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A mis padres y hermano.

Look up to the sky.
You will never find rainbows
if you are looking down.

Charles Chaplin.
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Resumen

Esta tesis doctoral se centra en la aplicacién de técnicas propias de la fisica
estadistica del no equilibrio al estudio de problemas con trasfondo ecolégico.

En la primera parte se presenta una breve introduccién con el fin de contextu-
alizar el uso de modelos cuantitativos en el estudio de problemas ecolégicos.
Para ello, se revisan los fundamentos tedricos y las herramientas matematicas
utilizadas en los trabajos que ocupan los capitulos siguientes. En primer lu-
gar, se explican las distintas maneras de describir matematicamente este tipo
de sistemas, estableciendo relaciones entre ellas y explicando las ventajas e in-
covenientes que presenta cada una. En esta seccién también se introducen la
terminologia y la notacién que se empleardn mas adelante.

En la segunda parte se comienzan a presentar resultados originales. Se estudia la
formacién de patrones de vegetacién en sistemas en los que el agua es un factor
que limita la aparicién de nuevas plantas. Esta parte se divide en dos capitulos.

e El primero se centra en el caso particular de sabanas mésicas, con una
precipitacién media anual intermedia, y en las que los arboles coexisten
con otros tipos de vegetacién mas baja (arbustos y hierbas). Se presenta
un modelo en el que se incluyen los efectos de la competiciéon por recur-
sos y la presencia de incendios. En este ultimo caso, la proteccién que
los arboles adultos proporcionan a los jévenes contra el fuego supone una
interaccién de facilitacién a muy corto alcance entre la vegetacién. El prin-
cipal resultado de este estudio concluye que, incluso en el limite en el que
los mecanismos facilitativos tienen un alcance muy corto (local), aparecen
patrones en el sistema. Finalmente, incluyendo la naturaleza estocdstica de
la dindmica de nacimiento y muerte de los arboles se recuperan estructuras
con formas més parecidas a las observadas en sabanas reales.

¢ El segundo capitulo de esta parte estudia la formacién de patrones en sis-
temas dridos, cuyas formas son mucho mds regulares que en las sabanas
mésicas. Ademads, las precipitaciones también son mds escasas. El ori-
gen de estas estructuras se atribuye tradicionalmente a la presencia de
diferentes interacciones entre las plantas que actdan en distintas escalas
espaciales. En particular, muchos de los trabajos previos defienden que
se deben a la combinacién de mecanismos que facilitan el crecimiento de
vegetacién a corto alcance (facilitacién) con otros, de mayor alcance, que
lo inhiben (competicién). En este capitulo se presentan modelos en los que
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tnicamente se incluyen interacciones competitivas, a pesar de lo cual se
recupera la secuencia tipica de patrones obtenida en modelos previos. Se
introduce el concepto de zonas de exclusién como mecanismo biolégico
responsable de la formacién de patrones.

Enla tercera parte dela tesis se presentan modelos para el estudio del movimiento
y comportamiento colectivo de animales. En concreto, se investiga la influencia
que tiene la comunicacién entre individuos en los procesos de btusqueda que
estos llevan a cabo, con especial énfasis en la btisqueda de recursos. Consta de
dos capitulos.

e En primer lugar, se analiza desde un punto de vista tedrico la influencia de
la comunicacién en los tiempos de btisqueda. En general, comunicaciones
a escalas intermedias resultan en tiempos de blisqueda menores, mientras
que alcances mds cortos o més largos proporcionan una cantidad de in-
formacién insuficiente o excesiva al resto de la poblacién. Esto impide a
los individuos decidir correctamente en qué direccién moverse, lo cual da
lugar a tiempos de btisqueda mayores. El capitulo se completa estudiando
la influencia que tiene el tipo de movimiento de los individuos (browniano
o Lévy) en los resultados del modelo.

e Esta parte finaliza presentando una aplicacién del modelo desarrollado
en el capitulo anterior al caso de las gacelas que habitan las estepas cen-
troasiaticas (Procapra gutturosa). En los tltimos afios, se ha observado
un gran decrecimiento en la poblacién de esta especie. Esto se debe a
la caza masiva de estos animales y a una pérdida y fragmentacién de su
hébitat provocada por la accién del hombre. Conocer sus habitos migra-
torios y comportamiento resulta, por tanto, fundamental para desarrollar
estrategias de conservacién eficientes. En particular, en este capitulo se
estudia la biisqueda de pastos por parte de estas gacelas, utilizando mapas
reales de vegetacién y medidas GPS del posicionamiento de un grupo de
individuos. Se presta especial atencién al efecto de la comunicacién vocal
entre animales, midiendo la eficiencia de la bisqueda en términos de su
duracién y de la formacién de grupos en las zonas més ricas en recursos.
Las gacelas encuentran buenos pastos de una manera 6ptima cuando se co-
munican emitiendo sonidos cuyas frecuencias coinciden con las obtenidas
en medidas reales hechas en grabaciones de estos animales. Este resultado
sugiere la posibilidad de que a lo largo de su evolucion la gacela Procapra
gutturosa haya optimizado su tracto vocal para facilitar la comunicacién
en la estepa.

En la cuarta parte, que consta de un tinico capitulo, se analiza el efecto que tiene
un medio externo cuyas propiedades cambian estocdsticamente en el tiempo
sobre diferentes propiedades de un sistema compuesto por muchas particulas
que interaccionan entre si. Se estudian los tiempos de paso cuando el pardmetro
de control del problema flucttia en torno a un valor medio. Se encuentra una
region finita del diagrama de fases en la cual los tiempos escalan como una ley
de potencia con el tamarfio del sistema. Este resultado es contrario al caso puro,
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en el que el pardmetro de control es constante y esto tinicamente ocurre en el
punto critico. Con estos resultados se extiende el concepto de Fases Temporales
de Griffiths a un mayor nimero de sistemas.

La tesis termina con las conclusiones del trabajo y sefialando posibles lineas de
investigacién que toman como punto de partida los resultados obtenidos.






Abstract

This thesis focuses on the applications of mathematical tools and concepts
brought from nonequilibrium statistical physics to the modeling of ecological
problems.

The first part provides a short introduction where the theoretical concepts and
mathematical tools that are going to be used in subsequent chapters are pre-
sented. Firstly, the different levels of description usually employed in the mod-
els are explained. Secondly, the mathematical relationships among them are
presented. Finally, the notation and terminology that will be used later on are
explained.

The second part is devoted to studying vegetation pattern formation in regions
where precipitations are not frequent and resources for plant growth are scarce.
This part comprises two chapters.

o The first one studies the case of mesic savannas. These systems are charac-
terized by receiving an intermediate amount of water and by a long term
coexistence of layer made of grass and shrubs interspersed with irregular
clusters of trees. A minimalistic model considering only long range compe-
tition among plants and the effect of possible fires is presented. In this later
case, adult trees protect the growth of juvenile individuals against the fires
by surrounding them and creating an antifire shell. This introduces a local
facilitation effect for the establishment of new trees. Despite the range of fa-
cilitative interactions is taken to its infinitesimally short limit, the spectrum
of patterns obtained in models with competitive and facilitative nonlocal
interactions is recovered. Finally, considering the stochasticity in the birth
and death dynamics of trees, the shapes of the structures reproduce the
irregularity observed in aerial photographs of mesic savannas.

o The second chapter investigates the formation of patterns in arid regions,
that are typically more regular than in mesic savannas. Previous stud-
ies attribute the origin of these structures to the existence of competitive
and facilitative interactions among plants acting simultaneously but at dif-
ferent spatial scales. More precisely, to the combination of a short-range
facilitation and a long-range competition (scale-depedent feedback). The
findings of this chapter are based on the study of a theoretical model that
assumes only long-range competitive interactions and shows the existence
of vegetation patterns even under these conditions. This result suggests

XV



Xvi

that the role of facilitative interactions could be superfluous in the develop-
ment of these spatial structures. The biological concept of exclusion areas
is proposed as an alternative to conventional scale-dependent feedback.

The third part of the thesis develops a series of mathematical models describing
the collective movement and behavior of some animal species. Its primary
objective is to investigate the effect that communication among foragers has on
searching times and the formation of groups. It consists of two chapters:

o In the first one, the model is established and its properties studied from a
theoretical point of view. The main novelty of this work is the inclusion
of communication among searchers to share information about the loca-
tion of the targets. Communication and amount of shared information are
directly connected through the range of the signals emitted by successful
searchers. In this context, searching processes are optimized in terms of
duration when the individuals share intermediate amounts of information,
corresponding to mid-range communication. Both a lack and an excess of
information may worsen the search. The first implies an almost unin-
formed search, while the latter causes a loss in the directionality of the
movement since individuals are overwhelmed with information coming
from many targets. Finally, the influence of the type of movement on the
search efficiency is investigated, comparing the Brownian and Lévy cases.
Some analytical approximations and a continuum description of the model
are also presented.

e This part ends with an application of the previous model to the foraging
behavior of Mongolian gazelles (Procapra gutturosa). The population of
this species has decreased in the last century because of massive hunt-
ing and a progressive habitat degradation and fragmentation caused by
human disturbances in the Eastern steppe of Mongolia. Studying their
mobility patterns and social behavior improves the development of con-
servation strategies. This chapter suggests possible searching strategies
used by these animals to increase their forage encounters rate. The study
is supported by the use of real vegetation maps based on satellite imagery
and GPS data tracking the position of a group of gazelles. The main focus
is on the effect that nonlocal vocal communication among individuals has
on foraging times and group formation in the areas with better resources.
According to the results of the model, the searching time is minimized
when the communication takes place at a frequency that agrees with mea-
surements made in gazelle’s acoustic signals. This suggests that, through
its evolution, Procapra gutturosa may have optimized its vocal tract in
order to facilitate the communication in the steppe.

The fourth part covers the effect of stochastic temporal disorder, mimicking cli-
mate and environmental variability, on systems formed by many interacting
particles. These models may serve as an example of ecosystems. The tempo-
ral disorder is implemented making the control parameter fluctuating around
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a mean value close to the critical point. The effect of this external variability is
quantified using passage times. The results show a change in the behavior of this
magnitude compared with the pure case, that is, in the absence of external fluc-
tuations. Within a finite region of the phase diagram, close to the critical point,
the passage times scale as a power law with continuously varying exponent. In
the pure model this behavior is only observed at the critical point. After these
results, the concept of Temporal Griffiths Phases, introduced in the spreading of
epidemics, is extended to a vast range of models.

The thesis ends with a summary and devising future research lines.
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Part 1

INTRODUCTION

Ludwig Boltzmann
(1844-1906)

Austrian physicist and philosopher. His most important scientific
contributions were in kinetic theory, linking the microscopic and
macroscopic properties of a system: S = —kgInQ). He was also one
of the founders of quantum mechanics, suggesting in 1877 the
discreteness of the energy levels of physical systems.






Statistical physics focuses on the study of those systems that comprise a
large number of simple components. Regardless of the particular nature of these
fundamental entities, it describes the interactions among them and the global
properties that appear at a macroscopic scale. These emergent phenomena are
the hallmark of complex systems. Such systems are used to model processes in
several disciplines, most of the times, far from the physical sciences. That’s why,
during the last few years, statistical physics has become a powerful cross dis-
ciplinary tool, supplying a theoretical framework and mathematical techniques
that allow the study of many different problems in biology, economics or sociol-
ogy. It provides a scenario that makes possible to encapsulate the huge number
of microscopic degrees of freedom of a complex system into just a few collective
variables.

On the other hand, ecology is concerned with the study of the relationships be-
tween organisms and their environment. In terms of this thesis, it is a paradig-
matic example of complexity science. Ecological systems are formed by a huge
number of heterogeneous constituents that interact and evolve stochastically in
time. In addition, they are subject to changes and fluctuations in the surround-

ings, that apart them from equilibrium?.

Because of this complex nature, ecology was originally an empirical science with
purely descriptive purposes. Ancient Greek philosophers such as Hippocrates
and Aristotles laid the foundations of ecology in their studies on natural history.
However, over the years, the need for a mathematical formalism to tighten all the
observations increased, and ecology adopted a more analytical approach in the
late 19th century. The first models attracted the attention of many physicist and
mathematicians that started developing new techniques and tools. Nowadays,
theoretical ecology is a well established discipline that deals with several topics
related not only with environmental conservation but also with evolutionary
biology, ethology and genetics. It constitutes, together with recent technological
advances, a potent instrument to better understand the natural environment.

Ecological systems show characteristic variability on a range of spatial, temporal
and organizational scales [Levin, 1992]. However, when we observe them, we
doitin alimited range. Theoretical studies aim to comprehend how information
is transferred from one level to other. They permit understanding natural phe-
nomena in terms of the processes that govern them, and consequently develop

2Here equilibrium refers to the thermodynamic equilibrium. It is a state of balance characterized
by the absence of fluxes and currents in the system;.



management strategies. Without this knowledge, each stress must be evalu-
ated separately in every system, and it would not be possible to extrapolate
the knowledge obtained from one situation to another. But, what is the role of
statistical physics in this task? On the one hand, most ecological systems can
exhibit multistability, abrupt transitions, patterns or self-organization when a
control parameter is varied. These concepts are characteristic of nonlinear sys-
tems, that have been traditionally studied by statistical physicists. Particularly
interesting are those cases in which the dynamics at one level of organization
can be understood as a consequence of the collective behavior of multiple sim-
ilar identities. This reminds the definition of the systems that are the focus of
statistical physics, which serves for developing simple models that retain and
condense the essential information, omitting unnecessary details.

There is a large list of recent developments that may serve as examples of this
relationship [Fort, 2013]: collective animal movement [Cavagna et al., 2010],
demographic stochasticity in multiple species systems [McKane and Newman,
2005; Butler and Goldenfeld, 2009], evolutionary theory [Chia and Goldenfeld,
2011], population genetics [Vladar and Barton, 2011], species distribution [Harte
et al., 2008; Volkov et al., 2003], complex ecological networks [Montoya et al.,
2006; Bastolla et al., 2009], animal foraging [Méndez et al., 2014; Viswanathan
etal., 2011], or species invasion [Seebens et al., 2013]. In this thesis, I will abroad
different problems within the framework of statistical physics, in particular veg-
etation pattern formation, animal behavior and ecosystem’s robustness. It is
important to remark the diverse nature of each of these systems. Plants are inert,
and so the development of patterns is a consequence of the interaction with the
envinronment and the birth-death dynamics. On the other hand, animals usu-
ally show large migratory displacements and tend to form groups of individuals
by coming together. Gathering these problems, the objective of this dissertation
is to emphasize the connection between statistical physics and environmental
sciences and its role in the development of ecological models.

The powerful of statistical physics as a cross disciplinary tool allows to tackle
different questions depending on the particularities of each system. Here we
wonder how external variability affects robustness and evolution of ecosystems
and the mean lifetime of the species. We are also interested in disentangling
the different facilitative and competitive interaction among plants in vegetation
systems to unveil its role in the formation of patterns. Are both needed to main-
tain these regular structures? How efficient are inhomogeneous distributions of
vegetation to avoid desertification in water-limited systems? Finally, we will try
to shed light on the relationship between communication and foraging efficiency.
This is one of the less investigated topics in the study of searching strategies.
How can different communication mechanisms affect searching processes? Is the
mean searching time a good metrics to quantify search efficiency? Does it exist
an optimal communication range that accelerates the search? How does sharing
information affect the collective use of a heterogeneous landscape? Answering
these and other issues will be the goal of this thesis.

The results of each chapter can be found in the following publications:



e Chapter 2:

- R. Martinez-Garcia, ]. M. Calabrese, and C. Lépez, (2013), Spatial pat-
terns in mesic savannas: the local facilitation limit and the role of
demographic stochasticity, Journal of Theoretical Biology, 333, 156-
165.

e Chapter 3:

— R.Martinez-Garcia, ].M. Calabrese, E. Herndndez-Garcia and C. Lépez,
(2013), Vegetation pattern formation in semiarid systems without fa-
cilitative mechanisms, Geophysical Research Letters, 40, 6143-6147.

- R.Martinez-Garcfa, ].M. Calabrese, E. Hernandez-Garcia and C. Lopez,
(2014), Minimal mechanisms for vegetation patterns in semiarid re-
gions, Reviewed and resubmitted to Philosophical Transactions of the
Royal Society A.

e Chapter 4:

— R. Martinez-Garcia, J.M. Calabrese, T. Muller, K.A. Olson, and C.
Loépez, (2013), Optimizing the Search for Resources by Sharing Infor-
mation: Mongolian Gazelles as a Case Study, Physical Review Letters,
110, 248106.

- R. Martinez-Garcfa, J.M. Calabrese, and C. Lépez, (2014), Optimal
search in interacting populations: Gaussian jumps versus Lévy flights,
Physical Review E, 89, 032718,

e Chapter 5:

— R. Martinez-Garcia, J.M. Calabrese, T. Muller, K.A. Olson, and C.
Lépez, (2013), Optimizing the Search for Resources by Sharing Infor-
mation: Mongolian Gazelles as a Case Study, Physical Review Letters,
110, 248106.

e Chapter 6:
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CHAPTER 1 -

Methods and tools

1.1

From Individual Based to Population Level Models

1.1.1 The Master equation

The master equation provides a complete description of a stochastic dynamics.
It encapsulates, in the evolution of the probability of finding the system in a
particular state, all the processes that occur with given transition rates. Let us
consider an arbitrary system with N possible states. The probability of finding
itin a particular one, c, at a time t + At is

Po(t+ Ab) = (1 - Z cuc_,c/AtJ P.(t) + Z W AP (B), 1.1)

where ¢’ in the first term denotes the set of states that can be reached from c
while in the second one it refers to the states from which ¢ can be reached. The
first term in Eq. (1.1) is the probability of having the system in the state c at time
t and still remaining there at time t + At (no transitions occur in the time interval
At). The second one gives the probability of finding the system at any state c” at
time t and then jumping to c in a time interval At.

In the limit of infinitely short time steps, At — dt, Eq. (1.1) becomes an evolution
equation for the probability of finding the system at each state c. This is the
master equation:

JdP,
Qt(t) = ; a)c’—mPc’(t) - ; wc—»c’Pc(t)‘ (1‘2)

Gain and loss terms in Eq. (1.2) balance each other, so the probability distribution
remains normalized. In addition, the coefficients w._,~ are rates rather than
probabilities, so they have units of [time] ! and may be greater than one.

Master equations are often hard to solve because they involve a set of several,
many times infinite, coupled first order ordinary differential equations. The
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Prey birth Predator death Predation

e L . o
oo & Wk A

Figure 1.1: Events that may take place in a Lotka-Volterra Individual Based
Model with their corresponding rates. Rabitts play the role of preys and
foxes of predators.

most common techniques to obtain analytical solutions are based on the use
of integral transformations such as the generating function, the Fourier or the
Laplace transform [Redner, 2001]. However, only in few simple cases the general
time dependent solution P.(t) can be found, and most of the times numerical
simulations of the underlying stochastic dynamics are done [Gillespie, 1977].

Toillustrate all the derivarions shown in this chapter, we will use a Lotka-Volterra
model as a paradigmatic case of a stochastic dynamics that can be modelled at
different levels. As it is shown in Fig. 1.1, several events can take place with
given rates: a birth of a prey with rate kj, a death of a predator with rate k; and
a predation and birth of a predator with rate k.

The elementary processes occuring in the time interval (f, ¢ + dt) that contribute
to P(n, p; t + dt) are the following:

1) The population was (1, p) at time t and nothing happened.

2) The population was (1 — 1, p) at time ¢ and a rabbit reproduced.

3) The population was (1, p + 1) at time ¢ and a fox died.

4) The population was (n+1, p—1) at time t and a fox ate a rabbit and reproduced.

These contributions imply a probability of having #n prey and p predators at time
t + dt given by

P(n,p,t+dt) = P(n,p;t)(1 - kyndt)(1 — kapdt)(1 — kynpdt), Event 1
+ P(n—1,p;tkp(n —1)dt, Event 2
+ P(n,p+1;tHki(p + 1)dt, Event 3
+ Pn+1,p-1tk,mn+1)(p-1)dt, Event 4
(1.3)

that in the limit dt — 0 gives

dP(n,p;t)

T = —(kpn + kap + kynp)P(n, p; t) + ka(p + 1)P(n,p + 1; 1)

+ k(mn—-1)Pn-1,pt)+k,mn+1)(p-1)Pn+1,p-1;t).
(1.4)

The master equation contains all the information about the stochastic dynamics,
so it is possible to know the probability of finding the system in a particular

8
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state as a function of time. However, due to the difficulties that one usually
finds to obtain its complete solution, many numerical techniques and analytical
approximations have been developed to deal with it. This is the case of the
Gillespie algorithm and the mean-field approximation, that will be explained
next.

The Gillespie algorithm

The Gillespie algorithm [Gillespie, 1977] is a Monte Carlo method used to sim-
ulate stochastic processes where transitions from one state to another take place
with different rates. The main objective of the algorithm is to calculate the time
until the next transition takes place and the state where the system will move
to. In principle, one should obtain the time at which every transition occurs,
then select the one that happens first and execute it. The advantage of Gillespie
method is that it avoids simulating all the transitions and, instead, only the one
that takes place first has to be reproduced.

The algorithm can be explained in four steps:

1. Considering that the system is initially in one of the possible M states, we
obtain the total escape rate from it

Qizzwiqj, i=1,...,.M (1.5)
j#i
where j is the set of accesible states from i and w;_,; are the individual
transition rates from 7 to each of the states labelled by ;.

2. The time until the next jump, dt, is computed. It is drawn from an ex-
ponential distribution of mean 1/Q;. To this aim one generates a random
number uniformly distributed, 1y, and computes dt as

—11'11/[0
dt = ——. 1.6
o (16)

3. The final state has to be determined. Each of the possible transitions takes
place with a probability p;,; that is proportional to the corresponding rate
Wi— j/

Wi j

Pi-j = E (1.7)

4. The time is updated t — ¢ + dt

When simulated, a Gillespie realization represents a random walk trajectory
for the stochastic variables that exactly represents the distribution of the master
equation. It can be used, for instance, to reproduce the dynamics of the individual
based Lotka-Volterra model of the Fig. 1.1, where birth, death or predation can
be interpreted as a transition from a state with n prey and p predators to a new
one with different population sizes depending on which event has occured. In
Fig. 1.2 asimulation of the stochastic Lotka-Volterra dynamics using the Gillespie
algorithm is shown.
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Figure 1.2: Evolution of the population of preys (red line) and predators

(blue line) from numerical simulations of the stochastic dynamics in Fig. 1.1

using Gillespie algorithm. Initial condition 100 preys (rabbits) and 100
predators (foxes)

Mean-field approximation

It is the simplest analytical approximation to deal with a master equation. It
allows the derivation of deterministic differential equations for the mean values
of the stochastic variables and establishes the simplest class of population-level
models. Referring to the Lotka-Volterra model as a guiding example, we will
derive the equations for the evolution of the mean number of preys, #n, and
predators, p. Given a multivariate probability density function with discrete
variables, as it is P(n, p; t), the expected values are defined as

(e8]

() =Y nPn,p;h),  (p®) =) pP(n,p;b). (18)

pn=0 pn=0

Multiplying the master equartion, Eq. (1.4), by n and p respectively and making
the summation over both variables, one gets the equations for the temporal
evolution of the mean values coupled to the higher moments (n(t)p(t) >

2406 = k() ~ kD)

2490 = Ky (nOp(O) ~ k(1. (19)

It is possible to obtain the equation for the temporal evolution of (n(t)p(t)), but it
would be again coupled to higher moments, leading to an infinite system of cou-
pled differential equations. The main assumption of the mean-field approxima-
tion is to consider that both populations are independent, (n(t)p(t)) = (n(t)){p(t)),
so it is possible to write a closed system of deterministic differential equations
for the mean value of preys and predators

dN
& = Nk—kP),
Z_It’ = PN k), (1.10)

10
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Figure 1.3: Numerical solutions of the nondiemsional Lotka-Volterra equa-

tions (1.12) with an initial condition #(0) = 1 and v(0) = 2. a = 1. The

red-dashed line corresponds to the evolution of preys and the blue-full line
to predators.

where N(t) = (n(t)) and P(t) = (p(t)).

