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Capitol 1

Introduccio 1
estructura de la memoria

En Vestudi de sistemes dinamics és important calcular els punts fixos de la
dinamica determinista del sistema i determinar la seva estabilitat. Per obtenir
aquests resultats es pot fer servir el potencial de Lyapunov, tant en el cas de sis-
temes mecanics com no mecanics. Aquesta funcié dinamica decreix al llarg de les
trajectories, i és possible calcular els punts fixos com els extrems de la funcié de
Lyapunov. En alguns casos, I'existéncia del potencial de Lyapunov permet entendre
les trajectories a l’estat transitori i a ’estacionari. La distribucié de probabilitat
estacionaria en el cas de la dinamica estocastica pot, sota determinades condicions,
estar també governada pel potencial de Lyapunov. Part del proposit d’aquest treball
és explicar la dinamica d’alguns sistemes lasers utilitzant aquests potencials.

Fisicament, un laser és un dispositiu en que el llum emes s’origina en el procés
d’emissié estimulada. Els tres elements basics que es requereixen sén: un mitja
amb guany, una cavitat optica i un mecanisme de bombeig. Des del punt de vista
dinamic, els distints tipus de lasers es poden classificar segons el ritme de decaiment
de les variables involucrades en les equacions d’evolucié: el camp electric dins la
cavitat, la inversié de poblacié i la polaritzacié material. En els lasers de classe B,
la polaritzacié decau cap a l'estat estacionari molt més rapidament que les altres
variables i es pot eliminar adiabaticament. Per als lasers de classe A, una tnica
equacié per al camp electric és suficient per descriure la dinamica.

Aquest treball tracta els lasers de classe A i classe B, estudiant la seva dinamica,
en els casos determinista i en presencia de renou, fent 1s del potencial de Lyapunov.

El control d’un laser a partir de I'aplicacié d’un senyal injectat coherent és una
area important de recerca amb una gran varietat d’aplicacions. Quan als lasers
se’ls aplica un senyal injectat, la dinamica resultant esdevé molt complexa. El
comportament del sistema pot ser qualitativament diferent depenent de D’eleccid
dels parametres: estats amb la mateixa freqiiencia que la d’entrada, polsos, rutes
cap al caos, etc. De I'estudi del conjunt invariant d’aquest sistema no lineal, es veu
que la bifurcacié Hopf-sella—node (HSN) (el camp vectorial linealitzat té un punt fix
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degenerat amb dos autovalors imaginaris i un zero) actua com a centre organitzatiu.

La modulacié a alta velocitat dels diodes lasers és una area en estudi a causa
de les seves possibles aplicacions. Els lasers en aquestes circumstancies poden pre-
sentar diversos comportaments no lineals: distorsié harmonica, periode doble, bi-
estabilitat, i caos. L’objectiu de part d’aquest treball és el d’obtenir els dominis
d’existencia de les inestabilitats basiques involucrades. Ens restringim a l’estudi
de les resonancies principals: maxima resposta del sistema a una pertorbacié ex-
terna quan la freqiiéncia de modulacié es varia (s’entén com a resposta la intensitat
maxima de la poténcia optica de sortida).

Aquesta memoria es basa en els segiients articles:

[1] C. Mayol, R. Toral i C.R. Mirasso, “Lyapunov—potential description for laser
dynamics”, Physical Review A 59, 4690 (1999).

[2] C. Mayol, M.A. Natiello i M. Zimmermann, “Resonance structure in a weakly
detuned laser with injected signal”. International Journal of Bifurcation and Chaos
11, 2587 (2001).

[3] C. Mayol, S.I. Turovets, R. Toral, C.R. Mirasso i L. Pesquera, “Main Reso-
nances in Directly Modulated Semiconductor Lasers: Effect of Spontaneous Emis-
sion and Gain Saturation”. IEE Proc.-Optoelectronics 148, 41 (2001).

[4] C. Mayol, R. Toral, C.R. Mirasso, S.I. Turovets i L. Pesquera, “Theory of
Main Resonances in Directly Modulated Diode Lasers”. Acceptat a IEEE Journal
of Quantum Electronics, a publicar—se el marc de 2002.

[5] C. Mayol, R. Toral, C.R. Mirasso i M.A. Natiello, “Class A lasers with injected
signal: bifurcation set and Lyapunov potential function”. Enviat a Physical Review
E (2002).

A la part I de la memoria es resum els elements basics que s’utilitzen a la resta
del treball. En el capitol 2, es presenta la relacié entre els potencials de Lyapunov i
les equacions dinamiques; en el capitol 3, es fa un resum d’analisi de bifurcacions; i
en el capitol 4, apareixen les caracteristiques del laser com a sistema dinamic.

La part II es destina a l’estudi dels lasers de classe A. En el capitol 5, basat
en [1], es descriu la dinamica d’aquests lasers mitjancant el potencial de Lyapunov.
En el capitol 6, basat en [5], els lasers de classe A amb senyal injectat s’estudien,
obtenint el conjunt de bifurcacions a l’estacionari i estudiant la dinamica amb el
potencial de Lyapunov quan és possible.

La part III tracta de la dinamica dels lasers de classe B. En el capitol 7, basat
en [1], la dindmica de les equacions de balang per a aquests lasers s’analitza en
termes del potencial, incloent els termes de saturacié de guany i d’emissié espontania.
El capitol 8, basat en [2], tracta dels lasers de classe B amb senyal injectat. El
treball que es presenta completa la serie d’estudis anteriors de bifurcacions de lasers
amb senyal injectat a prop de la singularitat Hopf-sella-node; s’analitza el rang de
parametres on el tipus II Hopf-sella—node s’espera. En el capitol 9, basat en [3] i
[4], s’estudia les resonancies principals, i I'impacte que els termes de saturacié de
guany i emissi espontania tenen en ells, en els lasers directament modulats.



Chapter 1

Introduction

In the study of a dynamical system, it is important to obtain its invariant sets,
being the fixed points the simplest ones. In some systems, either mechanical or
non—mechanical, it is possible to construct a dynamical function (called Lyapunov
potential) that decreases along trajectories. The usefulness of Lyapunov functions
lies on that they allow an easy calculation of the fixed points of a dynamical (deter-
ministic) system as the extrema of the Lyapunov function as well as determining the
stability of these fixed points. In some cases, the existence of a Lyapunov potential
gives an intuitive understanding of the transient and stationary trajectories as move-
ments of test particles in the potential landscape. In the case of nondeterministic
dynamics, i.e. in the presence of noise terms, and under some general conditions, the
stationary probability distribution can also be governed by the Lyapunov potential
and averages can be performed with respect to a known probability density function.
Part of the aim of this work is to explain the dynamics of some laser systems by
using Lyapunov potentials.

1.1 Lasers: Classification

Physically, a laser is a device in which the emitted light is originated in a
process of stimulated emission. For obtaining laser action three basic ingredients
are necessary: a gain medium (that amplifies the electromagnetic radiation inside
the cavity), an optical cavity (that provides the necessary feedback) and a pump-
ing mechanism. Lasers are classified depending on the material which constitutes
the gain medium. For example, semiconductor lasers are those for which the gain
medium is a semiconductor material. A complete understanding of a laser is based
on a fully quantum—mechanical description [Haug, 1969; Sargent et al., 1974]. How-
ever, a simpler description can be given in terms of evolution equations for the
electric field inside the cavity, the population inversion and the material polariza-
tion. Different types of lasers can be classified according to the decay rate of the
variables involved in the equations. In class C lasers, the material polarization, the
population inversion and the electric field decay within comparable time scales. For
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class B lasers, the material polarization decays towards the steady state much faster
than the other variables and it can be adiabatically eliminated. Finally, in class
A lasers, the population inversion and the material polarization decay much faster
than the electric field and only one complex equation is required to describe the
dynamics.

In this work we will deal with class A and class B lasers. Both lasers decay to
their steady states when their thresholds are crossed. However, this simple dynamics
becomes richer when an injected signal is applied or some of the parameters are
modulated. During this thesis these effects will be discussed with some detail.

1.2 Laser with injected signal

The control of a laser via an injected coherent signal is an active area of re-
search with a great variety of applications. Experiments and numerical analysis
with this special arrangement have been performed leading to different kinds of be-
haviours (locked lasers, pulses, etc.) [Braza and Erneux, 1990; Gavrielides et al.,
1997; Simpson et al., 1997; Nizette and Erneux, 1999]. The behaviour of the system
can be qualitatively different depending on the choice of parameters and numeri-
cal simulations in three-dimensional models of lasers with injected signal, revealed
multistability [Wieczorek et al., 2000b] and different “routes to chaos” for different
parameter regions [Tredicce et al., 1985a; Solari and Oppo, 1994; Krauskpof et al.,
2000; Wieczorek et al., 2000a; Wieczorek et al., 2000c).

A good theoretical understanding of the underlying mechanisms governing the
great variety of possible behaviours was required. An early attempt in this direction,
[Solari and Oppo, 1994] aimed to approximate the three—dimensional rate equations
for a class B laser in the vicinity of the parameter region, where this system be-
comes a Hamiltonian system, by a more tractable two-dimensional averaged system
[Guckenheimer and Holmes, 1983]. A detailed study of the invariant sets revealed
that at the heart of this nonlinear system, the Hopf-saddle-node bifurcation played
the role of an organizing center. This local bifurcation arises when the linearization
of the vector field has a degenerate fixed point with two purely imaginary and a
simple zero eigenvalue. The unfolding of this bifurcation requires two parameters
(the amplitude injection rate § and the detuning 7 of the injected signal to the
unperturbed laser operating frequency), and four different variants known as type
(I-IV) have been studied [Guckenheimer and Holmes, 1983; Wiggins, 1991]. All of
these types display curves of saddle-node and Hopf bifurcations of fixed points in
parameter space, which are tangent at one point. For increasing cavity detuning
6 > 0, Solari and Oppo [Solari and Oppo, 1994] found that type II, I and III may
be visited (in that order).

The interest in a physical (and testable) application displaying the above qual-
itative changes close to the Hopf-saddle node bifurcation, is not restricted to the
determination of the well known invariant sets which result from normal form anal-
ysis (saddle-node, primary and secondary Hopf bifurcations). Global behaviour not
present in the usual unfolding of Hopf-saddle node singularity has recently been
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studied as a primary source for chaotic behaviour in lasers with injected signal. For
example, in the large cavity detuning regime (corresponding to type III of Hopf-
saddlenode) Zimmermann et al. [Zimmermann et al., 1997] showed the occurrence
of Sil’nikov homoclinic orbits [Sil’nikov, 1965] to any of the saddlefocus fixed points
(locked solutions). Furthermore, as the detuning is decreased the transition from
type III to type I showed that the homoclinic orbits to a fixed point, at the critical
where the Hopf-saddle-node type changes turns to a homoclinic tangency to the pe-
riodic orbit of Hopf-saddlenode [Zimmermann et al., 2001]. This novel behaviour
opens the possibility that this physical system may become an ideal test—bench for
new global bifurcation scenarios.

In the previous studies on the global bifurcations in laser with injected signal, a
combination of the Hopf-saddle-node singularity together with a global reinjection
resulted in a proper framework for understanding the laser dynamics. However, in
type II, which is the interesting case for our work, we find a new possible complication
which involves a heteroclinic cycle with the off state.

1.3 Directly modulated lasers

High-speed modulation of laser diodes is an important area of study due to the
possible applications of these devices. Diode lasers clearly exhibit in such circum-
stances various kinds of nonlinear behaviour, i.e., harmonic distortion, multi-—pulse
response on the time scale of one modulation period, period doubling, amplitude
and/or pulse position bistability, and chaos [Kawaguchi, 1994]. Usually, these com-
plicated dynamical phenomena are considered as harmful to the practical application
and should be avoided. Nevertheless, there have been some experimental demonstra-
tions of feasibility of using a resonance period doubling regime and pulse position
bistability for realizing high speed optical logic elements [Gallagher et al., 1985].
Also, large capacity information transmission and ultrafast optical processing sys-
tems [Liu and Ngai, 1993; Mirasso et al., 1993; Breuer and Petermann, 1997] are
representative of the possible applications of these systems. Recently, a great deal
of interest has been generated by the potential of using lasers running in a chaotic
regime as the carriers of information in secure chaotic communication schemes [Mi-
rasso et al., 1996; Goedgebuer et al., 1998; Fisher et al., 2000]. In addition to the
optical feedback and saturable absorption effects, chaos in laser diodes induced by
modulation in the pump current is another option for building transmitters and
receivers for encoded optical communications.

Before Liu and Ngai [Liu and Ngai, 1993] succeeded in observing chaos in a 1.55
pm InGaAsP distributed feedback bulk laser, followed by the report on a similar
observation in 1.55 ym multiple quantum well lasers [Matsui et al., 1998, there had
been some controversy in earlier theoretical predictions [Tang et al., 1963] and ex-
perimental results [Hemery et al., 1990; Kao and Lin, 1993]. Specifically, chaotic and
high periodic regimes had not been experimentally observed in contrast to numerical
predictions based on the rate equations. It is well known [Agrawal, 1986] that the
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gain saturation factor contributes to the damping of relaxation oscillations and it
might be the reason for eliminating chaos. The presence of spontaneous emission
in the cavity and the Auger recombination factor have also been numerically exam-
ined as being one cause of the suppression of chaos [Tang and Wang, 1987]. The
importance of noise terms is again under consideration [Lim et al., 2000]. Finally,
the gain sharing among multi-longitudinal oscillating modes was identified as an ef-
fective gain compression factor and therefore leading to suppression of chaos [Wada
et al., 1998]. Now, it is largely accepted that a single mode laser diode with rel-
atively small gain saturation and spontaneous emission parameters might undergo
a period doubling route to chaos under current modulation. From the analytical
side, such an impact of these parameters was explained in the framework of the
small signal analysis showing an increase of the system damping with the increase
of the above mentioned parameters [Yoon et al., 1989]. In addition, Hori et al. [Hori
et al., 1988] suggested that in the large signal modulation regime, the spontaneous
emission term, besides contributing to a linear damping of the system, leads to an
additional nonlinear damping. This effect would change the representation of the
typical Toda oscillator potential topology for the laser and would be also responsible
for suppression of chaos. Nevertheless, specific mechanisms of these effects in the
large signal regime are not yet fully understood. To the best of our knowledge, a
detailed study of the role of spontaneous emission and gain saturation on nonlinear
dynamics in the large signal regime is still lacking even in the framework of the
simple rate equation model.

Part of this work aims to clarify the parameter domains of the basic instabili-
ties involved. We will restrict ourselves to the study of main resonances to which
little attention has been paid in previous works. Defining the response variable as
maximum intensity in the optical-power output, a main resonance is understood as
the maximum response of the system to the external perturbation when the modu-
lation frequency of the external perturbation is varied. Although main resonances
were considered theoretically and numerically [Erneux et al., 1987; Samson and Tur-
ovets, 1987; Schwartz, 1988; Samson et al., 1990; Schwartz and Erneux, 1994] and
also experimentally [Samson et al., 1992; Chizhevsky and Turovets, 1993; Bennett
et al., 1997; Chizhevsky, 2000], for conventional class B lasers the impact of large
gain saturation and spontaneous emission terms, which are typical for laser diodes,
is not fully understood yet. By using the asymptotic quasi-conservative theory
[Katz, 1955; Drozdov, 1955; Erneux et al., 1987; Samson and Turovets, 1987] with
an appropriate Lyapunov potential describing the laser dynamics, we compute the
domains of existence for the resonance n7' periodic responses in arbitrarily large
amplitude modulated laser diodes. For this particular kind of nonlinearity, these
resonant curves are associated to the so—called primary saddle-node bifurcations
and are often confused in experiments with the multiperiodic windows in chaos.
When considering gain saturation and spontaneous emission terms on the dynamics
we find that, besides increasing the damping of relaxation oscillations, these param-
eters change the topology of the Lyapunov potential, increasing the thresholds of
instabilities in the system. The theory is substantiated by numerical results. The
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estimations for primary saddle-node bifurcations in strongly modulated laser diodes
create the basis for a systematic search for a priori wanted regimes in simulations or
experiment and also naturally explain pulse position multistability [Gallagher et al.,
1985; Chizhevsky and Turovets, 1993].

Another way of obtaining nonlinear effects in lasers is by modulating their losses.
Cavity loss can be modulated in practise by using a variable reflector or in a two—
section laser when modulating periodically the passive section.

1.4 Structure of the work

This manuscript is based on the following papers:

[1] C. Mayol, R. Toral and C.R. Mirasso, “Lyapunov—potential description for
laser dynamics”, Physical Review A 59 (6), 4690-4698 (1999).

[2] C. Mayol, M.A. Natiello, and M.G. Zimmermann, “Resonance structure in
a weakly detuned laser with injected signal”. International Journal of Bifurcation
and Chaos 11 (10), 2587-2605 (2001).

[3] C. Mayol, S.I. Turovets, R. Toral, C.R. Mirasso, and L. Pesquera, “Main
Resonances in Directly Modulated Semiconductor Lasers: Effect of Spontaneous
Emission and Gain Saturation”. IEE Proc.-Optoelectronics 148 (1), 41-45 (2001).

[4] C. Mayol, R. Toral, C.R. Mirasso, S.I. Turovets, and L. Pesquera, “Theory of
Main Resonances in Directly Modulated Diode Lasers”. Accepted in IEEE Journal
of Quantum Electronics, to appear in March 2002.

[5] C. Mayol, R. Toral, C.R. Mirasso, and M.A. Natiello, “Class A lasers with
injected signal: bifurcation set and Lyapunov potential function”. Submitted to
Physical Review E (2002).

and it is structured as follows.

In part I some basic concepts are given:

e In chapter 2, a brief review of the relation between Lyapunov potentials and
the dynamical equations and the splitting of the latter into conservative and
dissipative parts is given. We also present some results on Fokker-Plank equa-
tions and numerical integration of stochastic equations, which are used in the
following chapters.

e In chapter 3, a review of bifurcation analysis is done.

e In chapter 4, the main features of the laser as a dynamical system are reviewed.
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Part II is devoted to the study of class A lasers:

e In chapter 5, based on [1], the Lyapunov potential gives an intuitive under-
standing of the dynamics observed in the numerical simulations for class A
lasers. In the presence of noise, the probability density function obtained from
the potential allows the calculation of stationary mean values of interest as,
for example, the mean value of the number of photons. We will show that
the mean value of the phase of the electric field in the steady state varies lin-
early with time only when noise is present, in a phenomenon reminiscent of
noise-sustained flows.

e In chapter 6, based on [5], class A lasers with injected signal are studied.

The dynamical behaviour in the steady state is more complex than the non—
injected signal case due to the introduction of new degrees of freedom. The
bifurcation set is obtained in terms of the amplitude and phase of the injected
signal by using the tools introduced in chapter 3. Moreover, this complex dy-
namical system is studied in terms of a Lypunov potential function whenever
it is possible. In particular, noise-sustained flows are also obtained and mean
values calculated by using the Lyapunov potential in the case of a injected
signal without detuning.
The bifurcation set obtained reveals the complexity of the system and the im-
portance of the parameter choice in experiments. Class A lasers with injected
signal are the simplest example one can consider. A more complex situation
arises considering class B lasers with injected signal (chapter 8). From the dy-
namical point of view the main difference between class A and class B lasers is
the number of variables that one works with. For class A lasers, two variables
suffice and the full bifurcation set can be described. For class B lasers, three
variables, a more complex variety of phenomena can appear and the system
can also show chaotic behaviour when injecting an external signal. Although
part of the bifurcation structure of class B lasers is already present in class A
lasers, the overall dynamics of the former becomes extremely complicated.

Part IIT deals with the dynamics of class B lasers:

e In chapter 7, based on [1], the dynamics of rate equations for class B lasers
is presented in terms of the intensity and the carriers number (we will re-
strict ourselves to the semiconductor laser). In this case we obtain a potential
which helps us to analyse the corresponding dynamics in the absence of noise
fluctuations. By using the conservative part of the equations, we obtain an
expression for the period of the oscillations in the transient regime following
the laser switch—on. This expression extends a simpler one that identifies the
laser dynamics with a Toda oscillator, by adding in the expression for the pe-
riod the corresponding modifications due to gain saturation and spontaneous
emission noise terms.
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e Chapter 8, based on [2], deals with class B lasers with injected signal. The
work presented here completes the above series of studies of bifurcations of
the laser with injected signal in the neighbourhood of the Hopf-saddle-node
singularity, see Sec. [[.J. We analyse a range of parameters where type II
Hopf-saddle-node is expected by using the tools of chapter 3. The main bi-
furcation structure consists of a (secondary) Hopf bifurcation on the periodic
orbit associated to the Hopf-saddle node bifurcation. We have analysed in
detail the resonance structure which reveals a rich interaction with other bi-
furcations not present in the usual Hopf-saddlenode scenario. We find that
the Arnold tongues are truncated by another (secondary) Hopf bifurcations
of periodic orbits. These in turn originate in an Andronov global bifurcation
at the saddle-node of fixed points (saddle-node infinite period bifurcation)
[Kuznetsov, 1997]. Another particular behaviour is that inside the Arnold
tongues we also find homoclinic bifurcations to a saddle fixed point corre-
sponding to the off state of the laser. Finally we show how the Arnold tongues
of increasing winding number, together with all their associated bifurcations,
accumulate towards the Hopf-saddle-node bifurcation point.

e In chapter 9, based on [3] and [4], we have undertaken analytical and numeri-
cal calculations in the framework of the single mode rate equation model with
direct modulation with the aim of clarifying the parameter domains of the ba-
sic instabilities involved and relating them to the reported experiments using
1.55um InGaAs distributed feedback lasers [Liu and Ngai, 1993]. We study
main resonances and the impact that large gain saturation and spontaneous
emission terms have on them. By using the asymptotic quasi—conservative the-
ory with an appropriate Lyapunov potential describing the laser dynamics, the
one presented in chapter 7, we have computed the domains of existence of res-
onances in arbitrarily large amplitude modulated laser diodes, and compared
them to the numerical results.

In the final chapter, we summarize the main results obtained as well as some
possible extensions and other problems.
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Conceptes basics






Capitol 2

Resum de sistemes dinamics

En aquest capitol, es resumeixen alguns resultats basics en sistemes dinamics que
seran utilitzats en capitols posteriors. En primer lloc, es revisa la forma de tractar
equacions diferencials estocastiques. Llavors, s’introdueix la definicié de potencial de
Lyapunov i les diferents maneres que aquest potencial es relaciona amb les equacions
dinamiques per a sistemes deterministics. Per acabar, les relacions entre processos
estocastics i potencials de Lyapunov es presenten en els casos on la funcié densitat
de probabilitat estacionaria per a un procés estocastic es pot obtenir a partir del
potencial de Lyapunov.

Per descriure els sistemes dinamics, s’utilitzen equacions diferencials que modelit-
zen el sistema. En el cas de sistemes deterministics, s’empren equacions diferencials
ordinaries o equacions diferencials en derivades parcials. El tractament d’aquest
tipus d’equacions esta ben establert, i es pot fer analiticament o emprant metodes
numerics.

Alguns sistemes tenen alguna de les seves parts modelada de forma aleatoria,
ja que el coneixement d’aquestes parts no és prou detallat o és massa complex per
poder ésser tractat de manera determinista. Aquestes parts aleatories sén les que
contenen els processos aleatoris, o també coneguts com termes de renou. Les equa-
cions diferencials que contenen els termes aleatoris sén les equacions diferencials es-
tocastiques. Les equacions estocastiques on els termes aleatoris apareixen linealment
s’anomenen equacions de Langevin. Segons que la funcié que multiplica el terme de
renou en ’equacié de Langevin sigui constant o no, tendrem, respectivament, renou
additiu o multiplicatiu. Dels diferents termes de renou que poden ésser considerats,
es restringeix ’estudi al renou blanc, que es caracteritza per ser un procés gaussia
Markovia de mitja zero i delta—correlacionat (B.3). L’equacié diferencial estocastica
de Langevin no esta completament definida a menys que es digui quina interpretacié
s’agafa per realitzar integrals que involucren el procés aleatori, les interpretacions
sovint més emprades sén la de It6 i la de Stratonovich. La generacié numerica de
les trajectories que defineix ’equacié diferencial estocastica de Langevin ve donada
per la generalitzacié dels metodes utilitzats amb equacions diferencials ordinaries,
com el de Runge-Kutta o el de Euler. En aquest cas, les equacions recurrents que
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s’obtenen al afegir els termes de renou donen lloc als metodes de Milshtein i de
Heun. Aquests metodes sén els que s’utilitzen per obtenir molts dels resultats que
es presenten en les parts II i III de la memoria.

L’evolucié d’un sistema dinamic es pot classificar en diferents categories depenent
de la relacié del potencial de Lyapunov amb les equacions de moviment. El teorema
d’estabilitat de Lyapunov diu que si es coneix una funcié de les variables del sistema,
que sigui una funcié decreixent en I'evolucié temporal, els minims de ’esmentada
funcié en termes de les variables sén els punts fixos estables de la dinamica del sis-
tema. L’evolucié del sistema és cap al minims de la funcié de Lyapunov, i a més,
el sistema queda a prop d’aquests minims quan hi actuen petites pertorbacions. El
potencial de Lyapunov déna informacié de ’estabilitat global del sistema: dels pos-
sibles minims, el més estable és aquell que té el valor del potencial més baix. Els
sistemes per als quals existeix un potencial de Lyapunov s’anomenen sistemes poten-
ctals, mentre que els altres sén sistemes no potencials. Dins els sistemes potencials
es pot fer una subdivisié depenent de com es relacionen les derivades de la funcié
de Lyapunov amb les equacions del moviment. El tipus més general, i que sera del
nostre interes en els capitols posteriors, és ’anomenat flur potencial no relazacional
(P29, B-28): les trajectories van cap al minim del potencial sense necessitat de seguir
les linies de maxim pendent, i pot haver-hi una dinamica residual una vegada que
s’ha arribat al minim. Perque el potencial que s’obté sigui un bon potencial de
Lyapunov, una condicié suficient és que verifiqui la condicid d’ortogonalitat (2.30),
que relaciona els termes residuals amb les derivades del potencial.

El potencial de Lyapunov introduit per a sistemes deterministics pot ser també
d’utilitat en el cas de considerar sistemes amb renou. Les equacions diferencials
estocastiques es tracten amb la seva funcié densitat de probabilitat, que verifica
I'equaci6é de Fokker—Planck (R.33). Quan la part determinista de les equacions es-
tocastiques és un flux potencial, es pot obtenir una expressié per a la funcié den-
sitat de probabilitat estacionaria en termes del potencial (.38). Ara bé, algunes
restriccions addicionals s’han de satisfer per a la matriu que relaciona el potencial
i les equacions del moviment i els termes residuals, com la condicio de fluctuacio—
dissipacid (B.39) i la condicié de divergéncia nul-la per als termes residuals (R.37).
En tot cas, existeix un resultat més general, indicant que es pot obtenir la funcié
densitat de probabilitat a partir del potencial de Lyapunov sempre i quan la inten-
sitat del renou sigui molt petita. La utilitat de la funcié densitat de probabilitat
apareix a I'hora de calcular valors mitjos de les variables d’interes (£.39).

Als capitols 5, 6 i 7 s’estudia la dinamica de lasers de classe A i classe B mit-
jancant els potencials de Lyapunov.



Chapter 2

Summary of Dynamical Systems

In this chapter, we summarize some results on dynamical systems that will be
used subsequently. First, a way of dealing with stochastic differential equations is
given. Then, we introduce the definition of Lyapunov potential and the different
forms in which the potential is related to the dynamical equations for determinis-
tic systems. Finally, the relationships between stochastic processes and Lyapunov
potentials are presented in the cases where the stationary probability distribution
function for an stochastic process can be obtained from the Lyapunov potential.

2.1 Brief review on Stochastic Processes

The aim of this section is to give a brief introduction to the basic techniques of
stochastic processes that will be used during the rest of this work. We follow closely
Ref. [San Miguel and Toral, 1997].

Dynamical systems can be described by a set of differential equations, usually
derived after considering certain approximations. Deterministic systems can be well
described either by ordinary differential equations or partial differential equations.
There is a well established literature to deal with this kind of equations either
analytically or numerically, although in some cases the results obtained can be quite
complicated due to nonlinear terms appearing in the equations. Furthermore, there
are some systems for which certain parts of their behaviour are modelled as random,
because the knowledge of these parts is not detailed enough or it is too complex to
be treated deterministically. Random parts are those containing a random process
usually referred to as a noise term, £(t). The differential equations containing a
random process are referred to as stochastic differential equations.

Stochastic equations in which the random processes appear linearly are known
as Langevin equations. For a real variable z, the Langevin equation has the general
form

o =g+ 9(a, 0 £0) 2.1)

If the function g(z,t) is a constant, the noise is called additive, otherwise, it is a
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multiplicative noise.

There are different noise terms that can be considered, all of them defined by
their moments and their correlation functions. We will restrict our study to the
white noise, characterized as a Markovianf] Gaussian process of mean value and
correlations given by

€@) = 0o,
(€(t) E(t2)) = (i —ta). (2.2)

The white noise term can be considered as the derivative of the Wiener process,
W (t), which has a Gaussian, time dependent, probability density function

fW;t) = ! exp (—K> (2.3)
V2nt 2t
with one-time moments and two—times correlation function
(W(t)) = 0, (2.4)
(W()?) =t (2.5)
<W(t1)W(t2)> = min(tl,tg). (26)

The derivative of the Wiener process has lack of mathematical rigor and can
lead to different possible interpretations [van Kampen, 1981; Gardiner, 1985]. The
stochastic integral

t
/GWMW% (2.7)
to
is interpreted as the limit of partial sums

&=iaww—wmm, (2.8)

where t; corresponds to the partition of the time interval

(to, ) = (o, t1) 1, t2) - - U1, tn = 7). (2.9)

The arbitrariness in the definition is related to the problem of which G; one takes in
order to evaluate the integral. Amongst all possible interpretations, the most widely
used are those of It6 and Stratonovich. In the It6 interpretation G; = G(¢;_1), while
for the Stratonovich interpretation G; = $[G(t;) + G (ti_1)].

The Langevin stochastic differential equation is not completely defined unless one
chooses one of the previous interpretations. However, there is a simple relationship
between the results of these most common interpretations. The rule is that the
stochastic differential equation in the It6 sense

™ = a(a) + 9(2) €00, (2.10)

In a Markovian process the probability of a future event depends only on the present state of
the system and not on the way it reached its present situation.



2.1 Brief review on Stochastic Processes 29

is equivalent to the stochastic differential equation in the Stratonovich sense

W o)~ 50(5) 9(2) + 9(@) €01). (211)
In the It6 interpretation (G(t)&,(t)) = 0, for any non—anticipating function G(t) of
£,(t) [Gardiner, 1985]. However, this result is not true in the Stratonovich inter-
pretation, where the Novikov’s theorem [Novikov, 1964; Novikov, 1965] should be
applied. The Stratonovich interpretation enables the use of the rules of ordinary
calculus. However, this is not possible in the It6 interpretation, although it is the
most mathematically and technically satisfactory.

Since in most of the cases, it is not possible to integrate the differential equations
analytically, one will be interested in obtaining the numerical values for the variables
as time evolves. In the next subsection, numerical algorithms for the generation of
trajectories are reviewed.

Numerical generation of trajectories

For an ordinary (non-stochastic) differential equation of the form

dz(t)

5 = q(t, x), (2.12)

the second order Runge-Kutta method gives an approximation to z(¢ + h) of order
O[h?]

z(t + h) = z(t) + g [q(t,z(t)) + q(t + h, z(t) + hq(t, z(t)))] + O[R®]. (2.13)

This is an improved algorithm upon the Euler method

z(t + h) = z(t) + hq(t,z(t)) + O[h?). (2.14)

In the presence of a Langevin equation as (P-]]), one is interested in generating
trajectories z(t) for different values of the random process. There are different nu-
merical algorithms to solve this problem [Sancho et al., 1982; Gard, 1987; Greiner
et al., 1988; Kloeden and Platen, 1992].

For the stochastic differential equation (R.I]), in the Stratonovich sense, we can
derive the recurrence relation

z(t +h) = z(t) + h'7? g(z(t)) u(t) + h |g(x(?) + %g(rﬂ(t)) g'(x(t)) u(t)2] +O0[h*?,
(2.15)
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which is known as Milshtein method [Milshtein, 1974; Milshtein, 1978; Sancho et al.,
1982]. u(t) are a set of independent Gaussian random variables defined only for the

discrete set of recurrence times, £ = 0,h,2h, ..., of zero mean and variance one
(u(®)) = 0,
w®)?) = 1,

w@)ul)) = 0,t#¢.

There are different numerical methods for generating the independent Gaussian
random variables, based on random numbers uniformly distributed in the interval
(0,1). We follow here the one developed in [Toral and Chakrabarti, 1993].

A modification of (.17) is the “Euler algorithm”

z(t+h) = 2(t) + ' g(z(t)) u(®) +h |q(z(t)) + %g(fv(t))g’(fﬂ(t)) +O0[h*/?). (2.16)

This algorithm appears naturally when considering the numerical integration of the
equivalent stochastic differential equation (P-I0) in the It6 formalism.

The same idea of the Runge-Kutta method applied to ordinary differential equa-
tions can be applied to stochastic differential equation. By modifying the Euler
method (B.16) one obtains the Heun method [Gard, 1987]

k = hQ(t7x(t))7
L= h'Pu(t)g(t,2(1)),

s(t+h) = a(t)+ 0 la(al) +alt+ha() +E D]+ (217)

hY/2 u(t)
2

In this work, we are interested in the numerical solution of a set of coupled
ordinary differential equations with diagonal noise of the form

[g(t,z(t)) + g(t + h,z(t) + k+ 1)].

dA;(t .
WD)  g4) + 94 60), =L, N 2.18)
In this case, the Milshtein method reads
Ai(t+h) = Ai(t) + g (Ai() B2 u(t) + (2.19)

@ (AW) + 5 0(A:0) gi(A:(0) wilt)?].
While the Heun method is

ki = hq([AQ®)),
L= B () gi([A®)),

Ait+h) = Ait)+ g [ ([AD]) + @ ([A®) + k + )] + (2.20)

h1/2 U; (t)

5 [9:(Ai(t)) + g:(As(t) + ki + 1)) .
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2.2 Potentials and Lyapunov Functions

The evolution of a system (dynamical flow) can be classified into different cate-
gories according to the relationship of the Lyapunovf] potential to the actual equa-
tions of motion [Montagne et al., 1996; San Miguel et al., 1996].

Classification of Dynamical Systems

Consider a deterministic dynamical flow where the real variables x = (zy,...,zn)
satisfy the general evolution equations

dIEZ' .
= f; =1,...,N. .
dt fZ(X)7 ? 7 7 (2 21)

One is usually interested in finding the fixed points X of the dynamical system,
i.e. those having a zero time derivative. The knowledge of the fixed points and
their stability is usually the first step in the study of a dynamical system. A fixed
point X is said to be stable if for any initial condition sufficiently close to X, the
system remains in the neighbourhood of X as the time evolves. The fixed point is
asymptotically stable if for any initial condition, sufficiently close to X, the system
tends to X with time.

Lyapunov’s stability theorem is useful to determine the stability of a fixed point
[Guckenheimer and Holmes, 1983]. The theorem states that if a function V(x) =
V(z1,...,zN) exists, such that V is bounded from below and dV/dt < 0, then the
minima X of V' are stable fixed points of the dynamics. In this case, V is called a
Lyapunov potential or, simply, the potential.

The description of the behaviour of a dynamical system is greatly simplified if
the Lyapunov potential is known: the system evolves towards the minima of the
Lyapunov and once there it stays nearby when small perturbations act upon the
system. The Lyapunov potential not only tells us about local stability, but also
gives information about global stability. In the case of the comparison between only
two fixed points x( and x? such that V(x(V)) > V(x®), then we can infer that
%@ is the stable fixed point and that (1) is a metastable fixed point. This means
that a sufficiently strong perturbation might take the system out from (V) to x®.
Therefore, to understand the asymptotic dynamics it is of great importance to find
out whether a Lyapunov potential can be found for the dynamical system under
study.

The systems for which a Lyapunov function exists are called in the literature
potential systems and the name non—potential systems is reserved for those systems
which do not have a Lyapunov function. According to these definitions, the following
classification of dynamical systems can be established.

2Some details of the biography of the Russian mathematician Aleksandr Mikhailovich Lyapunov
(1857-1918) can be found in [Lyapunov, 1992].
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(1) Relaxational gradient potential flow

In this case, there exists a function (the potential) V(x) = V (1, ..., x) in terms
of which the evolution equations are written as

=- i=1,...,N. 2.2
dt oz;’ ! Y (222)

The fixed points of this dynamical system are the extrema of the potential V' (x).
The trajectories lead to any of the minimum values of V (x) following the lines of
maximum slope (steepest descent). In this case the potential V(x) is a Lyapunov
function (with the additional condition that V' (x) is bounded from bellow). The
proof of this statement is very simple indeed

<0. (2.23)

v X oV d; N /av\?
~-£(2)

% - i1 aIEZ dt aIEZ

i=1

(2) Relaxational non—gradient potential flow

There exists again a potential function, V' (x), but in this case the dynamics is
not governed just by V(x), but is given by

dIEZ' N 3V 3

i jZlS” oz, i=1,...,N, (2.24)
where S;;(x) is a real, symmetric and positive definite matrix. The fixed points of
the dynamics are still given by the extrema of V' (x), however the trajectories lead
to the minima of V' (x) but not necessarily through the lines of maximum slope but
instead they can have an orthogonal component due to the fact that the matrix S
is not necessarily diagonal. In this sense, we can say that the transient dynamics is
not governed only by the potential. However, V(x) is still a Lyapunov functional

v _XoVde _ X VoV
dat - a5 =0, 2.2

since, by definition, S(x) is a positive definite matrix.

