However, this simulation crashes aroundtime = 100M, after
developing high frequency noise. In long runs, up totime = 1000M, the second
order CFV method shows significantly smaller errors than the second order FD
algorithm plus third order Kreiss Oliger dissipation. A correct comparison can be
performed, as all three schemes are second order convergent Fig. (6.7).

We perform a similar comparison between theL2-norms of the mass error
function obtained with the 3rd order CFV algorithm and the 4th order FD method,
both with and without 3rd order Kreiss Oliger dissipation. The lowest errors cor-
respond to the standard 4th order FD method, which later develops high frequency
oscillations and crashes aroundtime = 80M. The 3rd order CFV algorithm leads
to accurate long term simulations, as we can observe in Fig. (6.6).
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Figure 6.7. Illustration of the convergence factor in the mass, as a function of time. The
convergence factor is calculated using theL2-norms of the differences between the masses at
three resolutionsdx = 0.05, 0.025, 0.0125. Left panel: The convergence plots correspond to
simulations using the 2nd order (grey dots) and the 3rd order CFV methods (black dots). Right
panel: The convergence plots correspond to simulations using the 2nd order FD method (grey
dots) and the 4th order FD method plus 3rd order Kreiss Oliger dissipation (black dots).

As the leading error order in the 4th order FD plus 3rd order KO scheme is
given by the dissipation terms, one could in principal lower the viscosity coefficient
in order to obtain more accurate results. However this coefficient can be modified
only in certain stability limits depending on the specific simulation. In our case,
lowering more the viscosity coefficient would result in the appearance of high
frequency noise, which leads to premature code crashing. This error comparison
does not depend on the resolution, as both schemes show third order accuracy,
proven by the convergence tests in Fig. (6.7).

The need to employ dissipation could be avoided by increasing the grid reso-
lution in order to solve the steep profile of the collapse front. This way, one can
obtain long evolutions depending on the available computational power. However,
this is not an option in 3D, where we require a more efficient management of the
computational resources. Then we are forced to appeal to dissipation, either the
one intrinsically built in the CFV methods, or the artificial one that is currently
used in combination with the FD methods.

The effect of the dissipation is damping the sharp features specific to the high
frequency noise. One can get away with solving the collapse front in a limited
resolution, but the price to pay is more numerical error. The adaptive viscosity built
in the CFV method provides a compromise between accuracy and computational
efficiency.

The convergence plots are presented early in the evolution (untiltime = 50M),
as at later times large errors develop the inner zones, for both CFV and FD simula-
tions. The reason is not the failure of the algorithm, but it is rather a consequence
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Figure 6.8. Illustration of the local convergence factor in the Mass, as a function of theη
coordinate, in a simulation using the 3rd order CFV method. The grey plots correspond to
the difference between the middledx = 0.025 and high resolutionsdx = 0.0125, while
the black plots represent the rescaled difference between the coarsedx = 0.05 and middle
resolutionsdx = 0.025. Upper panels (time = 10M): A convergence factor of 3 is obtained
in the interior BH region where the dissipation terms are active (left panel), and a factor of 4 in
the outer region where the dissipation parameter is close to zero (right panel). Middle panels
(time = 50M): The convergence factor starts downgrading to a value of 2.7 in the regions
close to the apparent horizon (left panel), while keeping a value of 4 in the outer region (right
panel). Lower panels (time = 100M): The convergence factor drops to a value of 1.6 in the
regions close to the apparent horizon (left panel), while keeping a value of 4 in the outer region
(right panel).
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of the large errors in a highly nonlinear context. Further investigation indicates a
downgrade of convergence around the collapse front, while the outer region keeps
the proper convergence rate Fig. (6.8). Convergence is lost both inside the ap-
parent horizon (AH) and in the outer points close to the AH. Using the ’1+log’
singularity avoiding slicing, the collapse front of the lapse function coincides with
the position of the AH, Fig. (6.5). So the downgrade of the convergence factor at
the location of the AH can be seen as an effect of the numerical method dealing
with steep gradients.

The outer boundary also shows a fluctuation in the convergence order, but this
problem remains localized in few boundary points and does not extend throughout
the domain. As the physically relevant part of the spacetime is the outer region,
this partial loss of convergence is not considered problematic. A similar behav-
ior appears when using the FD plus KO dissipation [12], and it indicates that the
wave extraction zone should be located away both from the outer boundary and
the collapse front.

6.1.5 Discussion

The numerical tests presented in this section show that our CFV algorithm per-
forms well even at low resolutions (dx = 0.1), which is an advantage that the
other standard FD methods can not offer. However, at low resolutions the perfor-
mance of the system depends on the way the system is written. More explicit, if
one uses the system with all indices covariant, the results obtained are quite differ-
ent than the ones obtained with the same system, but written with mixed indices.
In 1D simulations, one always has enough computational resources to improve
resolution and show the equivalence of the two approaches. This is not the case in
3D, at least not in single grid numerical simulations.

Performing a comparison between different numerical techniques currently
used, we showed that our CFV numerical method allows for longer and more
accurate evolutions. The 1D spherically symmetric case provides just the initial
step in setting up numerical methods suitable to address the evolution of the full
Einstein equations [23,54].

We stress the idea that these CFV methods are useful in evolving smooth so-
lutions of quasi-linear strongly hyperbolic systems, as the full non-linear Einstein
equations in vacuum when written in flux conservative form. Although the main
motivation of this work is to present techniques for the numerical simulation of the
Einstein equations, the methods presented could be applied to any system of this
form.

Moreover, in vacuum cases, one can use the CFV method in the form of FD
plus the adaptive dissipation algorithm (presented in Section 5.2.3). As long as
one does not require the use of limiters, the two approaches are equivalent and can
be applied even to systems implemented in a non flux-conservative form.
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6.2 Black Hole in 3D

One of the most important problems when dealing with black holes spacetimes
is the presence of singularities, where the geometric quantities become infinite.
The physical singularity can be dealt with by using different techniques like ex-
cision, puncture and stuffing. Excision consists in cutting out a region inside the
black hole apparent horizon, in a consistent way. As this is a rather numerically
than analytically challenging task, we will focus in the following on the other two
approaches.

In the puncture approach, one of the asymptotically flat regions is compact-
ified, so that its spatial infinity is transformed into a single point. The puncture
data is smooth everywhere, except the metric factor, which diverges near the sin-
gularity. However, if one prefers to deal with non-singular initial data, one can
use the stuffing technique and replace the vacuum interior of the black hole by a
singularity-free matter solution.

In this section I will present an analytical and numerical comparison between
the two approaches, in the context of a 3D Schwarzschild black hole evolution in
normal coordinates.

We perform numerical simulations using the Z4 system, with the adjustments
presented in Subsection 3.1.1, which turned out to be crucial for long-term sta-
bility. Our gauge choice is a singularity avoiding slicing condition and normal
coordinates, namely

∂tα = α2f(α) (K −mθ),

∂tβ
i = 0.

We choose a value ofm = 2, as the evolution equation for the combination(K −
2θ) corresponds to the BSSN evolution equation forK. The gauge parameter is set
to f = 2/α, the most common choice in BH simulations with the BSSN system,
due to its strong singularity avoidance properties. The behavior of the system with
various choices of gauge is discussed in detail in the Chapters 8 and 9.

6.2.1 Scalar Field Stuffing

6.2.1.a Initial Data

We consider as initial data the standard wormhole puncture metric Eq. (6.1), for
which the interior region is isometric to the exterior one. Then the spatial part of
the line element in isotropic coordinates can be written as

dl2 = ψ4δijdx
idxj, (6.6)

whereψ = 1 + M
2r , M is the mass andr =

√

x2 + y2 + z2. The Schwarzschild
radial coordinateR is related with the isotropic radial coordinate byR = ψ2r. The
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Figure 6.9. Vertical section through an embedding diagram of a two-dimensional slice
(t = const., θ = π/2) of the Schwarzschild solution with scalar field stuffing. The black
dashed plots correspond to a scalar field given by Eq. (6.15), and the grey continuous plots to
Eq. (6.19). The plots are presented attime = 0, rescaled by a factor of 5, andtime = 100M.
Notice the smooth matching in the initial data at the throatR = 2M . The second asymptoti-
cally flat end has been replaced by a singularity-free matter solution. At later times a cylinder
with radiusR ≈ 1.3M forms and the behavior is similar to the one presented in Fig. (6.1).

valuer = M/2 marks the location of the apparent horizon andr = 0 is the image
of space infinity.

Our numerical test are based on the ’wormhole’ type of puncture data for black
hole evolutions, where the singularity in the conformal factor isψ ∼ 1/r. The
typical choice in current black hole evolutions is the ’trumpet’ data, where the sin-
gularity is milderψ ∼ 1/

√
r [69]. However, most of our simulations are following

thestuffed black holeapproach [70], where we match a scalar field in the interior
BH region, such that the metric becomes regular inside the horizon Fig. (6.12).
The procedure is described in the following.

6.2.1.b Matter Terms

The stress-energy tensor associated to the ’stuffed’ scalar field can be written as

Tµν = φµφν − gµν

2
(gτρφτφρ), (6.7)
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Figure 6.10. Embedding diagram of a two-dimensional slice (t = 0, θ = π/2) of the
Schwarzschild solution with scalar field stuffing. The location of the throat is atR = 2M
and the distance to the rotation axis isR. The second asymptotically flat end, present in Fig.
(6.2), has been replaced by a singularity-free matter solution.
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Figure 6.11. Embedding diagram of a two-dimensional slice (t = 100, θ = π/2) of the
Schwarzschild solution with scalar field stuffing. An infinitely long cylinder with radiusR ≈
1.3M forms and the behavior is similar to the one presented in Fig. (6.3).
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whereφµ = ∂µφ. The scalar field can be decomposed in spatial and normal
components as follows

φi = ∂iφ, φn = nµφµ = − 1

α
(φt − βpφp).

Performing a 3+1 decomposition of Eq. (6.7), and using the definitions Eqs.
(2.20) - (2.22), we obtain the components ofTµν in terms of the scalar field:

τ =
1

2
(φn

2 + φpφp +
βp

α
φpφn),

Si = φnφi,

Sij = φiφj +
1

2
gij(φn

2 − φpφp −
βp

2α
φnφp).

These matter terms enter in the sources of the Einstein field equations (2.10).

6.2.1.c Scalar Field Evolution Equations

An evolution equation for the scalar field is given by the stress-energy tensor con-
servation Eq. (2.8). This leads to a scalar wave equation forφ,

�φ =
1√
g
∂µ[

√
ggµνφν ] = 0. (6.8)

whereg is the determinant of the spacetime metric.
A first order version of the flux conservative evolution equations can be ob-

tained by considering the first derivativesφi = ∂iφ andφt = ∂tφ as independent
quantities,

∂tφi + ∂i[−φt] = 0,

∂tFφ + ∂p[
√
g(gpqφq −

βp

α2
φt)] = 0, (6.9)

whereFφ = −
√

g

α2 (φt − βpφp). The principal part of the matter evolution system
is fully decoupled from that of the field equations.

6.2.1.d Matching Technique

The initial data must satisfy the energy and momentum constraints Eqs. (3.5, 3.6),
whereθ andZi are set to zero. In the time symmetric caseKij = 0, the constraints
translate into

R = 16πτ, (6.10)

0 = φnφi. (6.11)
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Figure 6.12. Illustration of the initial data for a Schwarzschild black hole in isotropic coor-
dinates. The black dashed curves correspond to a scalar field matching given by Eq. (6.15)
and the grey continuous ones, by Eq. (6.19). Left panel: The metric componentgxx on the
x-axis. Note the smooth matching in the Schwarzschild metric between the interior region,
which contains the scalar field, and the exterior region. The matching point isr = M/2,
respectivelyx = 0.5 in this figure. Right panel: The scalar field variableFφ on the x-axis.

The momentum constraint Eq. (6.11) can be satisfied by consideringφi to be zero
everywhere on the initial time slice, while the energy constraint leads to a condition
for the time component of scalar field.

In order to calculate the energy constraint Eq. (6.10), we consider the line
element Eq. (6.6) withm = m(r). We assume a constant mass value for the black
hole exterior, such that the energy constraint will be satisfied forτ = 0. In the
interior region, we choose the following form for the second radial derivative of
the mass

m′′(r) = µ(1 − cos(4πr/M)), (6.12)

whereµ is a constant. Imposing matching conditions at the center and the throat,

r = 0 : m = m′′ = 0, (6.13)

r =
M

2
: m = M, m′ = m′′ = 0, (6.14)

one can calculate the integration constants and obtainm(r).
Then the metric factor takes the form

ψ = 1 +
4r − (8/M)(r2/2 + (M/(4π))2(cos(4πr/M) − 1))

2r
, (6.15)

and the Laplacian ofψ can be written as

∆ψ =
1

r2
∂r(r

2ψ′) =
m′′(r)

2r
. (6.16)
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On the other hand, from the energy constraint, where the scalar field energy density
is τ = (φt/α)2/2 andK = 0 initially, one can write in the conformally flat case,

∆ψ = −2πτψ5. (6.17)

Using the two equalities for the metric factor, the initial data for the time derivative
of the scalar field can be computed as

φt = 2α

√

1 − cos(4πr/M)

πrMψ5
. (6.18)

The initial data ofFφ is presented in Fig. (6.12).
We present also an alternative scalar field initial data, for later comparison of

numerical results. The mass can be chosen as

m(r) = M

[

1 +
21

4

(

2r

M
− 1

)5

+
49

8

(

2r

M
− 1

)6

+
15

8

(

2r

M
− 1

)7
]

,

(6.19)
such that the matching conditions Eqs. (6.13), (6.14) are satisfied.

6.2.2 Black Hole Evolution

6.2.2.a Numerical Setting

We performed numerical simulations in an uniform grid, with resolutionsdx = 0.1
anddx = 0.05, boundaries at10M and20M (no mesh refinement). We use the 4th
and 6th order centered FD methods, in combination with the corresponding order
adaptive dissipation algorithm (derived from our CFV method, Section 5.2.3). The
time integration algorithm is a 3rd order Runge Kutta method (Appendix 9.4).

The position of the apparent horizon can be calculated using Eq. (6.4) written
as

gpq∂pñq − 2ñlDkqpg
kqgpl + ñlDpqkg

plgqk +Kpqg
ipgqj ñiñj −K = 0,

with

gpq∂pñq =
gkk

√
npnqgpq

− 1

npnqgpq
+

Dkijnkninj

(npnqgpq)3/2
.

Considering just the x-axis, where the normal is defined asñx = ( 1√
gxx , 0, 0) and

nx = (x, 0, 0), one can write the equation in a simple way,

gyy + gzz

|x|√gxx
+
Dpqlg

pxgqxglx

gxx
√
gxx

−2
Dlpqg

lqgpx

√
gxx

+
Dplqg

pxgql

√
gxx

+
Kpqg

pxgqx

gxx
−K = 0.

This formula will be used to compute the apparent horizon location in our numer-
ical simulations.
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6.2.2.b Numerical Results

The evolution of the black hole initial data presented in the previous section, can be
viewed in an embedding diagram of a two-dimensional slice (time = const., θ =
π/2) of the Schwarzschild solution Fig. (6.9). The singularity atr = 0 is replaced
with a regular solution. The matching of the scalar field initial data is done at the
throatR = 2M . At later times, a cylinder with radiusR = 1.31241M is formed,
following an evolution similar to the one described in Fig. (6.1). Even though
there is a difference between the initial slices in Fig. (6.9), as we use different
scalar fields, the evolution shows an identical behavior.

Our observations are in agreement with the study presented in [69], where
the numerical evolution of ’1+log’ foliations of the Schwarzschild solution is dis-
cussed in the context of the puncture method. We conclude that the behavior of
standard Schwarzschild data in the ’1+log’ gauge is generally described by Fig.
(6.9), whether one chooses to deal with the singularity by employing the puncture
technique or one appeals to any scalar field content.

This behavior is expected, as the initial profile of the scalar field is matched
inside the apparent horizon and it remains confined in the interior black hole region
during the evolution. This can be noticed in the energy density profiles in the
right panel of Fig. (6.13). In the left panel of the same figure, one can observe
the collapse front of the lapse and the apparent horizon. As the gauge speed is
α
√

f(α)gxx, with f(α) = 2/α, the upper part of the collapse front moves faster
then the apparent horizon, which travels at the speed of lightα

√
gxx.

The dynamics of the lapse function in a Schwarzschild black hole evolution
with scalar field matching can be viewed in Fig. (6.14). We notice that higher
order methods lead to steeper profiles and slower propagation of the collapse front.
The differences in the front propagation speed clearly grow in time, although the
plot att = 40M is affected by the dissipative effect of the boundaries. This effect
of steeper profiles was present also in our simulations in spherical symmetry, and
it does not create stability problems. We can perform long term simulations, until
the collapse front gets out of the computational domain.

We present also a plot of the lapse function obtained in a simulation using the
third order algorithm Fig. (6.14), with double resolutiondx = 0.05 in a smaller
computational domain of10M . The position and slope of the collapse front are
similar to the ones obtained using the fifth order algorithm, with a resolutiondx =
0.1. This means that the accuracy of the numerical simulation can be significantly
improved by employing higher order spatial discretization schemes.

Note however that higher order algorithms are known to be less robust [71]. As
the profiles get steeper, the risk of under-resolution at the collapse front increases,
so the minimum resolution required by a higher order algorithm is more expensive
than for the minimum resolution for lower order methods. In this case, the fifth
order algorithm is a convenient choice for thedx = 0.1M resolution in isotropic



106 Black Hole Simulations

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

t = 30

t = 20

t = 10

t = 1α

x

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

t = 10

t = 1

t = 0

x

τ

Figure 6.13. Upper panel: Illustration of the Z4 lapse function on the x-axis, in a 3D
Schwarzschild black hole evolution with scalar field stuffing. The dashed plots represent
the collapse front of the lapse and the vertical lines the position of the apparent horizon, at
time = 1M (black plots),time = 10M (dark-grey plots),time = 20M (medium-grey
plots), time = 30M (light-grey plots). Lower panel: Illustration of Z4 energy density on
the x-axis, in a 3D Schwarzschild black hole evolution with scalar field stuffing, attime = 0
(black plot),time = 1M (dark-grey plot) andtime = 10M (light-grey plot).
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Figure 6.14. Illustration of the Z4 lapse function on the x-axis, in a 3D simulation of a
Schwarzschild black hole with scalar field stuffing and ’1+log’ slicing. Upper panel: The
collapse of the lapse function is presented fromtime = 10M to 40M in intervals of10M ,
in a simulation with resolutiondx = 0.1. The continuous plots correspond to a boundary set
at 10M and the dashed plots, at20M . Lower panel: The collapse of the lapse function is
presented attime = 20M and40M , in a simulation with resolutiondx = 0.1, using 3rd
order (dashed grey plot) and 5th order (dashed black plot) methods. Notice that the higher
order method leads to a slope steepening and a slower propagation of the collapse front. The
same effect is visible when increasing the resolution todx = 0.05 (continuous grey plot).
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coordinates.
A similar evolution, using the puncture data, is presented in Fig. (6.15). One

can notice that the two collapse fronts are almost identical, so the success of the
simulations does not depend crucially on the treatment of the singularity. The key
ingredients are most probably the numerical methods employed and the analytical
properties of the system.

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

puncture

sc. field

α

D

Figure 6.15. Illustration of the Z4 lapse function on the diagonal, in a 3D Schwarzschild
black hole evolution, with resolutiondx = 0.05. The collapse of the lapse is presented from
time = 10M to 30M in intervals of10M . The black plots correspond to an evolution with
scalar field stuffing and the grey plots to a puncture evolution.

