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If the brain were simple enough for us to understand it, we would be too
simple to understand it"

—KEN HILL





Resumo

Sincronização antecipada (AS, do inglês "anticipated synchronization") é uma forma de sin-
cronização que ocorre quando uma influência unidirecional éenviada de um transmissor para
um receptor, mas o receptor lidera o transmissor no tempo. Esta sincronização contra-intuitiva
pode ser uma solução estável entre dois sistemas dinâmicos acoplados em uma configuração
mestre-escravo quando o escravo recebe uma retroalimentação atrasada e negativa. Diversos
exemplos de AS foram encontrados em diferentes sistemas, noentanto, faltam evidências ex-
perimentais de AS no cérebro. Nessa tese, nós investigamos aexistência de AS em uma rede
neuronal do tipo mestre-escravo quando a retroalimentaçãoatrasada e negativa é substituída por
um circuito inibitório dinâmico mediado por sinapses químicas. No nível neuronal, mostramos
a existência de AS em um microcircuito de 3 neurônios e em um de3 populações neuronais nos
quais a retroalimentação é proporcionada ou por um interneurônio ou por uma subpopulação
de neurônios inibitórios. Uma transição suave de sincronização atrasada (DS, do inglês "de-
layed synchronization") para AS ocorre quando a condutância sináptica inibitória é aumentada.
Mostramos que o fenômeno é robusto quando variamos os parâmetros dos modelos dentro de
um intervalo fisiológico aceitável. Os efeitos da plasticidade sináptica dependente do tempo
nas transições DS-AS também foram investigados. Os resultados obtidos a partir dos nossos
modelos são comparáveis a dados obtidos experimentalmenteenquanto macacos realizam cer-
tas atividades cognitivas. Em alguns casos, uma influência unidirecional dominante de uma
região cortical para outra pode vir acompanhada de um tempo de atraso tanto positivo como
negativo. Apresentamos um modelo para AS entre duas regiõescerebrais e comparamos estes
resultados com os dados experimentais, obtendo excelente concordância.

Palavras-chave: Sincronização Antecipada, Modelos Neuronais, Retroalimentação Inibitória,
Curva de Resposta de Fase, Plasticidade Sináptica Dependente do Tempo, Causalidade, Análise
de Dados.
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Resumen

La sincronización anticipada (SA) es una forma de sincronización que se produce cuando
una influencia unidireccional se transmite desde un emisor aun receptor, pero el sistema re-
ceptor adelanta al emisor en el tiempo. Este fenómeno, contrario a la intuición, puede ser una
solución estable de dos sistemas dinámicos acoplados en unaconfiguración maestro - esclavo
cuando el esclavo está sujeto a una retroalimentación negativa retardada. Hay muchos ejem-
plos de SA que se han encontrado en diferentes sistemas, sin embargo, no existe evidencia ni
teórica ni experimental de que ocurra en el cerebro. En este trabajo de tesis se investiga la
existencia la SA en circuitos neuronales cuando la realimentación retardada se sustituye por
un bucle inhibitorio mediado por sinapsis químicas. A nivelneuronal, se muestra la existencia
de SA en circuitos de 3 neuronas o 3 poblaciones de neuronas, donde la retroalimentación la
proporciona una interneurona o una subpoblación de neuronas inhibitorias. Una transición de
sincronización retrasada (SR) a SA se produce suavemente cuando se incrementa la conduc-
tancia sináptica inhibitoria. Se encuentra que el fenómenoes robusto para una amplio espectro
de parámetros del modelo dentro del rango fisiológico. También se investiga el papel de la
plasticidad neuronal en la transición SR-SA. Los resultados obtenidos a partir del modelo se
comparan con los obtenidos experimentalmente en monos cuando realizan ciertas tareas cog-
nitivas. En algunos casos, una influencia direccional dominante de un área cortical a otra se
acompaña de un retardo que puede ser negativo o positivo. Se presenta un modelo para las
relaciones entre dos regiones corticales del cerebro y se compararan los resultados numéricos
con los datos experimentales, obteniendo un excelente acuerdo.

Palabras clave: Sincronización Anticipada, Modelos Neuronales, Retroalimentación inhibito-
ria, Curva de Respuesta de Fase, Plasticidad Sináptica Dependiente del Tiempo, Causalidad,
Análisis de Datos.
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Abstract

Anticipated Synchronization (AS) is a form of synchronization that occurs when a unidi-
rectional influence is transmitted from an emitter to a receiver, but the receiver system leads the
emitter in time. This counterintuitive phenomenon can be a stable solution of two dynamical
systems coupled in a master-slave configuration when the slave is subject to a negative delayed
self-feedback. Many examples of AS dynamics have been foundin different systems, however,
theoretical and experimental evidence for it in the brain has been lacking. In this thesis work
we investigate the existence of AS in neuronal circuits whenthe delayed feedback is replaced
by an inhibitory loop mediated by chemical synapses. At the neuronal level, we show the ex-
istence of AS in 3-neuron or 3-neuron-populations microcircuits, where the self-feedback is
provided either by an interneuron or by a subpopulation of inhibitory neurons. A smooth tran-
sition from delayed synchronization (DS) to AS typically occurs when the inhibitory synaptic
conductance is increased. The phenomenon is shown to be robust for a wide range of model
parameters within a physiological range. The role of spike-timing-dependent plasticity in DS-
AS transitions is also investigated. The results obtained from the model are compared with
those obtained experimentally in monkeys performing certain cognitive tasks. In some cases
a dominant directional influence from one cortical area to another is accompanied by either a
negative or a positive time delay. We present a model for AS between two brain regions and
compare its results to the experimental data, obtaining an excellent agreement.

Keywords: Anticipated Synchronization, Neuronal models, Inhibitory feedback, Phase Re-
sponse Curve, Spike-timing Dependent Plasticity, Causality, Data Analysis.
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CHAPTER 1

Introduction

The desire to understand nature is the moving force that makes science advance. The ability
to make models about the world and use them to predict facts and act on them is not just
intrinsically related to our daily researches, but also to our everyday life. This is the very
evidence that one of the specialties of our brain is to make models. In an extreme view, our
brain is the machine that constructs the (models of) reality[1].

What mechanisms allow us to model and predict facts are one ofthe great questions in
neuroscience. In Buzsaki’s words, “brains are foretellingdevices and their predictive powers
emerge from the various rhythms they perpetually generate”[2]. Exposing the mechanisms
that allow complex things to happen in a coordinated way in the brain has produced some of
the most spectacular discoveries in the field. These synchronized activities in the brain are
the subject of this Thesis. In particular, we are interestedin the time differences between
synchronized components.

1.1 What is Anticipated Synchronization?

Synchronization is an astonishing universal collective phenomenon. It has been reported
in a striking variety of physical and biological systems, spanning from the subatomic to the
astronomical scales. The history of synchronized oscillators goes back to Huygens’ work with
two weakly coupled pendulum clocks. In a classical context,synchronization means adjustment
of rhythms of self-sustained periodic oscillators due to their weak interaction. In the past
decades an increased interest in the topic of synchronization of chaotic systems has arisen [3].
It was in the context of coupled chaotic units that the concept of anticipated synchronization
was discovered [4, 5, 6].

Two identical autonomous dynamical systems coupled in an unidirectional configuration
(that we call master-slave) can be described by the following equations:

ẋ = f(x(t)), (1.1)

ẏ = f(y(t))+K[x(t)−y(t− td)],

if the second system (the slave) is subjected to a negative delayed self-feedback.x andy ∈ R
n

are dynamical variables representing the master and the slave, f(x) is a vector function which
defines the autonomous dynamical system,K is a matrix representing a coupling parameter and
td is a positive constant delay time.

The presence of the feedback, or the “memory term”, enables the existence of a trivial so-
lution y(t) = x(t + td), which can be easily verified by direct substitution in the system above.

1



2 CHAPTER 1 INTRODUCTION

The striking aspect of this solution is its meaning: the state of the driven systemy anticipates
the driver’s statex. In other words, the slave predicts the master. This counter-intuitive syn-
chronization manifold, called “anticipated synchronization” (AS) was discovered in 2000, by
Voss [4]. The existence of AS is even more remarkable when the dynamics of the master sys-
temx is “intrinsically unpredictable” as in chaotic systems [4, 6, 5]. Along these years, AS has
been shown to be stable in a plenty of scenarios, including theoretical and experimental works.

Voss also proposed another coupling scheme that could exhibit AS [4]. The “complete
replacement” was described by:

ẋ = −αx(t)+ f(x(t− td)), (1.2)

ẏ = −αy(t)+ f(x(t)).

The manifoldy(t) = x(t+ td) is also a solution of this system. In this situation, the anticipation
time can be arbitrarily large, while the stability of AS in the former case (Eq.1.1, called “delay
coupling”) requires some constraints on the constant delaytime τ and couplingK [4, 6, 5].
Despite this fact, the delay coupling scheme is more interesting since we can maintain the
master’s dynamics unperturbed and change just the slave’s couplings. In this Thesis we will
deal with the former case.

1.1.1 Physical systems

When Voss introduced the concept of AS, he proposed that it would open new avenues in
the study, prediction and control of chaotic systems [4, 6, 5]. Indeed, one of the first numerical
verification of AS was done by Masoller [7] in the following year. She numerically found
anticipated synchronization regime in a model of two chaotic semiconductor lasers with optical
feedback when a small amount of the intensity of master laserwas injected coherently into the
slave laser.

AS was also observed between delayed-coupled chaotic maps [8]. Masoller and Zanette
analytically studied the stability properties of the synchronized states. Since time delays in
maps are discrete, the dimensionality of the problem remains finite, whereas ordinary differen-
tial equations with finite time delays mathematically constitute an infinite-dimensional system.
Depending on the parameters, the maps may present AS or delayed synchronization (the usual
retarded or lag synchronization). Hernández-García et al.[9] studied two types of coupled
chaotic maps, 1D Bernoulli-like maps and 2D Baker maps, in which an analytic treatment of
the stability of the AS regime was possible. They also showedthat the numerical simulations
were in good agreement with the analytic predictions.

The first experimental observations of AS was done by Sivaprakasam et al. [10]. They
handled two diode lasers as transmitter and receiver. The master laser was rendered chaotic by
the application of an optical feedback from an external-cavity. This experimental verification
of anticipating chaotic synchronization unveiled great opportunities for application in optical
communications, information processing, and in controlling delay induced instabilities in a
wide class of nonlinear systems.

Other experiments with unidirectionally coupled lasers reported anticipated and delayed
synchronization (DS) regimes, depending on the differencebetween the transmission time and
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the feedback delay time [11, 12]. The two regimes were observed to have the same stability of
the synchronization manifold in the presence of small perturbations due to noise or parameter
mismatches [12].

AS was also verified in experiments with electronic circuits[13, 14, 15, 16]. The electronic
circuits allow for a real-time anticipation of even strongly irregular signals. It was found that
synchronization of the driven circuit with chaotic future states of the driving circuit is insensi-
tive to signal and system perturbations. [13, 14]. Moreover, a transition from AS to DS through
zero-lag synchronization with excitatory and inhibitory couplings, as a function of the coupling
delay, was reported in [17, 18].

A simple linear analysis was employed by Calvo et al. [19] to show the minimal require-
ments necessary to reproduce AS. Numerically, AS was observed in two dissipative determin-
istic ratchets driven externally by a common periodic force[20], in unidirectionally coupled
ring and linear arrays of chaotic systems [21, 22], in a single system having two different time
delays (the feedback and coupling delay [23]), and in a new coupling scheme with varying time
delay [24]. Moreover, AS has been used as a mechanism to estimate the parameters of chaotic
systems [25], to predict [26] and to control chaotic trajectories [27, 28].

An algorithm of coupling design for a long-term anticipation time was proposed by [29]
Its efficacy was demonstrated for the Rössler system, the double-scroll Chua circuit, and the
Lorenz system. The algorithm is based on phase-lag compensation in the time-delay feedback
term of the slave system. The maximum prediction time attained with this algorithm is larger
than that obtained with the diagonal coupling usually used in the literature.

A new method for achieving AS without the time delay in unidirectionally coupled chaotic
oscillators was proposed in 2005 [30]. The method uses a specific parameter mismatch between
the drive and response that is a first-order approximation totrue time delay coupling. The
stability analysis, numerical results and an experimentalobservation of the effect in radio-
frequency electronic oscillators was presented [30].

1.1.2 Biological systems

After several works in physical systems, a reasonable question arises whether AS can ap-
pear in natural (not man-made) systems. In his first paper about AS, Voss already proposed
the investigation of physiological systems: “Since the underlying mechanisms are so simple, it
should be worth searching for synchronization in physiological systems, where delayed feed-
back dynamics seem to play a crucial role [31]. In particular, arrays of phase-locked oscillators
are suspected to be important for an understanding of neuronal information processing, and the
introduction of a physiologically motivated time delay mayimprove such models [32].”

The first attempt to find AS in biological inspired systems wasdone by Ciszak et al. [33].
They studied two unidirectionally coupled FitzHugh-Nagumo neuron models in the presence of
negative delayed self-feedback in the slave (see Fig.1.1). They showed that AS occurs in this
non-autonomous dynamical system, driven by white noise [33, 34, 35]. In such models, even
when the neurons were tuned to the excitable regime, the slave neuron was able to anticipate
the spikes of the master neuron, working as a predictor [14].

In 2013 Pyragiené and Pyragas [36] investigated AS in nonidentical chaotic neuronal mod-
els unidirectionally coupled in a master-slave configuration without a time delay feedback.
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Figure 1.1: Schematic representation of two model neurons coupled in a master-slave config-
uration, with a negative delayed self-feedback loop (characterized by the delay timetd = τ in
Eq.1.1) in the slave neuron. Reproduced from Ciszak et al. [33].

Based on the modified scheme proposed in [30], they replaced the feedback termK(x(t)−
y(t− td)) in Eq.1.1by the simpler coupling without a time delay:K(x(t)−y(t)). They showed
that if the parameters of chaotic master and slave systems are mismatched in such a way that
the mean frequency of a free slave system is greater than the mean frequency of a master
system, then both the AS and DS regimes can be achieved. In fact, the slave neuron antici-
pates the chaotic spikes of the master neuron for coupled Rössler systems as well as for two
different neuron models: the Hindmarsh-Rose and the adaptive exponential integrate-and-fire
neurons [36].

1.1.2.1 The inhibitory feedback loop

Though potentially interesting for neuroscience, it is nottrivial to compare these theoret-
ical results with real neuronal data. The main difficulty lies in requiring that the membrane
potentials of the involved neurons be diffusively coupled.While a master-slave coupling of the
membrane potentials could in principle be conceived by means of electrical synapses (via gap
junctions) [37] or ephaptic interactions [38], no biophysical mechanism has been proposed to
account for the delayed inhibitory self-coupling of the slave membrane potential employed by
Ciszak et al. [33, 34, 14].

In the brain, the vast majority of neurons are coupled via chemical synapses, which can
be excitatory or inhibitory. In both cases, the coupling is directional and highly nonlinear,
typically requiring a suprathreshold activation (e.g. a spike) of the pre-synaptic neuron to
trigger the release of neurotransmitters. These neurotransmitters then need to diffuse through
the synaptic cleft and bind to receptors in the membrane of the post-synaptic neuron. Binding
leads to the opening of specific channels, allowing ionic currents to change the post-synaptic
membrane potential [37]. This means that not only the membrane potentials are not directly
coupled, but the synapses themselves are dynamical systems.

We proposed to bridge this gap investigating whether AS can occur in biophysically plau-
sible model neurons coupled via chemical synapses. More interesting, we replaced the self-
feedback loop by a dynamical inhibitory loop mediated by an interneuron [39]. Such inhibitory
feedback loop is one of the most canonical neuronal motifs inthe brain [40, 41]. It was found
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to play several important roles, for instance, in the spinalcord [42], thalamus [43, 44], cortex,
etc. Furthermore, we extend our results to population models in which the inhibitory loop is
mediated by a pool of interneurons. The existence of AS mediated by a dynamical inhibition
unveils several possibilities in the investigation of AS inother biological systems.

1.2 Brief computational neuroscience overview

The brain is a complex system whose components create networks that continually gen-
erate complex patterns. These brain networks span over multiple temporal and spatial scales.
The notion that the brain can be fully reduced to the operation of neurons or, in the opposite
view, that cognition can be understood without making reference to its biological substrates
are exaggerated simplifications [45]. Although several brain regions show significant special-
ization, higher functions such as cross-modal information, integration, abstract reasoning and
conscious awareness are viewed as emerging from interactions across distributed functional
networks. Indeed, most brain functions are thought to rely on the interrelationship between
segregation and integration. The coexistence of these two principles is considered the origin of
neural complexity [45]

Once the cellular machinery for generating impulses and fortransmitting them rapidly be-
tween cells had evolved, connectivity became a way by which neurons could generate diverse
patterns of response and mutual statistical dependence. Connectivity allows neurons to act both
independently and collectively. In this sense, the brain function is fundamentally integrative; it
requires that components and elementary processes work together giving rise to complex pat-
terns. Connectivity is essential for integrating the actions of (segregated) individual neurons
and thus for enabling cognitive processes such as perception, attention, and memory. Connec-
tivity translates unitary events at the cellular scale intolarge scale patterns.

1.2.1 Neuronal level

Neurons fire spikes and their main behaviors are described bytheir action potentials. There-
fore, neurons can be classified by their firing patterns, for example, regular spiking (RS), intrin-
sically bursting (IB), chattering (CH), fast-spiking (FS), low-threshold spiking (LTS), thalamo-
cortical (TC) or resonator (RZ) Typical responses of each ofthese classes to an external applied
currentI(t) are shown in Fig.1.2.

The most simple models representing a minimal biophysical interpretation for an excitable
neuron are the conductance-based models. The first model of spiking neurons was proposed
by Alan Lloyd Hodgkin and Andrew Huxley in 1952 [46]. It describes the ionic mechanisms
underlying the initiation and propagation of the action potentials in the squid giant axon. The
precise mathematical description of the axon was possible due to two main features. First,
this axon has a large length and diameter, which permitted electrophysiological intracellular
recordings. Second, it has mainly two types of voltage gatedion channels. Since ion channels
are selective to particular ionic species, such as sodium orpotassium, they give rise to specific
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Figure 1.2: Examples of different firing patterns that neurons can exhibit. Electronic version of
the figure and reproduction permissions are freely available at www.izhikevich.org.

ionic currents. The capacitive current is equal to the sum ofall ionic currents:

Cm
dV
dt

= ∑ Iion (1.3)

whereCm is the membrane capacitance of the cell and the ionic currentassociated to ionx
follows the Ohm’s law:Ix = Gx(Ex−V). Ex is the reversal potential of the ion andGx is the
channel conductance. It is proportional to the maximum conductanceGx and the dynamical
variables describing the activation or inactivation of thechannels.

Therefore, the complete model consists of four coupled ordinary differential equations asso-
ciated to the membrane potentialV and the ionic currents flowing across the axonal membrane
corresponding to the Na+, K+ and leakage currents. The gating variables for sodium areh and
m and for potassium isn:

Cm
dV
dt

= GNam
3h(ENa−V)+GKn4(EK −V)

+Gm(Vrest−V)+ I +∑ Isyn (1.4)
dx
dt

= αx(V)(1−x)−βx(V)x , (1.5)

wherex ∈ {h,m,n}. The voltage dependent ratesαx andβx were fitted experimentally in the
seminal work of Hodgkin and Huxley [46].

In its simplest version, the Hodgkin-Huxley (HH) model represents a neuron by a sin-
gle isopotential electrical compartment, neglects ion movements between subcellular compart-
ments, and represents only ion movements between the insideand outside of the cell. There
are several more detailed models, called multi-compartmental models [47, 48, 49], which take
into account, for example, neuronal morphology and spatialdistribution of ion channels. In the
opposite direction, several reduced models [50, 51, 52] are available in order to describe with
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Figure 1.3: Comparing biological plausibility and implementation cost among different neuron
models. Figure extracted from Izhikevich’s paper [53].

minimal ingredients specific dynamical features of real neurons. In particular, these simplified
model are useful in analytical studies and large-scale computations.

The choice of the best model depends on the questions one is interested to answer. This
choice is also restricted by the available computational power. Izhikevich tried to answer this
question and to show why his own model is useful in a paper entitled “Which model to use for
cortical spiking neurons?” [53]. In his work, he showed a detailed comparison of the neuro-
computational properties of spiking and bursting models. The main results are summarized
in Fig. 1.3. Along this Thesis we use conductance-based model such as HHand also simpli-
fied models, for example, the Izhikevich [51], Morris-Lecar [54] and Integrate-and-Fire [55]
models. Each employed model is described in detail when necessary.
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Figure 1.4: Standard model of chemical synaptic transmission [54]. (a) A presynaptic action
potential propagates down the axon and reaches the nerve terminal. (b) Depolarization of the
nerve terminal activates de voltage-gated Ca2+ channels in the presynaptic membrane. The
increasing of the intracellular concentration of Ca2+ promotes the neurotransmitter release. (c)
The neurotransmitters in the synaptic cleft activate ligand gates ions channels on the postsy-
naptic membrane, permitting the entry of the specific ions (Na+ in this example) and leading
to an excitatory postsynaptic potential. Reproduced from Jessell and Kandel [56].

1.2.2 Chemical synapses

Spikes are generally not directly transmitted between Communication between neurons re-
quires the exchange of electrical or chemical signals. These connections, called synapses, are
the dynamical links of our neuronal networks. Depending on the transmission mechanisms,
they can be divided in chemical or electrical synapses. In electrical synapses the membranes of
the two communicating neurons come extremely close at the synapse and are actually linked
together by an intercellular specialization called a gap junction [57]. In chemical synapses,
the electrical activity in the presynaptic neuron induces (via the activation of voltage-gated
calcium channels) the release of neurotransmitters that binds to receptors located in the postsy-
naptic cell. The neurotransmitter may initiate an electrical response (postsynaptic potential) or
a secondary messenger pathway that may either excite or inhibit the postsynaptic neuron (see
Fig. 1.4). Here we will use mainly chemical synapses.

In the brain, synaptic transmission is usually mediated by excitatory (depolarize) and in-
hibitory (hyperpolarize) amino acid neurotransmitters, glutamate and GABA, respectively. Glu-
tamate activates AMPA/kainate receptors associated to fast transmission, and NMDA receptors
associated to slow transmission and synaptic plasticity. It is worth mentioning that there is a
plethora of physiological subtypes within a given receptorclass. In addition, its properties are
known to vary depending on the particular subunits that makea receptor. Typically an exci-
tatory (inhibitory) synaptic current facilitates (hampers) the firing of the postsynaptic neuron.
Moreover, one specific neuron can only excite or inhibit the others, not both. Hence, neurons
can also be labeled as excitatory or inhibitory neurons [58].
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The macroscopic behavior of synaptic currents can be described by kinetic models. It means
the synaptic current is described by Ohm’s law:

I (i) = gir
(i)(V −Ei), (1.6)

whereV is the postsynaptic potential,gi the maximal conductance,Ei the reversal potential, and
the fractionr(i) (i =AMPA,NMDA,GABA A,GABAB) of bound synaptic receptors is modeled
by a first-order kinetic dynamics:

dr(i)

dt
= αi [T](1− r(i))−βir

(i). (1.7)

[T] is the neurotransmitter concentration in the synaptic cleft and the values of the rate con-
stantsαA, βA, αG, andβG are known to depend on a number of different factors and vary
significantly [59, 60, 61]. Simple kinetic models may not adequately simulate the finedetails
of synaptic currents, but they provide a good approximationto some features such as rise, de-
cay, voltage dependence and summation of currents. They areuseful for describing general
behavior of small microcircuits. Also important, they maintain computational efficiency in
simulations of larger neuronal networks.