(3) Non-relaxational potential flow

In these systems the asymptotic behaviour is not determined simply by the
minima of the potential, but there exists a residual dynamics once the minima have
been reached. A first category within this class is given by

dz; N 151%
L _N'Dyo i=1,...,N. 2.2

J=1

Here, D;;(x) is an arbitrary matrix. When D;;(x) is split into a symmetric and an
antisymmetric part D(x) = S(x) + A(x), S(x) is a positive definite matrix. Again,
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the fixed points of the dynamics are determined by the extrema of the potential
V(x). V(x) is a Lyapunov potential, i.e.

dv N ovovy X oV oV
av _ Fhada S A — <0, 2.2

where the second sum of this expression is zero due to the antisymmetry of the
matrix A(x).

The second, and more general, category of non-relaxational potential flow is one
in which the dynamical equations can be split into two parts, namely

N
PR O T (229
j=1 axj

Here S(x) is a symmetric, positive definite matrix and v;(x) represents the residual
dynamics after the relaxational part has acted. Since we demand V(x) to be a
Lyapunov potential the residual dynamics must not contribute to its decay

dV N oaveov XV
“vo_ Spi— — — ; <0 2.29
dt i,jzzl J aIEZ aIEj Z:ZI v aIEZ ( )

or, since the first term of the r.h.s. is always negative, a sufficient condition is

Zvi% =0. (2.30)

This is the so—called orthogonality condition.

Since the above (sufficient) conditions for a potential flow lead to dV/dt < 0,
one concludes that V(x) (when it satisfies the additional condition of being bounded
from below) is a Lyapunov potential for the dynamical system. In this case, one can
get an intuitive understanding of the dynamics: the fixed points are given by the
extremes of V(x) and the trajectories relax asymptotically towards the surface of
minima of V' (x). This decay is produced by the only effect of the terms containing
the matrix S(x) in Eq. (B.2§), since the dynamics induced by v;(x) conserves the
potential, and v;(x) represents the residual dynamics on this minima surface.

(4) Non—potential flow

For non-potential flows, the splitting (£.28) satisfying (P-30) admits only the
trivial solution V' (x) = 0, v;(x) = fi(x). Notice that for a system to be classified as
non-potential, we have to prove the non-existence of nontrivial solutions of (£-30)
which, of course, is different from not being able to find nontrivial solutions of (£:30).

There are different examples in the literature of systems that can be classified
as above. We only give here the references in order to show the great variety of
fields that can be treated with this formalism. The real Ginzburg-Landau equation
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(also known in the theory of critical dynamics as model A in the classification of
[Hohenberg and Halperin, 1977]) is a relaxational gradient flow. A typical example
of relaxational non—gradient flow is the Cahn—Hilliard model [Cahn and Hilliard,
1958] for spinodal decomposition [Gunton et al., 1983] or model B in the context of
critical dynamics [Hohenberg and Halperin, 1977]. As examples of non-relaxational
potential flows, the nematodynamics equations commonly used to describe the dy-
namics of liquid crystals in the nematic phase [San Miguel and Sagues, 1987] and
the complex Ginzburg-Landau equation [Descalzi and Graham, 1992; Descalzi and
Graham, 1994; Montagne et al., 1996] (the classification given above can also be
applied in the case of complex variables, the extension is trivial, and it is presented
in [San Miguel et al., 1996]).

Potentials and Stationary Distributions

We now consider dynamical systems where noise is included. We will develop
the relationship between stochastic equations and Lyapunov potentials introduced in
the previous subsection. Consider the dynamical system described by the stochastic
equations (It6 sense) of the form

dx i
dt

= fi(x) + Z:lgij(x) &(1), (2.31)

where g;;(x) are given functions and &;(t) are white noise sources: Gaussian random
processes of zero mean and correlations

(&()&;(1) = 2€0;56(t — 1), (2.32)

where € is the intensity of the noise.

In this case, it is not adequate to talk about fixed points of the dynamics, but
consider instead the maxima of the probability density function P(x,t), which sat-
isfies the multivariate Fokker—Planck equation [Risken, 1989; San Miguel and Toral,
1997]

ant

—fiP+e Z (G P)| , (2.33)

Zj

N
where the matrix G(x) is
G=gyg, (2.34)

and whose general solution is unknown. When the deterministic part of (.31)) is a
potential flow, a closed form for the stationary distribution P (x) can be given in
terms of the potential V' (x) if the following (sufficient) conditions are satisfied

1. The fluctuation—dissipation condition, relating the symmetric matrix S(x) to
the noise matrix g(x),

N
SZ] = Z Gik Gk, S = g: gT- (235)
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2. Si; satisfies
N aSZ]
) B,

J=1

=0, Vi, (2.36)

This condition is satisfied, for instance, for a constant matrix S(x).

3. v;(x) is divergence free,
N avi

PPy} (2.37)

im1 aIEZ

This third condition is automatically satisfied for potential flows of the form (2.26)
with a constant matrix A(x).
Under these circumstances, the stationary probability density function is

Py(x) = Z exp (-@) , (2.38)

where Z is a normalization constant, such that [ Py (x)dx = 1. Conditions (P-35),
(B-36) and (P.37) appear naturally when one substitutes expression (2.3§) into the
Fokker—Planck equation (£:33) and imposes that the derivative with respect to time
of P(x,t) is zero. In some sense, the stationary distribution is still governed by the
minima of the potential, since the maxima of this stationary distribution will be
centered around these minima. The effect of the noise terms on the asymptotic dy-
namics is to introduce fluctuations (governed by the Gibbs type distribution (2.3§))
in the remaining dynamics which occurs in the attractors identified by the minima
of V(x).

A more general result, [Graham, 1987; Graham, 1991, states that if conditions
(B-36)) and (B.37) are not satisfied, then the above expression (P.38) for Py (x) is still
valid in the limit € — 0.

By using (B.3§), the mean value in the steady state of a given function f(x) can
be calculated as

(F X))o = [ 1x) Pulx)dx. (2.39)

This is an useful expression because in the presence of noise terms, one can be more
interested in calculating the mean values for different values of the noise terms than
in one single realization of the process.

In chapters 5, 6 and 7 we discuss the dynamics of lasers by means of Lyapunov
potential functions.






Capitol 3

Bifurcacions

En aquest capitol es fa un resum d’analisi de bifurcacions que sera utilitzat en
els capitols 61 8.

Es considera un sistema dinamic del tipus x = f(x), on x = (z1,...,2,) i
f = (fi,..., fn). Les seves solucions es poden visualitzar com a trajectories en
un espai n—dimensional anomenat retrat de fases. L’apariencia de les trajectories
d’aquest retrat de fases és controlada pels punts fixos, f;(z3,...,z%) = 0. Es possible
analitzar 'estabilitat d’un punt fix a partir de linealitzar les equacions al voltant del
punt. Un punt fix es diu estable quan tots els autovalors de la matriu linealitzada
son negatius; és absolutament inestable quan tots els autovalors sén positius; i sella,
quan alguns autovalors sén positius i d’altres negatius.

L’estructura qualitativa del flux pot canviar quan es varien el parametres del
sistema. Aquests canvis qualitatius s’anomenen bifurcacions. La representacié dels
punts o linees on apareixen les bifurcacions en l’espai de parametres déna lloc al
conjunt de bifurcacions.

Hi ha tipus de bifurcacions que apareixen repetidament en molts problemes.
Una possible classificacié de les bifurcacions es basa en conceptes que tenen el seu
origen en la teoria de transversalitat en topologia diferencial. La codimensié d’una
bifurcacié és la menor dimensié en I'espai de parametres que conté la bifurcacié.

El teorema de la varietat central indica una manera per reduir sistematicament
la dimensié de ’espai d’estats que sén necessaris quan s’analitzen bifurcacions d’un
cert tipus. Aquest metode ailla el comportament asimptotic més complex a partir
de localitzar la varietat invariant tangent al subespai generalitzat d’autovectors amb
autovalors imaginaris purs.

Una vegada que s’ha aplicat aquest teorema, s’intenta obtenir transformacions
de coordenades addicionals que simplifiquen les expressions analitiques del camp
vectorial a la varietat central. Els camps vectorials simplificats sén les formes nor-
mals. La dinamica a prop d’una bifurcacié tipicament apareix representada per la
seva forma normal.
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Algunes bifurcacions de codimensi6é un sén les segiients. Una bifurcacié sella—
node és el mecanisme basic per el qual dos punts fixos sén creats o destruits, com es
veu a la figura B.]. En una bifurcacié transcritica, figura B.9, dos punts fixos canvien
la seva estabilitat en el punt de bifurcacié. En una bifurcacié tipus forca, figura B.3,
dos punts fixos apareixen (destrueixen) simeétricament amb D’estabilitat d’un punt
fix que existia abans del punt de bifurcacié i aquest canvia la seva estabilitat.

A més de punts fixos, poden existir altres conjunts invariants en el sistema
dinamic. Un cicle limit és una trajectoria tancada aillada: les trajectories properes
van cap al cicle limit o es fan enfora d’ell en forma d’espiral.

En una bifurcacié de Hopf, tal com apareix a la figura 3.6, un punt fix canvia la
seva estabilitat i apareix o desapareix un cicle limit amb la mateixa estabilitat que
la del punt fix abans del punt de bifurcacié. En el punt de bifurcacié existeixen un
parell d’autovalors imaginaris purs.

Existeixen altres formes amb les quals els cicles limits es poden crear o destruir.
En una bifurcacié sella-node de cicles, dos cicles limits es junten i s’aniquilen. En
una bifurcacié de periode infinit, el periode d’oscil-lacié del cicle limit augmenta
fins a fer—se infinit en el punt de bifurcaci6, i dos punts fixos (un sella i un es-
table/inestable) hi apareixen. En una bifurcacié homoclinica, part del cicle limit
s’apropa cada vegada més a un punt sella, fins que en el punt de bifurcacié el cicle
toca el punt sella i es forma una orbita homoclinica.

A més de les bifurcacions indicades fins ara, és possible obtenir bifurcacions locals
de codimensié dos. Un dels I’exemples més tipics d’aquest tipus de bifurcacié és el
cas en queé apareixen un parell d’autovalors imaginaris i un autovalor zero (bifurcacié
Hopf-sella—node). De I’analisi de la seva forma normal, es veu que quatre diferents
tipus de bifurcacions es poden obtenir depenent del valor dels parametres del sistema.
A les figures 3.7 a 3.10 apareixen el conjunt de bifurcacions i el retrats de fases per
cada un dels tipus que sorgeixen.

Un espai de fases bidimensional important és el torus. A damunt aquest torus
poden existir Orbites tancades (resonancies), o la trajectoria pot donar voltes al
voltant del torus sense fi, flux quasiperiodic.

Les projeccions de Poincaré ens poden servir per a estudiar el flux a prop d’orbites
periddiques. Si es considera un sistema n—dimensional x = f(x) i S, una superficie
transversa al flux n — 1-dimensional. La projeccié de Poincaré, xy ;1 = P(xy), és
una relacié de S,, amb ella mateixa, obtinguda a partir d’obtenir les interseccions de
les trajectories amb S,,: xi € S,. Es pot establir un criteri en termes dels autovalors
A; de la projeccié de Poincaré linealitzada: L’orbita tancada sera estable si i només
si |Aj| <1 peratotsj=1,...,n—1. Contrariament, si |\;| > 1 per a algun j,
les pertorbacions al llarg de la direcci6 j creixen i 'orbita és inestable. Un cas limit
ocorr quan l'autovalor més gran té magnitud |);| = 1; aix0 passa en bifurcacions
d’orbites periodiques i cal un analisi nolineal d’estabilitat. Els valors A; s’anomenen
multiplicadors de Floquet de I’0rbita periodica i generalment només es poden obtenir
mitjancant integracié numerica.



Chapter 3

Bifurcations

In this chapter, we summarize some results on bifurcation analysis that will be
used in chapters 6 and 8. We follow closely Refs. [Guckenheimer and Holmes, 1983;
Hilborn, 1994; Strogatz, 1994; Solari et al., 1996].

Let us consider the general dynamical system

x = f(x),
where x = (21,...,%,) and f = (fy,..., fn). Its solutions can be visualized as trajec-
tories flowing through an n—dimensional phase space with coordinates (z1,...,zy,).

A picture which shows all the qualitatively different trajectories of the system is
called a phase portrait. The appearance of the phase portrait is controlled by
the fixed points f;(z},...,z) = 0, for ¢ = 1,...,n, which represent equilibrium
solutions. An equilibrium point is defined to be stable if all sufficiently small per-
turbations away from it damp out in time. Conversely, in unstable fixed points,
peturbations grow in time. For a saddle fixed point some perturbations grow in
time whereas others damp out, depending on the direction chosen near the fixed
point. It is possible to perform a quantitative measure of the stability of a fixed
point by linearizing about it. The eigenvalues of the linearized matrix give informa-
tion of the stability of the fixed point: for positive eigenvalues perturbations grow

in time, for negative eigenvalues perturbations damp out.

The qualitative structure of the flow can change when parameters of the system
are varied. In particular, fixed points can be created or destroyed, or their stability
change. These qualitative changes in the dynamics are called bifurcations, and the
parameter values at which they occur are called bifurcation points. The representa-
tion of the bifurcation points (or lines) in the parameter space will give rise to the
bifurcation set.

What is of particular interest is that there are some kinds of bifurcations which
appear repeatedly in many problems. It would be interesting to have a classification
of bifurcations which produces a specific list of possibilities for each example, starting
with only general considerations such as the number of parameters in the problem,
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the dimension of the phase space, and any symmetries or other special properties
of the system. The classification schemes are based upon concepts of differential
topology. The codimension of a bifurcation is the smallest dimension of a parameter
space which contains the bifurcation, and an unfolding of a bifurcation is a set of
equations which contains the bifurcation in a persistent way.

The center manifold theorem provides a mean for systematically reducing the di-
mension of the state space which needs to be considered when analysing bifurcations
of a given type. This theorem states that it is possible to define manifolds tangent
to the eigenspaces associated to the eigenvalues of a flow. The center manifold is de-
fined as a manifold tangent to the center eigenspace. The local dynamical behaviour
transverse to the center manifold is relatively simple, since it is controlled by the
exponentially contracting (and expanding) flows in the local stable (and unstable)
manifolds. Then, the center manifold method isolates the complicated asymptotic
behaviour by locating an invariant manifold tangent to the subspace spanned by the
(generalized) eigenspace of eigenvalues on the imaginary axis.

Once the center manifold theorem has been applied to a system, it is useful to
find additional coordinate transformations which simplify the analytical expression
of the vector field on the center manifold. The resulting simplified vector fields are
called normal forms. The dynamics close to a bifurcation typically look like the
one represented by its normal form. Moreover, the analysis of the dynamics of the
normal forms yields a qualitative picture of the flows of each bifurcation type.

In real physical systems, the explosive instabilities that can appear when analysing
the normal forms are compensated by the stabilization influence of higher-order
terms.

In the following we will describe some of the bifurcations that will appear in later
chapters.

The saddle-node bifurcation is the basic mechanism by which fixed points are
created or destroyed. As a parameter is varied, two fixed points move toward each
other, collide, and mutually annihilate. The prototypical example of a saddle-node
bifurcation is the first-order system (normal form)

& =—r—2?

where r is a real parameter. In figure B.I one can observe a representation of this
bifurcation. When r < 0, there are two fixed points, one stable and one unstable.
When 7 = 0 (bifurcation point), the fixed points coalesce into a half-stable fixed
point at z* = 0. For r > 0, there are no fixed points at all.

In a transcritical bifurcation, with normal form

& =re— a2,

the two fixed points switch their stability at the bifurcation point r = 0, see Fig.
3.2,
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Figure 3.1: Saddle—node bifurcation. Figure 3.2: Transcritical bifurcation.

Figure 3.3: Pitchfork bifurcation (supercrit- Figure 3.4: Pitchfork bifurcation (supercrit-
ical). ical), including a high order term.

The normal form of a supercritical pitchfork bifurcation is

i =rxz—z

For r < 0 the origin is the only fixed point, and it is stable while for r > 0,
two new stable fixed points appear symmetrically located z* = £4/r and the origin
becomes unstable, see Fig. B.3 A more completed form of the supercritical pitchfork
bifurcation includes a higher order term

i =rr—2° +2°,

and its representation is the one appearing in Fig. B.4.
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In a subcritical pitchfork bifurcation, with normal form
T =rz+a°,

the nonzero fixed points z* = ++/—r are unstable, and exist only below the bifur-
cation (r < 0). The origin is stable for » < 0 and unstable for r > 0, see Fig.

B3,

Figure 3.5: Pitchfork bifurcation (subcritical).

Apart from the fixed points, there can appear other invariant sets in the dynam-
ical system. A limit cycle is an isolated closed trajectory: neighbouring trajectories
are not closed, they spiral toward or away from the limit cycle. If all neighbour-
ing trajectories approach to the limit cycle, the limit cycle is stable or attracting.
Otherwise, the limit cycle is unstable, or in exceptional cases, saddle.

In a Hopf bifurcation, see Fig. B.g, a stable (unstable) fixed point changes its
stability and an stable (unstable) limit cycle appears or disappears. The normal
form is

= pz—y— (2 +y)z,
= z+py— (2" +y)y.

At the bifurcation point, there exist a pair of purely imaginary eigenvalues.

There exist other ways in which limit cycles are created or destroyed. They are
harder to detect because they involve large regions of the phase plane than just the
neighbourhood of a single fixed point. Hence they are called global bifurcations.
For each of the bifurcations, there are characteristic scaling laws that govern the
amplitude and period of the limit cycle as the bifurcation is approached.
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Figure 3.6: Hopf bifurcation.

A bifurcation in which two limit cycles coalesce and annihilate is called a saddle—
node bifurcation of cycles.

In a infinite-period bifurcation (also called Andronov-Leontovich bifurcation),
the oscillation period of a limit cycle lengthens and finally becomes infinity, when a
fixed point appears on the cycle, at the bifurcation point. Varying the bifurcation
parameter, yu, the fixed point splits into a saddle and a node. As the bifurcation is
approached, the amplitude of the oscillation stays O(1) but the period of the cycle
increases like O(u~'/2).

The homoclinic bifurcation is a kind of infinite—period bifurcation. In this sce-
nario, part of a limit cycle moves closer and closer to a saddle point. At the bifur-
cation the cycle touches the saddle point and becomes a homoclinic orbit.

Apart from the local codimension—one bifurcation of flows (as saddle-node, pitch-
fork, transcritical and Hopf bifurcations), it is possible to obtain local codimension—
two bifurcations. These will be found in the bifurcation set as intersection of two
codimension—one bifurcations.

One of the typical examples of codimension—2 bifurcations is the case in which
a pure imaginary pair and a simple zero eigenvalue appear. This is the basis of the
analysis of chapter 8, where it is refereed as Hopf-saddlenode bifurcation. The
normal form in the reduced planar system is

H1x + azxy,
= pe+ba® -y (3.1)

The fixed points of the system are given in terms of u, ps, a and b. However,
the qualitative features (the stability of the invariant sets in different regions) will
be different depending on the sign of a and b. Consequently, four types of this
bifurcation can be encountered. For a more detailed study of the different types,
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the reader can reference to [Guckenheimer and Holmes, 1983] where the parameter
region (u1, pe2) is detailed for each part. From that book we have extracted Figs.
3.7 - 3.10, were the bifurcation set and the phase portraits for each case are shown.

An important two—dimensional phase space is the torus (this appears when a
periodic orbit suffers a Hopf bifurcation changing its stability). We will illustrate
some general features of flows on the torus. One could imagine a single point tracing
out a trajectory on a torus with coordinates 6, 5. There are two different cases.
The trajectories are closed orbits on the torus, because #; completes p revolutions
in the same time than 6, completes ¢ revolutions. The resulting curves are called
p : q knots (resonances in chapter 8). The second possibility is that every trajectory
winds around endlessly on the torus, never intersecting itself and yet never quite
close. Each trajectory is dense in the torus and in this case the flow is said to be
quasiperiodic.

Poincaré maps are useful for studying swirling flows, such as the flow near a
periodic orbit. We consider a n—dimensional system x = f(x) and let S, be a n—1-
dimensional surface transverse to the flow. The Poincaré map P is a mapping from
Sy, to itself, obtained by following trajectories from one intersection with S,, to the
next. If xx € S, denotes the £ intersection, the Poincaré map is xx11 = P(xx).
In supposing a fixed point of P, x*, a trajectory starting at x* returns to x* after
some time 7', and it is therefore a closed orbit for the original system. Moreover, by
looking at the behaviour of P near this fixed point, we can determine the stability
of the closed orbit. The desired stability criterion is expressed in terms of the
eigenvalues A; of the linearized Poincaré map: The closed orbit will be linearly
stable if and only if |A;| < 1 for all j = 1,...,n — 1. Conversely, if |A;| > 1 for
some j, perturbations along the j direction grow and x* is unstable. A borderline
case occurs when the largest eigenvalue has magnitude |A;| = 1; this occurs at
bifurcations of periodic orbits, and a nonlinear stability analysis is required. The
A; are called the characteristic or Floquet multipliers of the periodic orbit and they
can only be found by numerical integration.
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Figure 3.7: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type I case: b =+1, a > 0.
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Figure 3.8: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type II case: b= +1, a < 0.
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Figure 3.9: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type III case: b= —1, a > 0.

\_\.

i

pp= p2rsa?

=%

\Ij T

i

Figure 3.10: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type IV case: b= —1, a < 0.



Capitol 4

Lasers: Fenomens fisics 1 models

En aquest capitol es presenta un breu resum dels fenomens fisics involucrats en els
sistemes laser, aixi com els models que s’utilitzen per descriure el seu comportament.

En un sistema laser una ona electromagnetica interacciona amb el material, i hi
poden océrrer tres processos: emissié espontania, emissié estimulada i absorcié. En
condicions normals el material es comporta com un absorbent. En condicions de no—
equilibri (la poblacié d’un nivell d’energia és major que la poblacié d’un nivell amb
energia més baixa), el material actua com un amplificador i la situacié és d’inversid
de poblacio. Un material actiu és aquell amb inversié de poblacié.

Per poder convertir 'amplificador en un laser cal a més un terme de reali-
mentacié. Aquest efecte es pot obtenir col-locant el material actiu entre dos miralls
altament reflectants, de manera que ’ona electromagnetica sigui amplificada a cada
viatge dins el material actiu. Per poder haver-hi amplificacié es necessita que es ve-
rifiqui un cert llindar: Poscil-lacié (inicialitzada pels fotons emesos espontaniament)
comenca quan el guany del material actiu compensa les perdues dins el laser. Per
extraure un feix 1util del sistema laser es fa un dels dos miralls parcialment trans-
parent.

Aixi que els tres elements basics en un laser sén: a) un medi de guany capag
d’amplificar la radiacié electromagnética que es propaga dins la cavitat, b) una
cavitat optica que proporciona la realimentacié necessaria, i ¢) un mecanisme de
bombeig. Les propietats que caracteritzen els lasers (alta monocromaticitat, cohe-
réncia temporal i espacial, direccionalitat, ...) han fet que els lasers tinguin un gran
ventall d’aplicacions.

La modelitzacié dels sistemes lasers inclou el tractament de processos d’alta
complexitat. Una descripcié completa de la seva dinamica es basa en una des-
cripcié mecanico—quantica de la interaccié radiacié—materia dins la cavitat laser.
No obstant, normalment es fa una descripcié en termes de la teoria semiclassica.
Aquesta teoria ignora la naturalesa mecanico—quantica del camp electromagnétic
(perqueé el nombre de fotons dins un sistema laser és molt més gran que un) utilit-
zant les equacions de Maxwell, mentre que el medi amplificador si que es modela
quanticament com una col-leccié d’atoms de dos nivells a través de les equacions
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de Bloch. Les equacions resultants sén les de Maxwell-Bloch (.3 - £.7), que des-
criuen les variacions temporals de les variables involucrades en el procés: amplitud
complexa lentament variable del camp electric que es propaga dins la cavitat, po-
laritzacié material i inversié de poblacié.

Els lasers es poden classificar segons el ritme de decaiment de les tres variables
del sistema. Els lasers de classe C tenen els ritmes de decaiment dels fotons, por-
tadors i polaritzacié material del mateix ordre, i es requereix el conjunt complet
de les equacions de Maxwell-Bloch per a la seva descripcié. En els lasers de classe
B, la polaritzacié material decau cap a l'estacionari molt més rapidament que les
altres dues variables, i es pot realitzar una eliminacié adiabatica d’aquesta variable.
D’aquesta manera, els lasers de classe B es descriuen mitjancant dues equacions de
balang, una per a la inversié de poblacié (o nombre de portadors) i una altra per
al camp electric. Dels distints lasers de classe B existents, es restringeix ’estudi als
lasers de semiconductor, on les transicions es produeixen entre bandes d’electrons
i forats en comptes d’entre nivells d’energia atomics o moleculars. Per finalitzar,
en els lasers de classe A, tant la inversié de poblacié com la polaritzacié material
decauen a l’estacionari molt més rapidament que el camp electric, es pot fer una
eliminacié adiabatica d’ambdues variables i, és suficient amb 1’equacié pel camp
electric per descriure I'evolucié d’aquests lasers.

Una descripcié més senzilla de les equacions de Maxwell-Bloch es pot fer promit-
jant en la direcci6é de propagacié i considerant emissié en un inic mode. Les equa-
cions resultants sén les equacions de balang, que en el cas dels lasers de classe B
sén les equacions (.8, .9). A Pequacié per a la variacié de 'amplitud lentament
variable del camp electric hi ha una competicié entre els termes de guany i de
perdues; a més, s’introdueix el factor d’increment d’amplada de linia o terme de
disintonia (&) que considera que en els lasers de semiconductor les transicions ocor-
ren entre bandes d’energia i per tant ’espectre de guany és antisimetric. L’equacid
per al nombre de portadors consta de tres termes: el bombeig extern, el terme de
perdues degut a emissié espontania o transicions no radiatives, i el terme d’emissié
espontania. L’efecte de ’emissié espontania com una font radiativa es pot incloure
en les equacions de balang amb la inclusié de termes de renou blanc (.17, £.19).
Quan les equacions s’escriuen en termes de les variables intensitat i fase del camp
electric (f.14 - {.16), a l'equaci6 per la intensitat apareix (en la interpretacié de
It6) un terme de renou d’emissié espontania promig. El terme de disintonia només
apareix en ’equacié per la fase del camp electric. A partir d’aquestes equacions
es poden obtenir les equacions per als lasers de classe A realitzant una eliminacié
adiabatica dels portadors.

Els capitols de la part [[] sén dedicats a ’estudi dels lasers de classe A, mentre
que els lasers de classe B es tracten al llarg de la part III de la memoria.



Chapter 4

Lasers: Physical phenomena and
models

In this chapter we present a brief review of lasers, the physical phenomena
involved in these systems and some models used to describe their behaviour. There
exist in the literature a huge amount of papers and books related to this subject.
Some references that we follow in this section are [Svelto, 1982; Hecht and Zajac,
1986; Petermann, 1988; Homar, 1996).

Laserf] is the acronym of light amplification by stimulated emission of radiation
accounting for the basic mechanism by which a laser works.

Some pioneer works by Einstein in 1917 already described the stimulated emis-
sion process. However, it was not until 1954 when Town succeded with the first
experiment with the maser (microwave amplification by stimulated emission of ra-
diation). In 1958, Schawlow and Townes predict theoretically the existence of laser
systems and in 1960, Theodore H. Maiman announced the first operation of a laser,
namely a ruby laser. Since then, a lot of different lasers have been studied, both
experimentally and theoretically.

4.1 Physical phenomena in lasers

In a laser system an electromagnetic wave interacts with a material and three
processes can occur: a photon can be absorbed by the material or it can be emitted
either spontaneously or by stimulated emission. The simplest way to sketch this
situation is as follows.

Consider a material whose atoms (or molecules) have two energy levels, 1 and 2,
with energies Ey and Fy (Ey > Ej). An atom (or molecule) of the given material
which is initially in level 2 tends to decay spontaneously to level 1 emitting a photon
of frequency v (Planck’s law)

Ey — Ey
= —

!Laser was also a plant with miraculous properties which grew wild over a large area around
Cyrene (in present-day Libya) [Svelto, 1982].

14

(4.1)
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where h is the Planck’s constant. In this process, the photon is emitted in any
direction and with no definite phase relation with that emitted by another atom (or
molecule). However, it may happen that an atom initially in level 2 decays to the
level 1 forced by an incoming photon. This phenomenon is the basis of the laser
operation and it is called stimulated emission. Since the process is forced by the
incident photon, the emitted photon adds in phase to the incoming one and in the
same direction. Finally, an atom in level 1 can undergo a transition from this energy
level to level 2 by absorbing an incident photon.

Once the basic concepts have been given, we can use them to explain the mech-
anisms for the operation of a laser. Let us consider two energy levels as above and
let N; and N, be their respective populations. If a plane wave is travelling along
the material, the three processes explained before (spontaneous emission, stimulated
emission and absorption) can be present. Considering only stimulated emission and
absorption processes, the material behaves as an amplifier if Ny > N; and it behaves
as an absorber if N, < N;. Under ordinary conditions the material behaves as an ab-
sorber [e.g., in the case of thermal equilibrium for which Ny/N; = exp (—%2)]
If a nonequilibrium condition is reached for which Ny > N;, the material will act
as an amplifier and population inversion can be achieved. An active material is a

material with population inversion.

To turn an amplifier into a laser, a suitable positive feedback has to be intro-
duced. In a laser, the feedback is obtained by placing the active material between
two highly reflecting mirrors (e.g., plane—parallel mirrors), such that an electromag-
netic wave traveling in a direction orthogonal to the mirrors bounces back and forth
between the two mirrors and is amplified on each passage through the active mate-
rial. By making one of the two mirrors partially transparent, an useful output beam
can be extracted. A certain threshold condition must be satisfied: the oscillation
(built up from the spontaneous emission) starts when the gain of the active material
compensates the losses in the laser. The photons spontaneously emitted along the
cavity axis initiate the amplification process.

Summarizing, a laser has three basic ingredients: i) a gain medium capable of
amplifying the electromagnetic radiation propagating inside the cavity (typically
gas, liquid, solid state or semiconductor materials), ii) an optical cavity that pro-
vides the necessary feedback (Fabry—Perot or ring cavities, distributed feedback
structures or distributed Bragg reflectors), and iii) a pumping mechanism (electri-
cal discharge, current injection or optical pump). Laser radiation has very useful
properties: a high degree of monochromaticity, temporal and spatial coherence, di-
rectionality, brightness and it can be produced (using different systems) in a broad
range of wavelengths. Likewise, there is a large variety of laser applications. Since its
discovery, lasers have been used in metrology, industrial and medical applications,
trapping and cooling of atoms, detection of gravitational waves, cutting materials,
optical communications, CD players and recorders, printers, etc.
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4.2 Modelling lasers

A complete understanding of laser dynamics is based on a fully quantum-
mechanical description of matter-radiation interaction within the laser cavity. How-
ever, the laser is a system where the number of photons is much larger than one,
thus allowing a semiclassical treatment of the electromagnetic field inside the cavity
through the Maxwell equations. This fact was introduced in the semiclassical laser
theory, developed by Lamb [Lamb, 1964; Sargent et al., 1974] and independently by
Haken [Haken and Sauermann, 1963; Haken, 1983; Haken, 1984; Haken, 1985]. The
model for the laser dynamics was constructed from the Maxwell-Bloch equations
for a single-mode field interacting with a two-level medium. The semiclassical laser
theory ignores the quantum-mechanical nature of the electromagnetic field, while
the amplifying medium is modelled quantum-mechanically as a collection of two—
level atoms through the Bloch equations. The evolution of the wave electric field
£(Z,t) can be obtained from the wave equation of the electromagnetic theory

- 15 5 P
AE — —28 — M()O'Og = ,LL()P (42)
c
where A represents the Laplace operation, ¢ is the velocity of light in vacuum, ug
is the vacuum magnetic permeability, oy is the electric conductivity of the medium,

and P(Z,t) is the electric polarization of the medium. By assuming a plane-wave
structure, £(Z,t) and P(Z,t) can be expressed as

[é’E(t)ei(kz_Qot) + c.c.] , (4.3)

N DN

[E'P(t)ei(kz_ﬂot) + c.c.] : (4.4)

where k is the resonator wave vector (it has been taken in the z-direction), € and
¢’ are unit vectors and ) is the laser frequency.

By using these definitions, the Maxwell-Bloch equations, after appropriate rescal-
ing, are

P
OE+ S 0E = 2B+, (4.5)
g 2 2
P = —y(l—ia)P+ygy(14+0%) (N -N,)E, (4.6)
1
ON = C—wN—_(EP'+EP). (4.7)

E is the slowly-varying complex amplitude of the electric field propagating in the
z direction, P is the slowly-varying complex amplitude of the material polarization
and N gives the population inversion.

Eq. (£3) is obtained from the Maxwell’s equations by considering an isotropic
non-magnetic dielectric medium and a single transversal electrically polarized mode
at a given frequency. The other equations are the matter equations that are devel-
oped from quantum mechanics. It is assumed two energy levels for the atoms that
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participate in the interaction with the laser field. The parameters appearing in the
equations are: 7, is the group refractive index of the mode such that c¢/n, is the
group velocity; 7 is the inverse of the photon lifetime or cavity decay rate and it
accounts for internal and mirror losses. In ({.6) 7, is the polarization decay rate,
and it accounts for the collision with other atoms or the interaction with lattice
vibrations; « is the normalized detuning, which takes into account the difference
between the frequency of the transition of the two energy levels and the cavity res-
onant frequency; gy is the differential gain at the lasing frequency (in the simplest
approximation, gy is considered to be constant, but a more realistic model includes
gain saturation through a nonlinear dependence on the modulus of the electric field,
as will be considered later); N, is the population inversion at transparency (value
of the population inversion at which the material is transparent to radiation).

In (f7), C is the rate at which the carriers, electrons and holes are injected into
the active layer due to the external pumping. The second term of this equation,
stands for carrier losses due to spontaneous emission or non-radiative transitions. In
this work, vn (population relaxation parameter due to spontaneous recombinations)
is considered as a constant, although a more general form can be also considered
[Olshansky et al., 1984]. The third term accounts for the stimulated emission.

Different types of lasers can be classified according to the decay rate of the pho-
tons, carriers and material polarization. Arecchi et al. [Arecchi et al., 1984; Tredicce
et al., 1985a] were the first to give a classification scheme: class C lasers have all
the decay rates of the same order, and therefore the full set of three nonlinear dif-
ferential equations is required for a satisfactory description of the electric field, the
population inversion and the material polarization. For class B lasers, the polar-
ization decays towards the steady state much faster than the other two variables,
and it can be adiabatically eliminated. Class B lasers, of which semiconductor lasers
[Agrawal and Dutta, 1986] are an example, are then described by two rate equations
for the atomic population inversion (or carriers number) and the electric field. Other
examples of class B lasers are CO, lasers and solid state lasers [Weiss and Vilaseca,
1991]. From now on, when studying class B lasers, we will restrict ourselves to
semiconductor lasers. The main characteristic of these lasers is that the transitions
occur between electron and hole bands instead of atomic or molecular energy lev-
els [Agrawal and Dutta, 1986; Petermann, 1988; Wilson and Hawkes, 1989; Saleh
and Teich, 1991]. Finally, in class A lasers population inversion and material po-
larization decay much faster than the electric field. Both material variables can be
adiabatically eliminated, and the equation for the electric field is enough to describe
the dynamical evolution of the system. Some properties of class A lasers, like a dye
laser, are studied in [Herndndez-Garcia et al., 1990; Ciuchi et al., 1991].

A description simpler than (f.J - f.7) can still be obtained when averaging
over the z direction and considering single-mode emission (longitudinal, lateral and
transversal mode emission). This simple set of equations is called rate equations
[Statz and deMars, 1960; Tang et al., 1963]. As already pointed out, in semicon-
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ductor lasers, and after eliminating the polarization, one ends up with only two
equations that describe the slowly varying amplitude of the electric £ and the num-
ber of carriers N. By taking 4¥ = 0 in (@) and changing E — Eexp (iayt/2),
Egs. (.3) and (f.7) become

(1+ia)

= (G- B, (48)

. J
N = Z“—ywN-G|EP, (4.9)
€

where G = G(N) = gy (N — N,), J accounts for the injection current, and e is the
electronic charge (e = 1.6 x 1071°C).

In Eq. (£-8), there is a competition between the gain, G, and the losses, vy, terms.
However, the previous expression for G is incomplete since it does not account for
some effects as the spectral and spatial hole burning [Agrawal, 1987] or carrier
heating [Kressel and Ippen, 1987]. A more general expression for G considering
these factors yields [Agrawal and Dutta, 1986]

N—N,

G = G(N7 |E|2) =gn W:

(4.10)
where s is the saturation coefficient and gy is a constant.

For semiconductor lasers, « is called the linewidth enhancement factor and is
defined as the ratio between the derivatives of the real and imaginary parts of the
carrier—dependent susceptibility with respect to the carrier density [Henry, 1982]. It
considers the fact that, in semiconductor lasers, the lasing transitions occur between
energy bands instead of energy levels, giving an asymmetry in the gain spectrum.

In Egs. (£.8) and (f.9), the effect of spontaneous emission, as a source of radi-
ation, has to be included. This can be treated quantum mechanically, via quantum
Langevin equations, or via the density matrix equations. In previous works [Henry,
1982; Henry, 1983] the effect of spontaneous emission was incorporated in the rate
equations in the form of noise terms and the resulting equations, interpreted in the
It6 sense, are

. l+ia

£ o= UG, ) - ) B + V2N 6(0), (@11)
- J

N = ——-wN- G(N, |E]) |E|? = V2e N (E*¢g(t) + E&5(1) +  (4.12)

\/2’)’]\/’ NEN(t)

¢ is the spontaneous emission rate. £(t) is a complex Langevin noise term account-
ing for the stochastic nature of spontaneous emission and £y(t) describes random
non-radiative carrier recombination due to thermal fluctuations. They are consid-
ered as Gaussian noise terms of zero mean and correlations

(€ilt) &(t)) = 655 0(t — 1), (4.13)
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where &;,£; denote Re(€g), Im(ér) and Ey.
Equations (4.11)) and (B.12) can be written in terms of the intensity and phase,
E = /T exp (i¢) such that

I = [G(N,I)—~]I +4e N +V8e NI&(t), (4.14)

- %a[G(N,I)—’y]—i— 2EIN§¢(t), (4.15)

¢
N = %—'yNN—G(N,I)I—\/SENIEI(t)—i—\/?yNNfN(t), (4.16)

where £7(t), €5(t) and En(t) are real gaussian noise terms of zero mean and correla-
tions

(&(0) &(t) = 0 6(t — 1)), (4.17)

where 7, 7 denote I, ¢ and N. 4eN represents the mean power spontaneously emitted
in the lasing mode.

