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Resumen 

Este trabajo de tesis se introduce con un breve repaso de los distintos métodos de 

estimación de precipitación con datos de satélite. A continuación, en el mismo capitulo 

inicial, se explica porqué de todas las alternativas posibles el método del Auto-

Estimator es un buen comienzo y la importancia a la hora de aplicarlo sobre regiones 

del Mediterráneo. En el segundo capítulo se describe de forma breve el procedimiento 

por el cual la radiación terrestre es detectada por el sensor MVIRI (Meteosat Visible and 

Infrared Radiation Imager), a bordo del la plataforma geoestacionaria Meteosat-7, y 

como dicha radiación es transformada en temperatura de brillo para los dos canales 

infrarrojos.  

En el tercer capítulo se explica el algoritmo del Auto-Estimator y las diferentes 

correcciones aplicables a posteriori sobre los campos de precipitación. Algunas de estas 

correcciones deben ser alimentadas con datos procedentes de modelos numéricos como 

por ejemplo, el MM5. Dicho modelo se ha considerado el mejor candidato para esta 

tarea tal y como se justifica al final de este tercer capítulo. El método experimental 

llamado CRR (Convective Rainfall Rate) se describe en detalle en el cuarto capítulo y 

se aplica y se evalúa en el capitulo siguiente junto con el Auto-Estimator y las distintas 

correcciones en un caso de inundaciones ocurrido el 21, 22 y 23 de septiembre de 2002 

en Albania. Se destaca en este quinto capítulo los métodos de calibración de la curva del 

Auto-Estimator puesto en práctica con medidas in situ de precipitación obtenidas por 

estaciones meteorológicas. 

 El siguiente estudio se realizó en Cataluña motivado por otro caso de 

inundaciones severas centradas en la montaña de Montserrat entre el 9 y el 10 de Junio 

de 2000. En el capítulo 6 se analiza de forma breve este caso utilizando una simulación 

del MM5. Sin embargo a diferencia del caso anterior los datos disponibles del radar de 

Barcelona son previamente calibrados utilizando observaciones pluviométricas (capítulo 

7) con el fin de obtener la mejor estimación posible de la precipitación desde el radar. 

Desde el punto de vista del Meteosat-7 la precipitación se calcula utilizando las dos 

técnicas, además de las correspondientes correcciones (capítulo 8). Finalmente, éstas 

fueron evaluadas con respecto a la precipitación radar y  medidas in situ de estaciones. 

Es importante destacar que en este segundo caso se vuelve a aplicar los métodos de 

calibración con datos de estaciones pluviométricas y por otro lado, se utilizaron datos de 

descargas eléctricas para determinar las células convectivas más destacables del sistema 
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nuboso. Como consecuencia, las estimaciones de precipitación desde el satélite han sido 

mejoradas tal y como se describe en la sección 8.3 y 8.4.  

 Finalmente, en el capítulo 9, se incluyen las conclusiones más importantes con 

respecto a los dos casos de estudio y se comenta las futuras líneas de investigación.  
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1. Introduction 

a) Abstract 

This thesis work shows, in the first chapters, a brief overview of the different 

satellite rainfall estimation methods. Next, it explains why from many alternatives, an 

empirical method such as the Auto-Estimator is a basis to begin study, and why 

application to Mediterranean countries is important. Chapter 2 it is describes briefly 

how earth radiances are captured by MVIRI (Meteosat Visible and Infrared Radiation 

Imager) sensors on board the geostationary satellite Meteosat-7 and later transformed 

into physical units like brightness temperatures for the two infrared bands.  

In chapter 3 the Auto-Estimator algorithm and the different post-processing 

rainfall corrections are explained. Some of these corrections have to be fed by 

meteorological outputs from a numerical model, such as the MM5, which was 

considered as the optimum for this task as clarified in section 3.6. Next, the Convective 

Rainfall Rate (CRR) experimental estimation method is fully described in chapter 4 and 

applied, later, within the Auto-Estimator and correction factors in a flood case which 

occurred from September 21st to September 23rd, 2002 over Albania (section 5). In 

section 5.5, a method developed by us to calibrate satellite brightness temperatures with 

in situ rain rate ground observations is explained. 

The next study was completed in Spain over the Catalonian region, provoked by 

another severe flood centred in the Montserrat Mountain region on June 10th, 2000. 

Chapter 6 briefly analyses this case from a synoptic point of view using a MM5 

simulation. However, the available data from the Barcelona radar were first checked and 

calibrated using rain gauges (section 7) in order to estimate the best possible radar-

based rainfall. From the satellite; rain rate estimates from Auto-Estimator, CRR and 

correction factors were performed and verified in the last case study (section 8). 

Calibration experiments using radar and rain gauges are applied and verified. It is 

important to mention that electrical discharges from ground detector networks were 

used here to detect the most convective cells of the cloud system and, as a consequence, 

precipitation estimates were improved as described in section 8.3 and 8.4.  

Finally, chapter 9 contains the most important conclusions derived from the two 

studies and opens future research lines.  
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b) A brief overview of satellite rainfall methods. 

It is difficult to look at satellite precipitation estimates from a unified perspective 

encompassing all possible applications. A very complete overview of the early work 

and physical premises of visible (VIS) and thermal infrared (IR) (10.5 – 12.5 µm) 

techniques is provided by Barrett and Martin (1981). Following their classification the 

rainfall estimation methods can be divided into the following simple categories: 1) 

cloud-indexing, 2) bi-spectral, 3) life history, and 4) cloud model-based. Each of the 

categories exploits a particular aspect of the sensing of cloud physics properties using 

satellite imagery (Levizzani et al. 2002).  

 1) Cloud indexing techniques assign a rain rate level to each cloud type 

identified in the satellite imagery. The simplest and perhaps most widely used is the one 

developed by Arkin (1979) during the GARP (Global Atmosphere Research 

Programme) on the basis of a high correlation between radar-estimated precipitation and 

the fraction of the area colder than 235 K in the IR. The scheme, named GOES 

Precipitation Index (GPI) (Arkin and Meisner, 1987), assigns these areas a constant rain 

rate(1) of 3 mm h-1, which is appropriate for tropical precipitation over 2.5º by 2.5º areas. 

The GPI is a standard for long term rainfall analysis (Arkin and Janowiak, 1991) and is 

regularly applied and archived for climatologically. 

 2) Bi-spectral methods are based on the very simple, although not always true, 

relationship between cold and bright clouds and the high probability of precipitation, 

which is characteristic of cumulonimbus. Lower probabilities are associated to cold but 

dull clouds (thin cirrus) or bright but warm (stratus). The Rainsat technique (Lovejoy 

and Austin, 1979; Bellon et al. 1980) obscures cold but not highly reflective clouds or 

those that are highly reflective but have a relatively warm top. The number of false 

alarms is reduced over the pure IR techniques. The algorithm is based on a supervised 

classification trained by radar to recognize precipitation from both VIS brightness and 

IR brightness temperature TB. Rainsat was applied to Meteosat and optimized over the 

UK by Cheng et al. (1993) and Cheng and Brown (1995). 

 3) Life-history methods belong to a family of techniques that specifically require 

geostationary satellite imagery because they rely upon a detailed analysis of the cloud 

life cycle, which is particularly relevant for convective clouds. An example is the 

technique described by Griffith et al. (1978). A greater problem arises in the presence of 

                                                 
1 Units assigned to rain rates in most of the references used for the elaboration of this thesis report. The 
equivalence to S. I. units is: 1 mm h-1 = 2.778 10-4 kg m-2 s-1 
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cirrus anvils from the neighbouring clouds: they often obscure the cloud life cycle 

underneath leading to possible under-estimates early in the day and over-estimates 

toward the evening. Negri et al. (1984) have simplified the Griffith-Woodley technique 

eliminating cloud tracking and producing a precipitation scheme that treats each cloud 

as if existing only in one image. The resulting Negri-Adler-Wetzel (NAW) scheme has 

been proved to perform at the same level as Griffith-Woodley for tropical environments. 

The NAW technique was calibrated by the authors for convective rainfall over Florida. 

It assigns rain rates to cloudy pixels colder than an isotherm threshold of 253 K. All 

adjacent pixels colder than this threshold temperature constitute a cluster, which then 

can be defined as a cloud in this method. For every cloud, the simplified version of the 

NAW scheme defines three areas with different rain rates. It assigns 8 mm h-1 to the 

coldest 10 percent of the pixels in the cloud, 2 mm h-1 to the next warmest 40 percent of 

the pixels and no rain is assigned to the remaining 50 percent. 

 4) Cloud model techniques aim at introducing the cloud physics into the retrieval 

process for quantitative improvement derived from the overall better physical 

description of the rain development phases. Gruber (1973) first introduced a cumulus 

convection parameterization to relate fractional cloud cover to rain rate. Wylie (1979) 

used a cloud model to adjust calibration coefficients. A one-dimensional cloud model 

relates cloud top temperature to rain rate and rain area in the Convective Stratiform 

Technique (CST) (Adler and Negri, 1988; Anagnostou et al. 1999). Reudenbach et al. 

(2001) have modified the CST using numerical model data (1D cloud model and 

mesoscale model) and their Enhanced CST (ECST) is better adjusted to meteorological 

conditions in Western Europe, not as before, relying on vertical profiles from the 

tropics. Once the locations of the convective cells have been identified, the rain 

parameters are assigned based on a 1-D cloud model (e.g. Adler and Mack, 1984) that 

calculates maximum rain rates and maximum volume rain rates from a sequence of 

models  as a function of maximum cloud height (or minimum cloud model temperature, 

Tc). The convective rain area (Ar) is assumed to be five times the model updraft area 

(on the basis of observations). Therefore  

 

Ar =5πr2                                                                                          (1.1) 

 

The average rain rate (Rmean) over the raining area of the cell is  
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Rmean = VRR / Ar                                                                              (1.2) 

 

where VRR is the instantaneous volume rainfall rate calculated from the cloud model 

results. A linear fit of Tc and Rmean for the Florida Area Cumulus Experiment (FACE) 

yields  

Rmean = 74.89 – 0.266·Tc                                                                (1.3) 

 

While a similar log-linear fit of Tc and Ar yields 

 

Ar = exp(15.27-0.0465·Tc)                                                             (1.4) 

 

To every other element colder than the stratiform threshold a fixed rain rate of 2 mm h-1 

is assigned. 

  

c) A brief introduction 

Heavy rainfalls are an important climatic feature of the Mediterranean region 

(Romero et al. 1999). They usually take place at the end of the Summer (Homar et al. 

2003) and during Autumn (Doswell III et al. 1998, Homar et al. 1999) although can 

happen in other seasons as well. The Mediterranean hydrographical configuration is 

characterized by numerous small and steep river basins and by highly populated and 

industrialized areas. Crucial aspects of heavy rainfalls are the high intensity they attain 

and their fatal consequences. They contribute generally to the seasonal torrent and river 

overflowing; causing severe flooding that has a great impact on the society the economy 

and landscape.  

Real time rainfall estimation using geosynchronous satellite data has several 

applications in meteorology and hydrology. Although the estimates are indirect, the 

high frequency and high spatial resolution of the measurements, as well as the broad 

area that they cover, make them uniquely complementary to rain gauge and radar 

measurements (Vicente et al. 1998). Conventional rain gauges, when they exist, have a 

mostly sparse distribution and data is not usually available in real time. However, 

meteorological radars have limited spatial coverage and are often affected by 

attenuation problems, beam overshoot or ground and mountain echoes. 

The Auto-Estimator technique proposed by Vicente et al. (1998) follows another 

concept and can not be easily included in any of the Barrett and Martin (1981) four 



 5

categories. This technique makes use of IR 11 µm GOES satellite and radar data from 

the US network with applications to flash flood forecasting, numerical modelling, and 

operational hydrology. The rainfall retrieval is performed through statistical analysis 

between surface radar-derived instantaneous rainfall estimates and satellite-derived IR 

cloud top temperatures collocated in space and time. A power law regression curve is 

computed between IR cloud top temperature and radar-derived rainfall estimates on the 

ground. Rain rates from the power law were corrected taking into account clouds 

textures and clouds grow. Rainfall estimates are also adjusted for different moisture 

regimes using precipitable water and relative humidity fields from the NCEP Eta Model 

and SSM/I measurements. This approach reverses traditional methodology with respect 

to physical initialization of numerical models. Therefore, it is a new concept that has 

caught our attention in order to apply and verify it within the CRR algorithm in the two 

proposed flood cases. 

The CRR (Convective Rainfall Rate) algorithm was developed by the SAFNWC 

(Satellite Application Facility on support to Nowcasting) project to detect intense 

mesoscale convective systems and to screen the most probable precipitation associated. 

It estimates rain rates using the three bands of the Meteosat-7 and matrices calibrated 

with earth-based radars. Matrices were performed following an accurate version of the 

Rainsat techniques but combining the infrared bands (IR and WV) as first suggested by 

Kurino (1997a) to detect convective clouds. The CRR method could be classified into 

the second Barrett and Martin (1981) category, Bi-spectral, but also uses the Meteosat-7 

water vapour band (WV). This experimental algorithm is applied and verified in the two 

flood cases. 

Our study focuses heavily on the application and evaluation of rainfall correction 

factors on Mediterranean areas. These were delineated to modify satellite rain rate 

estimates under certain special conditions. The moisture correction factor, cloud growth 

rate, cloud top temperature gradient, parallax and orography were proposed by Vicente 

in various research articles (Vicente et al. 1998, 2002) and they are described in Chapter 

3. 

The aim of this work is not only an assessment or verification of different 

satellite methodologies and rainfall corrections. New options to improve results are 

proposed and applied in a practical way. These are focused on new calibration methods 

or to study the effect over the algorithms after a recalibration in such severe events. For 

example, in section 5.4 a way to adjust satellite measures directly with rain gauges 
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caused by the lack of radar data over the Albanian region, is investigated. The other 

research line explored here is the modification of standard correction factors to improve 

them and the generation of new ones. One example of this is the new lightning 

correction factor developed in section 8.4. 
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2. An overview of the Meteosat-7. Radiances calibration  

a) Meteosat-7 

Meteosat-7, the last satellite in the series, was launched in 1997. It is part of the 

Meteosat Transition Programme (MTP) which will manage the handover between first 

and second generation satellites. Meteosat Second Generation (MSG) is an upgraded 

series of satellites employing state of the art technology, which continues the fine 

tradition of the first series, but with improved data gathering capabilities. Meteosat 

produces images of the full Earth disc as viewed from its geostationary orbit at around 

36000 km above the sea level. At the time the two flood cases occurred (Jun-2000 and 

Sep-2002) the sub-satellite point was located at 0º latitude and 0º longitude, in the gulf 

of Guinea,. Its spatial image coverage was extended from approximately 60 degrees 

west to 60 degrees east. In the present time the Meteosat-7 satellite is located at 57.5º 

longitude east over the Indian Ocean. This sensor provides a set of three images, one in 

each spectral band, produced every 30 minutes. The communications package aboard a 

Meteosat-7 consisted of a transponder and its antenna subsystem. This communications 

package transmits data every half hour to the ground facilities located at the European 

Satellite Operations Centre (ESOC) in Darmstadt, Germany. The communications 

package also receives processed images from the ESOC which are then relayed to user 

stations in over 16 countries. The primary instrument aboard the Meteosat-7 satellite 

was the three-channel visible, infrared spin imaging radiometer at 100 rpm called 

MVIRI (Meteosat Visible and Infrared Radiation Imager). The visible spectrum (VIS) 

band is scanned between 0.4 - 1.1 μm, the infrared window region (IR) between 10.5 – 

12.5 μm, and in the water vapour (WV) absorption band between 5.7 – 7.1 μm. The 

radiometer scans the Earth point by point and line by line from south to north, which 

takes about 25 minutes to create a complete IR and WV image of the earth with 2500 

lines by 2500 elements and double sized for the VIS image. Then the sensor takes 5 

minutes to retrace to its initial scanning position and to transmit the image data to the 

ground station. Spatial resolution of the WV and IR images is about 5 km and 2.5 km of 

the VIS images in the sub-satellite point. This spatial resolution decreases when the 

scan point is farther from the sub-satellite point, for example a WV or IR pixel size over 

Albania2 is around 7 km in latitude and 7 km in longitude. The UTC time is assigned to 

                                                 
2 One of the studies is performed in this small country located at the southwest of Italy on the other side 
of the Adriatic Sea. 
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each Meteosat image at the end of the radiometer scans meaning that the real UTC time 

over the Mediterranean area is around 10 min before the image time. This factor is 

important when comparing Meteosat-7 measurements with other sources. 

 

b) Radiances calibration 

The Meteosat measurements were traditionally, but not absolutely, calibrated on 

earth due to a lack of an on-board blackbody calibration system for preoperational 

satellites (Meteosat-1, Meteosat-2, and Meteosat-3). A malfunction in the blackbody 

mirror of Meteosat-4 prevented the use of an on-board blackbody calibration system. It 

was not used with the following instruments on board Meteosat-5 and Meteosat-6. 

Instead different vicarious calibration schemes were implemented over the first 30 years 

to perform the operational calibration of the instruments. Detailed descriptions of these 

procedures are given by Gube et al. (1996) for the IR and by Schmetz (1989) and Van 

de Berg et al. (1995) for the WV, respectively. In summary, vicarious methods are 

based on selected in situ measurements of temperature and humidity from the earth’s 

surface and atmosphere. These measurements are used to simulate, by transfer models, 

the radiances observed by the three channels of the Meteosat image radiometer. Since 

May 2000, the on-board blackbody viewing system of the spacecraft Meteosat-7 has 

been working properly. Early comparisons with the previously used vicarious 

calibration procedure indicate that the major difference to be found concerns a strong 

improvement of the high-frequency stability of the WV calibration coefficients 

(Tjemkes et al. 2001). The absolute values of the calibration coefficients, nevertheless, 

do not exhibit a large departure from the vicarious scheme (less than 0.8%). 

This thesis work is focused on the two flood cases that occurred on the 9th and 

10th of June 2000 (Montserrat, Spain) and the 21st to the 23rd of September 2002 

(Albania) studied with the MVIRI sensor on board Meteosat-7. Therefore, more details 

about the black body calibration system between May 2000 and December 2003 are 

provided by the EUMETSAT technical reports and summarized in the following 

paragraphs. 

The black body calibration mechanism consists of two black bodies with know 

temperatures, which can be viewed sequentially. The observed counts (IR and WV) can 

then be related to the known radiance in the two channels, resulting in two black body 

calibration coefficients. However, as the front optics are not part of the optical path 

during a black body observation, and as the viewing geometry is different when 
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performing a black body observation with respect to nominal Earth observation, a 

correction model has been designed allowing for these effects. Hence, the corrected 

black body calibration is used for operational calibration. The black body observations 

are performed at least once a day. The mechanism uses two black bodies: one having 

the ambient spacecraft temperature and one heated to about 50 K above it. First the 

black body at ambient spacecraft temperature is viewed, and forms the reference signal. 

Then the heated black body is viewed, and the temperature difference between both 

black bodies is used to obtain the response of the detectors. The obtained response is 

converted into counts and transmitted to earth. For both channels (IR and WV) the 

observed black body counts (Cbb) and the known radiances (Rbb) are related to each 

other via a linear relationship of which the angle gives the black body calibration 

coefficient (αbb): 

 

Rbb = αbb·( Cbb – Csc)                                                           (2.1) 

 

Where Csc is the space count assigned to the lowest detected radiation. The viewing of 

the black bodies is performed by moving a mirror into the nominal optical path of the 

radiometer, between the optical block and the front optics. Therefore, the front optics of 

the radiometer is not included into the optical path of the black body calibration 

mechanism. In addition, the viewing geometry is not similar for black body and Earth 

view. Hence, the pure black body calibration coefficients cannot be used directly for 

calibration of the infrared channels. A correction model has been designed allowing for 

the following factors: 

- Correcting for the impact of the response functions of the mirrors of the front 

optics not viewed during a black body observation.  

- Correcting for the viewing geometry. For a black body observation the viewing 

geometry is limited by the pupil of the optical block. For an Earth scan the 

viewing geometry is defined by the geometry of the first mirror, which is 

partially obscured by the second mirror.  

The correction model for the black body calibration coefficients (αbb) is described as: 

 

α = αbb / ((cos A1 – cos A2) / ( K (1 – cos A3)))                               (2.2) 

 

in which the following parameters are used: 
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α : The absolute calibration coefficient (IR or WV) 

αbb :  The black body calibration coefficients (IR or WV) 

A1 : The maximum angle at which the detector can see the 1st mirror. 

A2 : The maximum angle at which the detector can see the 2nd mirror. 

A3 : The maximum angle at which the detector can see the black body, which is 

determined by the pupil of the optical block.  

K : A constant factor used to remove the response function of the front mirrors that are 

not viewed during a black body scan. 

 

The absolute calibration coefficient “α” and the space count “Csc” are computed by the 

black body operationally for every day and every infrared band (IR and WV) and also 

provided by the EUMETSAT calibration reports via internet. These parameters make it 

possible to calculate the relationship between radiation and satellite counts by applying 

equation 2.1. 

  

 c) Radiances to brightness temperatures 

In the Annexes of EUMETSAT, calibration reports are given for the radiance to 

temperature relation based on the Planck function and the instrument’s spectral response 

function. To facilitate the use of these tables, designed to highlight radiances given by 

the blackbody to brightness temperature for the IR and WV channels, an accurate 

exponential fit of the above mentioned tables is expressed as follows: 

 

R(T) = exp( A + B/T)                                                                      (2.3) 

 

where  R: is the radiance (in W m-2 sr-1) 

 T: the temperature (in K) 

 A: regression coefficient (is dimensionless)  

 B: regression coefficient (in K) 

The equation fits the relationship with a root mean square error less than 0.2 K in the 

range between 200 K and 330 K. Therefore, the following table provides the regression 

coefficients for the infrared channels of Meteosat-7. 
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Table 3.1 Meteosat-7 infrared bands radiation to temperature conversion coefficients 

IR: A 6.9618 

IR: B -1255.5465 

WV: A 9.2477 

WV: B -2233.4882 
 

A different procedure is used for the visible channel. Measurements of reflected 

solar radiation for this channel were performed during dedicated campaigns by an 

airborne radiometer, at the same time and under the same observation geometry as the 

satellite. This allowed to direct assignment of the measured radiance to the digital count 

delivered by the satellite, after supplementary transfer calculations of radiation absorbed 

by the atmosphere between aircraft and satellite. Such campaigns are expensive and 

have been performed only once for every satellite except for Meteosat-3. This has been 

considered sufficient for Meteosat VIS channels as they have been found to be quite 

stable with a steady degradation of response of the order of between 1-2% per year and 

closely followed in the EUMETSAT calibration reports. Various studies have been 

done to transform VIS counts to radiances units (Govaerts et al. 1998, 1999), however 

this thesis will not go through this feature because the CRR matrices use corrected VIS 

counts without any further calibration to radiance units.  

Correct calibration of satellite images has been ensured using the McIDAS open 

software (http://www.unidata.ucar.edu/software/mcidas/). An updated version of this 

programme detects the satellite platform, sensor and band of every image and it applies 

the correspondent calibration module to transform digital counts to physical units such 

as radiances in W m-2 sr-1 or brightness temperatures in K. The correct performance of 

the McIDAS calibration modules in each flood case have been checked selecting a few 

points from the satellite images in order to test count quality and the conversion to 

radiances and temperatures (WV and IR). These were compared with ones offered by 

the EUMETSAT reports. Technical reports for the Meteosat-7 are available at the time 

of writing this work in:  

http://www.eumetsat.int/Home/Main/Access_to_Data/Meteosat_Meteorological_Produ

cts/Calibration/SP_1119512203627 

 



 12

 

 

 

 

 

 

 



 13

3. Auto-Estimator, rainfall correction factors and the numerical model 

The operational GOES infrared rainfall technique (Vicente et al. 1998) called 

Auto-Estimator (A-E), computes rainfall rates based on a fixed non-linear, power-law 

regression relationship between the infrared cloud top brightness temperatures and 

collocated radar rainfall. After extensive analysis looking for clearly convective cores in 

the Great Plains of the central USA and areas adjacent to the Gulf of Mexico, the 

calibration dataset finally consisted of 16 radar satellite pairs of 4 by 4 km resolution 

images. These were collected from different convective systems over several days 

during the months of March to June 1995. The mean radar rainfall was calculated for 

each 1 K temperature interval from 195 to 260 K as illustrated in figure 3.1 by the red 

dots and the solid curve which represents the regression fit given by: 

 

R = 1.1183 1011 exp(-3.6382 10-2 TIR
1.2 )                                      (3.1)                                             

 

where R is the rainfall rate in mm h-1 and TIR is the cloud top temperature in Kelvin. 

Both rain and no rain pixels are considered in the computation of the regression fit. 

 

 
Figure 3.1. Mean rainfall rate for each temperature from 195.0 to 260.0 K computed 
from collocated pairs of radar derived from rainfall rate and IR cloud top temperature 
(dotted curve).  
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The radar reflectivity to rainfall rate conversion was based on the Miami Z-R 

relation used during the Experimental Meteorology Laboratory (EML) experiments 

(Woodley, 1970) and shown in equation 3.2 where Z is the reflectivity in mm6 m-3 and 

R is the rainfall rate in mm h-1. 

 

Z = 300 R1.4                                                                                    (3.2) 

 

 In the case studies shown in this thesis, the A-E curve is applied but, the derived 

rain rates should be considered with caution for two important factors. The first one is 

that the A-E curve was initially developed in the south of the US, very far from the 

Mediterranean area and the second reason is that A-E is applied to two flood cases with 

their uniquely special circumstances. Our study focuses on correction factors of satellite 

rain fields proposed by Vicente in different papers (Vicente et al. 1998, 2002). These 

corrections are important because a single regression curve for rainfall rate retrieval is 

very limited due to the variety of physical processes associated with rain generation. 

The relationship between cloud top temperature and surface rainfall rate varies with 

storm type, season, location, low level environment and many other factors that make it 

impossible to be accurate with a single regression curve. Estimated rainfall from a 

generic curve should be adjusted to a specific case condition after being modified by the 

moisture correction factor, cloud growth rate, cloud top temperature gradient, parallax 

and orographic corrections. The moisture and orographic correction factors need data 

from numerical model outputs. The MM5 numerical flood case settings are described in 

sections 5.2 and 6.1 respectively. The model chosen is the optimal for this task as 

commented in section 3.6. 

The advantage and new aspect in correction factors when compared to other 

methods is that they can be applied one by one or combined in a second phase after 

satellite rainfall estimates of any kind from a standard method are available. Therefore a 

sensitivity test of the mentioned correction factors for CRR estimates is also planned.  

 A new version of the A-E called Hydro-estimator (Scofield and Kuligowski, 

2003) has been recently developed. The main difference in A-E is that raining pixels are 

defined as those with 10.7 µm brightness temperature below the average value for a 

predetermined region surrounding the pixel of interest. This approach has substantially 

reduced the size of the rain area that, in fact, used to be exaggerated by the A-E. 

Therefore, it is an interesting research line that should be explored by us in the near 
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future. However, this new method has to be considered with caution because the same 

article (Scofield and Kuligowski, 2003) found that the performance of A-E in the 

operational context in the US is only marginally better, in general, to that of the Hydro-

estimator. 

 

 

 3.1 Moisture correction factor (PWRH) 

 A rainfall infrared curve or a CRR matrix is not enough to represent accurate 

rainfall estimates over anywhere at anytime. There is a tendency to over-estimate rain 

rates in dry environments and under-estimate them under high moisture conditions. This 

problem was discussed by Scofield (1987), who proposed the use of a moisture 

correction factor defined as Precipitable Water, PW, in the layer from the surface to 500 

hPa and the mean Relative Humidity between the surface and the 500 hPa level. The 

PW fields in mm of water and RH in percentage in this study are derived from the MM5 

numerical simulation, completed every 30 minutes. Following instructions given by 

Vicente et al. (1998), the PWRH factor is empirically scaled from 0.0 to 2.0, and the 

environment is considered dry if PWRH is significantly lower than 1.0 and quite moist 

if PWRH is greater than 1.0. Satellite rain rates are multiplied by the PWRH factor in 

all cases but taking into account the next restrictions for the A-E: 

- If TIR is lower than 210 K and the PWRH factor is greater than 1.0, the 

estimated rain rate in equation 3.1 is quite high and environmental moisture 

would increase it much more. In this case the computed rainfall rate should not 

be multiplied by the PWRH correction factor. 

- If TIR is lower than 200 K the rainfall rate should be limited to 72.0 mm h-1, 

approximately the maximum rainfall rate found over the US for a 4 by 4 km 

grid. 

 

For the CRR the only limitation recommended by the SAFNWC (Satellite 

Application Facility on support to Nowcasting) technical Report (INM 2002) is that, if 

the pixel latitude is greater than 55ºN, TIR is lower than 215 K and the PWRH factor is 

greater than 1.0, the computed rainfall should not be multiplied by the PWRH 

correction factor. 
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 3.2 Cloud growth rate correction factor (GR1, GR2) 

 The next important feature to focus on is the rain/no rain discrimination 

problem. A convective system is more active and produces the greatest rainfall rates 

when the tops are becoming colder and expanding (Woodley et al. 1975; Griffith et al. 

1978; Scofield and Oliver, 1977). Thus, the detection of active or decaying portions of 

thunderstorms can be attempted by searching for collocated pixels in two consecutive 

infrared images that become colder, warmer or stay at the same temperature. Based on 

the assumption that decaying clouds or clouds with cold tops that are becoming warmer 

produce little or no rainfall (Woodley et al. 1972, Scofield, 1987), the rainfall rate 

computed via A-E and CRR are then modified according to the following: 

- If the coldest infrared pixels in the analysed image are colder than those in the 

previous one, the convective system is intensifying and the pixels in the first 

image are associated with the heaviest precipitation rates. In this case the rainfall 

rate remains unchanged.  

- If the coldest Infrared pixels in the analysed image are warmer than those in the 

previous one, the convective system is weakening and upward vertical motion 

has likely ceased. In this case, the rainfall rate is adjusted to zero for those 

pixels.  

- If there has been no change in the cloud top temperature in the two consecutive 

images (no growth or decay in the half-hour interval), the rainfall rate stays the 

same. 

 

The original growth rate correction for the GOES-8 called GR1 in this document 

was proposed by Vicente et al. (1998). This method presents some inconveniences 

which can be detected from qualitative observations. One of the most important is that 

clouds in mid-latitudes can move several kilometres in thirty minutes between infrared 

images and the correction factor would be applied over shifted pixels. Therefore, rain 

rates located in the front of a cloud system in movement do not experience any change 

throughout the process while rain rates in the back side are systematically eliminated. 

This has motivated the development of another growth rate correction factor called GR2 

that takes in account displacements of clouds applying a cross correlation method. 

Virtual position of the cloudy point 30 minutes before was calculated using a grid of 15 

by 15 pixels centred in a point. By moving the grid around the same point position in 

the previous infrared image, correlation coefficients are calculated. The translation to 
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higher correlation is then selected and the grid central points in both images are 

associated to calculate the temperature variation with time. Finally, the rain rate of this 

central point is set to zero or not depending on its temperature change as explained in 

the beginning of this subsection.  

  

 

 3.3 Cloud-top temperature gradient correction (TGR) 

 Much information can be extracted from the cloud-top structure on a single 

infrared image or the cloud top temperature gradient. The method of finite difference is 

used to locate the local temperature maxima and minima within grids of 3 by 3 or 5 by 5 

pixels. The idea is to search for the pixels that are above the average cloud top surface 

height (local temperature minima), and assume that these pixels indicate active 

convection associated with precipitation beneath. Negri and Adler (1981) showed that 

in most cases, the GOES IR pixels that are colder than a local satellite IR temperature 

minimum coincide with individual radar echoes. As a result the procedure consists of 

searching for the highest (coldest) and lowest (warmest) cloud tops within a 3 x 3 pixel 

area centred on the point Po = (xo,yo). If the cloud-top surface is defined by T = T(x,y), 

where x and y  are the point coordinates, the maxima and minima can be determined by 

analysing the first and second derivative of T. The second derivatives of T on the point 

or pixel Po = (xo,yo) are given using discrete summations by. 
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where i and j are the image coordinates, x and y are the point positions in km. So the 

Hessian matrix H is defined as 
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and |H| is the Hessian matrix determinant and given by 

 

|H| = Txx Tyy – Txy  T yx                                                                                            (3.7) 

 

Here Po is characterized in the following way: 

- If |H| > 0 and Txx < 0 the point Po is a maximum temperature. 

- If |H| > 0 and Txx > 0 the point Po is a minimum temperature. 

- If |H| < 0 the point Po is not a maximum and not a minimum. 

- If |H| = 0 the point Po cannot be defined. 

 

Using this information, the rainfall rate for A-E and CRR is adjusted in the following 

way: 

- If the pixel Po has a temperature maximum, indicating a relatively low cloud top 

with Po warmer than its surroundings, the previous rainfall rate is set to zero. 

- If the pixel Po has a temperature minimum, which means that Po is colder than 

its  surroundings indicating a high cloud top, the previous rainfall rate stays the 

same. 