One can notice that our isotropic simulations are limited by the vicinity of the
boundary. We appeal to the space coordinate freedom, switching to logarithmic
coordinates, defined as

r = L sinh(R/L),

whereR is the new radial coordinate andL the length scale factor. We perform
long-term numerical simulations withL = 1.5M , such thatR = 20M in these
logarithmic coordinates corresponds tor = 463000M in the original isotropic
coordinates.

The collapse front is safely away from the boundary, even at late times Fig.
(6.16). We stopped the simulation att = 1000M without any sign of instability.
This provides a new benchmark for Numerical Relativity codes, namely a long-
term simulation of a single black hole in normal coordinates, without excision. It
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shows that a non-vanishing shift prescription is not a requisite for code stability in
black hole simulations.
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Figure 6.16. Illustration of the Z4 lapse function on the xy-plane, in a 3D Schwarzschild
black hole evolution with scalar field stuffing. The collapse of the lapse is presented attime =
1000M , with resolutiondx = 0.1. Only one of every ten points is shown along each direction.

6.2.3 Discussion

In this chapter, we presented the first long term simulation of a Schwarzschild
black hole, with singularity avoiding ’1+log’ gauge in normal coordinates with-
out excision. We developed a geometrical picture of the slicings approaching the
stationary state, for situations where the treatment of the singularity involves both
scalar field stuffing and the puncture technique.

Our system is based on a first order flux conservative version of the Z4 for-
malism (Section 3.1.1), that is adjusted for dealing with constraint violations. The
implementation uses a family of robust, cost-efficient, finite difference adaptive
dissipation algorithms (Section 5.2.3).

In a similar setting, the simulations performed with the BSSN system are re-
ported to crash aroundt = 40M [72]. The success of the BSSN in long term dy-
namical simulations of a single black hole without excision, relies completely on
a specific combination of the ’1+log’ and ’Gamma-driver’ gauge conditions. The
choice of lapse is understandable, as dealing with the collapse singularity, without
the use of excision, requires a singularity avoiding slicing. But this a property of
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the time coordinate, which should be independent of the shiftprescription. In the
spirit of General Relativity, we expect a single black hole numerical code to work
also in normal coordinates.

A further comparison with the old second order Bona-Masso formalism [73],
shows that the steep profiles produced by slice stretching (radial expansion) could
be evolved only by employing FV methods with slope limiters. Our numerical
method is an efficient CFV algorithm, which does not require characteristic de-
composition, it is easy to implement and not expensive in terms of computational
costs. As the limiters are not required in the vacuum case, the method is compara-
ble with a finite difference plus adaptive dissipation algorithm.

On an analytical level, both the BSSN and the Bona-Masso require a conformal
decomposition of the spatial metric and trace-cleaning (the trace of the extrinsic
curvature is set to zero). The numerical experience with the Bona-Masso system
shows that spurious numerical trace modes arise in the trace-free part of the ex-
trinsic curvature [73]. In our Z4 simulations, both the plain metric and extrinsic
curvature can be used without any additional trace cleaning mechanisms.

The numerical results show that the Z4 implementation has a very good perfor-
mance not only in the standard Numerical Relativity tests (Chapter 4), but also in
black hole simulations [54], using both scalar field stuffing and the puncture tech-
nique. The code behaves well with different slicing conditions from the ’1+log’
family and is not especially tuned for normal coordinates, as we will present in
Chapter 9 simulations with non-vanishing shift. However, our numerical simula-
tions require further technical developments, like improving the boundary treat-
ment and using mesh refinement techniques.



Chapter 7

Boson Stars

Dark matter and dark energy are believed to account for more than90% of the
mass in the universe. The existence of dark matter was postulated since 1933, by
astronomers who observed that distant galaxies must be held together by a huge
gravitational pull caused by some invisible form of matter. It gained the name
”dark matter” because it is undetectable by its emitted radiation, but its presence
can be inferred from gravitational effects on visible matter.

The observed phenomena which imply the presence of dark matter include the
rotational speeds of galaxies, orbital velocities of galaxies in clusters, gravitational
lensing of background objects by galaxy clusters and the temperature distribution
of hot gas in galaxies and clusters of galaxies. Dark matter also plays a central
role in structure formation and galaxy evolution, and has measurable effects on
the anisotropy of the cosmic microwave background. One of the most convincing
evidence comes from the observations of the rotational curves of galaxies. These
usually exhibit a characteristic flat behavior at large distances [74].

Even though direct detection of dark matter has not been confirmed yet, there
are promising detections which lead to the believe that dark matter is more then a
theoretical concept. Recent observations [75] report an excess of galactic cosmic-
ray electrons at high energies which could arise from (annihilation of) dark matter
particles. A possible laboratory detection of dark matter particles hitting the Earth
has been announced this year by the DAMA collaboration [76]. Even though sci-
entists belive that this is not just a statistical fluke, the result should be confirmed
by other research groups.

Determining the nature of the missing mass in the universe is one of the most
important problems in modern cosmology and particle physics. A large number of
different particles have been proposed as candidates for dark matter. We focus on
scalar fields dark matter models, in which the particle is a massive spinless boson.

The boson particles can collapse into the same quantum state of the gravita-
tional potential to form a Bose Einstein condensate. In these configurations, the
quantum effects become apparent even on a macroscopic scale. One of these Bose
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Einstein condensate is a compact gravitating object, named boson star. Boson stars
are solutions of the Einstein equations that describe a family of self-gravitating
scalar field configurations within General Relativity.

In this chapter we present boson stars evolutions performed with the Einstein-
Klein-Gordon system, using as initial data several complex scalar fields, following
the classical approximation. We show a brief description of how the initial data for
the mixed states is constructed, and study these models in relativistic evolutions.
The results are focused on two models. In the first one, we add a massless scalar
field perturbation to a model of ground configuration and follow the evolution in
order to see the effect of the perturbation on the stability of the configuration. In
the second one, we study the evolution of Mixed State Boson Stars (MSBS) under
perturbations, identify the unstable models and determine the final state of the
configurations. We analyze the coupling phase and the growth rate of the unstable
configurations, in order to find the separation between stable and unstable states.

7.1 Theoretical Aspects

Boson stars are self-gravitating scalar field objects, for which the gravity attraction
balances the dispersive character of the scalar field. The treatment of boson stars
follows two different approaches, the first settled by Kaup [77] and the latest by
Ruffini and Bonazzola [32]. The one developed in [77] is a completely classical
treatment with a massive complex scalar field which is minimally coupled to grav-
ity. The second one [32], also known as semiclassical limit, adopts a real quantized
scalar field though maintaining the geometry as a classical entity. It turns out that
the two approaches lead to the same self-gravitating system. Until now, the only
known stable boson stars are made of ground state scalar fields. The associated
mass density profiles decay exponentially asr → ∞, making it difficult to fit the
flat rotational curves of most galaxies.

We use a generalization of boson stars which was previously pointed out in
[32]. The idea is to consider a system of bosons which are not all in the ground
state, but formed by particles which are coexisting in different states. In this view,
the MSBS can be seen as a collection of complex scalar fields, one for each state,
coupled only through gravity.

Our study is focused on the properties of these mixed (ground-excited) state
configurations and their possibility to model dark matter in galaxy halos (see [33]
for a recent review). For a single boson star without self-interaction, the only
free parameters are the mass of the boson particlem and the central value of the
scalar fieldφ(r = 0), which determines the compactness of the object (ie, ratio
of total mass over radius) in adimensional units. There have been several attempts
to fit these parameters, with different levels of success. By allowing more general
MSBS, there are extra free parameters coming from the different fractions between
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the ground and excited states. These parameters change not only the total mass,
but also the compactness of the final object. The extra degrees of freedom may
allow a better fit of the models to different galaxies.

An important point of our study is the stability of the models, which is a nec-
essary condition in order to be considered models of galaxy halos. A single boson
star in the ground state is stable against perturbations, if its mass is below a max-
imum allowed valueMmax, result that has been shown both by analytical [78,79]
and numerical [31] studies. On the other hand, a single boson star in the excited
state is unstable even forM < Mmax, since small perturbations drive the star ei-
ther to collapse to a black hole or to decay to the ground state. From these results
one could expect that the MSBS states are unstable, since they contain at least one
excited unstable state. However, our numerical results show that at least a subdo-
main of the solution space gives stable solutions. Roughly speaking, the ground
state produces a deeper gravitational potential which can be enough to stabilize the
excited state.

7.1.1 The Einstein-Klein-Gordon System

We consider a real massive scalar field withN different excited states, which is
equivalent to considering a collection ofN complex scalar fields, one for each
state, coupled only through gravity.

In a curved spacetime, the dynamics of these MSBS can be described by the
following Lagrangian density,

L = − 1

16π
R+

N
∑

n=1

1

2

[

gµν∂µφ̄
(n)∂νφ

(n) + V

(

∣

∣

∣
φ(n)

∣

∣

∣

2
)]

, (7.1)

whereφ(n) are the scalar fields,̄φ(n) their complex conjugate, andV (|φ(n)|2) a
potential depending only on|φ(n)|2.

This Lagrangian gives rise to the equations determining the evolution of the
metric (Einstein equations) and those governing the scalar field behavior (Klein-
Gordon equations).

7.1.1.a The Klein-Gordon Equations

The variation of the Lagrangian (7.1) with respect to each scalar fieldφ(n) leads to
a set of Klein-Gordon equations, which are coupled through gravity,

�φ(n) =
dV

d|φ(n)|2φ
(n). (7.2)

We restrict ourselves to the free field case where the potential takes the form

V (|φ(n)|2) = m2 |φ(n)|2 , (7.3)
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with m aparameter that can be identified with the bare mass of the field theory.
The complex scalar field can written as

φ = φR − iφI ,

φ̄ = φR + iφI ,

whereφR is the real part,φI provides the imaginary part and̄φ is the complex
conjugate. A reduction to first order can be performed by defining as evolution
variables,

φ
(n)
t =

√
hrr

α
∂tφ

(n),

φ(n)
r = ∂rφ

(n).

Then the Klein-Gordon system can be written for each fieldφ ≡ φ(n) as

∂tφ
R,I = α

√
hrrφR,I

t , (7.4)

∂tφ
R,I
r = ∂r[α

√
hrrφR,I

t ], (7.5)

∂tφ
R,I
t = ∂r[α

√
hrrφR,I

r ] + α
√
hrr[2(Drθ

θ + 1/r)φR,I
r +

+2
√

hrrKθ
θφR,I

t −m2hrrφ
R,I ]. (7.6)

The matter Lagrangian is invariant under global U(1) transformations:

φ(n) → φ(n)eiϕ
(n)
.

This symmetry implies that there are a set of Noether currents, one for each field,

Jµ =
i

2

√−ggµν [φ̄ ∂νφ− φ ∂ν φ̄],

satisfying the conservation law

∇µJ
µ =

1√
g
∂µ(

√
gJµ) = 0.

This law ensures the conservation of the charge densityÑ = Jµnµ, which can
be computed as

Ñ = αJ0 =
1√
hrr

(φIφR
t − φRφI

t ).

As discussed in [32], the Noether charge

N =

∫ √
h Ñ dx3 = 4π

∫

r2Ñ
√

hrrhθθdr, (7.7)

can be associated with the number of bosonic particles.



7.1 Theoretical Aspects 115

7.1.1.b The Einstein Equations

The variation of the action associated with the Lagrangian (7.1), with respect to
the metricgab, leads to the well-known Einstein equations

Rµν − R

2
gµν = 8πTµν , (7.8)

whereTµν is given by the addition of the single stress-energy tensors for each
scalar field, namely

Tµν =

N
∑

n=1

Tµν
(n), (7.9)

Tµν
(n) =

1

2

[

∂µφ̄
(n)∂νφ

(n) + ∂µφ
(n) ∂ν φ̄

(n)
]

− 1

2
gµν

[

∂λφ̄
(n)∂λφ(n) + V

(

|φ(n)|2
)]

. (7.10)

The explicit form of the matter terms can be found in the Appendix 9.6.2.
A useful quantity for the analysis of the system is the mass. The problem of

finding a general definition for the total mass (or energy) of a system is a diffi-
cult challenge in General Relativity, mainly because the gravitational field energy
is not part of the energy-momentum tensor. However, for spacetimes which are
asymptotically flat, namely represent some isolated gravitating system in other-
wise empty and gravity-free infinite space, the ADM mass can be well-defined,

MADM =
1

16π
lim

r→∞

∫

gpq[∂qgpk − ∂kgpq]N
kdS,

whereN r =
√
hrrδr

r is the unit outward normal to the sphere. In spherical
symmetry, it can be translated into

MADM = −r2
√
hrrDrθ

θ. (7.11)

The ADM mass gives valid results only in the regions where the spacetime asymp-
totically approaches Minkowski space.

We monitor also the Tolman mass, which can be written in the case of spheri-
cally symmetric systems with matter,

MTol =

∫

(T0
0 − Ti

i)
√−g dx3 =

= −4πr2α
√

hrrhθθ(τ + Sr
r + 2Sθ

θ). (7.12)

We write the Einstein equations (7.8) in the form of the Z3 strongly hyperbolic
system in spherical symmetry (Appendix 9.6.1).



116 Boson Stars

7.1.1.c Regularization

We consider a generic spherically symmetric spacetime, where the line element
takes the form,

ds2 = −α2dt2 + ψ(r)4(dr2 + r2dΩ2),

with ψ =
(

1 + M
2r

)

. One can notice thathθθ = r2ψ4 is singular whenr → 0.

AlsoDrθ
θ = hθθ

2 ∂rhθθ is proportional to1/r, which leads to a singular behavior
at the origin. When dealing with black holes systems, this problem can be avoided
by setting the inner boundary at the apparent horizon, far from the physical and
coordinate singularity atr = 0 (Chapter 6). The problem is different when dealing
with stars, since there is no way of cutting the solution beforer = 0 without loos-
ing physically relevant information. The coordinate singularity destroys stability
and accuracy near the origin.

We use the approach proposed in [80] and remedy this problem using the extra
Zi quantities introduced in the Z3 formulation of the Einstein equations (Section
3.1.1). The first step consists in analytically extracting the geometrical factors
from the equations, so that we only have to deal with the regular part. This can be
done by writing the line element as

ds2 = −α2dt2 + hrrdr
2 + r2hθθdΩ

2,

which implies the following transformation of variables

h̃θθ = r2hθθ,

D̃grθ
θ = Drθ

θ +
1

r
,

where the quantities marked withtilde are the old variables. Thehθθ andDrθ
θ are

now regular at the center, but the stability of the implementation is still not insured.
One has to deal with the factors1/r in the fluxes and1/r2 in the sources.

The second step consists in cross-cancellation between these terms, in order
to obtain a regular system. One can take advantage of the way the momentum
constraint was built into the system through the variableZr. A simple and conve-
nient way to redefine theZr in order to obtain the desired cross-cancellation in the
n = 4/3 case is

Z̃r = Zr +
1

4r

(

1 − hrr

hθθ

)

.

We have eliminated this way the singularities from the evolution variables and
the numerical error caused by the geometrical factors in the fluxes and sources.
A detailed description of the evolution equations in given in the Appendix 9.6.2.
One can notice that the sources contain terms like1/r times other variables which
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are radial derivatives of the metric coefficients. But these terms do not create
problems asr → 0, as the radial derivatives of any differentiable function vanish
at the origin. However, due to finite differencing, we can not use a grid point at
r = 0.

This way of performing the regularization of the Einstein equations in spherical
symmetry allows us to evolve the whole grid, without any special techniques or
different algorithms in the center. The system of equations is now intrinsically
stable.

7.1.2 Boson Initial Data

The initial data for boson star configurations is computed in spherical symmetry
with a one-dimensional code. We follow the technique proposed in [77, 81, 82],
where the initial data is generated in maximal-isotropic coordinates, by first con-
structing the stars in polar-areal coordinates and then performing a coordinate
transformation.

The line element in these coordinates takes the form,

ds2 = −α (r)2 dt2 + a (r)2 dr2 + r2dΩ2. (7.13)

We adopt the following harmonic ansatz for each scalar field,

φ(n)(t, r) = φn(r) e−iωnt. (7.14)

With this assumption the source for the Einstein equations becomes time indepen-
dent. Our goal is to find{φn(r), ωn, a(r), α} such that the spacetime generated
by this matter configuration is static. Then the extrinsic curvature tensor vanishes
identically and the momentum constraint is automatically satisfied.

The Hamiltonian constraint and the Klein-Gordon equation lead to the follow-
ing equilibrium equations:

∂ra =
a

2

{

−a
2 − 1

r
+ 4πr

N
∑

n=1

[(

ω2
n

α2
+m2

)

a2φ2
n + Φ2

n

]

}

,

∂rα =
α

2

{

a2 − 1

r
+ 4πr

N
∑

n=1

[(

ω2
n

α2
−m2

)

a2φ2
n + Φ2

n

]

}

,

∂rφn = Φn,

∂rΦn = −
{

1 + a2 − 4πr2a2m2

(

N
∑

s=1

φ2
s

)}

Φn

r
−
(

ω2
n

α2
−m2

)

φna
2.

The conditions for regularity at the origin

a (0) = 1, (7.15)

Φn (0) = 0, (7.16)
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and for asymptotic flatness

lim
r→∞

φn (r) ≈ 0, (7.17)

lim
r→∞

α (r) =
1

a2(r)
, (7.18)

complete our system.
For given central values of the fields{φcn}, using the conditions Eqs. (7.15,

7.16), one only needs to adjust the eigenvalues{ωn} and the valueα(0) in order
to generate a solution with the appropriate asymptotic behavior Eqs. (7.17, 7.18).
This is a 3-parameter shooting problem, that one solves by integrating fromr = 0
outwards, using a second order shooting method for the parameters{ωn} andα(0).

The outer boundary conditions for the scalar fields are imposed considering
that localized solutions decrease asymptotically as

φn ∼ exp
(

−
√

m2 − ω2
nr
)

/r,

in a Scharzschild-type asymptotic background. These conditions are

φn (rout)

(

√

m2 − ω2
n +

1

r2out

)

+ Φn (rout) = 0. (7.19)

The shooting procedure is performed for different values ofrout. As rout is in-
creasing, the shooting parameters converge and we choose the solution as the one
which satisfies the conditions Eq. (7.19), for somerout within a prescribed toler-
ance. From this point on, we match to the scalar fields and the metric coefficients
their asymptotic behavior. This is a necessary step in the construction of the initial
data that we evolve in a numerical domain bigger thanrout.

A qualitative characteristic of the radial functionsφn is their number of nodes,
namely how many times do they cross zero, which determines the excited state of
the boson star. If the radial function does not have any node, the boson star is in
the ground state. If there is a node, the boson star is in the first excited state, and
so on.

We have constructed initial configurations with two scalar fields, one in the
ground state and the other in the first excited state. This is the easiest non-trivial
state, since the MSBS with two scalar fields in the ground state can be reduced to
one scalar field solution by redefining the scalar fields. This is a consequence of
the indistinguishability of the boson particles in the same state.

Once the solution is computed in this coordinate system, a change of coordi-
nates is performed to maximal isotropic ones,

ds2 = α2 (r̃) dt2 + ψ4 (r̃)
(

dr̃2 + r̃2dΩ2
)

, (7.20)

which is convenient for our numerical evolutions.
One obtains this way the initial data for the 4-metric components and the scalar

field, which will be used in the following general relativistic simulations.
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7.2 Numerical Results

Boson stars have equilibrium configurations corresponding to different levels of
excitation of the scalar fields (different number of nodes). In this section, we
present two classes of boson star models: single state (BS) and mixed states
(MSBS) boson stars. From the first class, we choose a model of ground configura-
tion and compare two cases: the unperturbed behavior and the evolution under the
perturbation of a massless scalar field. In the second class, we focus on a model
of mixed ground and excited configurations, and study the dynamical evolution of
two cases (stable and unstable), which have different number of particles in the
excited state.