The equations we have described are for semiconductor lasers (class B lasers).
To obtain a set of equations for a class A laser, we can adiabatically eliminate N by
setting N = 0 in (f9) and obtain N as a function of E. The resulting equation for
the electric field after replacing in Eq. (£.§) is

o TanUfe— N/
E=(1+ia) T+ (s on) B 2 E. (4.18)

We will devote the chapters of part [ to the study of class A lasers. In part III we
will study class B lasers.
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Capitol 5

Lasers de Classe A:
Potencial de Lyapunov

En aquest capitol es presenta un exemple d’utilitzacié del potencial de Lyapunov
(introduit en el capitol 2) en un sistema dinamic. El sistema que es considera és el
d’un laser de classe A (capitol ff]).

La dinamica del laser de classe A es descriu en termes de 'amplitud complexa
lentament variable del camp electric, que es pot descompondre en les seves parts
real i imaginaria. Les equacions resultants sén les (b.3) i (p.4)), que es tracten en
aquest capitol.

En primer lloc es considera el sistema determinista, menyspreant els termes de
renou. El resultat de les simulacions es pot veure a les figures .11 5.2. Comencant
d’'una condicié inicial a prop de ’estat apagat, la intensitat es va atracant al seu
estat estacionari, mentre que les parts real i imaginaria del camp electric oscil-len
en el temps fins també arribar a un valor constant. En el pla definit per les parts
real i imaginaria del camp, els sistema realitza una oscil-lacié en forma d’espiral. El
valor camp eléctric no depén del parametre de disintonia (), i I'inica dependéncia
amb el parametre o apareix en la velocitat angular (o equivalentment en la fase del
camp eléctric).

Les equacions del laser de classe A constitueixen un flux potencial (5.10), on el
parametre de disintonia no hi és inclos. La matriu que relaciona les derivades del
potencial amb les equacions de la dinamica es designa com D, (5.11). Els punts fixos
de la dinamica determinista sén els extrems del potencial. Per a un valor del guany
fixat de manera que el laser estigui ences, la forma del potencial és del tipus capell
mezica (Fig. 5.5), té un maxim central i una corba de minims que ’envolten. En la
dinamica transitoria, la part simetrica de D és la responsable de dur el sistema cap
als minims del potencial, seguint les linies de maxim pendent. La part antisimetrica
(que és proporcional a «) indueix el moviment ortogonal a la direccié de variacié
maxima del potencial. Aquests dos efectes combinats (corresponents a les parts
simetrica i antisimetrica del camp vectorial) produeixen la trajectoria espiral, abans
esmentada, en el pla definit per les parts real i imaginaria del camp electric, amb
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una velocitat angular proporcional a «, Fig. 5.6. A partir del camp vectorial dels
lasers de classe A, Figs. 5.715.9, es pot observar que la direccié de rotacié (per a un
« donat) és diferent entre la part interna i la part externa de les linies de potencial
minim.

La dinamica de les equacions en presencia de renou és tal que les caracteristiques
qualitatives de la dindmica transitoria (a part de petites oscil-lacions degudes al re-
nou) s6n les mateixes que el cas determinista. Ara bé, les diferéncies més importants
apareixen a prop de la situacié estacionaria, a causa que ’estat final no té un valor
constant per a la fase, siné que la fase varia amb el temps, Figs. 5.101i 5.11. En
el cas de considerar les equacions amb renou és de gran utilitat considerar valors
mitjos. El valor mig de la fase del camp eléctric varia, per a « # 0, linealment amb
el temps en l'estat estacionari, Fig. 5.13, efecte que anomenam flux sostingut per
renou.

Aquestes caracteristiques de la dinamica amb renou es poden explicar mitjancant
el potencial de Lyapunov, que s’havia obtingut per a la dinamica determinista. La
funcié densitat de probabilitat estacionaria ve donada a partir del potencial, Eq.
(2.38), ja que la matriu D verifica les condicions corresponents. En termes de les
variables intensitat i fase del camp eléctric, aquesta funcié es pot escriure com a
funcions independents de cadascuna de les variables. La funcié densitat de proba-
bilitat de la intensitat (5.17), té el seu maxim al valor minim del potencial, que
coincideix amb el valor estacionari de la dinamica determinista (Fig. 5.14), i és
asimetrica al voltant d’aquest maxim, Fig. 5.15. Amb aquesta funcié densitat
es poden calcular valors mitjos de les variables a ’estacionari. El valor mig de la
intensitat a I’estacionari, que no depen del parametre «, es pot calcular analiticament
(5.19), el seu valor augmenta aixi com s’incrementa el valor del parametre de renou,
Fig. 5.16.

El fet que la fase del camp electric fluctui al voltant d’un valor mig que can-
via linealment amb el temps també es pot explicar amb el potencial de Lyapunov.
L’origen d’aquest flux sostingut per renou es pot entendre de la segiient manera: els
termes que indueixen rotacié, els proporcionals a «, sén zero a la linia de minims de
potencial, i per tant no actuaven a l’estat estacionari determinista. No obstant, les
fluctuacions, que ara s’inclouen, permeten que el sistema explori regions de I’espai
definit per les parts real i imaginaria del camp electric on el potencial ja no té el seu
valor minim. La part antisimétrica de D (que conté el parametre «) és la respon-
sable de la rotacié a I’espai de fases. A causa que el valor mig de la intensitat és més
gran que el valor deterministic de ’estat estacionari, el sistema passa més temps,
en valor mig, en la part externa del minim del potencial que en la part interna, i
és per aquest motiu que hi ha una contribucié distinta de zero al termes rotacionals
produint la velocitat de fase observada. El valor mig de la velocitat de rotacié es
pot calcular a partir de la funci6 densitat de probabilitat (5.23). La rotacié mitja
és zero quan el terme de disintonia és zero o en el cas determinista; i a més, aquesta
rotacid té un sentit oposat al que es tenia en la dinamica transitoria quan es partia
de V’estat apagat. El canvi d’aquest valor mig de la freqiiencia amb el renou es veu
en la figura 5.17.



Chapter 5

Class A Lasers: Lyapunov
Potential

In this chapter, a first example of the use of Lyapunov potentials in a dynamical
system is presented. The system we consider is a class A laser.

5.1 Model

For class A lasers, such as He-Ne laser, the dynamics of can be described in
terms of the slowly varying complex amplitude E of the electric field [Haken, 1984],
Eq. (£.18). The noise term is simply additive, as it is usually taken in this kind of
lasers. The resulting equation is

E=(1+ia) (ng—f;) E +¢(0), (5.1)

where «, ¥, I' and k are real parameters. & is the cavity decay rate; I' the gain
parameter; ¥ the saturation-intensity parameter, and « is the detuning parameter.
Their relationship with the variables of class B lasers ([.§) and ({.9) are:

P =g (L= o) /@), m=1/2, 9 = (g + s7w) /v

Another widely used model expands the nonlinear term to give a cubic dependence
on the field (third order Lamb theory [Sargent et al., 1974]), but this is not necessary
here. Eq. (b.I) is written in a reference frame in which the frequency of the on
steady state is zero (and the trivial solution has frequency (I' — k)« [Ciuchi et al.,
1991]). ¢(t) is a complex Langevin source term accounting for the stochastic nature
of spontaneous emission. It is taken as a Gaussian white noise of zero mean and
correlations

(€C(t) () =4A6(t - 1), (5:2)

where A measures the strength of the noise.
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By writing the complex variable £ as £ = z; + iz2 and introducing a new
dimensionless time such that ¢ — k¢, the evolution equations become

B = (Lq) (21 — azs) + &(2), (5.3)

b+ x2 + 23

:tQ = (m - 1) (CV T+ IEQ) -+ fQ(t), (54)

where a = I'/(k¥) and b = 1/9. £(t) and &(¢) are white noise terms with zero
mean and correlations given by equation (2.32) with € = A/k.
5.2 Class A lasers: Deterministic case

In this section, we consider the reduced equations for a class A laser in the

absence of noise, i.e. in the case € = 0,

b+ z7 + 23

& = (L - 1) (21 — axs), (5.5)
by = (Lq) (@) + 22). (5.6)

b+ z7 + 23
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Figure 5.1: Simulation of Eqs. (5.§) and (5.6). (a) Dynamical evolution of z; (solid line), 25
(dashed line) and z? + 22 (dotted line) with time. (b) Phase evolution with time. Parameters:
a=2,b=1, a =5. Initial conditions: z; = 1075, x5 = 10~5. Dimensionless units.
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Performing the change of variables
I=1}+13 and ¢ = arctan (zo/1,), (5.7)

one obtains a set of equations

i = 2(bzl—1) 1, (5.8)
$ = (bjl—1) . (5.9)

Ql

The steady state solutions of (p.§) and (b.9) give rise to two fixed points, one
corresponding to the laser off (I = 0), and the other to the steady state of the
system: I,, = a — b and ¢ = 0 (fixed intensity and arbitrary phase).

Numerical simulations have been performed using a Runge-Kutta method (ex-
plained in chapter 2). When starting with an initial condition close to the off state,
the intensity I monotonically approaches the steady state value I, while the real
and imaginary parts of the electric field (z; and z3) oscillate in time until they reach
a constant value, see Fig. 5.1 (a). In Fig. 5.1 (b), it can be seen that the continuous
phase (defined between —oco and oo) increases until it arrives to a constant value.
Fig. B.9 shows that the imaginary part versus the real part of the field spirals to
the fixed point.
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Figure 5.2: z, versus z; for Eqs. (5.5) and (5.6). Parameters: ¢ = 2, b = 1, a = 5. Initial
conditions: z; = 1075, 5 = 1073, Dimensionless units.
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Figure 5.3: zo versus z; for Eqgs. (5.5) and
(5.6). Parameters: a =2,b=1. a =5 (solid
line), a = 1 (dotted line), a = 0 (dashed line).
Initial conditions: z; = 1075, zy = 1073,
Dimensionless units.
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Figure 5.4: 2o versus z; for Egs. (5.5) and
(5.6). Parameters: a = 2, b =1. a =20
(dashed line), a = —1 (dotted line), « = —5
(solid line). Initial conditions: z; = 107°,
%9 = 10~%. Dimensionless units.

It is worth noting that the final value I;; does not depend on ¢, and the only
dependence on « appears in the angular velocity (or equivalently in the phase), as it
is shown in Figs. p.3 and p.4. In these figures, it can be seen that when « increases
the rotation speed increases in the (z,z2) plane, and when the sign of & changes,
the rotation sense inverts. Here we have used large values of the parameter oe. With
these values of «, the influence of this parameter in the dynamical equations can be
clearly seen.

Equations (5.5) and (5.6) constitute a potential flow of the form (2.26) where
the potential V' (x) is given by ([Haken, 1983])

1
V(zy,z2) = 5 (27 + 23 — a In(b + 2% + z3)] (5.10)

and the matrix D(x) (split into symmetric and antisymmetric parts)

D:S+A=<é?>+(2_§>. (5.11)

A simpler expression for the potential is given in [Risken, 1989] and [Haken, 1984]
valid for the case in which the gain term is expanded in Taylor series.

When writing the potential in terms of I and ¢, it appears to be independent of
the phase (rotational symmetry in the plane (z1,z5)),

1
V(I,¢) = g[l—aln(b—l—l)]. (5.12)
By using this potential, one can obtain the fixed points of the set of equations
and also the transient dynamics.
According to our discussion of chapter 2, the fixed points of the deterministic
dynamics are the extrema of the potential V (x): for a > b there is a maximum at
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(21, z2) = 0 (corresponding to the laser in the off state) and a curve of minima given
by z? + 22 = a — b (see Fig. p.5). The asymptotic stable situation, then, is that the
laser switches to the on state reaching an intensity I = |E|? = 22 + 25 = a — b. For
a < b the only (stable) fixed point is the off state I = 0. In this case, the shape of
the potential is not the one appearing in Fig. p.§ but V' is paraboloidal.

<TL LU
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Figure 5.5: Potential for a class A laser, Eq. (p.1() with the parameters: a = 2, b = 1.
Dimensionless units.
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Figure 5.6: Potential for a class A laser, Eq. (p.10)) with the parameters: a = 2, b = 1. Solid
line: simulation of Eqs. (5.5) and (5.6) (same as in Figs. 5.1 and .4, o = 5). Initial conditions:
z1 = 1075, x5 = 1075, Dimensionless units.
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Figure 5.7: Vector field for a class A laser. Thick solid line: simulation of Egs. (5.5) and (5.6).
Thin lines are the equipotential curves of Eq. (5.1() and the arrows indicate the sense of the flow.
Parameters: a = 2, b= 1, a = 5. Initial conditions: z; = 1072, 25 = 1075, Dimensionless units.

In the transient dynamics, the symmetric matrix S is responsible for driving the
system towards the minima of V following the lines of maximum slope of V. The
antisymmetric part A (which is proportional to «) induces a movement orthogonal
to the direction of maximum variation of V(x). The combined effects of S and
A produce a spiraling trajectory in the (zi,z;) plane, with an angular velocity
proportional to «, see Figs. b.g and p.7}.

Asymptotically, the system tends to one of the minima in the line I = a — b, the
exact location depending on the initial conditions. The potential decreases in time
until it arrives at its minimum value: V(2% + 23 =a —b) = 3 [a — b — a In(a)] (see

Fig. b.§).

The different rotation speeds and directions that one could observe in Figs. p.3
and p.4 can be explained with the antisymmetric part of the equations. This can be
seen by comparing Figs. p.7 and p.9 where we have taken different signs of the value
of «. In the case of & = 0 the antisymmetric part is zero, and there is no rotation
in the plane (z1, ) (Fig. 5.12).

Another interesting feature that has to be mentioned here is that the direction
of rotation for a given « is different for the internal part of the lines of minimal
potential and the external part, see Figs. p.7 and p.9. This implies, for o > 0, that
the trajectories starting near the off state will rotate counterclockwise, while those
starting with an intensity larger than the equilibrium value, I > I, will rotate
clockwise. This difference in the direction of rotation will have an interesting effect
in the presence of noise, as discussed in the next section.
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Figure 5.8: Simulation of Eqs. (5.5) and (5.6). (a) Dynamical evolution of the intensity z? + z2
with time. (b) Evolution of the potential given by Eq. (5.10) with time. Parameters: a = 2, b =1,
o = 5. Initial conditions: z; = 1072, 25 = 1075. Dimensionless units.
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Figure 5.9: Vector field for a class A laser. Thick solid line: simulation of Egs. (5.5) and (5.6).
Thin lines are the equipotential curves of Eq. (f.1(]) and the arrows indicate the sense of the flow.
Parameters: a =2, b= 1, @ = —5. Initial conditions: z; = 1075, 25 = 1075. Dimensionless units.
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5.3 Class A lasers with noise

In this section, we consider the set of equations for class A laser in the presence
of noise:

b+ i+ 23

B = (L - 1) (21 — azs) + & (1), (5.13)

:tQ = (m — 1) (CV T + IEQ) + EQ(t) (514)

In the presence of moderate levels of noise, the qualitative features of the tran-
sient dynamics remain the same as in the deterministic case. The most important
differences appear near the stationary situation.

We have performed simulations of Egs. (f.13) and (5.14) using the Heun method
(2.20) explained in chapter 2. In this case, one can take initial conditions in (z; =
0,22 = 0) and the small fluctuations, induced by noise terms, take the system away
from the “off” state. The transient dynamics, see Fig. p.1(, is quite similar to that
in the deterministic case (compare with Fig. [.7). However, the final state does
not have a constant phase but it changes in time. The direction in which the phase
changes is not constant but varies in time, see Fig. 5.11.

X

Figure 5.10: Vector field for a class A lasers. Thick solid line: simulation of Egs. ) and
(F-14). Thin lines are the equipotential curves of Eq. (p.10) and the arrows indicate the sense
of the flow. Parameters: a = 2, b = 1, a = 5, ¢ = 0.001. Initial conditions: z; = 0, z2 = 0.
Dimensionless units.
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Figure 5.11: Phase evolution with time from the simulation of Egs. (5.13) and (5.14). Pa-
rameters: ¢ = 2, b = 1, a = 5, ¢ = 0.001. Initial conditions: z; = 0, zz = 0. Dimensionless

units.

Therefore, for a # 0 the real and imaginary parts of E oscillate not only in the
transient dynamics but also in the steady state. The frequency of the oscillations
still depends on « (as well as €), while the amplitude of the oscillations depends on

the noise strength e.

—-0.5
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Figure 5.12: Vector field for a class A lasers. Thick solid line: simulation of Egs. (5.13) and
(5.14). Thin lines are the equipotential curves of Eq. (5.10) and the arrows indicate the sense
of the flow. Parameters: a = 2, b6 = 1, a = 0, ¢ = 0.001. Initial conditions: z; = 0, zz = 0.

Dimensionless units.
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For @ = 0 there is only phase diffusion around the circumference 2+ 2 =a—b
that represents the set of all possible deterministic equilibrium states [Ciuchi et al.,
1991] (compare Figs. 5.10 and p.I7 which cover the same simulation time).

A small value of the parameter € has been considered in these figures, allowing
only a small deviation of the dynamical evolution in the plane (z1,z2) around the
deterministic steady state (intensity is almost constant). When e increases, the
range of values available around the steady state also increases. As the final value
of the intensity is approached, and for « # 0, the phase rotation speed slows down
and the mean value of the phase ¢, of the electric field E, changes linearly with time
also in the steady state, see Fig. b.13.

Figure 5.13: Time evolution of the mean value of the phase ¢ in a class A laser, in the case
a=2,b=1, e=0.1. For « = 0 (dashed line) there is only phase diffusion and the average value is
0 for all times. When a =5 (solid line) there is a linear variation of the mean value of the phase.
Error bars are included for some values. The dot—dashed line has the slope given by the theoretical
prediction Eq. () The initial condition is taken as z; = 2 = 0 and the results were averaged
over 10000 trajectories with different realizations of the noise. Initial conditions: z; = 0, zo = 0.
Dimensionless units.
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We can understand these aforementioned features of the noisy dynamics using
the deterministic Lyapunov potential V' (z1,22). Since conditions (2.35), (2.36) and
(2.37) are satisfied, the stationary probability distribution is given by (2.38) with
V (21, z2) given by (5.10). By changing variables to intensity and phase, we find that
the probability density functions for I and ¢ are independent functions (due to the
form of the potential (5.12))

Py(I,¢) = Pu(I) Pur(9), (5.15)
where 1
P = — 5.16
(6) = 5- (516)
is a constant and
Py(I) = Z7 e /29 (p 4 )9/(29) (5.17)
where the normalization constant is given by
Z=(2efH s T | L 41 b (5.18)
2¢  2¢)’

and I'(z,y) is the incomplete Gamma function. From this expression, we see that,
independently of the value of €, Py(I) has its maximum at the deterministic sta-
tionary value I,, = a — b, and by increasing e the shape of the distribution becomes
more asymmetric, see Figs. p.14 and p.15

0.0 0.5 1.0 1.5 2.0

Figure 5.14: Probability distribution function for I = z2 + 22 in a class A laser, in the case
a=2,b=1, ¢ =0.001l. Dots correspond to the histogram obtained with the simulation of Eqgs.
(5.13) and (5.14). The solid line correspond to Eq. (f.17). Dimensionless units.
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Figure 5.15: Probability distribution function for I = z2 + 3 in a class A laser, in the case a = 2,
b=1, e =0.1. Dots correspond to the histogram obtained with the simulation of Egs. (5.13) and
(5.14). The solid line correspond to Eq. (p.17). Dimensionless units.

Starting from a given initial condition corresponding, for instance, to the laser
in the off state, the intensity fluctuates around a mean value that increases mono-
tonically with time. In the stationary state, the intensity fluctuates around the
deterministic value I, = a — b but, since the distribution (.17) is not symmetric
around I,,, the mean value (I),, is larger than the deterministic value. By using
(p-17) and (2.39) one can easily find that

exp(—b/2¢) (b/2¢)ze ™
r(i+1,2i€)

The evolution of this mean value in terms of the parameter € is plotted in Fig.
6.16. The mean value of I,; increases as the noise strength increases. In the deter-
ministic case one obtains the value corresponding to the minimum of the potential.

An expression for the mean value of the intensity in the steady state was also
given in [Risken, 1989], valid for the case in which the saturation terms in the
dynamical equations are expanded to third order in the field amplitude.

(I)y = (a—b) +2¢ |1+ (5.19)

As mentioned before, in the steady state of the stochastic dynamics, the phase
¢ of the electric field fluctuates around a mean value that changes linearly with
time. Since any value of ¢ can be mapped into the interval [0, 27), this is consistent
with the fact that the stationary distribution for ¢ is uniform, Eq. (5.16). We can
easily understand the origin of this noise sustained flow: the rotation inducing terms,
proportional to « in the equations of motion, are zero at the line of minima of the
potential V and, hence, do not act in the deterministic steady state. Fluctuations
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Figure 5.16: Evolution of < I >, with €. Solid line, with Eq. (b.19). Points correspond to the
mean values obtained by different simulations of Eqs. (5.13) and (5.14). a =2 and b = 1.

allow the system to explore regions of the configuration space (z1,z2) where the
potential is not at its minimum value. The antisymmetric part of the matrix D
(which contains the parameter «) is then the responsible for the rotation in the
plane (z,z2). According to Eq. (p.I9) the mean value of I is not at the minimum
of the potential because there is, on average, a nonzero contribution of the rotational
terms producing the observed phase drift.

The rotation speed can be calculated by writing the evolution equation for the
phase of the electric field. After a change of variables in Egs. (5.13 — 5.14) to
intensity and phase, z, + iz, = v/Te*, the evolution equations become (It6 sense)

j:(b%q) 9T +4e+2VIE(®R), (5.20)
b= (HLI — 1) -+ %f(t), (5.21)

where £(t) is a white noise term with zero mean value and correlations given by
(2.32). In these equations one can see that apart from the stochastic noise terms,
in the first equation it appears an extra term corresponding to the mean number of
photons spontaneously emitted. Hence, the steady state is not (I)ss = a — b but it
has a corrective term depending on e as shown in (5.19).

By taking the average value of (f.21]) and using the rules of the It6 calculus (the
mean value of the last term of that equation is zero), one gets

<¢)=a<bil—1>- (5.22)
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By using the distribution (5.17) and the expression (2.39), one obtains the stochastic
frequency shift

exp(—b/2¢) (b/2¢€) <

o :
b
M(L+1,2)
Notice that this average rotation speed is zero in the case of no detuning (o = 0) or
for the deterministic dynamics (e = 0) and that, due to the minus sign, the rotation
speed is opposite to that of the deterministic transient dynamics when starting from
the off state. These results are in excellent agreement with numerical simulations
of the rate equations in the presence of noise (see Fig. p.I3). The evolution of the
mean value of the frequency with € is plotted in Fig. p.17. One can see the phase
drift is negligible for a small values of e.

(@)ar = — (5.23)

The noise sustained flow we have obtained in this laser system implies that the
laser frequency will be shifted with respect to the deterministic one in the pres-
ence of noise. It would be interesting to check experimentally the existence of this
noise induce phase drift. However, according to our results, the noise intensity re-
quired for an observable phase drift is much larger than the typical noise intensity in
experiments. Nevertheless, this necessary extra noise could be externally induced.
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Figure 5.17: < ¢ > versus € as given by ( Points correspond to the mean values obtained
by simulating Eqgs. (5.13) and (5.14). a =2, b =1 and a = 5.



Capitol 6

Lasers de Classe A amb senyal
injectat: Conjunt de bifurcacions i
potencial de Lyapunov

En aquest capitol es descriu el conjunt de bifurcacions (capitol 3) per a un laser
de classe A amb senyal injectat, en termes de 'amplitud, p, i freqiiéncia, 7, del
senyal que s’aplica. A més, s’explica el comportament dinamic d’aquests tipus de
lasers, en els casos que es possible, en termes del potencial de Lyapunov (capitol 2).

El sistema que es considera és el d’un laser de classe A (capitol 4) amb un camp
optic monocromatic aplicat. La dinamica del sistema ve donada per la variacié
temporal del camp electric, Eq. (p.]]). Escrivint les equacions en el sistema de
referencia que rota amb la freqiiencia del camp aplicat, les equacions que s’obtenen
per a les parts real i imaginaria del camp electric sén les que es tracten en aquest
treball, (6.3 — p.4) (Els punts fixos d’aquestes equacions corresponen, en el sistema
de referéncia inicial (B.]]), a una solucié per a les variables que oscil-la a la mateixa
freqiiéncia del camp aplicat).

La dinamica del sistema és tal que, per a valors petits de 7 el sistema oscil-la
en el pla definit per les parts real i imaginaria del camp eléctric fins arribar a un
punt fix. Quan s’augmenta el valor de la freqiiencia per damunt d’un cert valor, 5y,
la intensitat del camp electric té un valor aproximadament constant, pero la fase
evoluciona linealment amb el temps.

Per a valors més grans de 7 i depenent del valor de p, la dinamica és més com-
plexa i apareixen distints possibles estats estacionaris. En la seccié .2, es descriu
el conjunt de bifurcacions complet, format per les distintes regions de l'espai de
parametres (p, 7), amb diferent comportament qualitatiu a V’estat estacionari. El
conjunt de bifurcacions obtingut és el que apareix a la figura 6.2, i les distintes re-
gions senyalades tenen punts fixos i orbites periodiques amb ’estabilitat que apareix
a la Taula 6.1. En la bifurcacié sella—node, linea solida, dos punts fixos col-lapsen
a Pespai de fases i desapareixen (per exemple de la regi6é 5 a la 1). A la bifurcacié
de Hopf, linees a trossos curts, un punt fix canvia la seva estabilitat i es crea una
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orbita periodica (com passant de la regi6 2 a la 3). En les orbites homocliniques
(linees de punts), I’orbita periodica va augmentant el seu periode fins arribar a in-
finit en la corba homoclinica i alla desapareix, per exemple acostant-—se de la regié
3 cap a la 4. La interseccié entre les bifurcacions sella—node, Hopf i homoclinica
és una singularitat Takens-Bogdanov [els dos punts gruixuts de la figura 6.2 (a)].
Les zones de coincidéncia entre les corbes sella—node i orbites homocliniques, corres-
ponen a bifurcacions Andronov-Leontovich: una orbita periodica en la regié on no
hi ha punts fixos col-lisiona a ’0rbita homoclinica amb el punt fix sella-node. Cal
notar que hi existeixen aquest tipus de bifurcacions a cada una de les branques de
la bifurcacié sella-node. En linies a trossos llargs apareix la bifurcacié sella-node
d’orbites periodiques: passant de la regié 6 a la 7 dues orbites periodiques de distinta
estabilitat col-lisionen i es destrueixen.

En la secci6 6.3, apareix el potencial (6.25) en el cas de considerar un camp real,
n = 0. Té la forma de capell mezica inclinat, Fig. 6.9. La dinamica transitoria
del sistema va cap a l’estacionari seguint una trajectoria espiral, igual que en el cas
p = 0, capitol 5. A causa de la inclinacié del potencial, es romp la simetria de
fase pel sistema, i 1’estat final és fixat per a la intensitat i la fase. La bifurcacié
sella-node en la linia n = 0 es pot obtenir partint que el potencial és més inclinat
per a valors més grans de p, i en aquesta bifurcacié els punts fixos sella i inestable
desapareixen.

En el cas p =0, n # 0, el sistema es pot escriure en termes d’un flux potencial,
(2.26). El potencial és el mateix que en el cas sense injecci6 (5.10), i el terme residual
(6.27) conté el terme de la freqiiencia. El cas determinista es pot entendre com el
moviment damunt la superficie del potencial cap al minim. En el minim, la part
residual actua donant el moviment harmonic de freqiiéncia la d’injeccié.

La forma qualitativa del potencial en alguna regié del cas general (p # 0, n # 0)
es pot inferir a partir del potencial en els dos casos limits descrits. Per a un valor
de p # 0, es va augmentant 7 partint de n = 0. Inicialment el potencial té la forma
del potencial inclinat en una direccid; quan s’augmenta 7, el potencial es deforma
de manera que els punts minim i sella es van apropant, fins a desapareixer en la
bifurcacié sella—node. Apareixeria un conjunt de minims en forma d’el-lipse, on els
termes residuals serien els responsables del moviment periodic en ’estat estacionari.
L’el-lipse de minims es deformaria continuament en la regié 9 fins arribar a ser, quan
es va disminuint p, el capell mexica en la linia p = 0.

En presencia de renou, la funcié densitat de probabilitat estacionaria es pot
obtenir a partir del potencial (en el cas pn = 0), (6.33). La intensitat fluctua
al voltant del valor determinista, pero com la funcié densitat de probabilitat no
és simetrica, el valor mig de la intensitat és major que el valor determinista, Fig.
6.11. La fase del camp electric també fluctua al voltant de un valor mig que canvia
linealment en el temps, Fig. 6.12. Les fluctuacions permeten que el sistema explori
regions fora del minim i, després, els termes rotacionals (proporcionals a «) actuen.
El valor mig es pot calcular a partir de 1'expressié (6.35), i aquest fluz sostingut per
renou depen del camp aplicat i del valor del renou, Fig. 6.13.



Chapter 6

Class A lasers with injected signal:
Bifurcation set and
Lyapunov—potential function

In this chapter, we describe the bifurcation set for a class A laser with an
injected signal in terms of the amplitude and the frequency of the applied field by
using the concepts introduced in chapter 3. We explain the dynamical behaviour of
this kind of lasers in terms of a Lyapunov potential (chapter 2) in the case where
such a description is possible. In particular, a full description for the deterministic
and nondeterministic dynamics can be given by using the Lyapunov potential for
some particular values of the external parameters. This represents an extension of
the work performed in chapter 5 for class A lasers without injection. Depending
also on the value of these parameters, the phase of the electric fields drifts also with
time in the stochastic case, as it was found in the non-injected laser (section 5.3).

The chapter is organized as follows. In Sec. B.]], we present the model equations
for a class A laser with injected signal used in remaining sections. In Sec. [.J,
the bifurcation set in terms of the amplitude and frequency of the injected signal is
determined. While a portion of the lines presented in this bifurcation set can be an-
alytically calculated, the rest of the bifurcation set has been numerically computed.
In Sec. 6.3, we describe the laser dynamics in terms of a potential function, valid
for the case of a zero-detuning injected signal, and discuss its relevance both in the
deterministic and stochastic dynamics.

6.1 Model

We consider a class A laser [Haken, 1985] whose dynamics can be described in
terms of the slowly varying complex amplitude E of the electric field (5.1). The
physical electric field is given by £(t) = [E(t)e®! + c.c.]/2. The laser is injected
with a monochromatic optical field E,e®® of amplitude E, and frequency 2. The
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resulting evolution equation is [Haken, 1984; van der Graaf, 1997]

E(t) = (1 + i) (H%W — /4;) E + gE.e” ™ + ((t), (6.1)

where 77 = {2y — Q) is the detuning between the external field and the free running
laser frequency Qg. k, I', ¥ and « are (real) intrinsic parameters defined in Sec.
5.1. o is the injection coupling, proportional to the inverse of the round-trip time
Tim- C(t) is a complex Langevin source term accounting for the stochastic nature
of spontaneous emission. It is taken as a Gaussian white noise of zero mean and
correlations

(C@)C*(t) = 4Ad(t — '), (6.2)
where A measures the strength of the noise.

By writing the complex variable E as E = (z; + iz2)e” " (i.e. (z1,72) are the
real and imaginary parts of the electric field E in the reference system that rotates
with frequency —7), and introducing a new dimensionless time xt — ¢, the evolution
equations become

i = (ﬁ*) (21 = ) + p — 13 + 4 (2) cos(nt) — &(t) sin(nt),
8 = (ﬁ—l) (s +22) + 11 + & (£) sin(t) + Ex(2) cos(ont)
1 2

where a = T'/(kB), b = 1/8, p = 0E,/k and n = 7j/k, and ((t) = &1(t) + i&2(t)
introduces real white noise processes, & and &;, with zero mean and correlations
given by (2.32) with e = A/k. The statistical properties that follow from this set of
equations are contained in the Fokker-Planck equation (2.33) for the time evolution
of the probability density function [Risken, 1989]. A simpler, yet equivalent set of
equations, in the sense that they give rise to the same Fokker-Planck equation, is
[Herndndez-Garcia et al., 1990]

. a
s (bi +af+a3 1) (21 — az2) + p = nz2 + &1(8), (6.3)
. a
= (bi +af + a3 1) (a1 + m2) + 021 + &a(t). (6.4)

These equations can be written in terms of the intensity I and phase ¢, by making
the change of variables 71 = v/T cos(#) and o = /I sin(¢),

Ccll_i = 2 [b-;—LI — 1] I +2pVT cos(¢) + 2V &(2), (6.5)
% = « [ZF;LI — 1] — %sin(qﬁ) +n+ % (1), (6.6)

where £7(t) and &y(t) are white noise processes of mean zero and correlations (2.32).
The multiplicative terms of these equations have to be understood in the Stratonovich
sense [Risken, 1989].
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In the next sections, the system of equations (.3 — p.4) is studied. For conve-
nience, we will switch between the descriptions (.3 —.4) and (6.5 — b.6) whenever
it simplifies the discussion.

6.2 Bifurcation set

We consider throughout this section the deterministic version of Egs. (f-3) and
(B.4), i.e. the case e = 0. It is easy to observe that any trajectory remains bounded
in the (z1, %) plane. This comes from the asymptotic form of Eq. (B.9) in the limit
I — oo, namely I = —21, which shows that trajectories with a large intensity I are
restored towards the origin. Consequently, the only asymptotic behaviour of Egs.
(63 — B-4) can be either a fixed point or a periodic orbit. As Egs. (6.3 — B.4)) are
written in the reference frame that rotates with frequency —n, a fixed point solution
represents a situation in which the frequency of the laser electric field E equals that
of the injected field. We are interested in finding the locking range, i.e. the set
of parameters (p,n) for the injected field such that there exist stable fixed point
solutions, also called locking solutions.

6.2.1 The fixed point solutions

The intensity I, and phase ¢, of the fixed points are found by setting I= ng =0
in (6.5 — B.6). The resulting equations can be rewritten as

2
2 = T L_1] 1+a?)+2 Is[ a —1] Ln? 6.7
p A w2 (1+ )+ 2an bl + L7, (6.7)
n = \/’}_\/1+a2sin(¢s+arctan(a)). (6.8)

We consider henceforth the case a > b (corresponding to the lasing mode of operation
I' > k). For given (p,n), the third degree—polynomial equation (f.7]) can have either
one or three real (always nonnegative) solutions for the intensity I, see Fig. 6.1.
Particularly, in the case p = 0, the two fixed solutions for the intensity suffer a
transcritical bifurcation, Fig. 3.2, at @ = b. By multiplying Eq. (B.7) by (1 + o?),
one gets

2 2 2
p*(1+a?) [( @ ) 2 2
= —-1)(1 . 6.9
T il (1+e%) +nal +1 (6.9)
From this equation, it is straightforward to show that for any point of those solutions
the condition p
< 1 2 6.10
< Jevita (6.10)

is always satisfied, hence ensuring that there will be the corresponding solution for
¢5 obtained from Eq. (B.8).

The lines separating the one fixed point solution region from the three fixed point
solutions region can be found by using standard methods of algebra. These lines
form the so—called saddle-node curve (solid line in Figs. 6.2 (a), 6.2 (b) and 6.3).
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Figure 6.1: Fixed points for the intensity for a class A laser with injected signal, Eq. (6.7), versus
a. Solid line: stable fixed point, dashed line: saddle point, dotted line: unstable point. a = 2.
b=1. (a) p=0, (b.l) p=04, (b.2) p=0.6, (b.3) p=10..8.

It turns out that the three fixed points region is a connected set enclosing region
labelled 2, 3, 4, 5, 8, 10 shown in Fig. p.3 (a) for a typical case a =2,b=1, a = 2.
In regions 1, 6, 7, 9 only one fixed point exists. For moderate values of the intensity
p, there is a range of values for the frequency 1 € (11, 72) for which three fixed points
exist, whereas for very large intensity, only one fixed point exists for all values of 7.
A similar scenario occurs for a = 0, see Fig. where the three fixed points region
is labelled as 5, and only one fixed point appears in regions 1, 7, 9.

6.2.2 The periodic orbit solutions

At the saddlenode curve, a saddle point and another fixed point merge and
disappear. In some cases this gives rise to a periodic orbit through an Andronov—
Leontovich bifurcation. Near the bifurcation, it is possible to obtain approximately
the evolution equation for the angle variable ¢(¢) by assuming that the intensity
of the periodic orbit is constant. This approximation, which can be obtained via
perturbation theory on the laser equations to lowest order [Zimmermann et al.,
2001], is derived here heuristically by neglecting fluctuations in the intensity, setting
I =0 in Eq. (6.5), but allowing for a time dependent phase in Eq. (6.6) for ¢.
Setting I = I, constant in Eq. (6.5) and replacing in Eq. (6.6) we obtain

d=mn— pg.\l/_}i;a sin(¢ + arctan(a)). (6.11)
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The next approximation is to consider that I, is the intensity of the field at the
nearest point (p,7) in the saddle-node curve with the same value of the external
field amplitude p. Hence, I, is computed as the double root of Eq. (6.7) taking the
adequate value n = 1, or n = ns.