For simplicity, the set of equations (1.10) can be nondimensionalised by writing
[Murray, 2002]

k,P k
= _P = P_ = = —d
u(t) = P o(T) P ket, «a 5 (1.11)
and it becomes,
du
E - M(l - 'U),
dv
i av(u - 1). (1.12)

The nondimensional system (1.12) can be solved analytically, although this is not
the general case for nonlinear systems. Most of the times one has to use linear
approximations and other techniques developed in the study of dynamical sys-
tems. Additionally, it is always possible to numerically integrate the equations.
This has been done for equations (1.12) and the results are shown in Fig. 1.3.

The mean-field equations are a simplified version of the complete stochastic
dynamics, but still contain most of the relevant information of the system. For
instance, the oscillations in the populations are preserved for the Lotka-Volterra
model. However, there are many other approximations that, although more
complicated, are able to keep the inherent stochasticity of the system. The
Fokker-Planck and the Langevin equations are two of them.

11
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1.1.2 The Fokker-Planck equation

The master equation describes the dynamics of a physical system as a sequence
of jumps from one state to another. We present in this section an approximation
that considers the limit where these jumps are very short and the evolution of
the system can be seen as a diffusive process. This leads to a simpler description
in terms of the Fokker-Planck equation. The accuracy of this method is better
the smaller are the jumps, so the master equation becomes a Fokker-Planck in
the limit of infinitely small jumps.

There are many ways of deriving the Fokker-Planck equation. In this section,
we focus on the Kramers-Moyal expansion [van Kampen, 2007; Gardiner, 1985].
This is not a completely rigourous derivation from a mathematical point of view,
in fact many alternatives have been used in this thesis, but it is still one of the
most common and intuitive approaches.

To begin with, we consider a system with several possible states. To ensure the
accuracy of the expansion, we assume that all the jumps between two states are
small enough, so that the set of possible states of the system can be considered
as a continuous in the master equation,

&P (t)

f [0 P (t) — wee Pu(B)] (1.13)

Next, we write, in Eq. (1.13), the transition rates as a function of the size of the
jump, r, and of the starting point, c,

Wene = (1), (1.14)
with r = |’ — c|. Then, the master equation, Eq. (1.13), becomes
JP (t
% = fa)(c —1;7)Po_p(H)dr — P.(t) fw(c; —r)dr. (1.15)

At this point, two assumptions have to be introduced to allow the expansion of
the transition rates:

1. Only small jumps occur. That is, w(c’; r) is a sharply peaked function of r
but varies smoothly with ¢’. Mathematically, it means that

w(c;r) =0 for |r| > 9, (1.16)

w(c’ + Ac;r) = w(c’;r) for |Ac| < 6. (1.17)

2. The solution, P.(t), varies slowly with c as it is expressed by Eq. (1.17).

Therefore, one can do a Taylor expansion up to second order in Eq. (1.13) to deal
with the shift from c to ¢ —r:

dP,
Pat(t) - f w(c; P)P(t)ydr — f r%[a)(c;r)P o(B)ldr +

+

fr —[w (c; )P (t)]dr — fa)(c; —r)P.(t)dr. (1.18)

12
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The first and fourth term in the right-hand side of Eq. (1.18) cancel each other,
and defining the jump moments

a,(c) = f+°° rw(c; r)dr, (1.19)

the final result can be written as

IP(t)y 0 1 8_2

5 = ocla@Pe(] + 555

[az(c)Pe(E)]- (1.20)

This is the Fokker-Planck equation. It is important to remark that we have not
shown a completely rigurous derivation. The election of the small parameter to
perform the Taylor expansion has not been justified and there are many processes
in which this expansion fails. This is the case of systems with jump size +1 or
some small integer, whereas typical sizes of the variable may be large, e.g., the
number of molecules in a chemical reaction or the position of a random walker on
a long lattice. In those cases expansions where the small parameter is explicitly
taken are much more appropiate (See Chapter 6 for a rigorous derivation of the
Fokker-Planck equation). Nevertheless, this description provides a good first
contact with the Fokker-Planck equation, that allows the development of a large
variety of population level spatial models.

On the other hand, many ecological systems, such as groups of animals and
vegetation landscapes that will be studied in this thesis, are formed by many
particles. Let us now suppose that we have a suspension of a very large number
of identical individuals, and denote its local density by p(x, t). If the suspension
is sufficiently diluted, to the extent that particles can be considered independent,
then p(x,t) will obey the same Eq. (1.20) [Peliti, 2011]. This family of models
based on the density of individuals is the basis of the studies on vegetation
patterns shown in the Part II of this thesis.

In either case, and independently of the way used to write it, the Fokker-Planck
equation describes a large class of stochastic dynamics in which the system has
a continuous sample path. The state of the system can be written as a stochastic
and continuous function of time. From this picture, it seems obvious to seek a
description in some direct probabilistic way and in terms of stochastic differential
equations for the path of the system. This procedure is discused next.

1.1.3 The Langevin equation
In some cases it is useful to describe a system in terms of a differential equation,

that gives the stochastic evolution of its state as a trajectory in the phase space.
This is the Langevin equation, that has the general form

% = f(c, t) + g(c, )n(d), (1.21)

where ¢ is a stochastic variable that gives the state of the system at every time.
f(c, t) and g(c, t) are known functions and 7(t) is a rapidly fluctuating term whose

13
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average over single realizations is equal to zero, (n(t)) = 0. Any nonzero mean
can be absorbed into the definition of f(c,t). An idealization of a term like 7(f)
must be that in which if t # ¢/, n(t) and n(t’) are statistically independent (white
noise), so

nOn)y =Tot - t'), (1.22)
where I' gives the strength of the random function.

To be rigorous, the differential equation (1.21) is not properly defined, although
the corresponding integral equation,

¢ t
c(if)—c(O):‘[Of[c(s),s]ds+fO gle(s), sIn(s)ds, (1.23)

can be consistently defined understanding the integral of the white noise as a
Wiener process W(t) [van Kampen, 2007; Gardiner, 1985]:

AW(t) = W(t + db) — W(H) = n(t)dt. (1.24)

Hence , ,
c(t)—c(O):Lf[c(s),s]ds+f0g[c(s),s]dW(s), (1.25)

where the second integral can be seen like a kind of Riemann integral with
respect to a sample function W(#).

The definition of the Langevin equation (1.21), requires a careful interpretation
due to this lack of mathematical rigor. When the noise term appears multiplica-
tively, that is, g(c, t) is not a constant, ambiguities appear in some mathematical
expressions. Giving a sense to the undefined expressions constitutes one of the
main goals when integrating a Langevin equation. The most widely used in-
terpretations are those of Itd and Stratonovich (Appendix F). The It6 integral is
preferred by mathematicians [van Kampen, 2007], but it is not always the most
natural choice from a physical point of view. The Stratonovich integral is more
suitable, for instance, when 7(t) is a real noise with finite correlation time where
the vanishing correlation time limit wants to be taken. (In the Appendix F we
show a more detailed discussion). The matter is not what is the right definition
of the stochastic integral, but how stochastic processes can model real systems.
That is, in what situations either It6 or Stratonovich choice is the most suitable.

Langevin equations are also valid to go beyond a mean-field description. In
these cases a new term enters in the equation to include diffusion, besides other
spatial couplings and degrees of freedom. The variable c(t) becomes a continuous
field ¢(r, t) that depends on space and time. The Langevin equation becomes a
stochastic partial differential equation of the type

3(?(;:, 2 f@6),) + V2(x, 1) + g(@(x, 1), )n(x, 1). (1.26)

This approach is quite useful for spatially extended systems or to study the
formation of patterns.

14
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From the Fokker-Planck to Langevin equation and vice versa.

To close this overview on the modeling of stochastic systems, we will show the
relationship between Fokker-Planck and Langevin equations. Starting from a
Fokker-Planck equation for the probability distribution of the variable ¢

dP(c,t)  d 102

T = —%(Xl (C)P(C, i’) + E ﬁaz(c)l)(c/ t)/ (127)

it is easy to write down a Langevin equation of the type (1.21) [Gardiner, 1985;
van Kampen, 2007]

% = feh+ genne, (128)

where 1)(t) is a white, Gaussian and zero mean noise.

The coefficients of the equations are related according to

f(C, t) = Oél(C, t)/ (129)
gle,t) = Na(ct). (1.30)

provided that the It6 interpretation is chosen.

The first term in Eq. (1.27) is called drift, because it leads to the deterministic
part of the Langevin equation, and the second one, the diffusion term, since it
determines the stochastic part of the Langevin equation.

In the Stratonovich scheme an additional drift appears,

de 1 ag(c, t)
i flc,t) + Eg(c, t) %t g(c, tn(t). (1.31)
On the other hand, if the starting point is a Langevin equation
dc
= = e D +gle hnt), (1.32)

to obtain the Fokker-Planck equation one has to specify if the It6 or the Stratonovich
calculus will be used. In the Stratonovich interpretation the Fokker-Planck is

dP(c,t) _ 0 10 d
o = ~5cfOP@ 1) + 5 5-8(0) 5 8(OP(e, b), (1.33)
while in the It6 case it is
oPEl 0 12 op
TR 8cf(C)P(C' £+ 3 56 [g(O)]°P(c, t). (1.34)

The diffusion term vanishes typically with the number of components as N~1/2,
so it is negligible if the system is large enough. Therefore, in the thermodynamic
limit where N and the volume V tend to infinity keeping N/V finite, a determin-
istic mean-field approximation gives an accurate description. Sometimes, this
way is walked on the inverse sense. One may start with a deterministic equa-
tion and, using heuristic arguments, add noise to obtain the Langevin equation.
Then, following the steps that have been explained in this section it is possible
to get a Fokker-Planck equation.
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1.2

Linear stability analysis

Linear stability analysis is the simplest analytical tool used to study the forma-
tion of patterns in deterministic spatially extended systems. It assumes an ideal
infinite system and uses Fourier analysis to investigate the stability of its homo-
geneous state. We will consider in this section the two dimensional case. The
starting point is the equation for the evolution of a field ¢

aP(x, y, t) op dp IFp ¢ P
Px, y = flox, vy, b), _qb, _qb, (f, (f’ ¢ ‘R
ot dx’ dy’ Ix?’" dy?’ Ixdy

where R is the control parameter. The linear stability analysis assumes that the
system is at the homogeneous (spatially independent) stationary state ¢(x, t) = ¢o
and studies its stability against small perturbations that will be denoted by 1(x, t),
with || < 1. The technique is applied in the Appendix A to one particular case
and the calculations explained in detail. In this section we will introduce and
discuss the theoretical basis and the main results that can be obtained. Plugging
the ansatz ¢(x, t) = ¢o + P(x, t) into the model Eq. (1.35) and retaining only linear
terms in the perturbation, one obtains a linear equation for the evolution of
the perturbation at short times that can be solved using the Fourier transform.
Then, the final task is to solve the transformed equation for the perturbation,
¥(k, t). Assuming that at short time scales the temporal dependence is {(k, t) o
exp(A(k)), where A is the growth rate, then {(k,t) = A(k){(k, ). Finally an
expression for A(k) can be obtained. It is called the dispersion relation and
contains all the information about the evolution of the Fourier modes of {(k, t).
The modes k with a negative growth rate will be stable while those corresponding
to A > 0 are unstable and lead to perturbations growing in time and, therefore, to
spatial patterns in the system. The dispersion relation also allows to obtain the
characteristic wavelength of the pattern through the value of the most unstable
Fourier mode, k., that most of the times corresponds with the one with the
highest growth rate.

(1.35)

Depending on the functional form of the dispersion relation, it is possible to
establish a classification of the different types of linear instabilities appearing in
natural systems [Hohenberg and Halperin, 1977]. These classes are shown in
Fig. 1.4, where the real part of A is sketched as a function of the wave number, k.
They are:

e Type L. For R < R, the homogeneous state is stable and ReA < 0, whereas
for R = R, the instability sets in (ReA = 0) at a wave vector k.. For R > R,
there is a band of wave vectors k_ < k < k; for which the uniform state is
unstable. The patterns observed in these system will be dominated by a
wavelength given by one of this unstable modes, typically by that with the
highest growth rate, k.. This case is represented in the left panel of Fig. 1.4.

o Type II. This is a different type of instability appearing when, for some
reason (usually a conservation law), ReA(k = 0) = 0 independently of the
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Figure 1.4: Different types of linear instabilities depicted in the real part of
the dispersion relation.

value of the control parameter R. This corresponds with the central panel
of Fig. 1.4. The critical wave vector, the one that becomes unstable by the
first time, is now k. = 0, and a band of unstable modes appears between 0
and k, for R > R.. The pattern occurs on a long length scale. This case is
remarkable because the critical wave vector is different from that with the
highest growth rate.

e Type IIL In this case both the instability and the maximum growth rate
occur at k. = 0. There is not an intrinsic length scale, and patterns will
occur over a length scale defined by the system size or the dynamics. This
situation is depicted in the right panel of Fig. 1.4.

Finally, there are two subtypes for each type of instability depending on the
temporal instability: stationary if ImA = 0, and oscillatory if ImA # 0.

Linear stability analysis provides analytical results about the formation of pat-
terns in spatially extended systems, such as the dominant wavelength and the
type of instability leading the structure. However, it is important to remark that
the analysis assumes that the perturbations of the uniform state are small. This
assumption is good at short times and for an initial condition that has a small
magnitude, but at long times the nonlinear terms left out in the linear approxima-
tion become important [Cross and Greenside, 2009]. One effect of nonlinearity
is to quench the assumed exponential growth. Further analysis, such as weakly
nonlinear stability analysis [Cross and Hohenberg, 1993], must be used in these
cases.

1.3

First-passage times processes

First-passage phenomena are of high relevance in stochastic processes that are
triggered by a first-passage event [Redner, 2001] and play a fundamental role
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quantifying and limiting the success of different processes that can be mapped
into random walks. Ecology and biology offer some examples such as the lifetime
of a population or the duration of a search or a biochemical reaction.

In this section we will present some results on first-passage times in the simple
case of a discrete symmetric random walk moving in a finite interval [x_, x,]
[Redner, 2001]. The extension to higher dimensions is straightforward. Let us
denote the mean time to exit the interval starting at x by T(x). This quantity
is equal to the exit time of a given trajectory times the probability of that path,
averaged over all the trajectories,

T(x) = Z Pt (x), (1.36)
p

where ¢, is the exit time of the trajectory p that starts at x and #, the probability
of the path. Because of the definition of a symmetric random walk on a discrete
space, the mean exit time also obeys

T(x) = % {[TCx + 6x) + 6] + [T(x — 6x) + 6t} (1.37)

with boundary conditions T(x-) = T(x;) = 0 which correspond to a mean exit
time equal to zero if the particle starts at either border of the interval. ox is the
jumping length. This recursion relation expresses the mean exit time starting at
x in terms of the outcome one step in the future, for which the initial walk can
be seen as restarting in x + 6x (each with probability 1/2) but also with the time
incremented by 6¢.

Doing a Taylor expansion to the lowest nonvanishing order in Eq. (1.37), and
considering the limit of continuous time and space, it yields
d’T
— =-1, 1.38
= (1.38)

where D = 6x2/26t is the difussion constant. In the case of a two dimensional
domain Eq. (1.38) is
DV?*T(x) = 1. (1.39)

These results can be extended to the case of general jumping processes with a
single-step jumping probability given by px—.x. The equivalent of Eq. (1.37) is

T(x) = Z Prox [T(X') + 6t (1.40)

that provides an analog of Eq. (1.39) that is
DV?T(x) + v(x)- VT(x) = -1, (1.41)

where v(x) is a local velocity that gives the mean displacement after a single step
when starting from x in the hopping process. This equation can be solved in
each particular case. We have used it in this thesis as an starting point of many
of the calculations in the Part IV. See Appendix G for a detailed calculation.
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Part 11

VEGETATION PATTERNS

A. von Humboldt
(1769 { 1859).

Prussian geographer, naturalist and explorer. His quantitative
work on botanical geography laid the foundation for the field of
biogeography (the study of the distribution of species and
ecosystems in geographic space and through geological time).
Besides, he spent 6 days in Tenerife, studying the distribution of
vegetation in El1 Teide.
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CHAPTER 2 -

Mesic savannas

In this chapter we propose a continuum description for the dynamics of tree
density in mesic savannas inspired on the individual based model introduced in
Calabrese et al. [2010]. It considers only long-range competition among trees and
the effect of fires resulting in a local facilitation mechanism. Despite short-range
facilitation is taken to the local-range limit, the standard full spectrum of spatial
structures obtained in general vegetation models is recovered. Long-range com-
petition is thus the key ingredient for the development of patterns. This result
opens new questions on the role that facilitative interactions play in the mainte-
nance of vegetation patterns. The long time coexistence between trees and grass,
the effect of fires on the survival of trees as well as the maintenance of the patterns
are also studied. The influence of demographic noise is analyzed. The stochastic
system, under parameter constraints typical of more humid landscapes, shows
irregular patterns characteristic of realistic situations. The coexistence of trees
and grass still remains at reasonable noise intensities.

2.1

Introduction

Savanna ecosystems are characterized by the long-term coexistence between a
continuous grass layer and scattered or clustered trees [Sarmiento, 1984]. Oc-
curring in many regions of the world, in areas with very different climatic and
ecological conditions, the spatial structure, persistence, and resilience of sa-
vannas have long intrigued ecologists [Scholes and Archer, 1997; Sankaran et al.,
2005; Borgogno et al., 2009; Belsky, 1994]. However, despite substantial research,
the origin and nature of savannas have not yet been fully resolved and much
remains to be learned.

Savanna tree populations often exhibit pronounced, non-random spatial struc-
tures [Skarpe, 1991; Barot et al., 1999; Jeltsch et al., 1999; Caylor et al., 2003;
Scanlon et al., 2007]. Much research has therefore focused on explaining how
spatial patterning in savannas arises [Jeltsch et al., 1996, 1999; Scanlon et al., 2007;
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Skarpe, 1991; Calabrese et al., 2010; Vazquez et al., 2010]. In most natural plant
systems both facilitative and competitive processes are simultaneously present
[Scholes and Archer, 1997; Vetaas, 1992] and hard to disentangle [Veblen, 2008;
Barbier et al., 2008]. Some studies have pointed toward the existence of short-
distance facilitation [Caylor et al., 2003; Scanlon et al., 2007], while others have
demonstrated evidence of competition [Skarpe, 1991; Jeltsch et al., 1999; Barot
et al., 1999], with conflicting reports sometimes arriving from the same regions.

Different classes of savannas, which can be characterized by how much rainfall
they typically receive, should be affected by different sets of processes. For
example, in semiarid savannas water is extremely limited (low mean annual
precipitation) and competition among trees is expected to be strong, but fire plays
little role because there is typically not enough grass biomass to serve as fuel.
In contrast, humid savannas should be characterized by weaker competition
among trees, but also by frequent and intense fires. In-between these extremes,
in mesic savannas, trees likely have to contend with intermediate levels of both
competition for water and fire [Calabrese et al., 2010; Sankaran et al., 2005, 2008;
Bond et al., 2003; Bond, 2008; Bucini and Hanan, 2007].

Competition among trees is mediated by roots that typically extend well beyond
the crown [Borgogno et al., 2009; Barbier et al., 2008]. Additionally, fire can lead
to local facilitation due to a protection effect, whereby vulnerable juvenile trees
placed near adults are protected from fire by them [Holdo, 2005]. We are par-
ticularly interested in how the interplay between these mechanisms governs the
spatial arrangement of trees in mesic savannas, where both mechanisms may op-
erate. On the other side, it has frequently been claimed that pattern formation in
arid systems can be explained by a combination of long-distance competition and
short-distance facilitation [Klausmeier, 1999; Lefever and Lejeune, 1997; Lefever
etal., 2009; Lefever and Turner, 2012; Rietkerk et al., 2002; von Hardenberg et al.,
2001; D’Odorico et al., 2006b]. This combination of mechanisms is also known to
produce spatial structures in many other natural systems [Cross and Hohenberg,
1993]. Although mesic savannas do not display the same range of highly regular
spatial patterns that arise in arid systems (e.g., tigerbush), similar mechanisms
might be at work. Specifically, the interaction between long-range competition
and short-range facilitation might still play a role in pattern formation in savanna
tree populations, but only for a limited range of parameter values and possibly
modified by demographic stochasticity.

Although the facilitation component has often been thought to be a key com-
ponent in previous vegetation models [D’Odorico et al., 2006b,c; Rietkerk et al.,
2002; Scanlon et al., 2007], Rietkerk and Van de Koppel [Rietkerk and van de
Koppel, 2008], speculated, but did not show, that pattern formation could oc-
cur without short-range facilitation in the particular example of tidal freshwater
marsh. In the case of savannas, as stated before, the presence of adult trees favor
the establishment of new trees in the area, protecting the juveniles against fires.
Considering this effect, we take the facilitation component to its infinitesimally
short spatial limit, and study its effect in the emergence of spatially periodic
structures of trees. To our knowledge, this explanation, and the interrelation
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between long-range competition and local facilitation, has not been explored for
a vegetation system.

To this aim, we develop a minimalistic model of savannas that considers two of
the factors, as already mentioned, thought to be crucial to structure mesic savan-
nas: tree-tree competition and fire, with a primary focus on spatially nonlocal
competition. Employing standard tools used in the study of pattern formation
phenomena in physics (stability analysis and the structure function) [Cross and
Hohenberg, 1993], we explore the conditions under which the model can pro-
duce non-homogeneous spatial distributions. A key strength of our approach is
that we are able to provide a complete and rigorous analysis of the patterns the
model is capable of producing, and we identify which among these correspond
to situations that are relevant for mesic savannas. We further examine the role of
demographic stochasticity in modifying both spatial patterns and the conditions
under which trees persist in the system in the presence of fire, and discuss the
implications of these results for the debate on whether the balance of processes
affecting savanna trees is positive, negative, or is variable among systems. This is
the framework of our study: the role of long-range competition, local facilitation
and demographic fluctuations in the spatial structures of mesic savannas.

2.2

The deterministic description

In this section we derive the deterministic equation for the local density of
trees, such that dynamics is of the logistic type and we only consider tree-tree
competition and fire. We study the formation of patterns via stability analysis
and provide numerical simulations, showing the emergence of spatial structures.

2.2.1 The nonlocal savanna model

Calabrese et al. [2010] introduced a simple discrete-particle lattice savanna model
that considers the birth-death dynamics of trees, and where tree-tree competition
and fire are the principal ingredients. These mechanisms act on the probability
of establishment of a tree once a seed lands at a particular point on the lattice. In
the discrete model, seeds land in the neighborhood of a parent tree with a rate
b, and establish as adult trees if they are able to survive both competition neigh-
boring trees and fire. As these two phenomena are independent, the probability
of establishment is Pr = PcPr, where Pc is the probability of surviving the com-
petition, and Pr is the probability of surviving a fire event. From this dynamics,
we write a deterministic differential equation describing the time evolution of
the global density of trees (mean field), p(f), where the population has logistic
growth at rate b, and an exponential death term at rate a. It reads:

d
d—f = bP(p)p(t) (1 = p()) — ap(t). 1)
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Generalizing Eq. (2.1), we propose an evolution equation for the space-dependent
(local) density of trees, p(x, t):

dp(x, 1)
ot

= bPEP(X/ H1 - P(X/ £) - O‘P(x/ £). (2.2)

We allow the probability of overcoming competition to depend on tree crowding
in alocal neighborhood, decaying exponentially with the density of surrounding
trees as

Pc =exp (—(S fG(x —-1)p(r, t)dr) , (2.3)

where 0 is a parameter that modulates the strength of the competition, and G(x)
is a positive kernel function that introduces a finite range of influence. This
model is related to earlier one of pattern formation in arid systems [Lefever and
Lejeune, 1997], and subsequent works [Lefever et al., 2009; Lefever and Turner,
2012], but it differs from standard kernel-based models in that the kernel function
accounts for the interaction neighborhood, and not for the type of interaction
with the distance. Note also that the nonlocal term enters nonlinearly in the
equation.