We perform the BS analysis for two reasons. First, checking the validity of our
numerical setting by comparison with previous results in the literature. Second,
tuning the perturbation such that its effect would not change the dynamics of stable
states. We are interested in applying the same perturbation to the stability study of
MSBS configurations, for which previous results are not available. We note that
numerical errors alone would also excite modes in the unstable configurations, but
the timescale for which these would appear could be very large, depending on the
resolution.

In order to facilitate the interpretation of the results, we remind the notation of
the basic fields used in this section. The scalar field has the form

φ(n)(t, r) = φn(r)e−iωnt =

= φn(r) cos(ωnt) − iφn(r) sin(ωnt),

where byφR
n (t, r) = φn(r) cos(ωnt) we denote the real part, andφI

n(t, r) =
φn(r) sin(ωnt) provides the imaginary part of then scalar field. Each real and
imaginary field can be viewed as a harmonic oscillator, with amplitudeφn(r).
At t0 = 0, the real part of the scalar field is just the amplitude of the oscillator
φR

n (r) = φn(r). In the following, we will focus on the behavior ofφR
n (t, r).

7.2.0.a Numerical Specifications

The numerical simulations are performed with Z3 system in spherical symmetry
with regularization, as described in Section 7.1.1.c. In order to complete the sys-
tem, we specify as gauge conditions a harmonic slicing and zero shift,

∂tα = −α2(Kr
r + 2Kθ

θ),

∂tβ
i = 0.

We need to perform long term evolutions, so it is important to diminish the
amount of spurious reflections from the boundaries. We impose maximally dis-
sipative boundary conditions, which suppress all incoming fields at the boundary.
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This condition translates into:

αKθ
θ − α

√
hrr

1

3
(2Zr −Drθ

θ) = 0,

α K − α
√
hrrAr = 0,

φR,I
t + φR,I

r = 0.

The full characteristic decomposition of the system in presented in Appendix 9.6.2.
The numerical evolutions are performed using a third order centered finite vol-

ume algorithm for spatial discretization (Appendix 9.5.3), and a third order Runge
Kutta method for time integration (Appendix 9.4).

The evolution domain extends tor = 600M , with resolutiondx = 0.02. We
use a Courant factor of0.25. In most BS numerical simulations, an evolution up
to t = 5000M is sufficient in order to capture the relevant behavior. However,
in the case of MSBS configurations we performed long term simulations, until
t = 15000M or more.

The Tolman and ADM masses Eqs. (7.12, 7.11), as well as the number of
particles Eq. (7.7) are calculated atr = 250M .

7.2.1 Single State of Ground Configuration

In this subsection, we address the issue of stability for a single state boson star
configuration. Stability refers to the ability of a star to settle into a new config-
uration from the same branch, when perturbed. Under radial finite perturbations,
the ground state configurations of boson stars consist of a stable branch and an un-
stable branch. The transition point is at a critical mass ofMmax ≈ 0.633m2

pl/m,
wherempl is the Planck mass andm the mass of the boson star, corresponding to
a central amplitude of the fieldφ(0) ≈ 0.08. The stars become more compact as
φ(0) increases.

Numerical studies [31] show that the perturbed boson stars of the stable branch,
will oscillate and settle into a new configuration, with less mass and larger radius
than the initial configuration. Since the system is spherically symmetric (no gravi-
tational waves can be emitted) and it satisfies the Klein-Gordon equation (with no
viscous terms), the system can return to an equilibrium state only through radiation
of scalar field. This mechanism seems to be crucial for the condensation and for-
mation of boson stars. Heavier boson stars are unstable against small perturbations
and they either collapse to a black hole or migrate and settle into the stable branch
depending on the perturbation [31].

7.2.1.a Unperturbed case

We consider a boson star from the stable branch, namely a star with the central
amplitude of the scalar fieldφ1(0) = 0.0423. The initial data is presented in Fig.
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Figure 7.1. Illustration of initial data for an unperturbed boson star in the stable branch.
The lapse function (upper left panel), the metric components (upper right panel) and the real
component of scalar field (lower panel) are plotted as a function of ther isotropic coordinate.

(7.1). The Tolman mass gives the best agreement with the initial data, while the
ADM mass tends asr → ∞ to the expected value Fig. (7.2).

The configuration, evolved up to a timet = 5000M , presents a typical stable
state BS dynamics. The central value of the scalar fieldφR

1 (r0) shows constant
amplitude oscillations Fig. (7.4) . One can notice in its maximumMax(φR

1 (r0))
Fig. (7.5), very small deviations from the initial valueφ1(r0). There is a decrease
in the number of particles, around0.02% from the initial value, which is caused
by numerical errors and the dissipative character of the outer boundary conditions.
In Fig. (7.3) one can see that the mass remains constant. We compare different ap-
proaches in calculating the mass during the evolution and conclude that the Tolman
mass provides very accurate results, while the ADM mass depends (as expected)
on the radius of extraction.
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Figure 7.2. Illustration of the mass as a function of ther isotropic coordinate. Notice the
values of the Tolman mass (dashed plot), which matches very well the expected value of
M = 0.5915, and ADM mass (continuous plot), which approaches the expected value as
r → ∞.

7.2.1.b Perturbed case

In order to study the stability of this model under perturbations, we send a spherical
shell of “massless” scalar field into the boson star. The initial data for this field is
a Gaussian of the form

φ(3)(t0, r) = H exp

(

−(r − rc)
2

σ2

)

, (7.21)

whereH, rc, σ are adjustable parameters, accounting for the amplitude, position,
and respectively width of the Gaussian.

For all the cases presented in this chapter, we setH = 0.00007, rc = 50
andσ = 2. The position of the center ensures that the Gaussian field is well
separated from the complex field of the boson star at the initial time. The width is
chosen such that the Gaussian pulse is not too sharp and can be well resolved with
a resolutiondx = 0.02. The amplitude is very small, as we are only interested
in a perturbation that accelerates the expected behavior. It was tuned such that
the integral of the energy density associated with the Gaussian pulse is less than
0.01% from the energy of the boson star configuration.

The equations of evolution for the massless real scalar field are the Klein-
Gordon Eqs. (7.4-7.6), withm = 0 andφI = 0. The typical evolution of the
perturbed initial data described above, proceeds as follows. The Gaussian per-
turbation splits into two pulses, traveling in opposite directions with the speed of
light (gauge speedα

√
hrr, as we chose a harmonic slicing). One of the pulses is

moving towardsr = 0, while the boson star sits in its static state, centered in the
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Figure 7.3. Illustration of the evolution of a boson star in the stable branch. The ADM (black
plot) and Tolman (grey plot) masses are presented as a function of time, for the unperturbed
(left panel) and perturbed (right panel) configurations. The dashed line marks the exact initial
data value.
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Figure 7.4. The amplitude of the central value of the scalar field is plotted as a function of
time, for the unperturbed (left panel) and perturbed (right panel) configurations.
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Figure 7.5. Left panel: The maximum value of the scalar field in the center is plotted as
a function of time, for the unperturbed (black plot) and perturbed (grey plot) configurations.
Right panel: The number of particles in the unperturbed (black plot) and perturbed (grey plot)
configurations, are plotted as a function of time. The dashed line marks the exact initial data
value.
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origin. The massless field passes through the origin and then explodes outward,
eventually propagating off the computational domain. As the perturbation is very
small, the boson star remains in a stable state.

We compare the evolution of the two configurations, unperturbed and per-
turbed, in Fig. (7.3 - 7.5). Both configurations are stable in long term simulations,
which shows that the perturbation has only a small effect on the constraint viola-
tions. It does not affect the dynamics of stable BS configurations, but it can be very
useful in detecting unstable configurations. We will use this type of perturbation
in the following study of MSBS configurations.

7.2.2 Mixed States of Ground and Excited Configurations

We consider the simplest non-trivial case, with only two scalar fields. The first
one withN (1) particles in the ground state, and the second withN (2) particles in
the first excited state. A useful way to define the initial data is by specifying the
fraction between the number of particles in each state of the configuration

η =
N (2)

N (1)
.

In this case, the equilibrium equations for the initial data need to be completed
with a differential expression for the number of particles in each state,

∂rN
(n) = 4π

a

α
ωnφ

2
nr

2, (7.22)

with boundary conditionsN (n)(0) = 0. If η is specified, one imposes as boundary
conditions only one of the central values of the scalar fields, for instanceφc1.

The new system of equations (7.19, 7.22) becomes a shooting problem for
four parameters{ω1, ω2, α(0), φ2(0)}. For a specific fractionη, it is necessary to
adjust the four parameters such that Eq. (7.19) and the conditionN (2)(rmax) =
ηN (1)(rmax) are satisfied. In this way, each configuration is fully determined by
the fractionη and the amplitude of one of the scalar fields at the originφc1.

We restrict our numerical analysis to only four different values of the central
amplitude of the scalar field, namelyφ1(0) = {0.007, 0.0113, 0.0197, 0.0423}. In
the following, we will present the caseφ1(0) = 0.0197, and focus on three sub-
cases representative for the behavior of MSBS configurations: stableη = 0.4, and
unstableη = 1.6 andη = 3.0.

7.2.2.a Fraction 0.4

The initial data for the MSBS configuration, with an amplitude of the scalar field
in the centerφ1 = 0.0197 and fraction of the number of particles in the excited
stateη = 0.4, is presented in Fig. (7.6). The plots of the radial functionφn
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Figure 7.6. Illustration of initial data for a stable MSBS, withφ1(0) = 0.0197 andη = 0.4.
The lapse function (upper left panel), the metric components (upper right panel), the real
component of the zero nodes scalar field (lower left panel) and one node scalar field (lower
right panel), are plotted as a function of ther isotropic coordinate.

correspond to the ground state configurationφ1 (zero nodes), respectively excited
state configurationφ2 (one node).

We perturb the initial data with a massless scalar field Eq. (7.21), as described
in Section 7.2.1.b and follow its evolution up tot ≈ 15000M . One can not notice
any growth in the central amplitudes of the two scalar fieldsφR

1,2(r0) presented in
Fig. (7.8). An analysis of the maximum amplitudeMax(φR

2 (r0)) reveals very
small oscillations, Fig. (7.9). These deviations from the constant value are compa-
rable with the case of a perturbed stable boson star, Fig. (7.3).

One can also notice an apparent decrease in the number of particles. However,
this effect is very low,0.002% − 0.007% of initial number of particles Fig. (7.7).
The mass has very small amplitude oscillations around a constant value Fig. (7.9).

These results allow us to conclude that theη = 0.4 MSBS configuration is sta-
ble. We expect that any unstable growing modes would have been already excited
by the perturbation within our time of observation.
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Figure 7.7. Illustration of the evolution of a stable MSBS configuration. The number of par-
ticles for the zero node (left panel) and one node (right panel) states, are plotted as a function
of time.
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Figure 7.8. The amplitude of the central value of the scalar field is plotted as a function of
time, for the zero node (left panel) and one node (right panel) states.
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Figure 7.9. Left panel: The maximum of the central value of the scalar field is plotted as
a function of time, for the one node state. Right panel: The Tolman mass of the MSBS
configuration is plotted as a function of time.
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7.2.2.b Fraction 1.6
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Figure 7.10. Illustration of initial data for an unstable MSBS, withφ1(0) = 0.0197 and
η = 1.6. The lapse function (upper left panel), the metric components (upper right panel),
the real component of the zero nodes scalar field (lower left panel) and one node scalar field
(lower right panel), are plotted as a function of ther isotropic coordinate.

The initial data for the unstable MSBS configuration, with an amplitude of the
scalar field in the centerφ1 = 0.0197, and fraction of the number of particles in
the excited stateη = 1.6, is presented in Fig. (7.10).

We follow the procedure described in Section 7.2.1.b and perturb the initial
data with the same massless scalar field. The central amplitudes of the two scalar
fieldsφR

1,2(r0) show an exponential growth followed by oscillations Fig. (7.11). A
detailed analysis of the functionMax(φR

2 (r0)) presented Fig. (7.13), reveals an
exponentially growing behavior, which can be fitted by a function

δφR = A exp(−σt) cos(ωt+ ϕ). (7.23)

The growth rates of the unstable MSBS calculated inφ1(0) andφ2(0) show a very
good agreement Fig. (7.16).
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Figure 7.11. The amplitude of the central value of the scalar field is plotted as a function of
time, for the zero node (upper panel) and one node (lower panel) states.
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Figure 7.12. Illustration of the evolution of an unstable MSBS configuration. The number
of particles for the zero node (left panel) and one node (right panel) states, are plotted as a
function of time.
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Figure 7.13. Left panel: The maximum of the central value of the scalar field is plotted
as a function of time, for the one node state. Right panel: The Tolman mass of the MSBS
configuration is plotted as a function of time.

One can also notice in Fig. (7.12 - 7.13) a clear decrease in the number of
particles,0.65%−3.3% of initial value, and in the mass of the configuration (2%),
which indicates that a part of the scalar field is radiated away. Indeed, a detailed
analysis of the evolution shows that the unstable configuration is migrating into
a stable configuration, through radiation of scalar field, as we will show in the
following subsection.

7.2.2.c Fraction 3

In order to determine the final state of unstable MSBS configurations, we per-
formed long term simulations, untiltime = 30000M and beyond. In this sec-
tion we present results obtained with an amplitude of the scalar field in the center
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φ1 = 0.0197, and fraction of the number of particles in the excited stateη = 3.
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Figure 7.14. The maximums in the center (upper panel) and the frequencies of oscillation
(lower panel) for theφR

1 (grey plots) andφR
2 (black plots) scalar fields are presented as a

function of time, for an unstable MSBS configuration which settles into a stable configuration.

The evolution of the scalar fields maximums and their frequencies of oscilation
are presented in Fig. (7.14). One can notice in the firsttime = 2000M an expo-
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Figure 7.15. The scalar fields are presented as a function of radial coordinater, at time=0
(dark continuous plots) and 28000M (grey dashed plots). The left panel corresponds to the ini-
tially ground state, which later becomes excited (one node), and the right panel to the initially
one node state, which later transforms into a ground state (zero nodes).

nential growth similar to the one previously presented for the fractionη = 1.6. At
the end of this strong couplig phase, there is a change between the two states of
the configuration, namely the excited one node state collapses into a ground state,
while the initially ground state becomes excited, Fig. (7.15). The behavior is re-
flected also in a change of the frequencies of oscilation for the two scalar fields,
Fig. (7.14). Following the evolution, one can notice that the oscilations decrease
in amplitude and the configuration settels into a stable state.

7.3 Discussion

MSBS configurations are an appealing model for dark matter. These configura-
tions allow more freedom in matching the velocity rotational curves of galaxies
with the observational data. However, the stability of the MSBS is a necessary
condition in order to be considered as a model of galaxy halos. While the stability
of a single boson star has been previously studied both analytically and numeri-
cally, the MSBS configurations require further investigation.

In this study, we focused on the numerical approach. The first step consisted in
constructing initial data for MSBS, with different central amplitudes of the com-
plex scalar fieldφ1(0) and Noether fractionsη. In order to study their stability, we
added a real massless scalar field, which contains less than0.01% of the energy of
the configuration. This field acted only as a small perturbation, as we showed that
its the effect on a single state ground configuration does not change the stability of
the star.

The second step consisted in performing numerical evolutions with the Einstein-
Klein-Gordon system and studying the dynamics of the perturbed MSBS. We
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Figure 7.16. Illustration of the frequency fit for the exponentially growing modes in MSBS
configurations, as a function of the fraction of the number of particles in the ground and excited
states. Left panel: The frequency forφR(r0) = 0.0197 is calculated in Max(φR

1 (r0)) (grey
plot) and Max(φR

2 (r0)) (black plot). Notice the agreement between the two frequencies.
Right panel: The frequency is calculated in Max(φR

2 (r0)), for φ(r0) = 0.007 (black plot),
φ(r0) = 0.0113 (dark grey plot),φ(r0) = 0.0197 (medium grey plot) andφ(r0) = 0.0423
(light grey plot). The value of the fraction which separates the stable and unstable states is
ηφ ≈ 1.

chose a small additional perturbation, as the unstable modes excited by numeri-
cal errors only, would require even larger timescale simulations.

Our numerical stability analysis is restricted to four different values ofφ1(0) =
{0.007, 0.0113, 0.0197, 0.0423}. In the simulations withη ≤ 1.2, we did not find
any unstable exponentially growing mode. We presented the typical behavior for
η = 0.4 andη = 1.6 simulations, corresponding to a stable, respectively unstable
MSBS.

Finally, we fitted the growth rate of the unstable MSBS for eachφ1(0), and
extrapolated to find the maximum allowed Noether fractionηmax which separates
the stable and unstable states. The results for the frequency of the exponentially
growing modes are represented in Fig. (7.16), with the extrapolation to theηmax

which in principle could be a function ofφ1(0). The four different family of
solutions point to a value ofηmax ≈ 1.

An interesting result of this study is the final state of the unstable MSBS. Long
term simulations show that even unstable MSBS settle into stable configurations
through the scalar field radiation mechanism.

The results of our numerical studies, regarding the long term stability of MSBS
configurations, suggest that they could be suitable candidates for dark matter mod-
els. The MSBS withη < 1 are intrinsically stable. The unstable ones with
1 < η < 3, migrate into stable configurations, through radiation of scalar field.
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Chapter 8

The behavior of the Lapse
Function

The covariance of the Einstein theory implies that one can not determine a priori
the spacetime coordinates. There is no preferred choice of coordinates, as the lapse
function and the shift vector are not set by the field equations (Chapter 2). In order
to complete the system of evolution equations, we have to choose the coordinates
by providing some prescription for the gauge degrees of freedom.

The gauge choice played a crucial role in proving the well-possedness of the
system of Einstein equations and finding exact solutions. Historically, the har-
monic gauge was very important, as defining the spacetime coordinates by a set of
four independent harmonic functions, it was possible to prove the well-possedness
of the Cauchy problem for Einstein’s equations.

Recently, the gauge has proven to be a very important ingredient in solving the
binary black hole problem, which led to the recent impressive developments in the
field of Numerical Relativity [83–85]. The problem of dealing with the black hole
singularity was solved in two different ways. The codes based on generalized har-
monic systems used the excision technique, which consists in cutting out a region
inside the apparent horizon, in a consistent way. This approach was necessary, as
these systems rely on the harmonic condition Eq. (2.25) which is just marginally
singularity avoiding. Alternatively, the codes based on the BSSN system, worked
with a global solution of the spacetime and could deal with the black hole interior
through the puncture technique. The inner region is maintained sufficiently regular
for numerical purposes, using a strong singularity avoiding slicing condition Eq.
(2.28), in combination with a specific ’Gamma driver’ shift Eq. (2.30), leading to
themoving punctureapproach [10,84–86].

The so calledgold rushtowards new frontiers of Numerical Relativity left be-
hind open questions. Some of them refer to gauge issues that need to be clarified,
like the behavior of singularity avoidance slicing conditions and related instabili-
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ties. We present in this chapter a study of these problems, applied on one of the
most popular choices of hyperbolic gauge conditions currently used in BH simu-
lations.