1.2.3 Neuronal populations

Neuronal networks exhibit complex spatial and temporal patterns even in the absence of
external input. Specific cognitive tasks require the activation of different brain regions and
patterns. Therefore, neuronal population models should encompass two main aspects. First,
capture the large-scale interareal behavior at multiple temporal scales as well as neuronal
scale features. Second, relate the activity patterns during different situations to the underly-
ing anatomical connectivity of the brain.

In a neuronal population model we know the structural connectivity (i.e. anatomical) and
we can explore the functional and effective connectivity (related to correlation and direction
of the information flux respectively) under distinct constraints [62]. This can provide useful
insights to the reversal problem. Typically we can extract functional and effective relations
between distinct brain regions from experimental data, butwe do not know the anatomical
connectivity.

Usually, biophysically plausible populations models are networks of spiking neurons mod-
els linked via chemical synapses. Cortical-like models typically consider the proportion of
excitatory and inhibitory neurons as 80% to 20% in the cortexand sparse connectivity between
neurons [45]. In addition, experimental data suggest that cortical regions exhibit small-worlds
properties, which is hypothesized to promote economy and efficiency during the information
transmission. Nevertheless, several studies propose different topologies to brain networks, such
as randomly, hierarchical, all-to-all connections, or a mixture of them.

1.2.4 Synchronization in the brain

It is widely recognized that the brain’s ability to generateand sense temporal information is
a prerequisite for both action and cognition. Synchronous rhythms represent a core mechanism
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for temporal coordination of neuronal activity. In the lastdecades, theoretical and experimental
studies have made significant advances to comprehend the cellular and circuit basis of these
oscillations [63]. A major breakthrough was the realization that synaptic inhibition plays a
fundamental role in the rhythmogenesis. It is important to note that neuronal correlation implies
synchronization in some time scale, which can occur with or without oscillations. However,
abnormal neural synchronization is tightly related to mental disorders like schizophrenia and
autism [64]. Altogether, it is not well known if synchronization emerges as an epiphenomenon
or what is its functional significance.

How information from distinct neuronal regions is exchanged is a major question underly-
ing the binding problem. In other words, how objects, colors, sounds, background and abstract
or emotional features are combined into a single experience? In the absence of a coordinat-
ing center, the binding by synchrony hypothesis [65] was spread (but not completely accepted)
within the scientific community. It suggests that synchronization works as a coordinator to
select and route signals and bind together spatially segregated regions.

More recently, another hypothesis gained several endorsers, the communication-through-
coherence [66]. Fries proposed that activated neuronal oscillation and rhythmic excitability
fluctuations produce temporal windows for communication. Only coherently oscillating neu-
ronal groups can interact effectively, because their communication windows for input and for
output are open at the same times. Thus, a flexible pattern of coherence defines a flexible
communication structure, which subserves our cognitive flexibility.

1.3 Experimental considerations

In neuroscience, electrophysiology is the study of the electrical properties of neurons and
tissues. It involves measurements of voltage changes and electric currents on a wide variety of
scales, from single ion channel proteins to large-scale electric signals in the nervous system. In-
tracellular recording involves measuring voltage and/or current across the neuronal membrane,
whereas extracellular field potentials recordings are related to local current sinks or sources
that are generated by the collective activity of many cells.We describe below some techniques
that could facilitate the investigation of anticipated synchronization in neuronal networks.

Dynamic clamp is an electrophysiological method that uses areal-time interface between
one or several living cells and a computer to simulate dynamic processes such as membrane
potential or synaptic currents. Each living cell is impaledby one or more sharp or patch mi-
cropipette electrodes and its membrane potential is amplified and fed into the dynamic clamp
machine. The dynamic clamp system contains a model of the membrane or synaptic conduc-
tance to be inserted in the living cells. It computes the currents generated by the modeled
conductances and outputs it in real-time. That current is injected into the living cell, which
therefore receives the same current as if it contained the membrane or synaptic conductance
modeled with the dynamic clamp [67]. A hybrid patch clamp setup [68], similar to this, is de-
scribed in Chapter 2 in a proposed experiment to investigateAS between a master and a slave
neuron in the presence of an inhibitory feedback loop.

The hypothesis that neural assemblies form the basic functional unit of operation of the
mammalian central nervous system was originally proposed by Donald Hebb [69] more than
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60 years ago. Since then, several neurophysiologists have attempted to design electrophysiolog-
ical methods capable of testing the principles governing the operation of dynamic distributed
neural systems. In this sense, the development of multi-electrode recordings was the major
breakthrough in the field. In particular, the local field potential (LFP) refers to the electric po-
tential in the extracellular space around neurons, which can be recorded using multi-electrode
arrays. It consists in an invasive technique, recorded in depth from within the cortical tissue
or other deep brain structures, in alert or anesthetized subjects. Since LFPs are generated by
synchronized synaptic currents arising on cortical neurons, they represent one of the best type
of signals to investigate time differences between synchronized cortical regions. In fact, in
Chapter 5, we propose that some counter intuitive phenomenareported in LFP data [70, 71] are
evidences of anticipated synchronization in the cortex.

Less direct observations of electrical brain activity involve the recording of electromagnetic
potentials generated by combined electrical currents of large neuronal populations. Electroen-
cephalography (EEG) and magnetoencephalography (MEG) techniques are noninvasive record-
ings, made through groups of sensors placed on, or near, the surface of the head. EEG and MEG
directly record signals generated directly from neuronal activity and consequently have a high
temporal resolution. Although the spatial resolution is poor compared to the LFP, intracellular
recordings from cortical neurons exhibit a close correspondence between EEG/LFP activity
and synaptic potentials [72]. Therefore, we expect that the existence of AS in the brain can also
be verified through EEG measures. Indeed this would open new possibilities in the study of AS
in humans.

Since AS has not been reported in any biological system and inparticular in any neuronal
systems, we investigate the existence of AS in several biophysically inspired models that could
be potentially tested. Our main concern was to employ biologically plausible features in order
to be able to propose experimental setups in which AS could beverified. We investigated AS in
two scales: neuronal level and large-scale populations. Firstly, intracellular recordings such as
dynamic clamp, which allows the measure of spike timing of connected single cells, could be
useful to verify the results presented in Chapter 2 and 3 for neuronal microcircuits. Secondly,
multi-electrode arrays recordings provide data that can becompared to the results of neuronal
populations model described in Chapter 4. Therefore, in Chapter 5 we analyze cortical data
from LFP recordings and compare them to our models. Finally,in Chapter 6 we show results
of spike-timing dependent plasticity in neuronal networkswhich exhibits AS that could be
experimentally tested in both neuronal and populational scales.





CHAPTER 2

Anticipated synchronization in microcircuits

Small networks that can be represented by low dimensional systems have attracted a lot of
attention from neuroscientists along decades. Synchronization properties of a few coupled neu-
rons have been exhaustively studied analytically, numerically and experimentally. Despite the
abundant literature on synchronization of neuronal motifs, the first attempt to find anticipated
synchronization in a biologically plausible model [39] which can be experimentally tested is,
as far as we know, the one we describe in this chapter. Since neuron models are good candi-
dates to represent the master and slave systems, AS means that the slave (postsynaptic) neuron
could fire a spike right before the master (presynaptic) neuron does [33]. However, the delayed
self-feedback on the slave, suggested by Voss to attain AS, is unrealistic in neuronal circuitry.
Therefore, we propose to bridge this gap by replacing the delayed self-feedback term by an
inhibitory feedback loop mediated by chemical synapses andan interneuron [39].

2.1 Master-Slave-Interneuron: the 3-neuron motif

We start by mimicking the original master-slave circuit (described by eqs. (1.1)) with a
unidirectional excitatory chemical synapse (M−→ S in Fig.2.1(a)). In a scenario with standard
biophysical models, the inhibitory feedback we propose is given by an interneuron (I) driven by
the slave neuron, which projects back an inhibitory chemical synapse to the slave neuron (see
Fig. 2.1(a)). So the time-delayed negative feedback is accounted for by a chemical inhibition
which impinges on the slave neuron some time after it has spiked, simply because synapses
have characteristic time scales. Such inhibitory feedbackloop is one of the most canonical
neuronal microcircuits found in the nervous system, as for instance, in the spinal cord [42],
cortex [42], thalamus [43, 44] and nuclei involved with song production in the bird brain [73].
For simplicity, we will henceforth refer to the 3-neuron motif [ 40, 41] of Fig. 2.1(a) as a
Master-Slave-Interneuron (MSI) system.

As we will show below, whether or not the MSI circuit can exhibit AS depends, among other
factors, on the excitability of the three neurons. In the MSI, this is controlled by a constant
applied current (see section2.1). To test the robustness of the results (and at the same time
improve the realism and complexity of the model), in section2.4we study the four-neuron motif
depicted in Fig.2.1(b), where the excitability of the MSI network is chemicallymodulated via
synapses projected from a global driver (D). From now on, we refer to the 4-neuron motif as a
Driver-Master-Slave-Interneuron (DMSI) microcircuit.

13
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Figure 2.1: (a) Three neurons coupled by chemical synapses in the master-slave-interneuron
(MSI) configuration : excitatory AMPA synapses (with maximal conductancegA) couple mas-
ter (M) to slave (S) and slave to interneuron (I), whereas an inhibitory GABAA synapse (with
maximal conductancegG) couples interneuron to slave. (b) Same as (a), except that all three
neurons of the MSI circuit receive excitatory (NMDA) synapses from a driver neuron (D).

2.1.1 Neuron model

In the above networks, each node is described by a Hodgkin-Huxley (HH) model neu-
ron [46], consisting of four coupled ordinary differential equations associated to the membrane
potentialV and the ionic currents flowing across the axonal membrane corresponding to the
Na+, K+ and leakage currents. The gating variables for sodium areh andm and for the potas-
sium isn. The equations read [54]:

Cm
dV
dt

= GNam
3h(ENa−V)+GKn4(EK −V)

+Gm(Vrest−V)+ I +∑ Isyn (2.1)

dx
dt

= αx(V)(1−x)−βx(V)x , (2.2)

wherex∈ {h,m,n},Cm= 9π µF is the membrane capacitance of a 30×30×π µm2 equipoten-
tial patch of membrane [54], I is a constant current which sets the neuron excitability and∑ Isyn

accounts for the interaction with other neurons. The reversal potentials areENa=115 mV,EK =
−12 mV andVrest = 10.6 mV, which correspond to maximal conductancesGNa = 1080π mS,
GK = 324π mS andGm = 2.7π mS, respectively. The voltage dependent activation and inacti-
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vation rates in the Hodgkin-Huxley model have the form:

αn(V) =
10−V

100(e(10−V)/10−1)
, (2.3)

βn(V) = 0.125e−V/80, (2.4)

αm(V) =
25−V

10(e(25−V)/10−1)
, (2.5)

βm(V) = 4e−V/18, (2.6)

αh(V) = 0.07e−V/20, (2.7)

βh(V) =
1

(e(30−V)/10+1)
. (2.8)

Note that all voltages are expressed relative to the restingpotential of the model atI = 0 [54].
According to Rinzel and Miller [74], in the absence of synaptic currents the only attractor

of the system of equations2.1-2.8for I . 177.13 pA is a stable fixed point, which loses stability
via a subcritical Hopf bifurcation atI ≃ 276.51 pA. For 177.13 pA. I . 276.51 pA, the stable
fixed point coexists with a stable limit cycle.

2.1.2 Synaptic coupling

AMPA (A) and GABAA (G) are the fast excitatory and inhibitory synapses in our model
[see Fig.2.1(a)]. Following Destexhe et al [58], the fractionr(i) (i = A,G) of bound (i.e. open)
synaptic receptors is modeled by a first-order kinetic dynamics:

dr(i)

dt
= αi [T](1− r(i))−βir

(i), (2.9)

whereαi andβi are rate constants and[T] is the neurotransmitter concentration in the synaptic
cleft. For simplicity, we assume[T] to be an instantaneous function of the presynaptic potential
Vpre:

[T](Vpre) =
Tmax

1+e[−(Vpre−Vp)/Kp]
, (2.10)

whereTmax= 1 mM−1 is the maximal value of[T], Kp = 5 mV gives the steepness of the
sigmoid andVp = 62 mV sets the value at which the function is half-activated [58].

The synaptic current at each synapse is given by

I (i) = gir
(i)(V −Ei), (2.11)

whereV is the postsynaptic potential,gi the maximal conductance andEi the reversal potential.
We useEA = 60 mV andEG =−20 mV.

The values of the rate constantsαA, βA, αG, andβG are known to depend on a number
of different factors and significantly vary [59, 60, 61]. To exemplify some of our results, we
initially fix some parameters, which are set to the values of Table2.1 unless otherwise stated
(section2.2). Then we allow these parameters (as well as the synaptic conductances) to vary
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MSI DMSI
αA (mM−1ms−1) 1.1 1.1

βA (ms−1) 0.19 0.19
αG (mM−1ms−1) 5.0 5.0

βG (ms−1) 0.30 0.60
αN (mM−1ms−1) — 0.072

βN (ms−1) — 0.0066
gA (nS) 10 10
I (pA) 280 160

Table 2.1: Standard values employed in the model. See text for details.

within physiological range when exploring different synchronization regimes (see sections2.3
and2.4).

The slow excitatory synapse is NMDA (N) and its synaptic current is given by:

I (N) = gNB(V)r(N)(V −EN), (2.12)

whereEN = 60 mV. The dynamics of the variabler(N) is similar to eq. (2.9) with αN =
0.072 mM−1ms−1 and βN = 0.0066 ms−1. The magnesium block of the NMDA receptor
channel can be modeled as a function of postsynaptic voltageV:

B(V) =
1

1+e(−0.062V)[Mg2+]o/3.57
, (2.13)

where[Mg2+]o = 1 mM is the physiological extracellular magnesium concentration.
In what follows, we will drop the neurotransmitter superscriptsA, G andN from the synap-

tic variablesr andI . Instead we use double subscripts to denote the referred pre- and postsy-
naptic neurons. For instance, the synaptic current in the slave neuron due to the interneuron
(the only inhibitory synapse in our models) will be denoted as IIS, and so forth.

2.2 Three dynamical regimes

2.2.1 Phase-locking: delayed and anticipated synchronization

Initially, we describe results for the scenario where all neurons receive a constant current
I > 280 pA. This corresponds to a situation in which the fixed points are unstable and, when
isolated, all neurons spike periodically. All other parameters are as in Table2.1. For different
sets of the inhibitory conductancegG our system can exhibit three different behaviors. To
characterize them, we definetM

i as the time the membrane potential of the master neuron is at
its maximum value in thei-th cycle (i.e. itsi-th spike time), andtS

i as the spike time of the slave
neuron which is nearest totM

i .
The delayτi is defined as the difference (see Fig.2.2):

τi ≡ tS
i − tM

i . (2.14)
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Initial conditions were randomly chosen for each computed time series. Whenτi converges to a
constant valueτ, a phase-locked regime is reached [75]. If τ > 0 (“master neuron spikes first”)
we say that the system exhibits delayed synchronization (DS) [Fig. 2.2(a)]. If τ < 0 (“slave
neuron spikes first”), we say that anticipated synchronization (AS) occurs [Fig.2.2(b)]. If τ
does not converge to a fixed value, the system is in a phase drift (PD) regime [75]. The extent
to which the AS regime can be legitimately considered “anticipated” in a periodic system will
be discussed below.

(a)

49960 49970 49980
t (ms)

0

40

80

120

V
 (

m
V

)

M
S
I t

i
 - t

i-1
τ = t

i
 - t

i

(AS)

MS SM

(b)

49960 49970 49980 49990
t (ms)

0

40

80

120
V

 (
m

V
)

M
S
It

i
 - t

i+1
τ = t

i
 - t

i

(DS)
M SS M

Figure 2.2: Membrane potentialV as a function of time for an external currentI = 280 pA
in the master (M), slave (S), and interneuron (I) neurons. The plot illustrates two regimes: (a)
gG = 20 nS leads to delayed synchronization (DS), whereτ > 0, and (b)gG = 40 nS leads to
anticipated synchronization (AS), whereτ < 0. Other parameters as in Table2.1.

In Figure2.3 we show examples of time series in the three different regimes (DS, AS and
PD). The different panels correspond to the membrane potential, fraction of activated recep-
tors for each synapse, and synaptic current in the slave neuron. For a relatively small value
of the inhibitory coupling [gG = 20 nS, Fig.2.3(a)] the slave neuron lags behind the master,
characterizing DS. In Fig.2.3(b), we observe that by increasing the value of the inhibitory cou-
pling (gG = 40 nS) we reach an AS regime. Finally, for strong enough inhibition [gG = 60 nS,
Fig. 2.3(c)] the PD regime ensues.

2.2.2 Phase-drift

In the DS and AS regimes the master and slave neurons spike at the same frequency. How-
ever, when the system reaches the PD regime the mean firing rate of the slave neuron becomes
higher than that of the master. The counterintuitive resultshown in Fig.2.4(a) emerges: the
mean firing rate of the slave neuronincreaseswhile increasing the conductance of theinhibitory
synapse projected from the interneuron. For the particularcombination of parameters used in
Fig. 2.4(a), the transition turns out to be reentrant, i.e., the system returns to the DS regime
for sufficiently strong inhibition (a more detailed exploration of parameter space will be pre-
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Figure 2.3: Time series of the membrane potentials (V), bound receptors (r) and synaptic
currents (I ), with model parameters as in Table2.1 for the MSI motif. Note that the system is
periodic in the DS and AS regimes [(a) and (b) respectively],but not in the PD regime (c).



2.3 SCANNING PARAMETER SPACE 19

0 30 60 90 120 150
g

G
(nS)

1

1.01

1.02

F
S /

 F
M

11 12 13 14 15

t
S

i-1 
- t

S

i-2 
(ms)

11

12

14

15

tS i - 
tS i-

1
 (m

s) g
G
 = 60 nS

g
G
 = 80 nS

g
G
 = 70 nS

g
G
 = 100 nS

(a) (b)

Figure 2.4: (a) The mean firing rate of the slave (FS) coincides with the mean firing rate of the
master (FM) for DS and AS regimes, but it is larger for PD. (b) In PD, the return map of the
interspike interval of the slave is consistent with a quasi-periodic system (the pink star shows
the return map of the master).

sented below). Figure2.4(b) shows the return map of the interspike interval (ISI) of the slave,
which forms a closed curve (touching the trivial single-point return map of the master). This is
consistent with a quasi-periodic phase-drift regime.

2.3 Scanning parameter space

Note that in this simple scenariogG plays an analogous role to that ofK in Eq.1.1, for which
AS is stable only whenK > Kc (eventually with reentrances) [76]. Moreover, the behavior of
the synaptic current in the slave neuron is particularly revealing: in the DS regime [Fig.2.3(a)],
it has a positive peak prior to the slave spike, which drives the firing in the slave neuron. In
the AS regime [Fig.2.3(b)], however, there is no significant resulting current, except when the
slave neuron is already suprathreshold. In this case, the current has essentially no effect upon
the slave dynamics. This situation is similar to the stable anticipated solution of Eq.1.1, when
the coupling term vanishes.

The dependence of the time delayτ on gG is shown in Fig.2.5 for different values of the
external currentI and maximal excitatory conductancegA. Several features in those curves
are worth emphasizing. First, unlike previous studies on AS, where the anticipation time was
hardwired via the delay parametertd [see eq.(1.1)], in our case the anticipation timeτ is a result
of the dynamics. Note thatgG (the parameter varied in Fig.2.5) does not change the time scales
of the synaptic dynamical variables (r), only the synaptic strength.

Secondly,τ varies smoothly withgG. This continuity somehow allows us to interpretτ < 0
as a legitimately anticipated regime. The reasoning is as follows. ForgG = 0, we simply have
a master-slave configuration in which the two neurons spike periodically. Due to the excitatory
coupling, the slave’s spike is always closer to the master’sspike which precedes it than to the
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master’s spike which succeeds it [as in e.g. Fig. (2.2)(a)]. Moreover, the time difference is
approximately 1.5 ms, which is comparable to the characteristic times of the synapse. In that
case, despite the formal ambiguity implicit in the periodicity of the time series, the dynami-
cal regime is usually understood as “delayed synchronization”. We interpret it in the following
sense: the system is phase-locked at a phase difference witha well defined sign [75]. Increasing
gG, the time difference between the master’s and the slave’s spikes eventually changes sign [as
in e.g. Fig. (2.2)(b)]. Even though the ambiguity in principle remains, there is no reason why
we should not call this regime “anticipated synchronization” (again a phase-locked regime, but
with a phase difference of opposite sign). In fact, we have not found any parameter change
which would take the model from the situation in Fig. (2.2)(a) to that of Fig. (2.2)(b) by grad-
ually increasingthe lag of the slave spike until it approached the next masterspike. If that ever
happened,τ would change discontinuously (by its definition). Therefore, the term “anticipated
synchronization” by no means implies violation of causality and should just be interpreted with
caution. As we will discuss later, the relative timing between pre- and postsynaptic neurons
turns out to be extremely relevant for real neurons.

Third, it is interesting to note that the largest anticipation time can be longer (up to 3 ms,
i.e. about 20% of the interspike interval) than the largest time for the delayed synchronization
(≈ 1.5 ms). If one increasesgG further in an attempt to obtain even larger values ofτ, however,
the system undergoes a bifurcation to a regime with phase drift (which marks the end of the
curves in Fig.2.5).
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Figure 2.5: Dependence of the time delayτ with the maximal conductancegG for different
values of the applied currentI andgA. The end of each curve (stars) marks the critical value of
gG, above which the system changes from AS to PD.

The number of parameters in our model is very large. The number of dynamical regimes
which a system of coupled nonlinear oscillators can presentis also very large. Notablyp/q-
subharmonic locking structured in Arnold tongues usually occur [77]. These occur in our
model as well, but not in the parameter region we are considering. In this context, an attempt to
map all the dynamical possibilities in parameter space would be extremely difficult and, most
important, improductive for our purposes. We therefore focus on addressing the main question
of this work, which is whether or not AS can be stable in a biophysically plausible model.
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Figure 2.6: Time delayτ (right bar) in the(gA,gG) projection of parameter space: DS (blue,
right), AS (red, middle) and PD (white, left — meaning that nostationary value ofτ was
found).

In Fig. 2.6we display a two-dimensional projection of the phase diagram of our model. We
employ the values in Table2.1, except forgA, which is varied along the horizontal axis. Note
that each black curve with circles in Fig.2.5corresponds to a different vertical cut of Fig.2.6,
along whichgG changes. We observe that the three different regimes are distributed in large
continuous regions, having a clear transition between them. Moreover the transition from the
DS to the AS phase can be well approximated by a linear relation gG/gA≈ 3.5 in a large portion
of the diagram.
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Figure 2.7: Time delayτ (right bar) in the(gA,gG) projection of parameter space for different
combinations ofβA andβG. From left to right we have respectively PD, AS and DS regimes,
as in Fig.2.6.