Following Calabrese et al. [2010], Pr is assumed to be a saturating function of
grass biomass, 1 — p(x, t), similar to the implementation of fire of Jeltsch et al. in

[Jeltsch et al., 1996]
o

o+1-p(xt) @4

Pr =
where o governs the resistance to fire, so 0 = 0 means no resistance to fires.
Notice how our model is close to the one in [Calabrese et al., 2010] through the
definitions of Pc and Pr, although we consider the probability of surviving a fire
depending on the local density of trees, and in [Calabrese et al., 2010] it depends
on the global density. The final deterministic differential equation that considers
tree-tree competition and fire for the spatial tree density is

dp(x, t)
ot

= bfff(P)P(X/ t) (1 - P(X/ t)) - aP(X/ t)/ (25)

where
be—bfG(x—r)p(r,t)dra

bess () = = (2.6)

Thus, we have a logistic-type equation with an effective growth rate that de-
pends nonlocally on the density itself, and which is a combination of long-range
competition and local facilitation mechanisms (fire). The probability of surviv-
ing a fire is higher when the local density of trees is higher, as can be seen from
the definition in Eq. (refprobfire).

In Fig. 2.1 we show numerical solutions for the mean field Eq. (refeq:mf) (lines)
and the spatially explicit model (equation 2.5) (dots) in the stationary state (f —
o0) using different values of the competition. We have used a top-hat function as
the competition kernel, G(x) (See Sec. 2.2.2 for more details on the kernel choice).
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We observe a very good agreement of both descriptions which becomes worse
when we get closer to the critical point ¢*, where the model presents a phase
transition from a tree-grass coexistence to a grassland state. This disagreement
appears because while the mean field equation describes an infinite system, the
Eq. (2.5) description forces us to choose a size for the system.

The model reproduces the long-term coexistence between grass and trees that
is characteristic of savannas. To explore this coexistence, we study the long-
time behavior of the system and analyze the homogeneous stationary solutions
of Eq. (2.5), which has two fixed points. The first one is the absorbing state
representing the absence of trees, py = 0, and the other can be obtained, in the
general case, by numerically solving

begf(po)(1 = po) — & = 0. 2.7)

In the regime where py is small (near the critical point), if competition intensity,
0, is also small, it is possible to obtain an analytical expression for the critical
value of the probability of surviving a fire, 0%,

o= . (2.8)

Outside of the limit where 6 <« 1, we can solve Eq. (2.7) numerically in pg to show
that the critical value of the fire resistance parameter, 0", does not depend on
competition. A steady state with trees is stable for higher fire survival probability
(Fig. 2.1).

There is, then, a transition from a state where grass is the only form of vegetation
to another state where trees and grass coexist at ¢*. In what follows, we fixa = 1,
so we choose our temporal scale in such a way that time is measured in units of
a. This choice does not qualitatively affect our results.

2.2.2 Linear stability analysis

The spatial patterns can be studied by performing a linear stability analysis
[Cross and Hohenberg, 1993] of the stationary homogeneous solutions of Eq. (ref-
savl), po = po(o,0). The stability analysis is performed by considering small
harmonic perturbations around pg, p(x,t) = po + ee™ %X, ¢ < 1. After some
calculations!, one arrives at a perturbation growth rate given by

L+o(1-200)  Po[2=po+8G(R(po = 1)(po ~1-0)]

Alk; 0,0) = bef | (po)

o—po+1 (c—po+1) !
(2.9)

where G(k), k = [K|, is the Fourier transform of the kernel,
Gk) = f G(x)e ™ Xdx. (2.10)

LA linear stability analysis in a similar equation modeling vegetation in arid systems is shown
in detail in Appendix A.
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Figure 2.1: Grass-coexistence phase transition. Stationary tree density, po,

as a function of the resistance to fires parameter, 0. The lines come from the

mean field solution, Eq. (2.7), and the dots from the numerical integration

of Eq. (2.5) over a square region of 1 ha. We have chosena =1,and b = 5.

In the case of the spatial model, py involves an average of the density of
trees over the studied patch of savanna.

The critical values of the parameters of the transition to pattern, 6. and o, and
the fastest growing wavenumber k., are obtained from the simultaneous solution
of

Mke;0c,6c) = 0, (2.11)
8/\)

- = 0. (2.12)
(ak k06,0,

Note that k. represents the most unstable mode of the system, which means
that it grows faster than the others and eventually dominates the state of the
system. Therefore, it determines the length scale of the spatial pattern. These
two equations yield the values of the parameters 6 and ¢ at which the maximum
of the curve A(k), right at k,, starts becoming positive. This signals the formation
of patterns in the solutions of Eq. (2.5). As Eq. (2.12) is explicitly written as

A (ke) = begr(po)opoG' (ke)(po = 1), (2.13)

the most unstable wavenumber k. can be obtained by evaluating the zeros of the
derivative of the Fourier transform of the kernel.

Eq. (refreldisper) shows that competition, through the kernel function, fully
determines the formation of patterns in the system. The local facilitation appears
inb,f¢(po) and itis not relevantin the formation of spatial structures. If the Fourier
transform of G never takes positive values, then A(k; g, 0) is always negative and
only the homogeneous solution is stable. However, when G can take negative
solutions then patterns may appear in the system. What does this mean in
biological terms? Imagine that we have a family of kernels described by a
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parameter p: G(x) = exp(—|(x)/RF) (R gives the range of competition). The
kernels are more peaked around x = 0 for p < 2 and more box-like when p > 2.
It turns out that this family of functions has non-negative Fourier transform for
0 < p < 2, so that no patterns appear in this case. A lengthy discussion of this
property in the context of competition of species can be found in Pigolotti et al.
[2007]. Thus, the shape of the competition kernel dictates whether or not patterns
will appear in the system. If pattern formation is possible, then the values of the
fire and competition parameters govern the type of solution (see Sec. 2.2.3).

Our central result for nonlocal competition is that, contrary to conventional
wisdom, it can, in the limit of infinitesimally short (purely local) facilitation,
promote the clustering of trees. Whether or not this occurs depends entirely on
the shape of the competition kernel. For large p we have a box-like shape, and
in these cases trees compete strongly with other trees, roughly within a distance
R from their position. The mechanism behind this counterintuitive result is that
trees farther than R away from a resident tree area are not able to invade the zone
defined by the radius R around the established tree (their seeds do not establish
there), so that an exclusion zone develops around it. For smaller p there is less
competition and the exclusion zones disappear. We will develop longer this
concept in the next chapter.

For a more detailed analysis, one must choose an explicit form for the kernel
function. Our choice is determined by the original P¢ taken in [Calabrese et al.,
2010], so that it decays exponentially with the number of trees in a neighborhood
of radius R around a given tree. Thus, for G we take the step function (limit
p — ©0)

1 if <R
G(lr) = (2.14)
0 if >R

As noticed before, the idea behind the nonlocal competition is to capture the
effect of the long roots of a tree. The kernel function defines the area of influence
of the roots, and it can be modeled at first order with the constant function of
Eq. (refkerneldd). Thus the parameter R, which fixes the nonlocal interaction
scale, must be of the order of the length of the roots [Borgogno et al., 2009].
Since the roots are the responsible for the adsorption of resources (water and
soil nutrients), a strong long-range competition term implies strong resource
depletion. For this kernel the Fourier transform is [Lépez and Herndndez-
Garcia, 2004] G(k) = 2R?J;(kR)/kR and its derivative is G’ (k) = —2rR?J(kR)/k,
where k = |k|, and J; is the i"-order Bessel function. Since G(k) can take positive
and negative values, pattern solutions may arise in the system, that will in
turn depend on the values of 6 and 0. The most unstable mode is numerically
obtained as the first zero of A’(k), Eq. (2.13), which means the first zero of the
Bessel function J»(kR). This value only depends on R, being independent of the
resistance to fires and competition, and it is k. = 5.136/R. Because a pattern of n
cells is characterized by a wavenumber k. = 2mtn/L, where L is the system size,
the typical distance between clusters, d; = L/n, using the definition of the critical
wavenumber is given by d; = 1.22R. In other words, it is approximately the
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range of interaction R. This result is also independent of the other parameters of
the system.

Since we are interested in the effect of competition and fire on the distribution
of savanna trees, we will try to fix all the parameters but ¢ and 6. We will
explore the effect of different values of these parameters on the results. First,
we have chosen, as in Calabrese et al. [2010], the death rate « = 1, and solving
Eq. (2.7) we will roughly estimate the birth rate, b. We will work in the limit
of intermediate to high mean annual precipitation, so water is non-limiting and
thus we can neglect the effects of competition (6 = 0). At this intermediate to
high mean annual precipitation the empirically observed upper limit of savanna
tree cover is approximately py = 0.8 [Sankaran et al., 2005; Bucini and Hanan,
2007]. To reach this upper limit in the tree cover, disturbances must also be
absent, implying no fire (0 — o0). In this limit, the mean field Eq. (refeq:mf) is
quantitatively accurate, as it is shown in Fig. 2.1, and the stationary mean field
solution of the model depends only on the birth rate

ol — o) = L. 215)
It can be solved for b for a fixed pg = 0.8, and it yields b = 5 [Calabrese et al.,
2010]. In the following we just consider the dependence of our results on 6 and
o. In particular, pg = po(o, 6).

The phase diagram of the model, computed numerically, is shown in Fig. 2.2,
where we plot the spatial character of the steady solution (homogeneous or
inhomogeneous) as a function of 6 and 0. Note that increasing competition
enhances the inhomogeneous or pattern solution. This is because, as we are now
in the case of a kernel giving rise to clusters, increasing 6 makes it more difficult
to enter the exclusion zones in-between the clusters. For very strong competition
(high, unrealistic, 0), fire has no influence on the pattern.

The critical line separating these two solutions (pattern and homogeneous) can
be obtained analytically as a function of the parameters 0, o, pg and G(kc). Taking
b=5anda =1,itis

_ (Po—l)[S(Po—l)(éG(kc)po—1)—2e0nR2po]+(p0—1) \/S[S(F’U_l)z(5G(kf)P0—1)2—4eO”RZVOpo]
c 10[1—2p0+6(§(kf)p0(1+p0)—e0ﬂR2ﬂo/5] .

(2.16)

This complicated expression must be evaluated numerically together with the
solution of Eq. (2.7) for the stationary density of trees, which is also a function
of the competition and fire parameters. We show the results in Fig. 2.2, where
the curve, represented with the black crosses, fits perfectly with the numerical
results from the linear stability analysis.

With b = 5, in the absence of fire (¢ — o), and for weak competition, we can
take the limits 0 — 0 and ¢ — oo of the dispersion relation Eq. (2.9), leading to

Alk; 6 = 0,0 — o0) = 4 — 10py. (2.17)
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Figure 2.2: Phase diagram of the mean field equation (2.5) forb =5.0, a =

1.0, and a step kernel. The absorbing-active transition is shown at ¢* with

circles (0). The homogeneous-pattern transition (Eq. (2.16)) is indicated

with crosses (x). The diamond, the square, and the up-triangle show the

value of the parameters ¢ and 6 taken in Figures 2.3(a)-(c) respectively. The

stars point out the transition to inhomogeneous solutions in the stochastic
model as described in Sec. 2.3, with I = 0.2.

In Fig. 2.1, for large o, it can be seen that typically po > 0.4, so Eq. (2.17) becomes
negative. This result means that in this limit, trees are uniformly distributed in
the system as there is no competition, and space does not play a relevant role in
the establishment of new trees. Such situation could be interpreted as favorable
to forest leading to a fairly homogeneous density of trees. This result agrees with
the phase plane plotted in Fig. 2.2. In biological terms, there are no exclusion
zones in the system because there is no competition.

2.2.3 Numerical simulations

The previous analysis provides information, depending on the competition and
fire parameters, about when the solution is spatially homogenous and when
trees arrange in clusters. However, the different shapes of the patterns have to
be studied via numerical simulations [Ridolfi et al., 2011] of the whole equation
of the model. We have taken a finite square region of savanna with an area of
1 ha., allowed competition to occur in a circular area of radius R = 8 m, and
employed periodic boundary conditions and a finite differences algorithm to
obtain the numerical solution. Similarly to what has been observed in studies
of semiarid water limited systems [D’Odorico et al., 2006b; Rietkerk et al., 2002],
different structures, including gaps, stripes, and tree spots, are obtained in the
stationary state as we increase the strength of competition for a fixed value of
the fire parameter or, on the other hand, as we decrease the resistance to fires
for a given competition intensity. In both equivalent cases, we observe this
spectrum of patterns as far as we go to a more dry state of the system, where
resources (mainly water) are more limited (see Figs. 2.3(a)-2.3(c)) and competition
is consequently stronger. This same sequence of appearance of patterns has been
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Figure 2.3: (a) Grass spots (6 = 7.0), (b) striped grass vs. tree (6 = 8.0),

and (c) tree spots (6 = 11.0) patterns in the deterministic model in a square

patch of savanna of 1 ha. 0 = 2.9, R =8.0m, b = 5.0 and a = 1.0 in all the
plots.

already observed in the presence of different short-range facilitation mechanisms
[Lejeune and Tlidi, 1999; Rietkerk et al.,, 2002]. It indicates that, when 0 is
increased (i.e. the probability of surviving competition is decreased), new trees
cannot establish in the exclusion areas so clustering is enhanced.

On the other hand, in the case of fire-prones savannas, previous works had
only shown either tree spot [Lejeune et al., 2002] or grass spots [D’Odorico
et al., 2007]. Therefore, at some values of the parameter space (see Fig. 2.3b),
the patterns in our deterministic approach are not observed in mesic savannas,
and should correspond to semiarid systems. However, we will show in the
following sections that under the parameter constraints of a mesic savanna, and
considering the stochastic nature of the tree growth dynamics in the system (i.e.
demographic noise), our model shows realistic spatial structures.

A much more quantitative analysis of the periodicity in the patterns can be
performed via the structure function. This will be helpful to check the previous
results and, especially, for the analysis of the data of the stochastic model of
the next section, for which we will not present analytical results. The structure
function is defined as the modulus of the spatial Fourier transform of the density
of trees in the stationary state,

S(k) = <‘ f dxe™ *p(x, t — oo)>, (2.18)

where the average is a spherical average over the wavevectors with modulus
k. The structure function is helpful to study spatial periodicities in the system,
similar to the power spectrum of a temporal signal. Its maximum identifies
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Figure 2.4: Maximum of the structure function for different values of the

competition parameter 6 at long times. The fire parameter is fixed at

o = 2.9. Black circles refers to the deterministic model and red squares to
the stochastic model, I' = 0.20.

dominant periodicities, which in our case are the distances between tree clusters.
Note that the geometry of the different patterns cannot be uncovered with the
structure function, since it involves a spherical average. In Fig. 2.4, we show the
transition to patterns using the maximum of the structure function as a function
of the competition parameter. A peak appears when there are spatial structures
in the system, so Max[S(k)] # 0. However, we do not have information about
the values where the shapes of the patterns change. Taking R = 8 m, the peak is
always at A. = 10m for our deterministic savanna model, independently of the
competition and fire resistance parameters, provided that they take values that
ensure the emergence of patterns in the system (see the line labeled by I' = 0 in
Fig. 2.5; for the definition of I see Sec. 2.3). This result is in good agreement with
the theoretical one provided for the wavelength by the linear stability analysis
A = 21 /kpax = 9.78 m, which is also independent of competition and resistance
to fires.

2.3

Stochastic model

The perfectly periodic patterns emerging in Fig. 2.3 seem to be far from the disor-
dered ones usually observed in aerial photographs of mesic savannas and shown
by individual based models [Calabrese et al., 2010; Jeltsch et al., 1999; Barot et al.,
1999; Caylor et al., 2003]. We have so far described a savanna system in terms of
the density of trees with a deterministic dynamics. The interpretation of the field
p(x, t) is the density of tree (active) sites in a small volume, V. If we think of trees
as reacting particles which are born and die probabilistically, then to provide a
reasonable description of the underlying individual-based birth and death dy-
namics, we have to add a noise term to the standard deterministic equation. It
will take into account the intrinsic stochasticity present at the individual level in
the system.
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Figure 2.5: Numerical computation of the structure function defined in
Eq. (refstrucfunc) for different values of the demographic noise intensity.
0=98,0=29,R=8m,a=10,b=50.

If we take a small volume, V, the number of reactions taking place is proportional
to the number of particles therein, N, with small deviations. If N is large enough,
the central limit theorem applies to the sum of N independent random variables
and predicts that the amplitude of the deviation is of the order of VN oc /p(x, 1)
[Gardiner, 1985]. This stochasticity is referred to as demographic noise. The
macroscopic equation is now stochastic,

dp(x, t
P((; ) _ bes(0)[p(x, 1) = p2(%, D] — ap(x, £) + T fp(x, Hn(x, £), (2.19)

where I' < /bfs (but we take it as a constant, [Dickman, 1994]) modulates the
intensity of n(x, ), a Gaussian white noise term with zero mean and correlations
given by Dirac delta distributions

<n(x, Hnx’, ') >= 6(x — x")o(t — t'). (2.20)

The complete description of the dynamics in Eq.(2.19) should have the potential
to describe more realistic patterns.

We first investigate the effect of demographic noise on the persistence of trees
in the system. We show in (Fig. 2.6) that the critical point, ¢*, depends on the
value of the competition parameter 6. This effect is rather small, so that when 6
increases the transition to the grassland state appears only for a slightly larger o
(i.e, less frequent fire). The reason seems to be that fire frequency and intensity
depend on grass biomass. Seasonally wet savannas support much more grass
biomass that serves as fuel for fires during the dry season [D’Odorico et al.,
2006a; Hanan et al., 2008]. Dry savannas have much lower grass biomass, so
they do not burn as often or as intensely. The shift of the critical value of ¢ when
competition is stronger is consistent with the one showed in [Calabrese et al.,
2010], as can be seen comparing Fig. 2 therein with Fig. 2.6 here. Besides, the
values obtained for 0" are larger when we consider the demographic stochasticity
[Stanley, 1987] neglected in the deterministic field approach.
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Figure 2.6: Active-absorbing phase transition in the deterministic (Circles)
and the stochastic model (Squares). In the later case, we integrate the
Eq. (2.19) with T’ = 0.2 and average the density of trees in the steady state.

We explore numerically the stochastic savanna model using an algorithm de-
veloped in Dickman [1994] (See B). Note that the noise makes the transition to
pattern smoother so the change from homogeneous to inhomogeneous spatial
distributions is not as clear as it is in the limit where the demographic noise
vanishes (See Fig. 2.4). The presence of demographic noise in the model, as
shown in Fig. 2.2 (red stars), also decreases the value of the competition strength
at which patterns appear in the system, as has been observed in other systems.
Mathematically, these new patterns appear since demographic noise maintains
Fourier modes of the solution which, due to the value of the parameters, would
decay in a deterministic approach [Butler and Goldenfeld, 2009]. Biologically,
exclusion zones are promoted by demographic noise, since it does not affect
regions where there are not trees. On the other hand in vegetated areas fluctu-
ations may enhance tree density, leading to stronger competition. The presence
of demographic noise in the model allows the existence of patterns under more
humid conditions. This result is highly relevant for mesic savannas, as we expect
competition to be of low to intermediate strength in such systems. We show two
examples of these irregular patterns in Fig. 2.7(a) and Fig. 2.7(b). Unrealistic
stripe-like patterns no longer appear in the stochastic model.

We have studied the dynamics of the system for some values of the fire and
competition parameters. Demographic noise influences the spatial structures
shown by the model. The deterministic approach shows a full spectrum of pat-
terns which are not visually realistic for mesic savannas (but for arid systems).
The role of the noise is to transform this spectrum of regular, unrealistic patterns
into more irregular ones (Figures 2.7(a)-2.7(d)) that remind the observed in aerial
photographs of real mesic savannas. On the other hand, these patterns are sta-
tistically equivalent to the deterministic ones, as it is shown with the structure
function in Fig. 2.5. The dominant scale in the solution is given by the interaction
radio, R, and it is independent of the amplitude of the noise (see the structure
function in Fig. 2.5, peaked around A = 10 m independently of the noise). Be-
sides, over a certain treshold in the amplitude, demographic noise destroys the
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CHAPTER 2. MESIC SAVANNAS

Figure 2.7: Patterns of the stochastic model in a square patch of savanna
of 1ha. 0 =29,R=80m,b=>50and @ = 1.0 in all the plots. (a) ' = 0.2,
0=30.b)I=02,6=50.(c)I'=0.1,0=10.0. (b) ' =0.2,6 = 10.0.

population of trees. Therefore, the model presents an active-absorbing transition
with the noise strength, I, being the control parameter.
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Discussion

Understanding the mechanisms that produce spatial patterns in savanna tree
populations has long been an area of interest among savanna ecologists [Skarpe,
1991; Jeltsch et al., 1999; Barot et al., 1999; Caylor et al., 2003; Scanlon et al., 2007].
A key step in such an analysis is defining the most parsimonious combination
of mechanisms that will produce the pattern in question. In this paper the
combination of long-range competition for resources and the facilitation induced
by fire are considered the responsible of the spatial structures, in the line of
studies of vegetation pattern formation in arid systems, where also a combination
of long-range inhibition and short-range facilitation is introduced [Klausmeier,
1999; Lefever and Lejeune, 1997; Rietkerk et al., 2002; von Hardenberg et al., 2001].
The main difference is that the facilitation provided by the protection effect of
adult trees against fires in our savanna model takes the short-range facilitation
to its infinitesimally short limit (i.e, local limit). Under this assumption we have
studied the conditions under which our model could account for patterns. We
have shown that nonlocal competition combined with local facilitation induces
the full range of observed spatial patterns, provided the competition term enters
nonlinearly in the equation for the density of trees, and that competition is strong
enough.
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The key technical requirement for this effect to occur is that the competition
kernel must be an almost constant function in a given competition region, and
decay abruptly out of the region. We verify this condition working with su-
pergaussian kernel functions. In practice, this means that competition kernels
whose Fourier transform takes negative values for some wavenumber values,
will lead to competition driven clustering.

The other mechanism we have considered for a minimalistic but realistic savanna
model, fire, has been shown to be relevant for the coexistence of trees and grass
and for the shape of the patterns. However, competition is the main ingredient
allowing pattern solutions to exist in the model. If the shape of the kernel
allows these types of solutions, then the specific values of fire and competition
parameters determine the kind of spatial structure that develops. It is also worth
mentioning that one can observe the full spectrum of patterns in the limit where
fires vanish (¢ — ©0), so there is no facilitation at all, provided competition is
strong enough. However, when there is no competition, 6 = 0, no patterns
develop regardless of the value of the fire term. Therefore, we conclude that
the nonlocal competition term is responsible for the emergence of clustered
distributions of trees in the model, with the fire term playing a relevant role only
to fix the value of the competition parameter at which patterns appear. In other
words, for a given competition strength, patterns appear more readily when fire
is combined with competition. A similar mechanism of competitive interactions
between species has been shown to give rise to clusters of species in the context
of classical ecological niche theory. Scheffer and van Nes [Scheffer and van
Nes, 2006] showed that species distribution in niche space was clustered, and
Pigolotti et al. [Pigolotti et al., 2007] showed that this arises as an instability of
the nonlocal nonlinear equation describing the competition of species.

Long-distance competition for resources in combination with the local facilitation
due to the protection effect of adult trees in the establishment of juvenile ones
can explain the emergence of realistic structures of trees in mesic savannas. In
these environmental conditions, competition is limited, so we should restrict to
small to intermediate values of the parameter 6, and the effect of fires is also
worth to be taken into account. However, these two ingredients give a full
range of patterns observed in vegetated systems, but not in the particular case
of savannas. It is necessary to consider the role of demographic noise, which
is present in the system through the stochastic nature of the birth and death
processes of individual trees. In this complete framework our model shows
irregular patterns of trees similar to the observed in real savannas.