8.1 Singularity Avoiding Slicing Conditions

The lapse variable relates the proper timedτ with the coordinate timedt, namely
dτ = α(t, x, y, z)dt. In numerical simulations, one can determine the lapse dy-
namically, through a general evolution equation of the type:

∂tα = −α2f(α)K, (8.1)

from which one can recover the particular cases of the geodesic (f = 0), maxi-
mal (f = ∞, K = 0), generalized harmonic (f = n) and generalized ’1+log’
(f = n/α) foliations. Beside the numerical study of critical collapse phenomena,
where maximal slicing is used, the preferred choice in black hole evolutions are
singularity avoiding slicing conditions of the ’1+log’ type. These ensure that the
lapse is dynamically adjusted in order to freeze the proper time of the observers
near the singularity.

One could start the analysis of the singularity avoiding properties by consider-
ing first the harmonic condition for the time coordinate

�x0 = 0, (8.2)

which can be written in 3+1 language as

∂t ln

(√
h

α

)

= 0, (8.3)

corresponding to a choicef = 1 in Eq. (8.1). One notices that the lapse can not
be zero unless the space volume element

√
h is zero, meaning that the time evolu-

tion will take us arbitrarily close to the singularity [87]. This implies a marginally
singularity-avoidance behavior of the continuum equation for the lapse. The nu-
merical errors accumulated during the evolution can spoil its singularity avoidance
properties.

This situation is reflected in the class of harmonic codes based on the De
Donder-Fock form of the Einstein field equations. The principal part of these
systems can be generically written as a set of wave equation for the spacetime
metric

�gµν + ∂µHν + ∂νHµ = ..., (8.4)

whereHµ is given by the choice of coordinates

�xµ = −gντΓµ
ντ = Hµ. (8.5)
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It is common to assumeHµ = 0 (harmonic coordinates), or use the gauge sources
approach by providing some kinematical prescription [88].

We present a brief comparison between the Generalized Harmonic and the Z4
system in order to study the singularity avoidance properties of the systems in the
harmonic gauge. With the following parameterization

Hµ = −gντΓµ
ντ − 2Zµ, (8.6)

the system Eq. (8.4) can be viewed as an equivalent of the Z4, namely

Rµν + ∇νZµ + ∇µZν = 8π(Tµν − T

2
gµν). (8.7)

Then the time component of Eq. (8.6) reads in 3+1 language:

αH0 =
1

α
∂t lnα+K − 2αZ0, (8.8)

whereH0 = 0 in the harmonic gauge. This results into a singularity avoidance
failure which is generic to harmonic codes. Long term numerical simulations are
obtained only when the region close to the singularity is excised from the com-
putational domain. The control of dynamical excision creates serious technical
problems, as the collapse region grows and even moves across the computational
grid.

An alternative to excision is the use of a foliation with singularity avoiding
properties. One can use the slicing Eq. (8.1), in the generalized ’1+log’ variant.
The choicen = 2 (f = 2

α ) is known as the ’1+log’ condition, as it can be written
in normal coordinates

α = α0 + ln(h/h0), (8.9)

whereh is the determinant of the space metric. This condition implies that the
coordinate time evolution stops before getting close to the singularity. The limit
surface, namely the point where the lapse vanishes, is

√

h/h0 = exp(−α0/2). (8.10)

As the initial lapse is usually close to one, the final volume element will be about
60% of the initial one.

We explored other slicing conditions, with the limit surface closer to the sin-
gularity [54]. We notice that the collapse front gets steeper than in thef = 2/α
case Fig. (8.1), but we were able to perform long term stable evolutions. In our
simulations, this specific choice is not mandatory, but it is the preferred choice for
the current black hole simulations, not only due to its strong singularity avoidance
properties, but also because it leads to smoother profiles in comparison with other
gauge choices from the same class.
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Figure 8.1. Illustration of the lapse as a function ofη coordinate, attime = 10M in a
Schwarzschild black hole simulation. Notice how the collapse front gets steeper for a ’1+log’
slicing with f = 1/α (black continuous plot), in comparison with thef = 2/α case (grey
dashed plot).

In the particular case of the Z4 system, hyperbolicity requires a generalization
of the slicing condition Eq. (8.1) by adding a linear coupling with theθ variable,

∂tα = −α2f(α)(K −mθ).

This particular change of the slicing is more obvious if one writes the Z4 system
as a harmonic formulation

�gµν − ∂µ(Γν + 2Zν) − ∂ν(Γµ + 2Zµ) = ...,

with Γµ = gνλΓµ
νλ. In order to obtain a wave equation for the metric, one must

ask
Γµ = −2Zµ,

which is the equivalent of the harmonic condition for the standard Einstein equa-
tion (Zµ = 0). Then the harmonic slicing for the Z4 system must be modified
with

Γ0 = −2Z0 = −2
θ

α
.

The Z4 system is strongly hyperbolic for anyf > 0, with a value ofm = 2 in
thef = 1 harmonic case [89]. In the case of the ’1+log’ slicing, one can remove
the coupling with the energy-constraint terms, but the numerical tests show that a
choicef = 2/α, m = 2 is the best option in black hole numerical simulations.

The use of the generalized ’1+log’ family of gauge condition in normal coordi-
nates is known to lead to a distortion of the foliations, through the slice stretching
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process, a problem that has been viewed as a final obstacle in the way of long term
black hole evolutions. The increase along the radial direction produces a progres-
sive loss of resolution, which leads to the appearance of high frequency noise. The
problem can be delayed by increasing the grid refinement, but higher resolution
produces steeper profiles for the dynamical fields, which can not be solved un-
less one employs special dissipation algorithms. We obtained the best numerical
results (described in Chapter 6) using an adaptive algorithm, for which the dissi-
pation parameter is tuned through the maximum gauge speed on the grid (for a
detailed description see Chapter 5).

A possible problem related with hyperbolic slicing conditions typically used
in numerical relativity is singularity formation due to gauge pathologies [90]. Re-
cent studies based on a non-linear analysis of the system, show that these gauge
instabilities arise due to the unbalance of the quadratic source terms. This modes
grow only at a polynomial rate, so the evolution system is well-posed, but they will
lead to code crash in long term simulations [91]. We are addressing this point in
the next section, where we follow the behavior of ’1+log’ slicing in evolutions of
Schwarzschild spacetime.

The numerical tests presented in the following section, were performed in nor-
mal coordinates (zero shift). In general, one would choose the shift to adapt the
geometry to the physical system under study, by fixing it to some spacetime func-
tion or using it as a dynamical variable (Chapter 9). The choice of shift does not
affect the behavior of the slices addressed in this study.

8.2 Numerical Study of Gauge Instabilities

The success of binary black hole numerical evolutions was based on two strate-
gies of dealing with the singularity: excision and ’moving punctures’. The first
approach is computationally challenging, as it requires tracking the two apparent
horizons during the evolution, using one sided finite difference next to the excised
region, and repopulating the grid via extrapolation. We are mainly interested in
the second approach, which deals with a global solution of the spacetime and uses
the gauge freedom in order to obtain a regular interior region, that can be evolved
numerically. The key of this strategy are the punctures, artificial interior asymp-
totically flat regions, conformally compactified as a coordinate singularity. They
are used to construct initial data with a given number of black holes. The numer-
ical evolution of this BH initial data, with various gauges that allow a coordinate
movement of the punctures, has proven to be a non-trivial task.

The geometric picture of the moving punctures evolutions has been only re-
cently understood [11], in a study where ’trumpet data’ time independent represen-
tations of black holes, play a crucial role. In the geometry of the stationary solu-
tion, corresponding to a foliation of Schwarzschild-Kruskal spacetime in maximal



140 The behavior of the Lapse Function

slices, the slices were shown to asymptote to cylinders of constant areal radius.
The result was extended to the hyperbolic slicing conditions commonly used in
numerical relativity. Comparison with numerical results formed a simple picture
of the gauge conditions used in the moving puncture recipe: they allow the interior
of the black hole to approach the stationary representation. In particular the co-
ordinate singularity associated with compactifying a cylindrically asymptotic end
is milder than that associated with compactifying the Euclidean asymptotics of a
standard puncture [11].

In these studies, numerical convergence to an analytical stationary solution can
be observed at late times for an evolution of Schwarzschild-Kruskal spacetime,
where the initial data is not adapted to the stationary solution. However, the anal-
ysis of standard hyperbolic gauge conditions [90–95], suggest the possibility of
singularity formation and recently it has been argued to also spoil standard single
and binary black hole evolutions [96].

We centered our study on the ’1+log’ slicing condition [97], which is the most
popular singularity-avoiding slicing condition in binary puncture black hole simu-
lations. Different pathologies which can result from this type of slicing condition
have been discussed in the literature. Alcubierre identified mechanisms that lead to
singularity formation in the slicing [90], which he calls “gauge shocks” to express
the claim that they appear due to the crossing of characteristics associated with
gauge propagation. Alcubierre has studied the formation of gauge shocks in a num-
ber of different simple models, and identifies scenarios where they can be avoided,
and others where they can not be avoided. More recently it has been claimed
that gauge shocks are indeed generic for evolved gauge conditions, as the slicing
always shocks ifα is different from 1 initially [96]. For a Schwarzschild black
hole, these shocks can be triggered by propagating gauge perturbations (“gauge
waves”), but in general situations they could be triggered by actual gravitational
waves.

A different type of blowup behavior inherent to the ’1+log’ slicing, has been
identified in [91]. This is a runaway phenomenon in the lapse triggered by a cou-
pling to the mean extrinsic curvatureK, in the case whereK corresponds to expan-
sion. Singularity avoidance works for positive K, but negative values of K trigger
instead a blow-up in the lapse. This type of runaway solution are characterized by
the growth of the lapse function without bound, at an accelerated rate, and can not
be cured by using shock capturing algorithms.

In the following we will use numerical results to illustrate that gauge shocks
in the form described by Alcubierre do not seem to be typical for ’1+log’ based
evolutions of Schwarzschild spacetime that model the situation in a binary black
hole simulation, since they seem to require rather contrived-looking perturbations
of typical initial data. Singularities of the runaway type seem more typical, but can
apparently be cured by a modification of the slicing equation.

For evolutions of manifestly spherically black hole spacetimes we use the Z3
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system described in Chapter 3. The spatial discretization isperformed with a stan-
dard fourth order centered finite difference scheme plus a third order accurate local
dissipation term, which is automatically adapted to the requirements of either the
interior or exterior black hole regions [24]. The time evolution algorithm is a
third order strong stability preserving Runge Kutta method (time step∆t = 0.01,
Courant factorC = 0.5). The condition for high resolution∆r = M/50, claimed
in [96], necessary in order to reveal shock formation, is satisfied.

In addition to manifestly spherically symmetric simulations (1D), we also per-
formed full 3D simulations with the Z4 system [98]. The treatment of the sin-
gularity in the 3D implementation of the Z4 system uses the ”stuffed black hole”
approach [70], assuming a regular interior solution with a suitable scalar field con-
tent as described in Chapter 6.

8.2.1 Gauge Initial Data

We consider the geometrical setup for Schwarzschild black hole evolutions in
spherical symmetry as presented in Section 6.1, with the line element

ds2 = − tanh2 η dt2 + 4M2(cosh η/2)4
(

dη2 + dΩ2
)

. (8.11)

For 3D stuffed black hole evolutions, discussed in detail in Section 6.2, the initial
data is set in isotropic coordinates

ds2 = −
(

1 −M/(2r)

1 +M/(2r)

)2

dt2 +

(

1 +
M

2r

)4
(

dr2 + r2dΩ2
)

.

The isotropic radial coordinater is related to the Schwarzschild radial coordinate
(area radius) byR =

√
gθθ. We will use the notationℓ =

∫ √
grr dr for the proper

distance along the slice.
We adopt two strategies to perturb the initial data for Schwarzschild with re-

spect to the coordinate gauge. In the first approach, we just vary the initial lapse
with respect to the metric Eq. (8.11), using a Gaussian in theη-coordinate,

α = 1 +H exp

(

−(η − ηc)
2

σ2

)

. (8.12)

The initial values for the shift vector and the components of the extrinsic curvature
are set to zero.

In the second approach we adopt the perturbations proposed in [90]. One con-
siders an initial slice given in terms of Schwarzschild Killing time coordinate Eq.
(8.11) in the following way:

tw = φ(t, η) = t+ h(η). (8.13)
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The new line element will have the form

ds2 = −α2
wdt

2 − 2α2
wh

′dtdη + (Ψ − (αwh
′)2)dη2 + ΨdΩ2,

with
Ψ = 4M2(cosh η/2)4,

whereαw is the Schwarzschild Killing lapse (8.11) and we denote byprime the
derivative with respect toη.

We can calculate the new lapse function as

α = αw

√

Ψ

gηη
,

and the shift vector

βη = −α
2
wh

′

gηη
.

The components of the extrinsic curvature for this slice take the form,

Kηη =
[α′

wh
′(αwh

′)2 − Ψ(αwh
′′ + 2α′

wh
′) + αwh′Ψ′

2 ]
√

Ψgηη

,

Kθθ = − αwh
′Ψ′

2
√

Ψgηη

.

The initial values of the variablesDηη
η = gηηg′ηη/2,Dηθ

θ = gθθg′θθ/2 can be
calculated according to their definitions in terms of the metric. The initial lapse is
set to unity everywhere, so the componentAη = α′/α is initially zero.

The functionsh(η) are chosen as a 3-parameter family of Gaussians,

h(η) = H exp

(

−(η − ηc)
2

σ2

)

, (8.14)

with amplitudeH, width σ and centerηc.

8.2.2 Flat Space

We consider a non-trivial initial slice [90], given in terms of Minkowski coordi-
nates astM = h(rM ). Assuming that the radial coordinater coincides initially
with the Minkowski radial coordinaterM , one can write the metric and the extrin-
sic curvature components as:

grr = 1 − h′2,

gθθ = r2,

Krr = −h′′/√grr,

Kθθ = −rh′/√grr.
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Figure 8.2. Illustration of the MFS model in a Z3 simulation with the ’1+log’ slicing condi-
tion. Left panel: The lapse andK as functions of the radial coordinater, are represented by
the black, respectively grey plots attime = 70M. Notice the presence of instabilities. Right
panel: The plot represents the convergence factor in theL2-norm ofK, as a function of time.
The factor is computed fromtime = 0 to 100M in intervals of10M. Convergence is lost due
to the presence of gauge instabilities.

The functionh(r) has a Gaussian profile,

h(r) = H exp

(

−(r − rc)
2

σ2

)

. (8.15)

We chose the values of the perturbation parameters such that they match [90],
namely amplitudeH = 15, centerrc = 300, widthσ = 20, and refer to this setting
as ”Model Flat Space” (MFS). Our numerical results confirm the ones presented by
Alcubierre. The initial perturbation separates into two pulses traveling in opposite
directions. The pulses moving in the in-going, respectively out-going directions
are not symmetric, since the directions are not equivalent.

The numerical tests were performed using the ’1+log’ slicing. During the evo-
lution, instabilities develop in both in- and out-going pulses and convergence is
completely lost Fig. (8.2). AsK has values in the negative domain because of the
initial perturbation, these instabilities could be associated with runaway solutions.

8.3 Gauge Choice and Gauge Pathologies

8.3.1 Gauge Instabilities

The problem of finding a good coordinate system, that shows no pathologies for a
generic spacetime, is very difficult. Even in very simple cases, a given prescription
of the lapse and shift may not exist globally. An example are the geodesic or Gauss
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coordinates (α = 1, βi = 0), where the coordinate lines typically cross over after
some finite time, even when one starts from a curved slice in flat spacetime. This
obvious gauge choice, which significantly simplifies the Einstein equations, is not
a viable choice for numerical relativity.

Instead, the most popular form of specifying gauge conditions in numerical
relativity is via hyperbolic evolution equations. I will focus on the family of Bona-
Masso slicing conditions [97], which also include the family of harmonic slicings.
The existence of discontinuous solutions to the Bona-Masso slicing conditions that
arise from smooth initial data has been studied by Alcubierre [90,92,93,95], who
termed these instabilities “gauge shocks”or “coordinate shocks”. These solutions
are not physical discontinuities, but regions where the coordinate system breaks
down. In this context, the term “shock” was used in a restricted sense of crossing
of the characteristic lines. We prefer to use in the following the term “gauge insta-
bilities” in order to denote any form of unbounded growth of the lapse or its first
derivatives, related with the gauge behavior.

Alcubierre discusses in particular two types of instabilities within the Bona-
Masso family of gauge conditions. In [90], performing an analysis of the char-
acteristic speeds, he concludes that one type of instabilities affects just the gauge
degrees of freedom with characteristic speed±α

√

fhii, while the second one af-
fects even the spatial metric degrees of freedom, with characteristic speed equal to
the speed of light.

Alcubierre finds that the first class of instabilities can be avoided by ensuring
that the evolution of the eigenvalues is independent of the corresponding eigen-
fields (condition for indirect linear degeneracy). This can be achieved by choosing
f(α) = 1 + k/α2, with k arbitrary constant, that leads to the following slicing

∂tα = −(α2 + k)K. (8.16)

However, this result is pointed out to be impractical in numerical simulations, since
for small values of the lapse and positiveK, there is nothing that prevents the lapse
from becoming negative.

The analysis of the second class of instabilities leads to a very restrictive con-
dition, that is impossible to satisfy with a diagonal metric. No practical cure was
proposed for this class of instabilities, which were predicted even for thef = 1
case of harmonic slicing. Note that these instabilities are only characterized by
the behavior of thet = const. hypersurfaces and therefore do not depend on the
choice of shift vector. Alcubierre showed that his analysis was in fact independent
of the field equations in [99]. This class of instabilities have not been encountered
in numerical simulations.

An analysis of the non-linear coupling between theK and the lapse function
has been presented in [91], and suggests that this coupling can lead to runaway
solutions, that grow without bound at an increasing rate. We consider, for exem-
plification, the Z3 system withn = 4/3. Taking a second time derivative of the
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evolution equation for the lapse, one can write in the vacuum case,

1

α2f
∂ttα− ∆α = α[−KijK

ij + (2f + αf ′)K2] (8.17)

wheref ′ = ∂f/∂α. This equation can be interpreted as a generalized wave equa-
tion for the lapse function, with the characteristic speeds±α

√
f . The conclusion

of the analysis was that gauge instabilities can be interpreted as the effect of the
non-linear source terms in the evolution equations.

According to our numerical observations, the contribution coming from the
non-linear right-hand-side terms does play a crucial role in the evolution of the
lapse, as we will show that a modification of the slicing of the form

∂tα = −fα2(K +K0), (8.18)

with K0 a small positive offset, can cure the runaway instabilities. This modified
slicing condition amounts to

1

α2f
∂ttα−△α = α[−KijK

ij + (2f + αf ′)(K +K0)
2]. (8.19)

In a study of different types of blow-ups that can occur in systems of hyper-
bolic evolution equations of the type found in general relativity [94], Reimann in-
vestigates the existence of an ODE-mechanism that leads to blow-ups within finite
time. Using as example a wave equation with sources and dynamic wave speed,
a comparison is performed between the ”geometric blow-up” (suggested by Alcu-
bierre) and this ”ODE-mechanism”. In order to avoid instabilities asource criteria
is proposed, which demands that the source terms should be free of quadratic terms
in the eigenfields. The conclusion was that in most cases indirect linear degener-
acy and the source criteria led to the same conditions for avoiding instabilities. In
the cases where they don’t, the source criteria proved to be more important. This
result supports the idea that gauge instabilities are mainly the result of an ODE
mechanism triggered by the source terms.