- If Po is neither a maximum nor a minimum, indicating Po is at the same height 

and temperature as its surroundings, the previous rainfall rate is set to zero.  

- if Po temperature cannot be defined as a maximum or a minimum, the whole 

process is repeated using pixels within a 5 by 5 pixels grid. 

- If Po temperature cannot be defined again using the 5 by 5 pixels grid, the 

previous rainfall rate is set to zero. 

 

 

 3.4 Parallax correction 

 An important factor for accurately estimating precipitation from satellite 

imagery is the position of the cloud tops as viewed by the satellite. This problem has to 

do with the fact that the accurate location of precipitation requires the knowledge of the 

exact position of the cloud tops in relation to the ground below. This is not a problem 
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when a cloud is located directly below the satellite; however, as one looks away from 

the sub-satellite point, the cloud top appears to be farther away from the satellite than 

the cloud base. This effect increases as one gets closer to the limb and as clouds get 

higher. The parallax problem is easier to view in a two dimensional analysis as 

illustrated in the next figure 3.2. 

 
 

 
 
Figure 3.2. The earth and the Meteosat satellite (M) are viewed following the meridian 
plane. A cloud ‘Ci’ at a height of ‘H’ in relation to the earth’s surface in the northern 
hemisphere is observed in position ‘Cii’ by the satellite sensor. A correction of the 
parallax effect should move ‘Cii’ to the correct position ‘Ciii’ in the same vertical as 
‘Ci’. 

 

 

The Parallax correction in the three dimensions of space is a more complex 

mathematical problem. It is computed following instructions given by Vicente et al. 

(2002) where the cloud top height in every point was estimated from satellite cloud top 

temperature using US Standard Atmosphere.  

 The parallax correction depends on three things: the height of the cloud (Hc), the 

apparent position on the earth of that cloud (latitude θc, longitude φc), and the position 

of the satellite (orbiting the Earth at a distance Rs from the centre of the Earth, with a 

sub-orbital point at the latitude θc and longitude φc).  

 The parallax correction begins by converting these locations into Cartesian 

Ci

Cii 

Ciii
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coordinates using the centre of the earth as the origin. The Z-axis runs through the 

intersection of the equator and prime meridian, the Y-axis through the poles, the X-axis 

through the equator at longitude 90 E. We consider the earth’s surface as an ellipsoid 

with an equatorial radius Requator= 6378.1 km and a polar radius Rpole= 6356.6 km. Using 

the ellipsoid equation as the earth surface, 

 
(X2+Z2)/(Requator)2

 +Y2/(Rpole)2
 =1                                                      (3.8) 

 

We represent the Cartesian co-ordinates of the apparent position of the cloud (Xc, Yc, Zc) 

on the surface at a distance R from the centre as  

  

Xc =Re cos θc sin φc                                                                             (3.9) 

Yc = Re sin θc                                                                                     (3.10) 

Zc = Re cos θc cos φc                                                                          (3.11) 

 

where Re is the equivalent of the earth’s radius. This can be expressed by  

 

Re = Requator / cobc senR θθ 222cos +                                                  (3.12) 

 

where 

Rob = Requator / Rpole = 1.0034                                                           (3.13) 

 

The satellite Cartesian coordinates are given by  

 

Xs = Rs cos θs sin φs                                                                        (3.14) 

Ys =Rs sin θs                                                                                    (3.15) 

Zs
 
=Rs cos θs cos φs                                                                         (3.16) 

 
For a satellite in a geostationary orbit, θs = 0 and hence Ys = 0.  

The relationship between the cloud and the satellite can be found by noting that the line 

connecting the apparent cloud location and the satellite position intersects the line from 

the centre of the Earth through the actual cloud location at a height of Hc
 
(estimated by 

the cloud top temperature and the model atmospheres of the US Standard) above the 
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surface, at a radius Rc = Re + Hc. This implies that  

 
1)/()/()( 22222 =++++ cpoleacequatoraa HRYHRZX                        (3.17) 

 

The actual rectangular coordinates of the cloud are given by:  
 

Xa = Xc + A (Xs – Xc)                                                                        (3.18) 

Ya = Yc + A (Xs – Yc)                                                                         (3.19) 

Za = Zc + A (Zs – Zc)                                                                         (3.20) 

 

and A is a parameter determined by the substitution of (3.18), (3.19) and (3.20) on 

(3.17). The resulting second degree equation on A has a solution given by: 

 

A = (-D + )4( 2 CED − /2C                                                            (3.21) 

 

where C, D and E are defined as: 

 

C = (Xs - Xc)2 +(Zs - Zc)2 + B (Ys - Yc)                                               (3.22)  

D = 2 [Xc (Xs – Xc) + Zc (Zs – Zc) + B Yc (Ys – Yc)]                           (3.23) 

E = 222 )( ccequatorcc YBHRZX ⋅++−+                                              (3.24) 

 

with 

B = [(Requator + Hc)/(Rpolar + Hc)]2                                                    (3.25) 

 

The actual Cartesian coordinates are converted back to final actual latitude at the cloud: 

θa = tan-1(Ya / )22
aa ZX +                                                                 (3.26) 

 

The actual longitude at the cloud is: 

 

     φa = tan-1(Xa/Za)                     if Za>0, northern hemisphere                    (3.27) 

     φa = tan-1(Xa/Za)-180º            if Za>0, southern hemisphere                    (3.28) 
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The effect of the parallax correction over a complete Meteosat image is a small 

movement of clouds toward the sub satellite point (image centre) as illustrated in figure 

3.3. The translation is more significant for those points with higher (colder) cloud tops 

and less noticeable for those located closer to the sub satellite point (SP). 

 

 

 
Figure 3.3. Graphic representation of the general movement of cloudy pixels in a 
geostationary satellite image after a parallax correction. SP, means sub satellite point. 
 
 

 

 3.5 Orographic correction factor 

 The orographic problem has to do with the variations in rainfall distribution with 

elevation combined with wind speed and direction. Rainfall amounts are dependent on 

the atmospheric flow disturbances created by the mountains themselves. The orographic 

correction applied on the A-E and CRR uses the interaction between the wind vector 

V
r

and the local terrain height gradient h∇
r

 in the direction of V
r

to create a multiplier 

which enhances or diminishes the rainfall estimate, as appropriate (see figure 3.4). 

Winds are taken every 30 minutes from the 850 hPa level of the MM5 model and terrain 

heights are taken from the MM5 earth surface representation initially at a spatial 

resolution close to the original Meteosat-7 resolution in each case of study. The 

resultant correction factor varies from 0.2 and 3.5 and represents how much the rainfall 

rate should be increased or decreased on a pixel (Vicente et al. 2002). This correction 

factor map is later remapped to the exact satellite resolution at the given flood area and 

N 

S 

E W SP 
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the satellite rain rate estimate in each point is multiplied by the correspondent correction 

factor. 

 

 
Figure 3.4. Atmospheric flow disturbance caused by mountain effect, wind speed and 
direction and its influence on rainfall enhancement and suppression. 
 

 

 In a one dimensional cross section of the terrain the width of the affected area by 

terrain effects before and after a mountain is first determined from the wind speed and 

direction and the elevation map. The wind path length D is variable from 6 to 24 km 

depending upon the wind speed U (in m s-1) and the equivalent time scale Tf determined 

by a 15 min fetch. The product of wind speed and time fetch has to be divided by the 

point spatial resolution in metres Rs in order to get D in pixel units as follows 

 

D = (U Tf)/Rs                                                                                 (3.29) 

 

The extracted terrain cross-section length extends D pixels upwind and downwind from 

the reference site, giving a total length of 2D+1 pixels. The height of the test location 

can be denoted as ZD+1; the location farthest upwind is Z1, the location farthest 

downwind is Z2D+1. The slope between a point A and a downwind point B is be defined 

as  

SAB = (ZB – ZA)/(B – A)                                                                      (3.30) 
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where all the variables of this equation are in m or km, therefore, SAB has no units. For 

each pixel, A, upwind of the site and the site itself (from 1 to D+1), the slope is 

calculated between it and each point B within D pixels downwind (from A+1 to A+D as 

shown in figure 3.5). The maximum slope found for each point A is retained as the slope 

SA. The net slope, S, used for the correction is equal to the mean of the SA values:  

S = ⎟
⎠

⎞
⎜
⎝

⎛∑
+

=

1

1

D

A
AS /(D+1)                                                                          (3.31) 

 

 
 
Figure 3.5. Graphical representation of the process applied to calculate the mean slope 
from a site P0. At a distance of D pixels in both wind directions from P0, the maximum 
slope SA is calculated D times in the downwind sense from A+1 to A+D. Then the mean 
slope S for the point P0 is obtained from equation 3.31. This process assures positive 
slopes on the tops of the mountains where precipitation should also be enhanced. 
 
 

Finally we can define a rainfall rate enhancement parameter M, as the result of the 

vertical velocity induced by a wind with horizontal speed U blowing over a surface with 

a slope of S. Since M should have no effect on the rainfall amounts on a flat terrain, it 

can be written as:  

 

M = 1+SU                                                                                         (3.32) 

 

where M is defined as a non dimensional variable for U in m s-1. Although M can 

assume negative values, it does not represent a meaningful physical value. Based on the 

studies of Urbanski (1982) relating terrain induced vertical velocities to differences 

between estimated and observed precipitation, M is limited to be between 0.2 and 3.5.  

        1    A          B     D+1                    2D+1 

U   

P0   

SAB   

D   D   
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3.6 MM5 Numerical Model 

The MM5 model is a widely used among the research and operational 

communities. It is the Fifth Generation of the Mesoscale Limited-Area Model, a 

collaborative project between the Pennsylvania State University (PSU) and the National 

Centre for Atmospheric Research (NCAR) of the United States. It started in the early 

70´s and was later documented by Anthes and Warner (1978). Its non-hydrostatic 

dynamics core is derived from the primitive set of equations on a vertical terrain-

following-sigma-coordinate (σ) and a horizontal projected grid. The equations are 

integrated over an Arakawa-C staggered grid and use a temporal finite differencing 

scheme. It is a versatile modular modelling system with four-dimensional data 

assimilation and multiple-nest capabilities. 

In the vertical, 24 σ levels are used, with higher density near the surface to better 

resolve near-ground processes. The standard version 3 of MM5 distribution incorporates 

a set of physical parameterizations for the sub grid processes of atmospheric radiation, 

microphysics, convection, turbulent fluxes of energy and moment, and near-surface 

processes. For the set of simulations presented here, the grid-resolved microphysics 

processes are represented by the Reisner et al. (1998) scheme, which considers graupel 

and ice number concentration. The coarser domain uses the Betts and Miller (1986) 

convective adjustment and the 18 km domain parameterizes convection with the 

modified Kain-Fritsch scheme (Kain and Fritsch, 1993). No cumulus parameterization 

is used for the 6 km domain. Planetary boundary layer (PBL) processes are 

parameterized with the MRF PBL or Hong-Pan (1996) scheme, adequate also for high-

resolution domains. This is an efficient scheme based on Troen-Mahrt (1986) 

representation of the countergradient term and K profile in the well mixed PBL. The 

atmospheric radiation is parameterized using the Rapid Radiative Transfer Model 

(RRTM longwave scheme; see Mlawer et al. 1997), which represents the effects of the 

detailed absorption spectrum taking into account water vapor, carbon dioxide and 

ozone. A 5-layers diffusive soil model with a fixed substrate below is used. 

Additionally, moisture availability varies with time, particularly in response to rainfall 

and evaporation rates. Regarding the initial and boundary datasets, the NCEP (National 

Centres for Environmental Prediction) or the ECMWF (European Centre for Medium-

Range Weather Forecasting) global analysis, depending on each study case, are 

reanalyzed to the coarser domain every 12 hours, incorporating surface and sounding 
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observations to recuperate structures smoothed out in the global datasets. The initial 

fields for the inner domains are interpolated from the coarser mesh. Upper boundary 

conditions are represented by the top vertical motion that is calculated to sponge up 

reflections of energy, and hence reducing spurious noise, especially over prominent 

orography. 

There are many reasons behind the choice to use the MM5 numerical model as 

opposed to other models in the two experiments proposed in this thesis work. Firstly, it 

is free software that is relatively easy to install and configure. It can be set up over an 

area of study for specific spatial and temporal resolution, comparable to Meteosat-7 

images space-time scales (6 km and 30 minutes). Secondly, the Meteorology Group of 

the Balearic Island’s University (UIB) has considerable experience studying severe 

weather events using the MM5 over Mediterranean regions with complex terrain 

(Romero et al. 2000, 2001; Homar et al. 2002, 2003) such as the two proposed flood 

cases.  
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4. Convective Rainfall Rate (CRR) 

The CRR (Convective Rainfall Rate) algorithm was developed by the SAFNWC 

project to detect intense mesoscale convective systems and to screen the most probable 

precipitation associated. It estimates rainfall intensity using the three bands of the 

Meteosat-7 and matrices3 calibrated with earth-based radars. Calibration matrices are 

performed following an accurate version of the Rainsat techniques but combining the 

infrared bands to detect convective clouds. Diurnal and nocturnal matrices are 

configured for the North of Europe, over the Baltics, with radar images of the Baltex 

Project provided by the SMHI (Swedish Meteorological and Hydrological Institute) and 

for the South of Europe, over the Iberian Peninsula, with radar provided by the INM 

(Spanish Meteorological Institute). In the present research, the CRR calibration 

methodology is described and validated, an analysis of calibration matrices differences 

in both areas over Europe is detailed and CRR resulting images are verified in a 

qualitative manner using rainfall radar images as so-called “ground true”. 

 

 

4.1 CRR introduction and data used in the matrices calibration 

a) Introduction to CRR 

Bi-spectral calibration tables were introduced by Lovejoy and Austin as early as 

1979 and applied by Bellon et al. (1980). They were developed to improve the rain rate 

estimations from those derived from infrared only methods. These tables are based on 

the premise that the higher and thicker are the observed clouds, the higher is the 

probability of occurrence and intensity of precipitation. Information about cloud top 

height and about cloud thickness can be obtained, respectively, from the infrared 

brightness temperature and from visible radiances (Scofield, 1987; Vicente and 

Scofield, 1996). The role of visible data in improving rainfall estimates was also 

examined by King et al. (1995). Their results show a higher correlation when compared 

to validation data using visible-infrared methods as opposed to the infrared alone for the 

case of warm, orographically induced, rainfall. For cold, bright clouds the correlations 

are similar. Additionally, the brightness temperature difference between the 11 µm and 

6.7 µm channels was used in the calibration process because it is a useful parameter to 

detect highly developed convective cloudy cells (Kurino, 1997a). Infrared water vapour 

                                                 
3The term matrix or matrices are references to the new spectral calibration tables developed in this work. 
These tables, called arrays in some cases, do not have to satisfy mathematical conditions of the matrices.  
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band was found to be important in convective processes since stratospheric water above 

deep convective clouds has been identified from Meteosat observations in the infrared 

window and water vapour bands (Schmetz, et al. 1997). It was demonstrated that the 

equivalent brightness temperature in the water vapour can exceed that in the infrared 

window by several degrees because of stratospheric water vapour above cloud top. 

The calibration of the matrices requires a set of precipitation data derived from 

radar images used as so-called “ground true” to compute the relationship between 

satellite measurements and rainfall rate. The radar data is used only for system 

configuration and not as a part of the CRR rain estimations. 

The spatial correlation between radar and satellite, done as the first step in the 

calibration of matrices, is of crucial importance to the present research and two 

processes are applied. First, as the European continent is distributed over mid and high 

latitudes, the parallax effect observed from a geostationary orbit satellite is significant. 

Here a correction for this feature is put into practice as described in section 3.4 of this 

report. Often an error of a few minutes between satellite and radar images scan can 

produce substantial inaccuracies in the spatial sampling of both fields. This error factor 

is attempted to be minimized by application of a second correction based on of a spatial 

fit on grid zones between satellite and radar images.  

The CRR basic estimation for each pixel is obtained from calibration matrices. 

These are different depending on whether pixels correspond to a diurnal or nocturnal 

image. To distinguish clearly between them the pixel solar zenith angle was used in 

which it was considered daytime for the points where sun zenith angles are smaller than 

80º and night for the rest. 

CRR output images are evaluated in a qualitative manner by comparing them 

with radar images over Spain in September and October 2002 and over the Baltic Sea in 

June and July 2000. At the end of this chapter, the most outstanding differences 

between calibration matrices are detailed and discussed. 

 

b) Data used in the matrices calibration 

The matrices for the Iberian Peninsula are calibrated using images derived from 

C-band radars. These are composite images of the Iberian Peninsula computed from the 

Spanish radar network belonging to the INM. They are focused on 40ºN and 3ºW, with 

512 by 512 pixel size and 4 km spatial resolution. Radar images are generated 

operationally every 10 minutes and were selected for the present research corresponding 
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to convective rainfall episodes between 1999 and 2000, preferably during spring, 

summer and part of autumn.  

Matrices of the Baltic area are calibrated using images derived from the same 

kind of C-band radars than the Spanish ones. These are composite images from a radar 

network over the Baltic area covering Denmark, the south of Norway, Sweden and part 

of the Baltic Sea. They are generated every 15 minutes for operational purposes under 

the Baltex project objectives and provided by the SMHI (Swedish Meteorological and 

Hydrological Institute). The radar images are centred on 57.3ºN and 18.4ºE, 550 by 900 

pixels size and 2 km spatial resolution. They were pre-selected for this work during 

rainy days in June and July of 2000, as shown in table 4.1.  

 In both places, composite CAPPI (Constant Altitude Plan Position Indicator) 

images at 2.5 km altitudes, registered in decibel units (dBZ) and derived from 

reflectivity measurements4 Z (in mm6 m-3), are transformed into rain rates in mm h-1 

using the Marshall-Palmer Z-R relation (Z = a Rb). The two coefficients of this relation 

(a and b) depend, in general, on the climatic area where the radar are employed. As an 

initial approximation and using a long set of data to perform the calibration of tables for 

general rain type over mid and high latitudes, it has been decided to use the ones 

proposed by Marshall and Palmer (1948), a = 200, b = 1.6. The following chapters 

demonstrate that these coefficients should be adjusted for short time or local studies. 

Echo-top images, used to measure cloud top heights in km were available for the Iberian 

Peninsula. They have the same geographical settings as the radar images described in 

the beginning of this subsection and they are used in this work to select the radar pixels 

with high cloud tops as commented in the following methodology section.  

 The Meteosat-7 data used in this work is: infrared band brightness temperature 

in Kelvin TIR(K), infrared water vapour band in Kelvin TWV(K) and the visible channel 

in brightness counts. Normalized visible counts (Vc) are obtained for all diurnal pixels 

by dividing each count with respect the cosine of the corresponding solar zenith angle 

(Binder, 1988).  

 

 

 

                                                 
4 In this thesis work it is used the common magnitudes and units used in the radar meteorology field. 
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Table 4.1 Radar-satellite datasets used to develop the calibration matrices over the 
Baltic Sea. Days in June and July 2000 for the 2-D matrix and days only in July 2000 
for the 3-D one. 
 

     2-D 
 3-D 

Days (Jun 2000) Days (Jul 2000) 
5 1-5 

7-8 7-13 

10-11 15 

16 17-19 

19-28 22-25 
 Nº of days: 15 20 
 Total Nº of days:                      35 

 

 

 

 4.2 CRR calibration methodology 

 a) Rainfall matrices calibration 

Before calibration it is important to explain that an echo-top image is employed 

over the Iberian Peninsula domain to locate radar pixels with and without rainfall linked 

to high clouds tops and, therefore, suspicious of being convective points. A radar point, 

shown as RINT in figure 4.1, associated with a parallel echo-top value greater than six 

kilometres above sea level (HE-T > 6 km) is a presumable convective radar point (RCINT). 

This simple criterion has been used by the INM with good results before new and 

accurate methods were developed. Qualitative observations not shown in this chapter 

confirm the efficiency of the method by comparing these convective radar echoes with 

electrical discharge images from the INM detector network at the same area and time. 

Over the Baltic area this correlation between convection and high altitude radar echoes 

was not observed and no convective threshold was applied for radar images.  

The fundamental calibration algorithm consists basically of obtaining two 

frequency distributions by correlating spatially simultaneous radar and satellite images 

in order to discriminate between raining and non-raining clouds (Bellon et al. 1980). 

The next section b) describes in detail the spatial and temporal correlation method. One 

time radar pixels in rain rate units (RCINT) are associated with their correspondent 

satellite measurements (TIR, TWV and Vc), the next step is the development of three 

arrays as shown in figure 4.1. Two of them are frequency distributions (rain and no rain) 

and the third is an accumulation of rain rates (accumulated rain). Figure 4.1 shows each 
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array with three axes in the function of satellite measurements (Vc, TIR-TWV and TIR) 

which will define the spectral domain of precipitation. The row axis (TIR-TWV) is the 

difference between TIR and TWV temperatures, shown as ΔTIR in the following. The rain 

matrix counts radar-satellite points with a rainfall rate greater than 0 mm h-1 (RCINT > 0 

mm h-1). In the no rain matrix is the same but numbers points with no rainfall (RCINT = 0 

mm h-1). The accumulated rain matrix is the same as the rain one but here each radar 

rain rate value in mm h-1 is added. In such a way, elements of rain and no rain frequency 

arrays are FR(Vc,ΔTIR,TIR) and FNR(Vc,ΔTIR,TIR) respectively. Elements of the 

accumulated rain matrix are SRCINT(Vc, ΔTIR,TIR). So the rainfall probability matrix (PR) 

is calculated from the rain and no rain array elements expressed by the relation: 

 

),T(Vc,ΔVF),T(Vc,ΔVF
),T(Vc,ΔVF),T(Vc,ΔVP

IRIRNRIRIRR

IRIRR
IRIRR +

=                  (4.1) 

 

where FR(Vc, ΔTIR, TIR) + FNR(Vc, ΔTIR, TIR) is the total number of rain and no-rain 

pixels associated with the satellite data.  

 The mean rainfall array is computed using the following criterion: array 

elements with a rainfall probability lower than a defined probability variable known as 

EQ_PC and described section c) , are set to zero ( CINTR = 0). If they have a rainfall 

probability greater than the EQ_PC parameter, the mean rainfall intensity for each 

element is computed as shown below.  

 

),T(Vc,ΔVF
),T(Vc,ΔVSR),T(Vc,ΔVR

IRIRR

IRIRCINT
IRIRCIINT =                                     (4.2) 

 

 In the nocturnal array or 2-D matrix, the process is similar but, obviously, 

without regard to visible channel counts. The results are arrays performed by using only 

the two Meteosat infrared bands, in which columns are ordered depending on TIR and 

rows on ΔTIR as illustrated in Tables 4.3 and 4.4. 

 

b) Temporal and Spatial correlation 

The time resolution in the calibration process is clearly defined by the dataset 

with the poorer time resolution, as occurred in this case by the Meteosat-7 with 30 
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minutes between satellite images. Therefore, the spatial correlation between radar and 

satellite datasets is completed each 30 minutes as indicated in figure 4.1 (t-t1 = 30 min).  

The calibration is thought to keep the quality and resolution of radar data 

throughout the whole process, it was decided to remap satellite images to radar 

projection, resolution and size. Remapped satellite coordinates are corrected spatially 

(Lat*, Lon*) with respect to radar pixels (Lat, Lon) after two steps: The first is the 

parallax correction, described in section 3.4 and applied here due to the effects on the 

angle of vision from a geostationary satellite produced by the high latitudes of the 

European regions. The second step tries to minimize errors in the spatial sampling 

between radar and satellite fields caused by slight differences in the time of the images. 

Another important reason to apply a spatial cross-correlation sampling is that areas of 

maximum radar rain rates would be fitted with areas of minimum infrared satellite 

temperatures. To do that, radar rain rates are compared with a satellite derived rainfall 

image. Over the Iberian Peninsula for daytime this previous satellite rainfall image was 

estimated using a bi-spectral IR/VIS matrix generated by the INM for operational 

purposes. In night time, due to the lack of data in the visible band, the rainfall image 

was estimated applying the A-E technique. Over the Baltic area an IR/VIS array is not 

known, the preceding rainfall image is also computed via A-E technique. The maximum 

spatial correlation is obtained by carrying out slight spatial displacements of the satellite 

rainfall image in 15x15 pixels grids around the significant radar pixels. Translations that 

provide the best correlation coefficients are then selected to modify each satellite pixel 

position (INM, 2000) and to continue with the matrices assembly as described in the 

beginning of this section. 

 

c) Validation of the method 

The matrices calibration technique described in this work can be evaluated using 

statistical indices such as: EQ_PC (Probability of equal satellite-radar rain area), POD 

(Probability of Detection), FAR (False Alarm Ratio) and CSI (Critical Success Index). 

They are calculated using data stored in matrices. 

The EQ_PC index is the probability level that matches the total number of radar 

rain points with satellite rain points. This factor establishes a so-called “stability 

criterion” and it is computed as proposed by Lovejoy and Austin (1979) and later 

applied also by Cheng et al. (1993). Here, it is important to identify radar rain points as 

those stored only in the rain matrix. Additionally, the total number of radar rain points is 
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the sum of all the rain matrix elements and is called NºR (see equation 4.3 and the 2-D 

rain matrix in table 4.3a). Satellite rain points are identified as those stored in the rain 

and in the no rain matrices. This is based on the assumption that all the satellite points 

are suspicious of being rainy. But observations show that only a small number of them 

coincide with significant radar echoes and, fortunately, satellite rain points can be 

ordered depending on the probability of rain given by the probability matrix (equation 

4.1). The assumption of satellite rain points is clear, obviously, for those places in 

matrices where the probability of rain is higher and thus, where the numbering of rain 

points should be started. For every probability value (P) the total number of satellite 

rain points (TSAT) is accumulated from higher to lower probability as shown in the 

expression (4.4).   

  

NºR = ),T(Vc,ΔVΣF IRIRR                                                               (4.3) 

TSAT(P) = [ ]∑ +
P

%
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            (4.4) 
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 is the sum of all the matrices elements. 

 

TSAT(P) is compared to NºR from the highest probability (P = 100%), where NºR 

should be bigger than TSAT(P), to the lowest (P = 0 %), where NºR is smaller than 

TSAT(P). The probability level is reached for the probability in which TSAT(P) is closer 

to NºR and, therefore, EQ_PC = P. At this moment of the process the total number of 

satellite rain points in matrices should be the same than the total number of radar rain 

points. Now the “stability criterion” is satisfied and the delineated rain area from 

satellite should be equal to that of the radar. However, a significant amount of data 

employed in the calibration process does not guarantee the stability in the number 

satellite rain points in a single CRR image.  

To calculate POD, FAR and CSI a contingency table (Marzban, 1998) is 

performed for each matrix as follows: 

 

C-table = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
DC
BA

= ⎟⎟
⎠
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⎝

⎛
iveect  negatNº of corr alarmsNº of alse

esNº of missNº of hits
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A, is the number of hits or number of radar rain points correctly detected by CRR. 

Taking into account the matrices, A is the number of rain points from the rain matrix 

with probability greater than the EQ_PC. B, is the number of misses or number of radar 

rain points not detected by CRR. In other words, it is the number of rain points from the 

rain array with probability smaller than the EQ_PC. C is the number of false alarms or 

number of radar no rain points estimated as rainy by CRR. Using the matrices, it is the 

number of no rain points from the no rain array with probability greater than the EQ_PC 

variable. D is the number of correct negative or total number of radar no rain points 

correctly estimated by the CRR as no rainy. POD, FAR and CSI are easily calculated as 

shown below: 

 

BA
A

misseshits  
hitsPOD

+
=

+
=                                                         (4.5) 

CA
C

msfalse alarhits
msfalse alarFAR

+
=

+
=                                                   (4.6) 

CBA
A

rmsfalse  alamisses  hits  
hitsCSI

++
=

++
=                           (4.7) 

 

The Pearson correlation coefficients can be calculated for each matrix by using 

the calibration data after matrices are configured. They are performed for every set of 

radar (R) and CRR estimated from a (S) set of satellite images in mm h-1 following  

equation 4.8 where ‘n’ is the total number of R and S pair of points considered in the 

calibration:  

 

( ) ( )( )
( )( ) ( )( )2222 ∑∑∑∑

∑∑∑
−⋅⋅−⋅

−⋅⋅
=

SSnRRn

SRSRn
CORR                       (4.8) 
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Figure 4.1. 3-D matrices generation scheme. As illustrated, firstly radar rain rates (RCINT) 
are associated in time and space with the satellite measurements from the three bands (TIR, 
TWV, Vc). Rain, No Rain and Accumulated Rain Matrices are configured in second place. 
Finally a probability and Mean Rain Matrices with the help of the EQ_PC index are 
computed. Dotted boxes on the top of the figure denote that radar-satellite datasets are 
correlated each thirty minutes (t-t1= 30 min.). Satellite point coordinates with an asterisk 
(Lat*, Lon*) indicate that the parallax correction and a spatial cross-correlation method is 
carried out around radar point coordinates (Lat, Lon).  
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4.3 CRR results 

a) Rainfall matrices 

Two (2-D) and three dimensional (3-D) calibration matrices are developed for the 

Iberian Peninsula and for the Baltic Sea. The 2-D arrays are configured with data from the 

infrared bands as afore mentioned, thus, they are planned to be used only during night time 

and the 3-D matrices, with infrared and visible measurements, for daytime. Those points 

with sun zenith angles smaller than 80º are considered as daytime points. The 2-D arrays 

have two axes that correspond respectively to: TIR as column axis, from -66ºC to 2º C each 

2 degrees and TIR - TWV as row axis, from -11ºC to 25ºC each 2 degrees (see tables 4.3d 

and 4.4). The 3-D arrays include a third axis, composed by Vc from 148 to 240, each 4 

counts as shown in tables 4.5 and 4.6. In these the 3-D matrices are partially represented 

and for every TIR value, the Vc range is viewed along the column axis. Empty cells in 

matrices are spectral places with no data retrieved from radar and satellite.  

Matrice elements are rain classes derived from rain rates in mm h-1 according to 

table 4.2. Multiplying every rainfall class by 24, they are scaled to an 8-bit count range (0 – 

255) used in the final CRR coloured images as shown in figures 4.3 and 4.5. The CRR 

images were generated from a simple class association extracted from matrices and satellite 

parameters.  

 
 
Table 4.2. Relationship between rainfall intensities in mm h-1, matrices classes and 
CRR 8-bit counts. 
 

Rainfall intensity 
(mm h-1) 

Rainfall matrices 
Classes 

CRR 8-bit count     
(Classes x 24) 

No data   
0 0 0 

0. – 1 1 24 
1. – 2 2 48 
2. – 3 3 72 
3. – 5 4 96 
5. – 7 5 120 

7. – 10 6 144 
10. – 15 7 168 
15. – 20 8 192 
20. – 50 9 216 

>50 10 240 
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Table 4.3 illustrates the resulting 2D rain (a), no rain (b), probability (c) and mean 

rainfall (d) arrays performed over the Iberian Peninsula. The rain and no rain tables show 

the number of rain (NºR) and no rain (NºNR) points and thus, reveal the size of the samples 

used to develop the algorithm. The probability table highlights, in grey, colour cells with a 

probability higher than the EQ_PC parameter and therefore, CRR rainy points. As 

commented in the methodology section, mean rain classes are calculated in table 4.3(d) 

only for those rainy places indicated by the probability table. In this last table, significant 

mean rain classes are shaded in grey to facilitate visualization. 

 

Table 4.3. 2-D matrices computed over the Iberian Peninsula. (a) Rain array with a total number of rain 
points around 19700. (b) No rain array with a total of 48587 no rain points. (b) Probability table, 
magnitudes greater than EQ_PC = 44% as in the rest of tables are shaded in grey to facilitate the 
identification of the highest values. (d) Mean Rain array in which elements are classes which are 
transformed into rainfall intensity or a CRR 8-bit count according to table 4.2. Statistical indices of the 
calibration process in percentages are shown in table 3(d). As described in the first paragraph of the 
result section, columns are TIR values from -66ºC to 2º C each two degrees and rows ΔTIR from -11ºC to 
25ºC each two degrees also.  
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Table 4.4. Baltic 2-D mean rain matrix, which has the same structure as table 4.3 (d) 
but performed by correlating satellite images with radar from the Baltic radars network. 
Here the EQ_PC parameter is lower than the one obtained for the Iberian Peninsula in 
the previous table and rain class distribution is smoother than other one. 
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Table 4.5. Operational structure 3-D matrix partially illustrated and statistical indices of 
the calibration process in percentages as in the previous tables. For each TIR value, the 
whole range of normalised visible counts is viewed from 148 to 240 each 4 counts as 
shown in the right column. This matrix continues until TIR = 2ºC, each 4 degrees. As 
well as the 2-D array, rows are represented by ΔTIR from -11ºC to 25ºC every two 
degrees and elements of this matrix are classes which are transformed in rain rates or 
CRR 8-bit image according to table 4.2.  
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Table 4.6. 3-D Baltic matrix which has the same structure as the previous table 4.5 but 
calibrated by correlating Meteosat images with radar images from the Baltic radar 
network. In this case, another part of the array is shown since rainfall classes are larger. 