Linearity, however, breaks down as parameters are further varied. This can be seen e.g.
in Fig. 2.7, which displays the same projection as Fig.2.6, but for different combinations ofβG
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andβA. We observe that AS remains stable in a finite region of the parameter space, and this
region increases as excitatory synapses become faster.
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Figure 2.8: Time delayτ (right bar) in the(gA,gG) projection of parameter space for different
values ofI . PD, AS and DS regimes as in Fig.2.6.

Figure2.5 suggests that larger values of the input currentI eventually lead to a transition
from AS to DS. This effect is better depicted in Fig.2.8, where the DS region increases in
size asI (and therefore the firing rate) increases. Figures2.8(b)-(d) also show that the system
can exhibit reentrant transitions asgG is varied. Most importantly, however, it can be seen in
Figs.2.7and2.8that there is always an AS region in parameter space, as synaptic and intrinsic
parameters are varied.

As we will discuss later, the possibility of controlling thetransition between AS and DS
is in principle extremely appealing to the study of plasticity in neuroscience. However, in a
biological network, the input current would not be exactly constant, but rather be modulated by
other neurons. In the following, we test the robustness of ASin this more involved scenario,
therefore moving one step ahead in biological plausibility.

2.4 The effect of a common Driver

Let us consider the MSI circuit under a constant input current I = 160 pA. This is below the
Hopf bifurcation [74], i.e. none of the three neurons spikes tonically. Their activity will now
be controlled by the driver neuron (D), which projects excitatory synapses onto the MSI circuit
[see Fig.2.1(b)]. We chose to replace the constant input current by a slowly varying current, so
that the synapses projecting from the driver neuron are of the NMDA type. The driver neuron
receives a currentID = 280 pA, so it spikes tonically. All remaining parameters areas in the
second column of Table2.1. The interest in this case is to verify whether AS holds when the
excitability of the MSI circuit is modulated by a non-stationary current.
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Figure 2.9: Time series of the membrane potentials (V), bound receptors (r) and synaptic cur-
rents (I ), with model parameters as in Table2.1for DMSI. All the excitatory synaptic conduc-
tances aregN = gA = 10 nS while the inhibitory conductance is (a)gG = 10 nS, (b)gG = 60 nS
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.
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Figure 2.10: DMSI circuit (see Fig.2.1(b)). Delayτ (right bar) in the(gA,gG) projection
of parameter space for different combinations ofβA andβG. PD, AS and DS regimes as in
Fig. 2.6.

As shown in Fig.2.9 and2.10, we found in this new scenario a similar route from DS to
AS, and then the PD regime (compare with Fig.2.3and 2.7). Note that the characteristic time
(βN = 6.6 s−1) for the unbinding of the NMDA receptors is about ten times larger than the
interspike interval (ISI) of the driver neuron (which spikes at≈ 67 Hz). As a consequence,
rDM, rDS, rDI are kept at nearly constant values (with variations of≈ 10% around a mean
value see Fig.2.9(b)). The variations in the NMDA synaptic current are also small, which in
principle should make the system behave in an apparently similar way to the previous MSI
circuit. However, these small variations are important enough to increase the AS domain in
parameter space, in some cases even eliminating the PD region (see e.g. Fig.2.10 for βG =
0.30 ms−1). Therefore, at least in this case, the use of more biological plausible parameters
does not destroy AS, but rather enhances it.

In fact, the three regions in the MSI diagrams seem to retain their main features in the
DMSI circuit. When PD occurs, for example, the slave again spikes faster than the master
(see Fig.2.11(a)), like in the MSI circuit (compare with Fig.2.4(a)). Another signature of the
robustness of the PD phase against the replacement of a constant by a slowly-varying synaptic
current appears in the return map shown in Fig.2.11(b). It can be seen that it has the same
structure of its three-neuron counterpart shown in Fig.2.4(b).
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Figure 2.11: DMSI circuit (see Fig.2.1(b)). (a) The mean firing rate of the slave (FS) coincides
with the mean firing rate of the master (FM) for DS and AS regimes, but it is larger for PD. (b)
In PD, the return map of the interspike interval of the slave is consistent with a quasi-periodic
system.

2.5 Neuronal chain networks

The brain exhibits well defined sequences of neuronal processes during complex behav-
iors, such as cognitive tasks, motor sequences execution and recognition. One well known
model that reproduces multiple observations of precisely repeating firing patterns is the synfire-
chain [78, 79]. However, a lot of other networks can produce precise firingpatterns and gener-
ate sequences. For example, the execution and recognition of actions can be achieved through
the propagation of activity bursts along a biologically inspired neuronal chain [80], a chain
network can propagate stable activity with temporal precision in songbirds [81] and a chain of
chaotic slaves can exhibit AS [26].

We wondered if it is possible to control the temporal precision between spikes of different
neurons in a chain of slaves and interneurons (see Fig.2.12). Particularly, we are interested
to know whether this chain can exhibit AS. It is shown in Fig.2.13 that a chain of coupled
standard HH neurons driven by a constant current can providea mechanism for obtaining larger
anticipation and delay times between the first master and thelast slave than the 3-neuron motif.
Furthermore, the chain network motif has precise time differences among the spikes that depend
on the synaptic conductances and the external current.
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Figure 2.12: Chain of master (M), slaves (S) and interneurons (I). All parameters as in Table2.1
for the MSI circuit.

Figure 2.13: Membrane potential of each numbered neuron shown in Fig. 2.12. The chain
exhibits (a) DS for weak inhibitory synaptic conductancesgIS= 20 nS and (b) AS for stronger
inhibition gIS= 40 nS. Note that the largest anticipation (and delay) time isbetween neurons 1
and 5.

2.6 Proposed experiment

2.6.1 The hybrid patch clamp setup

The 3-neuron motif shown in Fig.2.1 can be experimentally reproduced in a hybrid patch
clamp setup. It means that AS could be testedin vitro. The required setup consists in three
steps. First, it is necessary to patch a real neuron (that would be our slave). Second, through
a dynamic clamp procedure, one excitatory and one inhibitory synapses are generated (from
simulated master and interneuron respectively). These generated synaptic currents are injected
through the intracellular recording pipette. Finally, thesimulated interneuron receives, in real-
time, excitatory synapses that were generated by each spikeof the slave.

Such setup has been used by Le Masson et al. [68] to study how an inhibitory feedback loop
controls spike transfer in thalamic circuits. They have verified that, depending on the value
of the inhibition, the slave and the interneuron exhibit coherent oscillations. This coherent
behavior was characterized by a peak in the cross-correlation function, which is defined by
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comparing the activity profiles of the two neurons across different time delays [82]. The peak in
the cross-correlation is a measure of the level of synchronybetween the two neurons, whereas
the time delay in which the peak occurs is the time lag of the synchronized regime, i.e. the
equivalent ofτ in our model.

Le Masson et al. [68] have reported that the positive correlation peak decreases for large
inhibition. However, they have not verified any increase in the negative correlation between the
master and the slave. One possibility for the absence of the AS regime is due to the fact that the
simulated retina cell activity (master) and the patched thalamocortical neuron (slave) present
very different dynamics.

We suggest that the AS regime could be verified in the hybrid setup if the simulated master
cell have similar dynamical properties as the biological patched neuron. To test this hypoth-
esis it is necessary to make our previous 3-neuron motif evenmore realistic. In this section,
we use a single-compartment modified Hodgkin-Huxley neuronmodel designed according to
Pospischil et al. [83] which is based on previous thalamocortical models [84, 85]. This model
was obtained from ModelDB [86]. It is well suited for simulating motifs in which the effectof
neuromodulators or pharmacological agents on identified conductances can be tested.

Figure 2.14: Characterizing the modified HH model. (a) Example of the membrane potential
of each neuron in the AS regime. The spiking frequency is smaller than in the standard HH. (b)
Excitatory and inhibitory post synaptic potential EPSP andIPSP generated by the AMPA and
the GABAA synapses employed in our model. (c) Time delayτi in each cycle, characterizing
DS (blue), AS (red) and PD (cyan) regimes. (d)τ as a function ofgG. Similar to what happens
in the standard HH, here there is a smooth and continuous transition from DS to AS.
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2.6.2 Modified Hodgkin-Huxley model

Each neuron is now described by:

Cm
dV
dt

= GNam
3h(ENa−V)+GKn4(EK −V)+GM p4(EK −V) (2.15)

+Gm(Vrest−V)+ I +∑ Isyn

whereGNa = 50 mS/cm2, GK = 5 mS/cm2, GM = 0.07 mS/cm2, Gm = 0.1 mS/cm2 ENa =
50 mV, EK = −100 mV. The three voltage-dependent currents are the sodiumand potassium
currents that generate action potentials and the extra “delayed-rectifier”K+ current (repre-
sented by the termGM p4(EK −V) in Eq.2.16). This slowK+ current is responsible for spike-
frequency adaptation firing rate and the afterhyperpolarization (AHP) of cortical pyramidal
cells. The gating variablesx= m,n,h are described as before:

dx
dt

= αx(V)(1−x)−βx(V). (2.16)

The steady-state activation and the time constant are, respectively, given byx∞ = αx/(αx+βx)
andτx = 1/(αx+βx), where:

αm =
−0.32(V −VT −13)

e−(V−VT−13)/4−1

βm =
0.28(V −VT −40)

e(V−VT−40)/5−1
αh = 0.128e−(V−VT−17)/18

βh =
4

1+e−(V−VT−40)/5

αn =
−0.032(V −VT −15)

e−(V−VT−15)/5−1

βn = 0.5e−(V−VT−10)/40−1. (2.17)

We useVT = 55 mV.
The gating variablep obeys the following equations:

dp
dt

= (p∞(V)− p)/τM(V)

p∞(V) =
1

1+e−(V+35)/10

τM(V) =
τmax

3.3e(V+35)/20+e−(V+35)/20
, (2.18)

whereτmax= 1 s. We can also take into account the effect of temperature (Tin Celsius) dividing
τmax by 2.3(T−36)/10, but here we considerT = 36 °C.

The model described by Eq.2.16can reproduce different eletrophysiological results from
the rat somatosensory cortex and thalamusin vitro [83]. It is also good to represent both



2.6 PROPOSED EXPERIMENT 29

excitatory and inhibitory cortex cells (see an example of the mean membrane potential of M,
S and I in Fig2.14(a)). Depending on the parameters it fits different neuron types as regular
spiking fast spiking, low-threshold spikes. Adding two more currents to Eq.2.16(one for high
and other for low threshold Ca2+) it can also generate bursts. By far the largest cell class in
neocortex is the so-called regular-spiking (RS) neuron, which is in general excitatory and most
often correlates with a spiny pyramidal-cell morphology. The typical response of RS cells to
depolarizing current pulses are trains of spikes with adaptation.

The model claims to represent one of the many possible compromises between simplicity
and biological realism. It is is more complex than nonlinearintegrate-and-fire models [87, 53,
88], but it is also more realistic because the ionic currents are identified and can be adjusted
to physiological measurements such as voltage-clamp data if needed. In order to mimic real
synapses it is also important to obtain realistic excitatory (inhibitory) post synaptic potentials
EPSP (IPSP). Both EPSP and IPS of our model are shown in Fig2.14(b). The synapses are
AMPA and GABAA as described in section2.1.

In this section we use this modified HH model to built-in the MSI motif illustrated in Fig.2.1
and to look for anticipated synchronization. Once again, controlling the synaptic conductances
we can find DS, AS and PD regimes. These regimes can be characterized by the sign of the
curveτi(#cycle) in Fig 2.14(c). Like in previous sections, the time delay in the transition from
DS to AS is a continuous and smooth function of the inhibitorysynaptic conductance (see
Fig 2.14(d)).

2.6.3 AS in the presence of noise

Here, we use experimental data from a patched neuron1 to improve our model and explore
the parameters in which the 3-neurons model of modified HH presents AS. The real cell patched
during the experiments fires spikes due to the injection of a noisy current, as we can see in
Fig. 2.15To mimic the membrane potential shown in this figure we have added noise to the
constant external current in our model. Then, the interspike interval is not constant, as can
be observed in Fig.2.16(a). The time delayτ between the master and the slave also varies in
each cycle. However,τ maintains a well defined sign, as shown in Fig.2.16(b) and the system
presents both DS and AS regimes depending on the strengthsgIS of the inhibitory synapse (see
Fig. 2.17). The mean value ofτ is a well behaved function ofgIS (as in the case without noise).

1Experiments were performed by Dr. Marylka Yoe Uusisaari, atthe Theoretical and Experimental Neurobiol-
ogy Unit in the Okinawa Institute of Science and Technology,Japan.
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Figure 2.15: Experimental data from a patch clamp recordingof cells in sliced tissues. (a)
and (b) Injected current in each recording. (c) and (d) Membrane potential of the same cell in
two different trials (corresponding to the two colors in each graph) repeating the same noise
(respectively (a) and (b)). (e) and (f) Example of an action potential zoomed in from (c) and
(d). Data were kindly provided by Dr. Marylka Yoe Uusisaari and Dr. Klaus Stiefel (Okinawa
Institute of Science and Technology, Japan).
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Figure 2.16: Characterizing DS and AS regimes in the presence of noise. (a) With colored
noise added to the input current, spiking is not periodic. (b) Under noisy dynamics, the time
delayτ in each cycle fluctuates around a mean with a well-defined sign(for the DS and AS
regimes) (c) and (d) Zoom of two different time series.gG controls the relative timing of the
master and slave spikes, leading to DS or AS.
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Figure 2.17: Time delay in each period for different values of inhibitory conductances.gG

increases from top to bottom:gG = 0,10,15,20,30,40 nS.

2.7 Other motifs

2.7.1 Bidirectional coupling

One practical application of anticipated synchronizationis to use the prediction of the slave
to prevent or stimulate a certain response in the master. In artificial intelligence an intelligent
system should be able to predict and act consequently. It means that if a system which exhibits
anticipated synchronization has an internal control system, it could, in principle, act before a
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Figure 2.18: Modified MSI motif. We incorporate the effect ofa small excitatory feedback
from the slave to the master. How does the system go from a unidirectional to a bidirectional
coupling?

specific event and avoid undesired behaviors.
Here we are interested in studying the biologically plausible counterpart of two dynamical

systems coupled as follows:

ẋ = f (x(t))+h(x(t),y(t− t2)), (2.19)

ẏ = f (y(t))+K[x(t)−y(t− td)].

whereh(x(t),y(t − t2)) is an arbitrary coupling function ofx and/or y. In physical systems,
typical couplings are the direct:h = y(t − t2) and the diffusive:h = y(t − t2)− x(t). In our
biologically inspired model we propose to add an excitatorychemical synapse from the slave
to the master to mimich(x(t),y(t − t2)). Compared to Eq.1.1 the extra term in Eq.2.19 is
an attempt to study the effect of an internal control system.Moreover, in neuroscience the
reciprocal connection is of great importance and abundant in the brain. Indeed, bidirectional
connections are more than two times as frequent than predicted by chance [89].

Therefore, we investigate the existence of AS regime in the modified 3-neuron motif shown
in Fig. 2.18, which has an extra excitatory synapse from the slave neuronto the master. We use
the standard HH model and chemical synapses with time decaysas in Table2.1. Each neuron
receives an external constant currentI = 200 pA, which implies the coexistence of a stable
fixed point and a stable limit cycle. In order to mimic the noise, each neuron also receives a
square pulsed current. The pulses obeys a Poisson distribution with rate parameterR= 200 Hz.
Each pulse has 1 ms width and 200 pA height. Moreover, the master neuron receives an extra
Poisson input withR= 50 Hz. Fig.2.19shows that the time series from the master and the
slave are different, as well as their interspike intervals (ISI). Like before, we define the time
delayτ as the mean value of the time delay in each period.

Aiming to understand the effect of the excitatory feedback from the slave to the master, we
have fixed the conductances constituting the inhibitory loop (gSI = gIS= 10 nS). We start from
gMS= 10 nS andgSM= 0 nS, i.e. a unidirectional coupling. Similar to previous results for this
canonical master-slave configuration, depending on the inhibitory conductance the system can
present both DS (gIS= 10 nS) or AS (gIS= 80 nS) regime. Then we increase the conductances
of the reciprocal coupling (gMS andgSM). We have attached the value ofgMS with thegSM in
the following way:gMS= gSI+gSM, which ensures thatgMS is always larger thangSM.

The effect of the reciprocal coupling in the AS and DS regimesis shown in Fig.2.20by
the red and blue dots respectively. If we start in the DS regime (gIS = 10 nS), the time delay
almost does not change with the excitatory feedbackgSM (τ ≃ 0.8 ms). On the other hand, if
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Figure 2.19: Characterizing the standard HH model in the presence of a Poisson input. (a)
Time series of the master (black) and the slave (red). (b) Interspike interval (ISI) in each cycle
of M and S. (c) Histogram of ISI.
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Figure 2.20: Time delayτ as a function of the excitatory conductancegSM from the slave to
the master. ForgIS = 10 nS (blue dots)τ is almost constant and the system exhibits only DS
(τ > 0). ForgIS = 80 nS (red dots) the system exhibits both AS (τ < 0 for gSM < 10 nS) and
DS (τ > 0 for gSM> 10 nS).

we start in the AS regime (gIS= 80 nS, represented by the red dots in Fig.2.20), the time delay
persists almost unchanged for small values ofgSM (τ ≃−0.4 ms). If we increasegSM by more
than 10% ofgMS, τ increases and the system moves to the DS regime (red dots withτ > 0 in
Fig. 2.20).
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2.7.2 An extra slave

It is also possible to find other motifs, with more neurons, that can also exhibit AS. For ex-
ample, the presence of a second slave as shown in Fig.2.21(a) may enlarge the set of parameters
in which AS occurs. We call this motif master-slave-slave-interneuron (MSSI). The excitatory
synapses are mediated by AMPA while the inhibitory is mediated by GABAA. In Fig. 2.21(b)
and (c) we compareτ versusthe inhibitory conductancegIS for the MSI (shown in Fig.2.1)
and the MSSI motifs. In the MSSI configuration the time delay is defined as the time difference
between the first slave and the master. The inhibitory synapse gIS is from the interneuron to
the first slave. In Fig.2.21(b) the synaptic conductances aregA = gMS = gSS= gIS = 6.5 nS
whereas in Fig.2.21(c) gA = gMS = gSS= gIS = 20 nS and the synaptic time decays are
βA = βG = 0.6 ms−1. All other parameters are in the first column of Table2.1. In Fig. 2.21(b)
the extra slave prevents the system to go to the PD regime (stabilizing the phase-locking), while
in Fig. 2.21(c) the extra slave increases the anticipation time (i.e. increases the modulus of the
time delay|τ|).
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Figure 2.21: Example of a master-slave-slave-interneuron(MSSI) motif. (a) Schematic repre-
sentation of MSSI. (b) and (c)τ as a function ofgIS = gG for both MSSI and MSI motifs. (b)
The excitatory conductance aregA=gMS= gSS=gIS=6.5 nS, other parameters as in Table2.1.
(c) gA = gMS= gSS= gIS = 20 nS and the synaptic time decays areβA = βG = 0.6 ms−1.

2.7.3 Motor circuit in the spinal cord

Motor behavior can be considered as the ultimate output of the nervous system and is me-
diated by local spinal circuits [91]. The spinal cord has three major functions: as a conduit for
motor information, which travels down the spinal cord; as a conduit for sensory information in
the reverse direction; and finally as a center for independently control numerous reflexes and
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central pattern generators. The interplay between motor neurons and interneurons results in the
appropriate sequence of muscle contractions. Renshaw cells [37, 92] are inhibitory interneu-
rons found in the gray matter of the spinal cord, and are associated in two ways with an alpha
motor neuron (see Fig.2.22). (i) They receive an excitatory collateral from the alpha neuron’s
axon as they emerge from the motor root, and are thus "kept informed" of how vigorously that
neuron is firing. (ii) They send an inhibitory synapse to alpha motor neuron of the same motor
pool. In this way, Renshaw cell inhibition represents a negative feedback mechanism.

Since we are interested in inhibitory feedbacks, we simulated a very simple motif to repre-
sent the motor circuit in the spinal cord shown in Fig.2.22. Each label in Fig.2.23, represents
a neuron or types of neurons: (1) agonist alpha motor neuron,(2) Renshaw cell, (3) agonist
muscle spindles (sensory receptors), (4) 1a inhibitory neuron (responsible for inhibiting an-
tagonist motor neuron and activated by 1a spindle afferents), (5) antagonist motor neuron, (6)
antagonist muscle spindles (sensory receptors), (7) interneuron activated by antagonist muscle
spindles which inhibits 1a inhibitory neuron. The synapticconductancegIS of this inhibitory
synapse is our control parameter.

Each cell was described by a modified Morris-Lecar neuron model, which allows arbitrarily
small frequencies [54]:

Cm
dV
dt

= GCam∞(V)(ECa−V)+GKw(EK −V)

+Gm(Vrest−V)+ I +∑ Isyn (2.20)

dw
dt

=
w∞(V)−w

τ∞(V)
; (2.21)

whereCm= 1 µF/cm2, GCa= 1 mS/cm2,GK = 2 mS/cm2, Gm= 0.5 mS/cm2,ECa= 100 mV,
EK =−70 mV,Vrest =−50 mV and

w∞(V) = 0.5

(

1+ tanh

(

Vm−10
14.5

))

τw(V) =
w3

cosh
(

Vm−10
29

) . (2.22)

Synapses were mediated by AMPA and GABAA as described previously. All conductances are
fixed atg = 10 nS exceptgIS which may vary from 5 to 40 nS. The period of each neuron is
T ≈ 16 ms.

Depending on the values ofgIS, the mean time delay between the agonist and antagonist
muscle spindles (neurons 3 and 6 in Fig.2.23(a)) can be positive or negative. Differently
from previous section,τi = t6

i − t3
i in each cycle oscillates periodically around its mean value

(see Fig.2.23(b)). In this case, AS could be a mechanism to facilitate the activation of the
antagonist muscle spindle before the agonist. Since we did not account for conduction delays
in this model, the existence of AS regime in this simple situation could at least decrease time
delays between spikes in presence of real conduction delays.
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Figure 2.22: Illustration of the motor circuit. There are two inhibitory loops in this circuit. The
agonist motor neuron (Neurona motora agonista) sends an excitatory synapse to the Renshaw
cell (Célula de Renshaw), which sends back an inhibitory synapse. The antagonist muscle spin-
dle (Huso muscular agonista) excites an interneuron, which inhibits the 1a inhibitory neuron
(Interneurona inhinidora 1a). The latter inhibits the antagonist motor neuron (Neurona motora
agonista), which excites the antagonist muscle spindle closing the inhibitory loop. Moreover
the 1a inhibitory neuron receives an excitatory synapse from the agonist muscle spindles (Neu-
rona motora agonista) and an inhibitory synapse from the Renshaw cell. Reproduced from
Kandel et al. [90].
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Figure 2.23: Muscle circuit (a)Schematic representation of the circuit shown in Fig.2.22.
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CHAPTER 3

Phase response curve

3.1 What is it and why is it useful?

Self-sustained oscillatory patterns are well spread in biological systems. The rhythmic
activity of populations of fireflies, cardiac pacemark cellsand neuronal circuits are just a few
examples. All these biological oscillations can be described mathematically by limit cycle
attractors which are responsible for periodicity in dynamical systems. However, the complete
understanding of the mechanistic bases of synchronizationis a current challenge in the interface
of physics and biology [93].