In the Sections 6.1 and 6.2, we presented foliations for a Schwarzschild black
hole that do not show gauge instabilities. In the present study, we use two dif-
ferent families of data which do lead to the formation of gauge instabilities in
Schwarzschild-Kruskal spacetime. The first consists in perturbing the initial slice,
which has been used by Alcubierre [90]. The second family varies the initial lapse
function. Since this family is simpler to implement, we use it to compare 1D and
3D evolutions. As “unperturbed” situation, we will consider an initial lapseα = 1
and the 1+log slicing condition. As a first step in our analysis we will show that
this case does not show any pathologies.
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8.4 Numerical Results

8.4.1 Unperturbed Initial Data

Figure 8.3. Penrose diagram of the slices at early timest = {1, 2, 3, 8M}, in an evolution of
the unperturbed model of a Schwarzschild black hole, using the ’1+log’ slicing condition with
n = 2. Our coordinates stop at the throat. As we use zero shift, the numerical slices penetrate
R0 and are not able to retreat toR0 at later times.

Figure 8.4. Penrose diagram of the slices at later timest = {30, 37, 40, 50M}, in an evo-
lution of the unperturbed model of a Schwarzschild black hole. The picture is similar to Fig.
8.3, only that the slices are shifted along the Killing vectorR0 ≈ 1.31M in order to allow a
better view of the exterior region. Every slice approachesi+L along the curveR0. This is the
typical behavior of the slices defined by the stationary solution of the ’1+log’ condition with
n = 2.
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Figure 8.5. Illustration of the unperturbed model of a Schwarzschild black hole, using the
’1+log’ slicing condition. Left panel: The lapseα andK are plotted as functions of proper
distance att = 50M (grey plots) and att = 100M (black dashed plots). Notice the agreement
of the plateau value ofK with the theoretically predicted valueK = 0.300934, marked by
the continuous black line. Right panel: The Schwarzschild radial coordinateR is presented as
a function of proper distance att = 50M (grey plot) and att = 100M (black dashed plot).
The result is in agreement with the theoretically predicted valueR0 = 1.31241M marked by
the continuous black line.

We consider first the “unperturbed” case, where the initial data is set according
to Eq. (8.11). We evolve using the 1+log slicing condition, withα = 1 initially.
During evolution, the grid points situated at the throat are pushed to spatial infinity
in accordance with the development of an asymptotically cylindrical region and
the approach to the stationary solution as described in [69]. The values of the
Schwarzschild radial coordinateR = 1.31241M corresponding to the asymptotic
cylinder, and the trace of the extrinsic curvatureK = 0.300934 at the cylinder
Fig. (8.5), are in agreement with the analytical and numerical solutions presented
in [69].

The numerical results obtained, show the expected convergence factor of 3,
as we use 3rd order accurate methods for both space discretization and time inte-
gration. In Fig. (8.6) we plot the convergence factor of theL2-norm ofK as a
function of time. One can notice that the results of the simulation can be trusted
up to a timet ≈ 60M . Afterwards the convergence drops due to large numerical
errors (see Section 6.1.4 for details). An estimate of the error in the mass aspect
function Eq. (6.3) shows that at a time of50 − 60M the deviations from the exact
value are about1.8 − 3.8%, while att = 100M the errors are around23%. Inde-
pendently of the choice of initial data, convergence is lost at late times due to the
large errors which develop at the steep wall of the collapse front [23].

The second “unperturbed” case corresponds to a 3D stuffed Schwarzschild
black hole, as described in Section 6.2. We consider the same slicing and initial
data value for the lapse function as described above. The evolution is comparable
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with the spherically symmetric case Fig. (8.6).
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Figure 8.6. Illustration of the unperturbed model of a Schwarzschild black hole, using the
’1+log’ slicing condition. Left panel: The lapseα andK are presented as functions of the
isotropic coordinater at t = 20M , in a 3D simulation (black plots) andK is shown also in
a 1D simulation in spherical symmetry (grey plot). There is a good agreement in the outer
region betweenK in the 1D and 3D cases. The behavior in the inner region differs because of
the treatment of the singularity. Right panel: The plots represent the convergence factor in the
L2-norm of the mass (black plot) andK (grey plot) as a function of time. The expected third
order convergence is obtained up tot ≈ 60M , afterwards the convergence is lost due to large
numerical errors at the steep collapse front of the lapse.

8.4.2 Perturbing the Initial Lapse

We consider initial data induced att = 0 by the metric Eq. (8.11), with a Gaus-
sian perturbation in the lapse Eq. (8.14). We will refer to these data as “Model
Perturbed Lapse” (MPL). The initial profile of the lapse produces perturbations in
all other evolution variables. The evolution proceeds as follows. The initial Gaus-
sian profile gives rise to two pulses traveling in opposite directions, with speeds
±α

√
f . The out-going pulse will eventually leave the domain, while the in-going

pulse will collide with the collapse front of the lapse Fig. (8.7).
We illustrate the results obtained with two data sets, MPLw1 and MPLw2,

both with center inηc = 5.0, and witdhsσ = 0.1 (model MPLw1) andσ =
1.0 (model MPLw2). We consider this model with two amplitudes, one positive
H = 0.5 (MPLw1P, MPLw2P) and the other negativeH = −0.5 (MPLw1N,
MPLw2N). For the sharper pulse (MPLw1), the in-coming wave gets steeper and
produces instabilities Fig. (8.8). The smoother pulse (MPLw2) gets swept over by
the collapse front and no problems occur Fig. (8.9).

One can compare the behavior of the slices for the MPLw2 model Fig. (8.11),
with the unperturbed case in Fig. (8.4). The MPLw2 shows a small distortion of
the slices, but they do not become pathological. Even though the unperturbed and
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Figure 8.7. The lapse is presented as a function of proper distance for MPLw1P (left panel)
and MPLw1N (right panel). The grey plots correspond to the initial profile, when the lapse was
perturbed with a Gaussian profile. The black plots show the split perturbation attime = 20M ,
when the left and the right moving pulses can be clearly identified.
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Figure 8.8. The plots correspond to MPLw1P (left panel) and MPLw1N (right panel), at
time = 50M . The lapse andK as functions of proper distance, are represented by the black,
respectively grey plots. One can notice the instabilities in the lapse function andK.
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Figure 8.9. The plots correspond to MPLw2P (left panel) and MPLw2N (right panel), at
time = 100M . The lapse andK as functions of proper distance, are represented by the
black, respectively grey lines. The evolution proceeds without instabilities.
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Figure 8.10. Penrose diagram of the slices at timest = {46, 46.8, 47.2, 50M}, in an evolu-
tion of the MPLw1 model of a Schwarzschild black hole, using the ’1+log’ slicing condition
with n = 2. Notice how the slices are distorted with respect to the unperturbed model Fig.
(8.4).

Figure 8.11. Penrose diagram of the slices at timest = {44, 46, 48, 50M}, in an evolution
of the MPLw2 model of a Schwarzschild black hole, using the ’1+log’ slicing condition with
n = 2. Notice how the slices reach the stationary state, as in the unperturbed model Fig. (8.4).
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Figure 8.12. The plots represent the convergence factor in theL2-norm ofK, as a function
of time. The factor is computed fromtime = 0 to 100M in intervals of10M . The grey
plots correspond to MPLw1P and MPLw1N, for which convergence is completely lost. The
black plots, marking the expected third order convergence, are obtained with MPLw2P and
MPLw2N.

MPLw2 models start with different values of the lapse, they both reach the station-
ary state. This is not the case for the MPLw1 model, which develops instabilities
and shows a strong distortion of the slices Fig. (8.10).

Our results prove that for this class of perturbed initial data one can find param-
eters which lead to long evolutions, free of instabilities. We check for blow-ups
by performing a convergence test in theL2-norm ofK. A third order conver-
gence factor is obtained for the MPLw2 case, while the MPLw1 case manifests a
complete loss of convergence Fig. (8.12).

8.4.3 Perturbing the Initial Slice

We now consider an initial slice of the type Eq. (8.13), where the perturbation
is a Gaussian in the height function, which depends on 3 parameters Eq. (8.14).
We performed several tests in which we varied the values of one parameter, while
keeping the other two fixed. The results show that instabilities develop only for
some specific combinations of the parameters, so they are not generic. Moreover,
these instabilities are identified as runaway solutions triggered by the trace of the
extrinsic curvature becoming negative in some points of the domain. This leads
to small rebounds of the lapse function in these points, while collapsing in the
neighboring points. The resulting stretching determines increasingly large gradi-
ents, which trigger high frequency noise. This behavior has been reported before
in [91]. The conclusion is that singularity avoiding conditions are fragile in the
negativeK domain, as they can produce runaway solutions.

One can picture this behavior in the following examples. We perform two nu-
merical tests, choosing the initial data for the height function from the 3-parameter
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Figure 8.13. Left panel: The lapse is presented as a function of proper distance, attime =
30M, for MPSc1. The instability produced byK becoming negative (the grey plot in Fig.
8.15), determines at the same location a spike in the lapse function. Right panel: The plot
corresponds to MPSc2, attime = 100M. The lapse andK as functions of proper distance are
represented by the black, respectively grey lines. The evolution proceeds without instabilities.

family Eq. (8.14), which we will denote by ’Model Perturbed Slice’ (MPS). The
amplitude corresponding to this model isH = 5.0, and the widthσ = 2.3. We
chose different values for the center of the initial perturbation, namelyηc = 3.0
(model MPSc1) andηc = 4.6 (model MPSc2). The second choice corresponds
exactly to the initial data parameters chosen in [90], namelyH = 5.0, σ = 5.0,
rc = 50 in isotropic coordinates. Both simulations are carried out in a similar
way. One can notice that at the throat of the wormhole the lapse collapses, as ex-
pected for a black hole spacetime. In the outer wave zone, the initial perturbation
separates into two pulses traveling in opposite directions with gauge speed.

In the plots corresponding to the MPSc1, we can notice the instabilities devel-
oping inK, located at the same points as the oscillations in the lapse, Fig. (8.13).
This behavior inK appeared because of the negative values produced by the oscil-
lations of the points where the in-going pulse met the out-going collapse front. By
moving the center of the initial perturbation more in the wave zone (MPSc2), the
in-going pulse gets swept over by the collapse front andK keeps positive values
all over the domain. The behavior is shown in Fig. (8.15), where we compareK
for the two simulations at times20M and30M . The simulation in whichK got
negative values at20M , develops instabilities at30M , while the other one runs
smoothly.

A way of avoiding the appearance of runaway solutions is preventing the val-
ues ofK from entering in the negative domain. This can be achieved by adding a
small offset in the lapse evolution equation, of the form

(∂t − βi∂i)α = −f(α)α2(K +K0), (8.20)
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Figure 8.14. The plots correspond toK as a function of proper distance, for MPSc1 (grey
plot) and MPSc2 (black plot). Left panel:K at time = 20M . Notice how a small change in
the location of the center of the perturbation leads to a different behavior ofK. This feature
will get accentuated during the evolution. Right panel:K at time = 30M . One can notice an
instability developing inK for MPSc1, due toK entering in the negative domain, which leads
to runaway solutions. The MPSc2 continues with a smooth evolution (Fig. 8.13).
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Figure 8.15. Left panel: The plots correspond toK as a function of proper distance, in
the MPSc1 with and without offset, attime = 30M . The grey line corresponds to the slicing
without offset, which leads to instabilities. The black line represents a smooth evolution, using
the slicing with offset. Right panel: The plots represent the convergence factor in theL2-norm
of K, as a function of time. The factor is computed fromtime = 0 to 100M in intervals
of 10M. The light grey plot corresponds to MPSc1, where convergence is completely lost.
The dark grey plot presents the convergence factor for MPSc1, in an evolution which uses the
slicing with a small offsetK0 = 0.1. The convergence factor drops between first and second
order. The black plot, marking the expected third order convergence, is obtained with MPSc2.
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whereK0 is a positive constant. In the example presented above, adding aK0 =
0.1 is sufficient for a long smooth evolution Fig. (8.14). The disadvantage of using
this type of slicing comes from the fact that the lapse collapses very fast and soon
all the computational domain enters inside the black hole region.

We showed that not all initial data of this type produces instabilities, as for
some range of parameters (MPSc2) we can obtain long term smooth simulations
Fig. (8.13). In order to show that no blow-ups are hidden and propagated in
this case, we analyze the convergence properties of the computational simulation.
A convergence test in theL2-norm ofK is performed (∆x = 0.04, 0.02, 0.01).
Fig. (8.14) shows the expected third order convergence for the MPSc2 case and a
complete loss of convergence for the MPSc1 case. The second order convergence
for the MPSc1 case withK0 correction can be explained by the fact that all the
computational region is soon contained inside the apparent horizon.

8.4.4 Comparison between the 1D and the 3D cases
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Figure 8.16. Illustration of MPL13. Left panel: The black plots correspond to the lapse in the
3D case, and the grey plots in the 1D case, attime = 0 and1M . The 1D plots start atr = 0.5,
as a result of our choice of coordinates, which stop at the throat. The 3D plots cover the entire
domain and the interior is regular by scalar field matching. In both cases the singularity is
absent from our computational domain. Right panel: The black plots correspond to the lapse
andK, as a function of ther isotropic coordinate in the 3D case and the grey plots in the 1D
case, attime = 10M . The two cases show very good agreement in the outer regions, despite
the difference in resolution (for an explanation of the difference in the inner region see in the
main text the unperturbed case). The evolutions proceed without instabilities.

We perform a comparison between a black hole collapse in 1D spherical sym-
metry and in full 3D. The initial data settings correspond to a MPL13 model
with the following parameters: amplitudeH = −0.1, width σ = 0.1 and cen-
ter ηc = 2.3, respectivelyrc = 5.0, for the Gaussian perturbation in the initial
lapse profile.
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We have chosen a negative initial pulse. The behavior is the same as in the
previous cases, namely the perturbation splits into a left going and a right going
pulse. The pulse traveling right will loose amplitude and eventually leave the com-
putational domain, while the left pulse will interact with the collapse front. One
can notice in Fig. (8.16) that the lapse andK profiles manifest the same behavior
for the 1D (radial direction) and the 3D (x direction, cut aty = 0, z = 0) cases.

8.5 Discussion

We study two classes of initial data with various perturbation models and conclude
that instabilities appear only for a restricted set of initial perturbation parameters.
Most instabilities are related with theK entering the negative domain, because of
numerical errors or just initial data perturbations. In caseK < 0 locally, accord-
ing to the slicing condition∂tα = −α2f(α)K the lapse will have local rebound
points, which contrast with the general collapse behavior dictated by the source
terms. We associate this instabilities with runaway solutions, in agreement with
[91].

Our study satisfies the criteria of high resolution proposed in [96]. We search
for instabilities in the models using the standard criteria of proposed in the liter-
ature, namely convergence tests. Furthermore, we present Penrose diagrams in
order to picture the dynamics of the slicings. This chapter contains only a re-
stricted collection of relevant results. The full study extends to various choices of
the parameters in the MPL and MPS models.

Based on our numerical results, we will argue that these instabilities are not
generic for evolved gauge conditions as claimed by [96]. We support the conclu-
sion that instabilities can appear, but whether they do or not depends strongly on
the form of the initial data. The slicing withα = 1 initially never creates instabil-
ities, which is in agreement with the current numerical observations.





Chapter 9

Symmetry Seeking Shift
Conditions

In the 3+1 formalism of General Relativity, the evolution equations and the slicing
condition determine the history of the geometry. The lapse specifies the distance
between the spatial slices, while the shift dictates how the spatial coordinates are
carried between the slices. In practice, in computational simulations, the shift
determines how the distribution of points is carried from one spatial slice to the
next.

There have been many attempts of finding good coordinates adapted to spe-
cific problems in Numerical Relativity (like critical collapse or binary systems).
We presented in the Chapter 8 several possibilities for adopting time coordinate
conditions. In this chapter, we will concentrate on the choice of space coordinate
conditions, with focus on a particular case well suited for black hole evolutions.

It is worth reminding the fact that Numerical Relativity is based on Einstein’s
theory of gravitation, which does not assume a preferred set of coordinates. So the
success of the black hole codes should not depend on a specific space coordinate
system, as long as the slicing condition is appropriately chosen in order to avoid
singularities.

We consider as a convenient slicing condition for black hole spacetimes, one
that has a suitable behavior near the singularity and ensures singularity avoidance
(Chapter 8). Regarding the choice of shift conditions, ideally one wishes to de-
couple the true physical behavior of the spacetime from the coordinate effects, by
constructing 3-covariant shift gauge conditions, such that the behavior would be
independent of coordinate changes within a given hypersurface. For spacetimes
that have a Killing vector, it is useful to use coordinates adapted to the symme-
try, while for spacetimes with an approximate Killing vector, one would wish to
minimize the rate of change of the metric with time.

We present in this chapter a generalization of the harmonic almost-Killing
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equation (HAKE) [100], derived from considerations of approximative symme-
tries in the spacetime. The numerical simulations performed with the Z3 and Z4
systems, show that the generalized almost-Killing equation (AKE) [20] provides a
space coordinate condition that satisfies these requirements.

9.1 The Almost-Killing Equation

9.1.1 Harmonic Almost-Killing Equations

Killing vectors are solutions of the equation:

Lξ(gµν) = ∇µξν + ∇νξµ = 0. (9.1)

An intuitive example is choosing the time lines to be the integral curves ofξ and
the time coordinate to be the affine parameter on these curves,

ξ = ∂t.

Then the Killing equation written as

∂tgµν = 0, (9.2)

tells us that the metric is stationary, so the spacetime geometry is preserved along
the integral curves ofξ.

The AKE address the problem of finding ’quasi-stationary’ coordinates (as
stationary as possible) in a generic spacetime [100]. It is based on the idea of
finding ’almost-Killing’ vectors fieldsξµ, using the standard variational principle,

δS = 0, S =

∫

L
√
g d4x. (9.3)

We consider for the Lagrangian densityL a general quadratic form, which can be
written as a linear combination of the two scalars formed with the tensor Eq. (9.1),

L = ∇(µξν)∇(µξν) − k

2
(∇σξ

σ)2.

The resulting Euler-Lagrange equations take the following form

∇ν [∇νξµ + ∇µξν − k(∇σξ
σ)gµν ] = 0, (9.4)

or equivalently written as a wave equation,

�ξµ +Rµνξ
ν + (1 − k)∂µ(∇νξ

ν) = 0, (9.5)
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which admits as solutions Killing vectors and ’almost-Killing’ vectors, for any
value of thek parameter. This AKE condition can be viewed from a generalization
of Eq. (9.1).

An intuitive example of a vector satisfying the AKE, is theZ vector of the Z4
formalism. The Z4 can be written in the vacuum case as

Rµν + ∇νZµ + ∇µZν = 0.

Its subsidiary system is given by the contracted Bianchi identities

�Zµ +Rµ
νZ

ν = 0. (9.6)

Then the AKE casek = 1 is a special choice, as Eq. (9.5) becomes the condition
Eq. (9.6) for theZ vector. One finds that the combination(∇µZν + ∇νZµ) in the
Z4 system is minimized for this particular value ofk, such that one gets as close
as possible to the original Einstein system.

We consider the integral curves ofξ to be the time lines of our coordinate
system. Then the Euler-Lagrange equations (9.4) in these adapted coordinates
read:

gµν∂tΓ
σ

µν + (1 − k)gσµ∂tΓ
ν
νµ = 0. (9.7)

The choicek = 1 becomes a generalization of the harmonic coordinate condition,

gντ∂tΓ
µ

ντ = 0.

The relationship between the harmonic and the 3+1 formalism is more trans-
parent if we decompose the contracted Christoffel symbolsΓµ ≡ gντΓµ

ντ as

nµΓµ = αΓ0 = − 1

α2
(∂t − βp∂p)α−K,

αΓi = −hij

α
(∂t − βp∂p)β

j − ∂iα+
βp

α
Ap + α (3)Γi. (9.8)

The value ofΓ0 will provide an evolution equation for the lapse, namely the time
slicing, and the value ofΓi amounts to an evolution equation for the shift, which
determines the time lines for a given slicing. The main difference is that theΓµ are
constraints in the harmonic formalism, while the corresponding 3+1 conditions are
part of the evolution system.