 

 
 

 

b) CRR images, qualitative observations 
Figures 4.3 and 4.5 are the CRR graphic output derived from satellite and 

matrices calibrated over the Iberian Peninsula and the Baltic Sea respectively. CRR was 

conceived principally to aid short-term weather prediction and timely production is of 

major importance. It was therefore decided to process all different CRR images and 

radar on a common spatial resolution and compare the different datasets in a qualitative 

way. Some convective cases in September and October of 2002 over the Iberian 

Peninsula and in June and July of 2000 over the Baltic Sea were analysed. It was 
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observed that CRR images give a suitably clear idea of the position and intensity of 

cloudy convective systems with heavy rainfall and cold tops. However, rainfall areas 

detected via CRR method using only 2-D or nocturnal matrices, are spatially over-

estimated in most cases and maximum rainfall areas are slightly displaced with respect 

to maximum radar rainfall zones. Les frequently it was observed that radar clusters are 

outside of the rain area defined by the CRR matrices. 2-D CRR have a general tendency 

to undervalue rainfall intensity with respect to radar precipitation. By analysing CRR 

images derived from 3-D matrices, the spatial correlation between radar and CRR rain 

areas are logically better than using 2-D matrices, although close to midday 3-D CRR 

tend to under-estimate precipitation. 

A negative effect observed in 3-D CRR images during daytime with high solar 

zenith angles is noisy rainy spots with considerable rain intensity. Nevertheless, a 

significant spatial correspondence between the rainfall measured by radar (figures 4.2 

and 4.4) to the corresponding approximation by the CRR algorithm (figures 4.3 and 4.5) 

has been observed in many cases. These figures are examples of mesoscale convective 

systems whose common feature is that they used to be difficult to be accurately 

forecasted by numerical models.  

Figure 4.2 is a composite radar image for the Iberian Peninsula taken on the 9th 

October 2002, at 6.50 UTC. At that time, storms of varying intensity were located over 

northeast Spain and the maritime area to the north of the Balearic Islands, with 

maximum rainfall intensity greater than 13 mm h-1 in some areas. At 0800 UTC, news 

about floods in various places of the metropolitan area of Barcelona city were reported. 

Figure 4.3 is a parallel CRR image remapped to radar to facilitate visual comparison 

between them, albeit ten minutes later. This estimated rainfall image is computed, from 

Meteosat and the 2-D matrix calibrated in the Iberian Peninsula (table 4.3d). Maximum 

values of 13 mm h-1 are to be observed close to significant radar precipitating points 

however; CRR rain areas are clearly over-estimated.  

Figure 4.4 is a composite radar image from the Baltex network over the Baltic 

area obtained on the 21st of June 2000 at 14.00 UTC. Here, clear signs of moderate 

rainfall over Sweden are observed due to yellow radar clusters, presumably, with 

significant rain. Figure 4.5 is the parallel CRR image remapped to radar spatial 

resolution as done for the Iberian Peninsula and processed at the same UTM time as 

radar. Now satellite measurements from the three Meteosat bands are associated with 

the 3-D array for the Baltic Sea (table 4.6) in order to estimate CRR rain rates. In spite 
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of pixel deformation due to the high latitude of the scan from a geostationary satellite 

orbit and effects derived from the remap process, a big spatial correspondence to radar 

rainfall is easy to observe. However, as occurred in many other cases, CRR rain areas 

are over-estimated with respect to radar rain areas. 

 

 

 
 
Figure 4.2. Composite radar image of the Iberian Peninsula for 0650 UTC 9 October 
2002. Storms of various intensities are observed on the northeast Spain and the 
maritime area to the north of the Balearic Islands. Rain rates are around 15 mm h-1 on 
some points of the image. At 0800 UTC floods were produced in some places of the 
metropolitan area of Barcelona city. 
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Figure 4.3. CRR image for 0700 UTC 9 October remapped to radar projection and 
resolution to make easy visual comparison with the previous figure. The only difference 
is that this image is generated ten minutes later. Rain rates as estimated from Meteosat-
7 data and the 2-D matrix obtained for the Iberian Peninsula (table 4.3d) are shown. 
Values of 13 mm h-1 can observed close to significant radar rain rates, although, CRR 
rain area is clearly over-estimated with respect to radar. 
 
 

 
 

Figure 4.4. Radar image of the Baltex Project for the Baltic Sea to the South of 
Scandinavian Peninsula and Denmark. Obtained for 1400 UTC 21 June 2000. Here 
sings of active convection over Sweden are observed. 
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Figure 4.5. CRR image for the same area and time than the previous radar image. It was 
derived from Meteosat-7 data combined with the 3-D matrix for the Baltic Sea (table 4.6) 
and then remapped to radar. A good spatial correspondence with respect to the radar 
image can be observed. 

 
 
 

 c) Two dimensional matrices differences 

Clear differences are observed after an analysis of the two 2-D matrices. Firstly, 

the main rainfall classes in the matrix obtained for the Iberian Peninsula (Table 4.3d) 

are found for values of TIR (columns) between -66ºC to -58ºC and for TIR-TWV (rows) 

from -11ºC to -3ºC. Therefore a significant rain cluster with a mean rain rate around 10 

mm h-1 (by transforming classes in table 4.3d to rain rate according to table 4.2) is 

clearly localized in this spectral region of the table. For the 2-D rainfall array calibrated 

over the Baltic Sea (table 4.4) does not show a clear rain cluster, since the maximum 

rainfall intensity is not above 5 mm h-1 in any point.  

 With respect to the rain elements distribution in both matrices, these are found 

mostly on the diagonal of matrices. A visual check of table 4.4 for the Baltic area 

confirms that the distribution of rain classes is much smoother than the table for the 

Iberian Peninsula. Table 4.7 is made to facilitate the observation of variations in the 

distribution of classes between the Baltic and Spanish arrays. In this table, cells in light 
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grey showing ‘Bt’ statements are classes of the Baltic matrix, cells in black are classes 

from the two matrices and cells in dark grey with ‘Sp’ statements are classes 

corresponded only to the Spanish array. Here ‘Sp’ cells are not found, which implies 

that Spanish classes are all covered by the Baltic ones. In addition, since some ‘Bt’ cells 

are observed along the distribution diagonal edge, the Baltic matrix has a distribution of 

classes broader than the Spanish one. 

 
 
 
Table 4.7. Same structure as Tables 4.3d and 4.4 but here the overlay of Baltic and 
Spanish matrices distribution of classes is shown. Cells in light grey with ‘Bt’ 
statements: types belonging only to the Baltic array, cells in black: types belonging to 
both matrices and cell in dark grey with ‘Sp’ statements are classes of the Spanish 
array.  
 

 
 
 

 

 d) Three dimensional matrices differences 

 The structure of the 3-D matrices is modified with respect to those shown in 

Tables 4.5 and 4.6 in order to better illustrate the interaction of the visible band data over 

themselves. In the new column configuration, for each visible normalized count (Vc), the 

complete TIR range is shown every 4 degrees. Therefore, changes on mean rain class 

distribution can be observed in a matrix structure similar to the 2-D array by increasing 

Vc. Parts of the 3-D matrices obtained for the Iberian Peninsula and Baltic Sea are shown 
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in Tables 4.8 and 4.9 respectively. The new scheme described in the beginning of this 

section is also illustrated in these tables and significantly different rain classes are 

highlighted by using two tones of grey. Classes of between 4 and 5 in light grey 

symbolize moderate rainfall from 3 to 7 mm h-1 according to table 4.2 and classes 

between 6 and 8 in dark grey indicate heavier rain rates from 7 to 20 mm h-1 according 

again, to table 4.2. An analysis of the two 3-D matrices highlights significant differences 

between the two arrays in respect of class values and their distribution. 

The 3-D matrix for the Iberian Peninsula highlights a remarkable convective area with 

class values above 4 which evolves along the visible range. This area is gently increased 

with regard to the number of cells and the class values from Vc = 188, to Vc = 224 where 

an apparent peak is reached with maximum rain classes of around 8 (17 mm h-1, 

according to table 4.2). Then this cluster decreases quickly in size and intensity until it 

almost disappears for Vc = 240. Table 4.8 shows a section of this 3-D matrix where the 

highest rainfall clusters are situated.  

 In the Baltic 3-D matrix, a much less intense cluster of significant classes is 

illustrated, although none has a value above 4. This group grows slowly, mostly in sizes 

from Vc = 168 to Vc = 188 where a presumed maximum is reached. Then it decreases 

gradually until Vc = 204 in which classes equal to 4 are observed for the last time. Table 

4.9 shows the position in the Baltic 3-D array where maximum rainfall clusters are 

located. 

 Grey shaded tables highlight the distribution of classes, analogous to table 4.7, 

showing the overlap of 3-D matrices classes (see tables 4.10 and 4.11). As Vc increases 

from 164 to 188, the diagonal distribution of classes in the 3-D matrix for the Iberian 

Peninsula begins to broaden on the left side of the distribution and to narrow on the right 

side (see table 4.10, shape of the group of ‘Sp’ cells plus black cells). This trend 

continues throughout until the end of the visible range although with a slight 

displacement of the whole distribution down (to warmer TIR) and to the right (to bigger 

TIR-TWV). When Vc = 232 is reached, the distribution of classes is found to be very 

compact (see table 4.11, ‘Sp’ plus black cells). 

 The distribution of classes of the 3-D matrix obtained over the Baltic area hold a 

diagonal shape along the whole range of the visible band from 148 to 208 (see table 4.10, 

‘Bt’ plus black cells). Then it begins to narrow and shrink from left to right until the 

distribution of classes disappears completely for Vc = 232 (see table 4.11, ‘Bt’ plus black 

cells). 
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Table 4.8. Section of the 3-D matrix obtained for the Iberian Peninsula where the 
highest rainfall classes are situated. This table shows the new scheme adequate for the 
analysis in which rows are TIR-TWV , from -11ºC to 25ºC each 2 degrees and column 
axis show the whole range of TIR each 4 degrees for each visible brightness count (Vc). 
Cells shaded in light grey represent a group of moderate rainfall and cells in dark grey 
represent a cluster of heavy rainfall. 
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Table 4.9. Same as table 4.8 but shows the part of the Baltic matrix where the largest 
rainfall classes are to be found. The distribution of classes has a diagonal line shape and 
rainfall class values are not above 4 in any case. 
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Table 4.10. Same structure as the tables 4.8 and 4.9 but, in this case, shows the 3-D 
Baltic and Spanish matrices overlay. Light grey ‘Bt’ cells are classes corresponding 
only to the Baltic array, black cells are classes belonging to the two matrices and dark 
grey ‘Sp’ cells are classes corresponding only to the Spanish array. 
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Table 4.11. Same as table 4.10 but for another part of the 3-D array very close to the 
end for Vc = 240. Spanish ‘Sp’ cells in dark grey plus black cells configure a very 
compact cluster while Baltic classes in light grey plus black cells are clearly declining 
with the increase of Vc. 

 

 
 

 

 4.4 CRR discussion 

 The resulting matrices can be evaluated from the statistical indices such as the 

POD, FAR, CSI and EQ_PC. A high EQ_PC parameter, greater than 40%, indicates that 

radar and satellite datasets are in accordance, the calibration process is equilibrated with 

respect to the number of radar and satellite points and resulting rainy cells in matrices 

have a significant rain probability. The best spatial correspondence is obtained for the 

Spanish 3-D array (table 4.5) due to the highest POD, CSI, EQ_PC and also the lowest 

FAR. In second place comes the Baltic 3-D matrix (table 4.6) by taking into account 
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again the POD, FAR and CSI indices but with a low EQ_PC. This last factor may lend 

significance to the other three indices but unfortunately we are not able to quantify how 

much. Poor results are generated from the two 2-D arrays (table 4.3d and 4.4), where the 

Baltic Sea matrix should be considered with caution because it provides the worst 

statistical indices and the lowest EQ_PC. Correlation coefficients are around 0.4 for both 

3-D matrices and around 0.3 for the 2-D arrays. These results suggest, as commented by 

Lovejoy and Austin (1979) and Cheng et al. (1993), that visible data in matrices can 

improve their accuracy for rain estimation purposes in regard to pure infrared methods. 

However, other negative factors may affect the rainfall estimation by taking into account 

visible radiances such as areas affected by shadows or extremely bright cloud zones due 

to direct reflections. Significant variations can be observed in the intensity of this visible 

radiation in the early mornings and in the late afternoons. These variations are produced 

in many cases by the effect of normalization of the visible pixels with cosine of the solar 

zenith angle in these hours of the day. In fact, noisy rainy spots with significant rain rate 

values during daytime are observed mostly when solar zenith angles are large. Under 

such conditions the normalisation process tends to over-measure visible cloudy 

brightness counts causing errors in the rain class extraction from the 3-D matrix. This 

effect can easily be avoided by limiting the use of the 3-D matrix to a smaller number of 

daytime hours; however this way increases the time for the employment of the 2-D 

matrix, which is less accurate. 

 One key question raised in this work was the selection of the calibration period to 

perform a long term calibration matrix. By selecting a considerable amount of radar and 

satellite data to develop the matrices over the Iberian Peninsula, statistical indices 

evolved into acceptable boundaries and rain classes have a tendency to converge to 

specific values and specific array positions. However, Baltic array classes have a 

tendency to drop to zero and to disperse to a broader distribution. That is presumably 

caused by different reasons: First, the geostationary satellite pixel is degraded due to 

remapping requirements in high latitudes. Second, the scarcity of convective rain cases in 

contrast to the stratiform over the Baltic area, even during the summer period, could be a 

negative factor in the calibration process. Stratiform precipitation is very difficult to be 

accurately detected from satellite and therefore radar and satellite rain rates do not match 

correctly causing a substantial drop in the probability of precipitation. A shorter 

calibration period seems to be important to develop the best Baltic arrays. 
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 The present research confirms that TWV can exceed TIR in several degrees 

according to observations made by Schmetz et al. (1997). These special satellite 

measurements in which TWV > TIR clearly corresponded to areas in our matrices where 

TIR-TWV  < 0. Moreover, the highest rainfall classes are obtained in rainfall arrays for the 

coldest TIR and places in which TIR-TWV < 0 condition is satisfied (see tables 4.3d, 4.4, 4.8 

and 4.9). This result is, also, in agreement with the work of Kurino (1997a) and shows the 

advantages in the use of brightness temperature differences between the 11 μm and 6.7 

μm bands to detect deep convective clouds systems accompanied by heavy rainfalls.  

 Independent and qualitative studies not shown in this thesis report were performed 

for thin cirrus and stratiform clouds with precipitation over Spain. In the Baltic area the 

results of these studies were not definitive. The difference between TIR and TWV seems to 

be adequate to eliminate most of the cold thin cirrus clouds with no precipitation because 

we have observed that TIR-TWV is greater than +3ºC for these kind of clouds and thus, they 

are outside the rain area in matrices. However, poor results for stratiform precipitation 

using CRR estimations are obtained. Stratiform rain cloud tops are not as cold as 

convective tops and stratiform radar rainfall signal are found, also, in the positive area in 

matrices where TIR and TWV difference are above or close to zero and rainfall probability 

is lower than the EQ_PC in most of cases (see table 4.3c). Other problems are related 

with radar rain pixels that are located outside the rain area as defined by the CRR 

matrices. In such cases the rain is probably produced by low clouds with warm cloud tops 

in the infrared band and/or with a TIR-TWV great enough to be missed from the rain region 

of matrices. 

 The 3-D calibration table performed over Spain shows the greatest rainfall classes 

for high values of visible counts (Vc from 200 to 232 approximately). This can be 

explained taking into account that clouds with heavy convective cores and obviously, 

very thick, as studied by Vicente and Scofield (1996), are usually precipitating clouds in 

radar images and therefore they should be stored in the matrices as very bright clouds in 

the visible band. However, the 3-D matrix generated over the Baltic countries have 

smaller rain classes along lower visible brightness values (Vc from 168 to 204 

approximately). This could be caused by two factors. Solar radiation impinges against the 

earth’s surface and clouds with larger solar zenith angles in these high latitudes or the 

direct and reflected visible radiation has to pass through a longer atmospheric path, 

increasing energy absorption, before the satellite sensor is reached. The first factor should 

be corrected by the normalisation process of the visible pixel (Binder, 1988) but the 
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second factor seems to be the most suitable for explaining any reduction of visible 

radiation over such high latitudes.  

 

 

 4.5 CRR conclusions 

 In this chapter, a new convective version of the Rainsat Techniques is described. 

Long-duration probability and rainfall calibration tables were computed using a statistical 

method in which spatial correlations between radar and satellite images are performed. 

An analysis of the Meteosat information combined with radar is done to improve the 

rainfall area detection and rain rate estimations. Primarily, radar rainfall is ordered in 

rain, no rain and rain rate accumulation tables using satellite data as array coordinates. 

Secondly, after a statistical method, all the radar rainfall with a probability greater that 

the EQ_PC coefficient based on “stability criterion” methods is stored in 2-D and 3-D 

mean rain rate matrices.  

 Spectral calibration rainfall tables are generated for the north and south of Europe 

over the Baltic Sea and the Iberian Peninsula respectively. Statistical indices computed 

within each table help to determine that the best rain matrix was the 3-D one obtained 

over the Iberian Peninsula and the worst was the 2-D generated over the Baltic Sea.  

 Precipitation areas delimited via CRR are usually over-estimated with respect to 

radar rainfall. In addition, CRR points that correspond to maximum rain rates are slightly 

displaced with regard to radar maximum points. CRR images give a clear idea of the 

position and intensity of convective cores with heavy rainfall. Additionally, a significant 

spatial correspondence between radar rainfall and CRR estimates are observed in most 

cases. However, a numerical verification of CRR estimates including independent rain 

gauge measurements and radar over Spain and other places of Europe has been 

completed in sections 5.3 and 8.2 of the present document, and are important to evaluate 

errors in CRR rainfall estimates.  

 In general, matrices generated over the Iberian Peninsula have a mean convective 

rainfall value superior to those obtained for matrices over the Baltic Sea. Moreover, 

significant rainfall classes of the Spanish 2-D and 3-D arrays tend towards convergence 

in specific sectors of TIR, TIR-TWV and Vc for a long calibration period. This feature was 

not observed in the Baltic Sea matrix. Rainfall classes tend to drop when the calibration 

period is too long. We have no explanation for this but it could be caused by the 

predominance of stratiform rain over convective. 
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 Large temporal scale calibration tables as developed for CRR are useful in the 

operational context. These matrices are thought to have enough information to be 

employed in all kinds of convective meteorological events. Therefore, no further 

recalibration processes would be necessary, which is an advantage in computer 

processing. Satellite rainfall corrections, as described in the previous chapter of this work 

for A-E, could help to adapt CRR estimates to real conditions. However, an interesting 

experiment for scientific purposes, if radar data were available in real time, could be 

rapid updates of calibration tables for the coming hours. In chapter 8 a recalibration of 

matrices with radar seems to be necessary to improve the accuracy of CRR estimations 

for the Montserrat flood case. 

 New observations from satellite missions such as the Meteosat Second 

Generation (MSG), launched in August 2002, should improve the rain estimation 

algorithms situation, especially multi-spectral methods as CRR, through the use of 

observations from a 12-channel Spinning Enhanced Visible Infrared Imager (SEVIRI) 

sensor. In addition, the MSG provides 15-min image capture capability, enhancing the 

use of life history techniques with such data. At the present time the SAFNW project 

continues adapting the CRR method to the MSG satellite in the operational context. 

More information about this can be found in internet (http://nwcsaf.inm.es/) by 

searching CRR or PGE05 words. 

 



 55

5. Rainfall analysis of the Albanian case study 

The Albanian event, which occurred from September the 20th to September the 

26th 2002 with the heaviest precipitations happening on day 21, 22 and 23, is a clear 

example of a Mediterranean severe weather event with numerous small and steep river 

basins and highly populated areas affected by torrential precipitations. In addition, two 

important factors make this small country especially sensitive to such damaging 

episodes. The Albanian basin is opens to the west and, thus, to the Adriatic Sea where 

unstable weather systems pass regularly towards to the rest of the Balkan Peninsula. In 

addition, the east side of the country is surrounded by very high mountains of altitudes 

above 2000 m (figure 5.1), which increases the strength of such depressions. Secondly, 

at the time of writing this document, the lack of ground radars over the Albanian 

territory to monitor the precipitating systems approaching Albanian shores from the sea 

makes the use of remote sensing methods from satellite essential to the detection of 

heavy rainfall areas and to estimate the rain rates in real time with as much accuracy as 

possible. 

This chapter presents results of daily rainfall estimates focused on the three days 

of heavy rainfalls from the 21st to the 23rd of September 2002. Estimated precipitations 

based on Meteosat-7 data and computed using various techniques developed for 

convective clouds are compared with ground observations. A single Infrared band 

technique known as Auto-estimator (chapter 3) and a three-channel Convective Rainfall 

Rate technique known as CRR (chapter 4) were considered. For both methods, a number 

of corrections, such as moisture, cloud growth rate, cloud top temperature gradient, 

parallax and orographic were performed and tested. Results show that the auto-estimator 

significantly over-estimates daily rainfall when compared with measurements taken on 

the ground whereas CRR gives more accurate estimates. The Auto-estimator power law 

curve was adjusted to the specific conditions using all the available measured rainfall 

intensities. A sensitivity test of correction factors for this flood case demonstrated that 

parallax, growth rate and orographic corrections can improve the delineation of satellite 

daily rainfall areas in the observed pattern, while the Auto-estimator curve calibration 

produces sensible changes on rainfall amounts. 

The Numerical Mesoscale MM5 Model nestled within the grid analyses from the 

European Centre for Medium Range Weather Forecast (ECMWF), was employed to 

carry out a brief synoptic analysis of this case and to generate the precipitation water 

(PW) and relative humidity (RH) fields used to compute the moisture correction factor, 
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as well as to provide the 850 hPa wind vector fields needed to calculate the orographic 

correction factor.  

The Auto-estimator and CRR techniques are applied to this specific Albanian 

event to compute daily rainfall fields. In addition 6 satellite rainfall corrections are 

evaluated against surface observations for the 3 days with the largest accumulated 

precipitation of the period.  

In contrast to CRR, the Auto-estimator algorithm in its original form has a strong 

tendency to over-estimate daily rainfall. This feature suggests that each convective 

episode has its own characteristics and the Auto-estimator cannot be considered as 

representative of the geo-climatic conditions of the study area. Consequently a 

straightforward procedure was performed to adjust the calibration coefficients of the 

infrared power-law curve using all available rain gauge measurements.  

Any developed satellite rainfall method and later correction must be verified 

against appropriate in-situ measurements taken over the region of interest. Different 

verification methodologies have been applied by Marrocu et al. (1993) for Sardinia, Oh 

et al. (2002) for Korean peninsula, Menz (1997) for east Africa and Vicente et al. (1998) 

for areas in central US. The majority uses coarse grids of 0.25ºx0.25 or 0.50ºx0.50º or 

1ºx1º resolution in order to minimize the strong spatial variability of rain rates and 

hourly precipitation. Some difficulties are compounded in this case with respect to 

verification. Firstly, as commented before, operative radars are still not installed and 

only 8 rain stations from 115 can provide rain rates. Secondly the verification could be 

completed using daily precipitation measurements from around 80 of the 115 available 

stations distributed over Albania. Fortunately daily measurements are much less 

sensitive to spatial and temporal variations of the precipitation and therefore the 

verification can be simplified as explained in the next subsection.  

 

 

 5.1 Datasets and study methodology 

 a) Dataset description 

The Meteosat-7 datasets used in this work are: infrared brightness temperature in 

Kelvin TIR(K), infrared water vapour band in Kelvin TWV(K) and the visible channel in 

brightness counts. The Meteosat datasets, provided by the INM, were produced by 

EUMETSAT in images every 30 minutes with a pixel spatial resolution over Albania 

around 7 by 7 km lat-lon. All satellite rainfall processing shown in the present chapter is 
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performed on this spatial resolution. They were resized to 300 lines by 300 columns and 

centred in 40ºN 12.4ºE. The period of the satellite dataset used in this study was from 

0000 UTC September 21 to 2330 UTC September 23.  

Ground rainfall rates in mm h-1 recorded every 30 minutes from 0100 to 2330 

UTC by 8 stations during the three days of the flood case (see black boxes in figure 5.1). 

On September 21st only 6 stations of these have provided data, while the next day all the 

8 stations were working properly but on September 23 the data of only 5 stations could 

be employed for this research. These rain rates were used for the infrared curve 

calibration process as described in section 5.4.  

Rainfall accumulations in 24 hour period obtained between 0000 to 2400 UTC 

from September 21st to the 23rd by 115 stations in Albania. However only 81 were 

finally used after a supervised quality check (see white and black boxes in figure 5.1). 

These daily datasets were used for the verification of algorithms and the sensitivity test 

of rainfall corrections. 

Grid analyses from the ECMWF are used to run the MM5 simulation. They have 

a 0.3º by 0.3º lat-lon resolution and are available every 6 hours from 0000 UTC 

September 21st to 0000 September 24th.  

 

b) Study methodology 

 In situ daily rainfall measurements from the 81 stations are interpolated by a 

“kriging” analysis method using the linear model for the variogram fit. This minimal 

error variance method is recommended for irregular grids with relatively low number of 

observations (<250) and has been widely used to compute rainfall fields from rain 

gauges (Krajewski 1987, Seo 1998, Bhagarva and Danard 1994). In the Albanian region 

as in many others, mountain areas are not well covered by the meteorological stations 

therefore daily precipitation may be under-estimated in these mountainous places. After 

careful supervision of the data analysis process, the resulting kriged daily rainfall fields 

obtained from the rain gauge measurements were, in our opinion, correctly delineated 

over these complex terrain areas. The interpolated rainfall fields are then remapped to a 

satellite projection and resolution for the three days of the flood case in order to facilitate 

visual and numerical comparisons with respect to the MM5 and satellite estimations.  

In previous studies the verification has been performed using coarse grids of 

0.25ºx0.25 or 0.50ºx0.50º or 1ºx1º resolution in an attempt to minimize the high spatial 

variability of rain rates and hourly precipitation measurements (Marrocu et al. 1993; Oh 
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et al. 2002; Vicente et al. 1998). In the present research the “kriging” option has been 

selected because it allows a pixel by pixel comparison which is suitable for studies in 

small areas such as the Albanian territory. Other important reasons are: firstly, daily 

measurements are much less sensitive than rain rates and/or hourly fields to the spatial 

and temporal variations of the precipitation and, secondly, the Albanian rain gauge 

network (figure 5.1) is dense enough to capture the most important daily rainfall patterns 

in such a severe event.  

The A-E computes rainfall rates based on a fixed, non-linear, power-law 

relationship as described in chapter 3. However before the algorithm was applied, cirrus 

cloud pixels with a low probability of rain, are filtered using the empirical slope test 

developed by Adler and Negri (1988). A qualitative study not shown in this report has 

illustrated to us that this simple process applied to infra-red images can detect cold 

pixels from homogeneous cloud top surfaces suspected of being non precipitating cirrus. 

These pixels are observed mostly in clouds that are moving but not growing and 

developing as occurred to convective. The method is simple, for each point Po an 

empirical slope S and a kind of temperature gradient Gt are computed in a window of 25 

pixels centred in the point Po. The terms Gt and S are given by the following equations: 

 

Gt = Tavg - Tmin                                                                                 (5.1) 

 

S= 0.568(Tmin – 217)                                                                       (5.2) 

 

where Tmin is the local minimum and Tavg is the average temperature in the grid of 5 by 5 

pixels. A large Gt indicates convective clouds, a small Gt a weak gradient associated 

with cirrus clouds within the window. Pixels having Gt less than S are classified as cirrus 

clouds and therefore, considered as non-precipitating points with 0 mm h-1.  

Concerning the CRR algorithm; the 2-D and 3-D matrices developed over the 

Iberian Peninsula and shown as a table 4.3d and 4.5 respectively are used in the 

Albanian flood study. We are interested in a CRR algorithm evaluation in a place 

different from the one where matrices were tuned. However, both regions, the Iberian 

Peninsula and Albania, are located on similar latitudes in Europe. Visible counts from 

Meteosat images have to be normalized using the solar zenith angle (Binder, 1988) 

before the 3-D matrix is used to estimate the rain rate in a point. To avoid problems 

during the transition from night to day and from day to night, the use of the 3-D matrix 
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has been limited from 0700 to 1500 UTC (daytime in Albania in September). The rest of 

the time has been employed by the 2-D matrix which only needs brightness temperatures 

from the two infrared bands. 

Satellite rainfall images estimated from the different methods are rain rate fields in mm 

h-1 units. Daily precipitation images are then computed using equation 5.3. It represents 

the numerical integration of rain rates each 30 minutes throughout a 24 hour period.  

                                                   

(5.3) 

 

where DP(x,y) is the daily rainfall at image coordinates (x, y) and IPt(x, y) is the rain rate 

every 30 minutes at that point. 

MM5 accumulated rainfall in 24 hours is also remapped for each of the three 

days in order to test the accuracy of the numerical model simulation (see MM5 sets in 

the next subsection). Observed and estimated daily rainfall fields from satellite and 

MM5 are compared in a qualitative and quantitative manner. For the quantitative 

verification, common statistical indices such as the difference between the estimated and 

the observed spatial averaged daily precipitation (BIAS), root mean square errors (RMS) 

and Pearson correlation coefficient (CORR) are calculated in the area limited by kriging 

analysis derived from the rain gauges.  

As illustrated in section 5.3, results show that A-E over-estimates strongly the 

daily precipitation and therefore the infrared power law curve was adjusted for the 

specific conditions by an experimental calibration process as described in section 5.4. 

Finally, A-E, CRR and calibrated A-E rainfall were corrected by moisture, cloud growth 

rate, cloud top temperature gradient, parallax and orographic and a sensitivity study was 

carried out. 
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0               25               50 km

 
Figure 5.1. Albanian terrain and meteorological stations. White boxes represent daily 
rainfall measurements and black boxes daily measurements and rain rates. The territory 
is very irregular in general, but the highest mountains, above 2300 m, are found in the 
north and in the south of the country. 
 

 

5.2 Case of study, MM5 settings and Synoptic description of the flood case 

 a) Case of study 

 September 2002 was characterized by frequent stormy episodes with heavy 

rainfalls that have affected most of the Albanian territory. The present episode during the 

end of the month is atypical owing to three crucial aspects: the extreme rain rate, the 
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intense precipitations extended period of 3 consecutive days with short interruptions and 

the high social impact caused by the resulting floods. The most intense precipitations 

were registered during late 22nd and first hours of 23rd, affecting northern and southern 

Albania, respectively. During the 22nd, the recorded 24h-accumulated rainfall amount 

exceeded 160 mm in many rain gauges of the region, which almost doubles the monthly 

average of the last 50 years. Cloud convection was prominent in the Meteosat 11µm 

infrared images during the 22. An intense semi-stationary convective system with 

extremely cold tops with minimums brightness temperatures below 205 K was observed 

over the north of the country during this day. 

  

 b) MM5 settings and Synoptic overview 

 In order to capture the accumulated rainfall patterns and important mesoscale 

details of the episode, a 72 hours control simulation is set up using the MM5 model, 

beginning at 0000 UTC September 21st 2002. Three interacting domains under a 

Lambert Conformal map projection were used. The coarse one has 140 x 140 x 24 grid 

points and measures 5004 x 5004 km (grid length 36 km) and has numerical outputs 

every 6 hours; both the middle and fine domains have 151 x 151 x 24 grid points every 3 

hours. The intermediate measures 1800 x 1800 km (grid length 12 km) and the fine 

domain measures 600 x 600 km (grid length 4 km) every 30 minutes. The three domains 

are centred at the region affected most by heavy rains over Albania. It was decided to 

use only the fine domain outputs to perform the moisture (PWRH) and orographic (OC) 

correction factors after a test not shown in this document. In this study the PWRH 

correction factor field was computed using MM5 numerical outputs from the coarse (6 

hours, 36 km) and intermediate (3 hours, 12 km) domains. Corrected A-E daily rainfall 

using this PWRH factor from both domains was numerically verified using daily 

observations. The performance of the correction in both cases was sensibly lower than 

employing the numerical outputs corresponding to the higher resolution domain (30 min, 

4 km). 

The event developed under a synoptic pattern characterized by a large-scale ridge 

at mid-upper troposphere levels, which remained stationary during the event over the 

north Atlantic, west of the British Isles. This high pressure centre split the mid latitude 

westerly into two jet streams, one associated with a cold short-wave positively-tilted 

trough developing over Europe and a southern jet stream associated with a secondary 

trough identified over the western Mediterranean and south Iberian Peninsula (figure 



 62

5.2a).  The second jet is extended towards the east coast lands of the Adriatic, reaching 

the area of study during the 22nd of September (figure 5.2b). 