The other important feature of savannas, the characteristic long-time coexistence
of trees and grass is well captured with our model (Figures 2.1 and 2.6). Besides,
the presence of demographic noise, as it is shown in Fig. 2.6, makes our approach
much more realistic, since the persistence of trees in the face of fires is related to
the water in the system. On the other hand, demographic stochasticity causes tree
extinction at lower fire frequencies (larger o) than in the deterministic case. This
is because random fluctuations in tree density are of sufficient magnitude that
this can hit zero even if the deterministic stationary tree density (for a given fire
frequency) is greater than zero. This effect vanishes if we increase the system size.
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The demographic noise is proportional to the density of trees (proportional to
(LyxLy)™"), so fluctuations are smaller if we study bigger patches of savannas. As
usually happens in the study of critical phenomena in Statistical Mechanics, the
extinction times due to demographic noise increase exponentially with the size
of the system for those intensities of competition and fire that allow the presence
of trees in the stationary state. Over the critical line, this time will follow a power
law scaling, and a logarithmic one when the stationary state of the deterministic
model is already absorbing (without trees) [Marro and Dickman, 2008].

2.5

Summary

We have shown the formation of patterns in a minimal savanna model, that con-
siders the combination of long-range competition and local facilitation mecha-
nisms as well as the transition from trees-grass coexistence to a grass only state.

The salient feature of the model is that it only considers nonlocal (and nonlinear)
competition through a kernel function which defines the length of the interaction,
while the facilitation is considered to have an infinitesimally short influence
range. Our model thus differs from standard kernel-based savanna models
that feature both short-range facilitation and long-range competition. The same
sequence of spatial patterns appears in both approaches, confirming Rietkerk and
van de Koppel's [Rietkerk and van de Koppel, 2008] suggestion that short-range
facilitation does not induce spatial pattern formation by itself, and long-distance
competition is also needed. It also suggests that long-range competition could be
not only a necessary, but also a sufficient condition to the appearance of spatial
structures of trees.

Inspired by [Calabrese et al., 2010], we have proposed a nonlocal deterministic
macroscopic equation for the evolution of the local density of trees where fire
and tree-tree competition are the dominant mechanisms. If the kernel function
falls off with distance very quickly (the Fourier transform is always positive)
the system only has homogenous solutions. In the opposite case, patterns may
appear depending on the value of the parameters (0 and o), and in a sequence
similar to the spatial structures appearing in standard kernel-based models.
Under less favorable environmental conditions, trees tend to arrange in more
robust structures to survive (Fig. 2.3(d)). Biologically, trees are lumped in dense
groups, separated by empty regions. Entrance of new trees in these exclusion
zones is impossible due to the intense competition they experience there.

A great strength of our approach is that our deterministic analysis is formal,
and we have shown the different spatial distributions of the trees that occur as
competition becomes more intense, concluding that self organization of trees is
a good mechanism to promote tree survival under adverse conditions [Rietkerk
et al., 2002]. Trees tend to cluster in the high competition (low resources) limit
(Fig. 2.3(d)), due to the formation of exclusion zones caused by non-local compe-
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tition, and not as a result of facilitation. However, because we are dealing with
a deterministic model, the patterns are too regular and the transition between
the grass-only and a tree-populated states is independent of tree competition.
We therefore considered stochasticity coming from the stochastic nature of indi-
vidual birth and death events, to provide a more realistic description of savanna
dynamics. Calabrese et al. [Calabrese et al., 2010] also noted that savanna-to-
grassland transition was independent of competition intensity in the mean field
approach, but not when demographic noise was included. In the present model,
both the grassland to savanna transition and the spatial structures that develop
are influenced by demographic stochasticity. In the case of spatial structures,
demographic noise is specially relevant, since it turns much of the unrealistic
patterns of the deterministic model into more realistic ones, that remind the ob-
served in real savannas. It also allows the existence of periodic arrangements of
trees in more humid systems, which means environmental conditions closer to
mesic savannas.

We have quantified the characteristic spacing of spatial patterns through the
structure function. The irregular patterns produced by the stochastic model still
have a dominant wavelength whose value is the same as in the deterministic
model and depends only on the value of the range of the interaction, R, in the
kernel function. The match between the typical spatial scale of the patterns and
the characteristic distance over which nonlocal competition acts suggests that
it could be responsible for the presence of clustered spatial structures. In the
next chapter we will propose a competition model, neglecting every facilitative
interaction, to confirm this hypothesis in arid to semiarid systems.

37






CHAPTER 3 -

Semiarid systems

Regular vegetation patterns in semiarid ecosystems have been traditionally be-
lieved to arise from the interplay between long-range competition and facilitation
processes acting at smaller distances. In this chapter, itis shown that under rather
general conditions, long-range competition alone may be enough to shape these
patterns. To this end we propose three simple, general models for the dynamics
of vegetation, that include only long-range competition between plants through
a nonlocal term, where the kernel function quantifies the intensity and range
of the interaction. Firstly, long-range competition is introduced influencing the
growth of vegetation, secondly it is assumed to affect its death. Finally, it is
considered as a term independent of the local birth-death vegetation dynamics,
entering linearly in the equation. In all the situations, regardless of the way in
which competition acts, we recover the vegetation spatial structures that account
for facilitation in addition to competition. Models only have consider the finite
range of the competition among plants, given by the length of the roots.

3.1

Introduction

Regular patterns and spatial organization of vegetation have been observed in
many arid and semiarid ecosystems worldwide (Fig. 3.1), covering a diverse
range of plant taxa and soil types [Klausmeier, 1999; Rietkerk and van de Kop-
pel, 2008; Thompson et al., 2009]. A key common ingredient in these systems is
that plant growth is severely limited by water availability, and thus plants likely
compete strongly for water [Rietkerk et al., 2002]. The study of such patterns is
especially interesting because their features may reveal much about the underly-
ing physical and biological processes that generated them in addition to giving
information on the characteristics of the ecosystem. It is possible, for instance,
to infer their resilience against anthropogenic disturbances or climatic changes
that could cause abrupt shifts in the system and lead it to a desert state [van de
Koppel et al., 2002; D’Odorico et al., 2006¢,b].
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Figure 3.1: Aerial photographies obtained from Google Earth. (a) Gapped

pattern (12°22744.44” N; 2°24’03.00” E). (b) Laberynth pattern (12°38'15.70”

N; 3°13705.25” E). (c) Spot pattern (12°18°32.51” N; 2°22°38.22” E). (d) Tiger
bush (13°21744.14” N; 2°04’53.30” E).

Much research has therefore focused on identifying the mechanisms that can
produce spatial patterning in water limited systems [Lefever and Lejeune, 1997;
Klausmeier, 1999; Pueyo et al., 2008]. An important class of deterministic
vegetation models (i.e., those not considering noise associated with random
disturbances) that can produce regular patterns are the kernel-based models
[D’Odorico et al.,, 2006c]. These models produce patterns via a symmetry-
breaking instability (i.e., a mechanism by which the symmetric-homogeneous
state loses stability and a periodic pattern is created) that has its origins in the in-
terplay between short-range facilitation and long-range competition [D’Odorico
et al., 2006b; Rietkerk and van de Koppel, 2008; Borgogno et al., 2009], with
field observations confirming this hypothesis in some landscapes [Dunkerley,
2002]. Therefore it has been long assumed that both of these mechanisms must
be present in semiarid systems to account for observed vegetation patterns, al-
though quantifying the importance of each one has proven to be a difficult and
contentious task [Barbier et al., 2008; Veblen, 2008]. A key role theory can play
here is to identify the minimal requirements for pattern formation to occur. Some
authors have speculated that pattern formation, under certain conditions, could
occur without short-range facilitation [Rietkerk and van de Koppel, 2008]. In
this line, in the previous chapter we proposed a model for mesic savannas that
includes fire and plant-plant competition as key ingredients. Fire introduces a
positive feedback so that this model considers both competition and facilitation
mechanisms. However, the model still produces regular patterns even when the
facilitative interaction, fire, is considered at its very short-range (in fact, local)
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limit. These considerations suggest that local facilitation may be superfluous for
pattern formation, and that a deeper exploration of the range of conditions un-
der which pattern formation can occur in the absence of facilitation is therefore
warranted. This will be the major concern of this chapter.

We will study simple, but quite general, single-variable models for vegetation
density in water-limited regions. Only competitive interactions are considered,
modeled in different ways to analyse if patterns depend on how competition
enters in the dynamical equations. The role of nonlinearities is also investigated.
We show that when only a single broadly applicable condition is met, that com-
petitive interactions have a finite range, the full set of regular patterns formerly
attributed to the interaction between short-range facilitation and long-distance
competition can be produced in the absence of facilitation.

3.2

Competition in a nonlocal nonlinear birth term

Arid and semiarid ecosystems are typified by patches of vegetation interspersed
with bare ground. Water is a very limited resource for which juvenile plants
must compete with those that have already established. Logistic-type popula-
tion models have been used in a wide variety of applications including semi-
arid systems and, as shown in the previous chapter, savannas [Calabrese et al.,
2010]. They thus form a reasonable and very general starting point. Specifi-
cally, we consider the large-scale long-time description of the model in terms
of a continuous-time evolution equation for the density of trees, p(x,t). Death
occurs at a constant rate @, whereas population growth occurs via a sequence
of seed production, dispersal, and seed establishment processes. Seed produc-
tion occurs at a rate fy per plant. For simplicity we consider dispersal to be
purely local and then if all seeds would give rise to new plants the growth rate
would be fop(x, t). But once a seed lands, it will have to overcome competition
in order to establish as a new plant. We consider two different competition
mechanisms. First, space availability alone limits density to a maximum value
given by puey. Thus, 0 < p(x,t) < puex. The proportion of available space at
site x is 1 — p(X, t)/ Pmax, sO that the growth rate given by seed production should
be reduced by this factor. Second, once the seed germinates, it has to overcome
competition for resources with other plants. This is included in the model by an
additional factor r = 7(g,0), 0 < r < 1, which is the probability of overcoming
competition. This probability decreases with increasing average vegetation den-
sity within a neighborhood p, and the strength of this decrease depends on the
competition intensity parameter, 6. Higher values of 6 represent more arid lands,
and thus stronger competition for water. In the following, we measure density
in units so that p,.y = 1. Combining all processes, the evolution equation for the
density then takes the form:
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Figure 3.2: (Left) Kernel function of standard one-dimensional kernel-

based models considering both competitive and facilitative interactions. It

is built with a combination of positive and negative Gaussian functions,

g(x) = 1.5exp (—(x/2)*) — exp (—(x/4)?). Notice that it takes positive and

negative values at different distances. (Right) Competitive-only top-hat
kernel with range R = 8. G(x) is always positive.

Ip(x, t) i
ot = ﬁo”(P/ 5)P(x/ t)(l - p(xr t)) - aP(Xr t)' (31)

p = p(x,t) is the nonlocal density of vegetation that is obtained by averaging
(with a proper weighting function) the density of plants in a neighborhood:

)= [ Glx=xp(x’ i, (62)

where G(x) is a normalized kernel function, which accounts for the weighted
mean vegetation density, and defines the neighborhood of the plant. A Laplacian
term could be included in the right-hand side of Eq. (3.1) as a way to model seed
dispersal, but doing so would not qualitatively change our results, so we have
left it out.

We have presented a phenomenological derivation of the model. An open
problem is to infer this type of description from a mechanistic one where the
explicit interactive dynamics of vegetation competing for water is considered.
Preliminary results on this derivation are shown in the Appendix C.

In previous kernel-based vegetation models [Lefever and Lejeune, 1997; D’Odorico
et al., 2006c], the kernel function contained information on the class of interac-
tions present in the system, that were both facilitative and competitive. That
is, it can take positive and negative values either enhancing or inhibiting the
vegetation growth. On the contrary, we introduce purely competitive interac-
tions through the nonlocal function #(g, 5), where the kernel is always positive
and thus defines the area of influence of a focal plant, and how this influence
decays with distance. These two kernels are compared in Fig. 3.2. Competition
is included by assuming that the probability of establishment r decreases with
increasing vegetation density in the surroundings:
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9r(p, o)
Ip

<0. (3.3)

As 6 modulates the strength of the competition, it must be that (g, 6 = 0) = 1, and
r(p,0 — o0) = 0. This means that when water is abundant (6 = 0) competition
for water is not important (+ = 1), whereas new plants cannot establish in the
limit of extremely arid systems, 6 — oo.

Note the generality of this vegetation competition model: a spatially nonlocal
population growth term of logistic type with rate fulfilling Eq. (3.3), and a linear
death term. A complete description of our model should specify both the kernel
function G as well as r, but we can go further with the analysis in general terms.

The possible homogenous stationary values of the density for Eq. (3.1) are: a) no
vegetation p = 0, and b) the vegetated state p = py. The system will show either
one or the other depending on the relationship between the seed production
and death rates, fy and « [Calabrese et al., 2010]. The non-trivial homogeneous
stationary solution, pg, can be obtained by solving

Bor(po, 6)(1 — po) —a =0, (3.4)

that has only one solution in the interval py € [0, 1] because of the conditions
imposed on the function r in equation(3.3). We now ask if this stationary solution
gives rise to periodic structures via a symmetry-breaking instability as happens
in other models that include not only competition but also facilitation mecha-
nisms in the interactions [Borgogno et al., 2009]. To explore this possibility in our
model, we perform a linear stability analysis [Cross and Hohenberg, 1993] intro-
ducing a small perturbation to the stationary solution, so p(x,t) = po + €i(x, t),
with € <« 1. Technical details of this derivation may be found in Appendix A.
The perturbation growth rate is

L rod) el (3.5)

1-po  (po,0)
where G(k) is the Fourier transform of the kernel, G(k) = f G(x) exp(ik - x)dx,
and 7'(py, 6) = (37?)

Patterns appear if the maximum of the growth rate (i.e., of the most unstable
mode), A(k.), is positive, which means that the perturbation grows with time.
From Eq. (3.5), this is only possible if the Fourier transform of the kernel function,
G(k), takes negative values, since 7(pg, 8) < 0. As has been in the previous chap-
ter, this happens, for example, for all stretched exponentials G(|x|) o< exp (—|x/R[F)
with p > 2, where R is a typical interaction length [Pigolotti et al., 2007, 2010].
Kernels satisfying this criterion have broader shoulders and shorter tails (i.e.,
are more platykurtic) than the Gaussian function, which is obtained for p = 2. In
reality, any competitive interaction among plants will have finite range because
their roots, which mediate the interaction, have finite length. The interaction
range R between two plants will be twice the typical root length. Kernels with

A(k) = —apo [

p=po’
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finite range can, in general, be modeled by considering a truncated function such
that G(|x]) = CF(x)I1(Jx]), where C is a normalization constant, I'l(x) is a unit-step
function defined as I'l(x) = 1 if |x| < R and I'l(x) = 0 if |x| > R, and F(|x|) is a func-
tion of the distance that models the interactions among the plants. Because of the
finite range in the kernel function, the Fourier transform will show oscillations
and thus will always take negative values. The functional form of the probability
of surviving the competition, r(p, o), changes only the parameter regime where
patterns first develop, but they will appear in the system, regardless of its form,
for v’ (po, 6)/r(po, 0) large enough.

For the rest of our analysis, we will use F(x) = 1, so the kernel is given by
G(x) = 1/nR? if |x| < R and G(x) = 0 if |x| > R, which defines an interaction area
of radius R (that is, roots of typical length R/2). Its Fourier transform (in two
dimensions) is

A 2]1 (kIR
G = 2R,

where [1([k|R) is the first-order Bessel function. We will further specify the model
by assuming particular forms for the growth rates. Let us consider a probability
of surviving competition given by

(3.6)

1

r(p,06) = axop) (3.7)
with g > 0. In the particular case of g = 1, the homogeneous density, pg, and the
perturbation growth rate, A, can be obtained analytically. Numerical evaluations
must be done if g # 1. In the following, for simplicity, we consider the case g = 1
and only briefly discuss other values. The nontrivial stationary solution, pg # 0,

can be obtained analytically

_Po-a
po_ﬁ0+0z(§'

(3.8)

stationary state decays as ~ 6~ with increasing competition strength (i.e., large
0). It can be analytically shown that the same dependence of py on large 6 occurs
for any value of g.

where fy > a. Eq. (3.8) shows that the homogeneous density of trees in the

From Eq. (3.5), the growth rate of the perturbations can also be calculated

(@ = Bo)(Bo + adG(K))
Bo(1+0)  ~

and is shown in Fig. 3.3 (Left) for different values of the competition strength.
When the growth rate of the most unstable mode (i.e. the maximum of A(k)),
k., becomes positive, patterns emerge in the system [Borgogno et al., 2009]. To
obtain the critical value of the competition parameter at the transition to patterns,
0., we have to calculate the most unstable mode as the first extreme of A(k) at

AMK) = 3.9)
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Figure 3.3: (Left) Perturbation growth rate given by Eq. (3.9) using a unit-

step kernel for different values of 6. From bottom to top 6 = 5.00, 6 = 10.00,

0. = 15.12, 6 = 20.00. (Right) A(k.), as a function of 6, using r(p, 0) given

by Eq. (3.7). From right to left g = 1, ¢ = 2, ¢ = 3. In both panels, other
parameters: o = 1.0 and @ = 0.5.

k # 0, ie., the first zero of the derivative of G(k). This was already done in
the previous chapter, and gives k. = 5.136/R. It depends only on the the range
defining G(r)). This value changes depending on the kernel, but in the case
of kernels with a finite range (i.e. truncated by a unit step function of radius
R) it is always of this order. The critical wavenumber is determined mainly
by the contribution of the unit step function to the Fourier transform, which is
always the same. This result is also independent of the other parameters of the
system, and shows that the nonlocal competition mechanism is responsible for
the formation of patterns in the system.

To identify the parameter values for the transition to patterns, we solve A(k.) =
0 in Eq. (3.9), which shows that patterns emerge when competition strength
exceeds 6, = —fo/ aé(kc), which is positive because G(kc) < 0. Figure 3.3 (Right)
shows the growth rate of the most unstable mode as a function of competition
strength for different values of the exponent g for fixed values fy = 1, and
a = 0.5. Note that the critical value of the competition parameter depends on
the functional form of r. This dependence could be used to tune the value of g to
have a realistic competition strength for the transition to patterns, provided that
one has sufficient data.

We can also explain the separation length between clusters of plants using ecolog-
ical arguments adn expanding the concept of exclusion areas that was mentioned
in the previous chapter. Consider a random and inhomogeneous distribution of
plants. Maxima of this distribution identify places with the highest plant density.
Imagine that two such maxima occur at a distance larger than R but smaller than
2R from each other. There will be no direct interaction between the roots of plants
in these different patches because they are separated by a distance larger than
the interaction range R (twice the root extension as first order approximation).
But there is an area in-between which is simultaneously within the range of
both patches. Compared with plants occurring inside a cluster, which only have
to compete with plants in their own cluster, those that occur in-between clus-
ters will experience stronger competition and will therefore tend to disappear
(Fig. 3.4). We call these regions exclusion areas [Herndndez-Garcia and Lépez,
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2004; Pigolotti et al., 2007, 2010]. The disappearance of plants in these exclusion
areas in turn reduces competition on the two well-populated patches, so that
a positive feedback appears reinforcing the establishment of plants in patches
periodically separated with a distance between R and 2R. We stress again that
competition alone is responsible for the symmetry breaking instability, and no
facilitative interactions are needed for pattern formation.

Exclusion area

Figure 3.4: Schematic representation of the formation of exclusion ar-

eas, where plants have to compete with two different vegetation patches,

whereas plants in each patch compete only with individuals in its own
patch.

This mechanism does not work only in the particular case of considering com-
petition among plants modifying the birth rate. It also leads to the formation
of patterns if nonlocal competition is introduced in the death rate or entering
linearly in the dynamics. This will be shown in Sections 3.3 and 3.4 respectively.

Finally, we have numerically integrated Eq. (3.1) in a patch of 10* m? with periodic
boundary conditions and a competition range of R = 8 m. Time stepping is done
with an Euler algorithm. The results (see Fig. 3.5) exhibit steady striped and
spotted vegetation patterns typically arising from symmetry breaking.

0.05

Figure 3.5: Steady spatial structures shown by the model using the (g, )

givenby Eq. (3.7) with g = 1. Darker grey levels represent smaller densities.

(a) Vegetation stripes, 6 = 16.0. (b) Vegetation spots, 6 = 17.0. Other
parameters: fp = 1.0and a = 0.5

46



3.3. COMPETITION IN A NONLOCAL NONLINEAR DEATH TERM

04r
0.2t
Ak) 0

" 03,900

0.2t Cem11
I 85-1976 - S=2
04|/ / x5 =3528 ~ 5734
0 20 5 40 60

Figure 3.6: Perturbation growth rate of the most unstable mode as a func-

tion of the competition strength for different values of the exponents. s = 1

fullline, s = 2 dashed line, and s = 3 dotted-dashed line. Other parameters:
a=1,8=5andR =8.

Similar results can be obtained for different growth rates, for example con-
sidering a family of stretched exponentials in the probability of overcoming
long-range competition r(, 6) = exp (—0p°).

This gives a perturbation growth rate of the form

A(k) = —apo( +0sph G|, (3.10)

1
1- Po
where the stationary density, pp has to be obtained numerically from Eq. (3.4).
The value of the competition parameter at the transition to patterns o, also has
to be obtained numerically for a given set of values of s, @, and fy. This critical
value is shown in Fig. 3.6 using a top-hat kernel for different values of s. It is
represented the value of the perturbation growth rate of the most unstable mode
A(k) as a function of the competition strength 6.

This further confirms our result that competition is the only necessary ingredient
for the formation of vegetation patterns in the present framework, and that
this does not depend on the functional form of the probability of surviving
competition (growth rate) provided it verifies the requirements given by Eq. (3.3).

3.3

Competition in a nonlocal nonlinear death term

In the previous section we have considered that plant death occurs at a constant
rate and the birth process takes place following a sequence of seed production,
dispersal and establishment. The establishment of new seeds has been studied
as a process depending on the density of vegetation in a given neighborhood.
However, it is possible to consider it affecting the death rate.

In this framework, the population growth has two stages, namely seed produc-
tion at rate By and local seed dispersal. This means that once a seed is produced
by a plant, it still has to compete for available space, limiting the density of
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vegetation to a maximum value pyq. As it was done before, we choose units
so that py., = 1. On the other hand, the death of plants is influenced by the
availability of resources and thus include nonlocal interactions. When water is
abundant the competition for it is not relevant and plants die at a typical constant
rate ap. However, the scarcity of resources promotes the death of vegetation,
and this is included in the model by an additional factor / in the death term, the
probability of dying because of competition, 0 < i < 1. That is, the probability
of not being able to overcome competition h(§, ) = 1 — r(§,6), where r is the
function introduced in Sec. 3.2. The probability of dying because of competition
for resources has to increase with the density of vegetation

Ih(p, 6) 6)
S T
and it must tend to its maximum value in the limit of extremely arid systems
(0 — o0) and to vanish when water is not a constraint for vegetation growth

(0 = 0). These properties can be derived from the properties of the function r
and its relationship with h.

(3.11)

Under these conditions, the model equation for the density of vegetation is

9p(x,

= Bp(x, £)(1 = p(x, 1)) = aoh(p(x, 1), O)p(x, 1), (3.12)

where f(x, t) is the nonlocal density of vegetation at x, p(x,t) = f p(x’, H)G(jx —
x'|)dx’, and G(x) is the kernel function that defines an interaction range and
modulates its strength with the distance from the focal plant, as it was in Sec. 3.2.
Also following the step of this previous section, we study the existence of patterns
in this model.

First of all, the stationary solutions of Eq. (3.12), po, are obtained solving
Bpo(1 — po) — aoh(po, 8)po = 0, (3.13)

that has a trivial solution, py = 0 referring to the desert state. The vegetated state
must be obtained from
B(1 = po) — aoh(po, ) = 0, (3.14)

once the function & has been chosen.