Eq. (B-I1) is known as Adler’s equation [Adler, 1946] and it can be easily ana-
lyzed by writing it as

(6.12)

using the potential function

U(y) = —ny, cos(¢ + arctan(c)) — 1o, (6.13)

where we have introduced
py/ (1402

The dynamics of ¢ can be explained in terms of relaxation in the potential U. For
In| < mr the potential has local minima and the phase eventually stops in one
of them. This is a fixed point solution which has been discussed in the previous
subsection. A periodic orbit solution is obtained only in the case |n| > 7z where the
phase ¢ varies monotonically with time. The explicit solution is

$(t) = 2arctan [n%f tan (nift) + %l — arctan(a) — 7t, (6.15)

2
where n.; = /7% — 7.

Therefore, within this approximation, the line separating a fixed point from a
periodic orbit solution is given by |n| = nr. Notice that our derivation of this relation
is different from the usual one in which one derives it by demanding that Eq. (6.10)
is satisfied. We have shown that Eq. (6.10) is indeed satisfied for all values of 5 and
p and that the condition |n| = 5z, determining the locking range is an approximated
one. By using Eq. (6.7) this condition can be rewritten as

a b
= - . 6.16
Pl e - T (6.16)

The range of validity of this approximation has to be checked numerically. In Fig.
B3 (c) we compare the exact result with the approximate one in the typical case
a=2,b=1, a=2. It can be seen that the approximation is quite good for small
values of p but it worsens as the intensity p is increased.

When crossing the saddlenode curve, for example crossing from region 9 or 1
to region 5 in Fig. .4 (a), the periodic orbit disappears. As a precursor of this
disappearance, the period of the periodic orbit, T, grows in regions 1, 9 until it
finally diverges at the saddle node curve. The divergence can be fitted, for a fixed
value of 7 to the law T ~ (p, — p) /2 [Strogatz, 1994], being p, the value of p where
the bifurcation occurs, see Fig. £.4.




80

Class A lasers with injected signal

020 0.20 0.30 0.35 040 0.49
P



6.2 Bifurcation set 81

\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\1‘\\\\

0.0 0o 10 1o 20
P

Figure 6.2: Bifurcation set for a class A lager with an injected signal fora =2,b=1and a = 2.
In (a) and (b) the solid line is the saddle-node curve separating regions 1, 6, 7, 9 with one fixed
point solution from regions 2, 3, 4, 5, 8, 10 with three fixed point solutions; the short—dashed lines
separating the pairs of regions 8 — 10, 2 — 3, 7 — 9 and 1 — 6, are Hopf bifurcation, as given by
Eq. (@, where a periodic orbit is created; the dotted lines are homoclinic bifurcation where
the periodic orbits of regions 4 and 10 disappear when going to region 5, and one periodic orbit
in 3 disappears when going to region 4; the coincidence of the curve of homoclinic orbits with
the saddle—node curve mark the existence of Andronov-Leontovich bifurcation where the periodic
orbit of 9 and 1 disappears when crossing to 5; the long—dashed line is a saddle—node bifurcation of
periodic orbits and going from 7 to 6 two periodic orbits of different stability are created; the two
big solid dots are Takens—-Bogdanov points. There also exist homoclinic saddle-node codimension—
2 points, in the intersection between the saddle-node curves and the homoclinic orbits (squares
and triangle). In (c¢) we indicate the different regions of stability: in L, one fixed point is the stable
solution; in NL, one periodic orbit is the stable solution; in C there is coexistence of a stable fixed
point and a periodic orbit; finally, in B there are two stable fixed points. The dotted line is the
approximate locking range given by Eq. (p.16).
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Figure 6.3: Bifurcation set for a class A lagser with an injected signal for a = 2,5 =1 and a = 0.
The solid line is the saddle—node curve separating regions 1, 7, 9 with one fixed point solution from
region 5 with three fixed point solutions. The dotted lines separating the pairs of regions 7—9 and
7 — 1, are Hopf bifurcation, as given by Eq. (), where a periodic orbit is created. The locking
range is formed by regions 5, 7 where a single fixed point is the only stable solution. In 1 and 9
the stable solution is a periodic orbit.
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Figure 6.4: Period of the stable periodic orbit of region 9 of diagram of Fig. E versus p. = 0.5
(diamonds). Solid line: 5.4/+/p, — p, with p, = 0.272.
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6.2.3 Unfolding the bifurcation set

In the following we will perform the stability analysis of the different fixed
points and the periodic orbit solutions. The fixed points for I are given by (6.7)
and an equation that can have either one or three real roots depending on p and 7.
The stability of these fixed points defines the different regions of interest. Stability
properties can be established in terms of the eigenvalues of the linearization matrix
(Jacobian) of Egs. (6.3 —6.4) at the fixed points, see chapter 3. The local bifurcation
takes place when the real part of some eigenvalue crosses zero.

The results of the stability analysis depend on the value of the parameter . For
a = 0, the only possibility is to have regions in which either a stable fixed point or a
stable periodic orbit exist, see Fig. f.3. However, for o > 0 a much richer behaviour
appears. We summarize the results for the typical case a = 2, b =1, « = 2 shown in
Fig. b.2: In regions 5, 7 there exists only one locking (stable fixed point) solution.
In region 8 there exist two locking solutions with different intensity. In regions 1,
2, 9 there exists one stable periodic orbit solution. Finally, in regions 3, 4, 6 and
10 one locking solution coexists with a stable periodic orbit solution. While some
of the lines of this bifurcation set shown in Fig. can be evaluated analytically,
others have to be obtained numerically. We now give details of the calculations of
those lines.

6.2.3.a Saddle—node bifurcation

A saddle-node bifurcation occurs when two fixed points are created /annihilated.
The saddle-node curve separates, in this case, a region with one fixed point from
another with three fixed points. On the saddle—node curve, two fixed points coincide
(or equivalently, one of the eigenvalues of the Jacobian is zero). From another point
of view, the saddle-node bifurcation curve can be obtained as the lines in the (p,7)
plane in which the third degree equation (6.7) has a double root. In this case, the
equation for the fixed points can be written in the form

u(I — I)(I = I,)? = 0. (6.17)

Comparing this expression with the one for the fixed points (6.7) and equating the
different orders of I, a system of equations is obtained

po= (1+0%) —2an+7%
—u(h +2L) = —2anb+ 2bn? — 2(1 + o/(a — b) + 2an(a — b) — p?,
p(I3 +2I1L) = (a—b)*1+o?) + 2anb(a — b) + b*n® — 2bp?,
pl I = b?p°

(6.18)

From this system, the variables y, I; and I; can be obtained, and an expression that
relates p to i can be found. The resulting saddle-node bifurcation curve is indicated

by a solid line in Figs. B.2 (a), .4 (b) and .3
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6.2.3.b Hopf bifurcation

In a Hopf bifurcation of a two—dimensional system such as ours, a fixed point
changes its stability (from stable to unstable, or vice versa) and a periodic orbit with
opposite stability to the coexistent fixed point is born/disappears. At the bifurca-
tion point, the eigenvalues of the Jacobian matrix J associated to the deterministic
system (6.3) and (6.4) [or equivalently and somewhat easier (6.5) and (6.6)] are com-
plex conjugated and pure imaginary. This condition can be written as Tr(J) = 0,
Det(J) > 0. Hence,

(b+I{a—b—1I)—al =0. (6.19)

This equation combined with the one for the fixed points (6.7) leads to the Hopf
bifurcation curve,

Foam(f-) (- 0o 2 o

also shown in Fig. p.2 (a), F-3 (b) (short-dashed line). From regions 8 to 10, 7
to 9, 1 to 6 and from 2 to 3 a periodic orbit is born and a fixed point changes
its stability. The disappearance of those periodic orbits will be explained in the
following subsections.

6.2.3.c Takens—Bogdanov singularities

At the points (pms, 7ms) where the Hopf and the saddle-node bifurcation curves
intersect the eigenvalues of the Jacobian matrix are strictly equal to zero. This
condition gives

b
prs = \/2b (\/%—1)3\/1—1-042(\/14-042:&04). (6.22)

nwe = =+ ( °_ 1) V172, (6.21)

For the parameters considered in Fig. (a=2,b=1and o =2),itis (pus, Mus) =
(0.274,—-0.926) and (pus,nms) = (1.160,0.926). At these intersection points, the
Jacobian matrix is different from zero, and its normal form is

( - ) . (6.23)

These points correspond to Takens—Bogdanov singularities [Kuznetsov, 1997]. At
these intersection points, indicated in the figure, a homoclinic orbit is also born.
These orbits have been found numerically and they are discussed in the next sub-
section.
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6.2.3.d Homocliniec orbits

When (some branch of) the stable and unstable manifolds of a saddle point
coincide we are in the presence of a homoclinic orbit. Homoclinic orbits have
been obtained numerically using the program AUTO97 [Doedel et al., 1997] as the
“infinite-period limit” of periodic orbits. The resulting curves of homoclinic orbits
are displayed as dotted lines in Fig. p.2 (a), p.3 (b). Their location in parameter
space coincides partially with the saddlenode curve.

The intersections of the saddle-node curve and a homoclinic bifurcation occur at
codimension-2 points. There exist intersection homoclinic saddle-node codimension—-
2 points (SH) at each of the saddle node branches, see Fig. b.9 and B.6. The bifur-
cation structure near to these points was described in [Schecter, 1987]. Note that
the location of these codimension—2 points cannot be completely exact due to the
fact that the homoclinic orbits are obtained numerically (considering an orbit of
large period but not infinite). The bifurcation branch emerging from these points
with coincidence of the curve of homoclinic orbits with the saddle-node curve is an
Andronov-Leontovich bifurcation.

6.2.3.e Saddle—node of periodic orbits

Besides the bifurcation curves described so far, there exists yet another curve
of saddle-node bifurcations of periodic orbits. This is indicated by the the long—
dashed curve in Fig. p.2 (a), f.9 (b) which has been obtained also numerically.
When crossing this curve, the two periodic orbits of region 6 disappear. The point
were the saddle—node of periodic orbits, the homoclinic and the neutral saddle curve
intersect is a codimension—2 point, labelled as F, in Fig. p.6. This point is not found
exactly at Fig. (b) due to numerical evaluation. The presence of this point gives
rise to a small region, labelled as 11, where two periodic orbits, and three fixed
points exist, see Fig. f.§ and p.7. For w &~ —5 [not shown in the scale of Fig. p.2
(a)] the Hopf bifurcation and the saddle-node of periodic orbits collide and regions
1 and 7 are directly separated by the Hopf bifurcation.

6.2.3.f Different regions separated by the bifurcation set

We summarize in Table .1 the results of the previous subsections concerning the
different regions separated by the bifurcation lines. In Fig. p.5, the phase portrait
of different regions is shown, namely regions 3 — 4 — 5 — 6. In the first line, from
left to right the transition from region 4 to 5 is shown. In the first column, one
can observe the transition form region 4 to 3 through an homoclinic orbit. The
transition from region 3 to 6, as a saddle-node bifurcation, appears in the last line.
In the diagonal [Figs. B.5 (a), .3 (e) and B.5 (i)] one can observe the transition
through an Andronov bifurcation. The saddlenode of periodic orbits is reflected in
Fig. (f). In Fig. p.7, appears the phase portraits in region 11.

Many of the bifurcation features found in this system are present in other stud-
ies, as in the book by Kuznetsov [Kuznetsov, 1997] where a bifurcation diagram
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topologically equivalent to ours is displayed in connection with the analysis of a
predator-prey model by Bazykin.

These results allow us to identify the stability regions indicated in Fig. (c):
in L, one fixed point is the only stable solution; in NL, one periodic orbit is the
only stable solution; in C there is coexistence of a stable fixed point and a periodic
orbit; finally, in B there are two stable fixed points.

Table 6.1: Different regions in the bifurcation set for a class A laser with injected
signal. We use the notation: f.p. = fixed point, p.o. = periodic orbit, St. = stable
and Unst. = unstable.

1 — 1 fp. Unst., 1 p.o. St.

2 — 2 f.p. Unst., 1 f.p. Saddle, 1. p.o. St.

3 — 1fp. Unst., 1fp. Saddle, 1 f.p. St., 1 p.o. St., 1 p.o. Unst.

4 — 1f.p. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o St.

5 — 1fp. Unst., 1 fp. Saddle, 1 f.p. St.

6 — 1fp. St.,1p.o. St., 1 p.o. Unst.

7 1fp. St.

8 — 2f.p. St., 1fp. Saddle

9 — 1 f.p. Unst., 1 p.o. St.

10 — 1 f.p. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o. St.

11 — 1 fp. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o. St., 1 p.o. Unst.
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Figure 6.5: Phase portraits in different regions. Triangle: stable fixed point, square: unstable
fixed point, cross: saddle point. Solid line: stable orbit, dashed line: unstable orbit. Points:
trajectories. (a) Region 4: (p,n) = (0.33,—1); (b) Near homoclinic 4 — 5: (p,n) = (0.33,—-0.95);
(c) Region 5: (p,n) = (0.33,—-0.9); (d) Close to homoclinic 3 — 4: (p,n) = (0.33, —1.03); (e) Close
to Andronov bifurcation 4 — 6: (p,n) = (0.34,—1); () Close to the saddle-node of periodic orbits
6—7: (p,n) = (0.352,—-1); (g) Region 3: (p,n) = (0.33, —1.05); (h) Close to the saddle-node 3 — 6:
(p,m) = (0.33,—1.065,); (i) Region 6: (p,n) = (0.345, —1).
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Figure 6.6: Sketch of the partial bifurcation set for a class A laser with injected signal. Different
regions and intersection points detailed in Fig. .2 and Table p.]. SH: homoclinic saddle-node
codimension—2 points. F: intersection of the saddle-node bifurcation of periodic orbits, the homo-
clinic orbit and the continuation of the Hopf bifurcation (dotted line, which is not a bifurcation).

Figure 6.7: Phase portrait at region 11 of the bifurcation set. a) (p,w) = (0.34,—0.9713),
Triangle: stable fixed point, square: unstable fixed point, cross: saddle point. b) Sketch of the
phase portrait: arrows indicate the sense of the flow.
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6.3 Lyapunov potential

We now look for a description of the dynamical equations in terms of a Lyapunov
potential, see Sec. 2.2. Equations (6.3) and (6.4) can be written as

2 av 2

j=1 J j=1

where the function V' is [Haken, 1983]

1 p
V(z1,2e) = 5 [ + 22 —aln(b+ 22 + 23)] — m(:ﬁ — axq), (6.25)
or, written in terms of intensity and phase,
1 o1
VUI,p)==|I —aln(b+I)] — ——=rcos (¢ + arctan «). 6.26
(1¢) = 5[~ aln(o-+ D] - 2 cos 9 . (620

The matrices D and g, and the vector v are

. _ (1 0 0 -« (1 0 [ =Nz
D‘S+A‘(0 1)+(a 0)’ g‘(o 1)’ "‘(nxl)' (6.27)

6.3.1 Deterministic Dynamics

In the deterministic dynamics (e = 0), Egs. (F:24) show that V(z1,2,) is a
Lyapunov potential, i.e. a function that monotonically decreases along trajectories,
V <0, provided that the residual terms (v, ve) satisfy the orthogonality condition
(2.30)

oV ov

Mz T 20wy

It turns out that this orthogonality condition is satisfied if np = 0. This means

that a Lyapunov function description of the dynamics using (£.25)) is valid along the

coordinate axis 7 = 0 and p = 0. Notice that the case p = 0, n # 0 corresponds to

a situation in which there is no applied field but the reference system rotates at an
arbitrary frequency 7.

The equation for the intensity (6.7) can have one or three (positive) real roots
depending on the parameters. In Fig. .8, the stationary solutions are plotted for
a case in which a > b. The stability of these solutions follows immediately from the
analysis in terms of the potential and it is described in the figure caption. The value
at which the saddle and unstable solutions disappear corresponds to the saddle—node
bifurcation value for = 0 (see Fig. p-2).

In the transient dynamics towards the stationary states, the combined effects
of S and A produce in general a spiral-like trajectory in the (z1,z2) plane. The
angular velocity of this movement is proportional to . Finally, the residual term
(v1,v2) induces a movement which does not decrease the value of the potential and

0. (6.28)
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Figure 6.8: Upper figure: Fixed points of Eq. (6.7) versus p. Lower figure: Value of the
potential, Eq. (), evaluated at the different fixed points versus p. 7 = 0. a =2, b = 1 and
a = 2. Dimensionless units.

it is responsible for any dynamics after the line of minima of the potential has been
reached. We now analyze the different possibilities for the extrema of V.

In the case p = 0, the potential function was given in chapter 5. The potential
does not depend on the phase ¢ of the electric field and it can adopt two qualitatively
different shapes:

(i) For a < b the potential has a single minimum at z; = 3 = 0 and no maxima.
Therefore, the only fixed point is the off state I = 0, which is stable.

(ii) For a > b, the potential has the shape of a Mexican hat, see Fig. 6.9 (a). The
residual dynamics &; = v; gives a periodic harmonic movement in the minima of the
potential with frequency 7. This corresponds to the periodic orbits represented in
Fig. b.3.

In the case of zero-detuning injected signal, i.e. p > 0, = 0, the potential,
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(6.25), with the parameters a = 2, b = 1, a = 2. Dimensionless units.
(a) p=0, (b) p=0.8. In (a) we also indicate the projection of the line of minima of V' and the

Figure 6.9: Potential for a class A laser with an injected signal with the same frequency of the
corresponding line is plotted in (b).

unperturbed laser, Eq.
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which depends now explicitly on the phase ¢, is tilted in a preferred direction. In
the case a < b the location of the minimum changes and the asymptotic state
has a nonzero light intensity, that is proportional to p. In the case a > b, the
Mexican hat is tilted as well in a preferred direction. For small p the inclination
is small and the effect is that the maximum still remains a maximum, although its
location varies slightly. The tilt breaks the symmetry amongst the line of degenerate
minima and an absolute minimum is selected. At the same time, one of the previous
minima becomes a maximum in the direction orthogonal to the tilt and a saddle
point is born. Increasing p, the maximum of the Mexican hat and the saddle point
disappear (corresponding to the saddlenode curve of figure 6.2) and the potential
has only one minimum at a preferred phase direction, see Fig. (.9 (b). Therefore,
the asymptotically stable situation, in this case of p > 0, » = 0 and a > b is that the
laser switches to an on state with a well defined intensity and phase, in agreement
with the results shown in Fig. 6.2.

It is an open question the validity of a Lyapunov potential description in the
general case, pn # 0, and we have not been able to find an analytical expression for
the potential V' in this general case. However, since we do not expect qualitative
changes in the dynamical features near the coordinate axis, we speculate that a
Lyapunov potential description continues to be valid, at least for small values of np.

Assuming the validity of this Lyapunov potential description we can understand
the transition from locking to non-locking states. Let us consider a given value of
p > 0 and increase the detuning frequency starting from n = 0. For n = 0, the
potential is tilted and there are no residual terms, see Fig. .9 (b). As 7 increases,
the shape of the potential deforms, the minimum of the potential and the saddle
point approach through the deterministic circumference of minima of the system
without optical injection, p = 0 (region 5 of Fig. 6.2). Moreover, the residual terms,
proportional to 7 increase, but they are not big enough to overcome the tilt of the
potential and to induce a rotation movement. For a value of 7 (corresponding to
the saddlenode bifurcation) these two points (minimum and saddle) collapse and
a periodic motion appear induced by the residual terms (corresponding to region 9
of Fig. 6.2).

Similarly, starting at a point 7 > 0 and increasing the intensity of the applied
fields, p, a similar scenario appears. For p = 0, the potential has a line of degenerate
minima, [ = a — b, and trajectories are circumferences in the (z1,z2) plane induced
by the residual terms. Increasing p, the line of minima deviate from the circum-
ference due to the change of shape of the potential and it becomes an ellipse, the
periodic orbit solution is also induced by the residual terms of the dynamics, which
are proportional to 7. In fact, it can be shown that the solution in the steady state
for very small values of p has the form

A
(1) = ,
Q 1+ pvD? + F2sin(¢(t) + 7)
which represents an ellipse with a time dependent phase. This dependence is of the
form

(6.29)

o(t) =gt — pv B2 4+ C?sin(o(t) + 72). (6.30)
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The values of A, B, C, D, £ have been obtained by using equations (6.5) and (6.6)
and small values of p. The resulting expressions are

A = a-b, (6.31)
[4(a — b)? + n*a® + 2can(a — b)]

S T et 0 + e
LA Gl
n [4(a — b)* + n%a?]
D — dar/a — b
4(a — b)? + n2a?’
F o 2v/a — ba’n

4(a — )% + n2a?(a —b)’
v = arctan (—=D/F),
v = arctan (—B/C).

Increasing p even further, the potential deforms continuously until arriving to the
saddle-node bifurcation.

6.3.2 Stochastic effects

In the presence of low—to—moderate levels of noise, € > 0, the qualitative fea-
tures of the transient dynamics remain the same as in the deterministic case. The
most important differences appear near the stationary situation and show up as
fluctuations of the intensity and phase of the electric field. While the intensity sim-
ply oscillates around its mean value, one can observe in some cases an additional
phase drift which shows up as a variation in the frequency of the emitted light. The
potential picture developed in the previous section helps us to understand the origin
of this noise-induced frequency shift, as well as to compute its magnitude.

Let us look at the potentials depicted in Fig. [6.9. First consider the case p = 0.
The deterministic movement is such that the line of minima (shown as a projection in
the (z1,z2) plane) is ran at a constant frequency 7. On top of that movement there
are fluctuations which allow frequent excursions beyond the minima of the potential
V. Away from the minima, the antisymmetric part of the dynamics (governed by the
matrix A in equation (6.27) and proportional to «) gives a nonzero contribution of
the rotation terms producing the observed phase drift. For 5 = 0, p # 0, when only
one minimum of the potential exists, the fluctuations make the system to explore
regions outside this minimum allowing the rotation terms to act again, see Fig.
6.10. Depending on the value of p and e the rotation term can be strong enough to
produce the phase flow.

After these qualitative arguments, we now turn to a more quantitative calcula-
tion. In those cases in which a Lyapunov potential V' (x;, z2) exists and the matrices
D and g of (6.24) satisfy the fluctuation—dissipation relation (2.35), the station-
ary probability distribution is given by equation (2.38). This relation is exact if the
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Figure 6.10: Vector field for a class A lasers with injected signal. Thick solid line: simulation of
Eqs. (6.3) and (6.4). Thin lines are the equipotential curves of Eq. (6.25) and the arrows indicate
the sense of the flow. Parameters: a = 2, b =1, a =2, n =0, p = 0.05. ¢ = 0.01. Initial
conditions: z; = 0, 2 = 0. Dimensionless units.

residual terms v satisfy the orthogonality condition (6.28) and if they are divergence—
free (2.37) (as they are in our case). In other cases, it has to be understood as an
approximation valid in the limit of small noise ¢ — 0.

By changing variables to intensity and phase, we find that the probability density
function is

Pou(I,¢) = Z T e T/% (b + )9/ exp (\/% cos(¢ + arctan(a))), (6.32)
€ o

and the marginal probability density function for I is

. VI
Pst(I) -7 16 I/2€(b+I)a/2€IO (ﬁ , (633)

where Z is the Bessel function of the first kind and order 0. Expression (p.33)
reduces to (5.17) for p = 0.
The maximum of the probability density function, I,,, is given by

(b+Im)p Ti(p)
VInV1+0? Lo(p)’
where p = pv/I,/(ev/1 + o?) and Z; is the Bessel function of the first kind and order

1. For € = 0, deterministic case, Z,(p)/Zo(p) = 1 and the equation is reduced to
(6.7) with n = 0.

b+ I, =a+ (6.34)
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Figure 6.11: Mean value of the intensity in the steady state in a class A laser with zero—detuning
(n = 0) injected signal for ¢ = 2, b = 1 and a = 2. The solid line corresponds to p = 0 and has
been computed using the analytical result Eq. (5.19), the dotted line (p = 0.6) and the dashed
line (p = 0.8) have been computed numerically using Eq. (6.33).

The steady state average value for the intensity (I);; = [dI IP4(I) can be
analytically computed in the case p = 0 with the result (5.19). In the most general
case, for p # 0, the mean value can be computed numerically by using (£.33)). In
Fig. B.11], this mean value is plotted versus e, for fixed value of p. The mean value
is always larger than the deterministic (e = 0) case.

As mentioned before, in the steady state of the stochastic dynamics, the phase of
the electric field ¢ fluctuates around a mean value that changes linearly with time.
This is clearly seen in the numerical simulations (see Fig. p.1J) and it physically
corresponds to a change Aw in the emission frequency of the laser.

_ This frequency shift can be computed as the average value of the phase derivative
(¢). In the case that the steady state is a periodic orbit of period T', one needs to
subtract from this value the intrinsic frequency 27 /7. By taking the average value
of Eq. (6.6) and using the rules of the stochastic calculus, one arrives to

Aw=Z"a /0°° e~ /% (b + I)%/ [(“ ;i; Dy, (ﬁ;%) +VIL (6\/%” dlI.

(6.35)
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Figure 6.12: Time evolution of the mean value of the phase ¢ in a class A laser without injected
signal p = 0 (line A) and zero—detuning injected signal p = 0.6, n = 0 (line B), in the case a = 2
there is a linear variation of the mean value of the phase at late times. For a@ = 0 ( line C) there is
only phase diffusion and the average value is 0 for all times. The solid lines have the slope given
by the theoretical prediction Eq. (@) Line D: time evolution of < ¢ >z —2nt/T, being T the
period of the periodic orbit in the deterministic case, for p = 0.5, = 1. In all the curves: a = 2,
b=1and e =0.1.

Notice that this stochastic frequency shift is zero in the case o = 0 or for the
deterministic dynamics (e = 0). In the case p = 0 this expression analytically
reduces to (5.23).

For p # 0, one needs to evaluate the expression (f.33) numerically. In all cases,
the results are in excellent agreement with numerical simulations of the rate equa-
tions in the presence of noise. In Fig. B.I3, we plot the stochastic frequency shift as
a function of the noise intensity for several values of p. For a fixed value of p, |Aw|
increases as € increases, since a larger value of € can induce larger fluctuations and
larger excursions in phase space (x1,Z2) away from the minima of the potential. For
fixed €, |Aw| decreases as p increases. This result can be understood by noticing
that when p is increased, the inclination of the potential increases and the trajectory
becomes more confined around a fixed value.

In the case p # 0 and n # 0, the stochastic frequency shift is also present, see
Fig. (line D), although it is not possible to compute its magnitude because we
do not have an explicit expression for the Lyapunov potential.
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Figure 6.13: Stochastic frequency shift Aw = (¢) in a class A laser for a=2,b=1and a = 2.
For p = 0 (solid line) the explicit result Eq. (5.23) is used, whereas for p = 0.6 (dotted line) and
p = 0.8 (dashed line) (B.35) has been numerically evaluated.
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Capitol 7

Lasers de Classe B:
Potencial de Lyapunov

En aquest capitol s’estudia la dinamica del laser de classe B (capitol 4), primer
a partir de ’analisi numerica de les equacions i, seguidament aquesta dinamica
s’explica emprant el potencial de Lyapunov (capitol 2) que s’obté.

La dinamica d’un laser de classe B es descriu mitjancant dues equacions d’evo-
lucié, una per a 'amplitud lentament variable del camp electric dins la cavitat
laser i I’altra per al nombre de portadors. El camp eléctric es pot escriure en termes
d’intensitat optica i fase. En el tractament que es fa en aquest capitol, es menyspreen
els termes aleatoris, pero es manté el valor mig de ’emissié espontania en 1’equacid
per a la intensitat, Egs. (.1 - [.3). En el cas deterministic, les equacions per a
la intensitat del camp electric i els portadors no depenen de la variable fase del
camp, per tant aquesta variable no es considera en el tractament inicial. L’evolucié
dinamica de la intensitat i portadors és tal que ambdues variables arriben a l’estat
estacionari realitzant oscil-lacions esmorteides amb un periode que decreix en el
temps, Figs. [[.], i .

La dinamica de la intensitat i portadors es pot explicar mitjancant un potencial
de Lyapunov. Un estudi similar s’havia realitzat previament [Oppo and Politi, 1985],
pero sense considerar ni el terme de saturacié de guany, ni el valor mig del terme
d’emissié espontania. En aquest capitol, s’inclouen aquests dos parametres en el
potencial ([I4)). Observant la seva forma, Fig. [7-4, té un dnic minim, i per tant
una tnica solucié estable. El moviment cap a aquest minim té dues components:
una conservativa que produeix trajectories equipotencials i, una d’esmorteiment que
és la responsable de decréixer el valor del potencial. Aquests dos efectes combinats
condueixen els sistema cap al minim seguint un moviment espiral. Els parametres de
saturacié de guany i emissi6 espontania, inclosos en el tractament potencial, sén els
responsables d’augmentar els coeficients de la part simetrica de la matriu que associa
el potencial i les equacions de moviment, i d’incrementar, com a conseqiiéncia, els
termes de dissipacié.

La fase del camp eléctric, que oscil-la en el temps fins a arribar a un valor
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estacionari, es pot incloure facilment en la descripcié potencial. Aixi, el conjunt
de les tres variables que descriuen el laser de classe B és de tipus flux potencial no
relaxacional (2.26), amb el potencial descrit en el paragraf anterior (només depenent
de la intensitat i el nombre de portadors) i la inclusié de termes addicionals (que
contenen el parametre «) en la matriu antisimeétrica que relaciona el potencial amb
les equacions del sistema, ([7.23).

Cal indicar que el potencial que s’ha obtingut només és valid en el cas determi-
nista, a causa que la matriu que relaciona el gradient del potencial amb les equacions
dindmiques no satisfa la condicié fluctuacié—dissipacié (2.35).

A partir de que el potencial en funcié del temps és aproximadament constant
entre dos pics de la intensitat, Fig. [[.1], es pot estimar el periode de les oscil-lacions
de relaxacié realitzant un simil mecanic i reduint el problema a un d’energia constant.
S’obté una relacié entre el periode i I’energia del sistema (7.26). Del calcul numeric
d’aquesta expressi6, Fig. 7.6, s’observa que el periode decreix quan el valor del
potencial disminueix. Combinant aquest resultat amb el decreixement temporal
del potencial, es pot explicar que el periode de les oscil-lacions disminueix en el
temps. La comparacié dels resultats de 'expressié aproximada i el periode real de
les simulacions és molt acceptable, Fig. 7.7.

De I'expressié aproximada per al periode de les oscil-lacions de relaxacid, és pos-
sible quantificar la seva discrepancia amb el valor exacte a prop de I'estat estacionari.
La freqiiencia exacta de les oscil-lacions de relaxacié a prop de I'estacionari és la part
imaginaria dels autovalors de les equacions d’evolucié linealitzades al voltant de la
solucié estacionaria. Els resultats que finalment es comparen sén les expressions
(7.27) 1 (7.35).

Per poder entendre completament la variacié del periode en el temps, caldria
avaluar la variacié temporal del potencial entre dos pics consecutius d’intensitat.
Aquesta variacié és deguda al termes dissipatius de les equacions de moviment.
Encara que no ha sigut possible obtenir-la exactament, s’ha obtingut una expressi6
simple a partir d’arguments semi-empirics per a la variacié temporal del potencial,
Eq. (7.39) i Fig. 7.8. Aquesta expressi6 es basa en l'evolucié de les variables en
el temps a prop de 'estacionari. La forma resultant pel potencial, combinat amb
que el periode és linealment relacionat amb el potencial, suggereix una expressié
semi—empirica per a ’evoluci6 temporal del periode, Eq. (7.40). L’expressié senzilla
resultant, decaiment exponencial del periode, ajusta no només a ’estacionari, sind
també en el regim transitori, Figs. 7.7 1 7.9.



Chapter 7

Class B Lasers: Lyapunov
Potential

In this chapter, we describe the dynamics of class B lasers in terms of a Lyapunov
potential function.

7.1 Model

The dynamics of a typical class B laser, for instance a single mode semiconductor
laser, can be described in terms of two evolution equations, one for the slowly varying
complex amplitude E of the electric field inside the laser cavity and the other for
the carriers number N (or electron-hole pairs), Egs. (4.11) and (4.12) [Agrawal and
Dutta, 1986). These equations include noise terms accounting for the stochastic
nature of spontaneous emission and random non-radiative carrier recombination
due to thermal fluctuations. Both noise sources are usually assumed to be white
Gaussian noise sources.

The equation for the electric field can be written in terms of the optical intensity
I (normalized in such a way that I is equal to the number of photons inside the
cavity) and the phase ¢ by defining E = v/I€'®. For simplicity, we neglect the
explicit random fluctuations terms and retain, as usual [Agrawal and Dutta, 1986],
the mean power of the spontaneous emission. The equations are (4.14 - 4.16) without
the explicit fluctuating stochastic terms

% —[G(N,I) =] + 4¢ N, (7.1)
dp 1
w_ - 2
= SalGN, 1)~ 1, (7.2
dN J
— =——9vN —-G(N,I)I. 7.3
G(N, I) is the material gain given by
N —N,
G(N,I):gN( ) (7.4)

1+slI
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Table 7.1: Definitions and typical values of the parameters for semiconductor lasers.

PARAMETERS VALUES
J/e Carriers injected per unit time > threshold
¥ Cavity decay rate 0.5ps~!
YN Carrier decay rate 0.001ps~!
N, Number of carriers at transparency 1.5 x 108
gnN Differential gain parameter 1.5 x 108 ps!
s Gain saturation parameter 1078 —-1077
€ Spontaneous emission rate 10~ 8ps~!
« Linewidth enhancement factor 3—6

The definitions and typical values of the parameters for some semiconductor lasers
are given in Table [[-I While the first term of Eq. ([7-]) accounts for the stimulated
emission, the second one accounts for the mean value of the spontaneous emission
in the lasing mode. Egs. ([.J] - [(.J) are written in the reference frame in which
the frequency of the on state is zero when spontaneous emission noise is neglected.
The threshold condition for lasing is obtained by setting G(N,I) =, I = 0 and
neglecting spontaneous emission. The number of carriers at threshold is given by
Ng, = Ny + glN, and the threshold current is Jy, = eynNu, and represents the
minimum injection current needed to fully compensate the losses. Eq. ([[.2) shows
that ng is linear with NV and slightly (due to the smallness of the saturation parameter
s, see Table [(.1)) nonlinear with I.

Since in the deterministic case considered henceforth the evolution equations for
I and N do not depend on the phase ¢, we can concentrate only on the evolution
of I and N. One can obtain a set of simpler dimensionless equations by performing
the following change of variables

2gn gN Y
y=—"—1I,2="~(N—-N,), 7= —t. 7.5
W z= 2NN, 7= (7.5
The equations then become
dy z
= = 2 -1 d 7.6
dr <1+§y >y+0z+’ (7.6)
dz 2y
— = a—bz—- 7.7
dr a=o 1+35y’ (7.7)
where we have defined
2 J
a = % (——’YNNO), (7 8)
Y
2
— ﬂ,
Y
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1
e = 1€ (7.10)
Y
16 gy N,
d = EL;V,
Y
s = ST
2gn

The injected current, J, which is externally controlled, is contained in a. The effect
of the spontaneous emission term, £, appears in ¢ and d. Equations (f-8, [[-7) form
the basis of our subsequent analysis. The steady states are

1

i = ——[2(a— 1+b5 5 , 7.11
Yst 4(1+b§)[ (@a—b)+d(1+b5)+cas+ 1] (7.11)
a(l+4 5ys)
7.12
T by, (1403) (7.12)
where the constant v is given by
v = 4(a—0b)*+4d(a+b)(1+b3)+d*(1+b3)>
+ c[8a+4as(a+b)+2das(1+b3)]+c*a’3 (7.13)

For a value of the injected current below threshold (J < Jy, or equivalently to
a — b < 0), ys is very small. This corresponds to the off solution in which the only
emitted light corresponds to the spontaneous emission.

There is another solution for y,; given by Eq. ([.1I)) with a minus sign in front
of v/v which, however, does not correspond to any possible physical situation, since
it yields ys < 0.

In the absence of noise, saturation and stimulated emission terms, the steady
states are: off state, y; = 0, 24 = a/b and on state, y; = a — b, 2z, = 1. Above
threshold, stimulated emission occurs and the laser operates in the on state with
large y,:. In what follows, we will concentrate on the evolution following the laser
switch-on to the on state.

It is known that the dynamical evolution of y and 2 is such that they both
reach the steady state by performing damped oscillations [Agrawal and Dutta, 1986]
whose period decreases with time. This fact is different from the usual relaxation
oscillations that are calculated near the steady state by linearizing the dynamical
equations. The time evolution of y and z is shown in Figs. [(.] and [7.3, while the
corresponding projection in the (y, z) phase-plane is shown in Fig. [[.3
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Figure 7.1: a) Normalized intensity, y (solid line) and normalized carriers number, z/40 (dot—
dashed line) versus time in a class B laser obtained by numerical solution of Eqs. (7.6) and (F.7).
b) Plot of the potential () Parameters: a = 0.009, b = 0.004, 5 = 0.5, ¢ = 3.2 x 1079,
d = 1.44 x 10~8 which correspond to physical parameters in Table @ with J = 1.2 Jyp,. The initial
conditions are taken as y = 5 x 1078 and z = 0.993. Dimensionless units.
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Figure 7.2: Enlargement of Fig. [.1. z (solid line), y (dot-dashed) line and V (dashed line),
(different variables have been rescaled in other to fit the same vertical scale). Same parameters
than in Fig. @
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Figure 7.3: Number of carriers versus intensity (scaled variables), blue line. The vector field and
contour plot (thick lines) are also represented. Same parameters than in Fig. . Dimensionless
units.

7.2 Potential for class B lasers

We are interested in obtaining a Lyapunov potential that can help us to explain
the dynamics observed in the previous section. A similar study was done in Toda
potential [Oppo and Politi, 1985] without considering neither the saturation term
nor the mean value of the spontaneous emission power, and under those conditions
an expression for the period of the transient oscillations was obtained. In our work,
we calculate the period of the oscillations by taking into account these two effects.
However, the potential is only valid in the deterministic case, since we have not
been able to obtain a potential such that the symmetric matrix S, relating the
gradient of the potential to the dynamical equations [see Eq. (2.28)] satisfies the
fluctuation—dissipation relation (2.35).