In the case of the Z4 system,k = 1 is the only choice that ensures strong
hyperbolicity for the full system of evolution equations plus gauge conditions.
This choice leads to the HAKE equation [100],

gµν∂tΓ
σ

µν + ... = 0, (9.9)
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with extra Z terms included in order to obtain a well posed problem. However, this
leads to a slicing condition which is not well suited for black hole simulations, as
the principal part exhibits a close resemblance with the harmonic coordinates

gµνΓσ
µν = 0, (9.10)

so it presents the same singularity avoidance problem as the harmonic lapse (Sec-
tion 8.1).

9.1.2 Almost-Killing Shift

The idea of the AKE shift is still very appealing, as this coordinate condition is not
only well adapted to the stationary spacetimes, but it also minimizes the deviation
from the stationary regime. The problem consists in making the quasi-stationary
conditions derived from the variation principle Eq. (9.3) compatible with the sin-
gularity avoidance requirement for black hole evolutions.

A solution would be to split the slicing from the time lines condition. One can
notice that by enforcingξ = ∂t we demand two things, namely that the time lines
are the integral curves of the almost Killing vectorξ, and that the time coordinate
is chosen to be the preferred affine parameter associated with these lines. While
the first requirement fits the idea of obtaining a quasi-stationary gauge condition,
the second one does not have a clear physical motivation. As we wish to enforce
singularity avoidance in black hole simulations, the second requirement is not well
suited.

A better strategy is to choose a priori the time coordinate. The spacetime
slicing

φ(xµ) = constant,

can be chosen such that it ensures singularity avoidance. Then one can use this
time coordinate as a parameter along the integral lines of the almost-Killing vector
ξ, by requiring

ξµ∂µφ = 1. (9.11)

One constrains this way the vectorξ to fulfill Eq. (9.11) in the minimization pro-
cess.

The new Lagrangian can be written as

L′ = L+ λ(ξµ∂µφ− 1). (9.12)

The Euler-Lagrange equations include now the constraint Eq. (9.11) and the sys-
tem

∇ν [∇νξµ + ∇µξν − k(∇σξ
σ)gµν ] = λ∂µφ, (9.13)

which is a generalization of the almost-Killing equation (9.4). In adapted coordi-
nates,

φ = t, ξ = ∂t,
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the generalized AKE takes the form

gµν∂tΓ
σ

µν + (1 − k)gσµ∂tΓ
ν
νµ = λ∂σφ. (9.14)

We split the system into 3+1 components and use only the space coordinate
conditions, as the time slicing was chosen a priori. One obtains a second order
evolution equation for the shift

gστg
µν∂tΓ

σ
µν + (1 − k)∂tΓ

ν
ντ = 0. (9.15)

This way, the AKE gauge conditions are completely separated and the generalized
AKE shift equation is compatible with any a priori chosen time slicing.

One can observe that the shift condition is independent of the value of the
Lagrangian. This means that we could obtain the same condition from the original
unconstraint Lagrangian. We can conclude that the slicing constraint does not
affect the minimization process in the shift sector. The generalized AKE shift
Eq. (9.15) contains a free parameter, for which one can choose now even the
harmonic valuek = 1, as the requirement of singularity avoidance can be enforced
separately.

9.1.3 Gauge Evolution Equations

In the 3+1 form of the Z3 and Z4 systems, the gauge evolution is provided by the
following equations for the lapse and shift,

∂tα = −α2Q, (9.16)

∂tβ
i = −αQi, (9.17)

whereQ andQi can be either a combination of other dynamical fields, or indepen-
dent quantities with their own evolution equation.

In the numerical evolution of harmonic spacetimes, as we are not interested
in singularity avoidance, it is convenient to use the full AKE conditions Eq. (9.7)
which have a form close to the harmonic gauge. Their decomposition provides the
following evolution equations for the shorthandsQ andQi:

∂tP + 2α2(KabQ
ab −Q K) + 2αQp(Ap + Zp) = 0, (9.18)

∂tP
i − 2αQp(αKp

i −Bp
i) − 2α3hin(Qpq − hpqQ)(Dpqn +Dqpn −

− Dnpq) − 4α3(Qip − hipQ)Zp + αQi(α(Q−K) + βpAp) −
− 2α3(1 − k)(Qip − hipQ)(Ap +Dpq

q) = 0, (9.19)

whereP andP i stand for the following combinations

P = α(Q−K + 2θ) + βpAp, (9.20)
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P i = αQi + βpBp
i + 2α2(Dp

pi + Zi) − kα2(Dip
p +Ai). (9.21)

We use damping terms of the formσα2Q in Eq. (9.18) andσαQi in Eq. (9.19), in
order to ensure the stability of the solutions.

The standard harmonic lapse and shift gauge conditions can be recovered from
the AKE Eqs. (9.20 - 9.21), by setting theP andP i evolution variables to zero
and choosing a value ofk = 1 for the gauge parameter. In this way, the shorthands
Q andQi can be directly calculated as

Q = K − 2θ − βp

α
Ap, (9.22)

Qi = α(Ai +Dip
p) − 2α(Zi +Dp

pi) − βp

α
Bp

i. (9.23)

In the black hole evolutions presented in Chapter 6, we chose algebraic gauge
conditions, namely a singularity avoiding slicing of the ’1+log’ type and zero shift,
translated into

Q =
2

α
K, (9.24)

Qi = 0.

Even though a vanishing shift works well, the black hole horizon grows rapidly in
coordinate space, such that soon all the computational domain is inside the black
hole. For long term evolutions, we would like to have an outward pointing shift
vector, that will prevent the time lines from falling into the black hole.

The generalized AKE shift Eq. (9.15) offers us the possibility of applying a
shift condition which is well adapted to stationary spacetimes. Even in cases where
there is only an approximate symmetry, the coordinates are expected to adapt in
order to minimize the rate of change of the metric. For the black holes evolutions
presented in the following section, we considered a combination of the singularity
avoiding slicing Eq. (9.24), with the quasi-stationary AKE shift Eq. (9.19).

9.2 Numerical Analysis

9.2.1 Harmonic Spacetimes

In order to test the properties of the AKE gauge conditions, we choose first a simple
numerical setting, one of the standard ApplesWithApples proposals. As described
in Chapter 4, the Gauge Waves test provides initial data of flat space in non-trivial
coordinates. It was designed for testing the ability of different formulations to
handle gauge dynamics.

The test considers flat Minkowski space in a slicing where the 3-metric is time
dependent

ds2 = (1 −H)(−dt2 + dx2) + dy2 + dz2,
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Figure 9.1. Illustration of the Z4 metric components on the x-axis, in a Gauge Wave test
(H = 0.01) with the AKE conditions (k = 1, σ = 2), resolutiondx = 0.005 and 3rd
order CFV method. The plots correspond to thehxx component of the metric (upper panel)
and theβx component of the shift (lower panel), attime = 0 (continuous dark-grey plot),
time = 10CT (dashed light-grey plot) andtime = 100CT (black plot).
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Figure 9.2. Illustration of the Z4 metric components on the x-axis, in a Gauge Wave test
(H = 0.1) with the AKE conditions (k = 1, σ = 2), resolutiondx = 0.005 and 3rd order
CFV method. The plots correspond to thehxx component of the metric (upper panel) and the
βx component of the shift (lower panel), attime = 0 (continuous dark-grey plot),time = 10
CT (dashed light plot) andtime = 100 CT (black plot).
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andH = A sin
(

2π(x−t)
d

)

is a propagating sine wave in the x direction. We run

the test with amplitudesH = 0.001 andH = 0.01, on a computational domain
d = 1, with periodic boundary conditions. As the relevant dynamics is along the
x-axis, we consider a chanel with higher resolution in the one direction (dx =
0.005), while for the y and z axis we assign a minimum number of points. The
numerical methods employed are a third order Centered Finite Volume algorithm
for the spatial discretization (Appendix 9.5) and a third order Runge Kutta time
integration method (Appendix 9.4).

We perform the evolution with the Z4 system using the AKE conditions, with
a parameterk = 1 and dampingσ = 2. Notice the form of the damping terms
in the AKE Eqs. (9.18 - 9.19), which are constructed from the right-hand-sides of
the evolutions equations for the lapse and shift Eqs. (9.16 - 9.17). This damping is
responsible for the ’freezing’ behavior of the wave, presented in Fig. (9.1) for low
amplitude and Fig. (9.2) for medium amplitude.

One can see for comparison in Chapter 4 the results obtained with the harmonic
gauge for a medium amplitude wave. The profiles follow very closely the exact
solution Fig. (4.3). Only a small amount of dissipation is visible, as we are using
a third order method in order to get rid of the dispersion error.

The behavior of the quasi-stationary AKE in the same setting, shows that the
amplitude is quickly decreasing, such that we get very close to the stationary
Minkowski valuegxx = 1 after only10 crossing-times (CT). Although a small
residual profile remains even after100 CT, the change in the initial amplitude is
significantly reduced. Additionally, the shift vector grows and stabilizes at a non-
zero value, while the lapse approaches a value ofα = 1.

The same behavior has been reported in [20], where a similar test was per-
formed with the Z3 system, for a value of the AKE parameterk = 0.5 and damping
σ = 2.

9.2.2 Black Hole Spacetimes

9.2.2.a Black Hole in Spherical Symmetry

We present the evolution of a Schwarzschild black hole in spherical symmetry as
described in Section 6.1, in this case with non-vanishing shift. The line element
takes the form

ds2 = −(tanh η)2dt2 + 4M2(cosh η/2)4(dη2 + dΩ2), (9.25)

where we performed a coordinate transformation of the typer = M
2 exp(η) to

the Schwarzschild line element in isotropic coordinates Eq. (6.1). Our evolution
domain extends toη = 10M (r ≈ 11000M ).

The tests are performed with the Z3 system (Appendix 9.6.1), where the free
parameter that couples the energy constraint in the evolution equation for the ex-



166 Symmetry Seeking Shift Conditions

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Β = AKE

Β = 0

α

η

0 2 4 6 8 10
0.00

0.01

0.02

0.03

0.04

0.05

t = 1000

t = 200

t = 100

t = 50

η

β
η

Figure 9.3. Illustration of the Z3 metric components as a function of the logarithmicη coordi-
nate, in a Schwarzschild black hole simulation in spherical symmetry, using the ’1+log’ lapse
and AKE shift (k = 0.5, σ = 2) conditions. We use a 3rd order CFV method, with resolution
dx = 0.05. Left panel: The collapse of the lapse function is presented attime = 50M and
time = 1000M , in a simulation with zero shift (continuous black plot) and the AKE shift
(dashed grey plot). Right panel: The evolution of the AKE shift is presented attime = 50M
(continuous black plot),time = 100M (dashed dark-grey plot),time = 200M (dashed
medium-grey plot) andtime = 1000M (dashed light-grey plot).

trinsic curvature isn = 4/3. This choice leads to a system equivalent to a first
order in space variant of the BSSN, without the conformal decomposition. We
combine the ’1+log’ singularity avoiding lapse condition Eqs. (9.16), (9.24), and
the quasi-stationary AKE shift Eqs. (9.17), (9.19), (9.21), with a value ofk = 0.5
for the gauge parameter andσ = 2 for the gauge damping.

One can see in Fig. (9.3) a comparison with the simulation in normal coordi-
nates, as presented in Section 6.1. The lapse shows a singularity avoiding behavior
in both cases. The effect of the shift is adding some outgoing speed to the grid
nodes, so that the advance of the collapse front across the grid is delayed. One can
also notice a smoothing in the profile of the lapse, so that it can be better solved nu-
merically. The logarithmic character of the grid makes the difference between the
two simulations less obvious at later times, when the collapse front is at situated at
larger values of theη coordinate.

9.2.2.b Black Hole in 3D

We present the evolution of a Schwarzschild black hole in 3D as described in
Section 6.2, in this case with non-vanishing shift. The initial data is provided by
the metric in isotropic coordinates, where the line element takes the form

ds2 = −α2dt2 +

(

1 +
M

2r

)4
(

dr2 + r2dΩ2
)

, (9.26)
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Figure 9.4. Illustration of the Z4 metric components on the x-axis, in a 3D Schwarzschild
black hole simulation, with ’1+log’ lapse and AKE shift (k = 1, σ = 10). We use a 3rd
order CFV method, with resolutiondx = 0.1. Left panel: The collapse of the lapse function
is presented attime = 10M (black plot),time = 20M (dark-grey plot) andtime = 30M
(light-grey plot). Right panel: The evolution of the AKE shift is presented attime = 10M
(black plot),time = 20M (dark-grey plot) andtime = 30M (light-grey plot).

anddΩ2 = dθ2 + (sin θ)2dφ2. We follow thestuffed black holeapproach and
match a scalar field such that the metric becomes regular inside the horizon Eq.
(6.15).

The test is performed with the Z4 system (Appendix 9.7). The gauge con-
ditions are provided by ’1+log’ singularity avoiding lapse condition Eqs. (9.16),
(9.24), in combination with the AKE shift Eqs. (9.17), (9.19), (9.21), withk = 1
for the gauge parameter andσ = 2 for the gauge damping.

One can notice in Fig. (9.4) that the lapse function shows almost the same
rate of collapse in the simulation where the AKE shift is active, compared with the
vanishing shift simulation in Chapter 6, Fig. (6.14). We find only a small decrease
in theK variable, which controls time variation of the metric coefficients. The
shift is not successful in slowing the dynamics and one does obtain the behavior
associated with the ’Gamma driver’ condition Eq. (2.30).

9.3 Discussion

From a numerical point of view, the desired coordinates should be free of arti-
ficial (coordinate) singularities, they should take advantage of the symmetry of
the problem, namely in stationary spacetimes they should lead to explicitly time
independent metric components, and in the absence of symmetries they should
minimize the rate of change of the metric.

The ’Gamma driver’ shift condition currently used in combination with the
BSSN system in the moving puncture approach, manages to evolve the binary
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black hole data to a stationary state. In the case of an inspiral binary system,
one can consider an approximative Killing vector and one defines a (non-unique)
corotating coordinate system. The coordinate system on the spacetime is obtained
by Lie-dragging the slice and its coordinates along the Killing vector. However
this shift choice does not have the expected behavior when used in combination
with other 3+1 Einstein systems.

We developed the AKE shift condition as an alternative to the ’Gamma driver’
shift condition. The AKE gauge shows very good results in the Gauge Wave Test,
as the metric gets very close to the stationary Minkowski value. In the case of a
black hole in spherical symmetry, the results are also satisfactory. We have shown
both analytically and numerically, that one can combine the ’1+log’ slicing with
the generalized AKE shift, without loosing the quasi-stationary properties of the
AKE condition and the singularity avoidance of the slicing. The effect of the
shift is a delay in the advance of the collapse front across the grid, such that the
computational domain is prevented from falling into the black hole. However, the
generalization to full 3D black hole evolutions requires further investigation.

We have added standard damping terms to the AKE condition, in order to
control the growth of the lapse and shift values. We found that the results depend
crucially on the particular value of the gauge parameterk and on the damping.
Furthermore, the preferred values ofk changes for different evolution systems,
namely we foundk = 0.5 for the Z3, andk = 1 for the Z4. These particular
values are in fact special, ask = 1 is a generalization of the harmonic coordinate
condition, while fork = 0.5 the minimum principle leads to a minimization of the
conformal-Killing equation, namely a quasi-conformal shift condition. This opens
an interesting perspective for future work.



Concluding Remarks

In this thesis, we studied several analytical and numerical problems related with
simulations of general relativistic black holes and boson stars. The principal new
results are as follows.

We developed a new centered finite volume (CFV) method based on the flux
splitting approach (Chapter 5). This algorithm is the first one in the class of fi-
nite volume methods which allows third order accuracy by only piece-wise linear
reconstruction. Used in combination with positive-coefficients Runge Kutta meth-
ods, it ensures that the monotonicity properties of the basic evolution step will be
preserved by the resulting strong stability preserving algorithm. This CFV method
can also be used in the form of an adaptive dissipation algorithm, which can be
combined with the standard finite difference methods. As long as one does not
require the use of limiters, the two approaches are equivalent and can be applied
even to systems implemented in a non flux-conservative form.

A comparison between different techniques currently used in Numerical Rel-
ativity, is performed in the context of a Schwarzschild black hole simulation in
spherical symmetry (Chapter 6). The study shows that our CFV method allows
longer and more accurate evolutions, even at low resolutions. The method is effi-
cient especially in dealing with the steep gradients which arise in black hole evo-
lutions with vanishing shift.

We performed the first long term simulation of a Schwarzschild black hole in
normal coordinates without excision (Chapter 6). Our success does not rely on
a specific choice of gauge conditions or treatment of the singularity. We consider
two approaches for dealing with the BH singularity, namely the puncture technique
and scalar field stuffing, and provide numerical evidence that they have a similar
approach to the stationary state, in the context of normal coordinates and ’1+log’
slicing.

The crucial ingredients in our 3D Schwarzschild black hole simulations are the
Z4 system and the efficiency of our CFV method. We devised an improved version
of the Z4 system, with constraint adjustments and damping terms (Chapter 3). In
addition, we use a flux conservative implementation, which proved to be important
in standard Numerical Relativity tests (Chapter 4).

We present the first general relativistic study of Mixed State Boson Stars

169



170 Conclusions

(MSBS) configurations (Chapter 7). Performing numerical evolutions with the
Einstein-Klein-Gordon system in spherical symmetry, we follow the evolution of
MSBS under massless scalar field perturbations. We fit the growth rate of the un-
stable configurations and extrapolate to find the maximum allowed Noether frac-
tion which separates the stable and unstable models. Our simulations show that
even unstable MSBS settle into stable configurations through the scalar field ra-
diation. The results of this numerical study, regarding the long term stability of
MSBS configurations, suggest that they can be suitable candidates for dark matter
models.

We performed a detailed study of gauge instabilities related with the ’1+log’
family of singularity avoiding slicing conditions (Chapter 8). We study two classes
of Schwarschild initial data, by perturbing the initial lapse and perturbing the initial
slice. Our numerical results based on evolutions with various perturbation mod-
els, show that instabilities appear only for a restricted set of initial perturbation
parameters. Most instabilities are associated with runaway solutions. The slicing
with lapse equal to one initially, never creates instabilities, which is in agreement
with the current numerical observations. We argue that these instabilities are not
generic for evolved gauge conditions.

We developed a generalized Almost Killing Equation (AKE), which is ex-
pected to adapt the coordinates to the symmetry of the problem under study (Chap-
ter 9). The resulting 3-covariant AKE space coordinate condition can be used in
combination with any slicing, without loosing its quasi-stationary properties. The
behavior of the AKE shift in numerical evolutions of harmonic spacetimes (Gauge
Wave Test), manages to bring the metric close to the stationary value. In the case
of a black hole in spherical symmetry, the effect of the shift is a delay in the ad-
vance of the collapse front across the grid, such that the computational domain is
prevented from falling into the black hole. However, the generalization to full 3D
black hole evolutions requires further investigation.



Appendix: Numerical Methods

9.4 Time Integration Methods

9.4.1 Crank Nicholson

The iterative Crank Nicholson integrator is defined as:

k1 = kf(tn, u
n),

k2 = kf(tn + k/2, un + k1/2),

k3 = kf(tn + k/2, un + k2/2),

un+1 = un + k3.