Here we are interested in the relation between the synchronization of a few coupled neurons
and their intrinsic dynamics [94]. Phase response curves (PRCs) are one the main tools to
characterize the effects of a perturbation applied to limitcycles and may predict qualitative
features of a particular oscillation subjected to perturbations. Therefore, it is useful for linking
the response of individual neurons to perturbations and thedynamics of the entire neuronal
network.

Let t0 be an arbitrary point on a periodic orbit of a nonlinear system , then any other point
on the periodic orbit can be characterized by the time,θ , since the last passing oft0. The
variableθ is called phase of oscillation, and it is bounded by the period of oscillationT [95]
. The phase response of a periodically spiking neuron (with periodT) represents the change
in its phase due to a perturbation in a specific momentt. The magnitude of the phase shift in
the spike train depends on the shape and the exact timingt of the stimulus. We numerically
calculate the PRC sending the same stimulus at different timest and measuring the shift on the
phase of oscillationPRC(t). Typically we plot the PRC due to a square pulse current which
arrives in a momentt and evokes a phase response PRC(t) in the next spike. For simplicity,
unless otherwise stated, we convert the phase shifts to timedelays and measure the PRC in
seconds (not in radians). We arbitrarily chooset0 = 0 to correspond to the peak of each spike.

In Fig.3.1(a) we show a qualitative example of an applied external currentI(t) and its effect
in the mean membrane potential of a neuron (dashed line represents the undisturbed or free-
running trajectory). We define PRC(t) = t f ree

spike− tdisturbed
spike (see Fig.3.1(a)), wheret f ree

spike is the

spike timing of the free-running neuron andtdisturbed
spike is the spike timing of the disturbed neuron.

By our convention, PRC(t)> 0 if the next spike is advanced. It means that the disturbed neuron
fires before it would do in the absence of the stimulus. On the other hand, PRC(t) < 0 if the
next spike is delayed. In Fig.3.1(b) we show the PRC of an Hodgking-Huxley neuron due to a
small current pulse: with heightH = 1 nA and widthL = 0.01 ms. Exactly the same curve is
obtained for a different small pulse with the same area:H = 10 nA andL = 0.001 ms.

39
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Figure 3.1: Definition of phase response curve (PRC) (a) Example of an applied external
currentI(t) and its effect in the mean membrane potential of a neuron. Dashed line represents
the free-running trajectory (in the absence ofI(t)). We define PRC(t) = t f ree

spike− tdisturbed
spike as the

effect ofI(t) in the next spike of the neuron. In this example, the stimuluswas applied at a time
t = 2 ms after the spike. The subsequent spike of the perturbed neuron was delayed by 4.7 ms,
in comparison with the free-running neuron, hencePRC(2 ms) = −4.7 ms< 0. (b) PRC as a
function of the timet in which an infinitesimal square pulse currentI(t) was applied.

We also define PRC1(t) as the phase shift in the first spike after the perturbation while
PRC2(t) is the phase shift in the second spike. It is also possible to define the PRC3(t) and so
on. If the perturbation is sufficient small, one expects and verifies that PRC1(t) = PRC2(t)≡
PRC(t). It is worth to mention that the PRC can be calculated for an arbitrary stimulus, not
necessarily weak or brief. The only condition to do it correctly is to wait enough time to ensure
that PRCi(t) = PRCi−1(t). However, this become a limiting factor when we use PRC to study
synchronization of periodic coupled oscillators as we willdo in the following sections.

There are two main types of neurons in respect to the sign of their PRC. When small depo-
larizations produced by excitatory postsynaptic potentials only produce advances in the phase
of the neuron, the phase response is a non-negative curve andwe call it a Type-I neuron. In
Type-II neurons both positive or negative PRC can be produced, depending upon the timing of
the excitatory stimulus (as shown in Fig.3.1(b)). For infinitesimal perturbations this classifi-
cation of PRC [96] is closely related to the classification of excitable membranes in respect to
the applied depolarizing currents. However, it is more a accurate to relate the type of the PRC
to the existence of subthreshold oscillations [97].

Class-I excitable membranes can fire arbitrarily slowly near the onset of firing (may os-
cillate with arbitrarily small frequency), whereas Class-II excitable membranes have an abrupt
onset of repetitive firing at a threshold frequency, and cannot be induced to fire at any frequency
below the threshold frequency. Class-I membrane excitability is typically exhibited by models
near a saddle-node on invariant circle bifurcation, and Class-II near an Andronov-Hopf bifur-
cation [98] (which is the case of the HH model). Then, Ermentrout [96] has concluded that
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Figure 3.2: Two types of neurons based on membrane excitability and PRC. In (a),(c) and (e)
we show an example of a Type-I neuron, whereas in (b),(d) and (f) we show an example of a
Type-II neuron. Figure adapted from Sterratt et al. [99] and Canavier [97].

Type-I PRC is associated with Class-I excitability and Type-II PRC with Class-II excitability.
For example, this relation is valid for the HH model, which isa Type II PRC and a Class-II
excitability. In Fig.3.2we show examples of Class-I and II excitability and Type-I and Type-II
PRC.

However, more recently, an abrupt onset of firing (Class-II excitability) may also be ob-
served in the case of a saddle-node bifurcation away from thelimit cycle [94]. Therefore,
Izhikevich has proposed to classify the neurons accordingly to both bifurcation and resting
state. By his definition, a neuron is a resonator if exhibits subthreshold oscillations and as inte-
grator if there are no subthreshold oscillations. All resonators are Class-II, but the integrators
can be both Class-I or Class-II. In this sense, it was verifiedthat Type-I PRC is better associated
to an integrator and Type-II PRC with a resonator [97].

In the theory of weakly coupled oscillators the PRCin f generated by an infinitesimal stim-
ulus is called linear response function, infinitesimal PRC,kernel, or Green’s function. This
function can be convolved with the actual input received by each oscillator (usually a synaptic
conductanceI(t)) in order to compute the total PRCI (t) of the oscillator received over one cycle
of the network oscillation:

PRCI(t) =
1
C

∫ T

0
PRCin f (τ)I(t+ τ)dτ. (3.1)

It is also possible to measure the spike time response curve (STRC) as the PRCs generated
by an action potential to drive the change in postsynaptic conductance . In all cases we can just
refer the function as PRC but it is necessary to specify whichstimulus has generated it.
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3.2 Master-Slave: two unidirectionally coupled oscillators

3.2.1 Poincaré phase map

Several mathematical formulations allow the time evolution of coupled oscillators to be
described by a map from one cycle to the next. For example the class of pulse coupled meth-
ods [100] and weak coupling methods [95, 101, 102] make use of the PRC to calculate Poincaré
phase maps. While in the weak coupling method we convolve a perturbation with PRCin f , in
the pulse coupled method we simply use the perturbation itself to generate the PRC (or STRC).
If the coupling is not sufficiently weak but is pulsatile in nature, the method of pulse coupled
oscillators should be utilized. Although the PRC can be calculated for any input, both methods
require that the timing of each spike is affected by only presynaptic spikes within one period.
In other words, it is necessary that there is no second or higher order effects of the PRC.

These ideas have been employed to study the response of a neuron to a periodic stimulus
such as synaptic inputs from a periodic pre-synaptic neuron. In particular, we are interested
in the synchronization between two unidirectionally coupled neurons: the master and the slave
(MS motif). Once we know the PRC of the slave due to the synaptic stimulus and the time delay
between the two neurons in one cycle, we can predict the time delay in the following cycle.
Fig. 3.3(a) illustrates spikes of the master and its effect (throughthe synapse) in the spikes of
the slave according to the PRC. The time since the first spike of the slave until the second spike
of the master can be geometrically obtained by two differentsums (see Fig.3.3(a)), which give
us the following relation:

θ0+TM = TS−PRC(θ0)+θ1. (3.2)

Generalizing it for any period, we find the Poincaré phase map[94]:

θn+1 = θn+PRC(θn)+TM −TS, (3.3)

whereθn is the time between then− th spike of the slave and then− th spike of the master,TM

andTS are the periods of the master and the slave.
If the system goes to a phase-locking regime, the time delay between consecutive spikes of

the master and the slave will be the same in each period. Thusθn+1 = θn≡ θ∗ and consequently
PRC(θ∗) = TS−TM. We sayθ∗ is a fixed point that could be stable or unstable depending on
the slope of the curve as a function ofθ∗. In the particular case ofTS = TM, PRC(θ∗) = 0,
which means that the synapse from the master always arrive inthe slave membrane potential in
the exactly time in which it causes no effect in the next spike. θ∗ is stable if|1+PRC′(θ∗)|<
1, which ensures that a positive slope indicates unstable fixed point. By no means we are
limiting the coupling to be excitatory. If the synaptic current is too large, the first order of the
phase response, PRC1, is very different from higher orders of the PRC and Eq.3.3 could be
inappropriate to describe the synchronization of a master-slave system.

3.3 Slave-Interneuron: bidirectional coupling

The next level of complexity is two reciprocally coupled neurons. Mirollo and Strogatz [103]
formulated the general map for any two coupled oscillators in which the state variable (i.e. the
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membrane potential V) is a smooth monotonically increasingand concave down function of the
time, (for example the leaky integrator). For identical oscillators in which the coupling term is
zero at a phase of both 0 andT, synchrony with zero lag is always a solution. However, other
solutions are possible. For systems in which the PRC does notdisappear at 0 andT synchrony
may not be a solution. Therefore criteria are required for both existence and stability, as we
will show [100].
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Figure 3.3: Illustration of the temporal trace of a neuron and the effect of the synaptic current
between coupled neurons on their following spikes. Differently from Fig. 3.1, the solid line
represents the free-running trajectory and the dashed linethe spike due to the presynaptic cur-
rents in that cycle. (a) Two neurons coupled in a master-slave configuration (MS, unidirectional
coupling). Each spike of the slave (S) is perturbed by the synaptic current from the master (M).
By definition, the perturbation is thePRC(t) (b) Two neurons coupled in a slave-interneuron
configuration (SI, bidirectional coupling). Each spike of the slave (S) is perturbed by the synap-
tic current from the interneuron (I), whereas each spike of the interneuron is perturbed by the
synaptic current from the slave.

First we defineγn as the time difference between then− th consecutive spikes of the slave
tS
n and the interneuront I

n and the opposite order forαn we have:

γn = tS
n − t I

n (3.4)

αn = t I
n− tS

n−1

Then, the map based on the PRCs for two pulse coupled oscillators is generated as follows. By
Fig. 3.3(b) it is possible to geometrically defineα1 as a function ofγ0 and PRC(γ0), whereγ0

is a function ofα0 and PRCinh(α0) and generalize the relation to each periodn:

γn = −αn−PRCinh(αn)+TS (3.5)

αn+1 = −γn−PRC(γn)+TI . (3.6)

Therefore, it is possible to represent this map by just one equation:

αn+1 = αn+PRCinh(αn)−PRC(γn)+TI −TS. (3.7)
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This result is in agreement to the one obtained for pulse coupled oscillators [100]. In our
particular case of the SI motif, in the phase-locking regimeαn+1=αn, TI = TS andα∗= T−γ∗.
Then, the map can be reduced to the following condition:

PRCinh(T − γ∗) = PRC(γ∗), (3.8)

whereT is the period of the phase-locking, which can be equal toTS andTI or not.

3.3.1 Stability analysis

Linearizing around the fixed pointθ∗:

PRC(θn) = PRC(θ∗)+PRC′(θ∗)∆θn (3.9)

∆θn = θn−θ∗ (3.10)

whereθ = α or γ, in Eq.3.7, we obtain the following approximated map in the neighborhood
of the stationary solution:

∆αn+1 = [(PRC′inh(α
∗)+1)(PRC′(γ∗)+1)]∆αn. (3.11)

If |(PRC′inh(α
∗)+1)(PRC′(γ∗)+1)|< 1, then∆αn+1 goes to zero and the locking at(α ,γ ) is

stable.
It is important to notice thatPRCinh(α) does not necessarily comes from an inhibitory

pulse. We use this notation just because we are interested incomparing our results to the
Slave-Interneuron motif. The results obtained here are sufficiently general to describe any
kind of bidirectional coupling between two neurons (mutually excitatory, mutually inhibitory,
excitatory-inhibitory...) and it does not requires that the oscillators are equal. However, like in
the previous section, this map is correct only if the first order PRC is sufficiently greater than
the others. Moreover, the cells should alternate in firing (i. e., S - I - S - I...).

3.4 Master-Slave-Interneuron coupling

To the best of our knowledge, the Poincaré map of this motif (represented in Fig.2.1(a)) has
not been reported. Similar to what we did before, we can definethe time differences between
neurons as:

βn = tM
n − tS

n (3.12)

γn = tS
n − t I

n

αn = t I
n− tS

n−1

and define the return map based on geometrical features. Calculating the time difference be-
tween the second spike of the master and the first spike of the slave:

β0+TM = TS+(−PRC(β0)−PRCinh(α0))+β1. (3.13)
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Figure 3.4: Three coupled neurons in a master-slave-interneuron configuration (MSI). Each
spike of the slave (S) is perturbed by the synaptic current from the master (M) and the interneu-
ron (I), whereas each spike of the interneuron is perturbed by the synaptic current from the
slave. The Poincaré map of this configuration provides the time differences between the three
neurons in the phase-locking regime.

Measuring the time since the first spike of the slave until itssecond spike and looking just to S
and I we find:

α0+ γ0 = TS+(−PRC(β0)−PRCinh(α0)). (3.14)

The time between the first and second spike of the interneurongives us:

TI +(−PRC(γ0)) = γ0+α1, (3.15)

whereγ0 = TS−PRC(β0)−PRCinh(α0)−α0. Generalizing the three equations above and
rewriting the terms we obtain the desired map:

βn+1 = βn+PRC(βn)+PRCinh(αn)+TM −TS (3.16)

γn = −αn−PRC(βn)−PRCinh(αn)+TS (3.17)

αn+1 = αn+PRC(βn)+PRCinh(αn)−PRC(γn)+TI −TS. (3.18)

Since according to Eq.3.16and3.17, γn = γn(αn,βn), this is in fact a two-dimensional map,
which means that one of the equations can be suppressed. However, this is a more didactic way
to represent it.

Two important assumptions were done here. First, we assumedthat the effect of two differ-
ent stimulus is the sum of each one separately. Second, we considered that the three neurons
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fire in each cycle. The order of the fire does not matter (M - S - I;S - I - M; or S - M - I), but
it should not change along the numerical calculation. Furthermore,PRC(β ) andPRC(γ) are
independent functions.

3.4.1 Particular case

In the special case in which the slave and the interneuron aredescribed by the same equa-
tions and the excitatory synapses MS and SI are equal, we have:

PRC(β ) = PRC(γ), ∀β = γ. (3.19)

Moreover, if the free-running period of the three neurons are the same, thenTM = TS= TI ≡ T.
In the stationary situationβn+1 = βn = β ∗ and Eqs.3.16, 3.17and3.18reduce to:

PRC(β ∗)+PRCinh(α∗) = 0 (3.20)

PRC(β ∗)+PRCinh(α∗)−PRC(γ∗) = 0. (3.21)

In the phase-locking regime:

γn = γ∗ ⇒ PRC(γ∗) = 0 (3.22)

PRC(β ∗) = −PRCinh(T − γ∗). (3.23)

By our own definition of the time delay in the previous chapter: β ∗ = tM− tS≡−τ mod(T).
In other words, in AS we have:β ∗ =−τ whereas in DS we have:βn = T −τ. Then we expect
small β ∗ in the AS regime, and largeβ ∗ for DS regimes. This analysis, together with the
shapes of the PRC for the HH, gives us a good intuition about the necessary conditions for the
existence of AS.

For example, since we know that in all examples of AS and DS theInterneuron fires right
after the Slave, we expectγ∗ > T/2 (see e.g. Fig.2.2). So PRC(γ∗) should cross the axis
with negative slope in the second half of the period, like in Fig. 3.5(a) and (c). Moreover,
γ∗ > T/2 ⇒ α∗ < T/2. If PRC(β ) = PRC(γ) = −PRCinh(α), ∀β , α andγ, thenβ ∗ = α∗.
That meansβ ∗ < T/2, which impliesτ < 0 and hence that AS is a solution. In addition, the
Interneuron and the Master fire at the same moment.

3.4.2 Stability Analysis

Similarly to what we did in the stability analysis for the SI case, we write:

PRC(θn) = PRC(θ∗)+PRC′(θ∗)∆θn (3.24)

∆θn = θn−θ∗ (3.25)

whereθ = α, β , or γ. Using the equations above,T = α∗+ γ∗, and the following relations:

TS−PRC(β ∗)−PRC(α∗) = TI −PRC(γ∗)≡ T (3.26)

(3.27)
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in the maps3.16- 3.18, we find:

∆αn+1 = ∆αn+PRC′(α∗)∆αn+PRC′(β ∗)∆βn−PRC′(γ∗)∆γn (3.28)

∆γn = −∆αn−PRC′inh(α
∗)∆αn−PRC′(β ∗)∆βn (3.29)

∆βn+1 = ∆βn+PRC′(β ∗)∆βn+PRC′inh(α
∗)∆αn. (3.30)

Then, the stability condition can be written as follows:

∆αn+1 = [1+PRC′inh(α
∗)+PRC′(γ∗)PRC′inh(α

∗)PRC′(γ∗)]∆αn

+ [PRC′(β ∗)+PRC′(β ∗)PRC′(γ∗)]∆βn (3.31)

∆βn+1 = [PRC′inh(α
∗)]∆αn+[1+PRC′(β ∗)]∆βn (3.32)

This relation can be written in a matrix representation as:
(

∆αn+1
∆βn+1

)

=

(

A B
C D

)(

∆αn

∆βn

)

where A,B,C,D are the terms between square brackets in Eqs.3.31 and3.32. The stability
condition requires that the eigenvalues of the square matrix λ1 andλ2 ∈ (−1,1) .

3.4.3 Phase model

Coupled oscillators interact via mutual adjustment of their amplitudes and phases. For
weak couplings, amplitudes are relatively constant and theinteractions could be described by
phase models [52, 95]. In such approach our MSI motif would be described by the following
differential equations:

θ̇M = ωM

θ̇S = ωS+ f (θM −θS)+g(θI −θS)

θ̇I = ωS+h(θS−θI ). (3.33)

Redefining the variables as:

ϕ ≡ θS−θM

ψ ≡ θS−θI , (3.34)

we can reduce our problem to two ODE’s:

ϕ̇ = ωS−ωM + f (−ϕ)+g(−ψ)

ψ̇ = ωS−ωI −h(ψ)+ f (−ϕ)+g(−ψ). (3.35)

These equations are related to the map in Eqs.3.16- 3.18replacingϕ by −β , ψ by α, f ,g
andh by PRC(β ),PRCinh(α) andPRC(γ)) respectively. The phase model is often employed in
analytical calculations. Particularly when the PRC can be approximated by simple functions as
sines, cosines or piecewise-like functions.
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Figure 3.5: Phase response curve of a quadratic current pulse with width L and height H. (a)
H = 30 pA and different values ofL. (b) FixedL = 2 ms and varyingH. (c) the same plot as
in (a) with a zoom in the region close to the fixed pointPRC(t∗) = 0. (d) The effect of negative
H = −30 pA in the quadratic pulse simplification, which is the analogous of an inhibitory
synaptic current.

3.5 Numerical results

The phase responses curves of a Type-II neuron generated by different pulses are shown in
Fig. 3.5. We choose the PRC produced by a pulse with heightH = 30 pA and widthL = 2 ms
as the standard curve (black lines) and compare it to PRCs yielded by different heights and
widths. Firstly, in Fig.3.5(a) we fixedH and changedL. Fig.3.5(c) exhibits the same plot with
a zoom in the region close to the fixed pointPRC(t∗) = 0. Secondly, we fixedL and varyH,
which is shown in Fig.3.5(b). Finally, we compared the effect of a negative pulse on the PRC,
which is the equivalent of an inhibitory coupling in our simplified model of quadratic synaptic
pulse (see Fig.3.5(d)). We emphasize that, for these HH neurons, even in this simple approach
excitation and inhibition arenotsimply the reflection of one another around the axisPRC= 0.

Using quadratic pulses as the synaptic current from the master to the slave, we compare
the time delayτ between the two neurons obtained from two different methods. First we
simulate the MS motif of HH neuron as we did in Chapter 2, replacing the chemical synapses
by quadratic pulsed with heightH = 30 pA. The black dots in Fig.3.6(a) representτ as a
function of the widthL of the synapse. Second, for each value ofL we numerically calculate
the respective PRC and use the map represented by Eq.3.3 to calculateθ∗. Then we obtainτ
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using the following relations: ifθ > T/2⇒ τ = T −θ , otherwiseτ =−θ (see orange dots in
Fig. 3.6(a)). Although results are in a good agreement, forL > 6 ms there is a distinguishable
difference between the values ofτ obtained with each methods. It is worth mentioning thatθ∗

is almost constant for fixedL = 2 ms and different values ofH.
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Figure 3.6: Comparison of the time delay between neurons using the Poincaré map (orange)
and the simulations results for two motifs. (a) The unidirectionally coupled master-slave motif.
(b) The 3-neuron motif MSI.

We repeat the same procedure in order to compare both methodsfor the MSI motif. In the
simulation of the 3-neuron circuit, the inhibitory synapsehasHIS = −30 pA, the excitatory
synapses haveHMS = HSI = 30 pA and we vary the width of the three synapses together:
LMS= LSI = LIS = L (from 1 to 7 ms). The time difference between the master and the slave
as a function ofL is represented by the black dots in Fig.3.6(b). Then, we calculated the
numericalPRC(β ) andPRC(γ) using a quadratic pulse ofH = 30 pA, and thePRCinh(γ) using
a quadratic pulse ofH =−30 pA. Finally, we use the phase response functions in the Eq.3.18
to calculateβ ∗ andα∗ for each set of widths. These results are represented by the orange dots
in Fig. 3.6(b). The two methods provide coincident values ofα∗ = t I − tS and the same sign of
τ, but not coincident values. It suggests the assumption of weak coupling may not apply here.

The spike time response curve STRCAMPA for the HH neuron produced by the first order
AMPA synapse used in Chapter 2 is shown in Fig.3.7(a). If we use the map in Eq.3.3 and
the fact that this curve crosses the axis int = T with negative slope we would expect that
two undirected coupled neuron with AMPA synapse synchronize with zero lag. However, we
have shown in Chapter 2 that they synchronize withτ = 1.5 ms (see Fig.2.5). It suggests that
chemical synapses are too large comparable to the period of the HH model to use even the
simplest map of two unidirectionally coupled neurons. Indeed, in Fig.3.7(a) we compare the
STRCAMPAwith the PRC generated by a quadratic pulse ofH = 30 pA andL = 2 ms. and the
STRCAMPA is almost 6 times larger than the PRC.