At low levels, a large area of anticyclone flow offshore of Libya favoured the 

eastward advection of warm and moist Mediterranean air towards Albania, reinforced by 

the cyclonic flow associated with an incipient Alpine lee cyclone (figures 5.2c and 5.2d).  

In the hours that followed, the main mid-upper level cold trough progressed to 

the south-east bringing strong mid-level winds over the Adriatic (figures 5.3a and 5.3b). 

The secondary mid-upper level trough advanced eastward merging with the main system 

and reinforcing the strong south-westerly flow over the southern Adriatic and Ionian 

Seas. At low levels, the persistent westerly flow impinging Albania is reinforced by the 

confluence of flows associated with three different systems. First, the Alpine cyclone 

deepened and intensified the associated maritime westerly flow; next, the anticyclonic 

area centred over Libya remained almost stationary and finally, the Algeria mesocyclone 

progressed east, bringing southerly warm air to the confluence zone (figures 5.3c and 

5.3d). This continuous supply of warm and moist air at low levels over Albania 

conduced to a convectively unstable environment that leaded to heavy rains over 

Albania during 22 and the second half of 23 September 2002. 
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ECMWF Analyses – W925

ECMWF Analyses – W300, Wspeed 300
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ECMWF Analyses – SLP, T925

H

L

L

H

L

L

Figure 5.2. ECMWF map analysis at 0000 UTC 22 September 2002 showing: (a) Geo-
potential height at 500 hPa (continuous line, in gpm) and temperature at 500 hPa (dashed 
line, in ºC), (b) Horizontal wind (vectors) and wind speed (shaded according to scale, in 
ms-1) at 300 hPa, (c) Sea level pressure (continuous line, in hPa) and temperature at 925 
hPa (dashed line, in ºC) and (d) Horizontal wind (vectors) at 925 hPa. 
 
 

 



 64

ECMWF Analyses – W300, Wspeed 300
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Figure 5.3 ECMWF map analysis at 0000 UTC 23 September 2002 showing: (a) 
Geopotential height at 500 hPa (continuous line, in gpm) and temperature at 500 hPa 
(dashed line, in ºC), (b) Horizontal wind (vectors) and wind speed (shaded according to 
scale, in m s-1) at 300 hPa, (c) Sea level pressure (continuous line, in hPa) and temperature 
at 925 hPa (dashed line, in ºC) and (d) Horizontal wind (vectors) at 925 hPa.  
 

 

5.3 Results of Auto-Estimator, CRR and MM5 daily rainfall 

A-E, CRR and MM5 daily rainfall are qualitatively and numerically verified 

against the observed interpolated daily precipitation. Gauge measured daily rainfall, 

original A-E, CRR and the MM5 model daily precipitation for the days 21, 22 and 23 

September are displayed in figure 5.4, while statistical analysis taking in account zero 

pairs are shown in table 5.1. Both are illustrated at the end of this subsection. 
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On the first day most of the observed rainfall is confined to a small area on the 

north of Albania. Satellite and MM5 precipitation overlap, in general, areas of observed 

rainfall as shown in figure 5.4. In addition estimations provide relatively high correlation 

indices (CORR) compared to the other two days (Table 5.1). The maximum gauge 

measured rainfall is 130 mm (figure 5.4a) while A-E over measures this quantity with a 

maximum around 250 mm (figure 5.4d). Besides, CRR and MM5 estimate maximum 

daily amounts of 80 and 100 mm, respectively (figures 5.4g and 5.4j). Table 5.1 shows 

that A-E obtains the greatest CORR and the lowest BIAS while CRR has the lowest 

RMS (Root Mean Square Error). 

The 22nd is the day of the heaviest precipitations, with two observed maxima over 

the territory (figure 5.4b). The strongest one located in the North of Albania with 200 

mm and another one weaker in the south with 150 mm. Both values can not be directly 

observed in figure 5.4b because the plotting method using level curves produces a 

smoothed effect over the daily rainfall maps. In general, the three algorithms delineate 

the greatest accumulations a bit displaced to the north with respect the observed rain 

area. None of these methods detect the observed maximum located in the south of 

Albania. A-E is out of range with a maximum daily precipitation around 1000 mm as 

clearly illustrated in Figure 5.4e. CORR indices are significantly lower than one day 

before as shown in table 5.1, but here it can be observed that A-E has the largest CORR 

but also a huge BIAS error, and the worse RMS. The CRR has the lowest BIAS index 

and the MM5 obtain the lowest RMS but also the worse CORR.  

The day of the 23rd is probably the most difficult one for satellite and MM5 

rainfall estimation. Most of the observed rainfall occurs in the south of Albania with a 

main accumulation of 135 mm in 24 hours and a secondary daily maximum of 85 mm in 

the north coast (figure 5.4c). Satellite algorithms, in general, over-estimate the rainfall 

area but overlap the strongest observed accumulations in the south of the territory 

(figures 5.4f and 5.4i). The A-E is again out of range with an estimated main 

accumulation of 450 mm and the MM5 forecasts around 440 mm in 24 hours but mostly 

over the centre of the country (figure 5.4l). Low correlations for the three algorithms 

with respect to previous days are shown in Table 5.1 however, CRR gets the lowest 

BIAS and RMS. 

Results vary significantly from one day to another after an analysis of the statistical 

indices in table 5.1. In order to gain a general view, global indices are computed and 

shown in the final 6 rows of the table. They are calculated taking in account estimated 



 66

and observed points for the three days of the flood case. Now A-E provides, in general, 

the best CORR but also clearly over-estimates daily precipitation with the highest RMS 

and BIAS. The CRR and MM5 give much more adjusted daily precipitation amounts, 

according to the low BIAS, however the MM5 has a significant RMS and the lowest 

CORR. 

 

 

Table 5.1 Results comparing A-E, CRR and MM5 with Observed daily rainfall. The Size 
box is the number of pixels over the region affected by the episode on each day. Mean, 
SD (standard deviation), BIAS and RMS (root mean square error) are in mm. Boldfaced 
numbers show best statistical results in every line. The last six rows are statistical results 
for the three days collected. 

 OBS A-E CRR MM5 Day 
Size 2055 

21 

Mean 22.4 33.9 8.3 10.3 
     SD 27.6 57.8 16.6 21.7 
BIAS  11.6 -14.0 -12.1 
RMS  47.9 26.8 30.7 

CORR  0.61 0.57 0.36 
Size 2777 

22 

Mean 44.2 268.6 53.7 24.9 
    SD 36.5 274.4 56.7 36.5 
BIAS  224.4 9.5 -19.4 
RMS  346.7 57.9 49.2 

CORR  0.34 0.31 0.14 
Size 1867 

23 

Mean 36.5 183.3 45.3 85.6 
 SD 29.9 125.2 33.2 110.2 

BIAS  146.8 8.7 49.0 
RMS  191.5 41.5 136.7 

CORR  0.19 0.17 -0.49 
Total Size 6699 (2055+2777+1867) 

21, 22, 23 

Mean 35.4 172.8 37.4 37.3 
 SD 33.5 215.3 46.0 70.0 

BIAS  137.5 2.1 1.9 
RMS  246.5 45.7 80.6 

CORR  0.39 0.37 -0.10 
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a)

d)

g)

OBS, day 21 OBS, day 22 OBS, day 23

A-E, day 21 A-E, day 22 A-E day 23

CRR, day 21 CRR, day 23CRR, day 22

MM5, day 23MM5, day 22MM5, day 21

b) c)

e) f)

h) i)

j) k) l)

 
Figure 5.4. Daily rainfall in mm for each day of the flood case. From (a) to (c): measured 
by the 81 stations, spatially interpolated and remapped to satellite projection and 
resolution, (d) to (f): estimated by A-E, (g) to (i) estimated by CRR and (j) to (l) 
simulated by the MM5 numerical model, remapped, also, to satellite projection and 
resolution.  
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5.4 Calibrating satellite measurements with rain gauges 

The A-E in its original form over-measures daily rainfall in the three days of the 

case of study. Additionally, as illustrated also in the next section 5.5, rainfall corrections 

applied over original A-E do not mend the high-bias problem between estimated and 

observed. The calibration procedure tries to adjust the A-E power law relation to the 

reality of the rainfall case by computing a new infrared-rain power law curve. In 

addition, it is interesting to explore new calibration possibilities of satellite measures 

directly from rain gauges. In many previous works meteorological radars were used as 

so-called “ground true” in order to complete this kind of experiments. Radars can 

provide accurate rain fields that would be very beneficial in our case but they produce 

other problems like ground echoes, beam overshoot or technical instabilities that makes 

it management complex in certain cases. The fact that the radar step could be skipped 

can simplify the calibration problem. As mentioned previously, radar images were not 

available for the Albanian territory at the time of writing.  

The first calibration task is the association in time and space of every rain rate 

value in mm h-1 from the Albanian rain gauge (figure 5.1) with the corresponding 11μm 

cloud temperature pixel measured from the satellite but corrected previously by parallax. 

In the three days of the flood with 8 stations providing rain rates in which 6, 8 and 5 of 

them were fully operative the days 21, 22 and 23 respectively, a total of 874 

measurements were captured each 30 minutes. However, some anomalous ground rain 

measurements and satellite pixels are detected and skipped from the calibration process. 

These errors were mostly bad records of rain rates, small number of satellite images that 

were missed, few pixels affected by errors in the parallax correction and satellite points 

warmer than 290 K and therefore, not being considered. A total of 252 anomalous points 

were not used which remains 622 useful measurements including no rain points with 0 

mm h-1. 

 From this stage it was developed two different calibration methods called A-Ec1 

and A-Ec2. Both compute mathematical power law relations like the A-E equation 

shown as 3.1 by using the calibration dataset (622 points) but applying different 

procedures as described in the following sections. 
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a) A-Ec1 

Something approximating the Vicente et al. (1998) method is reproduced but using 

rain gauge measurements instead of radar pixels. The 622 rain rates are ordered 

depending on their satellite infrared temperature as shown in figure 5.5a. As observed, 

most of the rain points are related to cold temperatures TIR < 235 K meaning that the 

association process was correctly executed in our opinion. The next important step is the 

definition of an optimum interval of temperatures in order to calculate various 

magnitudes in each one such as: mean rain rate, standard deviation and number of 

points. This interval depends inversely on the size of the calibration dataset, therefore it 

would smaller if the number of points considered in calibration is larger. For example, 

Vicente et al. (1998), using radar images established 1 K size interval for a calibration 

dataset with 6800 points. In our case with only 622 points with a very irregular 

distribution as shown in the figure, we have set a criterion based on a minimum of 15 

mandatory points in each interval. The result is an 8 K size interval from 200 K to 296 K 

(figure 5.5). Mean rain rate value shown as empty small box in figure 5.5a is calculated 

for every interval, these are connected with dashed lines forming a discontinuous curve. 

In addition to the minimum number of points criterion is important to configure a 

smooth discontinuous curve made with the mean rain rate values that should be 

diminishing with respect the increase of the satellite temperature. In each interval it is 

calculated the standard deviation to have an idea of the variability the mean point and 

they are shown in figure 5.5a as the black boxes connected by dashed lines.  

The next step is to plot the mean points in the logarithm scale and select the best 

ones in order to compute a regression straight line. In first place the rain sector of the 

graph goes from 200 K to 260 K in view of the discontinuous mean curve in figure 5.5a 

with mean values greater than 0 mm h-1 in each interval. This sector is plotted in the 

logarithmic scale in figure 5.5b where the points in the red circles are the ones used to 

perform the best fit regression line. These points are selected firstly because they are not 

in touch with the rain sector borders and secondly because they do not have an 

extremely high standard deviation with respect to the mean value. For example, the 

second point counting from the right side to the left in figure 5.5b has a mean value of 1 

mm h-1 as shown in the previous figure 5.5a but also a standard deviation of 4 mm h-1 as 

illustrated in the same figure. This mean rain rate with a standard deviation 4 times 

greater is not substantial enough, in our opinion, to be included in the regression fit. The 

best line-fit in the logarithm scale derived from the five points inside the red circles is: 
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log (R) = - 0.0929 TIR + 21.742                                                     (5.4) 

 

where the correlation coefficient for the fit is r = 0.94. This relation is transformed to 

rain rate in mm h-1 in function of the satellite temperature in K by inverting the 

logarithm. 

 

          R = 2.7697 109 exp(-0.0929 TIR)                                                  (5.5) 

 

This curve from relation 5.5 is plotted by a solid line in figure 5.5a as the regression 

curve. Rain rates estimated from this relationship are called A-Ec1 in the following. 
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b)

a)

 
Figure 5.5. Rainfall curve calibration by the A-Ec1 method for the three days of the 
flood case. (a) Rain rates from Albanian rain gauges versus satellite temperatures. Mean 
rain rate, standard deviation and number of points for each 8 K interval. New rainfall 
curve derived from the A-Ec1 regression method plotted as a continuous curved line and 
shown as equation (5.5) in text. A-E original curve (dashed line) shown to facilitate 
visual comparison with the new regression curve. (b) Rain sector of the graph but in the 
logarithm scale. Mean rain rate points into the red circles used to calculate the regression 
line shown as equation (5.4) in the text. 
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b) A-Ec2 

 The second calibration method tries to select the most qualitative and convective 

rain rate points from the 622 that still remains. With the resulting ones it is performed a 

direct regression fit again in the logarithm scale. The process is done according to the 

following steps: 

- Step 1. Rain Intensities associated to relatively warm satellite points (TIR greater than 

240 K) are removed from calibration. As viewed in figure 5.5a, mean rain rates are 

almost zero for satellite temperatures greater than 240 K. A total of 326 points in 

which the 88% of them are 0 mm h-1, are removed and 296 useful points remain. 

- Step 2. Cold infrared points (TIR below 240 K) in which TIR is increasing with time 

are also removed. This process was made taking in account the cloud displacements 

in satellite images, as explained at the end of section 3.2 for the GR2 correction. A 

total of 108 points are warming with respect the previous satellite observation and 

therefore not considered in calibration. 

 

A consequence from a straightforward association of data from very different 

origin and nature as satellite radiances against ground rain rates, are the generation of 

anomalous (TIR , R) points. In those, very low TIR pixels are linked to R with little or no 

rain and on the other hand, warm TIR pixels are associated to R with significant rainfall 

intensity. At this point many points are removed after the previous two steps (404) and 

the rest (218) are probably representative but also a scarce sample. Few anomalous pairs 

can affect negatively to the calibration and should be removed using the next simple 

criteria: 

- Step 3. If TIR is smaller than 215 K and the observed rain intensity is smaller than 1 

mm h-1 the point data is not considered in calibration. 78 points are eliminated after 

this step. 

- Step 4. If TIR is greater than 230 K and the observed rain intensity is greater than 1 

mm h-1 the point data is not considered in calibration. Only 6 points are removed. 

 

Remained points are plotted against TIR in figure 5.6, where, the frame on the top 

corresponds to the natural logarithm of rain rates measured by the rain gauges versus TIR 

and, on the bottom, direct rain rates against TIR are represented. The distribution of 

points is nearly linear in the logarithm graphs and, even though some of the points are a 

bit spread out, a linear regression fit is performed. The logarithmic rainfall line is 
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obtained using all the retrieved (R, TIR) points (NºPt =104) from the three days of the 

flood as shown by the thick line in frame 5.6a corresponded to the fit equation with a 

correlation fit (r) equal to 0.31. The rain rate curve is then calculated by just inverting 

the logarithmic linear relation, which results equation (5.6) as follows and plotted, also, 

in figure 5.6b within the original A-E curve.  

 

R = 6.171 1014exp(-0.155 TIR)                                       (5.6) 
 

where R is rain rate in mm h-1. Precipitation computed using the power law relation (5.6) 

is called ‘A-Ec2’ in the present study.  
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a) Logarithmic Rain rates versus satellite temperatures

Nº Pt = 104             

log (R) = 34.06 – 0.155·TIR

r = 0.31

b) Rain rates versus satellite temperatures

A-E

A-Ec2

log (A-E)

lo
g

 
Figure 5.6. Rainfall curve calibration by the A-Ec2 method for the three days of the 
flood. (a) Natural logarithm of rain rates in mm h-1 versus satellite 11 μm band 
brightness temperature in Kelvin for points not removed by the method. The solid black 
line is the best fit regression line while the other is the original A-E in the logarithmic 
scale shown as example. (b) Direct rain rates versus satellite temperatures (points) and 
rainfall curves from A-E (equation 3.1) and the new one A-Ec2 (equation 5.6). 
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5.5 Results of the new infrared rain curves 

The two new rainfall curves (A-Ec1 and A-Ec2) are compared with respect to the 

original A-E as shown in figure 5.7. It is clear that the A-E estimates higher rain rates 

than the other two curves while the A-Ec2 produces the lowest one. In fact, daily 

satellite estimates by the new curves for each day of the flood case, as illustrated in 

figure 5.8, show clearly that A-Ec1 produces bigger daily accumulations than A-Ec2. 

However compared to the original A-E in frames 5.4d, 5.4e and 5.4f the daily amounts 

from A-Ec1 and A-Ec2 are substantially lower as logical but the distribution of rainfall 

is quite similar. Therefore calibration tasks have an overall effect on the rainfall 

amounts and keep the rain areas unchanged with respect to the standard algorithm. 

Consequently, by comparing numerically the daily estimations from new curves with 

the rain gauge fields (frames 5.4a, 5.4b and 5.4c) CORR indices should be almost the 

same as the A-E ones that occur (see table 5.2), while BIAS and RMS indices should be 

reduced. Taking into account the results from these last two indices shown in table 5.2, 

the A-Ec2 is the infrared curve that generally produces the best daily rainfall estimates 

with respect the observations. However on the 21st, in spite of the best correlation 

coefficient (0.62), the A-Ec2 curve generates the strongest under-estimation of daily 

precipitation given by a clear negative BIAS (-16.4) in this table. 
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Figure 5.7. Infrared rainfall curves corresponded to the original Auto-Estimator (A-E 
equation 3.1) and the new methods developed in this work (A-Ec1, equation 5.5, and A-
Ec2, equation 5.6).  
 

a) 

d) 

b) c) 

e) f) 

A-Ec1, day 21 A-Ec1, day 22 A-Ec1 day 23

A-Ec2, day 21 A-Ec2, day 22 A-Ec2 day 23

Figure 5.8. Daily accumulations derived from the two new rainfall curves A-Ec1 and A-
Ec2 for each day of the flood case. 
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Table 5.2 Results comparing A-E, A-Ec1 and A-Ec2 with Observed daily rainfall. 
Boldfaced numbers show best statistical results in every line. (Same units of statistics 
indices as table 5.1) 

 OBS A-E A-Ec1 A-Ec2 Day 
Size 2055 

21 

Mean 22.4 33.9 14.9 6.0 
     SD 27.6 57.8 23.5 10.6 
BIAS  11.6 -7.5 -16.4 
RMS  47.9 24.4 27.9 

CORR  0.61 0.60 0.62 
Size 2777 

22 

Mean 44.2 268.6 97.5 55.2 
    SD 36.5 274.4 90.6 60.0 
BIAS  224.4 53.3 11.0 
RMS  346.7 101.1 59.5 

CORR  0.34 0.33 0.35 
Size 1867 

23 

Mean 36.5 183.3 74.4 34.1 
 SD 29.9 125.2 45.7 24.7 

BIAS  146.8 37.9 -2.4 
RMS  191.5 63.4 34.2 

CORR  0.19 0.15 0.23 
Total Size 6699 

21, 22, 23 

Mean 35.4 172.8 65.7 34.2 
 SD 33.5 215.3 73.4 46.1 

BIAS  137.5 30.3 -1.1 
RMS  246.5 74.4 45.1 

CORR  0.39 0.38 0.39 
 

 

5.6 Sensitivity test of correction factors 

In order to assess the impact of each correction factor over the precipitation 

amounts, rainfall is estimated by using the A-E, A-Ec2 and CRR. Then, rain rates are 

modified by every correction factor and daily rainfall images are generated from them 

using equation (5.3). Finally the daily estimations affected by the correction factors are 

compared qualitatively (figure 5.9) and numerically (Tables 5.3a, 5.3b, 5.4, 5.5) with 

respect the observations (figures 5.4a, 5.4b and 5.4c). It is important to know that all the 

correction factors were applied to the two new curves, A-Ec1 and A-Ec2 however, we 

have preferred to show results of correction factors applied individually after A-Ec2 

(Table 5.4) because it has obtained a slight better performance that A-Ec1 as illustrated 

in table 5.2.  

The first important result is that none of the correction factors seems to solve 

substantially the high bias problem of the original A-E equation (3.1). Although, GR1, 

GR2 and TGR corrections have reduced significantly the BIAS error and RMS (Table 

5.3a). The parallax correction (PC) provides the highest CORR values for the three 

satellite algorithms and for the three days of the flood case, but errors in BIAS and RMS 
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are slightly changed (Tables 5.3a, 5.4 and 5.5). This indicates that the PC correction 

improves the results by just shifting precipitation in space as logical. In frames 5.9d to 

5.9f for ‘A-Ec2 + PC’ compared to frames 5.9a to 5.9c for ‘A-Ec2’ it is observed a little 

movement of daily estimates to the south-west as expected. The PWRH, however, does 

not produce significant changes in any of the algorithms. Other corrections that have 

improved the daily precipitation correlation are the dynamic cloud growth rate 

correction (GR2) and the orographic correction (OC). Even though OC produces a very 

little improvement in the CORR, its RMS has growth appreciably. Moreover, a general 

observation for the OC and PWRH is that both corrections have increased the RMS 

index. These are the ones that have used data from the numerical model simulation 

therefore numerical outputs are probably causing these errors. Another problem with the 

OC that can cause other kind of inaccuracies is that since rain gauges in mountainous 

regions tend to be in the valleys, the rain gauge network may under-estimate the 

orographically enhanced rainfall that occurs in mountainous terrain.  

The GR2 in general diminishes the daily rainfall because, as explained in section 

3.2, this correction sets to zero rain rates in points where cloud top brightness 

temperatures are increasing with time. (Figure 5.9g to 5.9i compared with figures 5.9g 

to 5.9i for ‘CRR + GR2’). The OC increases the daily rainfall on the windward side and 

tops of the highest mountains chains and diminishes it on the lee side of the ridges. This 

effect can be deduced from the Albanian terrain, shown in figure 5.1, comparing figures 

5.9k and 5.9l for the ‘CRR + OC’ with 5.4h and 5.4i. The cloud-top temperature 

gradient correction (TGR) decreases, in general, the daily rainfall and improves slightly 

the correlation coefficients for all the algorithms.  

The effect of GR1, GR2 and TGR is a general decrease in the RMS but they 

produce significant under-estimates of daily precipitation. This feature is deduced by 

considerable negative BIAS errors observed for the A-Ec2 and CRR in tables 5.4 for 

and 5.5. Therefore, the execution of these corrections after such algorithms adjusted to 

the geoclimatic conditions of the study area should remains under consideration. 

However, estimated daily rainfall amounts are closer to the observed when these last 

three corrections GR1, GR2 and TGR are applied separately after the A-Ec1 curve 

(results not shown in the tables).  

The two versions proposed and studied by Vicente et al. (1998) “A-

E+PWRH+GR1” and “A-E+PWRH+TGR” were tested and the results are shown in 

table 5.3b. Here it is observed in general a small improvement in the correlation 
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coefficients and in rainfall amounts with respect the A-E infrared curve alone. The 

estimated daily rainfall in both cases are still suffering a sensible over-estimation unless 

for the first day of the flood where the performance of the two algorithm versions are 

going very well.   

We have observed in general that the RMS is always lower when the satellite daily 

rainfall field is under-estimated, even when the under-estimation is important. On the 

other hand the RMS is much larger when satellite daily rainfall is over-estimated as 

natural, but paradoxically it happens also when over-estimation is small. In summary 

RMS are lower for cases in which strong negative errors in BIAS are also observed and, 

thus, we have to select which of the two statistical indices are more important. In order 

to evaluate the correction factors we have decided therefore to take into account in first 

place, the CORR parameter, in second place the BIAS and finally, the RMS. 
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a)

d)

g)

b) c)

e) f)

h) i)

j) k) l)

A-Ec2, day 21 A-Ec2, day 22 A-Ec2, day 23

A-Ec2 + PC, day 21 A-Ec2 + PC, day 22 A-Ec2 + PC day 23

CRR + GR2, day 21 CRR + GR2, day 23CRR + GR2, day 22

CRR + OC, day 23CRR + OC, day 22CRR + OC, day 21

Figure 5.9. Daily A-Ec2 alone (a to c) and A-Ec2 and CRR modified by the corrections 
that have provided better correlation coefficients with respect to the observed rainfall. 
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Table 5.3. (a) Sensitivity analysis of correction factors over the A-E original equation (3.1). 
Where: PWRH is the moisture correction factor, GR1: cloud growth rate, GR2: dynamic cloud 
growth rate, TGR: Cloud-top temperature gradient, PC: Parallax correction and OC: Orographic 
correction. (b) Results comparing A-E, A-E+PWRH+GR1 and A-E+PWRH+TGR with Observed 
daily rainfall. The last two columns are the two versions proposed by Vicente et al. (1998) as the 
best.  Boldfaced numbers show best statistical results in every line. (Same units of statistics 
indices as table 5.1). 

(a) A-E +PWRH +GR1 +GR2 +TGR +PC +OC Day 
       Size 2055 

21 

Mean 33.9 30.8 24.5 18.9 22.3 34.1 35.0 
       SD 57.8 52.8 413 37.1 37.8 57.3 60.0 
BIAS 11.6 8.5 2.1 -3.4 -0.1 11.7 12.7 
RMS 47.9 41.5 32.5 27.8 30.6 50.5 49.9 

CORR 0.61 0.63 0.62 0.67 0.60 0.51 0.61 
      Size 2777 

22 

Mean 268.6 267.6 173.9 168.0 157.6 285.3 307.7 
      SD 274.4 277.9 177.2 192.0 158.8 270.0 316.3 
BIAS 224.4 223.4 129.7 123.8 113.4 241.1 263.5 
RMS 346.7 266.7 212.3 219.3 187.9 352.0 402.6 

CORR 0.34 0.37 0.35 0.39 0.35 0.43 0.38 
      Size 1867 

23 

Mean 183.3 212.6 121.7 118.2 106.3 183.9 235.2 
      SD 125.2 146.5 83.7 82.8 74.0 128.2 183.0 
BIAS 146.8 176.1 85.1 81.7 69.7 147.4 198.7 
RMS 191.5 145.7 119.2 115.8 102.0 192.8 267.3 

CORR 0.19 0.13 0.18 0.21 0.19 0.25 0.22 
Total Size 6699 

21, 22, 23

Mean 172.8 179.7 113.5 108.4 101.8 180.0 203.9 
      SD 215.3 221.3 139.5 146.8 125.1 216.7 255.7 
BIAS 137.5 144.3 78.1 73.0 66.4 144.6 168.5 
RMS 246.5 210.9 151.5 154.6 133.5 250.0 296.4 

CORR 0.39 0.39 0.40 0.42 0.40 0.45 0.41 
 

(b) A-E +PWRH+GR1 +PWRH+TGR Day 
Size 2055 

Mean 33.9 22.3 20.2 

21 
     SD 57.8 37.8 34.4 
BIAS 11.6 -0.1 -2.2 
RMS 47.9 29.5 27.9 

CORR 0.61 0.63 0.62 
Size 2777 

Mean 268.6 169.2 156.5 

22 
    SD 274.4 175.0 160.3 
BIAS 224.4 124.9 112.2 
RMS 346.7 206.7 187.5 

CORR 0.34 0.38 0.38 
Size 1867 

Mean 183.3 141.5 120.9 

23 
 SD 125.2 97.9 84.4 

BIAS 146.8 105.0 84.3 
RMS 191.5 144.2 120.3 

CORR 0.19 0.12 0.13 
Total Size 6699 

Mean 172.8 116.4 104.7 

21, 22, 23
 SD 215.3 140.9 128.0 

BIAS 137.5 81.0 69.4 
RMS 246.5 154.2 137.3 

CORR 0.39 0.40 0.40 
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Table 5.4 Statistical results of the A-Ec2 infrared curve and sensitivity analysis of 
correction factors. Boldfaced numbers show best statistical results in every line. (Same 
units of statistics indices as table 5.1). 

 A-Ec2 +PWRH +GR1 +GR2 +TGR +PC +OC Day 
Size 2055 21 

Mean 6.0 6.2 5.0 4.1 4.5 6.0 7.5 

 
SD 10.6 10.3 8.0 7.3 7.2 10.6 12.0 

BIAS -16.4 -16.2 -17.4 -18.3 -17.9 -16.4 -14.9 
RMS 27.9 28.7 31.2 31.7 31.8 28.9 30.5 

CORR 0.62 0.63 0.62 0.67 0.61 0.53 0.61 
Size 2777 22 

Mean 55.2 64.5 34.0 33.0 30.5 58.5 63.8 

 
SD 60.0 79.5 36.7 39.5 32.8 59.1 76.8 

BIAS 11.0 20.3 -10.0 -11.2 -13.7 14.3 19.6 
RMS 59.5 77.3 43.4 44.3 42.5 55.8 73.7 

CORR 0.35 0.36 0.36 0.39 0.36 0.45 0.39 
Size 1867 23 

Mean 34.1 35.9 21.8 20.3 19.0 34.1 43.3 

 
SD 24.7 25.8 16.1 15.8 14.3 25.3 37.8 

BIAS -2.4 -0.58 -14.7 -16.2 -18.5 -2.4 6.8 
RMS 34.2 36.2 35.2 36.1 36.2 33.4 42.4 

CORR 0.23 0.18 0.22 0.21 0.22 0.28 0.27 
Total Size 6699  

Mean 34.2 40.3 21.5 20.6 19.3 35.6 40.8 

21, 22, 23 
SD 46.1 58.8 28.5 29.9 25.5 46.3 59.1 

BIAS -1.1 4.1 -13.9 -14.8 -16.1 0.2 5.4 
RMS 45.1 55.6 37.8 38.5 37.8 43.1 55.2 

CORR 0.39 0.37 0.40 0.41 0.40 0.46 0.41 
 
 
Table 5.5. Statistical results of the Sensitivity analysis of correction factors over the CRR. 
Boldfaced numbers show best statistical results in every line. (Same units of statistics 
indices as table 5.1) 

 CRR +PWRH +GR1 +GR2 +TGR +PC +OC Day 
Size 2055 

21 

Mean 8.3 8.5 6.0 5.1 5.3 8.2 8.9 
SD 16.6 16.7 11.7 10.8 10.7 16.4 18.0 

BIAS -14.0 -13.9 -16.4 -17.3 -17.1 -14.2 -13.5 
RMS 26.8 27.0 27.8 28.7 28.7 28.8 26.9 

CORR 0.57 0.55 0.61 0.60 0.59 0.45 0.55 
Size 2777 

22 

Mean 53.7 72.6 31.8 30.6 30.4 57.7 66.5 
SD 56.7 84.4 34.2 36.0 31.6 56.1 75.2 

BIAS 9.5 28.4 -12.5 -13.6 -13.8 13.5 22.9 
RMS 57.9 85.8 44.5 42.8 42.1 55.4 74.3 

CORR 0.31 0.31 0.27 0.37 0.33 0.39 0.35 
Size 1867 

23 

Mean 45.3 62.1 30.0 27.0 24.9 46.1 59.7 
SD 33.2 50.5 22.6 19.9 18.0 34.2 49.6 

BIAS 8.7 25.6 -7.5 -9.5 -11.6 9.6 23.1 
RMS 41.5 59.8 34.4 35.1 34.4 41.0 57.1 

CORR 0.17 0.17 0.20 0.12 0.15 0.23 0.21 
Total Size 6699 

21, 22, 23 

Mean 37.4 50.0 23.1 21.8 21.2 39.3 46.9 
SD 46.0 67.3 28.3 28.4 25.6 46.5 61.4 

BIAS 2.1 14.6 -12.3 -13.6 -14.2 3.9 11.6 
RMS 45.7 65.4 37.3 36.8 36.3 44.7 58.5 

CORR 0.37 0.35 0.36 0.40 0.39 0.42 0.39 
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5.7 Combining CRR and new curves with rainfall corrections 

 At the time of writing we have not found clear and specific information on the 

order of corrections applied operationally for the A-E in the US by NESDIS (National 

Environmental Satellite Data and Information Service). Therefore, different 

combinations of correction factors, not shown in this report, were tested by us for A-E, 

A-Ec1, A-Ec2 and CRR algorithms. The combination with the best resulting daily 

estimations is described in the next paragraphs, statistical indices are shown in table 5.6 

and maps are illustrated in figure 5.10. The basic rain rates from the different algorithms 

are corrected firstly by GR2, then resulting rain rates are corrected by PC and finally by 

OC in that order. Then, corrected daily rainfall fields are computed using equation (5.3). 