Second of all, the formation of patterns in the system has to be studied through a
linear stability analysis of Eq. (3.12), introducing a small perturbation to the sta-
tionary homogeneous state, pg. Considering that p(x, t) = po+ey(x, ), withe < 1,
the perturbation evolves according to the following linear integro-differential
equation

J
P~ b1~ 2p0ptx - aor(po, 0090, awwumahfcw DK, i,

(3.15)
that can be solved using the Fourier transform to obtain the growth rate of the
perturbation,

A(k) = B(1 = 2pg) — aoh(po, 8) — atopolt (po, )G(K), (3.16)
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Figure 3.7: Probability of dying because of long range competition as a

function of the density of vegetation. Left panel, h(j(x,t),0) = 0p. Right
panel, h(p(x, t),0) = %. From top to bottom 6 = 1,6 = 0.8,0 = 0.6,6 = 0.4
in both panels.

where, again, G(k) is the Fourier transform of the Kernel function. Using
Eq. (3.13), one finally gets

A(K) = —po [ + a0l (po, 5)G ()], (3.17)

that shows that, as it was in the case of models with nonlocal interactions in the
birth rate, that the patterns appear only when the Fourier transform of the kernel
takes negative values. To investigate the particular behavior of this model in a
simple situation, one needs to choose a function .

The simplest case that allows a complete analysis is to choose a probability
of dying because of competition growing linearly with the nonlocal density of

vegetation,
h(p(x, £) = 6p(x,b). (3.18)

The behavior of this function / is shown in the left panel of Fig. 3.7 for different
values of 6. The choice of this functional form in h restricts the domain of the
parameter 6. It has tobe 6 € [0, 1] since it must be i < 1 to represent a probability.

The nontrivial stationary solution, Eq. (3.14), is

_ B
po ﬁ+0(0(5.

(3.19)

This solution has the proper behavior in the limits  — 0 and 6 — co. The growth
rate of the perturbation is

p
ﬁ+0(0(5

from where we obtain a transition to pattern at,

I (3.21)

aGlke)

AK) = — B+ a0sG(x)], (3.20)
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Figure 3.8: Distribution of vegetation of the model in a patch of size 100 x
100 with a linear probability of dying because of long-range competition,
Eq.(3.18). (@) 0=0.7,(b) 0=0.8,(c) 6=09. g =1, =0.1, R = 8.

where k. is the most unstable mode, i.e., that with the highest growing rate.
Eq. (3.21) limits the possible value of the birth and the death rates for a given
kernel. They have to take values such as 6. < 1. This is a new condition that
was not present in the model presented in Sec. 3.2, and appears because of the
constraints imposed on the values of the competition parameter by the linear
function h. For ap = 1, = 0.1 and a top-hat kernel of radius R = 8, patterns
emerge for a competition strength 0. = 0.747. As it can be observed in Fig. 3.8,
the homogeneous distribution is the stationary solution when 6 < 6. (Panel a),
while patterns (stripes and spots) appear otherwise (Panels b and c respectively).

A different function for the probability of dying might be chosen ?,

op

Hpo),0) = 5

(3.22)

that is shown in the right panel of Fig. 3.7 for different values of 6. Although this
makes the analysis much more complicated, it allows the competition strength
parameter 6 to take any positive real value. We present some results showing
that the functional form of / is not relevant for pattern formation.

The nontrivial stationary solution is

oo = —[(0 + B)d — Bl + /l(a0 + B)d — B2 + 426

% (3.23)

1t is important to justify that 6 has no dimension, and there is a saturating density, x, that we
p

have set to x = 1 so that r = S
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where we have chosen the positive sign in the square root because it must be
po > 0. The growth rate of the perturbation is

aoézé(k)]
O+ po)? |

Plugging Eq. (3.23) into Eq. (3.24) and considering the most unstable mode, k,
we can obtain an expression for the value of the competition parameter at the
transition to patterns,

Ak) = —po [/3 + (3.24)

(@0-pE) + Jap(Glkd) - 1260k

(0(% + ﬁz)é(kc) - aoﬁ(é(kc) + 1)2 (325)

C

Using ap = 1, § = 0.1 and a constant top-hat kernel of radius R = 8 one obtains
0c = 0.663. This result can be checked integrating numerically Eq. (3.12) with
these values of the rates and the interaction range. We do not show this patterns
again because they are equivalent as the ones in Fig. 3.8.

34

Competition in a nonlocal linear death term

The study that we are going to present in this section is inspired by the kernel-
based models reviewed in [Borgogno et al., 2009], where it is assumed that both
competitive and facilitative interactions between plants must come into play
for pattern formation. These models are not well posed, since the density of
vegetation can become negative at some spatial points because the long range
interactions entering linearly. This incovenience is often overcome assuming
that whenever the density becomes negative, it takes a value p(x, f) = 0. In this
section, we extend these models to the situations where there is only competition
among trees, and also study the effect of seed dispersal through a diffusive term.
The vegetation density changes in time because of its local dynamics (logistic
growth) and the spatial interactions (competition) with other points of the space,

dp(x, t
Pg ):Dv%ﬁﬁ%+mnﬂh—K4m%ﬂ]—gjlxw—xﬁmfiﬂf,

(3.26)

where « is the carrying capacity of the system (i.e, the maximum density of vege-
tation in the absence of competition) and Q) is the interaction strength parameter.
To account for purely competitive interactions (2 and the Kernel function G(x) are
positive. It is important to remark, once more, that the dynamics of this model
is not bounded at p(x, t) = 0, so negative values must be avoided by imposing
that p = 0 when it becomes negative in the numerical simulations.

The stationary solutions are, py = 0 (no vegetated state), and

po =(1-Qx, (3.27)
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Figure 3.9: Spatial distribution of vegetation. (a) D = 0, Q = 0.85. (b)
D=1,Q0=07and (c) D=1,Q=09. R = 8in all the panels.

that limits the values of the interaction strength parameter. It must be Q2 <1 to
verify that py > 0, while in the limit ) = 0, where the are not long range inter-
actions, the population of plants grows logistically until it reaches its carrying
capacity.

The linear stability analysis of Eq. (3.26) gives a peturbation gorwth rate,
A(k) = —=DI + (1 - 2k pg) + QG (k), (3.28)
that, in the absence of diffusion, D = 0, allows the existence of patterns if

1

Q>0 = ——,
2 - G(k)

(3.29)

C

where k, is the most unstable mode. Provided that we choose, again, a normal-
ized constant kernel of width 2R the transition to patterns appears at (), ~ 0.47.
Integrating the full Eq. (3.26) including long-range seed dispersal (D # 0)
laberynthic and spotted patterns emerge. This result is shown in Figures 3.9(a)
and 3.9(b) for different values of Q.

3.5

Summary and conclusions

In this chapter we have presented several models of vegetation in water-limited
regions where, despite the absence of facilitative interactions, regular structures
may still appear: stripes and spots of vegetation interspersed on the bare soil
forming a hexagonal lattice. Patterns consisting on spots of bare soil character-
istic of models with competition and facilitation are not observed when positive
interactions are neglected. In fact, in the previous chapter, where we studied a
model for mesic savannas with local facilitation, the gapped distributions appear
only when the system is on the transition line to patterns. This result is different
from what is observed in models including nonlocal facilitation, that show the
whole sequence of patterns (gaps, stripes and spots), with each type of structure
in a wide region of the parameter space. This suggests that facilitative interac-
tions, although not indispensable for the formation of patterns in arid systems,
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could be relevant to substain some of the structures that have been reported in
field observations. Future work is planned to address this problem.

From a mathematical point of view, nonlocality enters through an influence
function that determines the number of plants competing within a range with
any given plant. A first-order approximation of this distance can be given by
(twice) the typical length of the roots, but field measurements are needed in
order to determine the resources uptaking range of a given plant species. A
necessary condition for pattern transitions, common to all the presented models,
is the existence of negative values of the Fourier transform of the kernel function,
which always happens, but not only, for kernel functions with finite range.

From a biological point of view, competitive interactions alone may give rise
to spatial structures because of the development of regions (typically located
between maxima of the plant density) where competition is stronger, preventing
the growth of more vegetation.

Anunfortunate consequence of the universal character of these models is that the
information that is possible to gain on the underlying biophysical mechanisms
operating in the system just by studying the spatial structures of the vegetation
is limited. Many different mechanisms lead to the same patterns. Although
they are universal models should be specific to each system, emphasizing the
importance of empirical studies. Field work may help theoretical efforts by
placing biologically reasonable bounds on the shape and extent of the kernel
functions used in the models, and also by approximations to the probablity of
overcoming competition, (g, 0), or of dying because of it h(p, 0).

Finally, with this work, we aim at showing that competitive interactions alone
may be responsible of patterns in arid to semiarid systems, regardless of how
they are introduced in the different modeling approaches. Under certain condi-
tions, nonlocal competition alone may be responsible of the formation of patterns
regardless of entering in the equations either linearly or nonlinearly. We hope
that our results shed light on the task of understanding the fundamental biolog-
ical mechanisms -and the possible absence of facilitation- that could be at the
origin of pattern formation in semiarid systems.
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Linear stability analysis

In chapters 2 and 3, we have referred many times to the linear stability analysis
of the equations in order to gain insight into the possible emergence of patterns.
This is a broadly used technique. Its objective is to obtain the temporal evolu-
tion of small perturbations to the stationary homogeneous state of the system.
To this aim we assume idealized conditions that can be summarized in three
points: choosing a uniform geometry for the walls that confine the medium; re-
placing the lateral boundaries with ones consistent with translational symmetry;
and choosing to study the linear instability towards time-independent patterns
that are consistent with translational symmetry. We impose periodic boundary
conditions and study the formation of stationary patterns.

Our starting point is Eq. (3.1),

Ip(x, t) B
FT Bor(p, 0)p(x, £)(1 — p(x, ) — ap(x, t). (A.1)

Considering that the system is in the homogeneous stationary state, p(x,t) =
po, how will perturbations to this state evolve with time? Will they vanish,
taking the system back to the homogeneous state, or will they grow up allowing
the formation of stationary spatial structures? The key quantity will be the
growth rate of the perturbation, restricted to the linear regime, so that only small
perturbations in the short time limit will be considered. If a small perturbation
is done to the stationary homogeneous state, the density is

p(x, t) = po + eP(x, 1), (A.2)
with € <« 1. Plugging Eq. (A.2) into Eq. (A.1), it is

0
ea—lf = Bor (po + efgb(x’, HG(Ix —x')dx’, 6| (po + €)1 — po — €Y) — alpo + €Y),

(A3)
where the spatiotemporal dependence in the perturbation 1 is omitted to sim-
plify the notation. We have also used that py is stationary and thus its time
derivative equals to zero together with the normalization of the kernel to sim-
plify the dependence on pj in the function r.
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Eq. (A.3) can be simplified because we are interested in small perturbations.
The function r can be expanded in a Taylor series and higher order terms in €
neglected. This gives a linearized integro-differential equation for the evolution

of Y,

J
a—lf = Bor(po, 0)(1 = 2po)y — apoy + Bot’ (po, 0)po(1 — po) f G(x = x")ip(x’, t)dx’,
(A.4)

that can be solved using Fourier transform. Notice that the stationary solution
of Eq. (A.1),

Bor(po, 0)po(1 = po) —apo =0, (A5)
has been used to obtain Eq. (A.4). We apply the Fourier transform to Eq. (A.4),
(K, t) . .
5r = Por(po, )1 = 2p0)pp(k, ) — apoyp(k, )
+ Bor’(po, O)po(1 — po) GK)P(k, 1), (A.6)

where {(k, t) = f e 1) (x, t)dx is the Fourier transform of the perturbation, and
equivalently, G(k) is the Fourier transform of the kernel.

Finally, Eq. (A.6) is solved considering {(k,t) o« exp(A(k)t), so that a linear
growth rate of the perturbation is obtained

M) = o [r(po, 61 = 2p0) + (1 = po)por’(po, G — . (A7)
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Numerical integration of
Eqg. (2.19)

The integration of stochastic equations where the noise amplitude depends on
the square root of the variable, p, and there are absorbing states (i.e, states where
the system stays indefinitely), has awaken a great interest, specially in the study
of critical phenomena (i.e, properties of the system that appear when it is close to
the critical point). The amplitude of the fluctuations tends to zero there, and thus
numerical instabilities may appear. Recently [Dornic et al., 2005; Pechenik and
Levine, 1999] a very efficient method has been developed, but we have used in
this work an older one, presented in [Dickman, 1994], since its implementation is
easier and it gives precise results working far from the transition point. It consists
on discretizing the Langevin equation, taking a step size Ap in the variable.

First of all, to integrate the Eq. (2.19) we discretize the space, whose areais Ly XL,,
ina N, X N, regular grid and compute the integral in the exponential term. It is
approximated by a sum of the field evaluated in the nodes

Ny
f P HG(x=x)dx = ) Y piGijir AxAY, (B.1)

where Ax and Ay are the spatial steps in both directions. They are given by
Ax,y = Lx,y/(Nx,y - 1)-

Then, we integrate the temporal dependence. The key of the algorithm is to
prevent p + Ap to take negative values. From a general equation

d
= = Fp)+ vPn(), (B2)
where 1)(t) is a Gaussian white noise with zero mean and delta correlated, it is
Ap = f(p)At + +/pAW, (B.3)

where AW = VAtY. Y is a Gaussian number with zero mean and unit variance.
To avoid negative values of p + Ap, Dickman [1994] proposes to dicretize the
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density setting p = npu, and to simetrically truncate the Gaussian distribution
from where Y is drawn, so that |Y| < Y. The negative values are avoided
requiring

Yonax VAL < prin. (B.4)

This can be seen adding p in both sides of Eq. (B.3), considering the discretization
of the density and assuming that Y takes its most negative value according to
the constraint (B.4), so

NPmin + AP = f(npmin)At + NPwmin — ‘/ﬁpminz (B.5)

that is always positive for n integer.

Eq. (B.4) can be verified in many ways but, following Dickman [1994] again, we
use

| In At
Yimar = ’
3
In Af)?At
Pmin = ( —9) . (B6)

Finally, rescaling the equation, we can achieve a discretized version in which
positive and zero-mean noise are ensured at the cost of a “quantized” density.
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Derivation of the effective
nonlocal description from
tree-water dynamics

In this section we present a preliminar (and not fully satisfactory) attempt to
derive the model presented in Section 3.2 of Chapter 3 (the derivation corre-
sponding to the nonlocal death model in 3.3 is a straightforward extension of
this calculation).

Let us consider a system involving dimensionless vegetation density, p(x, t), and
soil-water w(x, t). The dynamics is purely local and competitive and takes the
form:

Ip
5 = Perd-pw—ap, (C.1)
aa_z: = —upw—yw+ I+ D, Vw, (C2)

where the nondimensional positive parameters are: the seed production rate
B; the vegetation death rate a; the consumption rate of water by vegetation, u;
the evaporation rate y, and the rainfall, I. Water percolation in the ground is
modeled by a diffusion constant Dy,. Note that this model is a simplified version,
which only includes competitive interactions, of the model presented in Gilad
et al. [2004].

Since the characteristic time scale of the water is much faster than the one of the
biomass we can do an adiabatic elimination of the variable w (i.e. % = 0) so that

— upw —yw + I+ Dy, Vw0 = 0, (C.3)

and thus
(DwV2 - y) w = pupw -1, (C4)

whose formal solution can be obtained using Green’s functions, G4,
wi) = [ Galx = 9)uplsyols) - D, (5)
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with the boundary conditions w(x — +o0) = 0. For simplicity we now consider a
one-dimensional situation, although analogous calculations can be done in two
dimensions. The Green’s function is the solution of

(DWV? = 7)Ga = 6(x —s), (C.6)

Galx,s) = —% exp (— , /Dl|x - s|) (C7)

Taking the nondimensional small number u as the perturbative parameter, we
can further obtain an approximate expression for w from Eq. (C.5)

and it is given by

w(x) = —IGy [1 +u de(x —s)p(s)ds + O(yz)] , (C.8)

where Gy = f Ga(x — s)ds < 0, since the Green’s function is always negative.
Plugging this in the equation for the biomass density (C.1), we obtain the closed
expression:

d
3—f =pp(1-p) {_IGdO [u f Ga(x — s)p(s)ds + 1]} - ap. (C9)

Defining the positive nonlocal density § = f Gc(x—s)p(s)ds, where G, = -Gy, we
can write Eq. (C.9) as

0
a—f = pr(p)p(1 - p) — ap, (C.10)
where we have defined 7(p) = I|Ggol (1 — up).

To have a good agreement with the effective nonlocal dynamics Eq. (3.1), 7 > 0
since it represents a probability. This is certainly the case for small u. Note that
some additional conditions on the normalization of the Green’s function have
to be imposed to limit » to values less than 1. Also 7 (p) = —Iu|Gyl is always
negative, as we expected.

In this particular example we obtained the exponential kernel of Eq. (C.7), which
does not have the finite-range support that would be associated to the finite root
extent. As a consequence, the Fourier transform of this kernel has no negative
components and then does not lead to pattern formation. The simple modeling of
water dispersion by means of a diffusion constant does not contain the additional
spatial scale associated to root size, and should be replaced by some mechanism
implementing root effects. On the other side, the finite-range of the kernel is a
sufficient but not a necessary condition for its Fourier transform to have negative
values. It is well-known the existence of infinite-range kernels whose Fourier
transform has negative values. This is the case of all stretched exponentials
G(x) oc exp(—|x|P) with p > 2 as has been already mentioned several times before.
Kernels satisfying this are more platykurtic than the Gaussian function. Work is
in progress along this line.
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Part 111

ANIMAL MOBILITY

Charles R. Darwin
(1809 { 1882).

British naturalist and geologist, best known for his contributions
to evolutionary theory. In one sense, he is also considered the

first modern ethologist. His book, The Expression of the Emotions
in Man and Animals, influenced many future ethologists. (Ethology

is the scientific and objective study of animal behavior under
natural conditions).
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CHAPTER 4 -

Optimal search in interacting
populations

In this chapter we investigate the relationships between search efficiency, move-
ment strategy, and non-local communication in the biological context of animal
foraging. We consider situations where the members of a population of foragers
perform either Gaussian jumps or Lévy flights, and show that the search time
is minimized when communication among individuals occurs at intermediate
ranges, independently of the type of movement. While Brownian strategies are
more strongly influenced by the communication mechanism, Lévy flights still
result in shorter overall search durations.

4.1

Introduction

Situations where a single individual or a group of searchers must find an
object (target) appear in many different fields including chemistry [Bénichou
et al.,, 2011], information theory [Pirolli and Card, 1999], and animal foraging
[Viswanathan et al., 2011; Méndez et al., 2014]. The study of these searching
problems has generated an increasing amount of work in the last years, many of
them oriented towards the identification of efficient strategies [Bénichou et al.,
2011; Viswanathan et al., 2011; Vergassola et al., 2007; Bénichou et al., 2006].
Many remarkable examples can be found in the context of biological encounters,
such as proteins searching for targets on DNA [Taylor and Halford, 1989], or an-
imals searching for a mate, shelter or food [Campos et al., 2013; Bénichou et al.,
2011; Viswanathan et al., 1999; Shlesinger, 2006; Edwards et al., 2007; Torney etal.,
2011; Hein and McKinley, 2012; Viswanathan et al., 2008; Mejia-Monasterio et al.,
2011; Bartumeus et al., 2003]. In these cases, the search time is generally limiting
and minimizing it can increase individual fitness or reaction rates.

The optimality of a search strategy depends strongly on the nature of both the
targets and the searchers [Bartumeus et al., 2005, 2002]. In the context of animal
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foraging, which is our focus here, searchers may move randomly, may use
memory and experience to locate dispersed targets or they may also combine
random search with memory-based search. In highly social species, groups
of searchers may share information when no single individual is sufficiently
knowledgeable. This is based on the many wrong hypothesis [Hoare et al.,
2004; Torney et al., 2009a], that states that error in sensing of individuals can be
reduced by interacting with the rest of the group, where all individuals can act
as sensors.

It is well known that individual movement plays a central role in search effi-
ciency, and many studies have focused on the comparative efficiency of Lévy
and Brownian movement strategies [Bénichou et al., 2011; Viswanathan et al.,
2008; Bartumeus et al., 2005, 2002]. Lévy flights are more efficient in some ran-
dom search scenarios [Viswanathan et al., 1999, 2000], but whether or not they
are used in real animal search strategies is still an open and contentious topic
[Edwards, 2011; Edwards et al., 2007]. Much less effort, however, has been spent
on trying to understand the long-range (i.e. nonlocal) interaction mechanisms
among social searchers. While diverse observations suggest that such interac-
tions occur in many taxa, including bacteria [Liu and Passino, 2002], insects, and
mammals [Zuberbiihler et al., 1997; McComb et al., 2003], previous studies have
focused almost exclusively on how the collective movements of a group of ani-
mals can emerge from local interactions among individuals [Mishra et al., 2012;
Kolpas et al., 2013; Couzin et al., 2002]. The distance at which communication
can be maintained strongly depends on the species. A variety of mammalian
species are known to communicate acoustically over distances of up to several
kilometers [McComb et al., 2003; Mathevon et al., 2010; Estes, 1991], but while
group formation via vocalizations has been well studied [McComb et al., 2003;
Ford, 1991; Smith et al., 2011], incidental benefits such as increased foraging ef-
ficiency have received little research attention. Therefore many open questions
remain, particularly on the interrelation between communication and optimal
search for resources. How can communication facilitate group formation and
identification of areas of high quality resources? Does a communication range
exist that optimizes foraging efficiency? To what degree does search efficiency
depend on the communication mechanism? Finally, how does communication
affect individual space use in a heterogeneous environment?

Here, we present a theoretical model to study the effect of nonlocal communica-
tion on the search efficiency of a group of individuals. Communication and the
amount of shared information are directly connected through the distance trav-
elled by the signals emitted by successful searchers (communication range). To
introduce the model, we start from an individual based description and compare
the situations where the individuals employ either Lévy or Brownian random
search strategies. In the first section we study many properties of the model such
as the existence of an optimal communication range and the influence of the dis-
tance between targets and the movement strategy on its value. For tractability,
we will next consider a simplified, one-dimensional version of the model and
compute analytically the search time for both Brownian and Lévy searchers as a
function of the communication length scale. This simplified model allows us to
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unveil the dependence of this time on both the parameters governing individual
mobility, and on the distance between targets. Finally, a continuum description
in terms of an equation for the density of searchers is derived. The chapter ends
with a discussion comparing Brownian and Lévy strategies.

4.2

The Individual Based Model for Brownian searchers

We consider N particles which undergo a 2D Brownian random walk. Corre-
lated random walks, often more appropriate to model directional persistence in
animal movement, reduce to Brownian motion for large spatiotemporal scales
[Turchin, 1998]. The movementis biased by the gradients of the landscape quality
(local information), and by the interaction among individuals through a com-
munication mechanism that is activated when good resources are found, thus
providing information on habitat quality in other areas (nonlocal information).
The dynamics of any of the particlesi =1, ..., N is

ri(t) = Bng(ri) + BcVS(r;) + ni(t), (4.1)

where 7;(t) is a Gaussian white noise term characterized by (n;(t)) = 0, and
Mi(Hn;(t"))y = 2D6;;6(t — t'), with D the diffusion coefficient. The term BV g(r;)
refers to the local search, where g(r) is the environmental quality function
(amount of grass, prey, etc...) and By is the local search bias parameter. BcVS(r;)
is the nonlocal search term, with B¢ the nonlocal search bias parameter and
S5(r;) is the available information function of the individual i. It represents the
information arriving at the spatial position of the animal i as a result of the com-
munication with the rest of the population. This term makes the individuals
move along the gradients of the information received. It is a function of the
superposition of pairwise interactions between the individual i and each one of
its conspecifics,

N
S(r;) = P[ Y A[g(r;)lvm,rj)]. (42)
j=Lj#i
F is an arbitrary perception function that must be set in each application of the
model, V(r;, 1)) is the interaction between the receptor particle i depending on
its position r; and the emitting particle fixed at r;, and A[g(r;)] is the activation
function (typically, a Heaviside function) that indicates that the individual at r;
calls the others if it is in a good habitat.