One possibility to achieve the weak coupling requirement inorder to reconcile the values
of τ obtained from the simulations and from the PRC map is to use other neuron models that
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can present larger periods. For example, we can try the modified HH presented in Sec.2.6
(see Eq.2.16). Fig. 3.7(b) shows the PRC of this model for a quadratic pulse withL = 2 ms
andH = 30 pA (black circles) andH = −30 pA (orange circles). Preliminary results suggest
that the weak coupling approximation is more appropriate for this modified HH model than
for the standard HH model. The possibility of gaining analytical insight into the mechanisms
underlying AS is worth pursuing and remains under investigation.
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Figure 3.7: Other phase response curves. (a) Spike time repose curve STRCAMPA for the
standard HH model with AMPA synapse (gMS= 10 nS) and PRC calculated using a quadratic
pulse ofH = 30 pA andL = 2 ms. (b) Phase response curve PRCpulsefor the modified HH
receiving quadratic pulse stimulus:L = 2 ms andH = 30 pA (black circles) andH = −30 pA
(orange circles).



CHAPTER 4

Neuronal populations

Synchronization by neural oscillation has been extensively studied along the years. It has
been hypothesized to be relevant to issues such as the binding problem [65], temporal cod-
ing [104], deployment of spatial attention [105], higher cognitive functions [63], and many
others (for a recent review, see [106]). Particularly, coherent oscillations are also useful toinfer
the functional connection between different areas in the cortex during multisensory integration,
sensorymotor decision-making, and top-down visual attention [107].

A canonical mechanism to generate oscillatory activity in neuronal networks with chem-
ical synapses is the feedback loop through excitatory-inhibitory connections [63]. We were
wondering if the inhibitory feedback loop can regulate the time delay between the oscillations
leading the system to an anticipated synchronization regime. In other words, is it possible that a
model of synchronized neuronal population exhibits AS? Arethe results from 3-neuron motifs
extensible to much larger neuronal networks? In order to address these questions we investigate
in silico the emergence of AS between neuronal populations.

We take into account realistic brain features, such as the proportion of excitatory and in-
hibitory neurons, variability in the neuronal dynamics (spiking, bursting etc), noise, baseline
firing rates and global topological motifs, with parameterschosen so as to mimic cortical sub-
networks. To simplify the modeling of the asymmetry necessary in previous studies of AS
and the delayed feedback, our model focuses on cortico-cortical couplings in a Master-Slave-
Interneuron (MSI) configuration. As shown in Fig.4.1, each node is a population of neurons:
the Master population (M), the Slave population (S) and the Interneuron population (I). By con-
struction the S neuronal population exerts no influence on M.As we will show, however, the
inhibitory loop mediated by the interneurons in I can sufficeto make M lag behind S, indicating
the existence of an AS regime. All the links in Fig.4.1are unidirectional chemical synapses.

4.1 Modeling collective oscillations in large-scale systems

Our populations are composed of Izhikevich neurons [51] whose parameters are chosen
randomly from a predefined ranged and then kept constant throughout the simulations. The
parameters of the model are chosen so as to reproduce typicalfiring patterns observed in dif-
ferent types of neuron in the cortex. Each excitatory neuroncan belong to one of the follow-
ing classes: regular spikes, bursting or chattering, with awell-defined probability. Similarly,
inhibitory neurons can be fast-spiking or low-threshold spiking. Altogether the neuronal popu-
lation described here reproduces eletrophysiological results both at the neuronal scale and for
large-scale networks [94].

51
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Figure 4.1: Three large-scale networks coupled in a Master-Slave-Interneuron (MSI) configu-
ration. Excitatory (inhibitory) neurons represented by red (green) units. Two of the networks
are coupled in a master-slave configuration, with an inhibitory feedback loop mediated by the
interneuron network. Besides the excitatory synapses fromneurons belonging to the Master
(M) population, the neurons from the Slave (S) population also receive an inhibitory synapses
from the neurons in the interneuron population (I). All synapses are unidirectional.

Each neuron receives an independent Poisson train of excitatory post-synaptic currents to
mimic the activity of all other neurons in the brain that we are not modeling. Excitatory (in-
hibitory) neurons send excitatory (inhibitory) synapses mediated by AMPA (GABAA), both
modeled by first-order kinetics [58]. In each population the neurons are synaptically connected
with 10% of randomly selected neurons of the same population(sparse connectivity).

4.1.1 Cortico-cortical network

In order to investigate the synchronization properties between populations representing cor-
tical regions we build 3 populations composed of hundreds ofneurons described by the follow-
ing equations [51]:

dv
dt

= 0.04v2+5v+140−u+∑
x

Ix, (4.1)

du
dt

= a(bv−u), (4.2)

wherev is the membrane potential andu the recovery variable which accounts for activation
(inactivation) of K+ (Na+) ionic currents.Ix are the currents provided by the interaction with
other neurons and external inputs. Ifv≥ 30 mV, thenv is reset toc andu to u+d. For each
excitatory neuron the dimensionless parameters are:(a,b) = (0.02,0.2) and(c,d) = (−65,8)+
(15,−6)σ2. Similarly for each inhibitory neuron:(a,b) = (0.02,0.25)+ (0.08,−0.05)σ and
(c,d) = (−65,2), whereσ is a random variable uniformly distributed on the interval [0,1].

The connections between neurons are assumed to be fast unidirectional excitatory and in-
hibitory chemical synapses mediated by AMPA (A) and GABAA (G). The synaptic currents
are given by

Ix = gxrx(v−Ex), (4.3)

wherex= A,G, EA = 0 mV, EG = −65 mV andrx is the fraction of bound synaptic receptors
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whose dynamics is given by:

τx
drx

dt
=−rx+∑

k

δ (t − tk), (4.4)

where the summation overk stands for presynaptic spikes at timestk. Moreover, the time decays
areτA = 5.26 ms,τG = 5.6 ms [108]. Each neuron is subject to an independent noisy spike train
described by a Poisson distribution with rateR. The input mimics excitatory synapses (each
with conductancegE = 0.5 nS) fromn pre synaptic neurons external to the population, each
spiking with a Poisson rateR which, together with a constant external currentIc, determines
the main frequency of mean membrane potential of each population. Unless otherwise stated,
we have employedR= 2400 Hz andIc = 0. We use Euler’s method for numerical integration
with a time step of 0.05 ms.

The Master population is composed of 500 neurons (80% excitatory, 20% inhibitory), each
one receiving 50 synapses (sparse connectivity) from randomly selected neighbors in the same
population. The mean membrane potential〈V〉 (mV) of this population oscillates with a mean
periodTM ≈ 130 ms which strongly depends on the Poisson rateR. In order to obtain higher
oscillations frequency we increase the Poisson rate.

The Slave population is composed of 400 excitatory neurons,each one receiving 40 synapses
from neighbor neurons belonging to the same population, 20 synapses from excitatory neu-
rons from the Master population (which characterizes the master-slave configuration) and 10
synapses from the interneurons in the third population (which play the role of the delayed self-
feedback responsible for AS). To close the inhibitory loop,the Interneuron population has 100
inhibitory neurons, each one receiving 10 synapses from randomly selected inhibitory neurons
from I and 40 excitatory synapses from randomly selected neurons belonging to S.

Our main control parameters will be the following maximal synaptic conductances:gMS

in the excitatory M-S coupling andgIS in the inhibitory I-S coupling (see Fig.4.1). Unless
otherwise stated, all other synaptic couplings remain fixed(see Table4.1for details).

We can regard the Slave and Interneuron populations as corresponding either to well sep-
arated regions (see Fig.4.1) or to sub-populations of a larger network that is very similar to
the Master population. To stress this possibility, in the modified motif shown in Fig.4.9(a),
described in the Section4.4 everything remains as before but each neuron in the Interneu-
ron population receives synapses from 10 randomly selectedexcitatory neurons in the Master
population. To mimic the Slave-Interneuron population (SI) as a cortical region driven by the
Master population, the conductance of the synapses from neurons in M to both excitatory and
inhibitory neurons in SI are the samegMS. The results obtained with both motifs are qualitative
similar and the later motif will be useful to compare our model with experimental data in the
next chapter.

4.1.2 Defining time delay in the model

Since the mean membrane potential〈V〉 is significantly noisy in time, it is hard to precisely
determine its maximum value in each cycle. In order to solve this issue, we use a sliding
window (typically ∆t = 5 ms) to calculate ¯〈V〉 from 〈V〉 (see Fig.4.3). It makes the signal
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parameters cortico-cortical range varied
n1 500 (80% exc. / 20% inh.) -
n2 400 (100% excitatory) -
n3 100 (100% inhibitory) -

gMS 0.5 0 - 3
gSI 0.5 -
gIS 4(AS) / 8(DS) 0 - 25
gSM 0.0 0 - 1

internalgAMPA 0.5 -
internalgGABAA 4 7.5

external noisegAMPA 0.5 -
Poisson rate (Hz)R 2400 2000 - 4800

# internal connectionsM 50 -
# internal connectionsS 40 -
# internal connectionsI 10 -

# external connectionsMS 20 5 - 20
# external connectionsSI 40 -
# external connectionsIS 10 -
# external connectionsSM 0 20

Table 4.1: The model parameters. Standard values employed in the MSI motif.

smooth enough that we can determine in each period the timetx
i in which ¯〈Vx〉 has a maximum

value (x=M, S, I indexes the population andi the period). Since each neuron is subjected to an
independent Poisson input, the oscillation period of each population is not constant. Now we
can define the period of a given population in each cycle:

Tx
i ≡ tx

i+1− tx
i . (4.5)

For sufficiently long time series we calculate the mean period Tx and its standard deviation.
The frequency of oscillationfx can be calculated either by the inversion of the mean period or
by the Fourier transform of〈Vx〉. In a similar way we calculate the time delay in each cycle

τi = tS
i − tM

i . (4.6)

Then we calculateτ as the mean value ofτi andστ as its standard deviation. It is also possible
to plot the return mapτi versusτi−1 (see Fig.4.5). In all those calculations we discard the
transient time. IfTM ≈ TS and theτ is independent of the initial conditions, the system is in
a phase-locking regime. Another way to characterize the regime is by the cross-correlation
function between the LFP of the M and S populations, shown in Fig. 4.6(a), which is calculated
as:

C(VM,VS,t) =
(∑V i

M −VM)(∑V i+t
S −VS)

√

∑(V i
M −VM)2∑(V i

S−VS)2
(4.7)
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Figure 4.2: Raster plots of each population in delayed synchronization (DS) and anticipated
synchronization (AS) regimes. The horizontal axis is time and the vertical axis is the index of
the neurons in the Master (upper), Slave (middle) and Interneuron (lower) populations. Each
point represents an action potential. The only difference between the two simulations is the
maximal conductancegIS of the (inhibitory) synapses from the Interneuron population to the
Slave population:gIS = 8 nS [(a) and (c)] andgIS = 4 nS [(b) and (d)]. All neurons in the I
population are inhibitory, as well as the last 100 neurons inthe M population (index 400 to
499). All others are excitatory. (c) and (d) Zoom-in versions of (a) and (b), displaying the
difference in the firing patterns of individual neurons in the DS and AS regimes.

4.2 How to characterize AS?

The raster plots in Figs.4.2show that the majority of spikes in each population happens in
preferred time intervals. The recurrence of these time intervals (darker regions) is an evidence
of the typical oscillatory behavior of the 3 coupled populations. Even though the inhibitory neu-
rons individually fire with higher frequency than the excitatory ones, collectively they maintain
the typical oscillatory pattern in which the density of spikes is larger in the preferred time inter-
vals. Note that the darker region in the Interneuron population always occurs shortly after the
one in the Slave population. Figures4.2(c) and (d) show that, despite the collective oscillatory
behavior, each neuron in a population can fire quite irregularly.

The set of parameters used in Fig.4.2are the typical ones, shown in Table4.1, except that
in Fig. 4.2(a) and (c)gIS = 8 nS while in Fig.4.2(b) and (d)gIS = 4 nS. The main observable
difference between the two situations is that the darker regions of the M population occur
before (after) the ones in the S population in Fig.4.2(a) (Fig.4.2(b)). It means that in one case
(Fig. 4.2(a)) almost all spikes in the S population occur right after almost all synaptic currents
from the M population have arrived. This often leads to the S neurons spiking in a narrow
interval, as shown in Fig.4.2(c). As the inhibitorygIS coupling is decreased (Fig.4.2(b)), the
S neurons mostly fire before the M neurons (and, as shown in Fig. 4.2(d), the deviation of the
mean in the S firing is larger). In particular, each neuron from M and S may fire more than
once in each collective oscillatory cycle, which occurs more often for neurons from S in the AS
regime (see Fig.4.2(d)). Altogether, the data provides a qualitative evidenceof the existence
of both DS and AS regimes in this system.
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Figure 4.3: Mean membrane potential〈V〉 of the Master (black) and the Slave (red) populations
in the DS (top) and AS (bottom) regimes. Gray lines are the filtered mean membrane potentials
〈Vx〉. Their local maximal values determinetx

i , x=M,S used to calculate the time delayτi in
the i−th cycle.

4.2.1 LFP scale

In order to characterize the DS and AS regimes we need to quantify the relative spiking
times of the M and S populations along a large time series for different parameter sets. A
reasonable way to start this analysis is to plot the mean〈V〉 of the membrane potential of all
neurons in each population as a function of time.〈V〉 can be thought of as a crude approxima-
tion of a local field potential (LFP) signal. As expected fromthe raster plots,〈V〉 oscillates and
has sharp peaks, as shown in Fig.4.3.

Using the previous definition of the time delayτ and the mean periodTx we will focus on
the wide regions of parameter space where the M and S populations have the same average
period (TM ≃ TS). In this case, the time delay fluctuates around a mean valueτ ≡ 〈τi〉, which
characterizes a phase-locking regime between the M and S populations. By definition, ifτ > 0
the system is in the DS regime (see Fig.4.3(a)), whereas ifτ < 0 the system is in the AS
regime (see Fig.4.3(b)). τ turns out to be a well behaved and often non-monotonic function
of the inhibitory synaptic conductancegIS, as shown in Fig.4.4(a) and (b), as well as of the
excitatory synaptic conductancegMS, as shown in Fig.4.4(c) and (d). The transition from DS
to AS is smooth and continuous. When we reduce the number of external links from the Master
to the Slave population (for example from 20 per neuron to 5) we observe qualitatively similar
results but the interval of inhibitory conductances in which AS occurs decreases.

Moreover, we can use the return mapτi versusτi−1 to characterize different regimes.
Fig. 4.5shows that besides the DS and AS regimes, for small values of synaptic conductances
the system may exhibits two other regimes. As in the 3-neuroncase there is a phase-drift (PD)
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bistable regime (for small values of inhibitory conductances). The system alternates between
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region in which it is senseless to determine the mean time delay. In this regimeTM 6= TS. Since
gMS = gIS = 0, the Slave population is totally isolated and there is no inhibition acting on it.
Differently from what happens in the 3-neuron motif, forgIS = 0 the Master and the Slave
are not identical. Besides, in the large-scale network, between the phase-drift and the phase-
locking regimes there is a bistable regime. The bistabilityis characterized by the coexistence
of well characterized DS and AS regimes which alternate fromtime to time (see Fig.4.5). Sev-
eral studies have suggested that multi-stability are very important in neural dynamics. It might
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Figure 4.6: Characterizing AS in large and small scales. (a)Cross-correlation between the
mean membrane potential〈V〉 of the Master and the Slave populations for different regimes.
The time at which the cross-correlation function attains its maximum value is approximately
the mean time delayτ between the M and S populations. (b) Histogram of the time delay τMS

between the spikes of all coupled pairs whose presynaptic neurons are in the M population and
postsynaptic neurons are in the S population. c) and d) Typical spiking activity of a presynaptic
neuron from the M population (black) and a postsynaptic neuron from the S population (red)
in two different regimes: DS (c) and AS (d).

underlie the switching between different perceptions or behaviors [109, 110, 111, 112, 113].
Transitions between many possible attractors of the neuralcircuits may occur, for example,
under the influence of a cognitive driving [114, 115, 116]. However, from now on we will deal
just with the regime where either AS or DS is stable.

Still at the LFP scale, another characterization of both theperiodicity of oscillations and
the existence of DS and AS can be made via the cross-correlation function between the mean
membrane potentials of the M and S populations, respectively 〈VM(t)〉 and〈VS(t)〉. The corre-
lation curves shown in Fig.4.6(a) corroborate the results obtained by the direct measurement
of τ, displaying a peak with positive time delay in the DS regime and negative time delay in
the AS regime. The cross-correlations were calculated using Eq.4.7.

4.2.2 Neuronal scale

Although the phase-locking is a collective phenomenon, theDS and AS regimes are also
evident at the neuronal scale. The histograms in Fig.4.6(b) show the probability density of
spike time intervalsτMS between a spike from neuron in S and its respective presynaptic spikes
from neurons in M. Both the peak and the mean of the distribution have positive values in
the DS regime, and negative values in the AS regime. The second peak of the histogram is
comparatively smaller than the first. It means that in the synaptic scale, AS is a local and
non-periodic phenomenon.
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Figure 4.7: Mean time delayτ (right bar) in the (gIS,gMS) parameter space. The blue region
corresponds to the DS regime and the red one to the AS. (a) The Poisson rate isR= 2400 Hz
and the population firing ratesfM ≈ fS ≈ 7.7 Hz. (b) The Poisson rate isR= 4800 Hz and
fM ≈ fS≈ 14.7 Hz. The horizontal (vertical) dashed lines in (a) corresponds to thet versus gIS
(gMS) curves shown in Fig.4.4(a) and (b) (Fig.4.4(c) and (d)).

Figures4.6(c) and (d) show examples of spiking activity of neurons fromthe M and S
populations. In both cases, we chose two neurons which are a pre-post synaptic pair. In both
DS and AS regimes, pairs of coupled neurons do not maintain the same time delay between
their spikes in every cycle. Even though the order of the spikes can change (pre-post to post-pre
spikes), on average there are more pre-post spikes in DS and more post-pre spikes in AS. That
is what allows us to characterize the AS and DS regimes looking at the peak of the histogram
in Fig. 4.6(b).

4.3 Robustness in parameter space

Since we showed that the different ways to characterize the AS and DS are essentially
equivalent, in the following we choose to employτ as our standard measure. To explore the
parameter space, we used the values given in the first column of Table4.1, except forgIS and
gMS, which in Fig.4.7are varied along the horizontal and vertical axes respectively.

In Fig.4.7(a) we display a two-dimensional projection of the parameter space of our model.
The two different regimes (DS in blue and AS in red) are distributed in large contiguous re-
gions of parameters. The transitions AS-DS are smooth. The horizontal (vertical) dashed
lines in Fig. 4.7(a) corresponds to theτ vs gIS (gMS) curves shown in Fig.4.4(a) and (b)
(Fig. 4.4(c) and (d)). For the chosen parameters, the populations collective oscillate at an
average frequencyf ≈ 7.7 Hz (TM ≈ 130 ms).

The results are also robust with respect to the baseline firing rate of the neurons. In
Fig. 4.7(b) we show the results for a higher input Poisson rate (R= 4800 Hz) , which leads
to higher network oscillation frequencies:f ≈ 14.7 Hz (TM ≈ 68 ms). For this higher Poisson
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Figure 4.8: τ is robust against noise. We choose an AS regime with all the parameters given in
Table4.1(exceptgIS= 5 nS) and varied the Poisson rateR. As a consequence, the mean period
(and frequency) of the Master also varied. We plot the same set of points in five different ways:
(a)τ as a function of the mean period of the MasterTM and (b) its mean frequencyfM = 1/TM.
(c) τ normalized toTM as a functionTM and (d) as a function of the Poisson rateR. (e) Measured
mean frequency for each chosen Poisson rate.

rate, the inhibitory conductances inside each population needs to be greater (internalgGABAA >
6.5 nS). The phase diagram in Fig.4.7(b) is qualitatively the same as in Fig.4.7(a) butgGABAA =
7.5 nS. Since the period of the collective oscillations is shorter for Fig.4.7(b), so it is the max-
imum absolute value of the anticipation timeτ (compare the color-coded values ofτ).

Fig. 4.8 shows the time delayτ and its normalized valueτ/TM as the Poisson rateR is
varied. Beginning from the AS regime (gMS= 0.5 andgIS= 5 nS in Fig.4.7(a)),R is increased
from 2000 Hz to 4400 Hz. All other parameters are in Table4.1. It is worth mentioning that it is
possible to find an AS regime forR> 2800 Hz (an example is shown in Fig.4.7(b)). However,
it is necessary to change other parameters such as internal synaptic conductances.

4.4 Modified motifs

4.4.1 Slave-Interneuron as one cortical population

Our results are also robust with respect to changes in the topology of the system. In
Fig. 4.9(a) we show a modified version of the MSI motif of Fig.4.1, where the M population
also projects its excitatory synapses onto the I population. Arguably, this could better mimic
an asymmetrical mesoscale interaction between two cortical populations as the ones assessed
in experiments with macaque-monkeys [70, 117] (more details in the next chapter). In the case
of Fig. 4.9(a), the S and I populations can be considered as the excitatory and inhibitory sub-
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Figure 4.9: A modified MSI motif also exhibits DS and AS. a) Similar to the motif in Fig.4.1
but with extra excitatory connections from neuron in the M populations to neurons in the I
population. b) Mean time delayτ (right bar) in the (gIS,gMS) parameter space. The Poisson rate
is R= 2400 Hz and the population firing rates arefM ≈ fS≈ 7.7 Hz.

population of a larger Slave-Interneuron (SI) population that is very similar to M. Figure4.9(b)
shows a phase diagram for this situation which is similar to those of the preceding figures. The
time delay in each cycle is defined asτi = tSI

i − tM
i , wheretSI

i is the peak in the mean membrane
potential of all neurons in the SI population.

4.4.2 Bidirectional coupling

Although the structural (i.e. anatomical) connectivity between cortical areas is often bidi-
rectional [117], brain functions typically require the control of inter-areal interactions on time-
scales faster than synaptic changes. Particularly, functional and effective connectivity [62] must
be reconfigurable even when the underlying structural connectivity is fixed. First, different
tasks require the activation of different pathways. Second, we live in a changing environment.
However, a complete understanding of how interareal phase coherence can be flexibly regulated
at the circuit level is still unknown [109].

To ensure that the AS regime is not specific to cortical ensembles with unidirectional con-
nections, we show its robustness in the presence of excitatory synaptic feedback from the Slave
to the Master population. In this subsection, each neuron inthe M population receives synapses
from 20 randomly chosen excitatory neurons of the SI population. Fig. 4.10(a) shows this
schematic configuration. All other parameters are in Table4.1 andgMS= 4 nS to ensure that
for gSM = 0 nS the system is in the AS regime. For small values of the excitatory feedback
conductance,gSM < gMS/2, the AS regime persists (see Fig.4.10(b)). The time delay be-
tween the two population increases withgSM and the system eventually goes to a near zero-lag
regime [108]. Moreover, the cross-correlation in Fig.4.10(c) corroborates the existence of two
different regimes.
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Figure 4.11: The parameters of the Izhikevich neuron model determines the different firing
patterns of the neurons (shown in Fig.1.2). For fixeda= 0.02 andb= 0.2 the response of the
neuron to an applied constant current depend on the values ofc andd. For (c,d) = (−65,8)
the neuron is a regular spiking (RS), for(c,d) = (−55,4) it is an intrinsically bursting (IB),
for (c,d) = (−50,2) it is a chattering (CH). Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.org.