The period is obtained in terms of the potential, by assuming that the latter has
a constant value during one period. It will be shown that this assumption works
reasonably well and gives a good agreement with numerical calculations. Near the
steady state, the relaxation oscillations can be also calculated in this form, but the
potential is almost constant and consequently is the period.
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The evolution equations ([7.6, [/.1) can be cast in the form of a non-relaxational
potential flow, Eq. (2.26), with the following Lyapunov potential

1
V(y,2) = a1y +ayy® + asIn(y) + % + 5 B*(y, 2), (7.14)
where
111 L1,
a = 2 2as+bs 4sd(1+bs) 1956
as = Z(1+b§), (7.15)
1 d
@G = - (a—b+(ac+bd)§+§>,
ac+bd
o - locted
d
Bly,z) = z—1-sy+ 35 145, (7.16)

2y

The corresponding (nonconstant) matrix D is given by

0 =Dy )
D= ( , 7.17
-D12 -D22 ( )
being
4 2
Dy = Y (7.18)

(1+35y)2y+c(1+35y)]

4y[(14+254+b35)y*+by+d+c7
Dy = . 7.19
2 (14+35y) 2y+c(l+5y)? (7.19)

According to the general results of section 2.2, it is possible to split the dy-
namics in purely relaxational part plus a conservative part. The conservative part
corresponds to the antisymmetric components of matrix D and, in this case, can be
obtained simply by setting Doy = 0.

The form of the potential appears in Fig. [(.4.

This potential reduces to the one obtained in Ref. [Oppo and Politi, 1985] when
setting ¢ = d = § = 0 (which corresponds to setting the laser parameters € = s = 0).
The potential in this case takes an easier form

1 1
V(y,2) = 5ly — (e = ) In(y)] + 5 (= — 1), (7.20)
with the corresponding matrix

_(0 —2y)
D_(2y ) (7.21)
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Figure 7.4: Potential for a class B laser. Solid line: simulation of Egs. (7.6) and (F.4). Same
parameters than in Fig. @ Dimensionless units.

As expected, non—vanishing values for the parameters s and ¢ increase the dis-
sipative part of the potential (Do) associated with the damping term. This is in
accordance with the result of Lee and Shin [Lee and Shin, 1989] when linearizing
the rate equations around the steady state.

The equipotential lines of ([7.14)) are also plotted in Fig. [.3. It is observed that
there is only one minimum for V' and hence the only stable solution (for this range of
parameters) is that the laser switches to the on state and relaxes to the minimum of
V. The movement towards the minimum of V' has two components: a conservative
one that produces closed equipotential trajectories and a damping that decreases
the value of the potential. The combined effects drives the system to the minimum
following a spiral movement, best observed in Figs. [(.3 and [[.4.

In the absence of saturation and noise, 5 = 0, ¢ = 0, d = 0, the maxima and
minima of the dynamical variable y(¢) occur always at z = 1. This is because the
equipotential lines of V' in the plane (y, z) are symmetric around the line z = 1,
see Eq. ([-20). However, for other nonzero values of 3, ¢, d, the potential changes
slighty its “orientation” in the plane (y,z) and the maxima of y(t) are not at the
previous value of z, but instead satisfy the relationship obtained by cancelling ([.6),
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see Fig. [[.3.
Let us consider again the potential ([.14). This potential only depends on the
intensity and not on the phase of the electric field. However, the equation for the

phase, in the normalized variables,

can be also deduced from the potential. The full system can be written as

v
gy 0 0 —Dp\ (3
g_f = 0 0 -Dus||%]| (7.23)
e Dy Dz Dy %—‘Z/
where
do z___
D13 - _ (dT) _ ((l—l—sy) ) (724)

(%—V) " B(y,?) [1 +E£(1+ §y)] “

and B(y, z) is defined by ([.16). D3 it can be introduced as an antisymmetric term
in the matrix D because the potential does not depend on ¢, so the equation for z
is not modified. In the case s=c=d =0, it is D13 = —a.

An interesting feature of the phase is that it oscillates until it arrives to a sta-
tionary value, see Fig. [[.5. This change in time is due to the extra dependence on
the variable z. This behaviour is different from the one of the class A laser in which
the phase increases or decreases monotonously, see Fig. 5.1 (b).
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Figure 7.5: Phase of the electric field versus time in a class B laser obtained by numerical solution
of Egs. (@ - E) Same parameters than in Fig. @ a = 5. Dimensionless units.
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7.2.1 Period of the relaxation oscillations

The time evolution of the potential is plotted in Fig. 7.1. In this figure it can be
seen that the Lyapunov potential is approximately constant between two consecutive
peaks of the relaxation oscillations as it can be also observed with the equipotential
lines of Fig. 7.3 (however, in the peak of intensity, the potential decreases steeply,
as can be seen in Fig. 7.2). This fact allows us to estimate the relaxation oscillation
period by approximating V(y, z) = E, constant, during this time interval. When
the potential is considered as constant, the period can be evaluated by the standard
method of elementary Mechanics: z is replaced by its expression obtained from (7.6)
in terms of y and ¢ in V(y, z). Using the condition that V(y, z) = E, we obtain

. _ 2
E=aiy+ay’ +az 1n(y)+a4%+% [y(l—;gsy)] :

(7.25)

From this equation, we can calculate the relaxation oscillation period T, by using

Y= ‘é—’; and integrating over a cycle. This leads to the expression

T:/yb1+§y dy

7.26
o ¥ [2(E-ay—ay?—a3n(y)—ay )]/ (7.26)

where y, and y, are the values of y that cancel the denominator. We stress the
fact that the only approximation used in the derivation of this expression is that
the Lyapunov potential is constant during two maxima of the intensity oscillations.
In other words, we have made a mechanical simile and reduced the problem to one
with constant energy. A numerical evaluation of this integral yields the dependence
of the period, T, with the value of the energy, E =V, as plotted in Fig. [/.g.
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Figure 7.6: Period versus potential for a class B laser obtained with (f.26). Solid line 5 = 0,
dashed line § = 2. Other parameters, same than in Fig. 7.1. Dimensionless units.
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Equation ([(.2§) reduces, in the case ¢ = d = § = 0, to the one previously
obtained by using the relation between the laser dynamics and the Toda oscillator
derived in [Oppo and Politi, 1985].

According to Fig. [.6, the period T decreases as the potential V' decreases. Since
the Lyapunov potential decreases with time, this explains the fact that the period of
the oscillations in the transient regime decreases with time. In Fig. [[.7, we compare
the results obtained with the expression ([7-2§) for the period with the ones obtained
from numerical simulations of the rate equations (7.6, 7.7). In the simulations we
compute the period as the time between two peaks in the evolution of the variable y.
As seen in this figure, the above expression for the period, when using the numerical
value of the potential V, accurately reproduces the simulation results although it
is systematically lower than the numerical result. The discrepancy is less than one
percent over the whole range of times.
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Figure 7.7: Period versus time in a class B laser. Solid line has been calculated as the distance
between two peaks of intensity, with triangles plotted at the beginning of each period; dashed
line has been calculated using the expression ([f.26)), with the value of the potential V obtained
also from the simulation; dotted line corresponds to the semi-empirical expression () Same
parameters than in Fig. 7.1. We have used 1 = 55.55, coinciding with the position of the first
intensity peak. Dimensionless units.
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It is possible to quantify the difference between the approximate expression ([7.26))
and the exact values near the stationary state.

By considering ([:26) near the steady state with y = y, + 0y, E = Vi + 6V
(Vie = V(yst, 25)) and retaining the lowest terms in dy and 6V, one can perform the
integral analytically, obtaining an approximation for the period of the steady state

27
Ts ap — , 7.27
= D VK1 (720
where
2
las a4 1 l_ (d—i—czst)]
K =2[a-—>a+—+5 |5+ —>52] |,
(2 2y§t ygt 2 2y§t
2
1+ 35ys
F = llﬂwl , (7.28)
2yst
g o _[1+c(1+§yst)] [§+(d+c2zst)],
2yst 2yst

and Dig 4 is the coefficient Diy calculated in the steady state.

The result ([.27]) could be obtained starting from the linearization of potential
([-29), expanding this expression near the steady state, and then calculate the period
from the resulting expression.

The period of the relaxation oscillations near the steady state can also be ob-
tained by the standard procedure of linearizing the evolution equations near the
steady state solution. Applying a small perturbation y = y,; + dy and 2z = 2z, + 02
to Egs. (7.6) and (7.7), one has after linearization

(Sy = a1 (Sy =+ a9 (SZ, (729)
62 = ag Sy + ag 6z, (7.30)

where

Zst
- 9=t
u ((1 + 5yst)? ) ’

2yst
apg = |——+c},
2 <1+§yst )
Zst
Gy = ——t 7.31
2 (1+5yq)? (7.31)
yst
= —|b4+ —=1.
22 ( + 1+§yst>

The eigenvalues of the linearized equations ([(.29) and ([7.30) are

A= —giw, (7.32)
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with

o = —(a11+a22), (733)

1
w = 5\/|(a11 - a22)2 + 4a12 a21|. (734)

The frequency w of the relaxation oscillations near the steady state is the imaginary
part of the eigenvalues of the linearized equations ([.29) and ([.30). This yields a
period Ty; = 27 /w which can be rewritten in terms of K, F', H, Diy & and Dy o in
order to have a better comparison with the approximate period ([-27])

27 D§2,st F? i

Ty = 1-—
" D VKF - H? D% ,A(KF — H?)

(7.35)

The difference between ([.27) and ([[.39) vanishes with Dgy o (i.e. Dayo in the
stationary state). Since K F — H? is always a positive quantity, our approximation
will give, at least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variation of the period with
time, we need to compute the time variation of the potential V(1) between two
consecutive intensity peaks. This variation is induced by the dissipative terms in
the equations of motion. Although we were not able to derive an expression for the
variation of the potential (see [Oppo and Politi, 1985] for an approximate expression
in a simpler case), we found that a semi—empirical argument can yield a very simple
law which is well reproduced by the simulations. We start by studying the decay to
the stationary state in the linearized equations. After expanding around the steady
state, the dynamical equations ([-29) and ([7-30]) show that the variables decay to
the steady state as

dy(7),62(T) eXp(—gT), (7.36)
where g, ([.33), can be rewritten as

0= Dot F. (7.37)

In the case of 3 = 0, ¢ = 0 and d = 0 (neither saturation term nor spontaneous
emission term are considered) ¢ = a.

Expanding V (y, z) around the steady state (ys and z, correspond to extrema
of the potential), it is found that

V — Ve o 042,022, 6y dz. (7.38)
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Using ([(.36) and taking the initial condition at an arbitrary 7, we find an expression
for the decay of the potential

V(1) = Vie = [V(10) — Vg exp (—o (T — 7)) - (7.39)

In Fig. -8 we plot In[V (1) — V] versus time and compare it with the approximation
([-:39). One can see that it fits In[V (7) — V] reasonably well not only near the steady
state (where it was derived), but also during the transient dynamics. The value of
To, being a free parameter, was chosen at the time at which the first peak of the
intensity appeared. Although other values of 7y might produce a better fit, the one
chosen here has the advantage that it can be calculated analytically by following
the technique of Ref. [Balle et al., 1991]. It can be derived from Eq. ([-26) that the
period T depends linearly on the potential V. This fact, combined with the result
of Eq. ([39), suggests the semi-empirical law for the evolution of the period

T(r) = Toe = [T(10) — Tut] exp (—o (7 — 70)) - (7.40)

This simple expression fits well the calculated period not only near the steady state,
but also in the transient regime, see Figs. .1 and [.9. The small differences observed
near the steady state are due to the fact that the semi-empirical law, Eq. ([-40),
is based on the validity of Eq. ([.26) between the period and the potential. As it
was already discussed above, that expansion slightly underestimates the asymptotic
(stationary) value of the period. By complementing this study with the procedure
given in [Balle et al., 1991] to describe the switch—on process of a laser, and valid
until the first intensity peak is reached, we can obtain a complete description of the
variation of the oscillations period in the dynamical evolution following the laser
switch—on.
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Figure 7.8: Logarithm of the potential difference versus time in a class B laser (solid line),
compared with the theoretical expression in the steady state ) (dashed line). Same parameters
than in Fig. 7.1 and 7y as in Fig. [.4. Dimensionless units.
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Figure 7.9: Logarithm of the period difference versus time in a class B laser. Triangles correspond
to the period calculated from the simulations as the distance between two consecutive intensity
peaks, at the same position than in Fig. E The solid line is the semi—empirical expression Eq.
() Same parameters than in Fig. 7.1 and 7y as in Fig. E Dimensionless units.



Capitol 8

Estructura de resonancies en un
laser de classe B amb senyal
injectat

En aquest capitol es descriu la dinamica qualitativa i el conjunt parcial de bi-
furcacions (capitol 3) per a un laser de classe B amb senyal injectat amb termes de
disintonia petits. El treball d’aquest capitol completa una série d’estudis (veure la
seccié 1.2) sobre bifurcacions en lasers amb senyal injectat en la proximitat de la
singularitat Hopf-sella-node.

Les equacions de balang (capitol 4) en un sistema de referéncia que gira a la
freqiiéncia del senyal injectat sén les (B.1) per al camp eléctric, E, i el nombre de
portadors, W. El camp injectat esta caracteritzat per 'amplitud 3, i la freqiiéncia
7. Per al tractament que es fa en aquest capitol s’agafa un valor pel parametre de
disintonia amb el qual les equacions queden tipus II de la bifurcacié Hopf-sella—node.

En les distintes seccions d’aquest capitol es van introduint a poc a poc els distints
conjunts invariants del sistema i les seves bifurcacions a causa de la complexitat del
conjunt complet de bifurcacions. S’han seleccionat distints colors per a cada tipus
de bifurcacions. El conjunt final obtingut és el de la figura 8.22.

La bifurcaci6 sella—node (punts vermells) i la bifurcacié de Hopf (punts blaus)
dels punts fixos de les equacions, es poden calcular analiticament (8.4 - B.6). La seva
interseccié déna el punt Hopf-sella—node. Aquestes bifurcacions separen les regions
de Vespai de parametres (8, 7) segons V'estabilitat dels punts fixos A, B i C, Fig.
B.J. A laregié 1, A és estable, B inestable i C' sella; un parell d’aquests punts fixos
s’aniquilen quan es creua els costats del triangle: cap a la regi6é 4, B i C col-lapsen;
cap a les regions 6, 31 3', A i B s’aniquilen deixant en aquestes regions el punt
C. Un punt fix estable existeix en les regions 1, 4 i 5, que correspon, en termes
fisics, a tenir una freqiiencia de sortida sintonitzada amb la d’entrada. El punt fix C'
correspon a l'estat del laser apagat, i en totes les regions d’interés és un punt sella.

La bifurcacié de Hopf (primaria) ocorr o bé en el punt fix A 0 B, creant una
orbita periodica transversal, T', al pla W = 0. Realitzant un circuit tancat al voltant
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del punt Hopf-sella-node: de 1 a 5, el punt B inestable torna sella i es crea I’orbita
T inestable. Aquesta orbita existeix fins a la regié 3, alla sofreix una bifurcacié de
Hopf (secundaria) quan passa a la regié 3/, creant un torus transversal inestable,
Fig. 8.3. L’orbita T estable continua existint en la regi6é 2, i mor en la bifurcaci
de Hopf (primaria) amb el punt fix A. L’0rbita T té un periode que divergeix per a
valors de 8 petits (Fig. 8.10), desapareixent a ’drbita homoclinica a C, Fig. B.2.

Per completar el conjunt d’invariants en les regions 3 i 3', cal incloure una orbita,
periodica longitudinal, L, que és aproximadament coplanar al pla W = 0. Aquesta
orbita, estable a 3 pero inestable a 3', té un periode que divergeix a la bifurcacié
sella-node (bifurcacié6 d’Andronov, Fig. 8.21).

Els punts fixos A i B, juntament amb ’orbita 7' corresponen a ’escenari Hopf—
sella-node tipus II. L’orbita L és una part integral del conjunt de bifurcacions,
i la interaccié de les bifurcacions que sofreixen aquestes dues oOrbites organitza
Pestructura de resonancies. La bifurcacié de Hopf secundaria s’interrompeix en
una illa de bifurcacions de periode doble d’orbites periodiques (cercle blau figura
B-2) i acaba en una bifurcacié sella-node d’orbites periodiques (triangle rosa).

El moviment quasi-periodic pot sofrir fenomens de resonancia i generar orbites
periodiques. Aquestes orbites poden ésser classificades per un nombre p de voltes
seguint l’orbita primaria, T, i ¢ que denota el nombre de voltes fetes al voltant
Porbita primaria abans de tancar—se. A la figura 8.7, es veu l'estructura de re-
sonancies per distints valors de ¢. Les linies en color rosa corresponen a bifurca-
cions sella—node d’orbites periodiques. Per a ¢ > 4 es comporten com l’estructura
estandard de llengiies d’Arnold i es van acumulant cap el punt Hopf-sella—node.

L’estructura de les orbites periodiques dins cada resonancia és bastant similar.
Com exemple s’estudia la resonancia 3, Fig. 8.9. A la figura 8.10 (a), es veu que per
a 8 a prop de la bifurcacié de Hopf secundaria de T', una orbita periodica inestable
i una sella neixen i tornen a col-lapsar en un valor de S més gran a la bifurcacié
sella—node revers. Per a un valor de  més baix, Fig. 8.10 (b), la branca inestable
té un periode que divergeix i s’originen dues bifurcacions homocliniques (cercle verd
de la figura 8.9). El tall de la figura 8.10 (c) indica que 1’0rbita periddica resonant
es junta amb I’orbita L. Aquest procés d’unié de les resonancies transversal en la,
solucié de 1’orbita periodica s’observa a totes les resonancies. A prop del procés
d’unié s’observa que l'orbita L també bifurca en una Hopf secundaria (linies negres
per valors de 8 grans), que té aixi mateix té resonancies 1/2 (cercles color blau
corresponents a bifurcacions de periode doble).

Les resonancies fortes (¢ < 4) tenen una estructura més complicada que la indi-
cada. En particular, les bifurcacions sella-node de les llengiies no ocorr en el torus.
El torus pot créixer quan els parametres canvien i col-lisionar amb una orbita reso-
nant. Aix0 corresponen a una bifurcacié homoclinica a una orbita periodica amb la
destruccié final del torus (diamands negres). Els punts d’interseccié d’aquestes ho-
mocliniques, les Hopf secundaries i les resonancies corresponen a singularitat tipus
Takens-Bogdanov, Fig. 8.15.

Entre les resonancies transversals indicades, s’han obtingut altres resonancies,
Fig. 8.18, encara que una classificacié de les mateixes és prou complicada.



Chapter 8

Resonance structure in a class B
laser with injected signal

In this chapter, we describe the qualitative dynamics and bifurcation set for a
laser with injected signal for small cavity detunings by using the definitions included
in chapter 3.

The work presented in this chapter completes the above series of studies of bifur-
cations of a laser with injected signal in the neighbourhood of the Hopf-saddle-node
(HSN) singularity, as it was reviewed in section 1.2. We numerically analyse the
weak cavity detuning regime for a fixed value of the detuning parameter # = 0.5 (in
adequate units), where type II Hopf-saddle-node is expected. The small-detuning
case is particularly relevant for applications, since a natural ambition when con-
structing laser cavities is to obtain low detunings. Long-time behaviour depending
on the amplitude and the frequency shift of the applied signal is studied. The main
bifurcation structure consists of a (secondary) Hopf bifurcation on the periodic orbit
associated to the Hopf-saddle-node bifurcation. We have analysed in detail the res-
onance structure which reveals a rich interaction with other bifurcations not present
in the usual Hopf-saddle—node scenario.

In the next section we review the representative equations for a laser with injected
signal, together with the unfolding of the Hopf-saddle node bifurcation. In Sec.
B.9, the resonance structure is described, while Sec. 8.3 discusses the Andronov
global bifurcation occurring in this laser, and its interaction with other bifurcations.
Finally, a global outlook and discussion is given in Sec. 8.4.

8.1 Equations for the laser with injected signal

The model for a laser system is given in terms of the Maxwell-Bloch equations,
chapter 4. In a great variety of lasers, the decay times associated with the population
inversion and the electric field have different time scales, allowing for the adiabatic
elimination of the fast decaying polarization variable (class B) [Solari and Oppo,
1994]. The dimensionless rate equations in a reference frame that rotates with the
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injected signal may be written as

dE
dw
Pl A? — xW(1+g|E]*) - |EP, (8.1)

where FE is the complex envelope of the electric field and W is proportional to the
population inversion. f represents the detuning between the atomic and the nearest
eigenfrequency of the cavity, A is proportional to the amount of pumped atoms,
x > 0 is proportional to the inverse of the decay time of the population inversion and
g is inversely proportional to 1+62. For typical lasers,  is small. 7 is the detuning of
the perturbation frequency and the unperturbed laser operating frequency and 8 > 0
is the intensity of the injected signal. The relationship between the parameters used
in this model and the parameters in the Maxwell-Bloch equations can be found in
[Solari and Oppo, 1994]. The model can be justified for small signal intensity ratio,
B/A? < 1, although it has been argued that it can be successfully applied beyond
this limit [Oppo et al., 1986]. Our present study centers in this limit and in some
cases we have explored a region beyond this limit in order to understand the fate
of some invariant sets. The set of equations (B.I]) can be obtained from Egs. (4.11)
and (4.12), in the absence of noise terms and without injected signal, by performing
the suitable change of variables.

Solari and Oppo [1994] performed a reduction of the three—equations model by
averaging over the fast relaxation oscillation motion, reducing the dynamics to a
two—equations system. In this way, the difficulty of finding analytic expressions
for most of the local bifurcations is simplified. A close analysis of the singularities
of this model, reveals that the system organizes around the codimension-2 Hopf-
saddle-node local bifurcation. One finds that after a suitable change of coordinates
one may arrive to its normal form representation (3.1) [Guckenheimer and Holmes,
1983]

v = (ut+av)r+ O(3),
Vo= v+br? =0+ 0(3), (8.2)
¢ = c+av+0(2),

where @, b, € # 0 and p and v are the bifurcation parameters, all function of the
laser parameters. The signs of @ and b classify different types of flows: type I for
(@ >0, b>0), type Il for (@ < 0, b > 0), type III for (@ > 0, b < 0), type IV for
(@<0,b<0).

One of the main achievements of the Solari and Oppo average model is that they
have established that the actual laser with injected signal operation is controlled by
the cavity detuning parameter 6 in the following way:

type IL0< 6 <1,
type I 1 < 6 < /3,
type III: /3 < 6.
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We refer the reader to [Zimmermann et al., 2001] for a detailed account of the normal
form computations for the three-dimensional laser with injected signal equations
(B1]), where the above results are validated up to order O(x?), for

i) = (149400~ Lop),

46
i) = ~(+ )T o),
e = V2A+ 00, (8.3)

u(B,m) = 9<1f92_,60\/>1<+792>’
v(B,m) = 2(%)

The main characteristics of each type of flow may be summarized as follows. A
saddle-node bifurcation occurs for v = vy, = 0, where a pair of saddlefocus fixed
points are born at (r,v) = (£4/v,0). These fixed points may as well bifurcate in
a Hopf bifurcation along a parabola in parameter space, v = vuqpr = p?/a®. The
periodic orbit will be at vaeps = —p/@ and its radius is given by r§,,; = (4*/a>—v)/b.
The main differences between type I-III, lie in the region of existence and stability
of the periodic orbit. In type III the periodic orbit always co—exists with the fixed
points (v > p?/a? > 0), while in type I the periodic orbit exists before the creation of
the fixed points (for v < 0, rmopr > 0). Type II is similar to type I, but the stability
of the periodic orbit may change. A degenerate (secondary) Hopf bifurcation occurs
on the semiaxis p = 0,v < 0, where the periodic orbit becomes a center. Addition
of appropriate third order terms to the normal form (B:3) breaks, in general, this
degeneracy resulting in a bifurcation to a torus. The fate of the torus will depend
on the perturbation applied to (B.9) and results concerning this type are unknown.
Kirk [Kirk, 1991] has analysed these kind of perturbations for type III, where the
secondary Hopf bifurcation occurs in the semiaxis y = 0,v > 0, coexisting with
the fixed points. In her analysis she found that the torus breaks—up in Arnold
tongues [Arnold, 1983], which in turn ends up as resonances of another secondary
Hopf bifurcation. Below a similar scenario will be found.

In this work we investigate the small detuning regime 0 < # < 1 correspond-
ing to type II, a case not studied in complete detail in previous works. In terms
of bifurcations and periodic orbit organization, the most prominent feature is the
(secondary) Hopf bifurcation of periodic orbits associated to the Hopf-saddle-node
singularity. This will be one of our main objects of study, where we will discuss
the interaction of its resonances with other bifurcations not present in the (local)
normal form analysis.
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8.2 Bifurcation set for small detuning

We have integrated numerically equations (B-I) with fixed parameters A = 1,
x = 0.3 and g = Of] Most computations were done with the AUTO97 [Doedel
et al., 1997] continuation package, in the parameters (8,7) and 0 < # = 0.5 < 1. In
general, the locus in parameter space of a particular bifurcation will be presented
as points, representing the actual computation performed. To guide the reader we
have selected different colours for each type of bifurcation.

Given the complexity of the full bifurcation set found, we will introduce in steps
the different invariant sets and their bifurcations. Readers not interested in the
technical details of the calculation may refer to Fig. 8.22 for the full bifurcation set
discussed in this chapter.

8.2.1 Invariant sets close to the Hopf—saddle—node bifurca-
tion

We begin our numeric exploration with the locus of the saddle-node, Hopf and
Hopf-saddle—node bifurcations of fixed points. These may be explicitly computed,
with the relevant equations being:

1. The fixed point equation may be reduced to,
(1+6%)Y3 — 2[4%(1 + 6% + xnd)Y?
+ [AY1+60?) + 24%xmb + x*n*]Y — x*B2 =0, (8.4)
a cubic polynomial in Y = |E|2.

2. The saddle-node condition, i.e., when one of the eigenvalues of the Jacobian
is zero,

3(140%)Y? — 4[A*(1 + 0°) + xnf]Y + A*(1 + 6°) + 24°xnmf + x*n* = 0.(8.5)

3. The Hopf condition (i.e., when two (complex conjugated) eigenvalues of the
Jacobian are pure imaginary) reads

(14 6%)Y3 — [34%(1 + 6%) + x2(6* — 3) + 2nx0]Y?
+ [34%(1 4 6%) + A2[(0% — 5)x% + 4nx0) + 2x* + 0x*n + *X2] Y (8.6)
— [(1+6%) A% +24%(nx0 — x*) + A*(°x* + x")] = 0.

The fixed point equation reveals that there are regions of one or three fixed
points, separated by saddlenode bifurcations. The simultaneous solution of (§-4)
and (B.9) (the fixed point equation will then have a double root) gives the locus of

'In real lasers g € [0, 1]. However, the qualitative features of the bifurcations around the Hopf-
saddle-node bifurcation will not change if g is kept small. In [Zimmermann et al., 2001] it is found
to slightly modify the second—order coefficients in the Hopf—-saddle-node normal form.
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the saddle-node curve, while solution of (B.4) with (B.6) gives the locus of the Hopf
curve. When all three equations are simultaneously satisfied there is a tangency
point where the Hopf-saddlenode occurs [Zimmermann et al., 2001],

1+ 62 T
nhsn(e) = _( ;0 ) (1 - 4 92 A2 X ) X+ O(X)47
A 62 62
/Bhsn(e) = % (1 - (i;_TJ X2> X+ O(X)4' (87)

A typical bifurcation set displaying these bifurcations is shown in Fig. B.1]. Inside
the “triangle” shaped region, three fixed points exist, while outside this region only
one fixed point remains. Let us label the fixed points in region 1 as: A stable, B
unstable and C saddle. A pair of the above fixed points are annihilated crossing
the sides of the triangle: moving into region 4, B and C collide, while entering
region 6 or (3, 3'), A and B annihilates leaving in these regions only the fixed point
C.B In physical terms, locking behaviour (output frequency tuned to that of the
injected signal) occurs whenever the laser is operated in any of the regions (1, 4,
5), where a stable fixed point exists. On the other hand, fixed point C exists in all
regions except 4 in Fig. and is approximately situated in (|E|,W) ~ (0, A?/x)
for f < 1, which corresponds to the laser—off state. In all regions of interest it is a
saddle fixed point.

3.5J |
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Figure 8.1: Numerical bifurcation set in parameters (8,n) for type II. Red line: saddle-node of
fixed points (SN FP). Blue line: Hopf bifurcation of fixed points (HOPF FP). The secondary Hopf
bifurcation of transversal periodic orbits (HOPF T) separates region 3 and 3’.

2Notice that choosing a path far out from the “triangle” shaped region, we have to identify
fixed point C in regions (6, 3, 3') with fixed point A in region 4.
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The (primary) Hopf bifurcation occurs on either fixed point A or B, creating
a periodic orbit transversal to the W = 0 plane, which will be referred to as T in
what follows. This orbit corresponds to the undamped relaxation oscillation [van
Tartwijk and Lenstra, 1995], whose main characteristic is that the phase of the
electric field remains bounded. A close inspection in parameter space around the
Hopf-saddle-node point reveals that moving from region 1 to region 5, the unstable
node B becomes a saddle and creates an unstable T orbit. This orbit exists up to
region 3, where it suffers a (secondary) Hopf bifurcation when crossing to region
3/, creating an unstable transversal torus. The remaining stable 7' periodic orbit
continues to exist up to region 2, when it dies in a (primary) Hopf bifurcation with
fixed point A.

To complete the main invariant sets present in region 3 and 3', we have to include
another periodic orbit. For sufficiently small § we find from (B.1)) that for W = 0,
|E| ~ A and the phase arg(E(t)) = 7 t, which corresponds to the cw (continuous-
wave) laser solution [van Tartwijk and Lenstra, 1995] with an unbounded electric
field phase. As this orbit lies approximately coplanar to the W = 0 plane, it will
be referred to as L, the longitudinal orbit. For sufficiently small (5, 8), this orbit
can be easily shown to be stable. However we find that the period of L diverges
at the saddlenode bifurcation of fixed point, where the orbit disappears. This
global bifurcation is known as Andronov or saddle node infinite-period bifurcation
[Kuznetsov, 1997], and will be addressed in more detail in Sec. 8.3. We remark that
the stability of L close to the Andronov bifurcation depends on the stability of the
saddle-node fixed point, thus on which side of the Hopf-saddle node point one is
located: in region 3’ the orbit is unstable, while in region 3 it is stable. From this,
it is clear that at least a local bifurcation to L is required. Below we will show that
a new secondary Hopf bifurcation on L occurs inside region 3'.

In summary, we find that fixed points A and B together with the transversal
periodic orbit T correspond to the type II Hopf-saddle—node scenario proposed by
the normal form analysis in the previous section. The periodic orbit L is also an
integral part of the bifurcation set of a laser with injected signal, and we will show
in the next section how the interaction of bifurcations between these two periodic
orbits organize the resonance structure.

8.2.2 Bifurcations of transversal periodic orbits

We begin with a general observation for the existence boundary of transversal
T orbit born at the the Hopf bifurcation of fixed points. For a fixed value of 7,
we find for the continuation of this orbit for decreasing 3, its period diverges at a
critical 8 = 0.05, for an interval of 5 close to 0, where a homoclinic orbit to fixed
point C occurs. Figure shows the locus of this global bifurcation in parameter
space, while Figs. 8.10 and 8.11 show the typical period versus 8 behaviour. This
bifurcation is found not to depend on #, and was found up to type III regime. We
leave for Sec. 8.3 the discussion of how this bifurcation is related to the Andronov
bifurcation producing L.
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Figure 8.2: Partial numerical bifurcation set showing the homoclinic to C fixed point and the first
resonances of the transversal secondary Hopf bifurcation. Saddle-node bifurcation of transversal
periodic orbits (SN T) and period doubling bifurcation of transversal periodic orbits (PD T) are
indicated.

In Fig. 8.3 (a) we display the main invariant sets for the parameter region
bounded by the homoclinic to C and the secondary Hopf bifurcation. We have the
stable longitudinal orbit L (which lies approximately on |E| ~ A = 1,W = 0),
together with the unstable transversal orbit 7. This orbit has a large variation in
the population inversion W, and a bounded electric field phase (the phase does not
make a complete turn as L does). Crossing the secondary Hopf bifurcation 7" and
entering region 3', we find that 7' becomes stable and an unstable invariant torus is
created. Figure 8.3 (b) shows the invariant sets, where only the intersections of the
quasiperiodic orbit with the W = 0 plane are shown. A time series of the intensity
|E|? on this solution is shown in Fig. 8.4.

It is well known that in generic systems quasiperiodic motion may suffer reso-
nance phenomena. Local analysis [Arnold, 1983] around the Hopf bifurcation reveals
that whenever the ratio of the two competing frequencies is rational, the quasiperi-
odic motion may disappear and periodic orbits arise. These orbits may be classified
by an integer number of p turns following the primary or bifurcating orbit (7' in
this case), and another integer number ¢ which denotes the number of turns made
around the primary orbit, before closing on itself. Precisely on the (secondary) Hopf
bifurcation the nontrivial Floquet multipliers are on the unit circle at e*27/4. A
general result shows that in the weak resonances case ¢ > 4 these periodic orbits
are born in saddle node pairs, and in a two-parameter space they trace a 'tongue’
(known as Arnold tongue) with the tip lying on the (secondary) Hopf bifurcation.
In phase space the periodic orbits are phase locked solution on the torus. On the
other hand the case ¢ < 4 are known as strong resonances and do not correspond
to ’strict’” Arnold tongues. The details of each strong resonance in a general study
may be found in [Kuznetsov, 1997].
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7.2.1 Period of the relaxation oscillations

The time evolution of the potential is plotted in Fig. 7.1. In this figure it can be
seen that the Lyapunov potential is approximately constant between two consecutive
peaks of the relaxation oscillations as it can be also observed with the equipotential
lines of Fig. 7.3 (however, in the peak of intensity, the potential decreases steeply,
as can be seen in Fig. 7.2). This fact allows us to estimate the relaxation oscillation
period by approximating V(y, z) = E, constant, during this time interval. When
the potential is considered as constant, the period can be evaluated by the standard
method of elementary Mechanics: z is replaced by its expression obtained from (7.6)
in terms of y and ¢ in V(y, z). Using the condition that V(y, z) = E, we obtain

. _ 2
E=aiy+ay’ +az 1n(y)+a4%+% [y(l—;gsy)] :

(7.25)

From this equation, we can calculate the relaxation oscillation period T, by using

Y= ‘é—’; and integrating over a cycle. This leads to the expression

T:/yb1+§y dy

7.26
o ¥ [2(E-ay—ay?—a3n(y)—ay )]/ (7.26)

where y, and y, are the values of y that cancel the denominator. We stress the
fact that the only approximation used in the derivation of this expression is that
the Lyapunov potential is constant during two maxima of the intensity oscillations.
In other words, we have made a mechanical simile and reduced the problem to one
with constant energy. A numerical evaluation of this integral yields the dependence
of the period, T, with the value of the energy, E =V, as plotted in Fig. [/.g.
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Figure 7.6: Period versus potential for a class B laser obtained with (f.26). Solid line 5 = 0,
dashed line § = 2. Other parameters, same than in Fig. 7.1. Dimensionless units.
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Equation ([(.2§) reduces, in the case ¢ = d = § = 0, to the one previously
obtained by using the relation between the laser dynamics and the Toda oscillator
derived in [Oppo and Politi, 1985].

According to Fig. [.6, the period T decreases as the potential V' decreases. Since
the Lyapunov potential decreases with time, this explains the fact that the period of
the oscillations in the transient regime decreases with time. In Fig. [[.7, we compare
the results obtained with the expression ([7-2§) for the period with the ones obtained
from numerical simulations of the rate equations (7.6, 7.7). In the simulations we
compute the period as the time between two peaks in the evolution of the variable y.
As seen in this figure, the above expression for the period, when using the numerical
value of the potential V, accurately reproduces the simulation results although it
is systematically lower than the numerical result. The discrepancy is less than one
percent over the whole range of times.
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Figure 7.7: Period versus time in a class B laser. Solid line has been calculated as the distance
between two peaks of intensity, with triangles plotted at the beginning of each period; dashed
line has been calculated using the expression ([f.26)), with the value of the potential V obtained
also from the simulation; dotted line corresponds to the semi-empirical expression () Same
parameters than in Fig. 7.1. We have used 1 = 55.55, coinciding with the position of the first
intensity peak. Dimensionless units.
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It is possible to quantify the difference between the approximate expression ([7.26))
and the exact values near the stationary state.

By considering ([:26) near the steady state with y = y, + 0y, E = Vi + 6V
(Vie = V(yst, 25)) and retaining the lowest terms in dy and 6V, one can perform the
integral analytically, obtaining an approximation for the period of the steady state

27
Ts ap — , 7.27
= D VK1 (720
where
2
las a4 1 l_ (d—i—czst)]
K =2[a-—>a+—+5 |5+ —>52] |,
(2 2y§t ygt 2 2y§t
2
1+ 35ys
F = llﬂwl , (7.28)
2yst
g o _[1+c(1+§yst)] [§+(d+c2zst)],
2yst 2yst

and Dig 4 is the coefficient Diy calculated in the steady state.

The result ([.27]) could be obtained starting from the linearization of potential
([-29), expanding this expression near the steady state, and then calculate the period
from the resulting expression.