We begin with Monte Carlo simulations of the individual based dynamics in
Eq. (4.1) using a square system (L, = L, = 1) with periodic boundary conditions,
and a population of N = 100 individuals. We use a theoretical landscape quality
function, g(r), consisting of three non-normalized Gaussian functions, to ensure
that g(r) € [0, 1], centered at different spatial points (Fig. 4.1). As a first approach,
we consider a Gaussian-like interaction kernel. Manipulating its typical range
via the standard deviation, o, the information sent by a successful searcher will
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Figure 4.1: Distribution of searchers in the long limit using as theoretical
resources landscape formed by three Gaussian patches.

travel farther and the number of individuals with which the communication is
established will be larger. The available information function of the individual i
depending on its position is

N exp ——(r‘;zj)z)
Sty =Y AlE)————, (4.3)
j=1j#i

where, as mentioned before, A[g(r)] is a theta Heaviside function that activates
the interaction when the quality is over a certain threshold x, A[g(r)] = ©(g(r)—x).
The perception function has been chosen as the identity for simplicity F = I.

The question is how the typical communication distance affects the average effi-
ciency of individuals searching for targets in space (areas of high-quality forage).
We give an answer in terms of spatial distributions of individuals at long times
starting from a random initial condition and the mean first arrival time to the
targets, T, as it is done in related works [Bénichou et al., 2005]. This quantity
(Fig. 4.2) may be optimized with a communication range parameter, o, of inter-
mediate scale. As it was said before, the number of individuals from which a
given animal receives a signal will typically increase with the interaction scale.
When this scale is too small, individuals receive too little information (no infor-
mation when ¢ = 0), and thus exhibit low search efficiency (Fig. 4.2). Similarly,
interaction scales that are too large lead to individuals being overwhelmed with
information from all directions, also resulting in inefficient search (Fig. 4.2). In
this case, the information received by any individual is constant over the whole
space, so that it does not have gradients to follow. Only intermediate com-
munication scales supply the receiving individual with an optimal amount of
information with which to efficiently locate the callers and the high-quality habi-
tat areas they occupy. The values of the threshold «, as long as they fall within a
reasonable range, only change the absolute time scales of the searching process.

66



4.3. LEVY FLIGHTS

1500

1000

T
500;

Figure 4.2: Search time using the individual based description with B, =
0.50, B = 0.75, D = 0.05 and x = 0.85g -

4.3

Lévy flights

In the case of Lévy flights individual trajectories show sequences of short dis-
placements interspersed with long straight displacements. Alternatively, Lévy
flights have been shown as a good searching strategy that may be used by some
species. However, empirical studies have generated controversy, since many
of the statistical methods used to support the presence of Lévy flights in nature
have been questioned, and the issue remains unresolved [Humphries et al., 2010;
Edwards et al., 2007; Edwards, 2011]. In this section the case of Lévy searchers
is considered. The results will show that neither the behavior of the model, nor
the existence of an intermediate optimal communication scale, depend on the
characteristics of the motion of the individuals.

Lévy flights do not have a typical length scale and thus the searcher can, in
principle, make jumps as larger as the size of the system. The lengths of the
jumps, [ > 0, are sorted from a probability distribution with a long tail [Metzler
and Klafter, 2000; Klages et al., 2008]

P,(l) ~ M7, ] — oo, (4.4)

with I > [, and 0 < u < 2, where [ is a characteristic length scale of the system.
This distribution is not defined for y < 0, its mean and variance are unbounded
for 0 < p <1, and it has a mean but no variance for 1 < y < 2. Finally, for
g = 2, the two first moments exist and thus it obeys the central limit theorem.
The Brownian motion limit is recovered in this latter case, while very long jumps
are more frequent when p — 0. This extreme is usually referred as the ballistic
limit, with a high abundance of straight-line long displacements [Viswanathan
et al.,, 2011; Méndez et al., 2014]. The cumulative distribution corresponding to
Eq. (4.4)is

—H
W, ()~ ! (;) RS (45)
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As a simple normalizable cumulative distribution function, with the asymptotic
behavior of Eq. (4.5), we will use [Heinsalu et al., 2010]

%m:——i—— (4.6)

-~ 1 u 4
[(1+ o)
whose probability distribution, Py(I) = W (I), is given by

‘ubl/y

Pu() = (4.7)

u+l’

T(l + f.bl/!*)

with 0 <y <2, and b = [T(1 — u/2)I'(u/2)]/T(1). We fix I =h = 1. In addition,
individuals will stop if they find a target during a displacement of length I. This
naturally introduces a cutoff in the length of the jumps, which becomes more
important as target density increases [Viswanathan et al., 2011]. However, as we
will focus on a situation where target density is low, we introduce an exponential
cutoff of the order of the system size in the jump length probability distribution
to ensure that very long jumps without physical meaning (they imply very high
velocities) do not occur

Cexp(—l/L)pbl/f‘

, 4.8
(1 + IpUuy*t (*8)

pul) =

where C = fooo ¢u(D)dl is the normalization constant, and I=h.

Finally for the pairwise interaction we choose a family of functions given by

( |r; — l’jl”)
V(r;, 1) = exp|- > , (4.9)

where ¢'/7 gives the typical communication scale. For simplicity, and without
loss of generality, we will consider only the case p = 2. Indeed, the choice of the
function V is not relevant for the behavior of the model, provided that it defines
an interaction length scale through the parameter o. This scale must tend to
zero in the limit 0 — 0 and to infinity in the limit ¢ — co. This assures that the
gradient of the calling function vanishes in these limits.

Generally, the search is faster when long displacements occur more frequently.
Fig. 4.3 shows search time for different values of 1 and the mean searching time
at the optimal communication range as a function of the Lévy exponent (inset).
As the frequence of long displacements decreases (increasing p) the search is
slower. Again, the effect of the communication mechanism is more important
when we approach the Brownian limit (u — 2), as will be explained in Sec. 4.6.
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Figure 4.3: Mean first arrival time for Lévy flights with different values

of y in the 2D model. B, = 1, B, = 1, 19 = 50. (Inset) Mean time at the

optimal communication range as a function of the Lévy exponent, u. Lines
are interpolations.

4.4

One-dimensional analytical approximations

To gain clearer insight and provide analytical arguments, we study a minimalistic
version of the model. Consider a single individual in a one-dimensional space
of length L, so that the highest quality areas are located beyond the limits of
the system, i.e. at x = —=1 and x = L + 1 (see Fig. 4.4). Note that this would
correspond to the ideal situation where all the members of the population but
one -the searcher- have already reached one of the targets. A landscape quality
function, g(x) must also be defined. Provided it is a smooth, well-behaved
function, its particular shape is not relevant. We therefore assume a Gaussian-
like quality landscape,

(x+1)2 _L-1)?

gx)=e"o +e o, (4.10)

where o, gives the characteristic width of a high quality region. Notice that g(x)
is defined so that highest quality areas are located, as mentioned, at x = —1 and
x = L + 1. This ensures that the gradient of the function does not vanish at the
extremes of the system (Fig. 4.4), and it is equivalent to setting the value of the
threshold « such that the targets start at x = 0 and x = L. We assume that a
foraging area is good enough when its quality is higher than 80% of the ideal
environment, which means « = 0.8. As we center the patches of resources at
x = =1l and x = L + 1, fixing a good quality treshold at x = 0.8 is equivalent
to fix the width of the environmental quality function at o, = 4.5, to ensure
that g(0) = g(L) = 0.80. However, the qualitative behavior of the model is
independent of this choice.
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Figure 4.4: Scheme of the simple version of the model.

Finally, for the pairwise communication function we choose the functions defined
in Eq. (4.9) with p = 2 again. The combination of local and nonlocal information
gives the total available information for the searcher, R(x) = Byg(x) + B:S(x).

To obtain analytical results, we work in the following on a discrete space. The
stochastic particle dynamics equivalent to Eq. (4.1) considers left and right jump-
ing rates which are defined for every individual using the total information
function,

R(x = h) — R(x)

T+(x) = max| 7o + p ,al,

(4.11)
where a is a small positive constant to avoid negative rates that has been given
an arbitrary value (@ = 107%), and h is the spatial discretization (k = 1). Finally,
7o is the jumping rate of an individual in absence of information, and it is related
to the diffusion component of the dynamics of Eq. (4.1). Given the transition
rates of Eq. (4.11), the movement with a higher gain of information has a higher
rate, and therefore a larger probability of taking place.

The simplest situation, which allows an analytical treatment of the problem, is
to consider only N = 3 individuals. Two of them are located in the top quality
areas just beyond the frontiers of the system limit, x = =1 and x = L + 1, and the
other one is still searching for a target. Under these considerations, using the
environmental quality function defined in Eq. (4.10), and the pairwise potential
of Eq. (4.9), the total available information for the searcher is

+1)2 _@-L-1)? _-L-1)? )2

R(x;o,L)=Bg(e’(Xw +e )+Bc(e EEE o ) 4.12)

As it was done in Sec. 4.2, the efficiency of the search process is measured in
terms of the first arrival time at one of the high quality areas, either at x = 0
or x = L, starting from xp = L/2. From the definition of the transition rates in
Eq. (4.11), 7. (L — 1) > 7_(L), and equivalently 7_(1) > 7,(0). This means that
at both extremes of the system, the rate at which particles arrive is much higher
than the rate at which they leave, so particles do not move when they arrive in
the top quality areas. This allows us to consider both extremes x = 0 and x = L
of the system as absorbing, and the first arrival time may be obtained from the
flux of presence probability of the searcher there [Redner, 2001]

(T(0)) = fo mt(&P 0.8, IPLHY 4 (4.13)

ot ot
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This definition will be used in the following sections to investigate the influence
of sharing information (i.e., of the interaction mechanism) on search times. The
results will be compared with those obtained using a deterministic approxima-
tion of the movement of the searcher. We study two different random strategies:
Brownian and Lévy.

4.4.1 Brownian motion

We sstart studying the Brownian case, where the searcher only jumps -with a given
rate- to its nearest neighbors. Therefore the coupling of the set of differential
equations describing the occupancy probability of every site of the system is
(notice that lattice spacing i = 1),

91’;‘;/ Ho_ —7.(0)P(0, ) + T_(1)P(1, £),
&P;i, 2 - —(t+() + T-@)P(, ) + T+ (= DPE - L) + T-(i + DYP{E + 1, 1),
LD~ e WPE D + Tl ~ DPL -1, 19

withi =1,...,.L — 1. If the initial position of the particle is known, it is possible to
solve Eq. (4.14) using the Laplace transform. Once the probability distribution of
each point has been obtained, it is possible to obtain the mean first arrival time
using Eq. (4.13). The thick line in Fig. 4.5 shows this result, indicating that the
searching process is optimal (minimal time to arrive to one of the good quality
areas) for intermediate values of 0. A particularly simple limit in Eq. (4.14)
appears when 7, >> 7_ when x > L/2 (and the contrary on the other half of
the system). The search time is T(0) = ﬁ This is the expected result since the
movement is mainly in one direction and at a constant rate.

In biological terms this means that the optimal situation for the individuals is to
deal with intermediate amounts of information. Extreme situations, where too
much (0 — o) or too little (¢ — 0) information is provided by the population,
have the same effect on the mean first arrival time, which tends to the same
asymptotic value in both limits. In both cases, the search is driven only by the
local perception of the environment.

This calculation gives exact results, but it implies fixing the system size, solving
a set of equations of dimension L, and finally obtaining the inverse Laplace
transform of the solutions. The main disadvantage of this approach is that it is
not possible to study the influence of the distance between targets on the optimal
communication length. To circumvent this we use a deterministic approach in
the continuum limit 1 — 0 and define, using the symmetry of the system, a mean
drift velocity towards one of the high quality areas, x = L,

L
(ilo, L)) = | (14(x) = 1-(x))dx, (4.15)
L/2
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Figure 4.5: First arrival time solving Eq. (4.14) for the Brownian jumps and
Eq. (4.19) in the case of Lévy flights for different values of u. Lines are
interpolations. Inset: First arrival time using its definition Eq. (4.13) (full
line) and Eq. (4.17) with € = 2 (dashed line) and € = 0 (dotted dashed line)
for a Brownian searcher. In both panels: L =9, 0, =4.5, B, =1,and B, = 1.

Substituting the definition of the transition rates Eq. (4.11), the drift velocity is,

(0alo, L)) = 2 [R (L) - R(%)] (4.16)

and therefore the search time is

N/2

(T = Zeny

(4.17)

We compute the searching time using Eq. (4.17) with the same values of the
parameters used before (0, = 4.5, B; = 1,and B, = 1, L = 9) to compare it with the
results given by Eq. (4.13) (inset of Fig. 4.5). The approach in Eq. (4.17) (dotted-
dashed line) reproduces the qualitative behavior of the searching time although
underestimates the value of the optimal communication range (o, = 7.2 while
Eq. (4.13) produces o,y = 12.5). This can be fixed excluding from the average
in Eq. (4.15) the boundary of the system introducing a parameter € in the limits
of the integration. To estimate the value of € it is useful to plot 7. (x) — 7_(x)
versus x (not shown). The difference between rates, although depending on ¢,
starts increasing quickly when x > L — 2, so one can estimate € = 2. The inset of
Fig. 4.5 shows the exit time as a function of the communication range computed
with this approach (dashed line). Its optimal value is in good agreement with
the result obtained using the definition of the search time (thick line), with
ogpt = 12.5 for both approaches. However the temporal scale of the problem (the
absolute values of the times), although higher than with € = 0, is still lower in
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Figure 4.6: Scaling of the optimal communication range parameter with
the distance between targets (system size in the 1D simple model).

this calculation. Results for € = 2 correspond to the dashed line in the inset of
Fig. 4.5.

Regardless of the value of € used in the average, this approximation underesti-
mates the temporal scale of the problem (the absolute values of the times). This
is because it is assumed that the searcher follows a deterministic movement to
the target neglecting any fluctuation that may slow the process.

Finally, increasing o beyond its optimal value, there is a maximum for the search
time for any of the approaches. For these values of the communication range,
the nonlocal information at the middle of the system coming from both targets
is higher than in the extremes and thus there is a bias to the middle in the
movement of the searcher. This small effect, that vanishes when o increases
and the information tends to be constant in the whole system, seems to be an
artifact of the particular arrangement of the simplified 1D system, and does
not seem relevant for any real-world consideration of this kind of model. In
addition, it does not substantially affect the dynamics because local perception
of the environment pushes the individual towards one of the targets.

Finally, within this deterministic approximation, besides studying larger systems
with no additional computational cost, it is possible to obtain the optimal value
of the interaction range parameter, Oopt:

aT
(%)0=00p[ - 0, (418)

which has to be solved numerically for different sizes of the system. The typical
optimal communication scale defined by ¢'/7, (i.e., by ¢!/? since p = 2) grows
approximately linearly with the distance between targets in the asymptotic limit.
Using a regression of the results obtained from the integration of Eq. (4.18) yields
an exponent ai}éf oc L9 for L >> 1 (Fig. 4.6).
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4.4.2 Lévy flights.

Proceeding as in the case of Brownian motion, considering a Lévy searcher the
set of equations for the probability of occupancy is

L L-1
% = ZT (/)B;P(j. 1) = T+ (0)P(0, 1) BL+Z A,
J=1 j=1
. i-1
BP;, Ho_ T4 ()Ai-iP(j £) + Z T_()AP(j, 1) —
j=0 j=i+l
L—-i-1
T_()P(i, t) [B +ZA - . (D)P(i, t)[BL i+ Z Ajl,
=1 j=1
IP(L, t) =
5 = T4(/)Bi-jP(j, t) = T-(L)P(L, 1) [BL +ZA] ,

(4.19)

withi=1,...,L-1.

We assume that if a jump of length in between j — 1 and j takes place, the
individual gets the position j. To this aim, the coefficients A; enter in the set of

equations (4.19) and are defined as A; = f]il W, (Ddl. They give the probability
of a jump of length between j—1 and j to happen. The coefficients B; are defined
as B; = f]i W, (Ddl, to take into account that the searcher stops if it arrives to a
target. This introduces a cutoff in the jumping length distribution Eq. (4.7).

Given the size of the system, L, which fixes the dimension of the system of
equations (4.19), it is possible to obtain an analytical solution for the occupancy
probabilities and the mean arrival time to the targets using Eq. (4.13). This is
shown in Fig. 4.5, where the Brownian limit is recovered when u — 2. It is also
observed that when long jumps are frequent the search is much faster, although
the gain in search efficiency due to the communication mechanisms is lower
close to the ballistic limit (i.e., 4 — 0). This will be explained later in Sec. 4.6.

Similarly to the Brownian case, a particularly simple limit in Eq. (4.19) appears
when 7, >> 7_ for x > L/2 (and the contrary on the other half of the system).
The search time is

T(x=1L,0) e l,

T+

where the proportionality constant is a combination of the coefficients A; that
depends on the size of the system.
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Figure 4.7: Search time using the macroscopic equation with B, = 0.50,
B. =50,D = 0.75 and « = 0.85gax-

4.5

Continuum approximation

From the Langevin Eq. (4.1), and following the standard arguments presented in
Dean [1996] and Marconi and Tarazona [1999] it is possible to write an equation
for the evolution of the density of individuals, p(r,#) !. This approach will
allow us to fix the parameters of the problem having a better understanding
of the role they are playing in the dynamics through a dimensional analysis.
However, in the case of the large grazing mammals we are going to study later,
it is not very suitable to describe a population as a continuum since the number
of individuals is not very high and the typical distances among them is large.
Neglecting fluctuations the continuum equation for the density is

ap(r, t)
ot

= DV?p(x, t) + B,V [p(r,t)Vg(r)] + B.V [p(r, t)VF (fdr’p(r, HA[g(X)]V(x, r’))] ,
(4.20)

which is quite similar to the one derived in Savel’ev et al. [2005] to study the
transport of interacting particles on a substrate.

The same behavior is also shown by the macroscopic Eq. (4.20) (Fig. 4.7). Now T
is defined as the time that passes until half of the population has found a target,

that is fg (2x p(r, t)dr > N/2. We have integrated the Eq. (4.20) in 1D system of

length L = 1, using a single Gaussian patch of resources centered at L/2 and
periodic boundary conditions for a random initial condition. This is equivalent
to the case of an infinite system with equidistant high quality areas. We have
taken the calling bias as being much stronger than the resource bias to make the
nonlocal mechanism much more important in the search process and thus easier
to see how the communication range parameter affects the search time. The
differences between the 2D individual-based and the 1D deterministic density
equation description, coupled with the parameter choices (stronger bias in the

In Appendix D we show this derivation in detail.
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Figure 4.8: Density distribution in the long time limit (black full line). The
resources distribution (red dashed line) fas been multiplied by a factor 25
for clarity.

density equation), explain the different observed time-scales in Figs. 4.2 and
4.7. Due to the simplicity of resources landscape, the stationary distribution of
individuals is Dirac delta peaked at the maximum of resources (the center of the
system). In Fig. 4.8 we show the density of individuals in the long time limit (not
stationary). All the animals are in good habitats, i.e., in areas where the maxima
of the g function occur.

4.6

Brownian jumps vs. Lévy flights

As a general result of the model, searching is faster when individuals have inter-
mediate amounts of information, regardless of the kind of movement strategy
followed by the population (Brownian or Lévy). However, communication has
a larger impact on Brownian motion, i.e., the depth of the well at o, is larger
(Figs. 4.3 and 4.5).

A measure of the improvement in search performance at the optimal communica-
tion range is given by the ratio between the search time without communication
and that at the optimal communication range, Q = T;—0/ T,y This quantity is
plotted in Fig. 4.9 for different Lévy exponents. As previously mentioned, Brow-
nian searchers that are not able to perform long displacements benefit more from
communication than Lévy searchers. This is because introducing an additional
source of information increases the directionality of the random motion and pre-
vents the searcher from revisiting the same place many times, which is the key
problem with Brownian search strategies [Viswanathan et al., 2011]. A Brown-
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Figure 4.9: Improvement of the searching process because of the commu-
nication mechanism. Circles correspond to the 2D model and squares to
1D. Lines are interpolations.

ian walker has no directionality in the movement, so provided with sources of
information (communication together with the local quality of the landscape) it
can search much more efficiently. This effect is less important for Lévy searchers
due to the presence of long, straight-line moves that, by themselves, decrease
the number of times that a particular area is revisited. In addition the return
probability to a given point is much higher in 1D than in 2D. Therefore the di-
rectionality introduced by the communication has a stronger effect in the simple
1D scenario that we have studied. It is also important to remark that in this
case the walker only can move either to the right or to the left at each step. This
will make the influence of the bias due to communication much stronger in the
jumping probabilities.

In summary, the communication mechanism is less important in Lévy strategies,
so that its effect is less noticeable as it is shown in Fig. 4.9 both in 1D and 2D.

However, the value of the optimal interaction range changes with the kind of mo-
tion. This is shown in the 2D model by the dependence of the mean search time
on the communication range for different Lévy exponents (Fig. 4.3). The value
of o,y increases with the Lévy exponent, so Brownian searchers (u — 2) need to
spread the information farther (a larger value of o,) than Lévy (u = 1) walkers
to obtain the maximum benefit. In Fig. 4.10 we show the value of the optimal
communication range, ooy, as a function of the Lévy exponent. Lévy trajectories
show clusters of short displacements with frequent turns occasionally broken up
by long linear displacements, which account for most of the target encounters.
However, because these steps are often much longer than the average distance
between targets they are not positively influenced by communication, so any
benefit a Lévy strategy gains from communication occurs during the series of
short displacements. The time that an individual spends doing short movements
is limited by the interarrival time of the large steps, so unless an individual is
already relatively close to a target, it will not have time to reach a target before the
next big step comes and moves it far away from that original target. Therefore
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Figure 4.10: Optimal communication range as a function of the Lévy ex-

ponent.

the optimal communication range decreases with decreasing Lévy exponent, p,
as longer displacements become more frequent at lower u values.

In addition, the value of o, depends on both the number of targets and their
spatial distribution, as was shown in Sec. 4.4 for a simple 1D situation where
Ggpt ~ L.

4.7

Summary and conclusions

In this chapter we compared Brownian and Lévy search strategies using a pop-
ulation of individuals that exchange information about the location of spatially
distributed targets. Using a simple 1D model we have provided analytical re-
sults on both cases, concluding that frequent long jumps (¢ — 0, ballistic limit)
minimize the searching times.

However the effect of a communication mechanism is more pronounced in the
limit of short jumps i.e.,, Brownian motion. This means that a population of
individuals employing Brownian motion gains proportionally more benefit from
communicating and sharing information than does a population of Lévy walkers,
where long jumps are more or less frequent depending on the value of the
Lévy exponent u. When messages are exchanged in a range that minimizes
search duration, communication is the driving force in the Brownian limit, but
occasional long jumps are still responsible for most of the encounters with targets
in the case of long-tailed step-length distributions.

The main result of this work is rather general: independently of the kind of
communication performed by the population, and of the spatial distribution of
the targets, a population of individuals with the ability to communicate will find
the targets in a shorter time if the information is spread at intermediate ranges.
Both an excess and a lack of information increase the search time. However,
the communication mechanism does not have the same quantitative effect on
the different moving strategies (i.e., ballistic, Lévy or Brownian). Uninformed
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Brownian individuals perform a random movement revisiting the same position
many times, so having an external source of information introduces directionality
on the movement, decreasing the number of times that a point in the space is
visited. In the case of Lévy and ballistic strategies (1 — 0), communication is
less noticeable because individuals are able to do long jumps. This is already
a source of directionality that prevents individuals from revisiting the same
points in space many times, and thus weakening the effect of the directionality
introduced by communication.
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CHAPTER 5 -

Foraging in Procapra gutturosa

In this chapter we show an application of the model presented in Chapter 4 to the
particular case of acoustic communication among Mongolian gazelles (Procapra
gutturosa), for which data are available, searching for good habitat areas. Using
Monte Carlo simulations, our results point out that the search is optimal (i.e.
the mean first hitting time among searchers is minimum) at intermediate scales
of communication. We also present this result in terms of the frequency of
the sounds, showing a good agreement with field measurements of the sounds
emitted by these gazelles in the wild. The formation of groups in the populations
is also studied.