4.5 Changing neuronal variability of the Slave

Neuronal synchronization, which might play an important role in the neural coding, pro-
vides a potential spike-based code (i.e. depending on spike-timing differences) that putatively
coexists with a rate code (i.e. based on the neuronal firing rate) [104]. We suggest that AS can
open a new and unexplored avenue to improve the computational power of spike-based code.
Particularly, Brette [104] has proposed that heterogeneity is essential for the efficiency of com-
puting with neural synchrony. He showed that in a heterogeneous neural population model,
synchrony receptive field could be used as an additional information for computation. There-
fore, we show that in our model, the AS regime is not only robust against neuronal variability
but it is also a smooth function of the proportion of different types of neurons.

Depending on the parametersa, b, c andd in the Izhikevich model (see Eq.4.1) each neuron
in the populations respond differently to a constant current. We characterize the type of neuron
by its response. In Fig.4.11there is a detailed description of the kinds of neurons covered by
the Izhikevich model that we use here. In the absence of a constant current in our model, but in
the presence of synaptic currents, the behavior of a regularneuron for example, may be slightly
different in each cycle. The oscillatory activity of a population may change depending on the
proportion of each kind of neuron.

By Voss’s definition of AS the two dynamical systems need to beidentical (see Eq.1.1).
Here we aim at verifying if small changes in the Slave population still leads to AS regimes.
Furthermore, in Fig.4.12we show that continuous changes in the variability of the neurons
from the Slave population produce continuous changes in thetime delay. Particularly, if we
want to simulate cortico-thalamical interactions we wouldlike the Slave (thalamus) to have
more bursting neurons than the Master (cortex).

In this section we redefine the parametersc andd from Eq.4.1as:

c = −55−x+(5+x)σ2
1 − (10−x)σ2

2 (4.8)

d = 4+y− (2+y)σ2
1 +(4−y)σ2

2 .

Both σ1 andσ2 are random variables uniformly distributed in the interval[0,1]. If we simul-
taneously varyx andy, keeping the relationy = 2x/5, the maximum values ofc andd vary
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Figure 4.12: Neuronal variability. The time delay is a smooth function of the proportion of
different kinds of neurons in the Slave.

along the lined =−6c/15−18 which passes through RS, IB and CH in the plot at the right of
Fig. 4.11. It means that, as before, there are all kind of neurons in each simulation. However,
the distribution of the different types of neurons changes with c. For example, whenc= −55
(and consequentlyd = 4) the majority of the neurons in the S population are IB neurons, but
there are also RS and CH neurons in S. On the other hand, whenc= −65 andd = 8 there are
more RS than IB neuron in S and more IB than CH neurons. The effect of these changes in the
time delay is shown in Fig.4.12. It seems that the existence of more RS neurons facilitates AS.
However, further investigation are necessary to distinguish whether changes inτ are due to the
amount of IB and CH neurons or due to the differences between Mand S populations.

4.6 A toy model for the thalamus

The thalamus is a structure of the central nervous system (CNS) that could play an impor-
tant role in the synchronization of cortical regions [118]. It is considered as the gateway to
the neocortex, since all sensory signals, except for the olfactory inputs, reach the neocortex
only after passing through a specific thalamic nuclei. The thalamus is believed to both process
sensory information as well as relay it to the cerebral cortex, each of the primary sensory relay
areas receives strong “back projections” from the cerebralcortex. Moreover, in the thalamus
there are many inhibitory feedback loops due to reticular thalamic neurons (RTN) and thalamic
interneurons [42]. Although the bidirectional connectivity pattern between thalamus and cor-
tex [119, 120], here we investigated only the effects of unidirectional synapses from the cortex
to the thalamus (the “back projections”). Since it is still possible to observe anticipatory oscil-
lations in the presence of synapses from the Slave to the Master, our model can also be adapted
to include the thalamic dynamical relaying [108, 118, 121].

In this section, we consider a similar motif to the one shown in Fig.4.1, but the neurons in
the Slave population are described by a different model of the neurons in M. The Master popu-
lation is described as before (cortical like, see Section4.1), but the Slave population mimics a
thalamic region and is composed of 500 hundred neurons (80% excitatory 20% inhibitory).
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Figure 4.13: Time series for the Master cortical populationand the Slave thalamic population
for different values ofgMS. The AS regime is characterized by two peaks in the mean membrane
potential of the Slave. The first peak anticipates de Master dynamics.
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[ht!]

parameters thalamocortical range varied
n1 500 (80% exc. / 20% inh.) -
n2 500 (80% exc. / 20% inh.) -
n3 100 (100% inhibitory) -

gMS 20 (DS) / 100 (AS) 5 - 150
gSI 50 -
gIS 50 -
gSM 0 -

internalgAMPA M 0.5 -
internalgAMPA S 5 -

internalgGABAA M 2 -
internalgGABAA S and I 20 -
external noisegAMPA M 0.5 -

external noisegAMPA S and I 0.5 -
Poisson rate (Hz)R 2000 -

# internal connectionsM 50 -
# internal connectionsS 50 -
# internal connectionsI 10 -

# external connectionsMS 40 -
# external connectionsSI 50 -
# external connectionsIS 10 -
# external connectionsSM 0 -

external constant currentIc in M 0 -
external constant currentIc in S (exc) 42 -
external constant currentIc in S (inh) 50 -

external constant currentIc in I 50 -

Table 4.2: Parameters employed in the thalamocortical model.
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The 400 excitatory neurons are described as the thalamocortical (TC) relay neurons [94]:

200v̇ = 1.6(v+60)(v+50)−u+∑ Ix
u̇ = 0.01(b(v+65)−u), (4.9)

whereb = 15 if v ≤ −65 andb = 0 otherwise. Whenv ≥ 35+ 0.1u mV, thenv is reset to
−60−0.1u andu to u+10. The 100 interneurons in the Slave population obey the thalamic
interneurons equations:

20v̇ = 0.5(v+60)(v+50)−u+∑ Ix
u̇ = 0.05(7(v+60)−u). (4.10)

Whenv≥ 20−0.08u mV, thenv is reset to−65+0.08u andu to the minimum betweenu+50
and 530. The Interneuron population still has 100 inhibitory neurons but mimics the reticular
thalamic nucleus (RTN) neurons:

40v̇= 0.25(v+65)(v+45)−u+∑Ix
u̇= 0.015(b(v+65)−u), (4.11)

whereb= 10 if v≤−65 andb= 2 otherwise. Whenv≥ 0 mV, thenv is reset to−55 andu to
u+50.

Each neuron receives an external constant currentIc and a Poisson input. The current ap-
plied to the excitatory neurons in the thalamus isIc = 42 pA, whereas in the thalamic inhibitory
neurons and in the RTNIc = 50 pA. All parameters are shown in Table4.2.

Since our model has two separated pools of inhibitory neurons, it is simpler to usegMS as
the control parameter. The time series of M and S are shown in Fig. 4.13for different values
of gMS. The mean period and the mean time delay are calculated similarly to the previous
sections. However, the existence of a second peak in the meanmembrane potential of the
thalamic population (see Fig.4.13) is not considered in order to calculateτ. Then, the time
delayτ is the difference between the time of the peak (or the first peak, if there are two) in
mean membrane potential of S and the time of the closest peak in M. Using this definition,
the model exhibits both AS (τ < 0) and DS (τ > 0) regimes. Fig.4.14 shows the relation
betweenτ and gMS which is qualitatively similar to that obtained with the cortico-cortical
models (compare with Fig.4.4(c) and (d)). Although this thalamocortical model would be more
realistic in the presence of bidirectional connections, the existence of AS between two distinct
M and S populations could play an important role in our understanding of the mechanisms
underlying AS in oscillatory systems. However, further investigation is necessary to establish
such mechanisms.

4.7 Stability analysis of phase-locking regimes between neuronal popula-
tions

In this section we simulate a different population model (coupled in a a master-slave con-
figuration, see Fig.4.15(a)) to study the stability of the phase-locking regimes using a locking
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theorem proved in 1996 by Gerstner, Hemmen and Cowan [122, 55]. The time difference (δMS)
between the oscillation of the two populations is typicallya function of the strength of the ex-
citatory synapses (Jm) from the Master to the Slave and also of the internal inhibitory synapses
in the Slave population (Ji).

We perform the stability analysis of these phase-locking regimes by using Integrate-and-
Fire (IF) neuron models coupled via synapses described by:α(s) = (s/τ2)exp(−s/τ). The
membrane potential of each neuron is given by:

hi(t) = ∑
f

η(t − t f
i )+∑

j
Ji j ∑

f

ε(t− t f
i )+ Io[1−exp(−t/τ)], (4.12)

whereε(t) =
∫ t

0 α(s)exp(−(t − s)/τ)ds. Illustrative examples of the synaptic current (α(t))
and the neuronal response (ε(t)) are shown in Fig.4.15(b).

The locking theorem ensures that if
(

∑
j

Ji j ∑
f

ε(t − t f
i )+ Io[1−exp(−t/τ)]

)′

|t=T > 0, (4.13)

the oscillatory regime (of periodT) is stable [122]. In addition, if the left side of Eq.4.13is
negative or zero the phase-locking regime is unstable.

Unlike the previous sections, in the motif shown in Fig.4.15(a) each neuron in the Slave
population receives excitatory (inhibitory) synapses from all other excitatory (inhibitory) neu-
rons in the same population, which leads to∑ j Ji j = (J+ Ji) (in the simplest case). It also
receives the excitatory synapses from the excitatory neurons in the Master population (∑ j Ji j =
Jm). Using these expressions and calculating the derivativesin Eq.4.13our stability condition
becomes:

∑
k

((J+Ji)(T −kT)(2τ − (T −kT))exp(−(T −kT)/τ)+

JM(δMS−kT)(2τ − (δMS−kT))exp(−(δMS−kT)/τ)+2Ioτ2exp(−T/τ))> 0. (4.14)

The only condition for stable oscillations in the Master population is|Jinh|> Jexc. Fig.4.16(c)
shows the stability map for fixed values of all parameters exceptδMS andJi . Different values
of Ji lead to continuous and finite intervals ofδMS in which the phase-locking regime is stable.

Since the anti-phase synchronization (σMS = T/2) is an unstable solution, and in order
to match this results with our previous ones of anticipated synchronization between neuronal
population, we separate the stable regions inδMS< T/2 (Delayed Synchronization - DS) and
δMS > T/2 (Anticipated Synchronization - AS). Examples of both situations are shown in
Fig. 4.16(a) and (b).

It is also possible to obtain stable phase-locking between the Master and the Slave popu-
lations if the excitatory and inhibitory neurons in the Slave population oscillate with a phase
differenceδSI. In such case they can be considered as two different populations giving rise to
two stability conditions: one for the excitatory subpopulation of the Slave and other for the
inhibitory subpopulation (data not shown).
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4.8 Discussion

4.8.1 Neuronal populations can exhibit AS

Although Voss [4] has suggested that AS could explain phenomena such as the delayed
induced transition in visually guided movements [31], to the best of our knowledge there are no
explicit reports of AS in neuronal populations. With rare exceptions [36], previous observations
of AS in theoretical, physical, and biological systems werebased on the original framework,
which included a somehow artificial negative delayed self-feedback [4, 29, 8, 20, 33, 10, 12,
14]. Our simple model requires very few ingredients for the emergence of AS in physiologically
plausible models. We have shown that substituting the negative delayed self-feedback by a
dynamical inhibition, AS can be observed in a model of coupled cortical populations. This
would open new perspectives to investigate the existence ofthe AS regime in other biological
systems.

In particular, we have addressed the emergence of AS in populations of neurons represent-
ing certain cortical areas and studied its robustness against external noise, heterogeneity and
synaptic characteristics. Similarly to what occurs in a 3-neurons motif [39], here the antici-
pation time emerges from the system dynamics, instead of being explicitly hard-wired in the
dynamical equations [4] (see Eq.1.1). Since the time delay depends on the strength of the
synapses, AS could be tuned by neuromodulation.

Comparing structural and functional connectivity matrices of macaque monkey cortex from
the CoCoMac database [117, 123] we can emphasize two important aspects. First, both the
structural and functional connectivity matrices are not symmetrical, what indicates that there is
a moderate amount of preferential coupling direction as in the master-slave configuration. As
an example we mention the connectivity matrices of areas that belong to the somatomotor and
visual cluster from the CoCoMac database [123]. Second, some pairs of regions have opposite
directionality in the structural and in the functional connections. This can be verified in the
matrices cited above, for example between areas OC and OA andalso between OB and PEp,
TA and TF. The names of the areas follow the scheme of Fellemanand Van Essen [124] (for
more details see Stephan et al. [123]). This can result from the influence of all other areas on
these two regions, but could also be AS regimes that were not well characterized.

The robustness and stability of our model indicate that AS results can probably be extended
beyond cortical areas (or even beyond the brain). For example the brainstem and central pat-
terns generators in the spinal cord are driven by tonic excitatory brainstem input [125]. Due to
biophysical similarities between brainstem spinal cord and neorcortical circuits [125] and the
fact that inhibition together with excitation dynamicallyregulate oscillations, these regions can
be modeled as master-slave systems with feedback inhibition. The MSI motif in Fig4.1is also
similar to a simplification of the circuit involving the retina and the lateral geniculate nucleus
in the thalamus [65, 68], as well as to the olfactory epithelium and the olfactory bulb [126].

4.8.2 Different synchronization regimes within the same anatomical connectivity

Neuronal synchronization is a widespread type of activity,which occurs from sensory sys-
tems to higher cortical areas. Due to the communication-through-coherence hypothesis [66] it
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is very important that the same structural motif can generate different coherent regimes of oscil-
lations. Flexible patterns of coherence in the same structural motifs facilitate flexible commu-
nication. Moreover, different working regimes within the same anatomical connectivity [109]
are necessary during changes in behavioral aspects with short time-scales. Our model provides
different patterns of coherence within the same anatomicalconnections. Therefore, flexible
communication is one of the possible functional significances of the AS regime and the transi-
tions to DS mediated by inhibition.

Several LFP measures in the brain exhibit synchronization with phase difference [127, 107,
128], for example the theta phase synchronization between hippocampus and medial prefrontal
cortex in rats [129, 130], the gamma band synchronization between the frontal eye field and area
V4 in monkeys [131] and the beta band synchronization between cortical areas in monkeys [70,
132, 133, 71]. Typically, these phase differences are associated to thesynaptic delay between
distant regions. However, one needs not be a direct consequence of the other [127]. As we
have shown in this chapter, the pool of inhibitory neurons [134, 135] in the cortex can regulate
the time delay between the oscillations. It means that the inhibition may annihilate the effect
of synaptic delays, providing shorter phase differences (including negative values).





CHAPTER 5

Cortical data analysis

Phase synchronization is an ubiquitous phenomenon in the study of complex systems that
may underlie a variety of neurocognitive processes [136]. Particularly, it has been related
to large-scale integration [128], efficiency of information exchange [66],as well as working
and long-term memory [127]. Correlation measures are the most widely employed tools for
measuring phase synchronization and it is typically used toinfer interactions between brain
areas [107, 137]. However, correlation alone cannot reveal the influences that are exerted by
neurons in one area on those in the other by axonal transmission and synaptic effect. One ap-
proach to detecting directional influence in the brain has been to infer it from relative phase
measures [138, 139, 140, 141, 131] of neuroelectric indices, such as the electroencephalogram
(EEG). The assumption here is that the timing difference implicit in relative phase reflects
the transmission time of neural activity. By contrast, other measures of directional influence,
such as Granger Causality (GC), have emerged in recent yearsas an alternative approach that
is grounded in the theoretical framework of statistical predictability between stochastic pro-
cesses [142, 143].

A dominant value for directional influence from one brain area (A) to another (B) indicates
that the activity of neurons in area A exerts an effect on the activity of those in area B. It is
often assumed that such a directional influence should be accompanied by a positive time delay
(relative phase lead of the activity in area A before that in area B), indicating that A’s activity
temporally precedes that of B. However, this assumed relationship is not theoretically justified.
Furthermore, it has been empirically observed that a dominant directional influence between
areas of sensorimotor cortex may be accompanied by either a negative or a positive time de-
lay [70]. Brovelli et al. showed that steady contractions of arm andhand muscles by macaque
monkeys performing a visual pattern discrimination task are accompanied by phase synchro-
nization of beta-band (14-30 Hz) Local Field Potentials (LFPs) recorded from somatosensory
and motor cortical areas [70]. Directional influence among those areas, as assessed by GC,
showed that interareal functional relations are usually asymmetrical. Importantly, the interareal
relative phase showed no obvious relation to the directionality determined by the dominant di-
rection of causal influence. Thus, for example, even when GC indicated that area A exerted a
stronger influence on area B than in the reverse direction, suggesting an asymmetric functional
relation dominated by the influence from A to B, it was often the case that area A lagged behind
area B in time [70].

A similar incongruence between phase difference and GC between PreFrontal Cortex (PFC)
and Posterior Parietal Cortex (PPC) in monkeys performing aworking memory task was re-
ported by Salazar et al. [71]. They observed a dominant parietal-to-frontal beta-bandGC in-
fluence that was opposite to the direction of influence implied by the 2.4−6.5 ms time lead of

73
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PFC before PPC derived from relative phase. The dominant parietal-to-frontal direction of GC
influence was supported by spike-field coherence analysis, again suggesting that relative phase
is not a reliable indicator of directional influence.

Despite efforts to join concepts of anticipatory behavior and AS dynamics [144, 145], bi-
ological models of AS, and experimental evidence for it in the brain, have been lacking. As
shown in the previous chapters, anticipated synchronization occurs when a unidirectional influ-
ence from a generator dynamical system (A) to a receiver dynamical system (B) is accompanied
by a negative phase difference between A and B [4, 5, 6]. The only difference between the defi-
nition of AS and the reported paradox, is that the causal influence measured in the experiments
can not ensure a structural unidirectionality. Therefore,here we propose that the existence of
AS in the cortical model presented in Chapter 4 could explainthe apparent paradox reported
by Broveli [70] et al. and Salazar et al. [71]. We show that our model reproduces delay times,
as well as coherence and GC spectra, from the cortical data. Our findings provide a theoretical
basis for the observed cortical dynamics, while suggestingthat the primate cortex operates in
the AS dynamical regime during cognitive function. The model further suggests that the local
inhibitory interactions in a receiving neuronal population in the cortex will determine whether
that population will anticipate or lag behind sending populations.

5.1 More realistic features

To simplify the modeling of the asymmetry observed in the Granger causal influences be-
tween pairs of areas, we simulated two unidirectionally coupled cortical-like neuronal popula-
tions similar to the modified MSI motif described in the previous chapter. The cortical regions
and the motif studied along this chapter are illustrated in Fig. 5.1(c). Connectivity within
the M population randomly targets 10% of the neurons, with excitatory conductances set at
gM

E = 0.5 nS and inhibitory conductances set atgM
I = 4 nS. The S population is also composed

of 400 excitatory and 100 inhibitory neurons, forming excitatory slave (ES) and inhibitory
slave (IS) subpopulations (Fig.5.1C). Neurons in the ES subpopulation receive 40 synapses
(gS

E = 0.5 nS) from other neurons of the ES subpopulation, and 10 synapses (with conductance
gS

I ) from neurons of the IS subpopulation. Neurons in the IS subpopulation receive 40 synapses
(gS

E = 0.5 nS) from neurons of the ES subpopulation and 10 synapses (g̃S
I = 4 nS) from neurons

of the IS subpopulation (Fig.5.1C). Note that neurons of the IS supopulation project synapses
with different synaptic conductances to neurons in the samesubpopulation (̃gS

I = 4 nS) and
to neurons in the ES subpopulation (gS

I ). Subpopulation IS accounts for the inhibitory loop
previously reported to be essential for the emergence of AS [39]. The M and S populations
are connected as follows: 20 synapses (with conductancegMS

E ) from each excitatory neuron of
the population projects on the S population. Unless otherwise stated, each neuron receives a
Poisson inputR= 2400 Hz and no external currentIc = 0.
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Figure 5.1: (A) Location of recording sites in monkey GE (zoom in the four electrodes ana-
lyzed). (B) Sites 1 and 2 are in the primary motor cortex and primary somatosensory cortex
respectively. Sites 3 and 4 are in the parietal cortex. Arrows indicate the direction of influ-
ence between each pair (Granger causality) and their width are related to the peak of Granger
causality shown in Table5.2. Colors indicate the sign of time delay between pairs, relative
to the influence direction. Blue arrows indicate the sender (master) leads the receiver (slave).
Red arrows indicate the receiver leads the sender. (C) Schematic representation of two cortical
areas coupled in a master-slave configuration. In the model the structural connectivity ensures
the direction of influence from the master to the slave. The effective connectivity may also be
accessed by Granger causality measures (see Fig.5.2).
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Site Pairs Coherence Peak of Granger Causality Phase Time delay

M → S Peak fpeak (Hz) M → S fpeak (Hz) S→ M fpeak (Hz) Difference (rad) τ (ms)

2→ 1 0.1065 250.0429 25 —– —– -1.1380 -7.24 (AS)

2→ 3 0.4506 240.2092 26 0.1205 26 -2.8485 -18.89 (AS)

2→ 4 0.1892 24 0.1207 26 —– —– -2.5775 -17.09 (AS)

3→ 1 0.1295 240.1074 24 —– —– 1.4714 9.76 (DS)

3→ 4 0.5804 25 0.3029 25 —– —– 0.4554 2.90 (DS)

4→ 1 0.1027 250.0507 27 —– —– 0.7236 4.61 (DS)

Table 5.1: Peak of coherence, Granger causality and time delay between all 6 pairs of sites
shown in5.1. Positive values of time delay indicates the master leads the slave (DS), while
negative value indicates the master lags behind the slave (AS). From 300 ms to 400 ms after
the stimulus onset during a NO-GO task the oscillatory behavior appears again. Comparing to
the wait window, shown in Table5.2, all the directions of causality relations are maintained.
The sign of the time delay changes only between sites 1 and 4.

5.2 Data acquisition

LFP data was recorded via up to 15 microelectrodes (51-µm diameter, 2.5-mm separation)
from the sensorymotor cortex (right hemisphere) of an adultmale rhesus macaque monkey, as
described in Brovelli et al. [70] (Fig. 5.1A) 1. Data was acquired while the monkey performed
a GO/NO-GO visual pattern discrimination task which required it to release (on GO trials) a
previously depressed hand lever. Our analysis focuses on 710 trials of the 90-ms period (18
points, 200-Hz sample rate) ending with the visual stimulusonset (wait window). Only correct
trials (both GO and NO-GO) were analyzed. Considering the whole task, each trial lasts for
500 ms.

We also tested our model against results from a different experiment, where monkeys per-
formed a working memory task while LFP activity from two cortical regions (PFC and PPC)
were recorded. In that case, results were directly extracted from Salazar et al. [71].

5.3 Granger causality

Granger causality is a statistical concept of causality that is based on prediction [146]. In
Granger’s words: "The topic of how to define causality has kept philosophers busy for over two
thousand years and has yet to be resolved. It is a deep convoluted question with many possible
answers which do not satisfy everyone, and yet it remains of some importance."