The period of the relaxation oscillations near the steady state can also be ob-
tained by the standard procedure of linearizing the evolution equations near the
steady state solution. Applying a small perturbation y = y,; + dy and 2z = 2z, + 02
to Egs. (7.6) and (7.7), one has after linearization

(Sy = a1 (Sy =+ a9 (SZ, (729)
62 = ag Sy + ag 6z, (7.30)

where

Zst
- 9=t
u ((1 + 5yst)? ) ’

2yst
apg = |——+c},
2 <1+§yst )
Zst
Gy = ——t 7.31
2 (1+5yq)? (7.31)
yst
= —|b4+ —=1.
22 ( + 1+§yst>

The eigenvalues of the linearized equations ([(.29) and ([7.30) are

A= —giw, (7.32)
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with

o = —(a11+a22), (733)

1
w = 5\/|(a11 - a22)2 + 4a12 a21|. (734)

The frequency w of the relaxation oscillations near the steady state is the imaginary
part of the eigenvalues of the linearized equations ([.29) and ([.30). This yields a
period Ty; = 27 /w which can be rewritten in terms of K, F', H, Diy & and Dy o in
order to have a better comparison with the approximate period ([-27])

27 D§2,st F? i

Ty = 1-—
" D VKF - H? D% ,A(KF — H?)

(7.35)

The difference between ([.27) and ([[.39) vanishes with Dgy o (i.e. Dayo in the
stationary state). Since K F — H? is always a positive quantity, our approximation
will give, at least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variation of the period with
time, we need to compute the time variation of the potential V(1) between two
consecutive intensity peaks. This variation is induced by the dissipative terms in
the equations of motion. Although we were not able to derive an expression for the
variation of the potential (see [Oppo and Politi, 1985] for an approximate expression
in a simpler case), we found that a semi—empirical argument can yield a very simple
law which is well reproduced by the simulations. We start by studying the decay to
the stationary state in the linearized equations. After expanding around the steady
state, the dynamical equations ([-29) and ([7-30]) show that the variables decay to
the steady state as

dy(7),62(T) eXp(—gT), (7.36)
where g, ([.33), can be rewritten as

0= Dot F. (7.37)

In the case of 3 = 0, ¢ = 0 and d = 0 (neither saturation term nor spontaneous
emission term are considered) ¢ = a.

Expanding V (y, z) around the steady state (ys and z, correspond to extrema
of the potential), it is found that

V — Ve o 042,022, 6y dz. (7.38)
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Using ([(.36) and taking the initial condition at an arbitrary 7, we find an expression
for the decay of the potential

V(1) = Vie = [V(10) — Vg exp (—o (T — 7)) - (7.39)

In Fig. -8 we plot In[V (1) — V] versus time and compare it with the approximation
([-:39). One can see that it fits In[V (7) — V] reasonably well not only near the steady
state (where it was derived), but also during the transient dynamics. The value of
To, being a free parameter, was chosen at the time at which the first peak of the
intensity appeared. Although other values of 7y might produce a better fit, the one
chosen here has the advantage that it can be calculated analytically by following
the technique of Ref. [Balle et al., 1991]. It can be derived from Eq. ([-26) that the
period T depends linearly on the potential V. This fact, combined with the result
of Eq. ([39), suggests the semi-empirical law for the evolution of the period

T(r) = Toe = [T(10) — Tut] exp (—o (7 — 70)) - (7.40)

This simple expression fits well the calculated period not only near the steady state,
but also in the transient regime, see Figs. .1 and [.9. The small differences observed
near the steady state are due to the fact that the semi-empirical law, Eq. ([-40),
is based on the validity of Eq. ([.26) between the period and the potential. As it
was already discussed above, that expansion slightly underestimates the asymptotic
(stationary) value of the period. By complementing this study with the procedure
given in [Balle et al., 1991] to describe the switch—on process of a laser, and valid
until the first intensity peak is reached, we can obtain a complete description of the
variation of the oscillations period in the dynamical evolution following the laser
switch—on.

6] 200 400 600 800

Figure 7.8: Logarithm of the potential difference versus time in a class B laser (solid line),
compared with the theoretical expression in the steady state ) (dashed line). Same parameters
than in Fig. 7.1 and 7y as in Fig. [.4. Dimensionless units.
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0 200 400 600

Figure 7.9: Logarithm of the period difference versus time in a class B laser. Triangles correspond
to the period calculated from the simulations as the distance between two consecutive intensity
peaks, at the same position than in Fig. E The solid line is the semi—empirical expression Eq.
() Same parameters than in Fig. 7.1 and 7y as in Fig. E Dimensionless units.



Capitol 8

Estructura de resonancies en un
laser de classe B amb senyal
injectat

En aquest capitol es descriu la dinamica qualitativa i el conjunt parcial de bi-
furcacions (capitol 3) per a un laser de classe B amb senyal injectat amb termes de
disintonia petits. El treball d’aquest capitol completa una série d’estudis (veure la
seccié 1.2) sobre bifurcacions en lasers amb senyal injectat en la proximitat de la
singularitat Hopf-sella-node.

Les equacions de balang (capitol 4) en un sistema de referéncia que gira a la
freqiiéncia del senyal injectat sén les (B.1) per al camp eléctric, E, i el nombre de
portadors, W. El camp injectat esta caracteritzat per 'amplitud 3, i la freqiiéncia
7. Per al tractament que es fa en aquest capitol s’agafa un valor pel parametre de
disintonia amb el qual les equacions queden tipus II de la bifurcacié Hopf-sella—node.

En les distintes seccions d’aquest capitol es van introduint a poc a poc els distints
conjunts invariants del sistema i les seves bifurcacions a causa de la complexitat del
conjunt complet de bifurcacions. S’han seleccionat distints colors per a cada tipus
de bifurcacions. El conjunt final obtingut és el de la figura 8.22.

La bifurcaci6 sella—node (punts vermells) i la bifurcacié de Hopf (punts blaus)
dels punts fixos de les equacions, es poden calcular analiticament (8.4 - B.6). La seva
interseccié déna el punt Hopf-sella—node. Aquestes bifurcacions separen les regions
de Vespai de parametres (8, 7) segons V'estabilitat dels punts fixos A, B i C, Fig.
B.J. A laregié 1, A és estable, B inestable i C' sella; un parell d’aquests punts fixos
s’aniquilen quan es creua els costats del triangle: cap a la regi6é 4, B i C col-lapsen;
cap a les regions 6, 31 3', A i B s’aniquilen deixant en aquestes regions el punt
C. Un punt fix estable existeix en les regions 1, 4 i 5, que correspon, en termes
fisics, a tenir una freqiiencia de sortida sintonitzada amb la d’entrada. El punt fix C'
correspon a l'estat del laser apagat, i en totes les regions d’interés és un punt sella.

La bifurcacié de Hopf (primaria) ocorr o bé en el punt fix A 0 B, creant una
orbita periodica transversal, T', al pla W = 0. Realitzant un circuit tancat al voltant
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del punt Hopf-sella-node: de 1 a 5, el punt B inestable torna sella i es crea I’orbita
T inestable. Aquesta orbita existeix fins a la regié 3, alla sofreix una bifurcacié de
Hopf (secundaria) quan passa a la regié 3/, creant un torus transversal inestable,
Fig. 8.3. L’orbita T estable continua existint en la regi6é 2, i mor en la bifurcaci
de Hopf (primaria) amb el punt fix A. L’0rbita T té un periode que divergeix per a
valors de 8 petits (Fig. 8.10), desapareixent a ’drbita homoclinica a C, Fig. B.2.

Per completar el conjunt d’invariants en les regions 3 i 3', cal incloure una orbita,
periodica longitudinal, L, que és aproximadament coplanar al pla W = 0. Aquesta
orbita, estable a 3 pero inestable a 3', té un periode que divergeix a la bifurcacié
sella-node (bifurcacié6 d’Andronov, Fig. 8.21).

Els punts fixos A i B, juntament amb ’orbita 7' corresponen a ’escenari Hopf—
sella-node tipus II. L’orbita L és una part integral del conjunt de bifurcacions,
i la interaccié de les bifurcacions que sofreixen aquestes dues oOrbites organitza
Pestructura de resonancies. La bifurcacié de Hopf secundaria s’interrompeix en
una illa de bifurcacions de periode doble d’orbites periodiques (cercle blau figura
B-2) i acaba en una bifurcacié sella-node d’orbites periodiques (triangle rosa).

El moviment quasi-periodic pot sofrir fenomens de resonancia i generar orbites
periodiques. Aquestes orbites poden ésser classificades per un nombre p de voltes
seguint l’orbita primaria, T, i ¢ que denota el nombre de voltes fetes al voltant
Porbita primaria abans de tancar—se. A la figura 8.7, es veu l'estructura de re-
sonancies per distints valors de ¢. Les linies en color rosa corresponen a bifurca-
cions sella—node d’orbites periodiques. Per a ¢ > 4 es comporten com l’estructura
estandard de llengiies d’Arnold i es van acumulant cap el punt Hopf-sella—node.

L’estructura de les orbites periodiques dins cada resonancia és bastant similar.
Com exemple s’estudia la resonancia 3, Fig. 8.9. A la figura 8.10 (a), es veu que per
a 8 a prop de la bifurcacié de Hopf secundaria de T', una orbita periodica inestable
i una sella neixen i tornen a col-lapsar en un valor de S més gran a la bifurcacié
sella—node revers. Per a un valor de  més baix, Fig. 8.10 (b), la branca inestable
té un periode que divergeix i s’originen dues bifurcacions homocliniques (cercle verd
de la figura 8.9). El tall de la figura 8.10 (c) indica que 1’0rbita periddica resonant
es junta amb I’orbita L. Aquest procés d’unié de les resonancies transversal en la,
solucié de 1’orbita periodica s’observa a totes les resonancies. A prop del procés
d’unié s’observa que l'orbita L també bifurca en una Hopf secundaria (linies negres
per valors de 8 grans), que té aixi mateix té resonancies 1/2 (cercles color blau
corresponents a bifurcacions de periode doble).

Les resonancies fortes (¢ < 4) tenen una estructura més complicada que la indi-
cada. En particular, les bifurcacions sella-node de les llengiies no ocorr en el torus.
El torus pot créixer quan els parametres canvien i col-lisionar amb una orbita reso-
nant. Aix0 corresponen a una bifurcacié homoclinica a una orbita periodica amb la
destruccié final del torus (diamands negres). Els punts d’interseccié d’aquestes ho-
mocliniques, les Hopf secundaries i les resonancies corresponen a singularitat tipus
Takens-Bogdanov, Fig. 8.15.

Entre les resonancies transversals indicades, s’han obtingut altres resonancies,
Fig. 8.18, encara que una classificacié de les mateixes és prou complicada.



Chapter 8

Resonance structure in a class B
laser with injected signal

In this chapter, we describe the qualitative dynamics and bifurcation set for a
laser with injected signal for small cavity detunings by using the definitions included
in chapter 3.

The work presented in this chapter completes the above series of studies of bifur-
cations of a laser with injected signal in the neighbourhood of the Hopf-saddle-node
(HSN) singularity, as it was reviewed in section 1.2. We numerically analyse the
weak cavity detuning regime for a fixed value of the detuning parameter # = 0.5 (in
adequate units), where type II Hopf-saddle-node is expected. The small-detuning
case is particularly relevant for applications, since a natural ambition when con-
structing laser cavities is to obtain low detunings. Long-time behaviour depending
on the amplitude and the frequency shift of the applied signal is studied. The main
bifurcation structure consists of a (secondary) Hopf bifurcation on the periodic orbit
associated to the Hopf-saddle-node bifurcation. We have analysed in detail the res-
onance structure which reveals a rich interaction with other bifurcations not present
in the usual Hopf-saddle—node scenario.

In the next section we review the representative equations for a laser with injected
signal, together with the unfolding of the Hopf-saddle node bifurcation. In Sec.
B.9, the resonance structure is described, while Sec. 8.3 discusses the Andronov
global bifurcation occurring in this laser, and its interaction with other bifurcations.
Finally, a global outlook and discussion is given in Sec. 8.4.

8.1 Equations for the laser with injected signal

The model for a laser system is given in terms of the Maxwell-Bloch equations,
chapter 4. In a great variety of lasers, the decay times associated with the population
inversion and the electric field have different time scales, allowing for the adiabatic
elimination of the fast decaying polarization variable (class B) [Solari and Oppo,
1994]. The dimensionless rate equations in a reference frame that rotates with the
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injected signal may be written as

dE
dw
Pl A? — xW(1+g|E]*) - |EP, (8.1)

where FE is the complex envelope of the electric field and W is proportional to the
population inversion. f represents the detuning between the atomic and the nearest
eigenfrequency of the cavity, A is proportional to the amount of pumped atoms,
x > 0 is proportional to the inverse of the decay time of the population inversion and
g is inversely proportional to 1+62. For typical lasers,  is small. 7 is the detuning of
the perturbation frequency and the unperturbed laser operating frequency and 8 > 0
is the intensity of the injected signal. The relationship between the parameters used
in this model and the parameters in the Maxwell-Bloch equations can be found in
[Solari and Oppo, 1994]. The model can be justified for small signal intensity ratio,
B/A? < 1, although it has been argued that it can be successfully applied beyond
this limit [Oppo et al., 1986]. Our present study centers in this limit and in some
cases we have explored a region beyond this limit in order to understand the fate
of some invariant sets. The set of equations (B.I]) can be obtained from Egs. (4.11)
and (4.12), in the absence of noise terms and without injected signal, by performing
the suitable change of variables.

Solari and Oppo [1994] performed a reduction of the three—equations model by
averaging over the fast relaxation oscillation motion, reducing the dynamics to a
two—equations system. In this way, the difficulty of finding analytic expressions
for most of the local bifurcations is simplified. A close analysis of the singularities
of this model, reveals that the system organizes around the codimension-2 Hopf-
saddle-node local bifurcation. One finds that after a suitable change of coordinates
one may arrive to its normal form representation (3.1) [Guckenheimer and Holmes,
1983]

v = (ut+av)r+ O(3),
Vo= v+br? =0+ 0(3), (8.2)
¢ = c+av+0(2),

where @, b, € # 0 and p and v are the bifurcation parameters, all function of the
laser parameters. The signs of @ and b classify different types of flows: type I for
(@ >0, b>0), type Il for (@ < 0, b > 0), type III for (@ > 0, b < 0), type IV for
(@<0,b<0).

One of the main achievements of the Solari and Oppo average model is that they
have established that the actual laser with injected signal operation is controlled by
the cavity detuning parameter 6 in the following way:

type IL0< 6 <1,
type I 1 < 6 < /3,
type III: /3 < 6.
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We refer the reader to [Zimmermann et al., 2001] for a detailed account of the normal
form computations for the three-dimensional laser with injected signal equations
(B1]), where the above results are validated up to order O(x?), for

i) = (149400~ Lop),

46
i) = ~(+ )T o),
e = V2A+ 00, (8.3)

u(B,m) = 9<1f92_,60\/>1<+792>’
v(B,m) = 2(%)

The main characteristics of each type of flow may be summarized as follows. A
saddle-node bifurcation occurs for v = vy, = 0, where a pair of saddlefocus fixed
points are born at (r,v) = (£4/v,0). These fixed points may as well bifurcate in
a Hopf bifurcation along a parabola in parameter space, v = vuqpr = p?/a®. The
periodic orbit will be at vaeps = —p/@ and its radius is given by r§,,; = (4*/a>—v)/b.
The main differences between type I-III, lie in the region of existence and stability
of the periodic orbit. In type III the periodic orbit always co—exists with the fixed
points (v > p?/a? > 0), while in type I the periodic orbit exists before the creation of
the fixed points (for v < 0, rmopr > 0). Type II is similar to type I, but the stability
of the periodic orbit may change. A degenerate (secondary) Hopf bifurcation occurs
on the semiaxis p = 0,v < 0, where the periodic orbit becomes a center. Addition
of appropriate third order terms to the normal form (B:3) breaks, in general, this
degeneracy resulting in a bifurcation to a torus. The fate of the torus will depend
on the perturbation applied to (B.9) and results concerning this type are unknown.
Kirk [Kirk, 1991] has analysed these kind of perturbations for type III, where the
secondary Hopf bifurcation occurs in the semiaxis y = 0,v > 0, coexisting with
the fixed points. In her analysis she found that the torus breaks—up in Arnold
tongues [Arnold, 1983], which in turn ends up as resonances of another secondary
Hopf bifurcation. Below a similar scenario will be found.

In this work we investigate the small detuning regime 0 < # < 1 correspond-
ing to type II, a case not studied in complete detail in previous works. In terms
of bifurcations and periodic orbit organization, the most prominent feature is the
(secondary) Hopf bifurcation of periodic orbits associated to the Hopf-saddle-node
singularity. This will be one of our main objects of study, where we will discuss
the interaction of its resonances with other bifurcations not present in the (local)
normal form analysis.
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8.2 Bifurcation set for small detuning

We have integrated numerically equations (B-I) with fixed parameters A = 1,
x = 0.3 and g = Of] Most computations were done with the AUTO97 [Doedel
et al., 1997] continuation package, in the parameters (8,7) and 0 < # = 0.5 < 1. In
general, the locus in parameter space of a particular bifurcation will be presented
as points, representing the actual computation performed. To guide the reader we
have selected different colours for each type of bifurcation.

Given the complexity of the full bifurcation set found, we will introduce in steps
the different invariant sets and their bifurcations. Readers not interested in the
technical details of the calculation may refer to Fig. 8.22 for the full bifurcation set
discussed in this chapter.

8.2.1 Invariant sets close to the Hopf—saddle—node bifurca-
tion

We begin our numeric exploration with the locus of the saddle-node, Hopf and
Hopf-saddle—node bifurcations of fixed points. These may be explicitly computed,
with the relevant equations being:

1. The fixed point equation may be reduced to,
(1+6%)Y3 — 2[4%(1 + 6% + xnd)Y?
+ [AY1+60?) + 24%xmb + x*n*]Y — x*B2 =0, (8.4)
a cubic polynomial in Y = |E|2.

2. The saddle-node condition, i.e., when one of the eigenvalues of the Jacobian
is zero,

3(140%)Y? — 4[A*(1 + 0°) + xnf]Y + A*(1 + 6°) + 24°xnmf + x*n* = 0.(8.5)

3. The Hopf condition (i.e., when two (complex conjugated) eigenvalues of the
Jacobian are pure imaginary) reads

(14 6%)Y3 — [34%(1 + 6%) + x2(6* — 3) + 2nx0]Y?
+ [34%(1 4 6%) + A2[(0% — 5)x% + 4nx0) + 2x* + 0x*n + *X2] Y (8.6)
— [(1+6%) A% +24%(nx0 — x*) + A*(°x* + x")] = 0.

The fixed point equation reveals that there are regions of one or three fixed
points, separated by saddlenode bifurcations. The simultaneous solution of (§-4)
and (B.9) (the fixed point equation will then have a double root) gives the locus of

'In real lasers g € [0, 1]. However, the qualitative features of the bifurcations around the Hopf-
saddle-node bifurcation will not change if g is kept small. In [Zimmermann et al., 2001] it is found
to slightly modify the second—order coefficients in the Hopf—-saddle-node normal form.
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the saddle-node curve, while solution of (B.4) with (B.6) gives the locus of the Hopf
curve. When all three equations are simultaneously satisfied there is a tangency
point where the Hopf-saddlenode occurs [Zimmermann et al., 2001],

1+ 62 T
nhsn(e) = _( ;0 ) (1 - 4 92 A2 X ) X+ O(X)47
A 62 62
/Bhsn(e) = % (1 - (i;_TJ X2> X+ O(X)4' (87)

A typical bifurcation set displaying these bifurcations is shown in Fig. B.1]. Inside
the “triangle” shaped region, three fixed points exist, while outside this region only
one fixed point remains. Let us label the fixed points in region 1 as: A stable, B
unstable and C saddle. A pair of the above fixed points are annihilated crossing
the sides of the triangle: moving into region 4, B and C collide, while entering
region 6 or (3, 3'), A and B annihilates leaving in these regions only the fixed point
C.B In physical terms, locking behaviour (output frequency tuned to that of the
injected signal) occurs whenever the laser is operated in any of the regions (1, 4,
5), where a stable fixed point exists. On the other hand, fixed point C exists in all
regions except 4 in Fig. and is approximately situated in (|E|,W) ~ (0, A?/x)
for f < 1, which corresponds to the laser—off state. In all regions of interest it is a
saddle fixed point.

3.5J |
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Figure 8.1: Numerical bifurcation set in parameters (8,n) for type II. Red line: saddle-node of
fixed points (SN FP). Blue line: Hopf bifurcation of fixed points (HOPF FP). The secondary Hopf
bifurcation of transversal periodic orbits (HOPF T) separates region 3 and 3’.

2Notice that choosing a path far out from the “triangle” shaped region, we have to identify
fixed point C in regions (6, 3, 3') with fixed point A in region 4.
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The (primary) Hopf bifurcation occurs on either fixed point A or B, creating
a periodic orbit transversal to the W = 0 plane, which will be referred to as T in
what follows. This orbit corresponds to the undamped relaxation oscillation [van
Tartwijk and Lenstra, 1995], whose main characteristic is that the phase of the
electric field remains bounded. A close inspection in parameter space around the
Hopf-saddle-node point reveals that moving from region 1 to region 5, the unstable
node B becomes a saddle and creates an unstable T orbit. This orbit exists up to
region 3, where it suffers a (secondary) Hopf bifurcation when crossing to region
3/, creating an unstable transversal torus. The remaining stable 7' periodic orbit
continues to exist up to region 2, when it dies in a (primary) Hopf bifurcation with
fixed point A.

To complete the main invariant sets present in region 3 and 3', we have to include
another periodic orbit. For sufficiently small § we find from (B.1)) that for W = 0,
|E| ~ A and the phase arg(E(t)) = 7 t, which corresponds to the cw (continuous-
wave) laser solution [van Tartwijk and Lenstra, 1995] with an unbounded electric
field phase. As this orbit lies approximately coplanar to the W = 0 plane, it will
be referred to as L, the longitudinal orbit. For sufficiently small (5, 8), this orbit
can be easily shown to be stable. However we find that the period of L diverges
at the saddlenode bifurcation of fixed point, where the orbit disappears. This
global bifurcation is known as Andronov or saddle node infinite-period bifurcation
[Kuznetsov, 1997], and will be addressed in more detail in Sec. 8.3. We remark that
the stability of L close to the Andronov bifurcation depends on the stability of the
saddle-node fixed point, thus on which side of the Hopf-saddle node point one is
located: in region 3’ the orbit is unstable, while in region 3 it is stable. From this,
it is clear that at least a local bifurcation to L is required. Below we will show that
a new secondary Hopf bifurcation on L occurs inside region 3'.

In summary, we find that fixed points A and B together with the transversal
periodic orbit T correspond to the type II Hopf-saddle—node scenario proposed by
the normal form analysis in the previous section. The periodic orbit L is also an
integral part of the bifurcation set of a laser with injected signal, and we will show
in the next section how the interaction of bifurcations between these two periodic
orbits organize the resonance structure.

8.2.2 Bifurcations of transversal periodic orbits

We begin with a general observation for the existence boundary of transversal
T orbit born at the the Hopf bifurcation of fixed points. For a fixed value of 7,
we find for the continuation of this orbit for decreasing 3, its period diverges at a
critical 8 = 0.05, for an interval of 5 close to 0, where a homoclinic orbit to fixed
point C occurs. Figure shows the locus of this global bifurcation in parameter
space, while Figs. 8.10 and 8.11 show the typical period versus 8 behaviour. This
bifurcation is found not to depend on #, and was found up to type III regime. We
leave for Sec. 8.3 the discussion of how this bifurcation is related to the Andronov
bifurcation producing L.
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Figure 8.2: Partial numerical bifurcation set showing the homoclinic to C fixed point and the first
resonances of the transversal secondary Hopf bifurcation. Saddle-node bifurcation of transversal
periodic orbits (SN T) and period doubling bifurcation of transversal periodic orbits (PD T) are
indicated.

In Fig. 8.3 (a) we display the main invariant sets for the parameter region
bounded by the homoclinic to C and the secondary Hopf bifurcation. We have the
stable longitudinal orbit L (which lies approximately on |E| ~ A = 1,W = 0),
together with the unstable transversal orbit 7. This orbit has a large variation in
the population inversion W, and a bounded electric field phase (the phase does not
make a complete turn as L does). Crossing the secondary Hopf bifurcation 7" and
entering region 3', we find that 7' becomes stable and an unstable invariant torus is
created. Figure 8.3 (b) shows the invariant sets, where only the intersections of the
quasiperiodic orbit with the W = 0 plane are shown. A time series of the intensity
|E|? on this solution is shown in Fig. 8.4.

It is well known that in generic systems quasiperiodic motion may suffer reso-
nance phenomena. Local analysis [Arnold, 1983] around the Hopf bifurcation reveals
that whenever the ratio of the two competing frequencies is rational, the quasiperi-
odic motion may disappear and periodic orbits arise. These orbits may be classified
by an integer number of p turns following the primary or bifurcating orbit (7' in
this case), and another integer number ¢ which denotes the number of turns made
around the primary orbit, before closing on itself. Precisely on the (secondary) Hopf
bifurcation the nontrivial Floquet multipliers are on the unit circle at e*27/4. A
general result shows that in the weak resonances case ¢ > 4 these periodic orbits
are born in saddle node pairs, and in a two-parameter space they trace a 'tongue’
(known as Arnold tongue) with the tip lying on the (secondary) Hopf bifurcation.
In phase space the periodic orbits are phase locked solution on the torus. On the
other hand the case ¢ < 4 are known as strong resonances and do not correspond
to ’strict’” Arnold tongues. The details of each strong resonance in a general study
may be found in [Kuznetsov, 1997].
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Figure 8.3: Phase portrait in (E, = Re(E), E; = Im(E)) of periodic orbits in the neighbourhood
of the (secondary) Hopf bifurcation of T'. Solid lines: stable orbits, dot lines: unstable trajectories.
n=—1. (a) 8 =10.24, (b) 8 = 0.28. The torus created is an unstable one.
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Figure 8.4: Intensity (|E|?) versus time for the unstable transversal torus created in the Hopf
bifurcation of T periodic orbits. n = —1, 8 = 0.28.
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Figure 8.5: Projections in the plane (E,., E;) of the orbits that exist in each side of the period
doubling bifurcation. Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are
not represented. 5 = —0.8. (a) § = 0.2, (b) § = 0.23.
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Figure 8.6: Projections in the plane (E,, E;) of the orbits that exist in different regions of Fig.
. Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are not represented.
7 = —1.2. (a) Region B, 8 = 0.19, (b) Region F, § = 0.192, (c) Region G, 8 = 0.1939, (d) Region
H, 8 = 0.1942. The bifurcations between the different regions are: from B to F a saddle-node
bifurcation, from F to G a Hopf bifurcation of periodic orbits, and from G to H a homoclinic of
periodic orbits.
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In Fig. B.] we display the resonance structure for 1/¢,q = 1,..,12, where the
saddle-node of the resonant periodic orbits have been continued in parameter space.
Of course in general one expects a countable number of tongues, one for each rational
p/q. We will show below the location of other resonances with p # 1. We find that
the tongues corresponding to ¢ > 4 behave like standard Arnold tongues, while
qg =1,2,3,4 behave in a different way as expected. Resonance ¢ = 4 is well known
not to finish in a cusp singularity (compare with [Kirk, 1991]), while resonance
g = 3 does not even finish in a cusp bifurcation (see below for a detailed description
of this resonance). For lower 7, resonance ¢ = 2 arises whenever the nontrivial
Floquet multipliers of the primary periodic orbit (T') collide in a doubly degenerate
—1 eigenvalue. In this case, we find in parameter space the Hopf bifurcation is
interrupted by an “isola” of period doubling bifurcations (PD T in Fig. B.7), see
Fig. B.3. For even lower 5 we find that the Hopf bifurcation is finally interrupted
when the two nontrivial Floquet multipliers become degenerate at 4+1. In this case
a saddle-node bifurcation of periodic orbits occurs (SN 7' in Fig. B.7), see Fig. B.6,
and in fact a Takens—Bogdanov [Kuznetsov, 1997| singularity takes place. In Sec.
B.2.4 we discuss this with more detail.
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Figure 8.7: Resonance structure for the transversal and longitudinal Hopf bifurcations, together
with the homoclinic bifurcation to fixed point C. Period doubling bifurcations of longitudinal
orbits (PD L) and Hopf bifurcations of longitudinal orbits (HOPF L) are displayed.
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Figure 8.8: Secondary Hopf bifurcation and its resonances p/qg = {1/2,1/3,1/4, ..} from an esti-
mation of the Hopf-saddle-node normal form (8.2) using the laser with injected signal parameters
(8,7n). The dashed line is the saddle—node of fixed points while the vertical line is the secondary
Hopf bifurcation. Compare with Fig. E (A=1,68=0.5,x=0.3).

The organization of the tongues in parameter space shows that for increasing
g, the resonances appear to accumulate towards the Hopf-saddle-node singularity.
This may be easily understood by a simple analysis from the Hopf-saddle-node
normal form. Truncating the normal form (8.2), the eigenvalues of the Hopf periodic
orbit (corresponding to T') at the (degenerate) secondary Hopf bifurcation p = 0,v <
0 are A\;» = 44 w; = +iv/2av. Using the expression of @() and c in (8.3) we may
estimate the position of the resonances in parameter space solving

pC = qui (v), (8.8)

for each pair of p, g. It is clear that moving on the secondary Hopf and approaching
the Hopf-saddle-node singularity (v — 0), the typical secondary frequency w; goes
to zero, so a larger ¢ is required to satisfy the resonance condition. Figure B.§
shows the result of this estimation of the resonance condition using the approximate
reparametrization of the laser with injected signal (8,n) parameters in terms of
Hopf-saddlenode parameters (8.3):

. V1+60%x
=20+ p(l+62)

(1+60%) (v —2)x
(—20 + p(1 + 62)°

Bu,v)

ks v) =5 (8.9)

The resonance structure is very similar to the one identified by Kirk [Kirk, 1991],
but for type III Hopf-saddlenode. The main difference is that in this type the
invariant torus coexists with the two fixed point solutions, and the possible ho-
moclinic/heteroclinic between them. Her main result was that the Arnold tongues
accumulated for increasing winding number towards this homoclinic/heteroclinic
bifurcation present for this particular type. In our case we observe that the ac-
cumulation of the tongues saddle-nodes is onto the Andronov global bifurcation,
occurring at the saddle-node of fixed points.
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Figure 8.9: Partial numerical bifurcation set around the 1/3 resonance. The horizontal lines are
constant— parameter cuts shown in Fig. B.10.

8.2.3 Structure and truncation of Arnold tongues

A closer look at how the periodic orbits are organized inside each resonance
g > 2 is very interesting. To fix ideas we take resonance ¢ = 3 shown in Fig. B.3.
We have performed three constant-7 parameter cuts displayed in Fig. B.10, where
the period of the orbits as a function of 3 is shown. In each panel the unstable T
periodic orbit is seen to born at 8 = 0.05 (with diverging period) in a homoclinic
bifurcation to C, becoming stable at 8 = 0.30 in the (secondary) Hopf bifurcation.
Also for low 8 we observe the stable L orbit which suffers a number of saddle-node
and Hopf bifurcations as § increases, and finally its period diverge as it approaches
at § = 0.60 the saddle-node infinite-period (Andronov) bifurcation.

In Fig. (a), close to the Hopf bifurcation of 7', a saddle and unstable periodic
orbit are born in a saddle node bifurcation and collide at a higher 8 in a reverse
saddle—node bifurcation. Both bifurcations corresponds to the resonance boundaries
shown in Fig. B:9. For a slightly lower constant-7 cut [Fig. (b)], we find that
the periof of the unstable branch of the resonant periodic orbits “explotes” and two
homoclinic bifurcations to C originate. These global bifurcations correspond to the
isola of homoclinics to C observed in Fig. B.9. Finally, in a cut further away from
the ¢ = 3 resonances of the Hopf of T' [Fig. B-IJ (c)], the homoclinics to C' disappear
and with the aid of another saddle-node bifurcation, the resonant periodic orbits
“merge” with the L periodic orbit. Notice in Fig. (a) that resonance ¢ = 4
already merged to L. The above merging process of transversal resonances into the
longitudinal periodic solution is observed for all resonances 1/¢q, ¢ > 2.
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The ¢ = 2 resonance reveals a more complex structure due to the fact that it
interacts with the period doubling bifurcation of periodic orbits. In Fig. B.11, the
period of the orbits as a function of 8 for different values of 5 in this resonance is
shown.

One may wonder if there is a topological restriction for the merging process, as
the transversal orbit (and its associated resonances) are linked in phase space to
the longitudinal orbit L, as shown in Fig. B3 For this, in Fig. BI3 (a)-(c) we
illustrate a continuation of L, T and a resonant orbit in order to show how the link
of a transversal orbit remains as it merges to a longitudinal orbit.

In fact, close to the merging process, the longitudinal orbits L also bifurcates in
a secondary Hopf bifurcation. Figure (a) illustrates the unstable L longitudinal
orbit born at the Andronov bifurcation, bifurcating in a secondary Hopf bifurcation
and creating a new unstable longitudinal torus around L [Fig. (b)]. Notice also
that the electric field intensity time series Fig. B.I4 is also quite different of that of
Fig. B4.

The remarkable feature is the organization in parameter space of the above bi-
furcations. We have found that all 1/¢ transversal resonances, end up in a cusp
bifurcation with another saddlenode bifurcation. The latter bifurcation is the re-
sponsable for the merging described above, and on this branch a 1/¢' = 1/1 sec-
ondary Hopf bifurcation occurs on L. Continuation of the new Hopf bifurcation
reveals that it suffers a 1/2 resonance (with a period doubling isola), before it ends
at another 1/¢' = 1/1 resonance, corresponding to a transversal tongue 1/(¢ — 1).
This sequence of bifurcations is seen to occur for all the transversal 1/q resonances
found.

The complete structure of the phase diagram of Fig. B.7 has now been described
and reveals a high organization which repeats as we approach to the Hopf-saddle-
node point. Several bifurcations not present in the local description of Hopf-saddle—-
node take part of the dynamics: (a) we have the Arnold tongues which for increasing
g accumulate to the Andronov bifurcation, (b) the secondary longitudinal Hopf
bifurcation connecting subsequent transversal resonances, and (c) the homoclinic
bifurcations to C' (the off state). The latter global bifurcations have a winding
number in correspondence with the resonance to which it belongs. Thus in the limit
close to Hopf-saddle—node one expects an accumulation of homoclinic orbits to C' of
diverging winding number. Furthermore, most turns would follow the smaller loop
T, as we approach Hopf-saddle node. This argument points to the possibility that
another global connection between the Hopf-saddle node fixed point and the laser
off state C' exists. This has not been explored in detail and deserves further study

(see Sec. below).

8.2.4 Homoclinics to periodic orbits

As mentioned above, all strong resonances are known to posses more bifurcation
structures than those that we have pointed out. In particular, it is well known that
unlike what happens in weak resonances, the saddle-node bifurcations of the tongues
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Figure 8.10: Period versus 8 of periodic orbits inside the resonance ¢ = 3. (a) n = —0.645: the
two saddle—node bifurcations forms an “isola” for the resonant periodic orbits close to the HOPF
T bifurcation. (b) 7 = —0.670: the saddle branch of the isola “explodes” in period, creating two
homoclinic bifurcations to C. (c¢) n = —0.725: the resonant branch of ¢ = 3 periodic orbits merges
with the L branch. Merging of the ¢ = 4 resonance is also observed in (a). Solid line: stable orbit,
dotted line: unstable orbit, dashed line: saddle orbit, squares: saddle-node bifurcations of periodic
orbits, diamonds: Hopf bifurcations of periodic orbits.
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Figure 8.11: Period of the orbits versus § for different values of n: (a) n = —-1.2, (b) n = -1,
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dashed line: saddle orbit, squares: saddle—node bifurcations of periodic orbits, diamonds: hopf
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Figure 8.12: Phase portraits of resonance orbits, together with 7' and L. Each row shows a
continuation of a transversal 1/¢ resonance on the right column, ending in a longitudinal 1/¢’
orbit on the right column. For a clear visualization only the first row displays the whole resonance
orbit, while only its intersections with W = 0 are shown in the subsequent rows. Resonance 1/2
(n,B): (al) (-0.77,0.32), (bl) (—0.83,0.40), (c1) (—1,0.41). Resonance 1/3: (a2) (-0.66,0.32),
(b2) (—0.70,0.38), (¢2) (—0.75,0.44). Resonance 1/4: (a3) (—0.565,0.32), (b3) (—0.60,0.38), (c3)
(4,—-0.64,0.43). Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are not
represented.
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Figure 8.13: Projections in the plane (E,., E;) of the orbits that exist in each side of the Hopf
bifurcation of L periodic orbits. Solid lines: stable orbits, dot lines: unstable trajectories. n = —0.8.
(a) 8 =0.485, (b) 8 = 0.477. The torus created is unstable.
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Figure 8.14: Intensity versus time for the torus created at the Hopf bifurcation of L periodic
orbits. n = —0.8, § = 0.477.
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do not occur on the torus. Instead the invariant torus may grow as parameters
change and eventually collide with one of the resonant periodic orbits. This would
correspond to a homoclinic bifurcation to a periodic orbit, with the final destruction
of the torus.

One example may be found in the intersection point of all 1/1 resonance points
with the saddle—node bifurcation of periodic orbits. At this point one may ex-
pect a Takens—Bogdanov singularity [Kuznetsov, 1997] which is well known to have
such a global bifurcation. Figure B.13 shows an enlargement of the 1/1 resonance
of the transversal 7' and longitudinal L orbits, where the diamonds indicate the
approximate values where a homoclinic tangency was observed by direct numeric
computation.
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Figure 8.15: Blowup of 1/1 resonance of transversal T' and longitudinal L orbits. Diamonds
show the locus of homoclinic tangencies to T and L orbits.

A close loop around the Takens—Bogdanov point in Fig. B.15 describes the main
features, see Fig. for the orbits in the parameter space. Moving from region B
to F' two periodic orbits are created, one saddle and one unstable. From F' to G
the secondary Hopf bifurcation creates an unstable torus, and the unstable periodic
orbit becomes stable. In region G the radius of the torus grows as one approaches
region H, and finally collides in a homoclinic bifurcation to the saddle periodic
orbit. In Fig. B.If we illustrate a numeric computation of the stable and unstable
manifold of the periodic orbit 7', showing clearly a homoclinic bifurcation. Notice
that one expects homoclinic tangencies as one departs from the Takens-Bogdanov
point. Finally, moving from H to B, the remaining periodic orbits disappear in a
saddle-node bifurcation.
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An analogous scenario holds for the Takens—Bogdanov point on the longitudinal
orbits seen in Fig. B.15, denoted homoclinic to L. In general, we also find Takens—
Bogdanov bifurcation points in all 1/¢’ = 1/1 resonances of L described above.
We emphasize that this is only an approximate view since at the Takens-Bogdanov
point many other bifurcations originate (see [Hirschberg and Laing, 1995]).