In a second version, the PWRH factor is applied last in order to study the effects of 

moisture over the rainfall (see table 5.6). The idea is to apply all the corrections that 

have individually improved the correlation coefficient, as first index, and rainfall 

amounts (BIAS and RMS), as shown in the precedent section. Vicente et al. (1998) 

proposed the A-E+PWRH+GRT and A-E+PWRH+GR1 versions, obtaining varied 

results. In this research we have tested these versions as shown in table 5.3b and, have 

also integrated the PC and the OC, shown for the first time in a later publication 

(Vicente et al. 2002). It is important to mention that these corrections are operationally 

incorporated in the A-E and H-E (Hydro-Estimator) by NESDIS as described by 

Scofield and Kuligowski (2003), but, in this article it is not specified in which order. 

The effect of GR1 or GR2 or TGR in decreasing daily precipitation is stronger 

than the effect of PWRH, OC and PC in increasing it. The GR2 factor, with the highest 

correlation coefficient than GR1 and TGR, can equilibrate alone the tendency to 

increase the daily rainfall derived from the PC plus OC plus PWRH. Apart from that, 

the optimum order of corrections that was found could be explained by the following 

hypothesis: GR2 is related to cloud dynamics computed from satellite temperatures, PC 

“matches” cloud points to ground points and OC and PWRH are corrections supported 

on the atmospheric properties of the event simulated by the MM5 model at different 

levels. The key point is that horizontal position of every model grid point at each height 

is centred on its horizontal position at ground level. Based on this obvious argument the 

PC should operate after GR2 (satellite) and before OC and PWRH (model), because the 

PC places satellite cloud points on different heights at their correct ground-reference 

position. However, other satellite rainfall algorithms PC used to be executed in first 
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place. Therefore the option “Algorithm+PC+GR2+OC+PWRH” was tested without 

finding variations in the accuracy of the daily precipitation as opposed to the version 

proposed by us “Algorithm+GR2+PC+OC+PWRH”. In addition, the OC and PWRH 

are both multiplicative factors, therefore results do not logically change by ending the 

correction chain in any of the two following ways: “…+OC+PWRH” or 

“…+PWRH+OC”. 

In order to show the results, the algorithms are separated between standards (A-E, 

CRR), table 5.6a and calibrated (A-Ec1, A-Ec2) table 5.6b. Correlation coefficients are 

increased in general after the application of a set of corrections for the three days of the 

flood case as shown in the final 6 rows of statistical results of each of the tables. An 

analysis of the corrected daily rainfall amounts with respect the basic algorithms shows 

that under or over-estimation tendencies are smoothed but not eliminated. For the 

version including the PWRH factor, correlations are slightly diminished or equal and 

RMS indices are increased in general, mostly for the corrected CRR. The exception in 

this case is the original A-E (Table 5.6a) where the PWRH correction applied as the last 

factor produces a clear improvement in the correlation coefficient. 
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a)

d)

g)

b) c)

e) f)

h) i)

j) k) l)

A-Ec1+GR2+PC+OC
day 21

A-Ec1+GR2+PC+OC
day 22

A-Ec1+GR2+PC+OC
day 23

A-Ec1+GR2+PC+OC+
PWRH, day 21

A-Ec1+GR2+PC+OC+
PWRH, day 22

A-Ec1+GR2+PC+OC+
PWRH, day 23

CRR+GR2+PC+OC
day 21

CRR+GR2+PC+OC
day 22

CRR+GR2+PC+OC
day 23

CRR+GR2+PC+OC+
PWRH, day 21

CRR+GR2+PC+OC+
PWRH, day 22

CRR+GR2+PC+OC+
PWRH, day 23

Figure 5.10. A-Ec1 and CRR corrected by GR2+PC+OC and by GR2+PC+OC+PWRH. 
Corrections are performed one after another using the rainfall rate images, then, daily 
precipitation fields are computed and shown. In the present figure the PWRH correction 
factor is applied last to show the effect of moisture in low levels over the daily rainfall.  
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Table 5.6. Statistical results of a chain combination of correction factors applied over old 
algoritms A-E and CRR (a) and new infrared curves A-Ec1 and A-Ec2 (b). The PWRH correction 
factor is applied apart to show the effect of moisture present in low levels over the daily rainfall. 
Boldfaced numbers show best statistical results in every line. (Same units of as table 5.1) 

(a) A-E A-E +GR2+PC 
+OC 

A-E +GR2+PC 
+OC+PWRH CRR CRR+GR2+PC 

+OC 
CRR+GR2+PC 
+OC+PWRH Day 

Size 2055 

21 

Mean 33.9 19.9 20.2 8.3 5.2 5.9 
SD 57.8 39.9 41.5 16.6 11.8 13.5 

BIAS 11.6 -2.5 -2.1 -14.0 -17.1 -16.5 
RMS 47.9 34.4 36.6 26.8 30.1 30.3 

CORR 0.61 0.53 0.50 0.57 0.44 0.40 
Size 2777 

22 

Mean 268.6 203.8 206.9 53.7 40.6 55.2 
SD 274.4 224.3 232.3 56.7 48.2 72.1 

BIAS 224.4 159.6 162.7 9.5 -3.6 11.0 
RMS 346.7 262.5 269.8 57.9 44.7 64.9 

CORR 0.34 0.50 0.53 0.31 0.47 0.46 
Size 1867 

23 

Mean 183.3 248.7 176.5 45.3 38.0 52.7 
SD 125.2 2085 150.2 33.2 34.8 52.2 

BIAS 146.8 212.2 139.9 8.7 1.5 16.2 
RMS 191.5 293.9 203.3 41.5 40.4 56.6 

CORR 0.19 0.24 0.19 0.17 0.23 0.22 
Total Size 6699 

21, 22, 23

Mean 172.8 159.9 141.2 37.4 29.0 39.4 
SD 215.3 206.1 189.3 46.0 39.9 58.9 

BIAS 137.5 124.5 105.8 2.1 -6.3 4.0 
RMS 246.5 230.2 205.2 45.7 39.6 54.0 

CORR 0.39 0.44 0.48 0.37 0.44 0.43 
 

(b) A-Ec1 
A-Ec1 

+GR2+PC 
+OC 

A-Ec1 
+GR2+PC 

+OC+PWRH
A-Ec2 

A-Ec2 
+GR2+PC 

+OC 

A-Ec2 
+GR2+PC 

+OC+PWRH 
Day 

Size 2055 

21 

Mean 14.9 8.5 8.6 6.0 3.7 3.8 
SD 23.5 15.7 16.4 10.6 7.7 8.0 

BIAS -7.5 -13.9 -13.8 -16.4 -18.7 -18.6 
RMS 24.4 27.1 27.6 27.9 30.8 30.9 

CORR 0.60 0.54 0.51 0.62 0.53 0.50 
Size 2777 

22 

Mean 97.5 74.8 76.7 55.2 45.9 46.1 
SD 90.6 79.9 83.1 60.0 56.6 58.0 

BIAS 53.3 30.6 32.5 11.0 1.6 1.9 
RMS 101.1 75.5 77.8 59.5 49.3 49.4 

CORR 0.33 0.51 0.54 0.35 0.51 0.53 
Size 1867 

23 

Mean 74.4 60.1 71.5 34.1 28.6 33.7 
SD 45.7 46.6 57.4 24.7 25.4 29.9 

BIAS 37.9 23.6 34.9 -2.4 -7.9 -2.9 
RMS 63.4 55.1 69.8 34.2 34.5 37.5 

CORR 0.15 0.21 0.16 0.23 0.27 0.22 
Total Size 6699 

21, 22, 23

Mean 65.7 50.4 54.3 34.2 28.1 29.6 
SD 73.4 64.3 69.2 46.1 42.9 44.6 

BIAS 30.3 15.0 19.0 -1.1 -7.3 -5.7 
RMS 74.4 58.6 64.0 45.1 40.4 41.2 

CORR 0.38 0.48 0.47 0.39 0.48 0.48 
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5.8 Discussion and conclusions 

a) Discussion 

According to Vicente et al. (1998) article, the application of the A-E curve alone 

has a tendency to over-estimate daily precipitation compared to observed values. 

However, in this flood case the over-measurement is especially large. In contrast, the 

CRR algorithm gives adjusted daily rain amounts (see BIAS and RMS in Table 5.1 and 

figures 5.4d to 5.4i). This result suggests that the CRR is closer to the geo-climatic 

conditions of the Albanian region than the A-E algorithm. In fact the calibration of CRR 

matrices was performed over the Iberian Peninsula (see chapter 4.2) which is located at 

the same latitude as Albania and, in addition, part of this Peninsula is under strong 

influence of the Mediterranean Sea. However, correlations between CRR and 

observations are, in general, slightly lower than for A-E. A possible reason is that some 

Meteosat water vapour images were missed; producing bugs in the CRR data stream, 

these were then substituted with time averaged CRR images. A feature more difficult to 

explain is the strong CRR daily precipitation under-estimation for the day 21. With no 

available radar images our theory is that cloud microphysical properties were, on this 

particular day logically very different from that which could be deduced solely from 

satellite cloud top observations.   

Two new infrared curves called A-Ec1 and A-Ec2 are generated with available 

rain rates from 8 rain gauges in Albania, applying two different methods. Both new 

curves have a general tendency to estimate lower rain rates than the original A-E curve 

as shown in figure 5.7. This experiment confirms that it is possible to transform satellite 

measurements to rain rates after a calibration by using only rain gauges. This supposes 

an advantage because it opens up a possibility to skip all the radar developments for 

calibration. However both curves are slightly different and the difficult question is, 

why? The first proposed method to configure the A-Ec1 curve is probably more 

straightforward and simple than the second method but still produces a clear over-

estimation of daily precipitation (see results in table 5.2). The second curve (A-Ec2), is 

a more complex method but produces better daily estimations with lower BIAS and 

higher CORR (Table 5.2). Although this does not mean that A-Ec2 should be 

definitively better than A-Ec1, a verification of the estimated satellite rain rates and 

hourly precipitation with respect to radar is still very important. Unfortunately these 

kinds of experiments have to be performed in other regions with available radar images. 
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Other kinds of tests completed by us but not shown in this thesis report were the 

generation of one different curve for each day of the flood by applying the second 

calibration method (A-Ec2) as it has produced the best daily results. In this case, A-Ec2 

infrared curves are, as expected, very different depending on the flood day they were 

computed. This result suggests that cloud top properties observed by the satellite and 

rainfall from their bases are changing relatively fast from one day to another. These 

substantial variations cannot be captured using a unique A-E relationship for all rainfall 

cases and for all days. In addition, correction factors do not seem to do the proper 

modifications, mostly, between days 21 and 22. One option to solve this problem is to 

perform operational calibrations every day between the satellite and the rain gauges. 

Unfortunately, this can cause other problems such as; definition of calibration-

application optimal time periods, rain gauge and satellite data availability in real time 

and automatic quality checking to detect errors in the data stream. The second option is 

more elaborated and consists of the generation of rainfall curves at different seasons of 

the year and, in each season, one curve for every different type of synoptic system. For 

example, four categories as developed by Cheng and Brown (1995): cold fronts, warm 

fronts, and cold air convection and mesoscale convective systems.  

 

b) Conclusions 

Calibrated curves (A-Ec1 and A-Ec2) for the three days over-estimate the daily 

precipitation area in general but under-estimate maximum rainfall quantities compared 

to observed daily rainfall (compare figures 5.4a to 5.4c for observations with figure 5.8 

for A-Ec1 and A-Ec2). Two observed daily maxima, one of 150 mm in the south of the 

country on day 22 and the other of 85 mm in the north of Albania on day 23, are not 

captured by any of the satellite algorithms and MM5.  

The parallax correction (PC), the dynamic cloud growth rate correction (GR2) 

and the orographic correction (OC) can improve correlations of the satellite daily 

precipitation while the results for the moisture correction (PWRH) are not clear. In 

general, calibration tasks have an overall effect on rainfall amounts, revealed by a 

substantial reduction of BIAS and RMS indices compared with the original A-E (Table 

5.2). 

GR1, GR2 and TGR diminished the RMS in general but they produce strong 

BIAS errors for the A-Ec2 and CRR. This suggests that the use of these corrections after 

algorithms adjusted to the geo-climatic conditions of the study area are not 



 89

recommended unless they are combined with other correction factors that can 

compensate the strong under-estimation in the rainfall. 

Daily satellite estimation results at this point appear to be encouraging; however, 

correlations are still lower than 0.5, BIAS greater than 5 mm and RMS greater than 40 

mm in many cases. Qualitative analysis of the observed and estimated daily rainfall 

images by A-E and CRR also show that some significant maxima are not detected 

adequately. An option for the near future in a region with no available radar data is the 

employment of a passive microwave rainfall rate data derived from SSMI and AMRS 

sensors aboard polar satellites to improve the rainfall calibration of geosynchronous 

satellite infrared imagery. Alternatives in this direction were successfully explored by 

Kidd et al. (2003) and Turk et al. (2000). 

The infrared curve calibration methods developed in the present work (A-Ec1 

and A-Ec2) should be tested in other cases and other regions with the available rain 

gauge and radar measurements, in order to verify the accuracy of the methods. 

However, the analysis of the convective heavy rain event completed in this chapter has 

shown that any of the two calibration methods can be a feasible choice to adjust 

estimated rainfall rates to the reality of the case and with possible operational 

applications if data from satellite and rain gauges are available in real time. 

Some corrections factors performed in this flood case, such as PC, GR2 and OC, 

have shown small improvements on the daily rainfall estimations. Additionally, the best 

ones can work one after another in a chain combination in order to gain any benefit. 

These can increase the flexibility of the rainfall estimation methods and are relatively 

easy to be implemented within an operational context with the help of a numerical 

model.  

 

 

 

 

 

 

 

 

 

 



 90

 



 91

6. Rainfall analysis of the Montserrat case 

 During the 9th and 10th June 2000, the north-eastern part of the Iberian 

Peninsula was affected by heavy rains that produced severe floods over densely 

populated areas. The most affected zones were the provinces of Tarragona and 

Barcelona, located in the region of Catalonia (figure 6.1a and 6.1b). Five people were 

killed, five hundred were evacuated and property losses were estimated to exceed 65 

M€. The episode was characterized by the entrance of an Atlantic low-level cold front 

and an upper-level trough that contributed to the generation of a mesolow (low-level 

mesoscale cyclone) offshore of eastern Spain. The circulation associated with this 

mesolow provided warm moist air to Catalonia from the Mediterranean Sea. The 

convergence zone between the easterly flow and the Atlantic front as well as the 

complex terrain of the region, are shown to be involved in the organization and 

triggering of the convective systems.  

In this chapter a summary of the most important synoptic factors are briefly 

described, however the reader is referred to Martin et al. (2006) publication, where a 

much more detailed and accurate analysis about the case study within various numerical 

simulations are provided. In chapter 8 of this thesis a parallel study of rainfall estimates 

from the Meteosat-7 perspective is performed and explained. The difference between 

this and the Albanian case (chapter 5) is that now ground radar images from the INM 

covering the flood area are available. These images are used to verify the satellite 

estimated rain rates, added to the 24 hour rainfall accumulation evaluation as done in 

Albania. Unexpected troubles concerning radar are behind the radar calibration 

experiments by using rain gauges to transform radar measurements into rain rates as 

described in chapter 7. Here two methods, one from the bibliography and the second 

completely experimental, are performed and tested in order to select the optimum one to 

compute the best radar rain rates estimates. Calibrated radar rain rates are used later in 

section 8.  

 

6.1 Case study and MM5 settings 

a) Case of study 

The event of 9-10 June 2000 is atypical owing to the extreme rainfall intensities 

that were observed and the high social impact caused by the resulting flash flood. In 

fact, this is one of the cases that received the greatest amount of attention of the regional 

media in the XX century, with more than 75 references published in 5 local newspapers. 
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This is comparable only to few historical events such as the cases of September 1962, 

September 1981 or October 1982 (Llasat et al. 2003). On 10 June 2000, 5 people died 

and more than 500 were evacuated from the monastery of Montserrat (figure 6.1b). 

Total material loss, including the destruction of a bridge, was estimated to exceed 65 

M€ by the media. In fact, this event is catalogued as catastrophic by Llasat et al. (2002), 

fitting their criteria of observed rainfall amounts, total affected area, death toll and 

economic losses (Llasat, 2001). 

Three aspects contributed to this unique flood: the high rain rates, the stationary 

nature of the precipitating systems and the particular terrain configuration of the 

affected area. Some rain gauges in Catalonia recorded 5 min accumulations reaching 10 

mm (120 mm h-1), with a total 6 hours amount of over 200 mm. Radar in Barcelona 

captured the evolution of convective systems linked to an Atlantic front, as well as two 

mesoscale convective systems merging and becoming nearly stationary over Barcelona 

during the first hours of 10 June. As a consequence of such intense and persistent 

precipitation over the Montserrat basin, a prototype western Mediterranean 

hydrographical river basin with a complex mosaic of sub-basins defined by high and 

steep slopes, an exceptional flash flood occurred. 

 

b) MM5 settings 

The MM5 numerical model is initialised with the global troposphere analyses 

from Global Data Assimilation system of the National Center for the Environmental 

Prediction (NCEP). They have a 2.5ºx2.5º lat-lon resolution and are available every 12 

hours. These fields are remapped to the model grid by means of an objective analysis 

that incorporates surface and upper-air observations. With the aim of accurately 

simulating fine details of the precipitating systems for this event, three 82x82 grid 

points 2-way nested domains of 54, 18 and 6 km spatial resolution are defined, 

zooming-in over north-eastern Spain. In the vertical, 24 levels are used, with higher 

density near the surface to better resolve near-ground processes. The heavy rainfall that 

characterised this case was registered during the first hours of the 10th of June. Previous 

sections highlight the link between the intense convective activity and the cold front 

passage over Catalonia with strong rain rates. In order to capture the mesoscale details 

of the evolution of the front, as well as the mesolow offshore eastern Spain, a 36 hours 

control simulation, beginning at 0000 UTC 9 June, is set up. Meteorological fields are 

outputted every 6 hours for the coarse domain, every 3 hours for the intermediate and 
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every 30 minutes for the fine domain. As done in the previous flood case over Albania 

(section 5.2), only the fine domain outputs are remapped to satellite projection and 

resolution and employed to compute the moisture (PWRH) and orographic (OC) 

correction factors evaluated in chapter 8 of this report. 

 

 

6.2 Synoptic overview 

The event developed under a synoptic pattern characterized by an Atlantic cold 

upper-level trough over western Europe (Figures. 6.2a and 6.2b) and a low sea-level 

pressure area along the British Isles, western France and Spain, with an associated cold 

front extending south as far down as North Africa (Figures 6.2c). The front was 

deformed over the Iberian Peninsula by a warm mass associated with a secondary low. 

During the 9th of June, the upper-level short-wave trough became negatively tilted and 

was causing advection of cold and dry air over the Iberian Peninsula as the surface cold 

front advanced east (Figures 6.2b to 6.2d), producing snowfalls during the evening over 

parts of northern Spain. The eastern shift of the secondary low over Spain and the 

influence of cyclonic circulation off of Algeria favoured the entrance of warm advection 

during the 9th of June over Mediterranean Spain (Figures 6.2c and 6.2d). The cyclonic 

moisture flow established over the Western Mediterranean impinged the north-eastern 

Spanish littoral and provided a continuous supply of warm and moist air towards the 

Catalan coast, during the second half of the 9th of June. Thus, the NCEP analysis maps 

reveal several synoptic and sub-synoptic factors which presumably conduced to the 

intense rains over Catalonia during the first hours of 10th June: (i) a cold mid-

troposphere trough, accompanied by a surface cold front passage, and (ii) warm moist 

south-easterly flow, reinforced by local circulations. The combined action of the low-

level mesolow and the cold front at low-mid levels conduced to a convectively unstable 

environment with high CAPE. As a result, the frontal convergence zone was intensified 

and, together with the impinging maritime flow onto the Catalan coastal mountains 

triggered and sustained the highly efficient precipitation cells.  
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WESTERN MEDITERRANEAN REGIONa)

BASINS OF CATALONIAb)

 
Figure 6.1. (a) Western Mediterranean region, showing major topographic features by 
means of terrain contours (shaded darker grey, intervals of 500 m, starting at 500 m). As 
thick continuous line, Catalonia and inside it, the Internal Basins of Catalonia (shaded 
dark grey) are shown: (b) Catalonia inset and the Internal Basins of Catalonia. The cross 
locates the Montserrat Mountain where the highest rainfall values were gathered. The 
Black boxes represent the position of stations from the INM lightning detection network 
used in chapter 8 of this thesis report. 
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a)

c)

b)

d)

Catalogne - ControlH500, T500 – Analyses H500, T500 – Analyses

SLP, T925 - Analyses SLP, T925 - Analyses

 
Figure 6.2.- Analyses maps: (Top) Geopotential height at 500 hPa (continuous line, in 
gpm) and temperature at 500 hPa (dashed line, in ºC) for the coarser domain: (a) at 
0000 UTC 9 June 2000; and (b) at 0000 UTC 10 June 2000: (Bottom) Sea level 
pressure (continuous line, in hPa) and temperature at 925 hPa (dashed line, in ºC) for 
the coarser domain: (c) at 0000 UTC 9 June 2000; and (d) at 0000 UTC 10 June 2000. 
As thick dashed line, the cold front is shown. Main orographic systems are highlighted. 
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7. Assessment of radar measures 

a) Abstract  

Precipitation estimates from radar systems are a crucial component of many 

hydro-meteorological applications, from flash flood forecasting to regional water budget 

studies or as ground observations for satellite calibration. This chapter assesses the 

accuracy of three methods which use single radar imagery to estimate precipitation in 

the convective environment of the Montserrat flood case in Catalonia, Spain, during the 

9 th and 10th of June 2000. Results using Z=a Rb (Marshall and Palmer Z-R relationship) 

with coefficients for stratiform rain (a=200, b=1.6) and convective rain (a=800, b=1.6) 

are compared with those obtained using the Histogram Matching Technique (HMT) and 

with another experimental procedure developed by us in the present study, called Direct 

Calibration Method (DCM). The HMT and the DCM were developed using the 

Barcelona radar and 126 automatic rain gauges well distributed over the affected area 

and, in a second stage, both methods were readjusted to fit with the calibration data. 

Rainfall derived from the Marshall and Palmer power law Z-R using stratiform and 

convective coefficients is found to highly under-estimate rain gauge measurements for a 

three hour accumulation period. Precipitation from the HMT is improved with respect to 

the other methods since correlation coefficients are higher while the DCM provides the 

lowest bias. 

 

b) Introduction 

Meteorological radars have been used since 1940 to estimate rainfall. Efforts 

have focused on long time and/or big spatial scales due to data availability, range-height 

sampling considerations, and processing limitations. However, there are many 

hydrologic, surface modelling and satellite calibration applications that require accurate 

rain fields on shorter spatial and temporal scales.  

There are two basic approaches to measure rainfall, which is usually highly 

variable spatially and temporally. First there are the rain gauges, which can generally 

measure accurate rainfall depths at a point scale. Ideally, a dense network would resolve 

the spatial distribution of rainfall, but this is not practical because of the prohibitive cost 

and poor accessibility to remote sites. Secondly, a remote sensor such as weather radar 

that gives an indirect measurement of the sizes of precipitation droplets and a quasi-

continuous approach to the rainfall spatial distribution. However, a radar beam 

originates from the ground surface and within a few hundred kilometres will reach a 
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height that is above the majority of the precipitation events. Other problems include 

uncertainties in converting radar echoes to rainfall, data processing problems, and radar 

range effects. 

The aim of this research is to explore benefits after adjusting radar rainfall data 

using rain gauge data, to take advantage of radar’s ability to map the spatial variability 

of precipitation and of rain gauges to measure actual depths. In the last few years the 

combination of radars and rain gauges for short time scales is possible operationally due 

to improvements in computer processing and real time data availability. 

For this case study it is interesting how different radar rainfall analyses using 

standard methods as a Marshall and Palmer Z-R relationship, Z=a Rb, with different 

coefficients (Marshall and Palmer, 1948), systematically under-estimate the 

precipitation amounts. This earlier work demonstrated the existence of a drop size 

distribution (DSD) which is a simple function of the rain rate, and therefore led to a 

corresponding direct relationship between radar reflectivity Z and rain rate R. After 

Marshall and Palmer many coefficients for the Z-R relationship were calculated for 

different rain regimes and places, obtaining various results. Several studies (Cairns, et 

al. 1998; Huggins and Kingsmill, 1998) have shown that the best Z-R relationship 

depends partly on geographic location. The direct calibration method (DCM) developed 

in this work is based on a linear regression fit between Z and R using the Marshall and 

Palmer Z-R relationship, in the logarithmic scale in order to resolve the two coefficients, 

a and b. 

The Histogram Matching Technique or Probability Matching Method, as called 

in other publications, was introduced by Calheiros and Zawadzki (1987) and has been 

greatly elaborated by Rosenfeld et al. (1994, 1995). In essence the conditional 

probability distribution of the radar reflectivity and rainfall from collocated rain gauges 

are determined and later, the equality of the cumulative probabilities is obtained. Under 

this approach, Crosson et al. (1996) documented improvements in precipitation 

estimations over those obtained using a standard power law in which biases and root 

mean square errors are much lower. 

Verification of the estimated results is performed by comparing qualitatively and 

numerically 3 hour radar rain accumulations estimated by the different methods with the 

corresponding interpolated rain gauge precipitation. 
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7.1 Data description and study methodology 

a) Datasets 

The observed rain dataset was provided by the Automatic System of 

Hydrological Information (SAIH) of the Catalan Water Agency (ACA). Records of 

precipitation in mm h-1 at 126 automatic rain gauges (Figure 7.1), every 5 minutes from 

1130 UTC 9 to 1230 UTC on the 10th of June, are available. The rain gauge network is 

located in the internal basins of Catalonia (closed polygonal line area in figure 7.1) and 

is considered dense enough to perform a kriging analysis method using a linear model 

for the variogram fit to create rain rate fields for the calibration process and 3 hours rain 

accumulation fields for the verification phase, both at 2 by 2 km resolution. This 

minimal error variance interpolation method is recommended for spatially irregular 

grids with a relatively low number of observations (<250) and has been widely used to 

compute rainfall fields from rain gauges (Krajewski 1987; Seo 1998; Bhagarva and 

Danard 1994). These fine grid fields were then remapped to radar projection in order to 

implement the different techniques. 

The lower radar CAPPI (Constant Altitude Plan Position Indicator) images at 1.2 

km altitude in dBZ units from the C-band radar of Barcelona are supplied by the INM. 

The radar is located 20 km to the southwest of Barcelona city at 654 m above sea level 

and the main radar characteristics are 0.9º 3-dB beam width, λ=5.4 cm and 20 elevation 

angles. The lowest CAPPI fields, used by various meteorological centres to estimate 

precipitation, were computed using software provided by the INM and called STArPcw 

(Riosalido, 1994). Under this approach, ground echoes were detected and substituted by 

suitable radar measurements derived from horizontal and vertical analyses (Martín and 

De Esteban, 1994). CAPPI fields were selected every 10 minutes from 2100 UTC 9 to 

1230 UTC June 10th, with 2 by 2 km pixel resolution and covering a circular area of 

around 480 km diameter as shown in figure 7.1. Significant attenuation problems 

occurred in radar images from 0250 to 0430 UTC caused, presumably, by the high 

precipitation rate over the radar zone, and no valid images were available for that 

period.  
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Figure 7.1 Area inside the polygonal line in Catalonia well covered by the 126 ACA 
rain gauges (little black dots) and affected by the heavies’ precipitations. The circle 
represents the radar area, which is located in Barcelona. The thick continuous line 
demarcates the Spanish and French provinces and the thin lines, the internal basins in 
the Catalonia region. 

 

 

b) Study methodology 

Radar reflectivies and interpolated rain rates from the ACA network were 

matched point to point during the hours of heaviest rainfalls in order to capture the main 

rainfall patterns of the Montserrat storm. The study domain is limited by the closed 

polygonal line shown in figure 7.1 and the radar-gauge association process was applied 

from 0020 to 0520 UTC on the 10th of June, every 30 minutes. The period between 0250 

and 0430 UTC was avoided for calibration and verification because of the 

aforementioned radar problems. Table 7.1 shows the simultaneous radar-gauge fields 

and the number of matched radar-rain points taken into account in the calibration. A 
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total of 38010 points (Table 7.1) were employed to delineate Z-R relationships by the 

HMT and the DCM and, also, used to test the Marshall and Palmer coefficients.  

The verification is performed for rain rates comparing gauge and radar 

estimations from 2100 UTC on 9 June to 0830 UTC on the 10th of June every 30 

minutes. In this case radar rain rates are tested in two ways: firstly, radar estimations are 

verified with respect to rain gauge data used in calibration in order to analyze the 

benefits of adjusted methods with respect the standards. Secondly, radar estimations are 

tested using independent gauge data outside the calibration period. On the other hand 

three hours of rainfall accumulations from 2100 to 0900 UTC of the next day divided 

into four periods, are also verified. To obtain the radar and gauge rainfall accumulation 

maps all available data at the highest temporal resolutions has been used (10 minutes for 

radar and 5 minutes for gauges).  

The statistical indices employed in the quantitative verification in the area well 

covered by the rain gauges (polygonal area in figure 7.1) are: mean, standard deviation 

(SD), BIAS, standard deviations difference (SDD), root mean square error (RMS), and 

correlation coefficient (CORR). Special care has been taken in the present work about 

the BIAS and SDD parameters because they are used to execute adjustments after the 

main calibration processes. The first one, as in chapter 5, is the difference between the 

estimated and the observed spatial averaged precipitation while the second is the 

difference between both standard deviations, from the estimated and observed fields. 

Positive values of both parameters, BIAS and SDD, mean radar over-estimation, and 

negative values, radar under-estimation.  

The spatial accuracy of the estimated radar rain rates can be calculated with the 

help of certain indices. The probability of detection (POD), false alarm ratio (FAR), and 

critical success index (CSI) indices are based on equations 4.5, 4.6 and 4.7 and 

computed from a contingency table as shown in section 4.2c of this thesis and described 

also by Marzban (1998). Another interesting index that can be easily calculated from the 

contingency table is the fraction correct (FRC) defined as follows. 

 

DCBA
DA

egatives correct nrms false  alamisses  hits  
egatives correct nhits FRC
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+++

+
=            7.1 

 

where:  
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- hits (A), is the number of rain points from the rain gauges correctly estimated as 

rainy by the radar. 

- misses (B), number of rain gauge points estimated as no rainy by the radar. 

- false alarms (C), number of no rain gauge points estimated rainy by the radar. 

- correct negatives (D), number of no rain gauge points correctly estimated as non 

rainy by the radar. 

 

The FRC, besides to the CSI, takes into account the correct negatives points 

giving new information that can be complemented by the CSI. However, the results 

given by the FRC has to be interpreted with caution. Under certain circumstances of 

little or weak rainfall (which is not our case), the number of correct negatives (D) might 

be much larger than the rest of the parameters (D >> A, B, C) and therefore, FRC might 

show a high score, with a value close to one, while the CSI might give a much lower 

result.  

Sometimes the interpretation of the results is not clear when using only the POD 

or the FAR indices; in these cases we can employ a derived index called the product 

coefficient POD (1-FAR). It was proposed by Marzban (1998) in order to obtain a 

unified result based on the two coefficients. This can be applied for the CSI and FRC 

indices with the direct product of both indices. 

 
 
Table 7.1. Radar-rain images used for the calibration file generation. 

Day Hour (UTC) Number of collocated Z, R 
pointsa in the domainb Comments 

June-10-2000 0020 5430 Radar-Rain images present 
“ 0050 5430 “ 
“ 0120 5430 “ 
“ 0150 5430 “ 
“ 0220 5430 “ 
“ 0250-0420 0 Radar error 
“ 0450 5430 Radar-Rain images present 
“ 0520 5430 “ 

  38010 Total number of Z, R points in the 
calibration file 

a Every point correspond to a radar-rain image pixel where each one has a spatial resolution of 2 by 2 km. 
bThe domain is limited by the polygonal lines in figure 2 and correspond to the area well covered by the 
126 ACA rain gauges. 
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7.2 The Histogram Matching Technique (HMT) 

The HMT was documented for the first time by Calheiros and Zawadzki (1987) 

as the probability matching method to derive Z-R relations. These relationships were 

determined to obtain “long-term” rainfall accumulations that can capture the 

“climatology” of the precipitation of a given space-time domain (Crosson et al. 1996). 

However we are interested in applying this method for the Montserrat flood, in a smaller 

space-time domain, in order to get a Z-R relation adjusted for this event.  

The approach consists essentially of building a Z-R curve on (Zi, Ri) pairs in 

order to match their cumulative distribution functions (CDFs) as shown in equation 

(7.2) 

CDF(Ri) = CDF(Zi)                                                              (7.2) 

 

where CDFs are defined using continuous functions and approximated later by discrete 

summations as shown in (7.3) and (7.4): 

 

CDF(Ri) = ∑∫ Δ≅
Ri

Rt

Ri

Rt

RRiFdRRF )()(                                    (7.3) 

CDF(Zi) = ∑∫ Δ≅
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ZZiFdZZF )()(                                     (7.4) 

 

F(Ri) and F(Zi) are frequency functions, Rt and Zt are threshold values and ΔR and ΔZ 

are constant intervals. To resolve (7.2) and to calculate (Zi, Ri) pairs we are following 

the modified procedure described by Atlas et al. (1990) according to (7.5) also in the 

form of discrete summations. 
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The use of this procedure with the correct threshold values Rt and Zt guarantees 

that the (Zi, Ri) pairs are distributed optimally over the high rain rates, which account 

for most of the accumulated precipitation. Therefore the threshold values Rt and Zt are 
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defined so that the rest of (Zi, Ri) pairs are computed in the rain sector of the dataset. In 

the case of Rt, the minimum detectable rain rate measurable by the gauges is 0.2 mm h-1. 