The basic idea behind the definition of the Granger causalityis quite simple:x Granger
causesy if the past ofx helps to predicty better than the past ofy. In a more general way:
suppose we have three time series:x(t), y(t), andw(t). First, we realize an attempt to forecast
the value ofx(t +1) using past terms ofx(t) andw(t). Second, we repeat the process using,
besides the past terms ofx(t) andw(t), the past terms ofy(t). If the second prediction is found

1Data from these experiments was kindly provided by Prof. Steven Bressler (Florida Atlantic University).
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to be more successful, according to standard cost functions, then the past ofy(t) appears to
contain information helping in forecastingx(t +1) that is not in the pastx(t) or w(t) . In this
case we sayy(t) "Granger causes"x(t+1) if two conditions are satisfied: (i)y(t) occurs before
x(t + 1); and (ii) it contains information useful in forecastingx(t + 1) that is not found in a
group of other appropriate variables. This multivariate extension (number of variablesn >
2), sometimes referred to as conditional Granger causality[147], is extremely useful because
repeated pairwise analyses among multiple variables can sometimes give misleading results.

In the simplest case ofn= 2 we can write:

x(t) =
p

∑
j=1

A11, jx(t − j)+
p

∑
j=1

A12, jy(t − j)+Ex(t) (5.1)

y(t) =
p

∑
j=1

A21, jx(t − j)+
p

∑
j=1

A22, jy(t − j)+Ey(t),

wherep is the maximum number of previous observations to take into account in the model
(the model order), the matrix A contains the coefficients of the model (i.e., the contributions of
each lagged observation to the predicted values ofx(t) andy(t)), andEx andEy are residuals
(prediction errors) for each time series. If the variance ofEx (or Ey) is reduced by the inclusion
of they(t −1) (or x(t −1)) terms in the first (or second) equation, then it is said thaty(t −1)
(or x(t −1)) Granger causesx(t) (or y(t)). In other words,y(t −1) Granger causesx(t) if the
coefficients inA12 are jointly significantly different from zero.

For data consisting of multiple trials, each trial can be considered as a separate realization of
a single underlying stochastic process. Moreover, the coefficients in the multivariate regressive
model can be interpreted in the frequency domains, allowingcausal interactions to be analyzed
by frequency [147]. In this spectral Granger causality, the statistical significance of our results
were estimated by constructing surrogate data.

The main limitation of the mathematical formulation given in the Eq5.2 is that it only ac-
counts for linear information transfer. It is a problem in complex systems (such as the brain)
because lots of information is also transferred non-linearly. More complex extensions to non-
linear cases exist, however these extensions are often moredifficult to apply in practice [146].
Another problem is that Granger causality cannot distinguish between actual straight causality
from the interaction via a third process which is not included into the analysis. Moreover, the
choice of the factors, for example the model orderp in Eq. 5.2, may influence on the final
result. Then, Granger causality should not be directly interpreted as physical causality.

5.3.1 Causality measures in neuroscience

Despite the limitations, Granger causality is emerging as apromising and pragmatic mea-
sure of information flow in neuroscience [143]. Besides the already mentioned applications
of Granger causality to study cortical interactions [70, 71], there are several other works us-
ing this method to infer effective connection in data acquired from different techniques [146].
For example, Liang et al. [148] employed it to differentiate feedforward, feedback, and lateral
dynamical influences in monkey ventral visual cortex duringpattern discrimination. Kaminski
et al. [149] noted increasing anterior to posterior causal influences during the transition from



78 CHAPTER 5 CORTICAL DATA ANALYSIS

waking to sleep by analysis of EEG signals. In the domain of fMRI, Roebroeck et al. [150]
applied it to data acquired during a complex visuomotor task, whereas Sato et al. [151] used a
wavelet variation of G-causality to identify time-varyingcausal influences, and Liao et al. [152]
aimed to reveal the network architecture of the directed influence brain network on resting-
state. Granger causality has also been applied to simulatedneural systems in order to probe the
relationship between neuroanatomy, network dynamics, andbehavior [153, 154].

Although there are many new methods to infer information flowbeyond Granger causality,
there is no unanimity as to what is the best method to use. Transfer entropy and directed trans-
fer function are among the most employed methods within neuronal data. In particular, several
other methods employed the idea of phase to infer connectivity: phase slope index [155], phase
locking value [156], imaginary part of coherency [157], weighted phase lag index [158], pair-
wise phase consistency [159], At least one of them, the phase slope index [155], clearly claims
to be useful to estimate causality.

An advantage of information theoretic measures (mutual information and transfer entropy),
as compared to standard Granger causality, is that they are sensitive to nonlinear signal prop-
erties [146]. A limitation of transfer entropy, as compared to Granger method, is that it is
currently restricted to bivariate situations. Also, information theoretic measures often require
substantially more data than regression methods such as Granger causality [160]. Particularly
in the analyzed data here, there are only 18 points in each trial which turns out to be too few
points to use transfer entropy.

5.4 Spectral Analysis of LFP and simulation data.

Coherence, Granger causality and phase difference spectral analysis were calculated fol-
lowing the methodology reported in Brovelli et al. [70] using the GCCA Matlab toolbox [161].
The autoregressive modeling method (MVAR) employed in Refs. [161, 70] to estimate the
spectral analysis from the LFP time series requires the ensemble of single-trial time series to be
treated as produced from a zero-mean stochastic process. Therefore, we have preprocessed the
LFP time series by including detrending (subtraction of best-fitting line), demeaning (subtrac-
tion of the ensemble mean) and normalization (division by the temporal standard deviation) of
each trial.

It was also necessary to determine an optimal order for the MVAR model. For this purpose
we obtained the minimum of the Akaike Information Criterion(AIC) [162] as a function of
model order. The AIC dropped monotonically with increasingmodel order up to the number
of points in a trial minus one. We consider that the model order of 10 (50 ms) used in [70]
is sufficient to provide good spectral resolution and avoid overparameterization. In fact, we
verified the consistency of the results using model orders of5 and 15.

For each pair of sites(l ,k) we calculated the spectral matrix elementSlk( f ) [70, 163], from
which the coherence spectrumClk( f ) = |Slk|

2/[Sll ( f )Skk( f )] and the phase spectrumφlk( f ) =
tan−1[Im(Slk)/Re(Slk)] were calculated. A peak ofClk( f ) indicated synchronized oscillatory
activity at the peak frequencyfpeak, with a time delayτlk = φlk( fpeak)/(2π fpeak). Directional
influence from sitel to sitek was assessed via the Granger causality spectrumIl→k( f ) [70, 163]
(arrows in Fig.5.1B are in agreement with Table5.2).
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Figure 5.2: Comparison between data from sites 1 and 2 (top) with the results of our model
in the AS regime (bottom). (A) Measured and simulated LFP time series. (B) Both in data
and model the sites are synchronized with main frequency 24 Hz (peak of the coherence). (C)
In data, site 2 Granger causes site 1 (as if site 2 were the master and site 1 were the slave).
However, site 2 lags behind site 1 (τ =−8.7 ms as shown in Table5.2). Similarly, in the model
the master Granger causes the slave, but lags behind it (τ = −8.2 ms). (D) Phase difference
between pairs of site as a function of the frequency in which coherence reaches its maximum
value (fpeak). fpeak= 24 Hz, comparable with Ref. [70]. fpeak= 17 Hz, comparable with
Ref. [71]. In this work, posterior parietal cortex Granger causes prefrontal cortex, but prefrontal
cortex leads the former (τ varies from−2.45 ms to−6.53 ms)

5.5 Comparing data and model

From the experimental data, we have selected four pairs of electrodes for which the two
following criteria were satisfied: strongly asymmetric influence inferred by Granger causality
and strong coherence. In these cases, both the coherence andGranger causality peaks were at
similar frequencies. Those results are represented in Fig.5.1and summarized in Table5.2. In
all cases the pairs were synchronized in the beta band (around 24 Hz).

Whenever a sitel strongly and asymmetrically Granger causesk, we refer tol as a master
(M) site andk as a slave (S) site. Intuitively, in these cases one would expect M to lead S
(i.e. τlk > 0), but the counterintuitive result revealed by Table5.2 is that there is no consistent
relation between GC andτ [70, 71]. Given the complexity of the cortical interactions, several
mechanisms could account for this phenomenon. Here we propose a minimal model that ex-
plains how asymmetrically coupled neuronal populations can synchronize with either positive
or negative time delay.

The asymmetry between M and S neuronal populations is structurally built-in in the simu-
lations (Fig.5.1C). Despite the noise and heterogeneity, the mean membrane potential of the M
and S populations can synchronize with the same main frequency. Depending on the synaptic
conductances, the system can exhibit delayed synchronization (DS), withτ > 0, or anticipated
synchronization (AS), withτ < 0.
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Figure 5.3: Time delay as a function of the inhibitory conductance, corresponding to black
dots in Fig.5.2(d) in the following frequencies: a)fpeak= 17 Hz b) fpeak= 24 Hz. Like in the
previous chapters, the transitions from AS to DS are smooth and continuous.

5.5.1 Model reproduces experimental coherence and GC spectra

We have adapted the model to fit the data coherence peak frequency (24 Hz in Fig.5.2), by
adding a constant current to every neuron (I = 9 pA) and adjusting the synaptic conductances
(gM

I = g̃S
I = 3.2 nS,gMS

E = 0.5 nS andgS
I = 12.6 nS). This modification also produced noisier

time series that better mimic measured LFPs (Fig.5.2A). For a fair comparison with data, sim-
ulated LFPs took both the ES and IS subpopulations into consideration. We have downsampled
the model time series to the same rate employed for the data (200 Hz), after which simulated
data was analyzed exactly like experimental data.

In Fig. 5.2 we compare simulation results with experimental data from sites 1 and 2 (pri-
mary motor and somatosensory cortices respectively, see Fig 5.1B), which showed a clear uni-
directional influence (from 2 to 1) and negative time delay. Tuned to AS, the model yielded a
coherence spectrum similar to that of the data (Fig.5.2B), particularly in its sharpness around
the measured peak frequency. Not surprisingly, the absolute values of the peak coherence for
the simulations is larger than for the data, probably reflecting the fact that, differently from our
simple model, in the brain one region is also influenced by many other regions.

The model also successfully reproduced the main features ofthe GC spectrum of the data
(Fig. 5.2C). A sharp peak was obtained in one direction (M→ S in the model), whereas the
reverse direction showed a weak and flat spectrum. The fact that the peak frequency of the
GC spectra approximately coincides with the peak frequencyof the coherence suggests that
causality is mediated by the coherence oscillations around24 Hz [70].

Results by Brovelli et al. showed positive as well as negative time delays, given an asym-
metrical GC between two sites [70]. By changing the inhibitory conductancegS

I , the model
managed to reproduce both regimes (Fig.5.2D), which corresponded to what we refer to as DS
and AS, respectively.

In the second dataset, the peak frequencies were around 17 Hzand the average relative
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Site Pairs Peak Coherence Peak Granger Causality Phase Time delay

M → S Magnitude fpeak (Hz) M → S fpeak (Hz) S→ M fpeak (Hz) Difference (rad) τ (ms)

2→ 1 0.3051 24 0.1944 25 —– —– -1.3166 -8.73 (AS)

2→ 3 0.4029 24 0.1547 26 0.0892 25 -2.1316 -14.14 (AS)

2→ 4 0.2552 24 0.1086 24 0.0265 26 -1.6706 -11.08 (AS)

3→ 1 0.2546 24 0.1610 24 —– —– 0.4637 3.08 (DS)

3→ 4 0.7186 24 0.4203 26 0.0859 28 0.3799 2.52 (DS)

4→ 1 0.2072 24 0.0644 26 —– —– -0.4313 -2.86 (AS)

Table 5.2: Peak of coherence, Granger causality and time delay between all 6 pairs of sites
shown in5.1. In each pair, the site which exerts a larger influence on the other is called the
master. The other site, which receives the larger influence,is the slave. Positive values of time
delay indicates the master leads the slave (DS), while negative value indicates the master lags
behind the slave (AS). A dash (−) indicates that no peak was observed in the Granger Causality
spectrum.

phase between PPC and PFC was negative [71]. Our simple model yielded similar results with
changes in parameters (gMS

E = 1.0 nS,gM
I = g̃S

I = 7.5 nS,gS
I from 6 to 20 nS and a Poisson

rate equal to 6000 Hz). In Fig.5.2D we summarize the comparison between phase differences
observed in the model and in the data.

The time delayτ as a function of the inhibitory conductancesgS
I is shown in Fig.5.3for both

sets of parameters ((a)fpeak= 17 Hz and (b)fpeak= 24 Hz). Similarly to what was observed
in previous chapters, the transition from DS to AS is smooth and continuous. It means that
the same model may represent different pairs of sites in Fig.5.1, since they are modulated by
different amounts of inhibition. In particular, sites 1 and2 from the data have a time delay
τ = −8.7 ms which is quite close to the minimum time delay obtained with our model,τ =
−8.2 ms forgS

I = 12.6 nS.

Hitherto all results are for the wait period of the task (90 msbefore the stimulus onset).
Nonetheless, we also analyzed the whole task, which comprehends 500 ms in each trial. After
the stimulus, the synchronized activity decreases and, consequently, the peak in the coherence
between pairs of sites also decreases. However, during NO-GO tasks, which requires to the
monkey to maintain the hand lever depressed, the synchronized activity reappear before the
end of the trial. This result was reported by Zhang et al. [164] In Table 5.1 we repeated the
same analysis shown in Table5.2, but for a different interval (from 300 to 400 ms after the
stimulus onset) and only for NO-GO tasks. Results are qualitatively the same between all
pairs, except for 1 and 4. It means almost all pairs that exhibits AS (or DS) during the wait
period, show the same regime in the end of the task (a result which was not reported by Brovelli
et al. [70] neither by Zhang et al. [164]).
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5.6 Discussion

5.6.1 Relative time delay is a poor indicator of directionalinfluence

It is well known that the correlation between two variables does not necessarily imply that
one causes the other. However, there is a tendency in the literature to use the relative phase
between synchronized populations to infer which one is the driver region [165]. As we have
shown, in our model the leading population does not necessarily drives the lagging population.
By definition, in a master-slave configuration the directionof information flow is from the
master to the slave. It means the master drives the slave in both AS and DS regimes. As there is
no violation of causality, the existence of an AS regime in such systems reveals that the relative
time delay does not always indicate the direction of causal relation.

In prior analysis of cortical LFP data [70], an apparent contradiction was found between
the time lag and the GC direction for some pairs of sites (see Table5.2). A similar paradox was
also reported by Salazar et al. for different cortical regions [71]. The apparent contradiction is
caused by the assumption that the direction of information flow from one process (A) to another
(B) must result in process B following process A in time. However, our model of AS not
only proves that this intuition fails but also sets a framework in which an AS regime naturally
emerges, reconciling causality with a negative phase lag. To the best of our knowledge, this is
the first model to exhibits AS between cortical populations.

It is important to mention that LFPs are highly sensitive to the depth of the recording, which
can lead to phase reversal as a function of electrode depth (e.g. [166, 167, 168]). Although this
could shift all phase delays byπ radians and possibly confound AS with DS and vice versa,
that would not eliminate the apparent contradiction between phase lag and causality. In pairs
of brain regions in which DS occurs (as e.g. regions 3 and 1 in Table5.2), causality and phase
lag would not match and would still require an explanation.

5.6.2 Correspondence between dynamical synchronization regime and functional brain
state

In light of the hypothesis that synchronization plays an important role in neural processing
and coding [104, 66], different dynamical synchronization regimes may be required for flexible
communication to occur within a given structural network architecture. For instance, changes
in dynamical synchronization state may be necessary for short-term changes in functional brain
state related to cognitive processing [109, 169], or long-term changes related to learning. AS
may represent such a dynamical state of synchronization, and thus may be able to open new and
unexplored perspectives for understanding this type of coding. Our model suggests that even
populations with a strongly unidirectional connectivity can exhibit dynamical flexibility. Sim-
ply by small changes in the relative weights of excitatory and inhibitory synaptic conductances,
a range of synchronization patterns, displaying positive to negative time lags, can be achieved
for the same anatomical structure. In fact, recent neurophysiological evidence [170] suggests
that top-down attentional influences act to affect the balance of excitation and inhibition in
visual cortical area V4.
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5.6.3 Effective connections and functional significance

In order to characterize the interaction between distant brain areas, correlated oscillations
used to be analyzed [107]. However, cross-correlation functions as well as coherence measures
are not always sufficient to indicate neither the structuralconnection nor the direction of the flux
of information of the network [109]. The motifs explored here are examples of such a situation,
since the time in which the peak of the cross-correlation function occurs can be positive or
negative. A step further in the analysis of brain connectivity during specific tasks is to infer
the effective connection (i.e. to infer directional influences, besides correlations) [62]. For this
purpose, one should calculate the flux of information using,for example Granger, causality or
transfer entropy.

It is worth to mention that if the analyzed data is too small orhas low resolution, in an
anticipatory situation causal measures such as transfer entropy or Granger causality would
state that the information flux is from the slave to the driver(master) [171]. In these situations
the sign of the time delay would seem to agree with the apparent flux of information. Such an
effective connectivity calculated in the wrong way would not represent real causal flux neither
the structural connectivity.

Since the model presented here predicts that the AS-DS transition is mediated by synaptic
changes, a related question is whether the functional significance of AS and DS regimes (if
any) could be unveiled by monitoring causality and phase lagduring the process of learning a
new task. On the conservative side, given the central dependence of phase lag on inhibition in
the slave population, the observation of AS between primarysomatosensory and motor areas
could be just an epiphenomenon, reflecting strong inhibition at the primary motor cortex in
order to prevent movement, as required by the task [70]. Alternatively, the precise timing in
the coordination among areas might subserve additional functions, possibly in connection with
attention and perceptual coordination.





CHAPTER 6

The interplay between spike-timing dependent
plasticity and anticipated synchronization in the

organization of neuronal networks

How learning and memory is achieved in the brain is a central question in neuroscience.
Since antiquity, philosophers have been thinking about this problem. It was Aristotle who
proposed the notion of the mind as a tabula rasa, or a blank slate. This idea is exactly opposite
to that of Plato, who defended that the human mind was createdin the heavens, pre-formed and
ready. Since then, there is a long-standing discussion about whether we are primarily a product
of nature or of nurture [172].

6.1 Synaptic plasticity

The most accepted idea nowadays is that the storage of information in our brain is mediated
by changes in the synaptic efficiency, a phenomenon called synaptic plasticity. This assumption
emerged after the demonstration by Ramón y Cajal that networks of neurons are not in cytoplas-
matic continuity but communicate with each other via specialized junctions called synapses. In
1949, Donald Hebb [69] conjectured that if input from neuron A often contributes to the firing
of neuron B, the synapse from A to B should be strengthened. Inhis own words: “When an
axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased” [172]. His ideas are known by the
popular slogan: “cells that fire together, wire together”. However, strictly speaking, Hebb’s
rule is directional: cell A helps fire cell B.

The strengthening of connections between co-active cells has become known as Hebbian
plasticity. The resulting groups of cells joined together through this form of plasticity are
called Hebbian assemblies. Hebb also propose that the neural basis of the thought process are
the chains of assemblies that create specific sequences of fire. The same cells can participate
of several different chains (or percepts) depending on which cells are active at the same time
and on the sequence of activation. Then, distinct sequencesmay represent distinct thought
processes [172].

Along the last decades, several experimental works in a number of brain regions including
the hippocampus, neocortex, and cerebellum, have revealedactivity-dependent processes that
can produce changes in the efficacies of synapses that persist for varying amounts of time. Bliss
and Løomo’s study [173] was the first to demonstrate that the effects could last for along period.
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Their work was the first verification of synaptic plasticity in the mammalian brain, particularly
in the excitatory synapses of the hippocampus, a region which participates in learning and
formation of memory in humans. They showed that brief trainsof high-frequency stimulation to
monosynaptic excitatory pathways in the hippocampus causean abrupt and sustained increase
in the efficiency of synaptic transmission.

Lynch et al. [174] reported that while high-frequency stimulation induced potentiation of
the activated pathway, the inactive pathway may suffer depression. This was in agreement with
Hebb’s idea of a slow “synaptic decay” for unused connections. Even tough he did not propose
an active mechanism to weaken synapses, long-lasting depression was also found to occur at the
activated pathway when the activation frequency was low [175]. Synaptic increase or decrease
that persists for tens of minutes or longer are generally called long-term potentiation (LTP) and
long-term depression (LTD), respectively.

Despite plenty of plasticity models based on correlations of pre- and postsynaptic firing
(known as rate-based rules), in more recent years a novel concept in cellular learning has
emerged, where temporal order of pre- and post-synaptic spikes instead of frequency is em-
phasized. This new learning paradigm, known as spike-timing-dependent plasticity (STDP),
has rapidly gained interest because of its combination of simplicity, biological plausibility, and
computational power. [172]

6.1.1 Spike-timing-dependent plasticity (STDP)

Markram and Sakmann reported a breakthrough study on the importance of precise relative
timing of spikes emitted by the pre and post- synaptic neurons in the neocortex [176]. They re-
vealed that LTP occurs when the time difference between the pre- and the postsynaptic neurons
is around 10 ms and the presynaptic neuron spikes first. On theother hand, LTD was shown to
happen due to acausal pre-after-postsynaptic spike timings, even when they employed the same
stimulation frequency to generate pre-post and post-pre spikes.

In 1998, Bi and Poo [177, 178] mapped essentially the entire STDP window. First, they
evoked spikes in both pre and postsynaptic neurons with a precise time difference (∆t). Second,
they measured changes in the excitatory postsynaptic potential (EPSP) as an indirect measure
of the strength of the synapse (see Fig.6.1). A positive∆t means that the presynaptic neuron
fires spike before the post synaptic neuron, which has been shown to induce LTP. A negative
∆t is associated with the opposite order (a post-pre spike) andgenerates a decrease in the
amplitude of the EPSPs, which characterizes LTD. Then, theyrepeated the process in a roughly
40-ms-long coincidence window. More interestingly, they reported a rapid 1-ms transition
between LTP and LTD for near-perfect coincidence between pre and postsynaptic cell activity.
This sudden transition between LTP and LTD is in biological terms essentially instantaneous.
Despite quite surprising, it was later reproduced in the neocortex [179] and is now considered
one of several hallmark features of STDP [172].

To mathematically describe the relation shown in Fig.6.1an additive STDP rule has typi-
cally been used:

g=

{

g+A+exp(−t/τ+), if t > 0

g−A−exp(t/τ−), if t < 0
(6.1)
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Figure 6.1: Spike-timing-dependent plasticity (STDP) verification in paired recordings in dis-
sociated neuronal cultures. Changes in the strength of unidirectional excitatory synapses due
to different time differences between the spikes from pre and post synaptic neurons. Figure
reproduced from Bi and Poo [177].

whereg is the synaptic conductance (or weight) andt = t post− t pre is the time difference be-
tween pre and post synaptic spikes.A+, A−, τ+ andτ− are the parameters to fit the data. In our
notation along this thesis, in a unidirectional configuration, the postsynaptic neuron is the slave
and the presynaptic neuron is the master. The experiments suggest thatτ+ varies in a range of
tens of milliseconds [180].

Over the past decades, STDP has been found in a range of species from insects to hu-
mans [181]. Specially, STDP has been demonstrated in the human primary motor cortex [182].
Pairing electrical stimulation of somatosensory afferentnerve with transcranial magnetic stim-
ulation (TMS) leads to long-lasting changes in the motor-evoked potentials (MEPs) elicited by
TMS.