5.1

Introduction

Many living organisms, including bacteria [Liu and Passino, 2002], insects, and
mammals [Zuberbiihler et al., 1997; McComb et al., 2003] communicate for a va-
riety of reasons including facilitation of social cohesion [Cap et al., 2008; Pfefferle
and Fischer, 2006], defense against predators [Zuberbiihler, 2001], maintenance
of territories [Slater et al., 1994; Frey et al., 2007], and to pool information on
resource locations when no single individual is sufficiently knowledgeable [von
Frisch, 1967; Hoare et al., 2004; Berdahl et al., 2013; Simons, 2004; Torney et al.,
2009b]. Communication among individuals frequently leads to group forma-
tion [Eftimie et al., 2007], which often has clear direct benefits such as reducing
individual vulnerability to predators. Such strategies may, however, also have
important incidental benefits. For example, an individual that has found a good
foraging patch might try to attract conspecifics to reduce its risk of predation, but
also provides its conspecifics with information on the location of good forage,
thus increasing the foraging efficiency of those responding to the call.

We apply a specialized version of the model introduced in Chapter 4 to the par-
ticular case of acoustic communication among Mongolian gazelle, the dominant
wild herbivore in the Eastern steppe of Mongolia (Fig. 5.1a) among 14 species
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Figure 5.1: (a) Location of the Eastern Steppe. (b) Construction of roads

in the step has caused a habitat fragmentation. (c) Hunting is one of the

major threats to Mongolian gazelles. (d) Oil and mineral explorations in
the steppe.

of ungulates. A population of about one milion of animals is estimated, but it
is difficult to give a good measurement because of large fluctuations due to the
extreme conditions in the steppe that cause periods with important population
losses. In addition, the nomadism of the species, travelling long distances during
the year makes more difficult a demographic control. In any case, the species is
still recognized as one of Asia’s largest remaining wildlife populations [Olson
et al., 2005], although it has experienced a major reduction in range during the
past century, and is further threatened by excessive hunting and continued habi-
tatloss and fragmentation (grassland steppes are increasingly being carved up by
fences, roads, agriculture, and densely settled areas while oil fields and pipelines
are being developed in the region) (Fig. 5.1 b-d). In fact, Mongolian gazelles were
formerly distributed across the whole area of the Republic of Mongolia but the
range of this species, between the 1940s and 1960s, was reduced by 70% owing
to excessive official hunting and poaching. Nowadays, although individuals
or small groups are found across a wider geographical range, higher concen-
trations of this gazelle species are now limited to the eastern steppe (Fig. 5.1a)
where they avoid narrow valleys, forest, sand dunes or cultivated fields unless
driven there by exceptional circumstances. The plant cover of the dry steppes
of eastern Mongolia is extremely sparse, generally 5-20% (Fig. 5.1, right panel),
rarely reaching 30—40% [Frey and Gebler, 2003; Mueller et al., 2008].

In summary, gazelles must find each other to form grazing groups less suscep-
tible to preadator’s attacks (Fig. 5.1), and relatively small areas of good forage
in a vast landscape where sound can travel substantial distances [Frey et al.,
2008](Fig. 5.2a) . We aim to explore whether acoustic communication in the
Steppe could lead to the formation of observed large aggregations of animals
(Fig.5.2b) [Olson et al., 2009], and how search efficiency depends on the distances
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Figure 5.2: (a) Typical landscape in the Steppe. (b) Group of gazelles
grazing in the Steppe.

over which calls can be perceived. We wonder if the frequency of the voice of
the gazelles is optimal to communicate in the Steppe, and if the call length-scales
that optimize search in real landscapes are biologically and physically plausible.
To do this, we couple an individual-based representation of our model with
remotely-sensed data on resource quality in the Eastern Steppe.

5.2

The model for acoustic communication

A detailed analysis of gazelle relocation data has shown that, over the spatiotem-
poral scales relevant to searching for resources (days to weeks), the movement
of Mongolian gazelles can be closely approximated by simple Brownian motion
for the spatiotemporal scales involved in foraging. Therefore, the starting point
of the modeling is

£() = B,Vg(r) + BeVS(r) + 1i(h), (5.1)

where 1);(t) is a Gaussian white noise term to characterize Brownian motion. The
function n;(t) is defined by its statistical properties: its mean value (n;(t)) = 0,
and the correlation (1;(t)n;(t')) = 2D;;6(t — t’). D is the diffusion coefficient. The
terms B,Vg(r;) and BcVS(r;) are referred to the local and the nonlocal search, as
it was defined in Chapter 4. These terms drive the movement to the best grazing
areas.

The function g(r) quantifies the habitat quality in the Eastern Steppe of Mongolia
through the Normalized Difference Vegetation Index (NDVI), one of the most
widely used vegetation quality estimators. It can be calculated from satellite
imagery, and has been already applied to gazelle habitat associations in the
Mongolian Steppe [Mueller et al., 2008]. NDVI is characterized by the function
g4(r), a continuous function taking values between 0 (no vegetation) and 1 (fully
vegetated). As the vegetation at low NDVI s too sparse, and at high NDVIis too
mature and indigestible, gazelles typically seek forage patches characterized by
intermediate NDVI values [Mueller et al., 2008]. To make gradients of resources
drive the movement of the individuals to regions with intermediate NDVI values,
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we apply to the data a linear transformation:

_ ) &) if gu(r)<05
S _{ 1d— ga(r) if gZ(r) >0.5 (5.2)

The new function g(r) defines a resources landscape with values between 0
and 0.5, where 0 represents both fully vegetated and no vegetation (i.e., low
quality forage). We study a subregion with an extension of around 23000 km?
(Coordinates: 46.50°N, 114.15°E; 46.50°N, 116.80°E; 47.65°N, 114.15°E; 47.65°N,
116.80°E) and assume that the resources remain constant in time during the
search. It is crucial now to properly choose the perception function in order to
realistically model the case of gazelles performing acoustic communication. It is
well known that the sensitivity of the response of the ear does not follow a linear
scale, but approximately a logarithmic one. That is why the bel and the decibel
are quite suitable to describe the acoustic perception of a listener. Therefore we
choose an acoustic perception function of the form

Y s AlGE)IV (X, ¥))
Iy

S(r;) = 10log,, , (5.3)

where F is taken as a logarithmic function. The sound calling of j, V(r, rj), plays
the role of a two body interaction potential, and Iy is the low perception threshold.
We take the value of a human ear, I = 1072 W m~2, which is similar for most
other mammals [Fletcher, 1992], and in any case, is just a reference value on
which our results will not depend. The interaction potential mimicking acoustic
communication is

Py e V-1l

V(r, x)) = yrE—k

(5.4)
considering that sound from an acoustic source attenuates in space mainly due
to the atmospheric absorption (exponential term), and the spherical spreading
of the intensity (4rr~2 contribution), and neglecting secondary effects [Naguib
and Wiley, 2001]. Py may be understood as the power of the sound at a distance
of 1 m from the source. According to Stoke’s law of sound attenuation [Fletcher,
1992], the absorption coefficient, y, is given by

16722
= ng (55)

where 7 is the viscosity of the air, p its density, v the propagation velocity of the
acoustic signal (which depends on the temperature and the humidity), and v its
frequency. We work under environmental conditions of T = 20°C, and relative
humidity of HR = 50%, which are quite close to the corresponding empirical
values for the summer months from the Baruun-Urt (Mongolia) weather station,
averaged over the last 4 years. These values give an absorption coefficient of
y ~ 1071%2 m~1. The inverse of the absorption coefficient, y~!, gives the typical
length scale for the communication at each frequency, and thus plays the same
role as the standard deviation, o, did in the Gaussian interaction used in the

84



5.3. RESULTS AND DISCUSSION

Figure 5.3: Gazelle with a GPS collar.

general model. From its functional dependence, different values of the frequency
will modify the value of the absorption coefficient, and consequently, will lead
to different communication ranges. Therefore, we will use sound frequency, v,
as the control parameter of the interaction range.

From a statistical analysis of GPS data tracking the positions of 36 gazelles
between 2007 and 2011, we estimate a diffusion constant of D = 74 km? day™
(Fig. 5.3). To give empirically-based values to the bias parameters, we define
a drift velocity, and based on previous field work [Mueller et al., 2008] we
set vgrist = BgVg(r) + BVS(r) = 10 km day_l. The local search mechanism is
responsible for short-range slow movements, while nonlocal communication
gives rise to long and faster movements, and thus we require B,Vg(r) < B.VS(r).

5.3

Results and discussion

We explore the dependence of this metric on the communication length, y7!, or
equivalently the frequency, v (Fig. 5.4). To this aim, we couple an individual-
based model following the dynamics of Eq. (5.1), with a data-based resources
landscape sampled every 500 m (shown in Fig. 5.5), and quantify the efficiency
of the search for areas of high quality resources in terms of the mean first arrival
time of the population. Similarly to other species, such as lions [Estes, 1991] or
hyenas [Mathevon et al., 2010], the optimal foraging time (41 hours) is obtained
for 7! of the order of kilometers (around 6 km). This result cannot currently
be checked with data. However, switching to frequencies, the optimal search
is obtained when gazelles communicate at a frequency of 1.25 kHz, which lies
inside the measured interval of frequencies of the sounds emitted by gazelles,
[0.4,2.4] kHz [Frey and Gebler, 2003; Frey et al.,, 2008]. This means that the
search is optimal when the receiving individual has an intermediate amount of
information. A lack of information leads to a slow, inefficient search, while an
overabundance of information makes the individual to get lost in the landscape.
These different regimes are also observed in the long time spatial distributions
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Figure 5.4: Mean arrival time for 500 gazelles (averaged over 50 realizations
with different initial conditions). Parameter values: D = 74 km? day!,
By =2.6 x107% km® day™!, B, = 13 km?* day ™!, x = 0.70gsas-

(i.e. efficiency of the search in terms of quality) of the Fig. 5.5. For frequencies
out of the optimal range, either smaller (Fig. 5.5 top) or larger (Fig. 5.5 bottom
right), some animals are still in low-quality areas at the end of the simulation
period. At intermediate communication scales, v = 1 kHz, (Fig. 5.5 bottom left)
all of the animals end up in regions with the best resources, regardless of where
they started from.

In summary, communication over intermediate scales results in faster search,
and all the individuals form groups in areas of good resources. While this has
obvious advantages in terms of group defense and predator swamping, it will
also lead to rapid degradation of the forage (and thus habitat quality) at those
locations. This is the problem of foraging influencing the patterns of vegetation,
which could be treated in future investigations. Shorter-scale communication
implies an almost individual search, which helps preserve local forage quality,
but has clear disadvantages in terms of group defense strategies. On the other
hand, longer scales lead to the formation of big groups (faster degradation of
foraging), and animals need more time to join a group, which has negative
consequences against predation. Furthermore, acoustic communication scales
significantly larger than the optimal scale for foraging efficiency identified here
would be biologically implausible, even if ultimate group size (and not rate of
group formation) was the most important aspect of an antipredation strategy.

Our study clarifies some questions on the relationship between communication
and optimal search for resources. Our key result is that, in general, intermediate
communication distances optimize search efficiency in terms of time and quality.
Individuals are able to find the best quality resource patches regardless of where
they start from, opening new questions about the distribution of individuals
in heterogeneous landscapes. The existence of maximum search efficiency at
intermediate communication ranges is robust to the choice of functional form
of V(r), allowing the model to be generalized to many different ways of sharing
information. Also considering different species on the model (preys and preda-
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Figure 5.5: Spatial distribution of 500 gazelles after 1 month (reflecting

boundary conditions). v = 0.1 kHz (top), v = 1 kHz (bottom left), v =

15.8 kHz (bottom right). The size of the star is related to the size of the
group at a position. Real data resources landscape.

tors or males and females to studying the case of mating) would be interesting
extensions of this work. Finally, regarding to the formation of groups because
of communication among individuals, exploring tradeoffs between group de-
fense and individual foraging efficiency in highly dynamic landscapes may be a
promising avenue for future research.
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APPENDIX D -

Derivation of the macroscopic
Eqg. (4.3)

In this appendix we will show the derivation of the macroscopic equation (4.20)
in Chapter 4, starting from the Langevin equation for the movement of a singles
individual.

Considering a single individual, the Langevin equation is
ri(t) = Bng(r) + BcVSi(r) + ni(t), (D.1)

where 7;(f) is a Gaussian white noise with zero mean and correlation delta-
correlated in space and time. The available information function, S; is given

by

Sit)=F . (D.2)

N
Y, Al@)IV(E )
j=1,j#i

To obtain the equation for the density of individuals, we will derive a density
equation for the case of a single particle and then extend the result to a population
with N individuals [Dean, 1996].

In the case of a single particle the density is given by
p(r, t) = o6(r — Xi(t)), (D.3)

where X;(#) is the stochastic trajectory of the particle. Then, using this equation
D.3 for the density of searchers and the definition of the Dirac delta,

FXi(1) = fdrpi(r, Hfx) = fdré(r—Xi(t))f(x), (D.4)
where f(r) is an arbitrary function. Its time derivative is
afX;(t d
f(dt( ) = fdré(r— XJt))%. (D.5)
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Using the It6’s formula Eq. (D.5) can be expanded,

@ = f drp(x, t) [DV2f(x) + BVSMVf(x) + BVS(V (@) + VA@n(t)],  (D.6)

and then, rearranging and integrating by parts each term!,

df(Xi
f<dt<f>) - f drf(x)[DVpix, ) + BgV (pi(x, HVE (D))

+ fdrf(r) [B:V (pi(x, ))VSi(x)) + V(pi(r, Hni(1))] - (D.7)

On the other hand the time derivative of f(r) can be written as

afrX;
% = fdrf(r)&t[pi(r,t)]. (D.8)

As both Eq. (D.7) and (D.8) are true in the case of an arbitrary function, f(r), it is
possible to write:

a,Oi(r/ t)
ot

= DVZpi(r, t) + BgV [pi(x, t)Vg(1)] + BV [pi(x, )VSi(x)] + V[pi(r, t)ni(t)].
(D.9)

Finally, we neglect the last stochastic term to get a deterministic approximation
as Eq. (4.20).

!t is straightforward just choosing Vf(x) = dV in the integration by parts. In the case of the
laplacian term, we must integrate twice.
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Voronoi diagrams of the model.

The behavior of the model, resulting in optimal searches at intermediate com-
munication ranges, can be explained in terms of Voronoi diagrams Okabe et al.
[1992]. Consider every target as a seed that has associated a Voronoi cell formed
by those points whose distance to that seed is less than or equal to its distance
to any other one (See Figure E.1 (top) for a distribution of the space in 5 Voronoi
cells for an initial distribution of particles with five targets (crosses)). The search-
ing time will be minimized when the information coming from the individuals
located on one target covers the full associated Voronoi cell, but only that cell.
In this situation, the searchers within that cell will receive information coming
only from that target and move towards it. oy is the communication range
that maximizes the gradient (approximately the smallest value of o that makes
the calling function not vanishing) of the calling function at the frontiers of the
Voronoi cells. Increasing the communication range provides individuals with
information coming from different targets, and makes them get overwhelmed
in the limit 0 — oo. This Voronoi construction may also help to explain the
improvement of the searching strategies because of sharing information. The
difference between Brownian and Lévy strategies can be seen in Figure E.1 (Bot-
tom). They show the origin of the individuals that are at each target at the end of
a Lévy (Left) and a Brownian search (Right) (i.e., in which Voronoi cell they were
at the beginning). In the case of Brownian individuals most of the particles at
every target were initially in its Voronoi cell. For Lévy flights the long displace-
ments mix the population in the stationary state (i.e., individuals at a target come
from different cells). The communication mechanism is less important in Lévy
strategies, so that its effect is less noticeable and the encounters of individuals
with targets are caused mainly by the long displacements.
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Figure E.1: (Color online). (Top) Initial random distribution of individuals,
the symbol refers to the Voronoi cell at which every individual belongs
initially. (Bottom left) Number of individuals coming from each cell at
each target at the end of the search using Lévy flights. (Right) Number of
individuals coming from each cell at each target at the end of the search
using Brownian motion. Parameters: ¢ = 0.01 (optimal communication
range), B, =1, B, = 1, 1o = 50. The black crosses represent the location of
the 5 targets.



Part IV

TEMPORAL FLUCTUATIONS

Lars Onsager
(1903-1976)

Norwegian-born American physical chemist and theoretical
physicist, winner of the 1968 Nobel Prize in Chemistry. During
the 1940s, he studied the statistical-mechanical theory of phase
transitions in solids, deriving a mathematically elegant theory
which was enthusiastically received. He obtained the exact
solution for the two dimensional Ising model in zero field in
1944.
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CHAPTER 6 -

Temporal disorder in up-down
symmetric systems

In this chapter we study the effect of temporal fluctuations on systems with
up-down symmetry through the behavior of the first-passage times. This is
a relevant question in the modeling of ecosystems, since they are subject to
environmental changing conditions. Therefore, it is important to have models
that include temporal disorder. We analyze two well-known families of phase
transitions in statistical physics —the Ising and the generalized voter universality
classes— and scrutinize the consequences of placing them under fluctuating
global conditions. It is observed that the variability of the control parameter
induces in both classes “temporal Griffiths phases” (TGPs), characterized by
broad regions in the parameter space in which the mean first-passage times scale
algebraically with system size. In an ecological context, first-passage times are
related to typical extinction times, and studying how they are affected by the size
of the system (e.g. habitat fragmentation) is a problem of outmost relevance.

6.1

Introduction

Systems with up-down Z, symmetry —including the Ising model- are paradig-
matic in mathematical ecology. They allow to address a big variety of problems
ranging from species competition [Clifford and Sudbury, 1973] and neutral the-
ories of biodiversity [Durrett and Levin, 1996] to allele frequency in genetics
[Baxter et al., 2007]. Some of them, such as the voter model, exhibit absorbing
states, a distinctive feature of nonequilibrium dynamics. Once these particular
configurations are reached, the system cannot escape from them so they imply
the presence of currents [Hinrichsen, 2000; Odor, 2004; Grinstein and Mufioz,
1996; Marro and Dickman, 2008].

Phase transitions into absorbing states are quite universal and they depend on
few general properties of the system, such as symmetries and its dimensionality,
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and are insensitive to the underlying microscopic properties. This universality
makes possible to establish a classification of the phase transitions into different
classes. Those systems exhibiting one absorbing state belong generically to the
called Directed Percolation (DP) universality class and share the same set of crit-
ical exponents and scaling functions. However, when there is some additional
symmetry or conservation, the phase transition exhibits critical scaling differ-
ing from DP. This is the case of systems with two symmetric absorbing states
[Hinrichsen, 2000; Odor, 2004; Grinstein and Mufioz, 1996; Marro and Dickman,
2008], that show a phase transition usually referred as Generalized voter (GV).
In an ecological context, this is a relevant class of models that can be used in
many situations with two equivalent species.

Analytical and numerical studies [Dornicetal., 2001; Droz et al., 2003; Al Hammal
etal., 2005; Vazquez and Lépez, 2008; Russell and Blythe, 2011] have shown that,
depending on some details such GV transition can split into two separate ones:
an Ising-like transition in which the up-down symmetry is broken, and a second
DP-like transition below which the broken-symmetry phase collapses into the
corresponding absorbing state. In particular, a general stochastic theory, aimed
at capturing the phenomenology of these systems, was proposed in Al Hammal
et al. [2005]; depending on general features they may exhibit a DP, an Ising, or a
GV transition.

When they try to mimick ecological systems, these models should not be isolated
but, instead, affected by external conditions or by environmental fluctuations.
The question of how external variability affects diversity, robustness, and evolu-
tion of complex systems, is of outmost relevance in ecology. Take, for instance,
the example of the neutral theory of biodiversity: if there are two Z,-symmetric
(or neutral) species competing, what happens if depending on environmental
conditions one of the two species is favored at each time step in a symmetric
way? Does such environmental variability enhance species coexistence or does
it hinder it? [Giles Leigh Jr., 1981; Vazquez et al., 2010; Borgogno et al., 2009].

Motivated by these questions, we study how basic properties of up-down sym-
metric systems, such as response functions and first-passage times, are affected
by the presence of temporal disorder.

Some previous works have explored from a theoretical point of view the effects
of fluctuating global conditions in simple models that exhibit phase transitions
[Jensen, 1996; Alonso and Muiioz, 2001; Kamenev et al., 2008]. Recently, a
modified version of the simplest representative of the DP class —i.e. the Contact
Process— equipped with temporal disorder was studied in Vazquez et al. [2011].
In this model, the control parameter (birth probability) was taken to be a random
variable, varying at each time unit. As the control parameter is allowed to take
values above and below the transition point of the pure contact process, the
system alternates between the tendencies to be active or absorbing. As shown
in Vazquez et al. [2011] this dynamical frustration induces a logarithmic type of
finite-size scaling at the transition point and generates a subregion in the active
phase characterized by a generic algebraic scaling of the extinction times with
system size. More strikingly, this subregion is also characterized by generic
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divergences in the system susceptibility, a property which is reserved for critical
points in pure systems. This phenomenology is akin to the one in systems with
quenched “spatial” disorder [Vojta, 2006], which show algebraic relaxation of the
order parameter, and singularities in thermodynamic potentials in broad regions
of parameter space: the so-called, Griffiths Phases [Bray, 1987].

In order to investigate whether the anomalous behavior that leads to TGPs
around absorbing state (DP) phase transitions is a universal property of systems
in other universality classes —and in particular, in up-down symmetric systems—
we study the possibility of having TGPs around Ising and GV transitions. We
scrutinize simple models in these two classes and assume that the corresponding
control parameter changes randomly in time, fluctuating around the transition
point of the corresponding pure model, and study mean-first passage times.

6.2

Spatial disorder. Rare regions and the Griffiths Phase.

The presence of noise is an intrinsic property of natural system and it may change
its behavior when compared with an ideal situation. Knowing whether and how
the critical behavior changes when introducing a small amount of impurities is
important in order to apply criticality to real systems. This is the case of the brain,
where Griffiths Phases and Lifshitz tails could play a relevant role [Moretti and
Muiioz, 2013].

Will the phase transition remain only at one point in presence of disorder or
will the critical point split? If so, will the critical behavior change quantitatively,
giving new universality classes with new critical exponents, or even qualitatively
with new non-power law scalings at criticality? In this section we will review
some of these questions in systems with quenched disorder i.e. depending on
the spatial variables but that does not evolve in time [Odor, 2004; Voijta, 2006].
One of the most common ways of introducing quenched disorder in a system is
the dilution, that is, the absence of spins in some fixed places of the lattice. The
dilution reduces the tendency towards magnetic long-range order in the system.
Therefore, the critical value of the control parameter (typically the inverse of the
temperature) for the pure model (without noise), b pur., moves into the ordered
phase, b, (Fig. 6.1).

On the other hand, in the case of infinite systems, as happens in the thermody-
namic limit, it is possible to find regions without vacancies of an arbitrary size,
regardless of the impurity concentration, that is the number of vacancies in the
whole lattice. When the value of the control parameter is between b, and
b4, although the whole system is in the disordered phase these pure regions
can exhibit some local order, which means a local value of the magnetization
which does not vanish. These pure spatial regions are called rare regions and
the probability of finding them decreases exponentially with its size Vrz and
the impurity concentration, p. In addition, the dynamics in these regions is very
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Figure 6.1: The Griffiths Phase.

Figure 6.2: Pureregion in a diluted spin interacting model. Red up triangles
represent up spins. Dark cyan down triangles represent down spins.

slow since a coherent change (fluctuation) is needed in order to flip all the spins
therein.

The interval between b, and b, 4, in the disordered phase, (Fig. 6.1) is the so-
called Griffiths Phase, because it was Griffiths the first who showed the possible
existence of a singularity in the free energy in this region [Griffiths, 1969]. Its main
characteristics are the generic divergences of the susceptibility, as a consequence
of the singularity in the free energy, and an anomalously slow relaxation to zero
of the order parameter. Other time-dependent quantities also relax specially
slow, mainly as a power law or a stretched exponential, in contrast with the fast
decay typical of pure systems, usually exponential.