A different homoclinic bifurcation to a periodic orbit is the one encountered
inside the 1/3 resonance, see Fig. BI7. This is a well established result from the
normal form analysis of this bifurcation [Arnold, 1983; Kuznetsov, 1997]. The torus
is found between the secondary Hopf and the homoclinic tangency. In this case,
the torus grows and collides to a saddle period ¢ = 3 orbit, which exists in an
neighbourhood of the T resonance point.
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Figure 8.16: Phase portraits of the Poincaré section W = 0 for the homoclinic bifurcation of the
1/1 transversal resonance, in the neighbourhood of the homoclinic tangency. The saddle periodic

orbit is at the square, and next we computed the stable and unstable manifolds. (n = —1.20)

Figure 8.17: Homoclinic bifurcation in 1/3 resonance. Diamonds account for the homoclinic to
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8.2.5 Full resonance structure

In general one expects a countable number of resonances for the breakup of
quasiperiodic motion, one for each rational p/q. These may be organized following
the Farey sequence [Aronson et al., 1982], where between resonances p/q and p'/¢’
one always finds resonance (p + p')/(¢ + ¢'). A full classification of all these res-
onances is quite complicated so we show the locus of two resonances with p > 1.
In Fig. we display two resonances in between the strong 1/1 and 1/2 of the
transversal torus. They show basically the same structure, including the isola of
homoclinic bifurcations to C' and homoclinic bifurcations to the T. One of them,
the transversal 5/8 resonance, becomes a weak resonance in the neighbourhood of
the L torus. The other, a transversal 2/3 resonance becomes a strong 1/2 resonance
in the neighbourhood of the L torus. Notice also the homoclinic bifurcations to L
and T periodic orbits found in this resonance.
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Figure 8.18: Higher order resonance structure between 1/2 and 1/3 transversal resonance.
Transversal resonance 2/3 becomes 1/2 resonant to orbit L, while transversal 5/8 resonance be-
comes a weak resonance to L.
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8.3 Andronov bifurcation

We now describe with some more detail the Andronov bifurcation found in
the laser with injected signal. In Fig. B.I9 we illustrate the phase portraits of
the unfolding of this bifurcation in a one parameter cut. They correspond to the
Andronov-Leontovichf] [Kuznetsov, 1997] bifurcation: a periodic orbit in the region
of no fixed point collides in a homoclinic orbit with the saddle-node (SN) fixed
point. At the bifurcation point, there exists an orbit leaving the central manifold,
and returning after some finite time through the other central manifold of the saddle-
node fixed point.

@ N (b) ol AN

Figure 8.19: One—parameter unfolding of Andronov bifurcation. Note that the stable manifold
of the fixed points in (b) and (c) are two—dimensional in a laser with injected signal.

This bifurcation is quite representative in a laser with injected signal and has
been confirmed in several parameters regimes. The standard Adlers equation [van
Tartwijk and Lenstra, 1995] is a one-dimensional example displaying this bifurca-
tion. Also the two—dimensional averaged model of [Solari and Oppo, 1994], displays
this bifurcation at the SN bifurcation of fixed points. This in fact motivated previous
studies in global bifurcations, for in generic three-dimensional systems one expects
that the global connection connecting the saddlenode to itself should break.

Results for type III in [Zimmermann et al., 1997] show that the Andronov global
bifurcation exists for sufficiently small (3, 7), but become degenerate at a point close
to the Hopf-saddle-node singularity, where a new codimension-2 bifurcation known
as Shilnikov—saddle—node, occurs. At the bifurcation, the homoclinic orbit leaves
through the central manifold the neighbourhood of the saddle-node fixed point,
but now returns through the stable manifold of the degenerate fixed point. Results
for type I (1 < 6 < +/3) show that the Andronov bifurcation exists for the whole
interval between (3,7) = (0,0) up to the Hopf-saddle—node point. However on the
other side of the codimension-2 point, homoclinic tangencies to T' occur near the
SN bifurcation of fixed points [Zimmermann et al., 2001].

For type II we display in Fig. B.21 a continuation in parameter space of the
Andronov bifurcation, approximated by continuation of a very high period L orbit.
The locus of this global bifurcation starts at (8,7) = (0,0) and extends past the
Hopf-saddle-node point. The stability of the periodic orbit depends on the stable

3In fact this bifurcation was studied by Andronov in 2-dimensions, while the n—dimensional
case was solved by [Sil’nikov, 1966]. However we keep the term Andronov bifurcation to the generic
case.
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or unstable direction of the degenerate fixed point at the SN bifurcation. Therefore
for |n| small the stability of L is stable (region 3 in Fig. 8.1), while for values on the
other side of the Hopf-saddle-node point, L becomes unstable (region 3’ in Fig. 8.1).
In phase space, orbits born at this global bifurcation display a number of transversal
oscillation (“bumps”) in the region of phase space where the saddle-node fixed point
(SN) disappeared. The number of these oscillations diverge as we approach from
below the Hopf-saddle-node bifurcation point, for in the neighbourhood of this
singular point there are two directions with extremely slow dynamics. Moving away
from the saddle—node bifurcation, the transversal oscillations are observed to grow in
phase space. We have shown in Sec. how this periodic orbit is found in general
to suffer saddle-node bifurcations corresponding to the resonance boundaries of the
Arnold tongues, or a secondary Hopf bifurcation. This clarifies the integral role of
the Andronov bifurcation in the complete bifurcation structure close to the Hopf-
saddle-node bifurcation point.

A new global bifurcation was found involving the Andronov bifurcation. For suf-
ficiently negative 5, the homoclinic orbit makes a global excursion which approaches
the C fixed point. In parameter space, we find that the Andronov bifurcation collides
at a point with the branch of homoclinic bifurcations to C. At the collision point a
heteroclinic cycle between the saddle-node (SN) and C fixed point was found. That
is, there is a heteroclinic connection leaving through the central manifold of SN
and enters C' through the stable one-dimensional manifold, and another connection
which leaves through the two-dimensional unstable manifold of ', and enters back
to SN through its two-dimensional stable(-center) manifold (see Fig. B.20). This
cycle is reminiscent to the T—point bifurcations found for two non—degenerate fixed
points [Glendinning and Sparrow, 1986; Bykov, 1993; Zimmermann and Natiello,
1998]. So far, this degenerate heteroclinic system has not been studied in detail.

4 T T I T I T

Figure 8.20: T-point bifurcation: phase portrait of heteroclinic cycle between fixed point C
and saddle-node fixed point (SN) at (8,n7) = (—1.117,0.91595). The stable manifold W*(C) is
one—dimensional while the unstable manifold W*(C) is two—dimensional. W¢ (SN) denotes the
central manifold of the SN fixed point.
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Figure 8.21: Locus of homoclinic bifurcation to C fixed point, T—point, and Andronov bifurcation
at the saddle—node of fixed points.

8.4 Discussion

In this work a study of the partial bifurcation set around the type II regime of
the Hopf-saddle node singularity in a laser with an injected signal has been per-
formed in order to contribute to the study of this system. It has been performed a
careful analysis for one of the regimes not considered before in so detail. Secondary
Hopf bifurcations to a transversal and longitudinal (to the W = 0 plane) periodic
orbits dominate the periodic motion in a region of parameter space where non—
locking solutions exists. The former periodic orbit is well described by the unfolding
of the Hopf-saddle—node bifurcation, and corresponds to undamped relaxation os-
cillations, while the latter arises as a saddle-node infinite—period (Andronov) global
bifurcation. Our results show how the Arnold tongues arising from the transversal
torus are “truncated” in parameter space by resonances of the longitudinal torus.
Thus in phase space the periodic orbits are observed to deform continuously from
transversal into longitudinal orbits. A partial bifurcation set displaying our main
result is shown in Fig. 8.22.

In chapter 6, it was described the bifurcation set for a class A laser with injected
signal. The main difference between class A and class B lasers from the dynamical
point of view is the number of variables that one works with. For class A lasers
two variables suffice and the full bifurcation set can be described. For class B
lasers, a three-dimensional system, a more complex variety of phenomena has been
described. However, it has to be noticed that part of the bifurcation structure of
class B lasers is already present in class A lasers. Hopf-Saddlenode and Takens—
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Figure 8.22: Partial numerical bifurcation set for type IT Hopf-saddle—node in laser with injected
signal.

Bogdanov singularities and Andronov global bifurcation were also present in the
class A case.

Our work also extends [Solari and Oppo, 1994] results on the averaged laser
with injected signal equations. The averaged system displays: (a) an Andronov
bifurcation creating a longitudinal orbit, (b) a secondary longitudinal Hopf bifurca-
tion on this orbit, which originates from the Hopf-saddle node point in parameter
space, and (c) the characteristic transversal secondary Hopf bifurcation of the type IT
Hopf-saddle-node singularity. However, Solari and Oppo observed as well singular
behaviour (orbits going to infinity) when continuing the resulting tori in parame-
ter space. The reason for this is the topological restriction to the deformation of
transversal into longitudinal tori in a two-dimensional phase space.

In the three-dimensional setting of laser with injected signal equations we have
found instead a family of homoclinic orbits to the off state fixed point, arranged in
isolas in parameter space inside each Arnold tongue of the corresponding transversal
torus. The off state fixed point appears to be at infinity in the averaged equations
(due to the change of coordinates), and hence we can conjecture that the singular
behaviour observed in the average model results from “bifurcations with infinity”
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[Sparrow and Swinnerton-Dyer, 1995], as we move between both tori. A more de-
tailed study of the averaged equations would be desirable to test this conjecture.

Our present work is also related to a recent work on solid-state lasers with optical
injection [Yeung and Strogatz, 1998|, where a complicated bifurcation diagram close
to the saddle node bifurcation was found. The rate equations studied may be shown
to be rescaled to laser with injected signal equations (8.1) with # = 0 (provided that
g # 0). This particular detuning was shown by Solari and Oppo to be somewhat
more delicate, but type II Hopf-saddle node was preserved. Yeung and Strogatz
studied the attractors in a parameter cut with constant detuning 7, and increasing 3
approaching the saddle node bifurcation. Their diagrams showed periodic windows,
interspeded by orbits with a large intensity, reminiscent of the homoclinic orbit to
the off state found in our work. The most remarkable difference, is that the self-
similar structure of periodic windows is reported to accumulate at the saddle node
of fixed points. Instead our work shows that (at least for # = 0.5 > 0), a finite
number of resonances are crossed by constant-n cuts in the bifurcation diagram
while approaching the saddlenode bifurcation. Nevertheless, it appears that the
number of crossed resonances diverges as 7 approaches the codimension-2 value.
Further work should confirm how the secondary Hopf bifurcation we found moves
in parameter space as 8 — 0.

Despite the complicated bifurcation set presented, we emphasize that most of
this structure remains out of the hand of standard experimental setups due to noise
terms that appear in experiments. Nevertheless we would like to point out that
a partial confirmation of this bifurcation set should be possible, by following the
stable cw solution in parameter space, and looking for stable undamped relaxation
oscillations. The region of existence of these two stable invariant sets is bounded
by the secondary Hopf bifurcation, and by locating the locking region, this may
validate the basic features of the type IT Hopf-saddle—node scenario.

Finally, we would like to emphasize the possible implications of the homoclinic
bifurcations to the laser off state found above. The sequence of homoclinics bi-
furcations for each of the infinite number of resonances accumulating towards the
Hopf-saddle-node singularity is a remarkable result which needs further detailed
study. This phenomenon suggests that the Hopf-saddle-node singularity may have,
on top of the saddle-node infinite-period global bifurcation, another pair of hetero-
clinic orbits to the Hopf-saddle-node fixed point, forming a cycle. So far, we are no
longer surprised by the bizarre global bifurcations found in this laser, which provide
stimulating motivation for further research.






Capitol 9

Resonancies principals en lasers de
semiconductor modulats

En aquest capitol es calculen els dominis d’existencia de les resonancies princi-
pals en lasers de semiconductor directament modulats, veure Sec. 1.3. Els resul-
tats que s’obtenen numericament al integrar directament les equacions es comparen
amb els resultats d’aplicar la teoria quasi—conservativa. En el model es consideren
explicitament els termes de saturacié de guany i d’emissié espontania.

Les equacions per al laser de semiconductor (P1)) i (B:2) es tracten amb termes
de modulacié. Primerament es consideren modulacions en el terme de bombeig de
tipus sinusoidal (P-3) amb amplitud relativa J,, i freqiiéncia wy,. La dinamica de les
equacions amb aquesta dimensié addicional esdevé molt més complexa que en el cas
de bombeig constant (capitol 7). Per caracteritzar la resposta del sistema es mira el
valor maxim de la intensitat optica I, (Ij;qz), quan es modula el laser. Per a valors
petits de Jp, 1 wy,, €l sistema es comporta de manera similar a un oscil-lador lineal
amb termes d’esmorteiment: oscil-la periodicament amb la freqiiéncia d’entrada
W, 1 1a resposta I,,,, t€ un maxim a la freqiiencia de les oscil-lacions de relaxacié
wg. Per a valors grans d’amplitud, apareixen efectes no lineals importants. El
maxim de I,,,; ja es no troba a wy siné que desplacat cap a una freqiiéncia menor,
Fig. P.J. A més d’aquesta resposta amb la mateixa freqiiencia de modulacié 1T,
també poden apareixer altres respostes amb altres freqiiencies. Aix0 déna lloc a
un comportament molt complex amb regions amb multiestabilitat. Les possibles
respostes es poden classificar com n/l, on n i [ s6n nombres sensers sense factors
comuns, de manera que la resposta té una freqiiéncia lw,,/n. Les respostes n/1
també s’anomenen n1" ates que el periode del senyal resultant és n vegades el periode
del senyal de modulacié. L’existéncia d’aquestes respostes es veu a la Fig. P.1], on
s’ha dibuixat I,,,, de les respostes estables en funcié de w,,. Anant augmentant el
valor de J,,,, es veu com van apareixen les distintes respostes nT. A la figura p.9
apareixen les evolucions temporals per a distints valors de w,, per a les respostes
1T i1 2T. A més d’aquesta estructura basica, cadascuna de les respostes poden,
aixi mateix sofrir bifurcacions de periode doble, Fig. P.I (d), i en qualque cas
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donar lloc a comportament caotic. Cada resposta n/l té un maxim, en wy,, per a
un valor fixat de J,,: aquest maxim és la resondncia n/l. En aquest treball ens
centram en les resonancies nT’, que s’anomenen resonancies principals o resonancies
primeres sella-node ja que coincideixen amb les bifurcacions sella-node on I'orbita
estable esdevé inestable (Fig. P.1]). Les corbes al pla (wp,/wo, Jim) que uneixen els
punts de les resonancies nT s’anomenen corbes “esquelet” per a la resonancia nT.
L’objectiu d’aquest treball és obtenir les corbes esquelet per a les resonancies nT,
Fig. P.3. Aquesta descripcié és d’interes per a treballs experimentals perqueé permet
determinar la freqiiencia en la qual es té una resposta maxima per a una amplitud
d’injecci6 fixada. Els resultats obtinguts han ajustat amb els resultats indicats en
treballs experimentals [Liu and Ngai, 1993]. El terme de saturacié de guany no
canvia el comportament dinamic ni la localitzacié de les corbes esquelet de ma-
nera qualitativa, Fig. P.4. Per a un valor fixat de wy,, cal un valor més gran de
Jm per obtenir la resposta Optima, compatible amb que aquest terme augmenta la
dissipacié. El terme d’emissié espontania canvia drasticament el comportament de
la dinamica del sistema per a valors de wy, petits, Figs. p.5iP.6. Aquest efecte pot
ser causa d’un fons de fotons que evita que la intensitat del camp eléctric disminueixi
per davall d’un cert valor, donant lloc a una resposta independent de la freqiiencia.

Els resultats obtinguts numericament es poden explicar mitjancant la teoria
quasi—conservativa. Aquesta teoria, que utilitza la forma potencial per al sistema,
obtinguda en el capitol 7, assumeix que les orbites periodiques es poden aproximar,
a prop de la resonancia, per orbites conservatives amb un valor del potencial. Els
resultats de la figura 0.7 indiquen que la teoria reprodueix els resultats numerics en
el cas de tenir un terme d’emissié espontania nul. En presencia de termes d’emissié
espontania, la prediccié teorica reprodueix qualitativament els resultats numerics,
Figs. P.81 9.9. No obstant, la teoria prediu un augment molt més acusat per a
I’amplitud optima de modulacié que 'obtinguda numericament, a causa de la forma
del periode de les solucions conservatives en funcié de ’energia per a valors grans
de I'energia.

El cas de modulacié al terme de perdues també s’estudia. Els resultats de la
teoria quasi—conservativa ajusten bastant bé amb els resultats numerics, Figs. 9.10,
9.1119.12.

Finalment, s’obté en una relacié entre I’efecte produit per la modulacié al bombeig
ila modulacié al terme de pérdues, (9.29). La validesa d’aquesta equivaléncia apareix
en les figures 9.1319.14. Aquesta relacié indica que la modulacié al terme de pérdues
és més eficient a I’hora de tenir bifurcacions i comportament caotic que la modulacié
al bombeig (cal un valor de 'amplitud de modulacid, en el cas de les pérdues, molt
menor que en el cas de la modulacié al bombeig, per obtenir els mateixos efectes).



Chapter 9

Main resonances in directly
modulated semiconductor lasers

In this chapter, we undertake numerical and analytical calculations in the frame-
work of the single mode rate equation model (chapter 4) including a modulation term
for the injection current with the aim of determining the parameter domains of the
basic instabilities involved. The work presented in this chapter completes the above
series of studies of directly modulated semiconductor lasers, as it was reviewed in
section 1.3.

Domains of existence of the main resonances in directly modulated semiconductor
lasers are obtained by application of the quasi—conservative theory. The predictions
are compared with numerical results coming from a direct integration of the model
equations and with experimental observations reported by other groups. In both
cases we find a good qualitative agreement. We consider a model that contains
explicitly the gain saturation and spontaneous emission terms and we focus mainly
on the effect that these terms have in the regime of large amplitude of modulation.

The chapter is organized as follows. In section P.I], we describe qualitatively the
response obtained for a diode laser, as described by a single-mode rate equation
model, in the presence of pump modulation. In Sec. P.9, the quasi—conservative
theory is used to obtain relations that allow the calculation of the primary saddle-
node bifurcations, both for the case of modulation in the pump or in the losses. In
Sec. P.3, the theoretical estimations are compared with numerical results coming
from a direct integration of the model equations. The effects of gain saturation and
spontaneous emission terms in these bifurcations are explored in detail. In Sec. 9.4,
we compare our results to previous experimental works reported by other groups.
Finally, in Sec. 9.5, we discuss the main obtained results.

9.1 Dynamical behaviour
The dynamics of a single mode semiconductor laser was discussed in detail in

chapter 7. As the evolution equations for I and N do not depend on the phase ¢,
we can concentrate only in the evolution of the former variables. The equations that
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give the corresponding dynamics are equations (7.1) and (7.3):
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Typical values of the parameters involved in the equations were presented in Table
7.1. The dynamics of the equations for constant J > Jy, is such that both I and N
relax to their steady states by performing damped oscillations. The frequency wy of
these oscillations close to the steady state can be calculated linearizing the equations
of motion (7.35), for the simplest case s = ¢ = 0, wy =~ {/gn(J — Ji)/e = 25ns™!
for parameter values of Table 7.1 and J = 1.23.J, .

The purpose of this work is to study the dynamics of Egs. (P-1]) and (P.2) under
modulation. In particular, we will consider modulations mainly in the pump current
J and also in the losses 7, which would be an option in distributed Bragg reflection
or multisection lasers. In order to be more specific, we describe now the qualitative
features of the behaviour when the pump is modulated at a given frequency wy,.
More explicitly, we consider

9.2)

J(t) = Jy[1 + Jom cos(wmd)], (9.3)

where J, is a fixed value of the current (bias current), such that J, > Jy. In our
simulations we choose J, = 1.23.J; and values for the relative amplitude of the
modulation J, < 1 (to satisfy the physical constraint that the total current has
to be positive). When J becomes time dependent, the dynamics are more complex
than in the case of constant J, and a very rich dynamical structure can appear
depending on the values of J,, and wy,.

For small values of .J,, and for w,, smaller than —3dB modulation bandwidth
frequency, the system behaves almost as a forced linear oscillator with damping
terms; the optical intensity I oscillates periodically with the same frequency wy,
of the input current. To characterize the response of the system we look at the
maximum value of I (I,,,,) when we modulate the laser. It is well known that, under
small signal modulation, the optical response I,,,,, has a maximum at the relaxation
oscillation frequency wy [dotted line of Fig. P.] (a)]. This is an example of the well
known phenomenon of linear resonance [Agrawal and Dutta, 1986; Jackson, 1989].

In contrast to the small signal response just described, large amplitude modu-
lation, i.e. large values of J,,, give rise to strong nonlinear behaviours, since the
nonlinear terms become relevant in the dynamics of the system. The maximum re-
sponse (maximum value of I,,,,) is not located anymore at the relaxation oscillation
frequency wy but it is shifted to a smaller frequency (soft spring oscillator)f]. This
fact can be seen in Fig. P.1 where the response of the system, for different values of
Jm, 18 shown. In this case we have taken s = 0 and ¢ = 0 in Egs. (P-I)) and (P-3). In

1The nonlinear terms of hard spring oscillators make the maximum response to be shifted to a
bigger frequency than wy.
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this nonlinear regime, in addition to a response at the same frequency of modulation
wm, other frequencies can be excited for sufficiently high modulation amplitudes J,,.
This fact gives rise to a more complex diagram for the response of the system, lead-
ing even to the phenomenon of multistability (several stable responses for the same
value of the input parameters). The different possible responses of the system can
be classified as n/l where n and [ are integer numbers with no common factors, such
that the response frequency is lwy,/n [Jackson, 1989).

In this work, we will be mainly interested in primary resonances of the type
n/1. Our interest in these responses is based on the fact that they usually yield
the maximum output power. These n/1 resonances are also called nT—periodic
responses because the period of the resulting signal is n times larger that 7,,, where
Tm = 27 /wy, is the period of the external modulation. Different types of stable n/I
responses (amplitude I,,,, versus the modulation frequency w,,) are shown in Fig.
D.] for different values of the modulation amplitude J,,; while in Fig. P.2, the time
evolution for the intensity is plotted for different values of the frequency w,, and the
common value J,,, = 0.2. The qualitative picture described is now detailed:

- For small modulation amplitude, see Fig. P.J (a) (J,, = 0.01, dotted line),
the linear approximation applies and there are only single main resonances whose
maximum lies approximately at the relaxation frequency.

- For larger modulation amplitudes, Fig. (b), the stable 17" resonances desta-
bilize themselves via a saddle—node type instability. This allows a hysteresis cycle
with discontinuous transitions between the different 17 responses. This saddle-node
instability is interesting since we have observed that the maximum response appears
just before the solution becomes unstable. (We will come back to this point later).
When multistability is possible, and for those moderate levels of the amplitude of
the modulation, the larger output intensity I,,,, always corresponds to the 17" re-
sponse. Other n/l responses, with [ # 1 can be generated for small frequencies but
they have a much smaller output power and they will not be considered in this work.

- After a further increase of J,, (Fig. P-J] (c), corresponding to J,, = 0.2) the 2T
response appears continuously, when decreasing wy, (starting, in our example, from
Wy /we = 3.0), as a period doubling bifurcation of the 17 response (see Fig. P.9 for
temporal trajectories). When w,, is decreased even further, there appears a range
of values of w,, for which the 17T and 27T responses are both stable, hence allowing a
hysteresis cycle in this bistable region as well as a discontinuous transition between
the 17T and the 27 responses. The 17 response, solid line, gives a smaller output
that the 27 response for the whole frequency range of existence of the 27T response,
namely for wy,/wy € [0.968,2.118]. The 1T response does not exist (is unstable) in
the frequency interval [1.761,2.118]. For even smaller w,, the 2T response finally
disappears through a saddle-node instability. The 27 response around wy, /wy = 2.0
is the first subharmonic resonance (parametric resonance [Jackson, 1989)).

- For larger values of J,, [Fig. P-J(d)] other nT responses with n > 2 appear. Each
of these nT responses exist for a given range of values of w,, and are unconnected
to the previous 17 and 27 responses. At both ends of its frequency range, they
disappear through saddle-node bifurcations.
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Figure 9.1: Responses, I;4z, versus the normalized external frequency wy, /wq for different values
of the modulation pump amplitude in the case J, = 1.23Jy,, s = 0, € = 0. Other parameters as
indicated in the text. (a) dotted line: J,,, = 0.01, solid line: J,,, = 0.02, (b) J,,, = 0.1, (¢) J,, = 0.2
and d) J,, = 0.3. The 2* and 3* responses correspond to further period doubling bifurcations.
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Figure 9.2: Intensity versus time for different values of wy, /wy for J,, = 0.2 corresponding to
some points of the curve of Fig. @ (©). (a) wmfwo = 0.43, (b) wy/woe = 0.97, (¢) wy,/wo = 2.08,
(d) wifwo = 2.11, (€) wp/wo = 2.12. Same parameters as in Fig. . T = 27wy,
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Besides this general framework, all the existing nT responses can, at a given value
of the modulation amplitude, suffer different types of period doubling bifurcation,
period four, etc, or even chaos, following the Feigenbaum route to chaos [Jackson,
1989] or the route period doubling followed by period four, eight, period tripling,
etc., as in references [Lamela et al., 1998b; Lamela et al., 1998a]. These are indicated
with dashed lines in the corresponding diagram [Fig. B.1 (d)] and are denoted as 2*
responses, being k£ an indication of the number of period doubling bifurcation that
the orbit has suffered. The same meaning applies for the 3* responses.

In Fig. we plot, for a fixed value of the modulation amplitude [J,, = 0.2,
corresponding to the diagram in Fig. P.1 (c)], time evolutions for the intensity I(t)
for several values of the frequency wy,/wy. Case (a) corresponds to wy,/wy = 0.43
where, according to Fig. B.1 (c), the 1T type solution with maximum intensity
appears. Case (b) corresponds to a frequency wy,/wy = 0.97 where the 27" solution
begins to exist. We note that at this frequency, the 27 signal has a maximum
spectral component in the first harmonic, allowing for a clean time trace of the
optical intensity, with no additional peaks, as shown in Fig. (b). As the frequency
increases, Figs. P.2 (c) and (d), the 2T response deteriorates in the sense that
the maximum intensity decreases and extra peaks develop in the time series. Finally,
for wy,/we = 2.12 the 1T response is recovered. However, and in accordance with
Fig. P.J] (c), the maximum intensity is now much smaller that the one of the optimal
1T response shown in Fig. (a).

For fixed modulation amplitude J,,, each n/l response has its maximum at a
given value of the modulation frequency. This maximum is called the n/l resonance.
In this work, we are mainly interested in the 7n/1 resonances (or nT resonances)
because they usually yield the maximum output power. In the literature, they
are also known as main resonances. These resonances are indicated by solid dot
symbols in Fig. P.1. The curves in the (wy,/wq, J;,) plane joining the points at
which nT resonances occur are called the skeleton curves for the nT' resonances.
Our main effort will be directed to finding the skeleton lines for each main resonance
of the nT type. This description can be of interest to the experimentalists since it
allows determination of the resonance frequency at which the maximum response is
obtained for a given external amplitude of the injection current.

With this aim in mind, we have performed intensive numerical simulations to ob-
tain the maximum responses of the system for different J,, and w,,/wy. In principle,
for a given J,,, one should find the value of w,,/wy that maximizes the response at
each nT resonance. However, this is a very lengthy procedure that can be avoided by
finding, instead, the value of wy,/wy where a saddle-node bifurcation is born, since,
as we have already said, we have observed that the maximum response appears just
before the solution becomes unstable. Due to this fact the main resonances are also
called primary saddle-node resonances. This allows us to identify the position of the
maximum response in the (wy,/wy, J,) plane with the position of the bifurcation.
The procedure of finding such bifurcation is easier to implement using nonlinear
dynamical tools than to perform whole simulations of the rate equations [Doedel
et al., 1997].
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In Fig. P.3 the primary saddle-node bifurcation are shown (thick solid lines) in
the case s = 0 and € = 0 for the 1T, 2T and 3T resonances. We show in some cases
that the location of the saddle node bifurcation coincides, with great accuracy, with
that of the maximum I,,,,,. The latter have been obtained by numerical simulations
of the laser equations and are indicated by symbols in the figure. Notice, however,
that the line of the saddle-node bifurcation do not reach the linear limit w,,/wy =1
corresponding to very low amplitude of the modulation, because for small values of
modulation amplitude there is no saddle node bifurcation. We also plot in the same
figure some additional lines that correspond to domains of existence of the above
mentioned nT resonances. Within these domains, besides the “pure” nT solutions,
there exist a rich variety of bifurcated solutions (period doubling, period 4, and so
on, indicating the route to chaos described previously). The 17 solution only exists
below the thin solid line of Fig. P.3. The 2T solution is limited to the region below
the thick solid line of 27" and the dashed line and it only exists within this limit.
Finally, the 3T solution is limited to the region below the thick solid line of 37" and
the dot-dashed line of the figure. In what follows, we will restrict ourselves to the
thick lines denoting the maximum of each resonance.
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Figure 9.3: Maxima of main resonances in the plane (wy, /wq, Jm), solid thick lines. Thin solid
line: Period doubling bifurcation of the 17" resonance to 2' (coincides with the limit of existence
of resonance 17T'), dashed line: lowest limit for the existence of the 2T resonance, dot—dashed line:
lowest limit for the existence of the 37" resonance.
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We now describe the effect of the gain saturation term. We plot in Fig. P4,
the changes on the line of main resonances (given in Fig. for s = ¢ = 0)
in the case s # 0 (but still & = 0). It can be seen clearly that the saturation
term does not change qualitatively, neither the location of the lines nor the overall
dynamical behaviour of the system. The only difference is that, for a fixed frequency,
a larger value of J,, is needed to obtain the optimal periodic response. This is clearly
compatible with the fact that the main effect of the saturation term is to increase
the dissipation.
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Figure 9.4: Maxima of main resonances in the plane (wy,/wo, Jm). Solid line: s =0, dotted line:
5 =6 x 1079, dashed line: s = 3 x 1078, & = 0. Other parameters as in Fig. P.1.
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On the contrary, the effect of the spontaneous emission term strongly changes
the response of the system. In Fig. .5, the lines of I,,4; in the (wy,/wo, Jm) plane
are shown for the case € # 0 and s = 0. One can observe the dramatic change in
the behaviour of the response of the system for small frequencies with respect to
that observed for € = 0 (solid line). When increasing the modulation amplitude we
find a steep response that indicates that the frequency w,, for the optimal response
Inaq is less sensitive to the amplitude of the external modulation, .J,,. We speculate
that this effect might be due to that for € # 0 there is a background of photons
preventing the intensity decreasing below a certain value, so yielding a frequency—
independent response. For the case s # 0 and £ # 0 we observe combined the same
qualitative results as those shown in Fig. P.4 and Fig. P.5. It is important to point
out that values of s and ¢ different from zero yield chaos suppression, a fact that
has been already pointed out both numerically and experimentally [Tang and Wang,
1987]. Naively, one could expect that the gain saturation parameter plays a more
important part in the dynamics. However, we observe that in some situations the
main resonances can be affected more strongly by the spontaneous emission factor
than by the gain saturation factor.
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Figure 9.5: Maxima of main resonances in the plane (wy,/wo, Jm). Solid line: &€ = 0, dotted line:
e=62x10""ps, e =23 x 10710ps 1,
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Figure 9.6: Responses, 4z, versus the normalized external frequency wy, /wq for different values
of the modulation amplitude. J, = 1.23Js,. s = 0, € = 6.2 x 10~ ps~!. Other parameters as
indicated in the text. (a) J,, = 0.033, (b) J,, = 0.2 and (c¢) J,, = 0.3.

In the absence of spontaneous emission, € = 0, the tendency to decrease the main
resonance frequency with increasing amplitude of modulation can be explained using
a Toda-like potential function (7.14). Physically, it means that a maximum number
of photons in the cavity is available for modulation and this number is not limited
from below. However, in the presence of spontaneous emission terms, this is not true
anymore and the Toda potential as a function of the intensity changes, becoming
more symmetric and steeper for very low intensities. A spontaneous emission back-
ground is created and during the modulation period the number of photons can not
be smaller than this value and, consequently, the response is maintained basically
unchanged at any smaller frequency. As soon as the intensity of the laser reaches
this background level, the dynamics changes and at low frequencies a non-resonant
regime of gain switching (with no dependence on frequency in some modulation
frequency interval observed) dominates. In Fig. 0.6, we plot the maxima intensity
responses I,,,, against frequency w,, for different values of J,,, in the case £ # 0.
Compared with Fig. P.I], we notice that at small modulation amplitude [J,,, = 0.033,
Fig. P.g (a)] the response for small value of wy, does not change qualitatively and
very little quantitative with respect to that of Fig. P.I (a). However, for large
values of J,,, the effect of £ becomes more evident. At J,, = 0.2 [Fig. p.g (b)] the
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maximum response for the resonance 17" is now at a larger frequency than in Fig.
B.1 (c) and, moreover, the corresponding value of I, is much smaller. Increasing
Jy, even further [J,, = 0.3 in Fig. P.g (c)], we find that the maximum response for
the resonance 17T (thick line) is much smaller than in the case of Fig. P.1 (d), and
corresponds to a much larger frequency. It has to be mentioned that in this case, the
value of w,,/wy that maximizes the 17" response presents larger differences with the
location of the saddle-node than in previous cases [Notice the difference between the
maximum and the end of the solid line in Fig. P.g (c)]. In Fig. P.§ (c) we also plot
other responses for smallest values of w,,. These responses, while having a larger
output than the 17T responses, can either have a period larger than 17T or, while still
being 17T, have extra peaks in the time series. They include responses of period 17,
2T, ..., being an example of the structure also reported in [Tang and Wang, 1986].
We also point out that there exists an almost flat response for some range of values
of Wy, /wp.

9.2 (Quasi—conservative theory

Equations (7.1, 7.3) [or equivalently Egs. (.1, P.Z)] were reduced to a set of
dimensionless equations in chapter 7. These evolution equations can be cast in the
form of a potential function (7.14) with the relating matrix D (7.17) to the equations
of motion (2.26). The decrease of the Lyapunov potential is due to the function
Doy (y, z) (7.19) appearing in the evolution equation. Therefore, in the dynamical
equations we can identify the conservative terms (those proportional to Dj,) and
the dissipative terms (those proportional to Dyy). If the dissipative terms were not
present, i.e. if Dy = 0, the potential would take a constant value £ = V (y, z) and
we would have a conservative system with periodic orbits. The frequency w = 27 /T
(T is the corresponding period) of such an orbit of the conservative system is a
function of the potential, i.e. w = w(F), that can be obtained, using standard
methods of Mechanics (7.26). Notice that the periodic orbits, that we write as
[yo(T — 70, E), 20(T — 70, E)], depend on an initial time 7y and on the value of the
Lyapunov potential E.

9.2.1 Pump Modulation

We now include the modulation terms. We first consider the case of modulation
in the pump as given in (0.3). In terms of the rescaled variables, y and z [related to
the initial variables by (7.5)], the equations become

dy oV
2 = Dyp— 4
dr 29,7 (9-4)
dz 151% 151%
O e DL — Do+ Ay cos(@mT), .
= 12 3y 25 + cos(WpmT) (9.5)
with 907 J 0
A, = M, B = — Wi (9.6)

ey’ g
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We look for nT responses, i.e. periodic solutions [y(™ (1), 2(™(7)] of equations (P.4)
and (9.3) with a frequency w,, = @, /n, or, equivalently, with a period T,, = nT,, =
n27 /@y, In this case, the potential function V(y,z) is no longer a constant of

motion. However, for a periodic orbit, it is still true that the integral of
dv = l—y + —z|dr (9.7)
Y z

over a period is equal to zero. By using this property and after replacing in the
previous expression y and Z coming from (0.4, P.J), we obtain that the periodic
solutions must satisfy the condition

Th
An dr Vz(y(") (1), 2 (7)) cos(wp,T) =

[ dr Do), 20 () V. (), O )P 99

where V, stands for 9V/0z. The quasi—conservative theory assumes that the periodic
orbits [y™ (), 2™ ()] can be approximated, near the resonance, by conservative
orbits [yo(T — 79, Ey), 20(T — 7o, Ey)], corresponding to the value of the potential E,
that yields the desired frequency, w, = w(E,). Substitution of this ansatz in the
above equation leads to

An [ A Valuo(r, Ba), 20(r, En)) cos(@m(r + 1)) =
/OTn d7 Das(yo(7, Ep), 20(T, En))[Va (wo (7, En), 20(1, En))]?. (9.9)

By defining R,,, S,, 6, by

Ro = [ dr Dualunlr, B a(r ) Va(on(r: B ol B
S.sin(6n) = /0 " dr Vi(yo(T, En), 20(7, Ew)) sin (@), (9.10)

Th
S, cos(6n) = / 7V, (4o (7, En), 70(7, En)) cos(@m7),
0

we arrive at

Ay cos(@y 1o + 0y,) = & (9.11)

Sn

According to this equation, for given A,, and @, there exist at most 2n different
orbits of period nT,,. They correspond to the functions [yo(7 — 70, En), 20(7 —
To, By)] for the 2n values of 19 = (o + k7)) /0, £ = 0,...,2n — 1 and «,, =
arccos(R,/(SpAm)) — 6,. It turns out that n of these solutions are unstable, while
the remaining stable ones correspond in fact to trivial translations by a time amount
T, of the same basic solution (pulse position multistability [Gallagher et al., 1985;
Chizhevsky and Turovets, 1993]). Therefore, for a given value of A,, and @, there
is just one corresponding stable orbit of the conservative system.
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Alternatively, we can look at the previous equation as a condition for the own
existence of periodic orbits. For given modulation frequency @, there will exist
periodic orbits of period nT,, if the amplitude of the modulation verifies A,, >
R, /S,. Since resonances almost coincide in this case with the limit of existence of
periodic orbits (see Fig. P-1 and the discussion of the previous section), this criterion
implies that the skeleton curves for the n7T resonance are

Ry
Am =" (9.12)

In practice, it is difficult to find solutions of the conservative motion [yo(7, E),
2o(T, E)] analytically and one performs a numerical integration of the conservative
system (putting by hand Dy = 0) in order to find the quantities R, S,. However,
in the simple case of s = 0 and ¢ = 0, Eq. (P.9) can be simplified by replacing
Ve = 9o/ (2yo) with help of (B.4) and (7.21), yielding

™ drd . T &o(7, En)”
Am/o drzo(7, Ey) cos(@m (T + 7)) = | dr (b + yaexp(zo(T, Ep))] — 5
(9.13)
where o = In (yo/yst), Yst = @ — b is the steady state value of y in the absence of
modulation, and x; is a periodic function of frequency w,, that can be written as a
Fourier series in the form

Qe &

zo(T, Ep) = -5 ]; Qr, cos[kwy, (T + px,)]- (9.14)

Using this expression, and after a simple algebra, the integrals of (9:13) can be
performed, giving rise to

Sk Gk’
nQn

As discussed earlier, the nT resonances are obtained for sin[nwy, (u, — 70)] = 1, i.e.