Zt is then chosen so that the percentage of the space-time domain over which Z ≥ Zt is 

equivalent to the percentage of the space-time domain for which R ≥ Rt (Rain areas 

limited by the frequency functions in figures 7.2a and 7.2c have the same size). In the 

present research all the points from the calibration dataset with a rainfall greater than 0.2 

mm h-1 is equalized with the number of radar points with a logarithmic reflectivity of 

7.5 dBZ or greater. These values are very different from the ones obtained by other 

authors for diverse places, weather events, other radars and space-time scales. For 

example, Crosson et al. (1996) obtained Rt = 1.27 mm h-1 and Zt = 34 dBZ from five 

discontinuous days in July and August 1991 in central Florida, with a temporal 

resolution of 12 minutes and 2x2 km spatial resolution. The present calibration process 

is focused on the 5 hours of heaviest precipitation that has produced a severe flood in a 

relatively small region (see Llasat et al. 2002). Due to the high variability of 

precipitation it is not strange to find unexpected results for shorter time periods. On the 

other hand, stability problems of the Barcelona radar transmitter have been detected, 

that combined with the strong rainfall over the radar place, resulted in a strong decrease 

of radar signal mostly between 0250 0430 UTC. This interval has been skipped from the 

calibration period however; a general small attenuation effect during the rest of the night 

was reported by Sempere et al. (2001). A logical consequence of a reduced radar signal 

by different causes is a decrease of the Zt with respect to normal values.  

Based on the threshold values Rt and Zt the conditional CDFs of R and Z were 

calculated at 3-mm h-1 and 3-dBZ intervals (ΔR, ΔZ) = (3, 3) and plotted in figure 7.2 

(CDF(Z) in figure 7.2a, CDF(R) in figure 7.2c and Ri(Zi) in figure 7.2d as HMT curve). 

For example, in figure 7.2, 30 dBZ is corresponded to a CDF(Z) equal to 70% as shown 

by the red arrows in frame 7.2a. Following equation 7.3, for a CDF(R) equal to 70% we 

have a rain rate R around 28 mm h-1 as shown in frame 7.2c, so that 30 dBZ is linked to 

28 mm h-1 and illustrated by the red circle in frame 7.2b (logarithm scale) and 7.2d 

(direct scale). Numerical results of the Z, R association and CDFs based on the HMT 

applied for this case are written in Table 7.2. Smooth curves can be drawn through (Zi, 

Ri) points, with the best-fit equation (r2 = 0.997) found at 

 

R = 0.0485 Z2-0.7099 Z+4.8289                                         (7.6) 
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with R in mm h-1 and Z in dBZ as logical. However, in order to avoid errors produced 

by the employment of smooth curves, it has been decided to interpolate R linearly 

between the closest two values of Zi.  

The calibration dataset is used also to validate the HMT method for this case by 

transforming Z from the radar to R using (7.6) or interpolate R linearly between the 

closest two values of Zi (table 7.2) and computing the statistics shown in the inset table 

on figure 7.2. An analysis of these numerical results demonstrates that relative over-

estimation given by the BIAS is greater than 40 % and radar rainfall variability larger 

than 45 % as shown by the SDD. It seems that the new curve from the HMT has a 

tendency to produce biased estimations. Different methods were tried in an attempt to 

reduce these excesses. One of the most simple and effective was just a shift of the entire 

HMT logarithmic curve horizontally and/or vertically taking in account the evolution of 

the statistical indices derived from the calibration file. As a result of this last process it 

has been found, firstly, that CORR decrease is much lower after a horizontal translation 

of the HMT curve than by moving the curve in the vertical direction. On the second 

hand it has been observed that the BIAS can be reduced to almost null values and SDD 

can be decreased as much as 20% by shifting the curve 4 dBZ to the right as illustrated 

in figure 7.3. Therefore, each reflectivity measurement of the HMT curve was corrected 

by just adding 4 dBZ and the new Z-R associations are shown in table 7.3. Only the 

threshold values, Rt and Zt, stay the same as shown in this last table and in figure 7.3, in 

order to not change the size of the radar-gauge rain areas and to not decrease the 

accuracy of the rain detection (POD, FAR, CSI and FRC do not change in figure 7.3 

after the bias adjustment). Numerical results of the adjusted HMT are shown in table 

7.4. 
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CDF(Z)

CDF(R)

FR(Z)

FR(R)
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HMT

CDF=70%

CDF=70%

 

Figure 7.2 (a) Radar frequency, FR(Z) line and scale in the left axis and radar Cumulative 
distribution function or accumulated probability CDF(Z) curve and scale on the right axis. Rain 
area limited by the frequency function indicated with horizontal dashed lines. It should have the 
same size than the rain area shown in figure (c) if the threshold values (Rt, Zt) are correct. (b) 
Measured radar-rain points from the calibration file within the HMT curve in the logarithmic 
scale with dBZ and dBR as horizontal and vertical axis respectively. (c) The same than in figure 
(a) but for the ACA interpolated rainfall. (d) The same than figure (b) but illustrating dBZ versus 
R (rain rate in mm h-1). 
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Table 7.2 cumulative distribution functions (CDF) and Z, R 
association for the HMT 

CDF(Z) CDF(R) Zi(dBZ)  Ri(mm h-1) 

4.0 5.4 7.5  0.2  
7.0    6.9     9.5 1.5  
18.7 15.1 13.5 4.5   
27.5 25.6  16.5   7.5     
35.2 35.5 19.5   10.5    
45.2 43.1 22.5   13.5    
54.8 56.0 25.5   19.5    
64.6 66.7 28.5   25.5    
72.1 70.7 31.5   28.5    
80.7 81.2  34.5   37.5    
86.8 86.0 37.5   43.5    
92.0 91.9 40.5   55.5    
95.5 95.2 43.5   64.5    
98.4 98.4 46.5   79.5    
99.7 99.9 49.5   88.5    

100.0 99.9 52.5   88.5    
100.0 99.9 55.5   88.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.3. Z, R association for the 
HMT after BIAS correction 

Zi(dBZ)  Ri(mm h-1) 

7.5  0.2  
13.5 1.5  
17.5 4.5   
20.5   7.5     
23.5   10.5    
26.5   13.5    
29.5   19.5    
32.5   25.5    
35.5   28.5    
39.5   37.5    
41.5   43.5    
44.5   55.5    
47.5   64.5    
50.5   79.5    
54.5   88.5    
56.5   88.5    
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BIAS = 0

SDD

BIAS

CORR

RMS

0.630.63POD

0.220.22FAR

0.540.54CSI

0.470.48CORR

0.780.78FRC
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Figure 7.3. (a) Measured radar-rain points from the calibration file and HMT curve in the 
logarithmic scale. The HMT curve is moved 4 dBZ to the right in order to approximate the BIAS 
to 0 as much as possible. (b) Behaviour of statistical indices with respect to dBZ’. This variable 
represent the horizontal translation of all the points to the right (dBZ’> 0). The left side of the 
graph shows the BIAS, RMS and SDD scale and the right the CORR scale. When the BIAS is 
closer to cero the translation is ended and statistical results are written in the contiguous table. 
The table show the Statistics before (HMT) and after the BIAS based translation (HMT*). 
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7.3 The Direct Calibration Method (DCM) 

The DCM is based on the Z = a Rb relationship derived from the drop size 

distribution (Marshall and Palmer, 1948). This relation is linear in the logarithmic scale 

where Z and R are transformed to decibels as dBR = 10 log(R) and dBZ = 10 log(Z)), so 

that: 

dBZ = 10 log(a) + b dBR                                                (7.7) 

 

The coefficients a and b are easily determined from the linear best fit using the Z-R 

point data from the calibration file. The best-fit equation was found to be  

 

dBZ = -50.8131 + 9.4200 dBR                                        (7.8) 

 

in which a = 8.2925 10-6 and b = 9.4200. dBR was solved for R and left as a function of 

dBZ as shown in the next equation. 

 

                            
⎥⎦
⎤

⎢⎣
⎡ −

= b
adBZ

dBZR 10
)log(10

10)(                                            (7.9) 
 

This last equation is very useful because INM radars provide dBZ and, with a and b 

coefficients, R can be easily computed in mm h-1. A preliminary evaluation of these new 

a and b coefficients confirm that estimated rainfall leads to a bias due to the dominance 

of the zero and light rain observations. This feature is illustrated in the scatter plot in 

figure 7.4a in which interpolated gauge rain rates (observed) from the calibration file are 

compared to the correspondent radar rainfall estimates using the new a and b 

coefficients. In this figure a bi-dimensional distribution of frequencies on the densest 

area of the scatter plot from 0 to 40 mm h-1 is shown in the upper right box. Based only 

on the statistical parameters shown in the first column of the table in figure 7.5, results 

using the new coefficients appear to be correct, only the SDD from the radar DCM rain 

distribution is significantly lower (SDD = -7.15 mm h-1). The scatter plot in display 7.4a 

shows that low radar DCM estimates are over measured and estimated rain does not 

exceed 15 mm h-1. The dominance of the zero and light rain observations derived from 

the best fit equation 7.8 has been corrected empirically case after two steps:  
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- A Rotation of the calibration regression line in order to increment the slope (figure 

7.5a and 7.5b). This process, applied degree by degree, enhances the importance of 

higher rain rates and increases the dispersion of the estimated rainfall measured by its 

SD. The difference between estimated and observed SD defined in this work as SDD, 

changes with the slope angle as shown in figure 7.5a and has a logical tendency to be 

incremented with the angle of rotation. The centre of rotation was selected searching the 

point on the line surrounded by as many radar-rain points as possible. Mathematically, 

the distance (D) between the point on the line and each point of the plot from the 

calibration file (D1, D2 …Di) is first calculated. Then, a weight factor (W) associated to 

each point of the line and defined as the sum of the inverse of the squared distances as 

shown in the equation 7.10 is computed. 

 

   ∑=
N

iD
W

1
2

1
                                                                                (7.10) 

 

where N is the total number of points used in the calibration (a total of 38010 radar-

gauge points). W is greater for those line points surrounded by many data points at short 

distances, while it is lower for those points located far from the main cluster of data 

points. The centre of rotation is assigned to the point of the calibration line with the 

highest W. 

Statistical indices and centre of rotation were calculated iteratively after each increment 

of the line slope as shown in figure 7.5b. The process continued until the SDD was 

closest to zero yielding an angle of 25º and the centre of rotation for this last iteration, 

located at 32 dBZ and 11 dBR (figure 7.5b).  At this point the straight line equation is: 

 

    dBZ = 9.2921 + 2.1386 dBR                                                       (7.11) 

 

- Horizontal translation of the rotated calibration line (frames 7.5a and 7.5c). One way 

to adjust the BIAS while keeping the CORR unchanged is to move the line horizontally 

without changing the slope. A translation of 3 dBZ to the left (dBZ’= -3) led to a BIAS 

close to zero and to an increment of 30% of the SDD (figure 7.5c). This increment can 

be considered reasonable because radar rain distributions are more spread and irregular 

than the interpolated rain field from the rain gauges.  
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Finally, the resulting calibration line equation and a, b coefficients after the two 

processes are: 

 

dBZ = 4.8268 + 2.1386 dBR                                                        (7.12) 

 

a = 3.0386, b = 2.13869. Estimated rain rates are higher as shown in the scatter plots in 

graph 7.4b. While the correlation coefficient is diminished from 0.49 to 0.41 through the 

two processes the spatial accuracy of radar rainfall is improved as shown by the CSI and 

FRC indices in figure 7.5. This can be quantified by just multiplying both coefficients, 

CSI and FRC, that gives 0.18 for DCM, 0.32 for DCM* and 0.34 for DCM** or by 

applying the product coefficient POD (1-FAR) that provides 0.42 for DCM, 0.36 for 

DCM* and 0.50 for DCM**. Numerical results of the adjusted DCM are shown in table 

7.4, where DCM* refers to the results after rotation and DCM**, after rotation plus 

horizontal translation.  

In another experiment (not shown) the rotation has been performed looking for 

the angle at which the RMS index begins to grow. This point corresponds to a rotating 

angle of 18º (display 7.5b) and centre of rotation at -7.2 dBZ, -3.0 dBR. Secondly the 

BIAS was adjusted to 0 mm h-1 by shifting again the whole straight line 8 dBZ to the 

left. In this case the correlation coefficient was 0.45 but the derived calibration rainfall 

curve over-estimates rain rate for low reflectivities (a rain rate of 1.6 mm h-1 is assigned 

for 0 dBZ) and the spatial accuracy is worse than the SDD-fit with 0.32 for CSI FRC 

and 0.46 for the POD (1-FAR) parameter. 
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Figure 7.4. Scatter plots made from the calibration file comparing observed versus radar-
DCM rain rates using equation (7.10) and a and b coefficients. The upper right box in 
both diagrams shows a bi-dimensional frequency distribution of the densest area of the 
scatter plot from 0 to 40 mm h-1. (a) DCM dispersion plot results before the SDD based 
rotation and the BIAS based translation. (b) DCM dispersion plot results with the SDD 
and the BIAS corrected. 
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Figure 7.5. Illustration of the SDD and BIAS corrections for the DCM regression line. (a) DCM 
calibration straight line from equation 7.8 firstly rotated and secondly translated in the logarithmic 
scale. (b) Behaviour of statistical indices with respect to the angle of rotation. Statistical results are 
shown in the second column of the table (DCM*) for the angle in which the SDD is closer to 0. (c) 
Evolution of statistical indices for the DCM line shifting. This process is done until the BIAS is 
closer to 0 and at this point results are written in the last column of the table (DCM**). 

 
 

 

7.4 Standards methods (MPS, MPC) 

 These methods are based on the use of the Marshall and Palmer Z-R relationship 

taking into account coefficients for stratiform rain (a = 200, b = 1.6) and convective rain 

(a = 800, b = 1.6) according to the bibliography. In practice rain fields were computed 

transforming dBZ to R using equation 7.9 but changing the a and b coefficients in each 

case. In the present research, radar rain fields obtained by the Marshall and Palmer 

stratiform rain coefficients are called MPS and the ones obtained with the convective 
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coefficients are called MPC. Both MPS and MPC curves have a clear tendency to 

under-estimate radar rain rates as revealed by the negative BIAS and very low SDD 

(table 7.4). The MPS and MPC rain curves in figure 7.6b require very high reflectivities 

to estimate substantial rain rates, but in the logarithmic scale, shown in figure 7.6b, the 

MPS and MPC linear relations have higher slopes than the adjusted DCM line. On the 

other hand is easy to observe that the adjusted HMT and the final DCM curves are 

nearly similar to one another in both figures (7.6a and 7.6b). 

 

HMT

DCM

MPS

MPC

HMT

DCM

MPS

MPC

 
Figure 7.6 (a) Measured radar-rain points from the calibration file in the logarithmic scale 
with dBZ and dBR as horizontal and vertical axis respectively. HMT curve, DCM 
regression line, MPS and MPC lines. (b) The same than (a) but representing dBZ versus 
R (rain rates in mm h-1). 
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7.5 Results of radar estimates 

 Results are divided in two parts: First, validation of the calibration methods and 

rain rates by comparing instant ground interpolated rain rates with radar rainfall from 

the different methods and times is presented. Second, radar rain three hours 

accumulations versus ACA accumulations have been verified. In the rest of the chapter 

we are referring to the BIAS adjusted curve as HMT and BIAS plus SDD adjusted curve 

as DCM. 

  

a) Calibration methods and rain rates 

 Qualitative comparisons between radar and ground rainfall fields show, in 

general, a good spatial correspondence. On the rain rates images, (not shown) big 

differences can be observed between the new methods (HMT and DCM) and the old 

ones (MPS and MPC). However, a quantitative analysis is important to determine the 

accuracy of the HMT and the DCM, since rain rate images in both cases look very 

similar. Radar rain rates and algorithms have been verified using interpolated gauge data 

as so-called “ground true” at different times than the ones used in calibration. In Table 

7.4 it is shown numerical results employing data from calibration (half top) and 

independent (half bottom). It is easy to see how BIAS and SDD are smaller for the 

HMT and the DCM in the first case (half top of table 7.4), since both parameters have 

been minimized during the calibration process. The MPS and MPC obtained the lowest 

correlations and they under-estimate rain rates as indicated by the strong negative BIAS 

and SDD in both cases. Based only on the verification with independent data (half 

bottom of table 7.4), the HMT is the method that provides, in general, the best CORR, 

SDD and FRC. Then the DCM gets the best POD and CSI, the next best CORR and also 

a low BIAS but a higher SDD than the HMT (higher dispersion of the DCM estimates). 

The spatial distribution of rain rates cannot be evaluated easily only from the spatial 

statistics (POD, FAR, CSI and FRC) shown in table 7.4, but a special combination of 

these indices such as CSI FRC and POD(1-FAR) can help to clarify this aspect. For the 

HMT these relations provide 0.42 and 0.49, respectively; for the DCM, 0.40 and 0.50; 

for the MPS, 0.28 and 0.36; and finally, for the MPC, 0.19 and 0.24. Both methods, 

HMT and DCM, give similar spatial accuracy for rain rates and are significantly better 

than the other two. 
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Table 7.4. Statistical results for rain rates estimated by the different methods using data 
from the calibration dataset (half top) and independent (half bottom). The size is the 
number of radar-rain points considered in the verification. Mean, SD (Standard 
deviation), SDD (Standard deviation difference), BIAS and RMS (root mean square
error) are in mm h-1. The rest has no units. Boldfaced numbers show best statistical
results in every line. 

 OBS HMT DCM MPS MPC 
Size 38010 

Mean 4.3 4.4 4.4 1.0 0.4 
SD 9.3 10.3 12.5 4.0 1.7 

BIAS  0.1 0.1 -3.3 -3.9 
SDD  1.0 3.3 -5.3 -7.6 
RMS  10.1 12.1 9.7 9.8 

CORR  0.47 0.41 0.34 0.34 
POD  0.63 0.76 0.41 0.28 
FAR  0.22 0.34 0.13 0.11 
CSI  0.54 0.54 0.39 0.27 
FRC  0.78 0.74 0.73 0.69 
Size 114030 

Mean 3.5 3.9 3.7 0.8 0.3 
SD 7.1 8.8 10.3 3.3 1.4 

BIAS  0.2 0.2 -2.7 -3.1 
SDD  1.8 3.3 -3.8 -5.7 
RMS  8.7 10.1 7.3 7.4 

CORR  0.42 0.38 0.31 0.31 
POD  0.54 0.64 0.34 0.22 
FAR  0.16 0.27 0.13 0.11 
CSI  0.49 0.52 0.33 0.21 
FRC  0.71 0.69 0.63 0.58 

 

 

b) Three hours accumulated radar rainfall 

The observed accumulated rainfall from the ACA network during 3 hours time 

spans in the period of heaviest precipitation of the Montserrat event is shown in figures 

7.7a to 7.7c. Most of the rainfalls occurred over an area between the provinces of 

Tarragona (T), Lleida (L) and Barcelona (B) from 2100 UTC 9 June to 0600 UTC the 

next day.  

Three hours radar rainfall derived from the 4 methods is shown in frames 7.7d to 

7.7o, in which the period 0300 - 0600 UTC 10th June has been omitted owing to radar 

attenuation problems. In these figures the ability of radar to capture the fine details of 

the precipitation fields is worthy of note. The spatial distributions are very similar 

among the different calibration methods. On the other hand, rainfall amounts vary 

significantly from the HMT and DCM to the MPS and MPC (figure 7.7). The HMT and 
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DCM accumulations are very close to those measured by the ACA network. However, it 

is important to note that the maximum derived from the DCM between 00-03 hours 

(frame 7.7h) around 150 mm does not agree with the observed maximum of 115 mm 

(frame 7.7b). Second, the maximum estimated by the HMT between 06-09 hours (figure 

7.7f) is around 80 mm, which disagrees with the observation of 45 mm from the ACA 

(figure 7.7c). The MPS and MPC accumulations are, in general, 20 mm and 40 mm 

below the observed amounts respectively.  

Statistical indices are shown in table 7.5 for each method and for every time 

period. A brief analysis of this table illustrates that the correlation coefficient (CORR) 

decreases with the time period evolution for the four methods. The time lapse between 

0000 to 0300 of day 10 was used also for the calibration of the algorithms, thus 

minimum BIAS errors are obtained for the HMT and DCM for 10/00-03 UTC 

accumulations as shown in table 7.5. Therefore this period was not taken into account in 

the global validation revealed in table 7.6. This last table, since it is more general, shows 

that the HMT provides the best spatial skill with a global CORR of 0.76 and also the 

best RMS. On the other hand the DCM gives the best precipitation amounts with a 

BIAS around 1.2 mm and a SDD of 5.3 mm while the CORR is a bit lower than the 

HMT. The MPS and MPC methods obtain both the lowest CORRs, they have a clear 

tendency to under-estimate accumulated precipitation as indicated by a strong negative 

BIAS and SDD.  

Figure 7.8 displays observed versus estimated scatter plots for each method 

using all the 10860 grid points resulting from the two independent radar-gauge periods 

of accumulated precipitation. The scatter plot of the HMT and the DCM (figures 7.8a 

and 7.8b) are very similar but estimated amounts from the DCM are a bit more spread 

out with maximums values of 125 mm, while HMT estimated maximums are around 93 

mm. It can be observed that the MPS and MPC (graphs 7.8c and 7.8d) under-estimate 

many observed rainfall amounts, since most of the points are closer to the vertical axis 

of the two plots.  
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Table 7.5. Results comparing 3 hours accumulated radar rainfall derived from the 
different methods and observed accumulations from the ACA network. The size is the
number of radar-rain points. Mean, SD (Standard deviation), SDD (Standard deviation
difference), BIAS and RMS (root mean square error) are in mm in 3 hours.  The rest 
has no units. Boldfaced numbers show best statistical results in every line. 

 OBS HMT DCM MPS MPC Day/period (hours)
Size 5430 

Mean 5.8 8.2 9.4 2.2 1.0 

09/21-24 UTC 

SD   10.4 15.3 18.0 5.3 2.2 
BIAS  2.5 3.7 -3.5 -4.8 
SDD  5.0 7.6 -5.1 -8.2 
RMS  9.1 12.1 8.1 10.1 

CORR  0.84 0.80 0.75 0.75 
Size 5430 

Mean 12.8 12.7 13.5 3.1 1.3 

10/00-03 UTC 

SD   16.5 20.2 23.6 7.1 3.1 
BIAS  -0.1 0.7 -9.6 -11.5 
SDD  3.7 7.1 -9.4 -13.5 
RMS  12.0 15.2 15.8 18.5 

CORR  0.81 0.77 0.71 0.70 
Size 5430 

Mean 11.5 12.2 10.2 1.6 0.6 

10/06-09 UTC 

SD   8.0 14.6 11.2 2.0 0.9 
BIAS  0.6 -1.4 -10.0 -10.9 
SDD  6.6 3.1 -6.0 -7.2 
RMS  11.0 8.1 12.1 13.3 

CORR  0.70 0.70 0.64 0.61 
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

OBS(mm/3h), day 09,  21-24h
T

L

B

OBS(mm/3h), day 10,  00-03h
T

L

B

OBS(mm/3h), day 10,  06-09h
T

L

B

HMT(mm/3h), day 09,  21-24h HMT(mm/3h), day 10,  00-03h HMT(mm/3h), day 10,  06-09h

DCM(mm/3h), day 09,  21-24h DCM(mm/3h), day 10,  00-03h DCM(mm/3h), day 10,  06-09h

MPS(mm/3h), day 09,  21-24h MPS(mm/3h), day 10,  00-03h MPS(mm/3h), day 10,  06-09h

MPC(mm/3h), day 09,  21-24h MPC(mm/3h), day 10,  00-03h MPC(mm/3h), day 10,  06-09h

Figure 7.7. (a), (b) and (c) Observed 3 hours accumulated rainfall on the Catalonian provinces during 
the period of heaviest precipitations in the last hours of the day 9 and the first hours of the next day. 
The main precipitation occurred over Tarragona (T), Lleida (L) and Barcelona (B). Accumulations 
from the ACA rain gauges are spatially interpolated by a kriging analysis method and used as so called 
“ground true” for the verification of the radar accumulations. Rest of frames are radar rain 
accumulations for the same time periods (3 hours) derived by the different methods: HMT (d) to (f), 
DCM (g) to (i), MPS (j) to (l) and MPC (m) to (o). The period between 0300 to 0600 UTC day 10 has 
been omitted because of radar problems. 
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a) b)

c) d)

 
Figure 7.8. Observed by the ACA network versus radar estimated scatter plots for each 
method. It is plotted the 10860 points of accumulated precipitation collected during the two 
calibration independent periods (9/21-00 UTC + 10/06-09 UTC). 
 

 

 

Table 7.6. Global statistical results with same units than table 7.5 but taking the two 3 
hours accumulation periods different from the calibration period.  

Size 10860 
Mean 8.6 10.2 9.8 1.9 0.8 

09/21-24 UTC +  
10/06-09 UTC 

SD   9.7 15.1 15.0 4.0 1.7 
BIAS  1.5 1.2 -6.7 -7.9 
SDD  5.4 5.3 -7.3 -8.0 
RMS  10.1 10.3 10.3 11.8 

CORR  0.76 0.74 0.63 0.62 
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7.6 Discussion and conclusions 

a) Discussion 

This chapter highlights the difficulties in estimating accurate radar rain rates by 

employing standard algorithms for severe events with heavy rainfalls. In fact, old 

coefficients such as those proposed by Marshall and Palmer have produced substantial 

errors, mostly in the areas where the maximum precipitation amounts were observed. 

Therefore, radar and rain gauges can be combined to improve the spatial distribution of 

the precipitation field and to accurately gain rainfall amounts within an operational 

context. However, as commented in previous chapters, calibration routines in real time 

produce other problems not explored here like: definition of calibration-application 

optimal time periods, rain gauge and radar data availability in real time and automatic 

quality checking to detect errors in the data stream. 

The direct inter-comparison between instantaneous and simultaneous 

measurements such as radar reflectivity versus interpolated rain rates from the stations, 

produces a very widely spread distribution of the data as illustrated in figure 7.2d for the 

calibration file. Many reasons may be behind this increment of the dispersion. The 

kriging analysis method, employed for the spatial interpolation of the rain rates, 

probably produces errors mostly in mountainous regions because stations are often 

located in valleys. Also, there is a residual time lapse, not analysed by us, between radar 

detected targets at a height and the rain rate measured by a station on the ground. Radar 

signal may be attenuated in some areas, mainly places farther than 100 km from the 

radar site, such as part of the province of Girona located in the northeastern corner of 

the polygonal area (see any frame of figure 7.7).  

An extended procedure in many meteorological centres is the separation of 

convective radar pixels from stratiform pixels by different techniques and later 

assignment of those pixels to the corresponding Marshall and Palmer convective or 

stratiform a and b coefficients. Choice of this option in the Montserrat case results in 

precipitation being somewhere between the MPS and the MPC developed in the present 

research, and therefore rain rates and accumulations would also be under-estimated. If 

calibration coefficients or tables are regularly updated in time (a few hours or few days) 

the main convective or stratiform character of the rainfall would be presumably 

captured within the new algorithm. 

The synchronisation of radar points with interpolated rain gauge points on a 

limited area by searching the same CDF (Cumulative Distribution Function) value, such 
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as performed initially by the HMT, has produced BIAS and SDD errors in the over-

estimation of rainfall. Previous studies have documented radar over-estimation, in most 

cases applying probability matching curves (Crosson et al. 1996) and other authors 

(Krajewski and Smith, 1991) have also reported a tendency to produce biased estimates. 

In the present work a simple horizontal shift of the HMT curve seems to correct the 

BIAS error keeping the correlation coefficient almost unchanged. 

The DCM was delineated directly assuming a fixed drop size distribution 

function (Marshall and Palmer, 1948) and computing, initially, the function coefficients 

by linear regression fit using the data from the calibration file in the logarithmic scale. 

These coefficients were readjusted in a second stage, applying a completely new 

methodology based on iterative slight rotations and conversions of the calibration line. 

This new method has demonstrated to be valid at least for the present flood case, 

however, many more cases should be tried in order to gain accurate assessment. 

Radar fluctuations or small attenuations due to strong rainfall or caused by radar 

internal problems as reported by Sempere et al. (2001) for the same flood case, can not 

be avoided or easily corrected but radar rainfall estimations can be stabilised as much as 

possible performing calibration routines and testing results in short time periods. 

 

 

b) Conclusions 

Old radar algorithms not adjusted or corrected for a specific area such as the 

MPS and MPC can produce significant errors in rainfall rates and accumulations. 

Secondly, for independent rain rate evaluation, both methods, HMT and DCM, have 

similar spatial accuracies and are sensibly better than the other two. Thirdly, for 

independent 3 hour accumulation verification, the HMT adjusted by the BIAS is the 

method that provides the best CORR and RMS while the DCM gives the best BIAS and 

SDD.  

It is important to note that our results in radar calibration are derived under the 

circumstances of a flood case and should not be applied directly to events in other areas 

and situations. The authors have concentrated on providing the technical details 

necessary to develop similar methodologies in the operational context rather than to 

analyze the benefits for a large sample of events.  

An open question is how long the calibration time lapse should be in order to get 

the highest radar rainfall accuracy. Table 7.5 shows that errors are higher for some 
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periods than others. Experiments for the near future will explore the benefits of using 

shorter time periods (2-3 hours) to perform an optimal calibration process. This can be 

applied iteratively in order to capture rapid changes between radar reflectivity and rain 

rates. It is clear that the success of those techniques for operational purposes depends 

crucially on the radar and rain gauge data availability in real time.  
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8. Study of the Montserrat flood from the satellite perspective 

a) Abstract 

This section assesses the accuracy with which geostationary satellite imagery 

can be used to estimate precipitation in Montserrat flash flood episode in Catalonia, 

Spain on days 9-10 June 2000. This well documented severe weather event was 

produced by a cold front perturbation combined with hot and moist air from the 

Mediterranean that favored a very unstable environment over the northeast of Spain. 

The main difficulty found in this case for the use of infrared Meteosat images to 

estimate precipitation was that convective cells were mostly covered by clouds with 

homogeneous and relatively warm tops, causing low accuracy when rain rates are 

estimated from satellite in preliminary attempts.  

The Auto-estimator and CRR (Convective Rainfall Rate) algorithms were 

applied and a sensitivity test of rainfall correction factors like: parallax, orographic, 

moisture, cloud growth rate and cloud top temperature gradient for both methods was 

performed. Recalibration of the two algorithms using radar and rain gauges was done 

and evaluated. Finally, lightning data was implemented to facilitate the detection of 

convective zones. As shown in the following sections; the most outstanding result is an 

increment in the correlation coefficient of around 10% in satellite rain rates compared to 

radar and 19% in 24 hour rain accumulations after assimilating lightning data from the 

INM detector network.  

 

b) Introduction 

Meteosat-7 infrared images show relatively warm and homogeneous cloud tops 

over the flood area (infrared temperatures were not below 218 K at any time)and from 

the numerical simulation it has been deduced that the perturbation has a cold frontal 

configuration (Martin et al. 2006) while radar images illustrated strong convective cells 

embedded in the system. This kind of cloud top produces rain rate under-estimation and 

significant errors in the accuracy of rain detection from satellite compared to radar, as 

occurred in preliminary attempts. Figure 8.1a illustrates the differences between infrared 

cloud top shape observed from Meteosat and radar reflectivity, taking into account that 

the microwave radar beam has the ability to travel through the cloud systems. Such 

frontal perturbations, very common in the western Mediterranean countries, have the 

most intense convective levels close to the base of the cloud system and thus, are 

difficult to be screened accurately from satellite. Valuable information about the cloud 
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base is the location and intensity of rays between the cloud base and the ground 

provided by a lightning detector network. The hypothesis made is that lightning 

measurement that is associated with electrically charged ice particles in movement can 

provide better identification of the convective area, which could contribute to improving 

precipitation estimation (see figure 8.1).  

The idea of combining lightning data with satellite data for rainfall estimation is 

not new. Among the latest approaches, Morales et al. (1997) have shown that lightning 

measurements associated with active convection in clouds can provide reliable 

delineation of the convective cores. Grecu et al. (2000) used a combination of lightning 

and infrared brightness temperature to retrieve rainfall. They showed that this 

combination could reduce the error variance by around 15% of rain volume estimation 

compared to an infrared only approach. Morales et al. (2003) proposed a real time 

precipitation estimation algorithm that had reduced bias errors by using lightning 

information and had produced sensible increments in correlation compared with a 

TRMM precipitation radar images. 