9.4.2 Runge Kutta

Most of our numerical results are based on a 3rd order accurate RK time integration
method:

u∗ = f(un,∆t),

u∗∗ =
3

4
un +

1

4
f(u∗,∆t),

un+1 =
1

3
un +

2

3
f(u∗∗,∆t).

9.5 Spatial Discretization

9.5.1 Finite Differencing

The spatial discretization is based on a centered finite difference method, 2nd order
accurate,

∂i → D0i , ∂i∂j →
{

D0iD0j if i 6= j
D+iD−i if i = j

,
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or 4th order accurate,

∂i → D
(4)
i = D0i(1 − ∆x2

6
D+iD−i),

∂i∂j →
{

D
(4)
i D

(4)
j if i 6= j

D+iD−i(1 − ∆x2

12 D+iD−i) if i = j
,

where

D+vj :=
vj+1 − vj

∆x
,

D−vj :=
vj − vj−1

∆x
,

D0vj :=
vj+1 − vj−1

2∆x
,

D+D−vj :=
vj+1 − 2vj + vj−1

∆x2
.

For a summary of definitions and results for standard finite difference discretiza-
tions one can see [40], where some results concerning the evolution systems that
we considered in this thesis are derived.

9.5.2 Kreiss-Oliger Dissipation

It is common practice to add third order accurate Kreiss–Oliger dissipation [101]
to all the right-hand-sides of the time evolution equations as

∂tu → ∂tu +Qu.

We use the following general form of the Kreiss–Oliger dissipation operatorQ of
order2r,

Q = σ(−1)(r−1)(∆x)2r−1(D+)r(D−)r/22r,

for a(2r−2) accurate scheme, where the parameterσ regulates the strength of the
dissipation.

9.5.3 Finite Volumes

The explicit steps that one needs to follow when applying our Centered Finite
Volume (CFV) method are:

• The algorithm for thei grid point:
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- Calculate the left and right predictions for the fluxes:

FLi = Fi + λiui, (9.27)

FRi = Fi − λiui. (9.28)

- Calculate the left and right slopes of the left flux in the celli, by using the
left fluxes in the neighboring points:

DLi = (FLi − FLi−1),

DRi = (FLi+1 − FLi).

- Calculate the slope of the left flux in the celli, by averaging the above
computed slopes:

SLi = aDLi + bDRi. (9.29)

- Calculate the left and right slopes of the right flux in the celli, by using the
right fluxes in the neighboring points:

DLi = (FRi − FRi−1),

DRi = (FRi+1 − FRi).

- Calculate the slope of the right flux in the celli, by averaging the above
computed slopes:

SRi = bDLi + aDRi. (9.30)

• Repeat the algorithm for the(i+ 1) grid point.

• Compute the left and right flux at the interface(i+ 1
2):

Li+ 1
2

= FLi +
1

2
SLi, (9.31)

Ri+ 1
2

= FRi+1 −
1

2
SRi+1, (9.32)

and average them in order to obtain the final flux at the interface:

Fi+ 1
2

=
1

2
(Li+ 1

2
+Ri+ 1

2
).

• Repeat the scheme for the flux at the interface(i− 1
2 ).

• Obtain the value of the flux in the grid pointi as:

Fi =
1

dx
(Fi+ 1

2
− Fi− 1

2
).
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A comparison between our CFV method with the dissipation (λ terms) sup-
pressed, and the standard 4th order finite difference scheme, allows us to uniquely
determine the slope coefficients Eqs. (9.29), (9.30).

An equivalence between the CFV method withλ = 0 and the standard FD
algorithms can be obtained in the following way:

• The second order finite difference algorithm can be recovered from the pre-
viously described CFV method by setting the numerical speedsλ = 0 in
Eqs. (9.27), (9.28) and the slopesSL = SR = 0 in Eqs. (9.31), (9.32).
After performing the replacements, one obtains:

Fi+ 1
2

=
1

2dx
(Fi + Fi+1),

Fi− 1
2

=
1

2dx
(Fi−1 + Fi),

Fi =
Fi+1 − Fi−1

2dx
.

• The fourth order finite difference algorithm can be recovered from the pre-
viously described CFV method, by setting the numerical speedsλ = 0 in
Eqs. (9.27), (9.28). A simple calculation leads to:

Fi+ 1
2

=
1

2dx
[Fi +

1

2
((a− b)Fi − aFi−1 + bFi+1) +

+ Fi+1 −
1

2
((b− a)Fi+1 + aFi+2 − bFi)],

Fi− 1
2

=
1

2dx
[Fi−1 +

1

2
((a− b)Fi−1 − aFi−2 + bFi) +

+ Fi −
1

2
((b− a)Fi + aFi+1 − bFi−1)],

Fi =
(−aFi+2 + 8aFi+1 − 8aFi−1 + aFi−2)

4dx
,

Comparing with the standard 4th order FD algorithm, one obtainsa = 1
3 .

The value ofb = 2
3 is obtained taking into account the constraint(a+b) = 1.
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9.6 The Z3 system

9.6.1 The Z3 system in spherical symmetry and normal coordinates

Consider a Schwarzschild line element written as

ds2 = −(tanh r)2dt2 + 4M2(cosh r/2)4(dr2 + dΩ2), (9.33)

corresponding to

ds2 = −α2dt2 + hrrdr
2 + hθθdΩ

2.

Then the evolution equations of the Z3 system used to evolve a Schwarzschild
black hole in spherical symmetry can be translated into:

∂thrr = −2αhrrKr
r,

∂thθθ = −2αhθθKθ
θ,

∂tAr + ∂r[αfK] = 0,

∂tDrr
r + ∂r[αKr

r] = 0,

∂tDrθ
θ + ∂r[αKθ

θ] = 0,

∂tZr + ∂r[2αKθ
θ] =

= 2α[Drθ
θ(Kr

r −Kθ
θ) +ArKθ

θ −Kr
rZr],
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∂tKr
r + ∂r[αh

rr(Ar + (2 − n)Drθ
θ − (2 − n

2
)Zr)] =

= α[Kr
rKr

r + (2 − n)Kr
rKθ

θ − n

2
Kθ

θKθ
θ −

− hrrDrr
r(Ar + (2 − n)Drθ

θ + (
n

2
− 2)Zr) +

+ hrrDrθ
θ((2 − n)Ar − (2 − 3n

2
)Drθ

θ − nZr) −

− hrr(2 − n)ArZr −
n

2
hθθ],

∂tKθ
θ + ∂r[αh

rr((1 − n)Drθ
θ +

n

2
Zr)] =

= α[(1 − n)Kr
rKθ

θ + (2 − n

2
)Kθ

θKθ
θ −

− hrrDrr
r((1 − n)Drθ

θ +
n

2
Zr) +

+ hrrDrθ
θ((2 − n)Zr − (2 − 3n

2
)Drθ

θ) −

− nhrrAr(Drθ
θ − Zr) + (1 − n

2
)hθθ].

9.6.2 The Z3 system in spherical symmetry, normal coordinates and
regularization

Consider a Schwarzschild line element written as

ds2 = −α2dt2 +

(

1 +
M

2r

)4

(dr2 + r2dΩ2),

corresponding to

ds2 = −α2dt2 + hrrdr
2 + hθθr

2dΩ2.

Then the evolution equations of the Z3 system used to evolve a boson star
configuration can be translated into:

∂thrr = −2αhrrKr
r,

∂thθθ = −2αhθθKθ
θ,

∂tAr + ∂r[αfK] = 0,

∂tDrr
r + ∂r[αKr

r] = 0,

∂tDrθ
θ + ∂r[αKθ

θ] = 0,
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∂tZr + ∂r[2αKθ
θ] =

= 2α

{

1

4r

hrr

hθθ
(Kθ

θ −Kr
r) −Kr

r

[

Zr +
1

4r

(

1 − hrr

hθθ

)]

+

+

(

Drθ
θ +

1

r

)

(Kr
r −Kθ

θ) +ArKθ
θ − 4πτ

}

,

∂tKr
r + ∂r

[

αhrr

(

Ar +
2

3
Drθ

θ − 4

3
Zr

)]

=

= α

{

(Kr
r)2 +

2

3
Kθ

θ(Kr
r −Kθ

θ) − hrrDrr
rAr+

+
1

3r
[hrr(Drr

r −Ar − 4Zr) + hθθ(Drθ
θ −Ar)]+

+
2

3
hrr

[

Zr +
1

4r

(

1 − hrr

hθθ

)]

(2Drr
r − 2Drθ

θ −Ar)−

− 2

3
hrr

(

Drθ
θ +

1

r

)

(Drr
r −Ar) + 8π

(

τ

6
− Sr

r

2
+ Sθ

θ

)}

,

∂tKθ
θ + ∂r

[

αhrr

(

−1

3
Drθ

θ +
2

3
Zr

)]

=

= α

{

1

3
Kθ

θ(−Kr
r + 4Kθ

θ)+

+
1

6r
[hrr(Ar − 2Drr

r − 4Zr) + hθθ(Ar − 2Drθ
θ)]−

− 2

3
hrr

[

Zr +
1

4r

(

1 − hrr

hθθ

)]

(Drr
r −Drθ

θ − 2Ar)+

+
1

3
hrr

(

Drθ
θ +

1

r

)

(Drr
r − 4Ar) + 8π

(

τ

6
− Sr

r

2
+ Sθ

θ

)}

.

9.6.2.a The Matter Terms

The matter terms introduced by a complex scalar fieldφ = φR − iφI , can be
explicitly written as:

τ =
1

2
{hrr[(φI

t )
2 + (φR

t )2] + hrr[(φI
r)

2 + (φR
r )2] +m2[(φI)2 + (φR)2]},

Sr =
√
hrr(φI

tφ
I
r + φR

t φ
R
r ),

Sr
r =

1

2
{hrr[(φI

t )
2 + (φR

t )2] + hrr[(φI
r)

2 + (φR
r )2] −m2[(φI)2 + (φR)2]},

Sθ
θ =

1

2
{hrr[(φI

t )
2 + (φR

t )2] − hrr[(φI
r)

2 + (φR
r )2] −m2[(φI)2 + (φR)2]},
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where the radial and temporal derivatives are denoted by

φt =

√
hrr

α
∂tφ,

φr = ∂rφ,

and the evolution ofφt,r is given by the Klein-Gordon equations.

9.6.2.b Characteristic Decomposition

The characteristic decomposition of the system, along any given space direction,
is given by the following fields which propagate

• along the time lines (with zero speed):

α, hrr, hθθ, φ,Ar, (Ar − f trD), (2Drθ
θ − Zr);

• along the light cones, with speeds±α
√
hrr:

αKθ
θ ± α

√
hrr

1

3
(2Zr −Drθ

θ),

φr ± φt;

• with gauge speed±α√f :

α
√

f K ± α
√
hrrAr,

wheref = 1 for our gauge choice of harmonic slicing.

9.6.3 The full Z3 system

The Z3 system has the form:

∂thij = −2α[Kij −
1

2α
(Bij +Bji) −

1

α
Dpijβ

p],

∂tZi + ∂p[−βpZi + α(−Ki
p + δi

pK) + µ(Bi
p − δi

pBq
q)] = S(Zi),

∂tKij + ∂p[−βpKij + α{λp
ij −

n

2
hij(D

p − Ep − Zp)}] = S(Kij),

where theξ parameter comes from the definition of the Ricci tensor,µ corresponds
to the ordering choice andn tunes the coupling with the energy constraint, allowing
us to obtain different forms of the Z3 system (Section 3.1.1). The shorthands can
be translated asDi = Dip

p andEi = Dp
pi.
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The λp
ij in principal part of the extrinsic curvature equation can be written

explicitly as

λp
ij = Dp

ij −
1

2
(1 + ξ)(Dij

p +Dji
p) +

+
1

2
δj

p(Ai +Di − (1 − ξ)Ei − 2Zi) +

+
1

2
δi

p(Aj +Dj − (1 − ξ)Ej − 2Zj).

The Z3 source terms are given by

S(Kij) = SZ4(Kij) −
n

2
hijSZ4(θ) −

n

2
α(Dp −Ep − Zp)(2Dpij +Aphij),

S(Zi) = α[AiK −ApK
p
i −Di

pqKpq +DpKpi − 2Kp
iZp] − ZitrB −

−8παSi.

9.7 The Z4 system

The Z4 system has the form:

∂thij = −2α[Kij −
1

2α
(Bij +Bji) −

1

α
Dpijβ

p],

∂tZi + ∂p[−βpZi + α{−Ki
p + δi

p(K − θ)} + µ(Bi
p − δi

ptrB)] = S(Zi),

∂tKij + ∂p[−βpKij + αλp
ij] = S(Kij),

∂tθ + ∂p[−βpθ + α(Dp − Ep − Zp)] = S(θ).

The Z4 source terms are given by

S(Kij) = −KijtrB +KpiBj
p +KpjBi

p +

+α{Dp(Dijp +Djip −Dpij) +

+
1

2
(1 − ξ1)[(Ap − 2Ep)(Dij

p +Dji
p) − (AjEi +AiEj) +

+2(DpqiDj
pq +DpqjDi

pq)] +
1

2
(AjDi +AiDj) +

+2(DpqjD
pq

i −DpqjD
qp

i −
1

2
DipqDj

pq) +

−2Zp(Dipj +Djpi −Dpij) − (AjZi +AiZj) −

−2Kq
jKqi +Kij(K − 2Θ)} − 8πα[Sij −

hij

2
(trS − τ)],
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S(Zi) = α[Ai(K − 2θ) −ApK
p
i −Di

pqKpq +DpKpi − 2Kp
iZp] −

−ZitrB + ZpBi
p − 8παSi,

S(θ) =
α

2
[2Ap(D

p − Ep − 2Zp) +Dp
rq(2Drq

p −Dp
rq) −

−Dp(Dp − 2Zp) −Kp
qK

q
p +K(K − 2θ)] − θtrB − 8πατ.

9.8 The Friedrich-Nagy system

9.8.0.a The constraint equations forΓ

(e1)
p∂pΓ232 − (e2)

p∂pΓ231 − E31+
+χ23χ21 + χ22χ13 − 2χ23χ12+

+Γ232Γ221 − Γ221Γ131 + 2Γ231Γ121 = 0,
(9.34)

(e2)
p∂pΓ131 − (e1)

p∂pΓ231 − E32+
+χ23χ11 + χ12χ13 − 2χ21χ13+

+Γ232Γ121 − Γ121Γ131 − 2Γ231Γ221 = 0,
(9.35)

(e3)
p∂pΓ131 − (e1)

p∂pΓ331 + E22+
+χ33χ11 + χ13χ13 − 2χ31χ13+

+Γ332Γ121 − Γ131Γ131 − Γ331Γ331−
−Γ231Γ231 − 2Γ321Γ231 = 0,

(9.36)

(e3)
p∂pΓ232 − (e2)

p∂pΓ332 + E11+
+χ33χ22 + χ23χ23 − 2χ32χ23−

−Γ331Γ221 − Γ232Γ232 − Γ332Γ332−
−Γ231Γ231 + 2Γ321Γ231 = 0,

(9.37)

(e3)
p∂pΓ231 − (e1)

p∂pΓ332 − E21+
+χ33χ12 + χ23χ13 − χ32χ13 − χ31χ23−
−Γ331Γ121 − Γ232Γ231 − Γ332Γ331−

−Γ231Γ131 − Γ321Γ232 + Γ321Γ131 = 0,

(9.38)

(e3)
p∂pΓ231 − (e2)

p∂pΓ331 − E21+
+χ33χ21 + χ23χ13 − χ32χ13 − χ31χ23−
−Γ331Γ332 − Γ232Γ321 + Γ332Γ221−

−Γ231Γ131 − Γ232Γ231 + Γ321Γ131 = 0,

(9.39)

(e1)
p∂pΓ321 − (e3)

p∂pΓ121 + E32−
−χ32χ11 + χ31χ12+

+Γ331Γ321 + Γ221Γ321 + Γ332Γ131+
+Γ121Γ131 − Γ331Γ231 + Γ231Γ221 = 0,

(9.40)
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(e2)
p∂pΓ321 − (e3)

p∂pΓ221 − E31−
−χ32χ21 + χ31χ22−

−Γ331Γ232 + Γ221Γ232 + Γ332Γ231−
−Γ121Γ321 + Γ121Γ231 + Γ332Γ321 = 0,

(9.41)

(e2)
p∂pΓ121 − (e1)

p∂pΓ221 − E11−
−E22 − χ12χ21 + χ11χ22−

−Γ221Γ221 − Γ121Γ121 + Γ231Γ231−
−Γ232Γ131 = 0.

(9.42)

9.8.0.b The constraint equations forχ

(e2)
p∂pχ11 − (e1)

p∂pχ21 −B31 − χ21F1 + χ12F1−
−χ13Γ231 − χ21Γ221 − χ12Γ221+

+χ23Γ131 + χ22Γ121 − χ11Γ121 = 0,
(9.43)

(e2)
p∂pχ12 − (e1)

p∂pχ22 −B32 − χ21F2 + χ12F2−
−χ13Γ232 + χ23Γ231 − χ22Γ221+

+χ11Γ221 − χ21Γ121 − χ12Γ121 = 0,
(9.44)

(e3)
p∂pχ21 − (e2)

p∂pχ31 −B11 − χ32F1 + χ23F1−
−χ31Γ332 − χ23Γ331 − χ22Γ321 + χ11Γ321−

−χ21Γ232 + χ33Γ231 − χ11Γ231 + χ32Γ221 = 0,
(9.45)

(e3)
p∂pχ12 − (e1)

p∂pχ32 +B22 − χ31F2 + χ13F2−
−χ13Γ332 − χ32Γ331 − χ22Γ321 + χ11Γ321+

+χ33Γ231 − χ22Γ231 − χ12Γ131 − χ31Γ121 = 0,
(9.46)

(e3)
p∂pχ11 − (e1)

p∂pχ31 +B21 − χ31F1 + χ13F1−
−χ31Γ331 − χ13Γ331 − χ21Γ321 − χ12Γ321−

−χ21Γ231 + χ33Γ131 − χ11Γ131 + χ32Γ121 = 0,
(9.47)

(e3)
p∂pχ22 − (e2)

p∂pχ32 −B21 − χ32F2 + χ23F2−
−χ32Γ332 − χ23Γ332 + χ21Γ321 + χ12Γ321+

+χ33Γ232 − χ22Γ232 − χ12Γ231 − χ31Γ221 = 0,
(9.48)

(e1)
p∂pχ23 − (e2)

p∂pχ13 + fχ21 − fχ12 −B22 −B11+
+χ21Γ232 − 2χ12Γ232 + χ22Γ231 − χ11Γ231+

+χ23Γ221 + 2χ21Γ131 − χ12Γ131 + χ13Γ121 = 0,
(9.49)

(e3)
p∂pχ13 − (e1)

p∂pχ33 − fχ31 + fχ13 +B32+
+χ12Γ332 − χ33Γ331 + χ11Γ331 − χ23Γ321 − χ31Γ232+

+χ13Γ232 − χ32Γ231 − χ23Γ231 − 2χ31Γ131 = 0,
(9.50)

(e3)
p∂pχ23 − (e2)

p∂pχ33 − fχ32 + fχ23 −B31−
−χ33Γ332 + χ22Γ332 + χ21Γ331 + χ13Γ321 − 2χ32Γ232−

−χ31Γ231 − χ13Γ231 − χ32Γ131 + χ23Γ131 = 0.
(9.51)
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9.8.0.c The evolution equations forΓ

(e0)
p∂pΓ121 +B31 + χ11F2 − χ12F1+

+χ11Γ121 − χ23Γ131 + χ12Γ221 + χ13Γ231 = 0,
(9.52)

(e0)
p∂pΓ221 +B32 + χ21F2 − χ22F1+

+χ13Γ232 − χ23Γ231 + χ22Γ221 + χ21Γ121 = 0,
(9.53)

(e0)
p∂pΓ321 −B22 −B11 + χ31F2 − χ32F1+

+χ13Γ332 − χ23Γ331 + χ33Γ321 + χ32Γ221+
+χ23Γ221 + χ31Γ121 + χ13Γ121 = 0,

(9.54)

2(e0)
p∂pΓ231 − (e2)

p∂pχ13 − (e1)
p∂pχ23+

+fχ21 + fχ12 −B22 +B11 − 2χ13F2 − 2χ23F1+
+χ21Γ232 + 2χ12Γ232 + χ22Γ231 + χ11Γ231+

+χ23Γ221 + 2χ21Γ131 + χ12Γ131 − χ13Γ121 = 0.