4 9, TEQHR
nQn

2
This expression has the advantage that the contribution of each coefficient in the
Fourier series of xy appears explicitly. In particular, it shows that the n7T resonance
may be excited by a finite amplitude of the external modulation only if the n — th
harmonic of the conservative solution is different from zero. Therefore, this effect
can be considered as harmonic locking of the fundamental relaxation oscillation by
an external modulation.

In the case s # 0 and € # 0 it is also possible to use a series expansion for the
variable zy. However, the resulting expression is so complicated, in the sense that
in the denominator different coefficients of the Fourier expansion contribute, that
we find simpler instead to use (9.12) to obtain the theoretical skeleton curve.

Ay sin[nwn, (n, — T0)] = Zwy, (9.15)

N2

(9.16)
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9.2.2 Loss modulation

Let us turn now to loss modulation. We consider Egs. (0.1) and (D.2) with a
fixed value of the current J but modulated loss term

¥ = Y [1 4 Ym cos(wmt)]. (9.17)

The reduced equations for y and z can be written as

dy oV _
g—T = Dy a—zav— 2YVm Cao‘i(me)y
z
— = —Djg— — Dog—. 1
dr 12 oy 29, (9.18)

It is straightforward now to extend the quasi—conservative theory to this case. Pro-
ceeding as in the case of pump modulation we arrive at

Ry,
Vrm, €O (Wrto + 0),) = 5 (9.19)

n

where (V}, stands for 9V/dy), and

Roo= [ dr Dol Bl ) VGl B, ol BT
S'sin(@) = —2 /OT" 47V, (yo(7, En), 20(T, Bn)) sin @)1 (T, En), (9.20)

Tn
S cos(0l) = —2 /0 dr V,,(yo (7, En), 20(7, En)) cos(@m)yo(T, En)-

The skeleton curves are then given by

R,

T = (9.21)

In the case s = 0 and € = 0, an expression in terms of Fourier series, similar to
(P.1g) can be derived,

_ e X, QK

=5 g,

This expression is equivalent to the one obtained in [Samson and Turovets, 1987]

where a laser with periodic modulation of losses, but neglecting the spontaneous

emission and gain saturation terms, is studied in detail. Again for s and ¢ different

from zero we need to solve Eq. (P-2I) numerically.

(9.22)



9.3 Numerical results 161

9.3 Numerical results

9.3.1 Pump modulation

We compare in figures P.7 and P.§ the predictions of the quasi—conservative
theory, as given by (D.13) with the numerical simulations of Sec. P.I. In order
to perform this comparison, the skeleton curves have been plotted in terms of the
original variables J,,, and wy, by using (7.8) and (0.6). Figure P.7 gives evidence that
the theoretical predictions coincide with the numerical results with a great degree
of accuracy in the case s = 0 and ¢ = 0. This figure also shows that a similar
agreement between the theory and simulations can be observed for the case of s # 0
but still ¢ = 0. In this case, the role of the gain saturation parameter s is such that,
for a fixed value of the frequency w,,, a larger value of modulation amplitude J,, is
needed to obtain the optimal periodic response for each main resonance. The effect
is quantitatively more important for higher order resonances, n > 1.

More dramatic is the effect of the spontaneous emission term €. In figure P.§ we
can see that very small values of the noise rate ¢ strongly modify the skeleton curves
for modulation frequencies w;, smaller than a cut—off value w, (marked with an arrow
in in the figure), whereas they remain basically unchanged for w,, > w.. For small
wp, the effect of € is such that much larger values of the modulation amplitude J,,
are needed in order to find the optimal response for a given value of w,,.

The theoretical prediction behaves qualitatively in the same way and predicts
correctly the cut—off frequency w.. However, it predicts a much sharper increase
of the optimal modulation amplitude. This could be explained as follows: while
the period of the conservative solutions always increases when the energy increases
in the absence of spontaneous emission terms, as it can be seen from Eq. (7.26),
the presence of the spontaneous emission noise terms introduces a maximum in the
resulting expression of the period as function of the energy. This fact forbids the
conservative orbits with a frequency smaller than the cut—off frequency. This means
that the conservative orbit we are using can be very different from the orbit followed
by the modulated system. For smaller values of € the boundary approaches to the
one for the case € = 0, as expected. Finally, in Fig. 9.9, the combined effect of s and
¢ is shown. The same qualitative effect that was already explained also appears for
other values of the bias current J,. For J, > 1.23.J;;, the same boundaries appear
but for larger values of J,,. This effect was already reported in [Liu and Ngai,
1993] where it is indicated that higher order bifurcations are more likely to occur
for smaller dc bias levels than for higher ones.

9.3.2 Loss Modulation

For the case of loss modulation the analytical and numerical results coincide for
s =0 and € = 0, and for the case s # 0 and £ = 0, analogously to that of the pump
modulation case (see Fig. 9.10). However, when the spontaneous emission term
is introduced, the boundaries obtained numerically also depart from the analytical
predictions, see Figs. 9.11 and 9.12.
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Figure 9.7: Maxima of main resonances in the plane (wy, /wq, Jm) for pump modulation. Effect
of s. Analytical results (9.1): s = 0 (solid line), s = 6 x 10° (dotted line), s = 3 x 1078 (dashed
line). Numerical results: s = 0 (triangles), s = 6 x 107% (squares), s = 3 x 1078 (circles). € = 0.
Other parameters as in Fig. p.1.
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Figure 9.8: Maxima of main resonances in the plane (wy, /wo, Jy,) for pump modulation. Effect of
e. Analytical results (0.12): € = 0 (solid line), £ = 6.2x10"11ps~! (dotted line), £ = 2.2x1070ps~!
(dashed line). Numerical results: £ = 6.2 x 10~ ps~! (squares), ¢ = 2.2 x 107%ps—! (circles).
s = 0. Other parameters as in Fig. @ Marked with an arrow the cut-off value w,.
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Figure 9.9: Maxima of main resonances in the plane (wy, /wq, Jn) for pump modulation. Com-
bined effect of ¢ and s. Analytical results (9.12): € = 0, s = 0 (solid line), ¢ = 6.2 x 10~ !1ps~1,
s = 0 (dotted line), ¢ = 6.2 x 107 ps~!, s = 6 x 107° (dashed line). Numerical results:
e=16.2x10"ps™!, s =6 x 107° (circles). Other parameters as in Fig. 9.1.
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Figure 9.10: Maxima of main resonances in the plane (wy, /wq, Jm) for loss modulation. Effect
of 5. Analytical results (9.21): s = 0 (solid line), s = 6 x 10~° (dotted line), s = 3 x 10~8 (dashed
line). Numerical results: s = 0 (triangles), s = 6 x 10™° (squares), s = 3 x 1078 (circles). € = 0.
Other parameters as in Fig. 9.1.
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Figure 9.11: Maxima of main resonances in the plane (wy, /wo, Jr,) for loss modulation. Effect of
€. Analytical results (9.21): € = 0 (solid line), ¢ = 6.2x107!ps~! (dotted line), e = 2.2x 107 19ps~1
(dashed line). Numerical results: ¢ = 6.2 x 107 !1ps~! (squares), ¢ = 2.2 x 10~ 0ps~1!

(circles).
s = 0. Other parameters as in Fig. 9.1.
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Figure 9.12: Maxima of main resonances in the plane (wy, /wo, Jm) for loss modulation. Combined
effect of £ and s. Analytical results (9.21): € = 0, s = 0 (solid line), e = 6.2 x 10~ ps~1,
s = 0 (dotted line), ¢ = 6.2 x 107 !1ps~1, s = 6 x 107° (dashed line). Numerical results: € =
6.2 x 10~1ps—!, s = 6 x 10~° (circles). Other parameters as in Fig. 9.1.
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It is possible to obtain an interesting relation between the effect produced by loss
modulation and pump modulation. The relation can be obtained more clearly if we
write the evolution equation for the variable z = In(y/y), defined in terms of the
stationary value y,; of the variable y in the absence of modulation. For small ¢, s,
it is ¥y, ~ a — b. It turns out that the resulting equations in the case of modulation
in the pump or in the losses take basically the same form, namely

i+ 3*Gy(z) + 1Ga(z) + G3(z) = Fpr(z,7), (9.23)

Gi1(z), Ga(z), and Gs(x) are given functions of z whose detailed expressions are not
needed here. The only difference is in the right hand side of this equation which for
the case of modulation in the pump is

Fp(z,7) = Amcoséme) Fi(x),
c

Fi(z + , 9.24
(@) 1+ 5ysexp(z)  yore® (9-24)
while in the case of modulation in the losses it is:
Fr(x,2,7T) = 2vm@m sin(@mT) — 2¥m cos(0n,7) Fo(z, ), (9.25)
s 23 2 2z 1 5 s z\2
Py, ) = b+ — PSP, e + (1 + 5ye”) . (9.26)

+z
1 + 5y, exp(x) (1 4 Syse®)[2yse® + ce®®(1 + Syse7)]

It is easy to see that the term containing Fj is negligible compared to the first
contribution to Fy,(z, &, 7). In fact, if we consider the value of F; in the steady state
in the absence of modulation, x = £ = 0, we obtain F5, ~ a. A typical value is
a =~ 0.01 while the product v,,&, is of order 1 for wy, ~ wy. If we replace now Fi(z)
by its steady state value Fi(0), approximate the term 1 + 5y, ~ 1 and neglect the
term proportional to ¢ , we arrive at

Fp = 2A,, cos(@,T), (9.27)
Fr, & 29,0 SI0 (@0, 7). (9.28)

Therefore, we conclude that the role of the modulation in the pump is equivalent to
the modulation in the losses, besides a trivial phase shift, if A,, = ¥,,@,,. In terms
of the physical parameters, this is equivalent to

ve

Jm = YmWm —7

} 9.29
anJy (9.29)

This result shows that modulation in the pump or in the losses produce equiv-
alent results if the respective modulation amplitudes are conveniently rescaled. It
is possible to arrive at this result directly, in the case s = ¢ = 0, by comparing the
expressions in terms of Fourier coefficients (9.16) and (9.22). The validity of this
equivalence of modulation in the pump and in the losses is shown in Figs. and
D.14, where we compare, for typical values of s and ¢, the skeleton lines in the case
of pump and loss modulation after the latter have been rescaled according to (P.29).
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It is clear from these figures that the proposed equivalence after parameter rescaling
works well in the cases that have been shown. A similar agreement is observed for
other boundaries and values of the parameters.

Since relation (9.29) implies, for typical values of the parameters, that J,,, > vy,
we recover the known results that loss modulation is more efficient to get bifurcations
and chaos. This relation can be applied in the large modulation signal regime
(nonlinear regime), and hence it can be considered as an extension of previous
analytical results in the case of the linear regime [Tredicce et al., 1985b).

Q‘)Dn/@O

Figure 9.13: Maxima of main resonances in the plane (wy,/wo, Jy,). Numerical results. Pump
modulation: s = 0 (solid line) (equivalent to theoretical results), s = 3 x 10~8 (filled circles). Loss
modulation multiplied by factor of Eq. (P.29): s = 0 (triangles), s = 3 x 1072 (circles). € = 0,
Jy = 1.23J;..
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Figure 9.14: Maxima of main resonances in the plane (wy, /wo, Jm). Numerical results. Pump
modulation: € = 0 (solid line), & = 2.2 x 10~%ps~—! (filled circles). Loss modulation multiplied by
factor of Eq. (P.29): e = 2.2 x 10719571 (circles). s =0, J, = 1.23.J.

9.4 Comparison to experiments

The fingerprints of nT" resonance regimes, which discern from non-resonance
nT periodic windows in chaos, is a dominant w,,/n component in microwave spec-
tra. In particular, w,/2 component in microwave spectra was dominating in the
observations of Refs. [Liu and Ngai, 1993; Bennett et al., 1997; Matsui et al., 1998;
Wada et al., 1998], pointing out the resonance 27 regime, that in time domain leads
to sharp spikes like the ones presented in Fig. 9.2 (b) (no intermediate spikes at
interval 27;,). A direct example of resonant 27" regime observation and possible
applications to all-optical clock division can be found in [Yang and Liu, 2001].

According to our predictions, resonant regimes with n > 2 also exist in the
system. However, they are dynamical isolas that cannot be observed with smooth
sweeping of modulation parameters, besides the special cases of pulse excitation
[Samson et al., 1990; Chizhevsky and Turovets, 1993; Chizhevsky, 2000] or chaotic
crisis on the basic 17 periodic branch leading to switching to a 37" branch as it was
observed in [Liu and Ngai, 1993] and explained in [Lamela et al., 1998a; Lamela
et al., 1998b]. Particularly relevant to our work is the paper by Liu and Ngai [Liu
and Ngai, 1993] where the response of a single mode distributed feedback laser
subjected to current modulation is considered experimentally. We summarize the
observations they obtain when changing the modulation frequency and amplitude
of the radio frequency signal and compare them to our results:

a) For small modulation frequency there is only a 17" period response for any
signal amplitude. This behaviour also appears in our system, as it was visualized in
Fig. 9.7 for wy, /we < 0.2, for J,, < 1.

b) For intermediate modulation frequency there is a transition from 17" to 2T
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responses when increasing the modulation amplitude. This fact could be seen in Fig.
9.7 in the region 0.2 < wy,/wy < 2., for the corresponding values of J,,. A further
transition from 27 back to 17T is experimentally, but nor numerically, observed.

¢) 3T and 4T solutions appear for large enough modulation frequency and am-
plitude. We find these solutions also in the case of large enough values of the
modulation frequency and amplitude, see Figs. 9.7, 9.8 and P.9. The 4T solution
would appear for larger values of the amplitude not plotted in the figure. We have
checked that for s = 0 and € = 0 the corresponding 47 boundary for pump mod-
ulation would have its minimum value at wy,/wy ~ 2.3 and J,, ~ 0.4. However,
identification of the 37 branch observed in [Liu and Ngai, 1993; Bennett et al.,
1997] is still hard to make as resonant due to the fact that the microwave spectra
gives a dominate modulation component at wy,, but not at the subharmonic wy,/3
as it might be expected for a purely resonant regime.

9.5 Discussion

We have undertaken a numerical and analytical study to identify the optimal
responses of a semiconductor laser subjected to an external periodic modulation
in the pump of relative amplitude J,, and frequency w,,. We have computed the
lines in the (wm/wo, Jm) plane that give a maximum response for each type of nT
resonance (skeleton lines) and compared them to the numerical results. The influ-
ence of saturation and spontaneous emission terms on the dynamics has also been
examined. We have found that these specific laser diode parameters increase the
thresholds of instabilities in the system, a fact that can be interpreted as an effect
of the increase in the damping of relaxation oscillations. A qualitative comparison
with experiments has also been performed, our results qualitatively agree in part
with the experimental observations with 1.55um InGaAs distributed lasers [Liu and
Ngai, 1993]. The analytical results we have obtained by an application of the quasi-
conservative theory allow us to explain satisfactorily the effect of the saturation
term. The role of the gain saturation parameter is such that, for a fixed value of the
frequency w,,, a larger value of modulation amplitude J,,, is needed to obtain the
optimal periodic response for each main resonance. This effect is more important
for higher order resonances. However, the effect of the spontaneous emission term
in the skeleton lines has not been completely explained by the analytical results and
the discrepancy between the numerical and analytical results is due to the form of
the conservative solution.

Loss modulation has also been considered and analytical and numerical results
are in reasonable agreement. Furthermore, we have obtained a relation that shows
the equivalence between pump and loss modulation. This equivalence relation, hav-
ing a large validity for the numerical boundaries, allows to compute the boundary
limits for pump (or loss) modulation if the loss (pump) boundaries are known. We
have explain the experimental results that loss modulation is more efficient to get
bifurcation and chaos than pump modulation.
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Conclusions 1 possibles extensions

En aquest treball s’ha estudiat la dinamica dels lasers de classe A i de classe B
en termes del potencial de Lyapunov. En el cas que s’injecti un senyal al laser o
es modulin alguns dels parametres, apareix un comportament molt més complex i
s’estudia el conjunt de bifurcacions.

1) Als lasers de classe A, la dinamica determinista s’ha interpretat com el movi-
ment damunt el potencial de Lyapunov, i s’han identificat els termes relaxacionals
i conservatius en les equacions de la dinamica. L’efecte combinat d’aquests dos ter-
mes produeix una trajectoria espiral en el pla definit per les parts real i imaginaria
del camp electric, amb una velocitat angular proporcional al terme de disintonia.

En la dinadmica estocastica (quan termes de renou additiu s’inclouen en les equa-
cions) s’obté un flux sostingut per renou per a la fase del camp eléctric, que prové
de la interaccié dels termes conservatius i els termes de renou. Aquest flux en la fase
es manifesta com un corriment de la freqiiencia intrinseca d’emissié de la llum laser.
Una expressié analitica permet calcular I’evolucié de la fase. Encara que seria inte-
ressant comprovar experimentalment I'existéncia d’aquest corriment de freqiiencia
induit per renou, cal recalcar que d’acord amb els nostres resultats, la intensitat
del renou que es requereix per obtenir un corriment de freqiiencia observable és
molt més gran que la intensitat de renou tipica en els experiments. No obstant,
aquest renou extra necessari podria ésser induit externament. A més, el corriment
de freqiiéncia, obtingut en els lasers de classe A, apareix en altres tipus de lasers,
com en els lasers de classe B, encara que en aquest cas s’hauria de desenvolupar
una teoria apropiada. Caldria resaltar la importancia d’aquest flux induit per re-
nou. Aquest podria apareixer en altres sistemes, i seria en particular interessant
considerar un simil mecanic del potencial de Lyapunov que s’ha obtingut.

2) Per als lasers de classe A amb senyal injectat, s’ha descrit el conjunt de
bifurcacions complet (de forma analitica i numerica) i s’ha determinat el conjunt
d’amplituds (p) i freqiiéncies (1) en el qual el laser respon ajustant la seva freqiiéncia
a la del camp extern. Aquest resultat apareix resumit a la Fig. 6.2 (c) on s’ha
identificat regions on la resposta no és a la mateixa freqiiéncia de la d’injeccié (in-
dicades amb NL a aquella figura). A dins les regions on el laser respon a la mateixa
freqiiéncia que la d’injeccié es pot distingir entre una regié on hi ha una unica re-
sposta estable (L), regions de coexisténcia de la solucié a la mateixa freqiiéncia de la
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d’injeccié amb una a distinta freqiiéncia (C), i finalment un a regié on hi coexisteixen
dues solucions a la mateixa freqiiencia que la freqiiencia d’injeccié pero amb distinta
intensitat (B). S’han descrit qualitativament les caracteristiques observades en la
dinamica determinista en termes del potencial de Lyapunov, identificant els termes
relaxacionals, conservatius i els residuals en les equacions dinamiques. Encara que
aquesta descripcid és estrictament valida només en el cas de senyal injectat amb
freqiiencia zero, les caracteristiques qualitatives no canvien quan el producte pn és
petit.

A la dinamica estocastica (quan el renou additiu que prové de ’emissié espontania
es considera explicitament en les equacions), s’ha utilitzat la imatge del potencial de
Lyapunov per explicar la presencia del corriment de freqiiéncia estocastic del llum
laser igual com s’havia fet en els lasers de classe A sense injeccié. El mateix poten-
cial permet realitzar un calcul quantitatiu d’aquest efecte. Els resultats s’ajusten a
les simulacions numeriques de les equacions model i esperam que serveixin de guia
per a futurs experiments en I'observacié en sistemes lasers reals, tot i que s’hauran
de tenir en compte les limitacions experimentals i termes de renou a 1’hora de fer
comparacions.

3) En el cas dels lasers de class B, s’ha obtingut un potencial de Lyapunov
només valid en el cas determinista, quan les fluctuacions de renou es menyspreen.
La dinamica és del tipus no relaxacional amb una matriu D no constant. El
punt fix corresponent a que el laser es troba a l’estat d’ences s’ha interpretat
com el minim del potencial. La relaxacié cap a aquest minim es realitza a través
d’oscil-lacions esmorteides. A partir de 'observacié que el valor del potencial és
quasi bé constant entre dos pics consecutius d’intensitat, durant el procés transitori
de relaxacié cap a l’estat estacionari, s’ha pogut obtenir una expressié aproximada
per al periode d’aquestes oscil-lacions. A més, I’expressié que relaciona el periode de
les oscil-lacions al valor del potencial ens ha permes obtenir una relacié semiempirica
que ajusta (sense cap parametre ajustable i amb gran exactitud) el periode de les
oscil-lacions des del regim no lineal fins a les oscil-lacions de relaxacié a prop de
Pestat estacionari.

4) Hem realitzat un estudi del conjunt de bifurcacions parcial al voltant del
regim tipus II de la singularitat Hopf-sella—node en un laser de classe B amb senyal
injectat, a causa de que existia una falta d’estudi detallat al voltant d’aquest tipus
en la literatura existent. Els parametres de bifurcacié que s’han considerat sén la
intensitat del senyal injectat i la disintonia entre la freqiiencia de la pertorbacié i la
freqiiencia d’operacié del laser sense injeccié. El centre d’organitzacié principal és
una bifurcacié Hopf-sella-—node des d’on s’origina una bifurcacié secundaria d’orbites
periodiques, i neix un torus a aquella bifurcacié. Es veu que la solucié laser estable
que existeix per a valors d’injeccié baixos, també sofreix una bifurcacié de Hopf
secundaria, creant—se un altre torus. Aquests tours tenen resonancies per alguns dels
valors dels parametres: poden existir orbites tancades damunt els torus. L’estructura
de resonancies dels dos torus interacciona, i a més s’obtenen orbites homocliniques
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a 'estat apagat a dins de cada una de les llengiies d’Arnold. Un dels resultats més
importants és 'acumulacié de totes les resonancies cap a la singularitat Hopf-sella—
node, que indica ’existéncia d’una bifurcacié global altament degenerada en el punt
de codimensié—2.

Es pot comparar el conjunt de bifurcacions obtingut pel laser de classe B amb
senyal injectat amb el del laser de classe A amb senyal injectat. La diferéncia
principal entre els dos tipus de lasers des del punt de vista dinamic és el nombre
de variables amb queé es treballa. Pels lasers de classe A és suficient amb dues
variables i es pot descriure el conjunt complet de bifurcacions. Pels lasers de classe
B cal considerar tres equations, i és per aquest motiu que una varietat de fenomens
molt més complexa pot apareixer. Encara que part de I'estructura de bifurcacions
dels lasers de classe B ja estava present en els lasers de classe A (esencialment les
tres corbes corresponents a les bifurcacions sella—node de punts fixos), la dindmica
completa del laser de classe B és extremadament complicada. Hem vist que la
presencia del punt Hopf-sella—node és molt important en els lasers de classe B i que
distints tipus de comportaments es poden obtenir. En canvi, la interseccié de les
bifurcacions Hopf i sella—node de punts fixos en el cas de classe A no pot ser dels
tipus Hopf-sella-node siné que es tracta de singularitats Takens-Bogdanov. No
obstant, aquests singularitats ja eren presents (encara que de distinta manera) en
els lasers de classe B incloent—hi bifurcacions d’orbites periodiques enlloc de punts
fixos. Les bifurcacions d’Andronov globals també s’han obtingunt en ambdés tipus
de lasers. El conjunt de bifurcacions per als lasers de classe A per a = 0 és molt
més senzill que el del cas « # 0, i aquest darrer es pot obtenir a partir del cas o = 0
realitzant alguns canvis. Aquesta situacié torna a ser reminiscent del cas del laser
de classe B.

5) S’han identificat les respostes Optimes pels lasers de semiconductor sotmesos
a modulacié periodica externa. S’han obtingut les corbes que donen la resposta
maxima per cada tipus de resonancia nT en el pla definit per 'amplitud rela-
tiva, de modulacié i la freqiiéncia de modulacié. Aquests dominis d’existéncia de
les resonancies principals s’han obtingut mitjancant ’aplicacié de la teoria quasi—
conservativa. Les prediccions han estat comparades amb els resultats numerics
obtinguts a partir de la integracié directa d’equacions model, aixi com amb ob-
servacions experimentals descrites per altres grups. En ambdds casos s’obté una
concordancia qualitativa. S’ha considerat un model que conté explicitament els ter-
mes de saturacié de guany i els termes d’emissié espontania. Els termes d’emissié
espontania modifiquen en gran mesura el comportament qualitatitu dels limits de
les inestabilitats, mentre que el terme de saturacié de guany déna lloc a un simple
corriment dels limits. Els resultats que s’obtenen teoricament reprodueixen aquest
comportament qualitatiu. Finalment, s’observa que la modulacié en el bombeig i la
modulacié en les perdues produeixen resultats equivalents si les respectives ampli-
tuds de modulacié es reescalen de manera adequada. Aquesta relacié d’equivaléncia
permet calcular limits d’existéncia per a la modulacié al bombeig (o a les pérdues)
a partir dels limits a les pérdues (o al bombeig). Es recupera el resultat conegut que
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la modulacié al terme de perdues és més eficient que la modulacié al bombeig per
obtenir bifurcacions i caos.

Algunes posssibles extensions d’aquest treball inclourien:

Estudiar la dinamica del laser en presencia de renou en el parametre de
bombeig. En general, degut a la dinamica lenta dels portadors, el renou no es
considerara blanc, siné que de manera més realista es modelitzara com un re-
nou de color. Aquesta font de renou afecta principalment a les caracteristiques
espectrals del lasers. Si es pogués obtenir un potencial de Lyapunov, satis-
fent la relacié de fluctuacié—dissipacié es podria calcular qualsevol valor mig
d’interes a 1’estat estacionari.

Obtenir una forma explicita pel potencial de Lyapunov pel laser amb un camp
extern injectat. En el cas del laser de classe A en tenim l'expressié en alguns
casos particulars, i a partir d’ella, podem inferir la forma qualitativa general.
En el cas del laser de classe B es tractaria d’un problema nou.

Obtenir el potencial de Lyapunov que té en compte la pulsacié auto-sostinguda
en alguns lasers de semiconductor. En aquests sistemes, el nombre de fotons i
les densitats d’electrons no sén constants a 1’estat estacionari siné que oscil-len
en el temps. Es pot especular que en aquest cas el potencial seria similar a
Pobtingut per al laser de classe B pero en aquest cas ’estat estacionari no
es tractaria d’'un punt fix siné d’un cicle limit, que es podria obtenir a partir
d’una dinamica residual.

El corriment de freqiiencia induit per renou en els lasers de classe A també
s’ha obtingut numericament en alguns tipus de lasers de classe B. Per als
lasers de classe A és possible obtenir una expressié analitica per al corriment
de freqiiéncia estocastic ja que la descripcié mitjancant la funcié de Lyapunov
de la dinamica és tal que la relacié fluctuacié—dissipacio es satisfa. No obstant,
encara que ha estat possible obtenir una funcié de Lyapunov per als lasers de
classe B, la relacié fluctuacié—dissipacié no es satisfa per a aquest tipus de lasers
i la funcié de Lyapunov no pot donar una descripcié completa de la distribucié
estacionaria en el cas estocastic. Per tant, és un problema obert obtenir una
descripcié teorica satisfactoria per al corriment de freqiiencia induit per renou
per als lasers de classe B.

En aquest treball s’ha obtingut part del conjunt de bifurcacions en el cas del
laser de classe B amb senyal injectat. Es podria continuar amb aquesta analisi
i cercar altres bifurcacions en el mateix espai de parametres. Seria interessant
relacionar les distintes bifurcacions que es troben per als distints tipus de la
bifurcacié Hopf-sella—node. A més, en el nostre estudi s’ha restringit ’analisi
a la regi6 a prop del centre organitzatiu Hopf-sella-node, i es podria realitzar
I’estudi en regions allunyades d’aquest punt.
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In this work we have studied the dynamics of both class A and class B lasers
in terms of Lyapunov potentials. In the case of an injected signal or when some
laser parameteres are modulated, and more complex behaviour is expected, the
bifurcation set is studied. The main results are the following:

1) For class A lasers, the deterministic dynamics has been interpreted as a move-
ment on the potential landscape, and the relaxational and conservative terms in
the dynamical equations of motion have been identified. The combined effects of
these two terms produce an spiraling trajectory in the plane defined by the real and
imaginary parts of the electric field, with an angular velocity proportional to the
detuning parameter.

In the stochastic dynamics (when additive noise is included in the equations)
we have found a noise sustained flow for the phase of the electric field. It arises
from the interaction of the conservative terms with the noise terms. This phase flow
manifests as an intrinsic frequency shift of the laser light. An analytical expression
allows the calculation of the phase evolution. Although it would be interesting to
check experimentally the existence of this noise induce phase drift, we have to stress
that, according to our results, the noise intensity required for an observable phase
drift is much larger than the typical noise intensity in experiments. Nevertheless,
this necessary extra noise could be externally induced. Moreover, this phase drift,
obtained for class A lasers, is also present in other types of lasers as, e.g., class
B lasers, although for the latter an appropriate theory should be developed. We
believe that this is an important and new effect that could appear in other laser
systems. It would be interesting to develop a mechanical simile of the Lyapunov
potential obtained, that could help us to relate the phenomenon predicted here with
other cases of noise sustained flow well documented in the literature.

2) For class A lasers with an injected signal, we have been able to describe
the whole bifurcation set of this system (by using analytical and numerical tools)
and to determine the locking range, i.e. the set of amplitudes (p) and (detuning)
frequencies (7) for which the laser responds adjusting its frequency to that of the
external field. This result is summarized in Fig. 6.2 (c¢) in which we can identify
non-locking regions (labelled NL in that figure). Within the locking range one finds
a region with a single stable laser response (L), regions of coexistence of a locking
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solution with a non—locking solution (C), as well as a region of coexistence of two
locking solutions of different light intensity (B). We have described qualitatively the
observed features of the deterministic dynamics in terms of a Lyapunov potential
function. We have identified the relaxational, conservative and residual terms in the
dynamical equations of motion. Although this description is strictly valid only in the
case of a zero-detuning injected signal, the qualitative features remain unchanged
when the product pn is small.

In the stochastic dynamics (when the additive noise coming from the sponta-
neous emission is explicitly considered in the equations) we have used the Lyapunov
potential image to explain the presence of a stochastic frequency shift of the laser
light. The same potential function allows a quantitative calculation of this effect.
The results are in good agreement with numerical simulations of the model equa-
tions and we hope that they can be a guide for future experiments in observing this
effect in laser systems.

3) In the case of class B lasers, we have obtained a Lyapunov potential only valid
in the deterministic case, when noise fluctuations are neglected. We have found that
the dynamics is non-relaxational with a nonconstant matrix D. Hence, the fixed
point corresponding to the laser in the on state has been interpreted as a minimum
in this potential. Relaxation to this minimum is reached through damped oscilla-
tions. The observation that the potential is nearly constant between two consecutive
intensity peaks during the transient relaxation process towards the steady state, has
allowed us to obtain an approximate expression for the period of these oscillations.
Moreover, an expression relating the period of the oscillations to the value of the po-
tential has allowed us to find a semi—empirical relation that fits (with no adjustable
parameters and with a high degree of accuracy) the period of the oscillations from
the nonlinear regime up to the relaxation oscillations near the steady state.

4) We have performed a study of the partial bifurcation set around the type II
regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
Such a detailed study around this regime was missing in the previous literature. The
bifurcation parameters we have considered are the intensity of the injected signal
and the detuning of the perturbation frequency and the unperturbed laser operat-
ing frequency. The main organizing center of the system is the Hopf-saddlenode
bifurcation from where a secondary Hopf bifurcation of a periodic orbit originates,
and a torus is born at this latter bifurcation. We show that the laser’s stable cw
solution existing for low injections also suffers a secondary Hopf bifurcation and
another torus is created. These tori have resonances for some values of the parame-
ters, in the sense that close orbits on the tori can appear. The resonance structure
of both tori interact and homoclinic orbits to the off state are found inside each
Arnold tongue. A connection between different resonances in the parameter space
has also been obtained. One of the main results is the accumulation of all the above
resonances towards the Hopf-saddle node singularity points to the occurrence of a
highly degenerate global bifurcation at the codimension—-2 point.
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We can compare the bifurcation set obtained for a class B laser with injected
signal with the one obtained for a class A laser with injected signal. From the
dynamical point of view, the main difference between the two kinds of lasers is
the number of variables involved. For class A lasers two variables suffice and the
full bifurcation set can be described. For class B lasers, a three—equations system, a
more complex variety of phenomena can appear and the system can also show chaotic
behaviour. Although part of the bifurcation structure of class B lasers is already
present in class A lasers (essentially the tree curves of saddle-node bifurcations of
fixed points), the overall dynamics of the former becomes extremely complicated. We
have seen that the presence of the Hopf-saddlenode point has a crucial importance
for class B lasers and different types of flows can be obtained. Note as contrast
that the intersection of Hopf and saddle—node bifurcations of fixed points in class A
lasers cannot be of Hopf-saddle node types but are Takens-Bogdanov singularities
instead. Such singularities are also present (in a different form) in class B lasers,
not involving bifurcations of fixed points but of periodic orbits. Andronov global
bifurcations have also been found in both types of lasers. The bifurcation set for a
class A laser in the case o = 0 is much simpler than the one found for o # 0 although
the former can be obtained by suitable reduction of the latter. This situation is again
reminiscent of the class B laser case.

5) We have identified the optimal responses of a semiconductor laser subjected
to an external periodic modulation. The lines that give a maximum response for
each type of nT resonance (skeleton lines) are obtained in the plane defined by the
relative amplitude modulation and frequency modulation. The domains of existence
of the main resonances are obtained by application of the quasi—conservative theory.
The predictions are compared with numerical results coming from a direct integra-
tion of the model equations and with experimental observations reported by other
groups. In both cases we find a good qualitative agreement. We have considered a
model that contains explicitly the gain saturation and spontaneous emission terms
and we have focused mainly on the effect that these terms have in the regime of
large amplitude modulation. We find that the spontaneous emission qualitatively
modifies the behaviour of the instabilities boundaries, while the gain saturation
leads to a simple quantitative shift of boundaries. Our theoretical results reproduce
this overall behaviour. We also find that modulation in pump or losses produce
equivalent results if the respective modulation amplitudes are conveniently rescaled.
This equivalence relation allows to compute the boundary limits for pump (or loss)
modulation if the loss (pump) boundaries are know. We have recovered the re-
sults that loss modulation is more efficient to get bifurcations and chaos than pump
modulation.

Some possible extensions of this work include:

e To study laser dynamics in the presence of noise in the pump parameter. In
general, and due to the slower dynamics of the carriers variable, the noise
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should not be considered as white but more realistically it should be modelled
as a colored noise. This noise source mainly affects the spectral characteristics
of the lasers. If a Lyapunov Potential, satisfying the fluctuation-dissipation
relation could be obtained then any mean value of interest in the steady state
could be calculated.

To obtain a complete Lyapunov potential for lasers in the presence of an
external field. For class A lasers this has been done for some particular cases
and it was possible to infer the qualitative form of the potential in the most
general case. For class B lasers with injected signal it would be interesting to
perform the description of its dynamics in terms of a Lyapunov potential.

To obtain a Lyapunov potential that accounts for the self-sustained pulsation
phenomena that occurs in some semiconductor lasers. In these systems, the
photon number and electron densities are not constant in the steady state but
oscillate in time. We speculate that in this case, the potential would be quite
similar to that obtained for class B lasers, but the steady state will not be a
fixed point, but a limit cycle instead, which could be obtained as a residual
dynamics.

The noise frequency shift obtained in class A lasers has also been found nu-
merically in some class B lasers. For class A lasers it is possible to reach a
complete understanding of this stochastic frequency shift since the Lyapunov
function description of the dynamics is such that the fluctuation—dissipation
relation is satisfied. However, although we have been able to find a Lyapunov
function for class B lasers, the fluctuation—dissipation relation is not satisfied
for this kind of lasers and the Lyapunov function can not give us a complete
description of the stationary distribution in the stochastic case. Therefore, it
is an open problem to obtain a satisfactory theoretical description of the noise
induced frequency shift for class B lasers.

We have obtained a subset of the bifurcation set in the case of a class B laser
with injected signal. It would be interesting to follow the analysis of this
bifurcation set and look for other bifurcations. The important point should be
to relate the bifurcations encountered for one type of the Hopf-saddlenode
bifurcation to another. Moreover, the analysis of the bifurcation set has been
restricted to a region in the space of parameters near the Hopf-saddle-node
organizing center, it would be interesting to perform an study in a region far
of that center.
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