The research is focussed on a study made for the Montserrat flood case in which 

rain rates were difficult to estimate by the satellite as a cause of a relatively warm and 

homogeneous cloud tops. Under these circumstances the two proposed algorithms, 

Auto-Estimator and CRR, are applied and later modified by different rainfall 

corrections. In a second stage both algorithms are recalibrated to study the differences in 

rain curves and matrices and finally, lightning information is assimilated as another 

correction factor in order to centre the main precipitation in the most convective zones. 
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a) b)

Nº of Electrical discharges in 20 minutes before 00:00 10 JUN 2000

Figure 8.1 (a) Radar reflectivities (white continuous line, in dBZ) and satellite infrared 
brightness temperature (shaded according to scale, in K): at 0000 UTC 10 June 2000. 
(b) Electrical discharges on the satellite resolution in 20 minutes from 2340 UTC 9 June 
to 0000 UTC 10 June 2000. A total of 1520 discharges were detected and a total 201 
satellite pixels were touched in this time lapse. Comparing both images, (a) and (b), is 
important to note the high spatial correspondence between the radar highest 
reflectivities and pixels touched by the electrical activity. 

 
 

 

8.1 Data and study methodology description 

a) Datasets 

Meteosat-7 images of the three spectral bands provided by EUMETSAT every 

30 minutes with a pixel spatial resolution over Spain around 7 by 5.5 km lat-lon are 

used. The period of the satellite dataset used in this study was from 1130 UTC June 9th 

to 1230 June 10th of 2000. 

Radar data from the INM radar of Barcelona and ACA network rain gauge 

measurements as detailed in section 7.1 of this thesis are used. The radar images, 
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initially in reflectivity units (dBZ), are transformed into rain rate (mm h-1) using table 

7.3 derived from the HMT, as it was the method that has provided the best CORR as 

shown in the previous chapter. Then, radar rainfall images are remapped to the 

geostationary satellite images projection and resolution. As commented in chapter 7, 

attenuation problems have occurred in radar images from 0250 to 0430 UTC, 

presumably due to the high precipitation rate over the radar site and no valid images are 

available for that period. The ACA rain gauge measurements are employed to produce 

24 hours of accumulated rainfall fields starting at 1200 UTC June 9 in the polygonal 

area covered by the stations (Figure 7.1). First, accumulations from the original rain 

rates, completed each 5 minutes, are calculated on every station point and secondly a 

kriging analysis method is applied to compute the precipitation fields that are later 

remapped to the Meteosat-7 images projection and resolution. This rain gauge network 

can be considered dense enough to perform the mentioned kriging method using a linear 

model for the variogram fit as made also in chapter 5 with the Albanian rain gauge 

network. 

The detection network for electrical discharges of the INM has been working 

since 1992 with an initial deployment of 14 detection stations on the Spanish mainland 

and one in the Balearic Islands. Cooperation with France in 1999 raised this number to 

20 IMPACT (Improved and Combined Technology) stations, 5 in the south of France 

and the rest in Spain. In June of 2000 the Catalonian region was well covered by the 

INM lightning network with a detection efficiency estimated over this area of around 

90% (Pérez Puebla F., 2004). Figure 7.1 illustrates the position of the detector stations 

represented by black boxes. Every electrical discharge between the ground and the 

cloud base occurred over Spain and western Mediterranean Sea is detected (position, 

time and intensity) and stored by the INM. Data for June 9 and 10 of 2000 were kindly 

provided by this institution for the present research and it makes possible the generation 

of lightning images every 30 minutes as shown in Figure 8.1b. 

 

b) Study methodology description 

The study can be structured into four parts. The first one is an assessment of the 

Auto-Estimator (A-E in the following) and CRR techniques within a sensitivity test of 

rainfall correction factors such as moisture, grow rate, gradient, parallax, orographic, 

etc, is performed. As in the Albanian flood case, 2-D and 3-D matrices calibrated over 

Spain (tables 4.3d and 4.5 respectively) are used by the CRR method and the required 
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MM5 outputs from the smaller domain focused over Montserrat and set as described in 

section 6.1 are employed for the moisture and orographic correction factors 

performance. Next, the A-E curve and CRR 2-D matrix are recalculated using the 

rainfall provided by the radar in order to study the deviation from average produced in 

the Montserrat flood. Thirdly, electrical discharges accumulated in a time lapse of 20 

minutes are displayed in images each 30 minutes and compared to the radar ones to 

confirm the correct detection of the most convective cells. Then a new correction factor 

based on this lightning information is delineated to detect and enhance satellite 

estimated convective rain rates against the stratiform ones. Finally, the A-E curve and 

CRR 2-D matrix are recalibrated again but now using in situ rain gauge measurements 

instead of radar images. Here it is explored the possibility to skip the whole radar 

development and, thus, all the satellite calibration process could be simplified.  

The verification of rain rates is made by comparing radar and satellite estimates 

from 2130 UTC on 9 June to 0900 UTC on the 10th June, every 30 minutes, avoiding 

the period used for calibration experiments (see table 8.1). Meteosat-7 satellite line scan 

starts from the south of the earth to the north, where, the time of the image is 

established. So that when Spain is scanned the time of the satellite image is at least 10 

minutes delayed with respect the real UTC time as explained in chapter 2 of this thesis. 

This delay is compensated for in a practical way by comparing every satellite image 

with the corresponding radar image 10 minutes before. 24 hour satellite accumulation 

from 1200 UTC on 9 June to 1200 of the next day is verified in a qualitative and 

numerical manner against the ACA kriged accumulation fields. A numerical analysis is 

important to resolve the accuracy of the precipitation estimated methods and rainfall 

corrections. The statistical indices employed in the quantitative verification in the area 

covered by the radar and satellite are, as in previous chapters: mean, standard deviation 

(SD), BIAS, standard deviations difference (SDD), root mean square error (RMS), and 

correlation coefficient (CORR). Rain rates have been computed in addition to assess the 

spatial accuracy of points greater than zero mm h-1: Probability of detection (POD), 

false alarm ratio (FAR), critical success index (CSI) and fraction correct (FRC). 
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Table 8.1. Radar-satellite rainfall images and points used in the calibration (bold) and rain 
rate verification. 

Day Radar Hour 
(UTC) 

Satellite Hour 
(UTC) Number points Comments 

June-9-2000 2120 2130 2562 Radar-Satellite images ok 
“ 2150 2200 2562 “ 
“ 2220 2230 2562 “ 
“ 2250 2300 2562 “ 
“ 2320 2330 2562 “ 
“ 2350 2400 2562 “ 

June-10-2000 0020 0030 2562 “ 
“ 0050 0100 2562 “ 
“ 0120 0130 2562 “ 
“ 0150 0200 2562 “ 
“ 0220 0230 2562 “ 
“ 0250-0420 0300-0430 0 Radar error 
“ 0450 0500 2562 Radar-Satellite images ok 
“ 0520 0530 2562 “ 
“ 0550 0600 2562 “ 
“ 0620 0630 2562 “ 
“ 0650 0700 2562 “ 
“ 0720 0730 2562 “ 
“ 0750 0800 2562 “ 
“ 0820 0830 2562 “ 
“ 0850 0900 2562 “ 
   17934 Total number of points used in 

the calibration 
   33306 Total number of points used in 

the verification 
 

 

 

8.2 Results of Auto-Estimator (A-E), CRR and correction factors 

A qualitative analysis of estimated precipitation from satellite by standard 

methods versus radar shows in general that maximum radar rain rates are under-

estimated while radar rain areas are over-estimated by the satellite. Evidence of this is 

displayed in figure 8.2 in which the radar image at 0150 UTC 10 June is compared with 

the A-E and CRR rain rate images at 0200 UTC of the same day. The numerical 

analysis shown in table 8.2 for both satellite algorithms confirms a general under-

estimation of rain rates with a negative BIAS. Higher CORR is obtained for the A-E, 

but, a slight improvement in the spatial accuracy of the rainfall is given by the CRR 

with greater FRC index. The under-estimation of both methods is much more evident 

for the 24 hours accumulated rainfall compared to the ACA rain gauge accumulation as 

observe in figure 8.3 and shown in table 8.3. In this last table BIAS error for A-E is 

around -24 mm and -42 mm for CRR, as opposed to rain rates, CORR index is higher 

for CRR (0.52) than for A-E (0.48).   
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A general result about the rainfall corrections proposed by Vicente et al. 

(1998, 2002) and applied to both standard satellite algorithms is that none of those 

produce significant improvements as shown in tables 8.4 and 8.5 for rain rates and in 

tables 8.6 and 8.7 for 24 hours accumulated rainfall. A brief analysis of tables 8.4 and 

8.5 shows that only the parallax correction (PC) does not worsened the CORR index 

with respect to the original algorithms, and only the moisture correction (PWRH) and 

the orographic correction (OC) produce very little improvements in the BIAS, SDD and 

RMS statistical indices. With regard to the corrections for accumulated rainfall using 

the A-E method in table 8.6, only the PC and GR1 corrections seems to slightly increase 

the CORR index and vaguely improve the BIAS and RMS in the case of the PC. 

Rainfall accumulations using CRR algorithm in table 8.7, provide the best CORR 

obtained by the GR1 correction but also it provides the worst RMS and a very high 

BIAS error. In view of these unclear results, two options are explored in the next sub-

sections: 

− Recalibration of both algorithms using radar. 

− Development of a method to correct the rainfall estimations by using the 

lightning information. 

 

 

Table 8.2. Statistical results for the rain rates estimated by the
different methods. The size is the number of radar-sat points. 
Mean, SD, SDD, BIAS and RMS are in mm h-1. CORR, POD, 
FAR, CSI and FRC are magnitudes with no units. Boldfaced
numbers show best statistical results in every line. 

 RADAR A-E CRR 
Size 33306  

Mean 2.3   1.6        0.9    
SD   6.8    2.0   1.3 

BIAS  -0.8 -1.4 
SDD  -4.8 -5.5 
RMS  6.2 6.6   

CORR  0.45   0.37    
POD  0.86 0.65 
FAR  0.67 0.59 
CSI    0.32 0.33 
FRC  0.64 0.72 
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Figure 8.2. Rain Rates images with identical color table from (a) radar at 0150 UTC 10 Jun, 
(b) A-E method and (c) CRR method at 0200 UTC of the same day. The Radar area is 
indicated in the frames of this figure by the discontinuous white line. 

 

 

 

a)  

b)  

c)  
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Figure 8.3. Rainfall accumulation maps in mm according to the colour scale for a period of 
24 hours from 1200 UTC 9 June to 1200 UTC of the next day. Frame (a) from the ACA rain 
gauges, (b) from the A-E infrared curve and (d) from the CRR matrices. 

a)  

b)  

c)  
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Table 8.4. Statistical results of the sensitivity analysis of correction factors over the A-E.  
A-E +PC  +GR1  +GR2  +GR +PWRH  +OC 

Mean 1.6 0.9 0.9 0.9 1.4 1.4 
SD   2.0 1.8 1.8 1.5 2.1 2.0 

BIAS -0.7 -1.2 -1.5 -1.4 -0.7 -0.6 
SDD -4.8 -4.6 -5.0 -5.3 -4.3 -4.4 
RMS 6.2 6.2 6.5 6.6 5.9 5.9 

CORR 0.45 0.33 0.36 0.35 0.41 0.43 
POD 0.87 0.47 0.46 0.66 0.83 0.85 
FAR 0.66 0.69 0.66 0.64 0.66 0.67 
CSI   0.32 0.23 0.24 0.30 0.32 0.32 
FRC 0.64 0.70 0.69 0.67 0.66 0.64 

 

 

Table 8.5. Statistics results of the sensitivity analysis of correction factors over the CRR.  
CRR +PC  +GR1  +GR2  +GR +PWRH  +OC 

Mean 0.8 0.4 0.4 0.5 0.7 0.8 
SD   1.3 1.0 1.0 0.9 1.4 1.3 

BIAS -1.3 -1.6 -1.7 -1.6 -1.3 -1.2 
SDD -5.2 -5.4 -5.4 -5.5 -5.0 -5.1 
RMS 6.2 6.4 6.4 6.4 6.2 6.2 

CORR 0.37 0.29 0.34 0.32 0.36 0.35 
POD 0.63 0.35 0.35 0.48 0.60 0.65 
FAR 0.59 0.59 0.51 0.57 0.56 0.59 
CSI   0.33 0.23 0.26 0.29 0.34 0.33 
FRC 0.75 0.78 0.80 0.77 0.78 0.75 

 

 

 

 

Table 8.3. Statistics for 24 hours of rain accumulation estimated by the
different methods from 1200 UTC of the first day to 1200 of the next day.
The size is the number of radar-sat points. Mean, SD, SDD, BIAS and RMS
are in mm. CORR has no units. Boldfaced numbers show best statistical 
results in every line. 

 ACA A-E CRR 
Size 659 

Mean 52.1   28.3        10.5 
SD   30.6    10.9  5.5 

BIAS  -23.8 -41.7 
SDD  -19.6 -25.0 
RMS  36.0 50.3   

CORR  0.48   0.51    
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Table 8.6. Statistics results of the sensitivity analysis of correction factors over the 24
hours A-E accumulations.   

A-E +PC  +GR1  +GR2  +GR +PWRH  +OC 
Mean 29.8 19.1 17.2 17.1 29.3 28.9 

SD   10.7 7.0 7.5 7.0 10.3 11.0 
BIAS -22.3 -33.0 -34.9 -35.1 -22.8 -23.3 
SDD -19.8 -23.5 -23.0 -23.5 -20.3 -19.6 
RMS 35.0 43.2 44.8 45.1 36.2 36.2 

CORR 0.49 0.49 0.45 0.42 0.40 0.42 
 

 

Table 8.7. Statistics results of the sensitivity analysis of correction factors over the 24
hours CRR accumulations.   

CRR +PC  +GR1  +GR2  +GR +PWRH  +OC 
Mean 10.8 6.2 6.0 6.0 10.8 10.8 

SD   5.7 3.0 3.4 3.7 5.2 5.6 
BIAS -41.5 -45.9 -46.1 -46.1 -41.3 -41.4 
SDD -24.9 -27.6 -27.1 -26.8 -25.3 -25.0 
RMS 50.2 54.4 54.5 54.5 50.3 50.1 

CORR 0.47 0.52 0.50 0.47 0.44 0.48 
 

 

 

 8.3 Auto-Estimator and CRR recalibration with radar 

 a) Auto-Estimator 

The calibration method proposed by Vicente et al. (1998) and described in 

section 3 has been repeated for the Montserrat flood case taking 7 simultaneous radar 

satellite pairs of images during the time period of heaviest rainfalls. That is, from 0020 

to 0520 on the 10th of June, as shown in bold in table 8.1. The mean radar rainfall was 

calculated for each 2.5 K instead of 1 K temperature interval from 215 to 260 K, 

looking for a smooth shape of the mean points. Another difference with respect to the 

calibration method documented by Vicente et al. (1998) is that now Meteosat infrared 

images from the 11.5 µm band are corrected by parallax. As shown in the previous 

subsection, this correction does not worsen the estimated precipitation accuracy. Figure 

8.4 displays the scatter plot of radar-satellite points from the images used in calibration, 

the original A-E curve (3.1), the mean radar rain points each 2.5 K and the new best fit 

(r2 = 0.97) curve (8.1) computed from the mean radar points distribution. 
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R = 1.677·1011 exp (-3.6382·10-2 TIR
1.2)                                         (8.1) 

 

where R is the rainfall rate in mm h-1 and TIR is the cloud top temperature in Kelvin. It is 

paradoxical that the two coefficients in the exponential index of this curve do not 

change with respect to the ones of the original A-E curve (3.1). However the first 

coefficient 1.677 1011 is around 1.5 times greater than the one of the A-E equation 

(1.1183 1011). Precipitation computed using the new power law relation (8.1) is called 

‘A-Ec’ in the following. 

 

 
Figure 8.4. Radar rain rate in mm h-1 versus satellite brightness temperature in K from 
the calibration file. Mean rain points each 2.5 K (big points connected by the thick line), 
the best fit A-Ec curve (equation 8.1) and original A-E curve (thinner line). It is 
important to note that the only difference between both power law curves is the first 
coefficient. 
 

 

 b) CRR 

Most of the rainfall occurred over the Catalonian region close to the Barcelona 

radar between 0000 and 0500 of June 10, and no visible Meteosat-7 images were 
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available in such night hours. A new two dimensional (2-D) rainfall matrix is generated 

from radar and satellite infrared bands corrected also by parallax, following the 

instructions given in section 4.2. The radar and satellite images employed in the 

calibration are shown in table 8.1. Elements of this 2-D matrix are classes that are 

transformed in rain rate in mm h-1 using the same table, 4.2, as the one used for the 

original CRR matrices. This new rainfall matrix adjusted for the Monserrat flood case 

can be compared with the original (table 4.3D) performed in section 4 using a long set 

of radar and satellite data over the Iberian Peninsula. The most important differences 

are: the diagonal distribution of classes is displaced at least four degrees Kelvin to 

warmer infrared temperatures. Secondly, rainfall classes are significantly higher 

therefore producing much more rain than the older matrix. Precipitation computed using 

the new infrared matrix (table 8.8) is called ‘MCRR’ (Montserrat Convective Rainfall 

Rate) in the following. 

 

 

Table 8.8. CRR 2-D new matrix adjusted for the Monserrat flood case. Vertical axis, 
temperature in Celsius of the Meteosat thermal band (TIR). Horizontal axis, infrared and 
water vapour bands temperature difference (TIR – TWV). The numbers are rainfall classes 
that are transformed in rain rate using the table 4.2. Some of them are shaded to 
underline the highest rainfall classes from the rest. The solid line shows the position of 
the original matrix classes (see table 4.3D).  
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 8.4 Lightning assimilation and correction factor 

 As explained in the result section most of the applied rainfall corrections 

described by Vicente et al. (1998, 2002) do not show clear improvements in this study 

case when compared satellite estimations to radar and accumulations from ACA rain 

gauges. A new alternative using lightning data is explored in this research in order to 

make use of valuable electrical discharge information from the base of the clouds. 

-The first step involves the localization in time and space of every positive and 

negative lightning strike and to score satellite pixels with the number of electrical 

discharges. As a result of a qualitative study (not shown), a time lapse of 20 minutes 

around the satellite image UTC time seems to be appropriate to situate and add rays to 

the image pixels. Taking in account that Meteosat-7 image has a real-time delay of 10  

10 minutes from to the UTC time over Spain; lightning hits are located and represented 

in a period of 20 minutes before the UTC satellite time as illustrated in figure 8.6. In 

this display the radar image at 0150 UTC is associated to the Meteosat image at 0200 

UTC but electrical discharges are retrieved from 0140 to 0200 UTC and the time 

assigned to this lightning image is 0150 UTC. So that, each satellite infrared image 

every 30 minutes also processes a parallel image showing lightning hits with identical 

geographical settings. 

- The second step has to do with the separation of radar rain rates associated to 

lightning or no lightning and how they correspond to satellite thermal band temperature 

(11.5 µm) also corrected by parallax. Averaged lightning (ALR) and no lightning rain 

rates (ANLR) versus infrared brightness temperature (TIR) are drawn in figure 8.5a by 

two different symbols (triangles and boxes respectively) connected by lines. The 

average rain rate line (AR) obtained by using data from the whole calibration dataset, 

and used to determine the A-Ec curve (8.1) as described in the previous section, is also 

plotted in this graph. While the AR and ANLR plots are very similar, the ALR, however, 

provide much more rain and it is more dispersed for warmer temperatures with a 

maximum of 23 mm h-1 for 243 K.  

-The third step is thought to increase the rain rate associated to lightning in 

function of the satellite temperature. Rainfall estimated from the A-Ec curve is first 

corrected by parallax and later should be multiplied by a correction coefficient, KL, on 

those points where electrical discharges are detected. The KL coefficient is calculated as 

illustrated in figure 8.5b. Firstly, the ALR points are divided by the AR ones each 2.5 K 

generating the Factor curve (FC). Secondly, a frequency curve of electrical discharges 
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called, number of discharges (ND) in function of TIR, also, each 2.5 K determines the 

sections of the FC best supported by the lightning data as shown in graph 8.5b. With 

6079 strikes from the coldest cloud tops accumulated in the 217-222 K section and not 

shown in this figure, to as much as 30 hits in the warmest from 246 K to the end is the 

kind of information that can be obtained the ND plot. The FC curve represents the ideal 

correction factor but in practice we have averaged it in finite segments based on nearly 

constant sections of ND curve as follows:  

 

KL1 = 1.5  for TIR < 222.5 K   with a Σ1(NDi) = 6079 

KL2 = 2.6  for 222.5 K ≤ TIR < 230 K  with a Σ2(NDi) = 1699 

KL3 = 8.2  for 230 K ≤ TIR < 240 K  with a Σ3(NDi) = 497 

KL4 = 14.1  for TIR ≥ 240 K   with a Σ4(NDi) = 108 

 

where KLj is the correction factor derived from averaged sections of the FC curve and 

Σj(NDi) is the total number of electrical discharges in each temperature interval. The 

lengths of the Temperature interval have been selected from the coldest TIR in which 

most of the lightning hits have been detected and where FC is closer to 1, to warmer TIR. 

We have find empirically that the Σj(NDi) can be divided by an value of 3.5 in order to 

select the approximate length of the next warmer interval of temperatures. This process 

continues until the number of discharges is nil. 

-The fourth step diminishes the rain rate of those rain pixels not associated to 

lightning and therefore considered as stratiform rain pixels. This should be performed 

dynamically over the rain pixels that are surrounding the electrical ones as far as 15 

pixels. The purpose of this process is to compensate the general tendency to increase the 

rain rate produced by the KL factor over the lightning pixels. The rain rate average in a 

stormy cloud area should stay unchanged after this stage. The mean rain rate decreases 

in stratiform rain pixels after this step, and for this case is around 10 %. 

In summary, satellite rain pixels associated to lightning activity considered as 

convective are multiplied by the KL correction factor that depends on TIR, the rest of 

rain pixels in the cloud considered as stratiform have a diminished rain rate in order to 

compensate for the increment produced by the KL factor. This process called ‘LG’ is 

applied as another correction factor to A-Ec and MCRR algorithms.  
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Figure 8.5. (a) Averaged lightning and no lightning rain rate points each 2.5 K. Plot 
using the boxes connected with lines: averaged rain (AR), as the previous figure.  
Triangles connected with lines: averaged lightning rain (ALR) from radar points 
associated to lightning pixels (1005 points). Circles connected with lines: averaged rain 
curve (ANLR) from radar points not associated to lightning pixels (16926 points). (b) 
Lightning correction factor figure. Total number of electrical discharges plotted by the 
line with triangles each 2.5 K (ND). The right axis represents the correction factor scale. 
It has no units because it is the averaged lightning rain points (ALR) divided by the 
averaged rain points (AR) each 2.5 K which generates the factor plot (FC) shown using 
black circles. The parameterized factor (KL) is the FC averages on limited sections 
taking in account a nearly constant number of accumulated discharges.  

(a) 

(AR) 
(ALR) 

(ANLR) 

(FC) 
(ND) 

(KL) 

(b) 
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8.5 Results of calibrated algorithms and effect of lightning correction 

a) Calibrated algorithms 

The new calibrated infrared rain curve performed as an equation (8.1) has been 

applied for the A-Ec and the new infrared CRR matrix shown as table 8.8 has been used 

for MCRR. Both have been verified against radar rainfall such as the standard 

algorithms (A-E, CRR) and the results for rain rates are illustrated in figure 8.6 and 

statistical indices in table 8.9. The results for the 24 hour rain accumulation of A-Ec 

and CCRR compared to the ACA rain gauge accumulation are shown in figure 8.7 and 

statistical indices in table 8.10. For both cases, rain rates (displays 8.6c and 8.6e) and 

accumulation (displays 8.7a and 8.7c) estimations have been increased with respect to 

the standard algorithms as expected. The growth in the estimated precipitation is clearly 

confirmed by the increase in the statistically estimated means and reduction of the 

BIAS as shown for rain rates in table 8.9 and accumulations in table 8.10. Maximum 

radar rain rates (around 55 mm h-1 in figure 8.6a) are not reached by the satellite 

maximum estimations (around 10 mm h-1 for A-Ec and MCRR in displays 8.6c and 

8.6e respectively), while, as observed for the original algorithms, satellite over-

estimates rain area compared to radar. This effect is also significant for the 

accumulations, while the ACA rain gauges have achieved a maximum accumulation of 

190 mm in 24 hours in a small area as shown in figure 8.3a, both calibrated satellite 

algorithms have retrieved around 90 mm.  

As expected, the calibration experiment has an overall effect on rainfall 

amounts and less rainfall accuracy as shown by the correlation coefficients. In most 

cases the CORR between original and calibrated algorithms stays unchanged apart from 

CRR and MCRR rain rates in which it increases from 0.37 (table 8.2) to 0.41 (table 

8.9). 

 

b) Lightning correction. 

The effect of the lightning correction over the rainfall fields is clear. In places 

where cloud to ground electrical strikes are detected, rain rates are sensibly increased 

while the rest of the rainfall pixels are slightly decreased (see figure 8.6 from frame c to 

f). Qualitative comparisons were done between radar and the 20 minutes of lightning 

images and, as expected, a very good spatial correlation was observed between 
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electrical points and the highest radar echoes (see figure 8.1 and displays 8.6a and 

8.6b). 

Improvements, independent from the rainfall amounts, can be quantified by 

checking the CORR index in tables 8.9 and 8.10 for rain rates and accumulation 

respectively. The first table corresponds to the estimated rain rate analysis compared 

with radar; the CORR index for A-Ec is increased from 0.45 to 0.49, which is a relative 

increment of 10%. For MCRR the CORR is increased a bit less, 8 %. However, 

increments are higher for the 24 hour accumulations with respect to the rain gauges as 

shown in table 8.10. Here the CORR index for A-Ec is increased 19% and for MCRR, 

10%. Two reasons are behind the application of the parallax correction before 

lightning. The first one is because this correction is the only one that has not worsened 

in general the CORR index in the first analysis (Tables 8.4 to 8.7). The second reason is 

that this correction should perform a correct alignment between the cloud top observed 

by the satellite and the electrically convective cloud base detected by the INM lightning 

network. 
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a) RADAR 01:50 10 JUN b) LG 01:50 10 JUN

c) A-Ec d) A-Ec + PC + LG

e) MCRR f) MCRR + PC + LG

 

 

Figure 8.6. (a) Rainfall radar image in mm h-1 at 0150 UTC. (b) Lightning image, in which 
position and number of electrical discharges detected in 20 minutes (from 0140 to 0200 UTC) 
are displayed. (c) A-Ec, Rain rate image in mm h-1 from calibrated IR curve (8.1). (d) A-Ec 
image corrected first by parallax and then by the lightning correction factor KL. (e) MCRR, 
CRR image in mm h-1 from the new 2-D matrix shown in table 8.8. (f) MCRR image corrected 
first by parallax and later by the lightning correction factor KL. 
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a) A-Ec b) A-Ec + PC + LG

c) MCRR d) MCRR + PC + LG

Figure 8.7. Rainfall accumulation maps in mm according to the colour scale for a period of 
24 hours from 1200 UTC 9 June to 1200 UTC of the next day. (a) Calibrated Auto estimator, 
A-Ec. (b) A-Ec corrected firstly by parallax (PC) and secondly by lightning (LG). (c) 
Calibrated CRR for this flood case or MCRR. (d) MCRR corrected in first place by parallax 
(PC) and then by lightning (LG). 
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Table 8.9. Statistical results for the rain rates estimated by the calibrated Auto-
Estimator (A-Ec) and calibrated CRR (MCRR) for this flood case. Then, both methods 
corrected firstly by parallax (PC) and, second, by the lightning correction factor (LG) 
are also evaluated. Boldfaced numbers show best statistical results in every line. 

 RADAR A-Ec MCRR A-Ec+PC+LG MCRR+PC+LG
Size 33306  

Mean 2.3   2.3 2.1 2.4 2.3 
SD   6.8    3.0 3.8 3.5 4.5 

BIAS  0.0 -0.2 0.1 0.0 
SDD  -3.8 -3.0 -3.3 -2.2 
RMS  6.1 6.2 5.9 6.3 

CORR  0.45 0.41 0.49 0.44 
POD  0.89 0.64 0.89 0.65 
FAR  0.69 0.51 0.69 0.52 
CSI    0.30 0.38 0.30 0.39 
FRC  0.55 0.78 0.55 0.77 

 

 

 

 

 

Table 8.10. Statistical results for 24 hours of rain accumulation estimated by the
calibrated Auto-Estimator (A-Ec) and calibrated CRR matrix MCRR for the flood case. 
Then, both methods are corrected firstly by parallax (PC) and secondly by the lightning 
correction factor (LG). Boldfaced numbers show best statistical results in every line. 

 ACA A-Ec MCRR A-Ec+PC+LG MCRR+PC+LG 
Size 659 

Mean 52.1   42.5 39.2 47.4        44.6 
SD   30.6    15.5 19.2 17.4   22.7 

BIAS  -9.6 -12.9 -4.7 -7.5 
SDD  -15.1 -11.4 -13.2 -7.8 
RMS  27.9 29.7 25.1 27.0 

CORR  0.48 0.50 0.57   0.54 
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 8.6 Calibrating satellite algorithms with rain gauges 

 The Last experiment described this chapter investigates the possibility of 

calibrating the CRR and A-E algorithms directly with the data provided by the rain 

gauges. In the previous subsections, radar rain rates were indispensable for calibration 

routines in the Montserrat flood case. However, behind radar images are many 

problems that have to be solved in order to perform a correct estimation of the 

precipitation as discussed in chapter 7. Often these radar processes should be 

considered mainly when the final satellite rainfall accuracy is not as good as projected 

after being calibrated to radar. Other times radar data is simply not available for certain 

places or certain time periods. So for that and for other reasons, a method to calibrate 

satellite precipitation algorithms directly with rain gauges seems to us to be very useful. 

Secondly we are interested in testing the two calibration methods (A-Ec1 and A-Ec2) 

described in section 5.4 and to test new CRR matrices filled with data from rain gauges.  

The Catalonian region, with 126 operative rain gauges in June 2000 well 

distributed over the study area as shown in figure 7.1, configures an extraordinary 

observational network for precipitation. In other places of the European continent it is 

normal to find 10 to 20 automatic rain gauges for a similar area size to Catalonia. The 

A-Ec1, A-Ec2 new curves and a new CRR rain matrix are performed firstly using all 

the rain gauges during the calibration period defined in table 8.1 (from 0030 to 0530 

UTC for the 10 June). After analysis and evaluation of them we repeat the calibration 

process but in this case the number of rain gauges is diminished artificially in an 

attempt to find the minimum number than can be employed in five hours without 

reducing accuracy.  

Over a five hour period, every 30 minutes, which effectively means 11 

Meteosat-7 scans with the parallax effect corrected and 126 rain gauges, have produced 

a calibration dataset with a total of 1386 points that are used in calibration. In contrast 

to the Albanian case, there were not detected anomalous satellite pixels and rain gauge 

measurements during the process after a supervised quality check since the calibration 

period is shorter in this case. The next three subsections comment on the most 

important features from the application of the A-Ec1, A-Ec2 and CRR calibration 

methods, however for a full description of them the reader is referred to section 5.4 a),  

5.4 b) and 4.2 respectively.  
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 a) A-Ec1 

 The 1386 rain gauge observations are ordered depending on their satellite 

infrared temperature as shown in the figure 8.8a. As occurred in the previous occasion, 

(figure 5.5a) the highest rain rates are also logically related to the colder infrared 

temperatures. Here we have used the temperature interval of 2.5 K for two reasons: we 

believe that it is coherent to apply a similar interval size as for the A-E calibration 

exercise with radar (section 8.3). The mean points (empty boxes in figure 8.8a) have a 

smooth looking distribution. However we might have defined a smaller interval since 

the minimum number of 15 mandatory point condition would be satisfied and the 

distribution of mean points might gently diminish with respect to the growth of the 

temperature and could have a smooth looking shape. The second stage of the 

calibration process makes use of the standard deviation computed in each interval of 

2.5 K to select the best mean points in order to perform a linear regression fit in the 

logarithmic scale. As in the previous occasion (section 5.4 a)), mean points closer to the 

borders are rejected within the mean points with larger standard deviation values 

compared to the mean. Those mean points in which the standard deviation exceeds 

more than three times the mean value were not considered in the calibration. So, as 

illustrated in figure 8.8b, seven mean points (red circles) remain and the best fit line in 

the logarithm scale is computed as follows. 

 

log (R) = - 0.1469 TIR + 34.79                                                     (8.2) 

 

where the correlation coefficient for the fit is r = 0.97. This relation is transformed to 

rain rate in mm h-1 in function of the satellite temperature in K by inverting the 

logarithm. 