It is worth mentioning that inhibitory synapses can also display plasticity, but just in the last
years this was thoroughly investigated both experimentally and theoretically [183]. Moreover,
different experiments reported completely different temporal windows [181]. Therefore, along
this chapter we will not apply STDP rules to the inhibitory synapses.
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6.2 AS and STDP synergetically organize the network dynamics

The interplay between STDP and Anticipated Synchronization can have a major influence
over the structural organization of neuronal networks. STDP relies on relative spike timing
to induce modifications on the connectivity of neuronal networks, trough the potentiation or
depression of synaptic strengths. On the other hand, the modification of the synaptic strengths
can induce transitions between AS and DS synchronization regimes. However when the net-
work synchronization regime changes from DS to AS, the relative spiking time between pre and
post-synaptic neurons is inverted, leading to a inversion of the STDP (e.g. from potentiation to
depression).

One problem in applying STDP rules in neuronal networks is the stability. In numerical
simulations of unidirectional couplings, it is usually necessary to set an arbitrary upper bound-
ary to the synaptic weights [180]. It is also necessary to avoid that the plasticity rule changes the
signal of the conductance, because it should not turn an excitatory synapses into an inhibitory
one. Moreover, according to experimental data, synaptic weights should fulfill the following
key properties [184, 185]: (i) The weight distribution should be stable. Unchanged patterns
during a synchronized regime would allow the information carried through the connections to
be consistently interpreted; (ii) Synaptic weights shouldpresent diversity. This is the opposite
to all weights having the same value or binary weights. Functionally, a graded set of connec-
tions can perform a richer set of computations [186, 187]; (iii) Weights should be limited. It
means that due to the finite number of neuromodulators, bindings, etc, the synaptic weights
should not grow to biophysically unrealistic values. It also avoids amplification of neuronal
activity to pathological levels.

We started by extending the 3-neuron model presented in Chapter 2 to the presence of STDP
in the synapse from the master to the slave (excitatory to excitatory neuron). Then we studied
the neuronal population model presented in Chapter 3 in light of STDP rules between synapses
from neurons in the master population to neurons in the slavepopulation. First, we verified that
AS exists and can be stable in the presence of STDP rules. Second, we proposed that STDP
could facilitate a self-organized near zero-lag synchronization. More interestingly, we showed
that the interplay between AS and STDP rules gives stable synaptic weight distributions that
are comparable to experiments in the cortex [185] .

6.3 STDP in the 3-neuron motif

To initiate the study of the effects of STDP rules in a system that exhibits a smooth transition
from AS to DS, we chose the 3-neuron motif modeled by HH neurons of Chapter 2. The
microcircuit is represented in Fig.6.2(a). Synaptic plasticity was applied in the excitatory
synapses from the Master to the SlavegMS. Unless otherwise stated, all parameters are as in
Table2.1.

For fixedgIS= gSI = 40 nS, the time delayτ between the Master and the Slave is a smooth
function ofgMS (i.e. in the absence of STDP). This relation is shown in Fig.6.3. Similarly to
what is described in Chapter 2, the motif in Fig.6.2(a) presented two phase-lockings regimes:
DS (blue) and AS (red), and a phase-drift (PD) regime. It is important to mention that in
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Figure 6.2: MSI motifs in the presence of STDP rules. (a) Three neurons coupled by chemical
synapses in the master-slave-interneuron (MSI) configuration. Excitatory AMPA synapse from
the Master to the SlavegMS under STDP rules. (b) Master and Slave-Interneuron cortical-like
populations. Each synapses from M to SI has a different conductancegMS which can change
due to STDP.

Chapter 2 we varied the two excitatory synapsesgA, mediated by AMPA, at the same time,
which meansgMS= gIS, whereas in this chapter we fixedgIS = 40 nS.

Considering the results shown in Fig.6.3 we expected that if we switched on the STDP
rules, in an AS regime the synaptic conductancegMS decreases by LTD, while in a DS regime,
gMS increases by LTP (see arrows in Fig.6.3). To verify this hypothesis, we applied the addi-
tive rule described in Eq.6.1 with τ+ = τ− = 10 ms andA+ = A− = 1 nS for the excitatory
conductancegMS.

We studied three different situations: initial value of conductancegMS= 40 nS (DS),gMS=
20 nS (AS) andgMS = 2 nS (PD). In Fig.6.4 we show how the conductance changes along
the time in each case. As mentioned above, to avoid infinitelylarge or negative values of
conductances it is necessary to choose an upper (gMS= 300 nS) and a lower (gMS= 0) boundary
for the conductance. Fort < 500 ms the system is in a well defined regime, then the STDP rules
are turned on and there is a transient time until the new regime is reached. Together with the
boundaries (gupper

MS = 300 nS andglower
MS = 0), the three initial conditions allow the following

transitions: DS→DS, AS→PD, and PD→PD. In Fig.6.5we illustrate the membrane potential
of the Master (black), the Slave with no STDP rules (red) and the Slave after the STDP rules
are applied and the system reached the new regime (dashed-violet lines).

Moreover, if we use another lower boundary, for example 6< gMS< 32 nS, it is possible
to end in an AS regime (data not shown). Although distinct temporal windows for STDP
between excitatory-inhibitory synapses have been proposed, if we apply the additive STDP
rules of Eq.6.1on the synapse from the slave to the interneuron,gSI simply goes to the upper
boundary. Since the order of pre-post spikes between S and I does not change either in AS
or DS, the time differencet I − tS is always positive and the conductancegSI always increases
through LTP. We employed a fixed value of conductancegSI = 40 nS, but we verified that the
results are qualitatively similar for other values ofgSI.
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Figure 6.3: Time delay as a function of the excitatory conductancegMS for fixed values of
gSI = gIS = 40 nS and no plasticity rules. If we turn on STDP, the DS regiongMS > 32 nS
should lead to LTP whereas the AS region 6< gMS< 32 nS should lead to LTD. ForgMS< 6 nS
the system presents a phase-drift (PD) regime andτ does not converge to a fixed value.
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Figure 6.4: The synaptic weights as functions of time for three different situations. Initial
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at t = 500 ms (vertical arrow).
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Figure 6.5: The effect of STDP rules in the 3-neuron motif forthe three cases shown in
Fig 6.4. Membrane potential of the Master (black), the Slave without STDP (red) and the Slave
(dashed violet) with STDP rules acting on thegMS. (a) Initial value ofgMS= 40 nS, final value
gupper

MS = 300 nS (upper boundary arbitrarily chosen). The system begins in the DS regime
and remains there. (b) Initial value ofgMS= 20 nS. The system starts in the AS regime, then
gMS decreases until values smaller than 6 nS and the system reaches the PD.gMS periodically
oscillates between 0≤ gMS≤ 3. (c) Initial value ofgMS= 2 nS. Lower boundary:glower

MS = 0.
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6.4 STDP between neuronal populations

In this section, we are interested in comparing the connectivity effects of the interplay be-
tween AS and STDP in a model to experimental data from the cortex. Therefore, we applied
STDP rules to the synapses between two neuronal populationscoupled in a master-slave config-
uration. In particular, we used the modified MSI motif described in Chapters 4 and 5 in which
the Slave and Interneuron (S) are together as a single cortical region (see Fig.6.2). Without
plasticity, all excitatory synapsesgMS have the same value, and the time delayτ is a function
of bothgMS andgIS as shown in Fig.4.9. A positive value ofτ indicates DS (blue), whereas
τ < 0 characterizes AS (red).

In the additive rule described in Eq.6.1both the amounts of potentiation and depression do
not depend on the previous values of the weights. This is a good model to describe situations
in which the relative potentiation in strong synapses is less intense than in weak synapses.
However, it does not always hold for synaptic depression [188]. In these cases a hybrid rule
has been proposed as an improved model for the STDP rule:

g=

{

g+A+exp(−t/τ+), if t > 0 (additive LTP)

g−A−gexp(t/τ−), if t < 0 (multiplicative LTD)
(6.2)

whereτ− = τ+ = 5 ms,A− = 1.0 and typicallyA+ = 0.5 nS, but it can be varied from 0.2 to
3.5 nS. We will show that this hybrid rule together with AS provide more realistic results.

6.4.1 AS in the presence of STPD: an emergent property

For simplicity, we fixed all the intra-population synapses and applied STDP rules only in
the synapsesgMS between M and S populations. Unless otherwise stated, all parameters are
given by Table4.1. When we turned on the STDP rules, eachgMS synapse were modified
according to Eq.6.2 and consequently the mean of the time delay in each period (τ = 〈τi〉)
changed. After a transient time, the system reached a synchronized regime in which the two
populations oscillate with a well defined value ofτ. The time delay could be either positive
(DS) or negative (AS). The mean membrane potential of the M and S populations as well as
the time delay are illustrated in Fig.6.6 for an example of AS and DS, both in the presence
of STDP. Results are robust independently of when we turn on the plasticity rules (i.e. in the
beginning of the simulation or after the system reaches a synchronized regime).

In the cortical-like networks explored in this chapter, it is possible to start in an AS regime
and go to DS via STDP (changing the parametersgIS andA+), or to go in the opposite way:
DS→ AS (differently from what happens in the 3-neuron microcircuit). This is an emergent
property that arises from the synergetic interplay betweenSTDP and AS in modifyingτ to
generate changes ingMS and vice versa. In Fig.6.7(a) we show the relation betweenτ andgIS

Comparing the two curves with and without plasticity in Fig.6.7(a), we can see, for example,
that forgIS = 7.5 nS the effect of STDP is to take the system from DS to AS.

Furthermore, in Fig.6.7(b) one can seeτ as a function of the dimensionless parameterA+

for fixed gIS = 4 nS. In the absence of STDP andgIS = 4 nS the system is in AS. Thus, this
plot shows that forA+ ≤ 2.2 the system can start on AS and stay in the same regime, whereas
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Figure 6.6: Characterizing AS and DS regimes in the presenceof STPD. (a) and (b) Membrane
potentials of Master (black) and Slave (red) populations. Since the peaks of M and S are very
close, the DS regime can be considered a near zero-lag regime. (c) and (d) Time delayτi in each
cycle. The mean time delayτ (orange dashed line) is positive in the AS regime and negative in
DS.
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Figure 6.7: Smooth transition from AD to DS (a) Time delay as afunction of inhibitory con-
ductances. Comparing the case with no plasticity and the hybrid STDP rule withA+ = 0.5 and
A− = 1.0. Plasticity brings the system to near zero lag synchronization. (b) Time delay as a
function ofA+ For fixedgIS = 4.0 nS andA− = 1.0. There is AS even forA+ higher thanA−.

for for A+ > 2.2 the system can go from AS to DS. Indeed, the two regimes and the possible
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transitions from one to the other are spread in large regionsof the parameter space. Altogether,
AS and DS are stable and robust against STDP.

6.4.2 Hybrid STDP and AS stabilize synaptic weight distribution

There have been several attempts to link weight distributions and synaptic plasticity rules;
in particular, STDP rules have received most of the attention [185, 180]. Typically, the additive
rule in Eq.6.1produces a bimodal distribution [24,26], with synaptic strengths clustering both
around zero and at the imposed maximum synaptic weight. However, Barbour et al. argued
that “the bimodal distribution resulting from an additive rule appears to be in conflict with
existing data, in which no such bimodality can be detected” [185]. Fig. 6.8 shows examples
of experimental synaptic weight distributions in different brain regions and types of cells re-
ported in the literature. All the distributions shown have similar shapes (but different scales): a
monotonic decay with maximum probability near zero [185]. In addition, plenty of studies (in
the cortex, hippocampus, and cerebellum) strongly suggestthe existence of a large majority of
undetectable (silent or potential) synapses with almost zero weight.

The most amazing result in our model is related to the synaptic weight distribution when
the system reaches an AS regime via STDP. The mentioned features about experimental shape
of the weight distributions (monotonic decay with maximum probability near zero) are repro-
duced by our MSI motif in the AS regime (see Fig.6.9(a)). Moreover, the distribution ofgMS

obeys the three key properties explained in Sec.6.2 as a result of the dynamical interaction
between AS and STDP: (i) the distribution is stable, (ii) diverse and (iii) limited. More interest-
ingly, the synaptic weight distributions are limited without the necessity of arbitrarily chosen
boundaries. Even considering that each synapse individually is changing along the time, the
distribution of all synaptic weights maintains the same pattern and the system remains in the
same synchronized regime.

On the other hand, for a DS regime, the third property is not completely satisfied. Eventu-
ally it is necessary to arbitrarily choose an upper boundaryfor the weights, otherwise some of
them grow beyond biophysical limits. In the bottom of Fig.6.9(a), in the absence of a bound-
ary, we see that there is probability of finding large values of gMS in the DS regime, whereas
that does not happen for AS. The choice of the maximum value ofgMS can lead to a bimodal
distribution for DS (data not shown). However, stability and diversity are present.

Differently from the 3-neuron motif studied in Section6.3, results here do not depend on
the initial values ofgMS. Each synapse has a different behavior but all synapses together give
similar weight distributions along the time. In Fig.6.9(b) we see the evolution in time of four
randomly chosen synapses from each different initial condition in the AS (top) and DS (bottom)
examples. In DS there is a probability of extremely fast growing which results in large values
of conductance as mentioned before. In AS all weights converge to small values, no matter its
initial values.

6.4.3 Other STDP rules

In order to compare the different possible cases, besides the hybrid rule we tested our model
against two other rules that can also describe the data shownin Fig. 6.1. Firstly, the multiplica-
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Figure 6.8: Experimental synaptic weight distribution in the cortex. All data have similar fea-
tures: a monotonic decay with maximum probability near zero, but distinct scales. Reproduced
from Ref. [185].
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Figure 6.9: Synaptic weight distributions in the presence of hybrid STDP rules. (a) and (b)
AS, withgIS= 4 nS. (c) and (d) DSgIS= 16 nS.A+ = 0.5 andA− = 1.0 are kept fixed. (a) and
(c) Histogram of thegMS values. In the inset of (a) AS gives limited weight distribution even
without choosing an arbitrary upper boundary. However, in the DS regime some synapses grow
unlimited. (c) and (d) Independence of the initial synapticconductances. Each color represents
a different simulation in which all initial synaptic conductances were the samegMS= 0.5 nS
(black),gMS= 1.0 nS (red),gMS= 3.0 nS (blue),gMS= 5.0 nS (orange). For each simulation
we show 4 randomly chosen synaptic conductances evolving intime. In the AS regime (top),
the conductancesgMS vary in a limited interval. In the DS regime (bottom), since the beginning
of the simulation, there is a tendency for some synapses to grow more than others.

tive STDP model:

g=

{

g+A+gexp(−t/τ+), if t > 0

g−A−gexp(t/τ−), if t < 0.
(6.3)

This rule requires an upper boundarygupper for both DS and AS and provides no diversity in the
weight distribution. Virtually all weights end up in the minimum gMS= 0 or in the maximum
valuegMS= gupper.

Secondly, we employed the additive rule in Eq.6.1 with no boundaries. The distribution
is a Gaussian centering in zero for the AS case and centering in a positive number for DS.
However, it allows negative conductances, which is not biophysically plausible. If we choose
the lower boundary to be zero, in order to avoid the negative values of conductances, the weight
distribution for AS is similar to the hybrid case. Nevertheless, in the DS regime the stability is
compromised, andτi is non-stationary (i.e. its mean and variance change over time).

The 3-neuron results are qualitatively the same for the three STDP rules. The results with
this microcircuits should be more interesting in the presence of plasticity in the inhibitory
synapses. Although inhibitory plasticity was reported to provide completely opposite STDP
window in certain experiments, which cannot be described byany of the rules employed in this
chapter, this could be potentially enlightening for the interplay between AS and STDP.



CHAPTER 7

Concluding remarks and further perspectives

Understanding the brain is a challenge that is attracting anincreasing number of scientists
from many different fields, what makes neuroscience perhapsthe most remarkable example of
interdisciplinarity. In particular, computational neuroscience aims to use theoretical approaches
from physics, mathematics, computer science and engineering to integrate experimental obser-
vation, data analysis and theoretical modeling. In this thesis, we studied the relation between
structure and dynamics in distinct biophysical models of neurons and brain regions. We pre-
sented a detailed analysis of anticipated synchronization(AS) in biologically plausible neuronal
network models within different scales and proposed experimental setups to test our hypothesis.
Moreover, we proposed that the mismatch between directional influence and phase difference
in cortical experiments reported by Brovelli et al. [70], whose data we also analyzed here, can
be the first verification of AS in the brain.

As explained in the scope of this Thesis, AS is a form of synchronization that occurs when a
unidirectional influence is transmitted from a generator toa receiver, but the receiver precedes
the generator in time. This counterintuitive synchronization regime can be a stable solution
of two dynamical systems coupled in a master-slave configuration, when the slave receives a
negative delayed self-feedback. In this thesis, we showed that a master-slave system can also
exhibit AS when this negative delayed self-feedback is replaced by a dynamical inhibitory loop
mediated by chemical synapses. This replacement opens new avenues in the study of AS in
biophysical systems.

In Chapter 2, we showed that a canonical neuronal microcircuit with standard chemical
synapses, and where the delayed inhibition is provided by aninterneuron, may exhibit AS. It
means that, when a master neuron sends an excitatory synapseto a slave neuron, which excites
an interneuron and receives an inhibitory synapses back from it, the slave is able to fire spikes
before the master. Moreover, the time delayτ between consecutive spikes of the master and the
slave is shown to be a continuous and smooth function of the inhibitory synaptic conductance.
Therefore, this 3-neuron motif presents a smooth transition from the delayed synchronization
(DS, when the master spikes before the slave) to AS mediated by synaptic conductances.

The phenomenon is shown to be robust in the 3-neuron motif when model parameters are
varied within a physiological range. The AS regime and the transition AS-DS is also exhibited
when different setups are included in our motif: in the presence of a common driver neuron
that simultaneously excites all three neurons; when there exists external noise; in modified
neuron models; in a chain of slaves and interneurons; in the presence of an excitatory feedback
from the slave to the master; and in a simple model for the motor circuit of the spinal cord.
Moreover, results in this chapter could be tested in a hybridpatch clamp setup, in which the
inhibitory synaptic conductance can be simulated in real time.

97
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In Chapter 3, the 3-neuron motif was analytically investigated using the theory of phase
response curves (PRCs) for phase-locking regimes. We employed the approximation of weak
coupling oscillators, to calculate the Poincaré phase map for the difference between spike tim-
ing of the neurons. The stability conditions were calculated as a function of the PRCs of the
master, the slave and the interneuron. This approach could facilitate the investigation of AS,
reducing the problem to the analysis of a set of conditions that should be satisfied by the PRC of
the involved neurons. These results still need to be corroborated by further numerical simula-
tions. As a matter of fact, we cannot use the standard Hodgkin-Huxley neuron model employed
in chapter 1 for this task, because it was not able to satisfy the necessary weak coupling ap-
proximation, and the choice of a better model remains under consideration.

In Chapter 4, we presented a model of two brain regions coupled by a well-defined direc-
tional influence (master M and slave S populations), that is the first model of neuronal popula-
tion to displays AS. Each population is composed of hundredsof neurons with the necessary
ingredients to mimic cortical-like sub-networks. We employed realistic brain features, such
as the proportion of excitatory and inhibitory neurons, variability in the neuronal dynamics,
noise, baseline firing rates and global topological motifs.Similarly to the 3-neuron motif case,
the system exhibits an AS regime and a smooth AS-DS transition, which could be mediated
by several parameters: synaptic conductances, Poisson rate, proportion of different classes of
neurons in S, etc. Since the anticipation time emerges from the system dynamics, instead of
being explicitly hard-wired in the dynamical equations [4] (see Eq.1.1), AS could be tuned by
neuromodulation.

Despite of the several existing studies of AS in physical systems, a verification on AS
in the brain has not been reported. Therefore, in Chapter 5 weproposed that our neuronal
population model can be compared toin vivoexperimental results and explain counter-intuitive
results reported in cortical data. Brovelli et al. [70] observed that, in monkeys engaged in
processing a cognitive task, a dominant directional influence from one cortical area to another
may be accompanied by either a negative or a positive time delay. Here we compared our
populational model’s dynamics in the AS regime to the experimental results of Brovelli et al.
By reproducing delay times and coherence spectra, our results provide a theoretical basis for
observed neurocognitive dynamics, and suggest that the primate cortex may operate in the AS
dynamical regime as part of normal neurocognitive function. The existence of AS between
cortical regions in non-humans primates unveil new possibilities for the investigation of AS in
humans.

Since the DS-AS transition amounts to an inversion in the timing of the pre- and postsynap-
tic spikes, in Chapter 6 we investigated the effects of spike-timing-dependent plasticity (STDP)
in our neuronal-scale models and in our large-scale networks. We showed that AS is robust and
stable in neuronal populational models in the presence of STDP. The interplay between STDP
and AS regulates the distribution of synaptic weights, which can be compared to experimen-
tal weights distribution from the cortex. Moreover, it stabilizes the unlimited growth of some
synaptic conductances in the absence of arbitrary chosen upper boundary to them.

Improvements in our study can be accomplished in several directions. In the theoretical
point of view, our models can be modified in a plethora of ways.In the following, we suggest
several situations in which further investigations on neuronal AS regimes may be relevant:
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on the existence of AS between bursting neuron models as wellas in chaotic neuron models;
on the relation between Type-I and Type-II PRCs and the existence of AS; on the effect that
the inclusion of delays in synaptic conductance may have in AS and in the AS-DS transition.
In addition, one could investigate existence of AS in a neuron mass model [189], which is
a mesoscale model that employs few differential equation todescribe entire cortical columns.
All the distinct neuron mass models present internal inhibition which can mediate the inhibitory
loop required for AS.

Other biophysical models should be proposed to relate AS andphenomena such as the
delayed induced transition in visually guided movements [31] as suggested by Voss [4]. More-
over, the inversion in the order of pre-post and post-pre spikes could also be useful as a mecha-
nism to facilitate unsupervised learning. A more realisticmodel for the motor neurons in spinal
cord could, in principle, relate AS regimes and our reactiontime. Another relevant step would
be the investigation of an AS regime beyond brain models, as for example, in gene regulation
dynamical models that exhibit inhibitory loops [190].

Our work is a step further towards a better insight on the relation between concepts of
anticipatory behavior and AS dynamics [144, 145]. However, there are still countless questions
that should be answered in order to understand the mechanisms underlying our capacity of
predict and act based on our models of the world. In the experimental point of view, we expect
that the analysis of EEG data will be able to reveal the same mismatch between causality and
phase lag which was reported in LFP measures. Since the EEG isa non-invasive technique, AS
could be verified in humans.

Doubtless, more experiments should be performed in order toanswer several questions
about the existence and functionality of AS in the brain. What is the role of the time delay
(specially in the AS regime) during learning tasks and/or inthe performance of a specific task.
Is AS specially related to the working memory task reported by Salazar et al. [71], or to the
premovement period of the GO/NO-GO task reported by Brovelli et al. [70]? Is AS just an
epiphenomenon? Which are the advantages of patterns of coherence with different time delays?
Investigation of these questions could enlighten the functional significance of the AS regime
on the cognitive process. Altogether, we hope that this Thesis could stimulate the research in
this new and interesting field of anticipated synchronization in biological systems.
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