(9.55)

(e0)
p∂pΓ331 − (e1)

p∂pχ33 − χ33F1 + χ12Γ332 + χ11Γ331 = 0, (9.56)

(e0)
p∂pΓ332 − (e2)

p∂pχ33 − χ33F2 + χ22Γ332 + χ21Γ331 = 0, (9.57)

(e0)
p∂pΓ131 − (e1)

p∂pχ13 + fχ11 −B21−
−2χ13F1 + χ11Γ232 + χ12Γ231 + 2χ11Γ131 + χ23Γ121 = 0,

(9.58)

(e0)
p∂pΓ232 − (e2)

p∂pχ23 + fχ22 +B21−
−2χ23F2 + 2χ22Γ232 + χ21Γ231 − χ13Γ221 + χ22Γ131 = 0,

(9.59)

9.8.0.d The evolution equations forχ

(e0)
p∂pχ12 − (e1)

p∂pF2 + E21−
−χ23χ13 + χ22χ12 + χ12χ11−

−F2F1 + fΓ231 − F1Γ121 + Γ232Γ231 + Γ231Γ131 = 0,
(9.60)

(e0)
p∂pχ21 − (e2)

p∂pF1 + E21−
−χ23χ13 + χ22χ21 + χ21χ11−

−F2F1 + fΓ231 + F2Γ221 + Γ232Γ231 + Γ231Γ131 = 0,
(9.61)

(e0)
p∂pχ11 − (e1)

p∂pF1 + E11−
−χ13χ13 + χ12χ21 + χ11χ11−

−F1F1 + fΓ131 + F2Γ121 + Γ232Γ131 + Γ131Γ131 = 0,
(9.62)

(e0)
p∂pχ22 − (e2)

p∂pF2 + E22−
−χ23χ23 + χ12χ21 + χ22χ22−

−F2F2 + fΓ232 − F1Γ221 + Γ232Γ232 + Γ232Γ131 = 0,
(9.63)

(e0)
p∂pχ13 − (e1)

p∂pf − (e2)
p∂pΓ231 − (e1)

p∂pΓ131+
+χ23χ21 + χ22χ13 + 2χ13χ11−

−fF1 − F1Γ232 − F2Γ231 − 2F1Γ131+
+2Γ231Γ121 − Γ221Γ131 + Γ221Γ232 = 0,

(9.64)
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(e0)
p∂pχ23 − (e2)

p∂pf − (e2)
p∂pΓ232 − (e1)

p∂pΓ231+
+χ23χ11 + χ12χ13 + 2χ23χ22−

−fF2 − F1Γ231 − F2Γ131 − 2F2Γ232−
−2Γ221Γ231 + Γ232Γ121 − Γ131Γ121 = 0,

(9.65)

(e0)
p∂pχ31 − (e3)

p∂pF1 + E31+
+χ31χ11 + χ13χ11 − χ33χ13 + χ23χ21 + χ32χ21 + χ33χ31+

−fF1 + fΓ331 − F1Γ232 − F1Γ131 + F2Γ321+
+Γ331Γ232 + Γ331Γ131 = 0,

(9.66)

(e0)
p∂pχ32 − (e3)

p∂pF2 + E32+
+χ31χ12 + χ13χ12 + χ33χ32 + χ23χ22 + χ32χ22 − χ33χ23+

−fF2 + fΓ332 − F1Γ321 − F2Γ232 − F2Γ131+
+Γ131Γ332 + Γ332Γ232 = 0,

(9.67)

(e0)
p∂pχ33 − (e3)

p∂pf − (e2)
p∂pΓ332 − (e1)

p∂pΓ331+
+χ33χ33 + χ33χ11 + χ33χ22 + 2χ23χ23 + 2χ13χ13−

−f2 − 2fΓ131 − 2fΓ232 − F1Γ331 − F2Γ332−
−Γ332Γ332 − Γ331Γ331 + Γ332Γ121 − Γ331Γ221−

−2Γ232Γ232 − 2Γ231Γ231 − 2Γ232Γ131 − 2Γ131Γ131 = 0,

(9.68)

where the following constraints forΓ were added to the evolution equations forχ:
Eq. (9.34) to Eq. (9.64); Eq. (9.35) to Eq. (9.65); Eqs. (9.36), (9.37) to Eq. (9.68),
and the constraints forχ to the evolution equations forΓ: Eq. (9.50) to Eq. (9.56);
Eq. (9.51) to Eq. (9.57), in order to obtain a symmetric hyperbolic system.

The Gauss equation with respect to the hypersurfaceTc (R0i′′′j′′′k′′′) corre-
sponds toR0121 Eq. (9.52),R0221 Eq. (9.53),R0120 Eq. (9.60),R0210 Eq. (9.61),
R0110 Eq. (9.62),R0220 Eq. (9.63). The Codazzi equation with respect toTc

(Ri′′′j′′′3k′′′) can be written asR0131 Eq. (9.58),R0232 Eq. (9.59),R0132 + R0231

Eq. (9.55),R0130 +R1232 Eq. (9.64),R0230 +R2131 Eq. (9.65).

9.8.0.e The evolution equations for the frame

In the following, we will consider a specific gauge, for which(e1)
4 = (e2)

4 = 0
andF1 = F2 = 0.

∂0(e1)
0 − F1 + χ12(e2)

0 + χ11(e1)
0 = 0, (9.69)

∂0(e1)
1 + χ12(e2)

1 + χ11(e1)
1 = 0, (9.70)

∂0(e1)
2 + χ12(e2)

2 + χ11(e1)
2 = 0, (9.71)

∂0(e2)
0 − F2 + χ22(e2)

0 + χ21(e1)
0 = 0, (9.72)

∂0(e2)
1 + χ22(e2)

1 + χ21(e1)
1 = 0, (9.73)

∂0(e2)
2 + χ22(e2)

2 + χ21(e1)
2 = 0, (9.74)
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∂0(e3)
1 + χ33(e3)

1 + χ32(e2)
1 + χ23(e2)

1 + χ31(e1)
1 + χ13(e1)

1 = 0, (9.75)

∂0(e3)
2 + χ33(e3)

2 + χ32(e2)
2 + χ23(e2)

2 + χ31(e1)
2 + χ13(e1)

2 = 0, (9.76)

∂0(e3)
3 + χ33(e3)

3 = 0. (9.77)

∂0(e3)
0 + χ33(e3)

0 + χ32(e2)
0 + χ23(e2)

0 + χ31(e1)
0 + χ13(e1)

0 − f −
−Γ232 − Γ131 = 0, (9.78)

9.8.0.f The constraint equations for E

(e3)
p∂pE31 + (e2)

p∂pE21 + (e1)
p∂pE11−

−B32χ33 −B22χ32 − 2B11χ32 +B21χ31 −B22χ23+
+B11χ23 +B32χ22 −B31χ21 − 2B21χ13 + 2B31χ12+

+E21Γ332 + E22Γ331 + 2E11Γ331 − E32Γ321 − E31Γ232−
−E32Γ231 − E22Γ221 + E11Γ221 − 2E31Γ131 − 2E21Γ121 = 0,

(9.79)

(e3)
p∂pE32 + (e2)

p∂pE22 + (e1)
p∂pE21+

+B31χ33 −B21χ32 + 2B22χ31 +B11χ31 + 2B21χ23−
−2B32χ21 −B22χ13 +B11χ13 +B32χ12 −B31χ11+

+2E22Γ332 + E11Γ332 + E21Γ331 + E31Γ321 − 2E32Γ232−
−E31Γ231 + 2E21Γ221 − E32Γ131 − E22Γ121 + E11Γ121 = 0,

(9.80)

(e1)
p∂pE31 − (e3)

p∂pE22 − (e3)
p∂pE11−

−2B31χ32 + 2B32χ31 +B31χ23 −B21χ22 + 2B22χ21+
+B11χ21 −B32χ13 −B22χ12 − 2B11χ12 +B21χ11+

+2E32Γ332 + 2E31Γ331 + 2E22Γ232 + 2E11Γ131 + 2E21Γ231+
+E31Γ221 + E22Γ131 +E11Γ232 − E32Γ121 = 0.

(9.81)

9.8.0.g The constraint equations for B

(e3)
p∂pB31 + (e2)

p∂pB21 + (e1)
p∂pB11+

+χ33E32 − χ22E32 + χ21E31 − 2χ12E31 + χ32E22+
+χ23E22 − χ31E21 + 2χ13E21 + 2χ32E11 − χ23E11+

+B21Γ332 +B22Γ331 + 2B11Γ331 −B32Γ321 −B31Γ232−
−B32Γ231 −B22Γ221 +B11Γ221 − 2B31Γ131 − 2B21Γ121 = 0,

(9.82)

(e3)
p∂pB32 + (e2)

p∂pB22 + (e1)
p∂pB21+

+2χ21E32 − χ12E32 − χ33E31 + χ11E31 − 2χ31E22+
+χ13E22 + χ32E21 − 2χ23E21 − χ31E11 − χ13E11+

+2B22Γ332 +B11Γ332 +B21Γ331 +B31Γ321 − 2B32Γ232−
−B31Γ231 + 2B21Γ221 −B32Γ131 −B22Γ121 +B11Γ121 = 0,

(9.83)
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(e3)
p∂pB22 + (e3)

p∂pB11 − (e2)
p∂pB32 − (e1)

p∂pB31+
+2χ31E32 − χ13E32 − 2χ32E31 + χ23E31 + 2χ21E22−
−χ12E22 − χ22E21 + χ11E21 + χ21E11 − 2χ12E11−

−2B32Γ332 − 2B31Γ331 − 2B22Γ232 − 2B11Γ131 − 2B21Γ231−
−B31Γ221 −B22Γ131 −B11Γ232 −B32Γ121 = 0.

(9.84)

9.8.0.h The evolution equations for E

(e0)
p∂pE11 + (e2)

p∂pB31 − (e3)
p∂pB21−

−E22χ33 + E11χ33 + E32χ32 − E31χ31 + E32χ23+
+E22χ22 + 2E11χ22 − E21χ21 − 2E31χ13 − 2fB21+

+2B31F2 +B31Γ332 +B32Γ331 +B22Γ321 −B11Γ321−
−B21Γ232 +B22Γ231 + 2B11Γ231 −B32Γ221 − 2B21Γ131 = 0,

(9.85)

(e0)
p∂pE22 − (e1)

p∂pB32 + (e3)
p∂pB21+

+E22χ33 − E11χ33 − E32χ32 + E31χ31 − 2E32χ23+
+E31χ13 − E21χ12 + 2E22χ11 + E11χ11 + 2fB21−

−2B32F1 −B31Γ332 −B32Γ331 −B22Γ321 +B11Γ321+
+2B21Γ232 − 2B22Γ231 −B11Γ231 −B31Γ121 +B21Γ131 = 0,

(9.86)

2(e0)
p∂pE31 + 2(e1)

p∂pB21 − 2(e2)
p∂pB11+

+E31χ33 − E21χ32 + 2E22χ31 + E11χ31 + 4E31χ22−
−2E32χ21 + 3E22χ13 + 3E11χ13 −E32χ12 + E31χ11−
−E31χ33 + E21χ32 − 2E22χ31 − E11χ31 − 2E21χ23+
+2E32χ21 + E22χ13 −E11χ13 − E32χ12 + E31χ11−

−2B32f − 2B22F2 − 4B11F2 + 2B21F1−
−2B32Γ232 + 2B31Γ231 + 4B21Γ221−

−4B32Γ131 − 2B22Γ121 + 2B11Γ121 = 0,

(9.87)

2(e0)
p∂pE32 + 2(e1)

p∂pB22 − 2(e2)
p∂pB21+

+E32χ33 − E21χ31 + E22χ32 + 2E11χ32 + 4E32χ11+
+E32χ22 + 3E22χ23 + 3E11χ23 − E31χ21 − 2E31χ12−
−E32χ33 − E22χ32 − 2E11χ32 + E21χ31 − E22χ23+
+E11χ23 + E32χ22 − E31χ21 − 2E21χ13 + 2E31χ12+

+2B31f − 2B21F2 + 4B22F1 + 2B11F1+
+4B31Γ232 − 2B32Γ231 + 2B22Γ221−

−2B11Γ221 + 2B31Γ131 + 4B21Γ121 = 0.

(9.88)

2(e0)
p∂pE21 + (e2)

p∂pB32 − (e1)
p∂pB31 − (e3)

p∂pB22 + (e3)
p∂pB11+

+4E21χ33 − 2E31χ32 − 2E32χ31 − 3E31χ23 + E21χ22 − 2E22χ21−
−E11χ21 − 3E32χ13 − E22χ12 − 2E11χ12 + E21χ11−

−2fB22 + 2fB11 + 2B32F2 − 2B31F1+
+2B32Γ332 − 2B31Γ331 − 4B21Γ321 + 3B11Γ232+

+B31Γ221 − 3B22Γ131 +B32Γ121 = 0,
(9.89)
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9.8.0.i The evolution equations for B

(e0)
p∂pB11 − (e2)

p∂pE31 + (e3)
p∂pE21−

−B22χ33 +B11χ33 +B32χ32 −B31χ31 +B32χ23+
+B22χ22 + 2B11χ22 −B21χ21 − 2B31χ13 + 2fE21−
−2E31F2 − E31Γ332 − E32Γ331 − E22Γ321 + E11Γ321+

+E21Γ232 − E22Γ231 − 2E11Γ231 + E32Γ221 + 2E21Γ131 = 0,

(9.90)

−(e0)
p∂pB22 − (e1)

p∂pE32 + (e3)
p∂pE21−

−B22χ33 +B11χ33 +B32χ32 −B31χ31 + 2B32χ23−
−B31χ13 +B21χ12 − 2B22χ11 −B11χ11 + 2fE21−

−2E32F1 − E31Γ332 − E32Γ331 − E22Γ321 + E11Γ321+
+2E21Γ232 − 2E22Γ231 −E11Γ231 − E31Γ121 + E21Γ131 = 0,

(9.91)

2(e0)
p∂pB31 − 2(e1)

p∂pE21 + 2(e2)
p∂pE11+

+B31χ33 −B21χ32 + 2B22χ31 +B11χ31 + 4B31χ22−
−2B32χ21 + 3B22χ13 + 3B11χ13 −B32χ12 +B31χ11−
−B31χ33 +B21χ32 − 2B22χ31 −B11χ31 − 2B21χ23+
+2B32χ21 +B22χ13 −B11χ13 −B32χ12 +B31χ11+

+2E32f + 2E22F2 + 4E11F2 − 2E21F1+
+2E32Γ232 − 2E31Γ231 − 4E21Γ221+

+4E32Γ131 + 2E22Γ121 − 2E11Γ121 = 0,

(9.92)

2(e0)
p∂pB32 − 2(e1)

p∂pE22 + 2(e2)
p∂pE21+

+B32χ33 −B21χ31 +B22χ32 + 2B11χ32 + 4B32χ11+
+B32χ22 + 3B22χ23 + 3B11χ23 −B31χ21 − 2B31χ12−
−B32χ33 −B22χ32 − 2B11χ32 +B21χ31 −B22χ23+
+B11χ23 +B32χ22 −B31χ21 − 2B21χ13 + 2B31χ12−

−2E31f + 2E21F2 − 4E22F1 − 2E11F1−
−4E31Γ232 + 2E32Γ231 − 2E22Γ221+

+2E11Γ221 − 2E31Γ131 − 4E21Γ121 = 0,

(9.93)

2(e0)
p∂pB21 − (e2)

p∂pE32 + (e1)
p∂pE31 + (e3)

p∂pE22 − (e3)
pE11+

+4B21χ33 − 2B31χ32 − 2B32χ31 − 3B31χ23 +B21χ22 − 2B22χ21−
−B11χ21 − 3B32χ13 −B22χ12 − 2B11χ12 +B21χ11+

+2fE22 − 2fE11 − 2E32F2 − 2E31F1−
−2E32Γ332 + 2E31Γ331 + 4E21Γ321 − 3E11Γ232−

−E31Γ221 + 3E22Γ131 − E32Γ121 = 0,

(9.94)

where the constraints for E, Eq. (9.79), respectively Eq. (9.80), were added to the
evolutions for B, Eq. (9.93), respectively Eq. (9.92), and the constraints for B, Eq.
(9.82), respectively Eq. (9.83) to the evolutions for B, Eq. (9.88), respectively Eq.
(9.87), in order to obtain a symmetric hyperbolic system.
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[73] A. Arbona, C. Bona, J. Massó, and J. Stela. Robust evolution system for numerical
relativity. Phys. Rev. D, 60:104014, 1999. gr-qc/9902053.

[74] Stacy S. McGaugh, Vera C. Rubin, and W. J. G. de Blok. High-resolution rotation
curves of low surface brightness galaxies: Data.Astron. J., 122:2381–2395, 2001.

[75] J. Chang et al. An excess of cosmic ray electrons at energies of 300.800 GeV.
Nature, 456:362–365, 2008.

[76] R. Bernabei et al. Direct detection of dark-matter particles.Nuovo Cim., 123B:928–
931, 2008.

[77] David J. Kaup. Klein-Gordon Geon.Phys. Rev., 172:1331–1342, 1968.

[78] Marcelo Gleiser. Stability of Boson Stars.Phys. Rev., D38:2376, 1988.

[79] Marcelo Gleiser and Richard Watkins. Gravitational stability of scalar matter.Nucl.
Phys., B319:733, 1989.

[80] A. Arbona and Carles Bona. Dealing with the center and boundary problems in 1D
Numerical Relativity.Comput. Phys. Commun., 118:229–235, 1999.

[81] S. H. Hawley and M. W. Choptuik. Boson stars driven to the brink of black hole



192 Bibliography

formation.Phys. Rev. D, 62:104024, 2000.

[82] C. W. Lai. A numerical study of boson stars. PhD thesis, The University of British
Columbia, Canada, 2005.

[83] Frans Pretorius. Evolution of binary black hole spacetimes.Phys. Rev. Lett.,
95:121101, 2005.

[84] Manuela Campanelli, Carlos O. Lousto, Pedro Marronetti, and Yosef Zlochower.
Accurate evolutions of orbiting black-hole binaries without excision.Phys. Rev.
Lett., 96:111101, 2006.

[85] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter.
Gravitational wave extraction from an inspiraling configuration of merging black
holes.Phys. Rev. Lett., 96:111102, 2006.

[86] James van Meter, John G. Baker, Michael Koppitz, and Dae-Il Choi. How to move
a black hole without excision: gauge conditions for the numerical evolution of a
moving puncture. 2006. gr-qc/0605030.

[87] C. Bona and J. Masso. Harmonic Synchronizations of Spacetime.Phys. Rev. D,
38:2419–2422, 1988.

[88] H. Friedrich. Hyperbolic reductions for Einstein’s equations.Class. Quantum
Grav., 13:1451–1469, 1996.
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