 

                    R = 1.2856 1015 exp(-0.1469 TIR)                                                  (8.3) 

 

This curve is plotted as the solid line in figure 8.8a and it is called “regression curve” in 

this graph. 
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b)

a)

 
Figure 8.8. Rainfall curve calibration by the A-Ec1 method for the five hours of the 
calibration period (from 0030 to 0530 UTC for the 10 June) and all the 126 rain gauges. 
(a) Rain rates from ACA rain gauges versus satellite temperatures. Mean rain rate, 
standard deviation and number of points for each 2.5 K interval. New rainfall curve 
derived from the A-Ec1 regression method plotted as a continuous line curve and shown 
as equation (8.3). A-E original curve (dashed line) shown to make easy the visual 
comparison with respect the new regression curve. (b) Rain sector of the graph but in 
the logarithm scale. Mean rain rate points into the red circles used to calculate the 
regression line shown as equation (8.2). 
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 b) A-Ec2 

 The second calibration method tries to select the most qualitative and convective 

rain rate points from the 1386 points. With the remaining ones it is performed a direct 

regression fit again in the logarithm scale. The process is done according to the 

following steps: 

- Step 1. Rain Intensities associated to relatively warm satellite points (TIR greater 

than 250 K) are removed from calibration. As viewed in figure 8.8a, mean rain rates 

are almost zero for satellite temperatures greater than 250 K. A total of 268 points in 

which  79% of them are 0 mm h-1, are removed and 1090 useful points remain. 

- Step 2. Infrared points in which TIR is increasing with time are also removed. This 

process was made taking in account the cloud displacements in satellite images, as 

explained at the end of section 3.2 for the GR2 correction. A total of 584 points are 

warming compared to the previous satellite observation and therefore not considered 

in calibration. Therefore, after this second step there are still 506 points remaining. 

- Step 3. If TIR is smaller than 215 K and the observed rain intensity is smaller than 1 

mm h-1 the point data is not considered in calibration. 0 points are eliminated after 

this step because in contrast to the Albanian case, cloud top temperatures are much 

warmer and no pixels are below 218 K (see figure 8.8a). 

- Step 4. If TIR is greater than 230 K and the observed rain intensity is greater than 1 

mm h-1 the point data is not considered in calibration. Only 40 points are removed 

and thus, the rest, 466 points, are finally used in the A-Ec2 curve computation. 

 

The logarithmic rainfall regression line is obtained using all the retrieved points 

(NºPt = 466) from the five hours of the flood and the 126 rain gauges. The thick line 

illustrated in frame 8.9a is the best fit equation obtained in the logarithmic scale with a 

correlation fit (r) equal to 0.42. The new rain rate curve (A-Ec2) is then calculated as in 

the Albanian case by just inverting the logarithmic linear relation, which results in the 

following equation, 8.4, plotted in figure 8.9b within the original A-E curve. 

 

R = 4.566 1016 exp(-0.1642 TIR)                                                      (8.4) 
 

where R is rain rate in mm h-1 and TIR is infrared temperature in Kelvin. 
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a) Logarithmic Rain rates versus satellite temperatures

Nº Pt = 466             

log (R) = 38.36 – 0.1642 TIR

r = 0.42

b) Rain rates versus satellite temperatures

A-E

A-Ec2

log (A-E)

 
Figure 8.9. Rainfall curve calibration by the A-Ec2 method for the five hours of the 
calibration period (from 0030 to 0530 UTC for the 10 June) and the 126 rain gauges. 
(a) Natural logarithm of rain rates in mm h-1 versus satellite 11 μm band brightness 
temperature in Kelvin for points not removed in the process. The solid black line is the 
best fit regression line while the other is the original A-E in the logarithmic scale shown 
as a reference. (b) Direct rain rates versus satellite temperatures (points) and rainfall 
curves from A-E (equation 3.1) and the new one A-Ec2 (equation 8.4). 
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 c) CRR 

 Another two dimensional (2-D) rainfall matrix is generated from a direct 

association of the 126 rain gauge measurements and the satellite infrared bands 

previously corrected by parallax. The 1386 points are used to fill the rain, no rain and 

the accumulated rain matrices every two Kelvin and then the probability matrix and 

rain matrix within the EQ_PC parameter are generated following instructions given in 

section 4.2. Elements of this 2-D matrix are classes that are transformed into rain rates 

in mm h-1 using the table 4.2 as the original CRR matrices. This new rainfall matrix is 

called MCRR2 and the following can be compared with the original (table 4.3D) 

performed in section 4 using a long set of radar and satellite data over the Iberian 

Peninsula and can also be compared with the last rain matrix computed for the same 

period but using radar rain rates (table 8.8).  

 

 

Table 8.11. Same as table 8.8 but new 2-D CRR matrix (MCRR2) obtained from the 
combination of the 126 rain gauges and satellite two infrared bands for a calibration 
period of five hours. The numbers are rainfall classes that are transformed in rain rate 
using the table 4.2. Some of them are shaded to underline the highest rainfall classes 
from the rest. The solid line shows the position of the original matrix classes (table 
4.3D). The arrow and the ellipse indicate the area in the matrix where anomalous non 
zero cells appeared in contrast to the other two matrices. 
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The main rain points are focused in a smaller spectral area (see shaded cells in 

table 8.11) and show larger rain classes than in the other two 2-D matrices (table 8.8 

and table 4.3D). Many cells with relatively high rain classes can be identified in the 

area delimited by the ellipse that is not present in the other two matrices. Both features 

together produce irregular CRR images with areas of extremely high rain rates full of 

holes without rainfall as illustrated in the next figure 8.10.  

 

 
         Figure 8.10. MCRR2 image at 0200 UTC. 

 

 

d) Results of algorithms calibrated using the 126 rain gauges 

 Rain rate images and accumulated images from the two new curves, A-Ec1 and 

A-Ec2, are not very different than those shown in figures 8.6c and 8.7a, and correspond 

to A-Ec calibrated with radar, and therefore are not shown. However, with the help of 

statistical indices as applied in the previous experiments, it is possible to analyse the 

new algorithms. Satellite rain rates derived from the two new curves, A-Ec1 and A-Ec2 

and the new CRR matrix (MCRR2) are verified to radar as shown in the next table 

8.12. Satellite rain accumulation results in 24 hours from the new algorithms compared 

to kriged accumulations from rain gauges are shown in table 8.13. The first conclusion 

from the analysis of the statistical results illustrated in the next two tables is that the 

worse results correspond to the MCRR2 as expected in view of the rain rate images as 

the example shown in figure 8.10. It has produced the lowest CORR, the larger BIAS 
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and RMS compared to the other algorithms. This suggests that the MCRR2 matrices 

derived from rain gauges are not as accurate as the other two, CRR and MCRR, 

generated with the help of the radar. Therefore the use of radar rainfall images instead 

of rain gauges to calibrate CRR matrices is recommended at least for short time 

calibration periods such as five hours. The other two algorithms A-Ec1 and A-Ec2 

seem to work properly for rain rates in view of the numerical results in the tables. 

However the A-Ec2 has a stronger tendency to under-estimate accumulated 

precipitation with respect to A-Ec and A-Ec1 in view of the negative BIAS shown in 

table 8.13.  

 

 

Table 8.12. Statistical results for the rain rates estimated by the satellite and the new
curves and new matrix obtained from the 126 rain gauges. Boldfaced numbers show 
best statistical results in every line. 

 RADAR A-Ec A-Ec1 A-Ec2 MCRR2 
Size 33306  

Mean 2.3   2.3 2.5 1.8 3.3 
SD   6.8    3.0 3.5 2.8 6.9 

BIAS  0.0 0.2 -0.5 1.0 
SDD  -3.8 -3.3 -4.0 0.1 
RMS  6.1 6.1 6.1 7.6 

CORR  0.45 0.45 0.45 0.39 
POD  0.89 0.88 0.84 0.60 
FAR  0.69 0.68 0.64 0.59 
CSI    0.30 0.31 0.34 0.32 
FRC  0.55 0.57 0.64 0.72 
 

 

 

 
Table 8.13. Statistical results for 24 hours of rain accumulation estimated by the satellite
and new curves, A-Ec1 and A-Ec2 and new matrix MCRR2.  Boldfaced numbers show
best statistical results in every line. 

 ACA A-Ec A-Ec1 A-Ec2 MCRR2 
Size 659 

Mean 52.1   42.5 47.4 34.0 59.2        
SD   30.6    15.5 18.5 14.8 38.9   

BIAS  -9.6 -4.7 -18.1 7.1 
SDD  -15.1 -12.1 -15.8 8.3 
RMS  27.9 27.3 31.4 38.0 

CORR  0.48 0.47 0.46 0.45   
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These results for the two new infrared curves A-Ec1 and A-Ec2 imply that 

infrared rainfall curves can be calibrated directly with rain gauges without decreasing 

substantially the accuracy. Satellite calibration tasks can be applied in this study case 

without the help of radar images but making use of a high number of rain gauges in a 

relatively small area. However in view of the accumulated results in table 8.13 a BIAS 

error for A-Ec2 of -18 mm h-1 is significantly large. We believe, therefore, that the best 

calibration method is A-Ec1 for this case since it obtains the next higher CORR (0.47) 

after A-Ec, the lowest BIAS (-4.7 mm h-1) and also lowest RMS (27.3 mm h-1).  

 

e) Minimum number of rain gauges for the A-Ec1 method 

The next experiment studies the minimum number of rain gauges that are 

necessary for a correct performance of the A-Ec1 technique in a calibration time period 

of five hours. Another important reason is that 126 operative rain gauges in real time is 

a large number of automatic rain gauges for a region with a similar area size as the 

Catalonian internal basins, as commented in the beginning of section 8.6. It is very 

probable that part of the information acquired from this observational network is 

redundant for the calibration process. Therefore, we have an opportunity to assess the 

minimum number of rain gauges that could be employed for a correct adjustment of the 

A-Ec1 curve.  

As shown in figure 8.11a each station is identified by a code number and they 

are distributed from station one in the north of the area to station 126 in the south. The 

experimental scheme is developed as follows. Firstly, from the 126 stations a small 

group was removed, each with an odd number scaled between 1 and 125. This 

procedure reduces the number of stations without producing significant uncovered 

zones in the study area. Then the A-Ec1 method is applied using the rest of the stations 

to compute a new infrared rain curve. The new curve is then compared with the older 

equation, 8.3, taken as a reference. Therefore a statistical coefficient that we have called 

Mean Rain Rate Error, MRRE, is used to quantify the mean anomaly in mm h-1 of any 

curve compared to the reference curve. So, as shown in table 8.14 for 105 stations; 

MRRE is -0.99 mm h-1 meaning that the new rainfall curve has a tendency to estimate 

0.99 mm h-1 less in average than the reference curve. We began initially to eliminate 

stations in groups of 10 but it was observed that the change in the MRRE index was not 

significant. So, we increased the number of removed stations in each time to 20 but by 

adding one more, 21, the process can be completed by removing exactly the 1/6 of the 



 155

stations. In three iterations, 3/6, we can study the effect in calibration by removing 

exactly one half of the stations. Following the calibration process when one half of the 

stations (63) were removed, we decided to continue the process but decreasing the 

number of odd rain gauges at a rate of 10 in search of a more detailed MRRE index 

behaviour. 

In each iteration other important indices in addition to the MRRE are calculated 

as shown in table 8.14; such as the correlation coefficient r of the best fit regression 

line, the temperature interval ΔT in Kelvin and the regression line A and B coefficients 

in the logarithm scale correspond to a linear equation structure as follows:  

 

log (R) = B TIR + A                                                     (8.4) 

 

where R is rain rate in mm h-1 that can be easily calculated from the satellite infrared 

temperature TIR in Kelvin by just inverting the logarithm. 

 

 

Table 8.14. A and B are the linear coefficients derived from the best regression fit. ΔT
(K) is the temperature interval between the mean points to perform the regression fit. r 
is best fit correlation coefficient. MRRE (mm h-1) Mean Rain Rate Error of every new 
A-Ec1 curve obtained with the different number of rain gauge stations compared to the 
reference rain curve (equation 8.3). It is shaded the rows for which the MRRE grows
appreciably. 

Nº of stations A B ΔT (K) r MRRE (mm h-1)
126 34.7900 -0.1469 2.5 0.97 0.00 
105   31.2143 -0.1309 4.0 0.98 -0.99 

84        34.6566         -0.1465 4.0 0.98 -0.61 
63 33.3528 -0.1405 3.0 0.94 -0.47 
53 32.7051 -0.1371 4.5 0.98 0.34 
43 32.2706 -0.1348 4.5 0.98 0.97 
33 35.8379 -0.1512 5.0 0.98 1.15 
23 28.8248 -0.1213 10.0 0.99 -3.11 
13  21.7678 -0.0902 11.0 0.98 -4.51 

 

 

The MRRE evolution with respect to the number of stations was largely 

unpredicted by us. Instead of an expected gradual growth of the MRRE while the 

available stations are eliminated, the results in table 8.14 show a decrease of MRRE 

with the lowest value of 0.34 mm h-1 for 53 stations. It seems therefore that it exist a 

specific number of stations that produces a minimum MRRE. After this point, if the 
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number of stations continues decreasing the MRRE grows appreciably (see shaded 

rows of table 8.14). Other observation from this table is that if a MRRE of 1.0 mm h-1 is 

tolerable then 43 rain gauges working in five hours within satellite images time 

resolution of 30 minutes would give a suitable amount of data to perform an A-Ec1 

curve. Therefore if the internal basins of Catalonia occupy an area of 16512 km2 only 

43 rain gauges in this area are needed for calibration, therefore, we have one station 

each 380 km2 on average, which supposes, a minimum mean distance between stations 

of 19.6 km for an ideal network of rain gauges.  
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a)

b)

c)

d)

e)

 
Figure 8.11. A-Ec1 calibration method applied using different number of rain gauges for 
the internal basins of Catalonia. (a) 126 stations, (b) 63 stations, (c) 43 stations, (d) 33 
stations and (e) 23 stations. The red triangles indicate the mean points used in the line 
regression fit. 
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8.7 Discussion and conclusions 

a) Discussion 

An important fact that makes this case of study difficult from the satellite point 

of view is that convective cells are covered by clouds with relatively homogeneous and 

relatively warm tops in this case study. This conclusion is based on a qualitative check 

of the infrared satellite images and radar images. The relatively warm cloud top 

produces a systematic under-estimation of the precipitation while the homogeneity of 

these cloud tops makes convection at medium and low levels almost invisible from 

Meteosat. Under these conditions and in view of the results, A-E and CRR standard 

satellite algorithms have a tendency to compute strongly under-estimated amounts of 

precipitation and to produce low accuracy compared to radar rain rates and 24 hour 

accumulations. These results are not very surprising when one considers that we are 

attempting to estimate precipitation on a very convective case using standard 

algorithms calibrated with a large amount of data. Therefore the use of these standard 

techniques in such severe events may still be under consideration and review.  

The tested rainfall corrections do not solve, in general, the under-estimation and 

low accuracy problems. The causes of this are difficult to explain and need much more 

detailed sensitivity studies that should be performed on more precipitation cases. In the 

initial steps the application of the PWRH and OC correction factors was of great hope 

because they were the ones that could increase the rainfall amounts significantly. The 

reality, in view of the results in tables 8.2 to 8.7 for the two corrections, is that only 

mild and unclear improvements in the BIAS, SDD and, in some cases, on the RMS are 

observed but never in the CORR index. Only the parallax seems not to not worsen the 

rain rates and be slightly beneficial based on small improvements shown in the CORR 

index for the accumulated A-E. However, the GR1 correction appears to produce a little 

advance in the accumulated CRR precipitation but this result should be considered with 

caution because at the same time the BIAS and the RMS both suffer high deviations 

when compared to radar.  

With the aim of resolving these problems two options were investigated. Firstly, 

both algorithms are recalibrated with the available radar data during the period of 

highest precipitation. In addition, the last section, 8.6, is focused towards the 

recalibration of satellite algorithms directly with data from the rain gauges. Secondly, 
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we have developed a method to assimilate the lightning data in order to correct rain 

rates.  

The calibration alternative can, obviously, correct the estimated rainfall amounts 

to others much closer to the real ones as shown by lower BIAS errors in Tables 8.9 and 

8.10. However accuracy stays almost unchanged or a little bit improved as shown by 

the CORR index in the same tables. Calibration is easy to be performed once the case is 

over and the radar and satellite data are available. A much more difficult problem not 

explored in this work at the present time, is how could be apply the calibration in real 

time. Under our opinion a possible procedure could be as explained next:  

The first step is the generation of a database of A-E rainfall curves and CRR 

matrices corresponded to flood cases occurred at different times of the year for the 

Catalonian region. Then, a method to select the most adequate curve and/or matrix from 

the database to each meteorological situation, based on the current weather forecast, 

should be developed. This best curve and/or matrix could be used for the initial stages 

of the storm. One time the meteorological event has began and a suitable amount radar 

and satellite images are available over the affected area (two or three hours) A-E and 

CRR calibration routines can start automatically in order to generate updated 

coefficients that can be used, maybe, for the next three hours. Then this calibration-

application cycle can be repeated until the end of the storm. 

From the KL factor generation during the calibration period is obvious that the 

radar rainfall is significantly greater in electrically charged points than the ones without 

electrical activity (see figure 8.5a). On the other hand, most of the cloud to ground 

lightning hits counted in the calibration period have occurred, as expected, for points 

corresponded to Meteosat infrared temperatures (TIR) below 230 K as shown in figure 

8.5b. These two factors imply that the three datasets; Meteosat, radar and lightning 

should be well correlated in time and space. However there exist some electrical 

discharges associated to TIR greater than 240 K and, in addition, correlated with high 

radar rain rates (see one small section of the ALR curve with rain rates greater than 20 

mm h-1 in figure 8.5a). This is the origin that the KL correction factor is inversely 

proportional to the Meteosat infrared temperature. Our hypothesis to explain the 

discrepancy between the KL and the TIR is that it is caused by strong convection 

occurred at low levels and, thus, in clouds with warm tops. Much more cases should be 

studied and the KL factor has to be computed and analyzed again to get more solid 

conclusions. But, if our supposition is true the use of the KL factor within lightning and 
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satellite could be an adequate tool to highlight low level convective precipitating points. 

By employing only satellite images to detect them it would be a much more difficult 

task. The use of lightning to correct rain rates by the KL parameter has improved the 

results as explained at the end of section 8.5 and has also the big advantage that it is 

easily exportable to other cases. Such lightning detection systems can cover very high 

land and sea extensions and the information generated from them are perfectly 

combinable with geostationary satellite images or derived cloud products. 

Comparing the two algorithms, A-E and CRR, calibrated or not and based on the 

CORR index in the tables, the first one has demonstrated in general a better 

performance for rain rates and the second one, better results for accumulations. The 

relatively CRR bad results for the rain rates could be motivated in part by few  

Meteosat-7 water vapor band images that were missed in the verification period causing 

bugs in the CRR data stream. In order to keep constant the number of points in the 

verification with respect to A-E these bugs were filled with time averaged CRR images. 

These could be in some measure behind the poor results for CRR rain rates evaluation.  

Many times and in many places radar images are not available so that it was 

explored the possibility to do the recalibration of the satellite algorithms using rain rates 

from rain gauges as described in section 8.6. From the three tested methods, A-Ec1, A-

Ec2 and CRR, the last produces the poorest results after a first verification with respect 

to radar precipitation images. In addition the new CRR images or MCRR2 images are 

full of noise as shown in figure 8.10 caused by several anomalous rain classes appeared 

in the new rain matrix (area indicated by the circle in table 8.11). This feature observed 

in the MCRR2 rain matrix and presumably behind the accuracy decrease, could be 

produced by the limited size of the calibration dataset with no more than 1386 points. 

This is probably not enough data to define correctly the no rain area in the rain matrix 

after applying the CRR statistical calibration method. A possible solution to this 

problem could be the enlargement of the calibration time to 12 or 24 hours, however in 

this case the calibration-application operability in short time periods would be almost 

impossible.  

From the other two methods, A-Ec1 and A-Ec2, the second produce a sensible 

under-estimation of the 24 hours accumulated precipitation that unfortunately we 

cannot explain at the time of writing this thesis why the A-Ec1 method provides the 

best results. In the last experiment it was observed that assuming an error of 0.34 mm h-

1 in the estimated precipitation by the A-Ec1 method curve, the calibration can be 
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performed with 53 rain gauges well distributed instead of 126, which is the total 

number of rain gauges. This result suggests that part of the information acquired by a 

dense network of stations for a A-Ec1 curve calibration is redundant and closer results 

can be obtained by using much less rain gauges. On the other hand assuming a greater 

error of 1 mm h-1 (which corresponds to the use of 43 rain gauges as shown in table 

8.14) and if the calibration is done using infrared images from the Meteosat-8 with a 

time resolution 15 minutes, then, we may have two possibilities that could be explored 

in the near future:  

− The calibration period could be diminished to the half (two hours and a half) 

using 43 rain gauges. 

− The number of stations could be diminished to the half (22) for a calibration 

period of five hours. 

 

b) Conclusions 

A-E and CRR standard algorithms applied to the Montserrat flood case has a 

strong tendency to under-estimate precipitation due to the relatively homogeneous and 

warm cloud tops found in this case of study. 

From the different rainfall correction factors only the parallax one seems to not 

deteriorate the results after an analysis of the statistical indices.  

In this flood case a recalibration experiment with radar of the A-E curve and 

CRR matrix can improve the estimated precipitation amounts as natural. The problem 

to solve in the near future is how to apply calibration routines in real time in such 

severe events. 

The assimilation of lightning data by a new correction factor described in this 

work can give very valuable information about low level convection and can improve 

sensibly the estimation of the precipitation from satellite.  

This study does not clarify which of the two algorithms A-E or CRR do better 

estimations in general. More cases in this sense should be still analyzed to get solid 

conclusions. 

  In the cases in which radar images are not available a direct calibration with 

rain gauges is possible using the 126 stations during 5 hours. From the three tested 

methods (A-Ec1, A-Ec2 and CRR), the A-Ec1 gives the best results after a verification 

with respect to radar rain rates and kriged 24 hours accumulations from the rain gauges. 

In addition, more than half of the rain gauges are not strictly necessary to calibrate a 
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rainfall curve applying the A-Ec1 method by assuming an error of 0.34 mm h-1 

compared to the reference curve. 
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9. General conclusions and current studies 

9.1  General conclusions 

 This thesis applies and verifies two satellite rainfall estimation methods, the 

Auto-Estimator and CRR, on two flood events occurring in two different places, 

Albania and the Catalonian region in Spain. Both zones have their coastlines along the 

Mediterranean Sea and therefore are subject to a strong influence of this sea. Both flood 

cases have very different origins. The first one was generated by a very moist and 

unstable air mass flowing from the west and southwest producing stationary severe 

convection over the Albanian basin. Thunderstorm clouds were highly developed with 

high cloud tops due to extraordinary cold pixels observed in the Meteosat infrared 

images. The principal consequence of this was the strong rainfall over-estimation 

produced by the Auto-Estimator. The second flood case was originated by an active 

cold front that crossed the Iberian Peninsula from the north to east. The violent 

interaction between the cold air mass coming from the north and the warm and moist 

Mediterranean environment was the principal cause of the heavy rainfalls that occurred 

over the Catalonian basin. However, here cloud top infrared temperatures from 

Meteosat were relatively warmer and the two satellite rainfall methods have 

experienced a strong tendency to under-estimate precipitation. These results are not 

very surprising when it is considered that we are attempting to estimate precipitation on 

flood cases using standard algorithms calibrated with a large amount of data. Therefore 

the use of these standard techniques in such severe events may remain under 

consideration.  

Rainfall corrections proposed by Vicente in different publications (Vicente et al. 

1998; 2002) should add flexibility to the standard algorithms in extreme flood cases. 

These have been performed and tested. The MM5 numerical model outputs were used 

for PWRH and OC correction factors. In general after a sensitivity study, any of these 

solved the over and under-estimation problems experienced in each case and has 

increased correlations significantly. While on the Catalonian flood case only PC and 

GR1 give mild and unclear improvements, over Albania the PC, GR2 and OC 

correction factors have produced encouraging results with respect to the spatial 

distribution of the daily precipitation. These have increased correlation coefficients of 

around 14% in average and a total of 20% by testing the three corrections together, one 

after another. It is evident that with only two studied flood cases it is difficult to get 

solid conclusions about these corrections. However we believe that PC, GR1, GR2 and 



 164

OC can contribute to improving the estimation and advances would be more significant 

for those cases with strong convective cloud tops as observed in the Albanian case. In 

any case, the research should continue with the analysis of more flood cases. Details 

concerning the development of new corrections are provided in this thesis. Firstly the 

GR2 is a dynamic version of the GR1 proposed by Vicente et al. (1998). It has the 

benefit of being able to calculate infrared temperature changes in time by following the 

movement of the cloud tops. Secondly, the lightning correction factor or KL factor can 

focus the main precipitation on those pixels where lightning activity is detected. It is 

especially recommended in cases in which convection is mostly developed on low 

levels in the troposphere or covered by a layer of clouds with homogeneous tops and 

therefore difficult to be identified from geostationary satellites. As mentioned, any of 

the standard corrections did not produce clear improvements in the Montserrat case, 

however, the use of electrical discharges through the KL factor had produced 

measurable advances. A mean increase around 9% over the correlation coefficients for 

rain rates and mean increase of 15% for 24 hours rain accumulations were observed. 

 Another important aspect studied in this research is that the recalibration 

performed directly over the flood cases can improve the results and show how far the 

new calibrated coefficients are from the standard. Logically, satellite rainfall estimates 

are in general well adjusted after a calibration but spatial skills in both flood cases were 

not substantially improved with respect to the original algorithms. Calibration has a 

significant impact on the rainfall curves for the Auto-Estimator and on CRR matrices 

compared to standard. These two facts make a short time calibration process necessary 

in order to improve the estimations on such severe events. However, calibration 

routines in real time are technically difficult and need a good synchronisation in time 

and space between the satellite, radar and/or rain gauge data streams. Other problems 

not explored in this work but planned for the near future, concern the time periods and 

optimal spatial domains necessary to perform correct calibration routines.  

Albania is a region in which meteorological radars were not operative at the 

time of writing this thesis. We have tried a new calibration method combining Meteosat 

infrared images directly with eight rain gauges in three days of heavy rainfall. Results 

were encouraging as commented in chapter 5 but this experiment was only a small 

challenge, many studies have to be completed with other rainfall cases to assess these 

ideas before this method can be applied operationally. Over the Catalonian region, a c-

band radar located near Barcelona city provides much more rainfall information over 
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the study area. However, there are some disadvantages behind these sensors. For 

example; radar images can suffer from attenuation and calibration problems causing 

errors on the radar estimated precipitation. In this thesis chapter 7 was dedicated to the 

Barcelona radar and to study two different methodologies to get reliable radar rainfall 

estimations with the help of a rain gauge network. Once time radar attenuation periods 

are identified and radar rain rates are verified, they can be used for calibration and 

validation purposes for satellite rainfall methods. Advantages of radars in addition to 

the high volume of rainfall data that can be generated in one scan, is that spatial scope 

is greater than the one provided by a rain gauge network and the distribution of the 

precipitation is screened with a much higher space-time resolution. Therefore fast 

calibration routines between satellite and radar images could be started maybe a few 

hours before the dangerous part of the storm reaches highly populated areas around the 

area covered by radar. However in cases in which the radar is not available, a standard 

algorithm can be applied for the first hours while a direct calibration with rain gauges 

using the A-Ec1 or A-Ec2 method can be activated. The calibration time period using 

rain gauges depends on the number of operative stations. With only 8 rain gauges that 

can provide rain rates, as occurred in Albania, minimum periods of 24 hours are 

necessary (experiments done but not shown in this thesis) while using 126 rain gauges, 

as in Catalonia, five hours seems to be enough time. However, it probably could be 

reduced to a much smaller period assuming an error in the infrared curve estimations.  

Other results about satellite rainfall direct calibration with rain gauges are that 

for CRR matrices generation need a big volume of rainfall data that only a radar can 

provide, at least for short calibration periods. The A-Ec2 method provide better results 

in the Albanian flood case while the A-Ec1 method is the best in the Montserrat case. In 

this situation is difficult to say which of the two methods is better, as more flood cases 

should be studied for clarification. The A-Ec1 calibration experiment for the second 

flood case, by assuming a minimum error of 0.34 mm h-1 compared to the reference 

curve, the number of stations in five hours can be reduced from 126 to only 53. And, 

assuming a greater error the number of stations might be reduced significantly more. 

Considering only the two studies over Albania and Catalonia, it is difficult to 

identify which of the two methods, A-E or CRR, can do better estimations. In the 

Albanian flood case the A-E has provided slightly higher CORR (0.39) indices for daily 

accumulations than CRR (0.37) but has also produced a strong over-estimation (A-E 

BIAS: +137 mm). CRR matrices have produced better estimated amounts (CRR BIAS: 
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+2.4 mm) and a recalibration was not necessary. Errors shown by RMS indices are very 

high A-E before calibration (246.5 mm) and much lower after calibration (45 mm) and 

have the same CRR value (45 mm). For the flood case in Catalonia CRR (0.51), 

accumulation in 24 hours was a bit better than A-E (0.48), taking into account again the 

CORR index. However, both algorithms have produced a strong under-estimation 

(CRR BIAS: -41.7 mm, A-E BIAS: -23.8 mm) justifying, the recalibration experiment 

with the radar rain rates. After this process, CRR correlation coefficient is still a bit 

higher that the one provided by the calibrated Auto-estimator. Errors given by the RMS 

index are around 27 mm for both algorithms before and after the calibration. 

Advantages of the CRR algorithm is that it can eliminate cold thin cirrus clouds with no 

precipitation as commented in section 4.4 and it has less rain rate classes (see table 4.2) 

which is more realistic due the high uncertainty of rainfall estimations. A possible error 

source, not taken into account for CRR, was that some Meteosat water vapour images 

are missed and bugs were filled with time averaged CRR images as explained in section 

8.6. In general, more cases should be studied in order to know which method can 

perform better rainfall estimations.  

It is clear that spectral interaction between cloud top radiation and the rainfall 

from their bases have a very dynamic and complex behaviour that can not be described 

with only one averaged calibration curve or matrix. In addition, discrepancies between 

cloud top radiation and averaged rainfall schemes seem to be increased in severe 

meteorological events just when these estimations in real time are really important. To 

improve the estimation of rain rates and accumulations from A-E and CRR, it is 

essential to study how calibration coefficients change with the season of the year or to 

each type of storm. To do that, a set of rainfall cases at different times of the year will 

be planned and a database of A-E rainfall curves and CRR matrices will be computed in 

the near future.  

 

 

9.2  Current Studies 

The research and development work is still in progress in different ways: One 

important line, recently started, is focused on the application in real time of the Auto-

Estimator and CRR algorithms within other updated methods. Here some post 

processing corrections are included that have shown some improvements such as 

parallax (PC), the dynamic cloud growth rate (GR2), orographic (OC) and lightning 
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correction factor (LG). However, some of these applications are now operative at the 

time of writing and images are available at our web page http://eady.uib.es/web-

grup/satellit/. At the same time and making use of the operational satellite data flow, a 

database of rainfall curves and CRR matrices generated every rainy day over the 

western Mediterranean area is archived for later analysis.  

A second research line looks at very interesting meteorological features such as 

tropical-like hurricanes in the Mediterranean Sea (Emanuel, 2005; Fita et al. 2007) from 

a Meteosat perspective. Storms with a clear eye surrounded by an asymmetric cloud 

structure are quite unusual in the Mediterranean, one or two cases per year are identified 

in satellite images. Examples of these storms are shown in figure 9.1. At some point in 

time they are generated over the sea and can affect islands and continental coastal lands. 

Although documented tropical-like cyclones have not usually achieved hurricane 

intensity, their potential for damage is high due to the densely populated Mediterranean 

coastal regions. Different features of a set of these storms are analysed from a satellite 

point of view: storm trajectories, spatial lengths and speeds of displacement are 

analysed. Precipitation fields are estimated from Meteosat infrared images and 

convective cloud pixels are identified with the help of electrical discharge data. Low 

level winds are estimated from low cumulus clouds tracked in infrared images by 

applying a cross correlation method. Preliminary results at the time of writing were 

presented in the EUMETSACONF2007 which can be found at http://eady.uib.es/web-

grup/satellit/ in the Medicanes section. This initiative was started for experiments based 

on sensitivity studies of these meteorological features applying the MM5 model within 

assimilation of satellite and lightning derived results. Here, remote sensing observations 

related to precipitation and convection is prepared to be assimilated by the model 

following a methodology similar to the one explored by Davolio and Buzzi (2002). 

Most of these works are developed into the framework of the Precioso project (MEC, 

CGL2005-03918/CLI). Results from assimilation experiments performed by Fita et al. 

(2007) can also be found at the same web page. 
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Figure 9.1: Examples of tropical-like Mediterranean storms in Meteosat visible images 
corresponded to three different cases: (a) 1996/09/12 at 0500 UTC, (b) 2003/10/18 at 
1200 UTC and (c) 2005/12/15 at 0845 UTC. Black arrows are pointing to the storm’s 
eye. 

b) 

c) 

a) 
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