In a given system with impurity concentration p, the probability of finding a rare
region decreases exponentially with its d-dimensional volume, Vrg. Calling Prr
the probability of finding a rare region, up to constant factors, it is

Prr o e PVER, (6.1)

which means that rare regions are not perturbative degrees of freedom. In
classical systems with uncorrelated or short-range correlated disorder, Griffiths
effects are very weak. In contrast, the long-time dynamics inside the Griffiths
phase is dominated by the rare regions. Consider for instance the temporal
evolution of the order parameter, typically magnetization in magnetic systems,
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m. As its long time behavior is governed by rare regions, it is

m(t) o f dVgrPrre e (VrR), 6.2)

where &; is the flipping time of a rare region, and increases exponentially with
its size, so it is &(Vrr) oc exp(bVgr). The integral in Eq. (6.2) can be solved using
a saddle-node integration to obtain the slow relaxation of the magentization
typical of Griffiths Phases

m(t) o £, (6.3)

where ¢ is a non-universal exponent the varies in the Griffiths Phase.

6.3

Mean-field theory of Z;-symmetric models with tem-
poral disorder.

Interacting particle models, such as ecosystems, evolve stochastically over time.
A useful technique to study such systems is the mean-field (MF) approach, which
implicitly assumes a well-mixed situation, where each particle can interact with
any other, providing a sound approximation in high dimensional systems. One
way in which the mean-field limit can be seen at work is by analyzing a fully
connected network (FCN), where each node (particle) is directly connected to
any other else, mimicking an infinite dimensional system.

In the models that we study here, states can be labeled with occupation-number
variables p; taking a value 1 if node i is occupied or 0 if it is empty, or alternatively
by spin variables S; = 2p; — 1, with S; = £1. Using these latter, the natural order
parameter is the magnetization per spin, defined as

1 N
m= Z S, (6.4)

i=1

where N is the total number of particles in the system. Note that it is called
the order parameter because it gives the degree of order in the system. Its value
varies between —1 an 1, both of them corresponding to a fully ordered state, with
the intermediate value m = 0 reflects a disordered system with the same amount
of spins up and down. The rate equation for the probability P(m, t) of having
magnetization m at a given time ¢, is

ws (m — 2/N, b)

P(m, t + 1/N) P(m—2/N,t) (6.5)

N
@-(m+2/N,b) ;“Vz/N’ N
o o) oD b, 4o,
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where w.(m, b) are the transition probabilities from a state with magnetization
m to a state with magnetization m + 2/N.

In the limit of N — oo (dt — 0) Eq. (6.5) becomes a Master equation (Sec. 1.1.1),

dP(m, t)
ot

ws (m —2/N,b) P (m — 2/N, 1) (6.6)

w_(m+2/N,b)P (m+2/N,t)
[w—(m, b) + w,(m, b)| P(m, t) + O(N72).

+

This describes a process in which a “spin” is randomly selected at every time-
step (of length dt = 1/N), and inverted with a probability that depends on m and
the control parameter b. The allowed magnetization changes in an individual
update, Am = £2/N, are infinitesimally small in the N — oo limit. In this
limit one can perform a Taylor expansion of the rates around m, leading to the
Fokker-Planck equation

dP(m, t d 1 92
) = - [, PO 0] + 5 2 [gn, PO B], (6)
with drift and diffusion terms given, respectively, by
f(m,b) = 2[w(m,b) - w_(m,Db)], (6.8)

4w, (m,b) + w_(m, b)]

gm,b) = T : (6.9)
From Eq. (6.7), and working in the It6 scheme (as justified by the fact that it comes
from a discrete in time equation [Horsthemke and Lefever, 1984]), its equivalent
Langevin equation is [Gardiner, 1985]

= f(m,b) + +/g(m,b) n(t), (6.10)
where the dot stands for time derivative, and 7(t) is a Gaussian white noise of
zero-mean and correlations (n(t)n(t')) = 6(t — t’). The diffusion term is propor-
tional to 1/ VN, and therefore, it vanishes in the thermodynamic limit (N — o),
leading to a deterministic equation for m (Sec. 1.1.1).

The drift and diffusion coefficients in Eq. (6.10) depend not only on the magneti-
zation, but also on the parameter b. To analyze the behavior of the system when
b changes randomly over time, and following previous works [Vazquez et al.,
2010, 2011], we allow b to take a new random value, extracted from a uniform
distribution, in the interval (by — o, by + 0) at each MC step, i.e. every time interval
7 = 1. Thus, we assume that the dynamics of b(t) obeys an Ornstein-Uhlenbeck
process

b(t) = by + g &(1), (6.11)
where (1) is a step-like function that randomly fluctuates between —1 and 1, as
depicted in Fig. 6.3a. Its average correlation is

. %(1 —|At/T) for |At| <1
for |At| > T,

o
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Figure 6.3: (a) Typical realization of the colored noise &(t), a step like func-

tion that takes values between +1 and —1. (b) Stochastic control parameter

b(t) = by + 0&(t) according to the values of the noise in (a), by = 1.03 and
o=04.

where the bar stands for time averaging. The parameters by and ¢ are chosen
with the requirement that b takes values at both sides of the transition point of
the pure model (see Fig. 6.3b), that is, the model with constant b. Thus, the
system randomly shifts between the tendencies to be in one phase or the other
(see Fig. 6.4).

The model presents both intrinsic and extrinsic fluctuations, as represented
by the white noise 7(f) and the colored noise &(t), respectively. Plugging the
expression Eq. (6.11) for b(t) into Eq. (6.10), and retaining only linear terms in
the noise one readily obtains

1ir = fo(m) + +/go(m) n(t) + jo(m) E(F), (6.13)

where fy(m) = f(m, by), go(m) = g(m, by) and jo(m) is a function determined by the
functional form of f(m, b), that might also depend on by. To simplify the analysis,
we assume that relaxation times are much longer than the autocorrelation time 7,
and thus take the limit T — 0 in the correlation function Eq. (6.12), and transform
the external colored noise & into a Gaussian white noise with effective amplitude
K = f:: < &(HE(t + At) >dAt = t/3. Then, we combine the two white noises
into an effective Gaussian white noise, whose square amplitude is the sum of the
squared amplitudes of both noises [Gardiner, 1985], and finally arrive at

= fo(m) + y/o(m) + Kj5(m) y(b), (6.14)

where (y(t)) = 0 and (y()y(t')) = o(t — t').

In the next two sections, we analyze the dynamics of the kinetic Ising model
with Glauber dynamics and a variation of the voter model (the, so-called, g-voter
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model) —~which are representative of the Ising and GV transitions respectively—
in the presence of external noise. For that we follow the strategy developed in
this section to derive mean-field Langevin equations and present also results of
numerical simulations (for both finite and infinite dimensional systems), as well
as analytical calculations.

6.4

Ising transition with temporal disorder

We consider the kinetic Ising model with Glauber dynamics [Glauber, 1963], as
defined by the following transition rates

Qi(Si = =S)) = % [1 ~ S;tanh [% Y, sj]] : 6.15)

Jei)

The sum extends over the 2d nearest neighbors of a given spin i on a d-dimensional
hypercubic lattice, and b = Jf is the control parameter. | is the coupling constant
between spins, which we set to 1 from now on, and = (ksT)~!. Note that b in
this case is proportional to the inverse temperature.

6.4.1 The Langevin equation

In the mean-field case, the cubic lattice is replaced by a fully-connected network
in which the number of neighbors 24 of a given site is simply N — 1. Then, the
transition rates of Eq. (6.15) can be expressed as

Q.(m,b)=Q(F - +) = % [1 + tanh (bm)]. (6.16)

whichimplies w.(m, b) = FT’” Q. (m, b) for jumps in the magnetization. Following
the steps in the previous section, and expanding (), to third order in m, we obtain

1 bym2
h = agm — com® + \/ Tom + Ko?m2(1 - b2m2)2 y(t), 6.17)

where by is the mean value of the stochastic control parameter, a9 = by — 1, and
Co = bg/ 3.
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Figure 6.4: Schematic representation of the fluctuating control parameter
in the Ising model with Glauber dynamics. The system shifts between the
ordered and the disordered phases.

The potential V(m) = —%mz + %‘)m“ associated with the deterministic term of
Eq. (6.17) has the standard shape of the Ising class, that is, of systems exhibiting
a spontaneous breaking of the Z, symmetry (Fig. 6.5). A single minimum at
m = 0 exists in the disordered phase, while two symmetric ones, at + va/c exist
below the critical point.
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Figure 6.5: Potential for the Ising transition in a mean field approach. The
dashed, solid and dot-dashed lines correspond to the paramagnetic phase,
critical point, and the ferromagnetic phase, respectively.

6.4.2 Numerical results

In this section we study the behavior of the mean crossing time, that has been
shown to be relevant in the presence of temporal disorder [Vazquez et al., 2011].
The crossing time is the time employed by the system to reach the disordered
zero-magnetization state for the first time, starting from a fully ordered state with

103



CHAPTER 6. TEMPORAL DISORDER IN UP-DOWN SYMMETRIC
SYSTEMS

1.2 Random
: walk
T mapping
1r Crossing time

m '
= =
b= =
N AT
1 )
==
80 100 120

Figure 6.6: Single realization of the stochastic process. The system starts

with all the spins in the same state (m = 1) and the dynamics is stopped

when it crosses m = 0, which defines the crossing time in the Ising model.

We take 0 = 0.4, by = 0.98 and system size N = 10°. On the right margin we

sketch the mapping of the problem to a Random Walk with jump length
|Am| = 2/N.

Im| = 1 (see Fig. 6.6). Crossing times were calculated by numerically integrating
Eq. (6.17) for different realizations of the noise y and averaging over many
independent realizations. These integrations were performed using a standard
stochastic Runge-Kutta scheme (note that, the noise term does not have any
pathological behavior at m = 0 as occurs in systems with absorbing states, for
which more refined integration techniques are required [Dornic et al., 2005]) .
Results are shown in Fig. 6.7.

To estimate the critical point, we calculated the time evolution of the average
magnetization (m)(t) by integrating the Langevin equation Eq. (6.17), and also by
performing Monte Carlo simulations of the particle system on a fully connected
network. At the critical point by the magnetization decays to zero as (m) ~ tP.
We have estimated by, = 1, which coincides with the pure case critical point
bepure = 1: the critical point in the presence of disorder in mean-field is not shifted
with respect to the pure system, in agreement with the analytical calculation
in appendix G. At this critical point, as it is characteristic of TGPs [Vazquez
et al., 2011], a scaling of the form T ~ [InN]® is expected. The numerically
determined exponent value o = 2.81 for ¢ = 0.4 is higher than the exponent
a = 2 of the asymptotic analytical prediction Eq. (G.45), probably because of
the asymptotic regime in In N has not been reached. Instead, the behavior for
arbitrary values of N appears to be a second order polynomial in InN, as we
can see in Eq. (G.42). Indeed, the numerical data is well fitted by the quadratic
functiona (In N)? +b In N + ¢ (see inset of Fig. 6.7).This is to be compared with the
standard power-law scaling T ~ NF characteristic of pure systems, i.e. for o = 0.
Moreover, a broad region showing algebraic scaling T ~ N° with a continuously
varying exponent 6(bp) (6 — 0 as by — by ) appears in the ordered phase by > bo,c.
Both a and 6 are not universal and depend on the noise strength ¢. Finally, in
the disordered phase the scaling of T is observed to be logarithmic, T ~ In N.
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Figure 6.7: Main: Log-log plot of the crossing time T(NN) for the Ising Model
with Glauber dynamics in mean field. by = 0.98 (bottom) to by = 1.10 (top).
Monte Carlo simulations on a FCN (circles) and numerical integration of
the Langevin equation Eq. (6.17) with ¢ = 0.4 (sqaures and interpolation
with solid lines). There is a region with generic algebraic scaling of T(N)
and continuously varying exponents, by € [1.01,1.10]. Inset: log-log plot
of T(N) vs. InN. At criticality (dotted-dashed line) the scaling is fitted to a
quadratic function in In N.

We have also performed Monte Carlo simulations of the time-disordered Glauber
model on two- and three-dimensional cubic lattices with nearest neighbor inter-
actions. The critical point was computed following standard methods, that is,
by looking for a power law scaling of (m) versus time, as we mentioned above.
In d = 2, a shift in the critical point was found: from b, . = 0.441(1) in the pure
model to by, = 0.605(1) for ¢ = 0.4. However, the scaling behavior of T with N
resembles that of the pure model, with T ~ N at criticality (with an exponent
numerically close to that of the pure model [Marro and Dickman, 2008]), and an
exponential growth T ~ exp(cN), where c is a positive constant, in the ordered
phase (Arrhenius law) ) (see Fig. 6.8 (Left)). Thus, no region of generic algebraic
scaling appears in this low-dimensional system. On the contrary, in d = 3, re-
sults qualitatively similar to mean-field ones are recovered (see Fig. 6.8 (Right)).
The critical point is shifted from b, = 0.222(1) (calculated in Heuer [1993]) to
by, = 0.413(2), with a critical exponent a(d = 3) = 5.29 for 0 = 0.4, and generic
algebraic scaling in the ordered phase. In conclusion, our numerical studies
suggest that the lower critical dimension for the TGPs in the Ising transition is
d. = 3. This is in agreement with the analytical finding in Alonso and Mufioz
[2001], establishing that temporal disorder is irrelevant in Ising-like systems be-
low three dimensions. This result is to be compared with d. = 2 numerically
reported for the existence of TGPs in DP-like transitions [Vazquez et al., 2011]
(observe, however, that temporal disorder, in this case, affects the value of critical
exponents at criticality in all spatial dimensions). Further studies are needed to

105



CHAPTER 6. TEMPORAL DISORDER IN UP-DOWN SYMMETRIC

SYSTEMS
10
107 "p, =610 b, =046
D = 0.605 . by = 0.45
10 [|-—b, = 0.600 b, = 0.44
b, = 0595 ~by= 043
T 16 -B,= 059 b, = 042
by = 041
10° e by = 040
=— == ]
2 L | I
10
10°  10° 1&)]4 10° ¥

Figure 6.8: Log-log plot of the crossing time T(N) for the Ising Model with
Glauber dynamics on a regular lattice. (Left) d = 2. by = 0.590 (bottom)
to by = 0.610 (top). ¢ = 0.4 (lines are interpolations). Power law scaling
at the critical point (dotted-dashed line). TGP are not observed, crossing
time scales exponentially in the ordered phase (light green, upper, line).
(Right) d = 3. by = 0.40 (bottom) to by = 0.46 (top). o = 0.4 (lines are
interpolations). In a region b € [0.42,0.46], generic algebraic scaling of
T(N) with continuously varying exponents. Inset: log-log plot of T(N) vs.
In(N). It is estimated at criticality (dotted-dashed line) T ~ (In N)>%.

clarify the relation between disorder-relevance at criticality and the existence or
not of TGPs.

6.4.3 Analytical results

Let us consider the Langevin equation Eq. (6.17) in the thermodynamic limit
(go(m) = 0). Given that the remaining intrinsic noise comes from a transformation
of a colored noise into a white noise, the Stratonovich interpretation is to be
used to obtain its associated Fokker-Planck equation (see e.g. [Horsthemke and
Lefever, 1984])

oP(m, t 0 K. ., 10 (.
(a”: ) _ _%{ [fo(m) + 5 fo(m) ]O(m)] P(m, t)} + 55,5 (K m)Pm, ).

(6.18)

Starting from this N-independent Fokker-Planck equation Eq. (6.18), we will next
provide analytical results on the mean crossing times. An effective dependence
on N is implemented by calculating the first-passage time to the state m = [2/N]|
rather than m = 0. This is equivalent to the assumption that the system reaches
the zero magnetization state with an equal number N, = N_ = N/2 of up and
down spins when |m| < 2/N, thatis, when N/2—1 < N, < N/2+1. The mean-first
passage time T associated with the Fokker-Planck equation Eq. (6.18) obeys the
differential equation [Redner, 2001]

gjé(m)T"(m) + | fo(m) + %jo(m)jé(m)] T'(m) = -1, (6.19)
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Figure 6.9: Comparison between anlytical and numerical values for the
power law exponents in the mean crossing time.

with absorbing and reflecting boundaries at |m| = 2/N and |m| = 1, respectively.
The solution, starting at time t = 0 from m = 1 is given by

1 d 1

T(m=1)=2 f 4y f lpéz) dz, (6.20)

N V(W) Jy Kjs(2)

where

* 2fo(x") + Kjo(x')jo(x

P(x) = exp {f fol) ,2]0( Vi )dx'}. (6.21)
2/N Kjg(x")
Computing these integrals (see Appendix G) we obtain
InN/(bg—1) forby <1

T ~ 1 3(nN)?/6?> forby=1 6.22)

6(b—1)
N2 for by > 1.

These expressions qualitatively agree with the numerical results of Fig. 6.7, show-
ing that T grows logarithmically with N in the absorbing phase by < 1, as a power
law in the active phase by > 1, and as a power of In N (i.e. poly-logarithmically)
at the transition point by = 1. The exponents 6 = 6(by — 1)/ 02 do not agree well
with the numerically determined exponents. This is due to the fact that we have
neglected the 1/ VN term by taking gy = 0, which becomes of the same magni-
tude as the jy term when |m| approaches 2/N. This was confirmed by testing that
analytical expressions Eq. (6.22) agree very well with numerical integrations of
Eq. (6.17) performed for go = 0, and setting the crossing point at m = 2/N (See
Fig. 6.9). In summary, this analytical approach reproduces qualitatively —and in
some cases quantitatively— the above reported non-trivial phenomenology.
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6.5

Generalized Voter transition with temporal disorder

We study in this section the GV transition [Dornic et al., 2001], which appears
when a Z;-symmetry system simultaneously breaks the symmetry and reaches
one of the two absorbing states. A model presenting this type of transition is the
nonlinear g-voter model, introduced in Castellano et al. [2009]. The microscopic
dynamics of this nonlinear version of the voter model consists in randomly
picking a spin S; and flipping it with a probability that depends on the state of g
randomly chosen neighbors of S; (with possible repetitions). If all neighbors are
at the same state, then S; adopts it with probability 1 (which implies, in particular,
that the two completely ordered configurations are absorbing). Otherwise, S;
flips with a state-dependent probability

flx,b) =x7T+b[1-xT—(1-x)1], (6.23)

where x is the fraction of disagreeing (antiparallel) neighbors and b is a control
parameter. Three types of transitions, Ising, DP and GV can be observed in this
model depending on the value of g [Castellano et al., 2009]. Here, we focus on
the g = 3 case, for which a unique GV transition at b, = 1/3 has been reported
[Castellano et al., 2009].

6.5.1 The Langevin equation

In the MF limit (FCN) !, the fractions of antiparallel neighbors of the two types
of spins S; = 1 and S; = —1 are x = (1 —m)/2 and x = (1 + m)/2, respectively.
Thus, the transition probabilities are

0. (m,b) = © ¢2m f(liTm,b). (6.24)

Following the same steps as in the previous section, we obtain the Langevin
equation

=1 23b0 m(l —m?*) + \/(1 o )(11\-; bbot ) %aznﬂ(l —m2)2 y(t).

(6.25)

Let us remark that the potential in the nonlinear voter model (Fig. 6.10) differs
from that for the Ising model. Owing to the fact that the coefficients of the linear
and cubic term in the deterministic part of Eq. (6.25) coincide (except for their
sign), the system exhibits a discontinuous jump at the transition point, where
the potential minimum changes directly from m = 0 in the disordered phase to
m = %1 in the ordered one. Furthermore, the potential vanishes at the critical
point [Al Hammal et al., 2005].

1For a fully connected network the number of neighbors has no meaning. However the Mf limit
of the model refers to the use of the probability given by Eq.(6.23)
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Figure 6.10: Potential for the GV transition in a mean field approach. The
dashed, solid and dot-dashed lines correspond to the paramagnetic phase,
critical point, and the ferromagnetic phase, respectively.

6.5.2 Numerical Results

The ordering time, defined as the averaged time required to reach a completely
ordered configuration (absorbing state) starting from a disordered configura-
tion, is the equivalent of the crossing time above. We have measured the mean
ordering time T by both, integrating the Langevin equation Eq. (6.25) and run-
ning Monte Carlo simulations of the microscopic dynamics on FCNs and finite
dimensions. In Fig. 6.11 we show the MF results. We observe that T has a similar
behavior to the one found for the mean crossing time in the Ising model, and
for the mean extinction time for the contact process [Vazquez et al., 2011]. That
is, a critical scaling T ~ [In N]* at the transition point by, = 1/3, with a critical
exponent a = 3.68 for 0 = 0.3, a logarithmic scaling T ~ In N in the absorbing
phase by < by., and a power law scaling T ~ N® with continuously varying
exponent 6(bg) in the active phase by > bo,.

Monte Carlo simulations on regular lattices of dimensions d = 2 and d = 3
revealed that there is no significant change in the scaling behavior respect to the
pure model (not shown). The critical point shifts in d = 2 and remains very close
to its mean-field value in d = 3, but results are compatible with the usual critical
(pure) voter scaling Toy ~ NInN and T34 ~ N. In the absorbing phase T grows
logarithmically with N, while in the active phase T grows exponentially fast with
N, as in the pure-model case. Therefore, in these finite dimensional systems we
do not find any TGP nor other anomalous effects induced by temporal disorder,
although we cannot numerically exclude their existence in d = 3. Such effects
should be observable, only in higher dimensional systems (closer to the mean-
field limit).

6.5.3 Analytical results
The ordering time T can be estimated by assuming that the dynamics is described
by the Langevin equation Eq. (6.25), and calculating the mean first-passage time

from m = 0 to any of the two barriers located at |m| = 1. It turns out useful to
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Figure 6.11: Main: Log-log plot of the ordering time as a function of the

system size N in the MF g-voter model. Monte Carlo simulations on a FCN

(dots) and numerical integration of the Langevin equation Eq. (6.25) b =

0.330 (bottom) to 0.370 (top), and ¢ = 0.3 (squares and lines interpolation).

In the active phase a finite region with power law scaling is observed,

by € [0.340,0.370]. Inset: log-log plot of T as a function of InN. At the
critical point (dashed line) is T ~ [In N]>%8.

consider the density of up spins rather than the magnetization

o=l ;m. (6.26)

T is the mean first-passage time to p = 0 starting from p = 1/2. The Langevin
equation for p is obtained from Eq. (6.25), by neglecting the 1/ VN term and
applying the ordinary transformation of variables (which is done employing
standard algebra, given that Eq. (6.25) is interpreted in the Stratonovich sense)
is

p = Alp) + VKC(p)y(t), (6.27)
with

A(p)
C(p)

ap(2p —1)(1 - p),
3op2p - 1)(1 - p), (6.28)

where ay = 1 — 3by.

Now, we can follow the same steps as in Sec. 6.4.3 for the Ising model, and find
the equation for the mean first-passage time T(p) by means of the Fokker-Planck
equation. The solution is given by (see Appendix B)

InN/(Bbp—1) forby<1/3
T ~1 (InN)?/36>  forby=1/3 (6.29)

2(bp-1/3)

2 for by > 1/3.
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These scalings, which qualitatively agree with the numerical results of Fig. 6.11
for the g-voter, show that the behavior of T is analogous to the one observed in
the Ising transition of section 6.4 and in the DP transition found in Vazquez et al.
[2011]. Therefore, we conclude that TGPs appear around GV transitions in the
presence of external varying parameters in high dimensional systems.

For the GV universality class the renormalization group fixed point is a non-
perturbative one [Canet et al., 2005], becoming relevant in a dimension between
one and two. A field theoretical implementation of temporal disorder in this the-
ory is still missing, hence, theoretical predictions and sound criteria for disorder
relevance are not available.

6.6

Summary and conclusions

We have investigated the effect of temporal disorder on phase transitions exhib-
ited by Z, symmetric systems: the (continuous) Ising and (discontinuous) GV
transitions which appear in many different scenarios. We have explored whether
temporal disorder induces Temporal Griffiths Phases as it was previously found
in standard (DP) systems with one absorbing state. By performing mean-field
analyses as well as extensive computer simulations (in both fully connected net-
works and in finite dimensional lattices) we found that TGPs can exist around
equilibrium (Ising) transitions (above d = 2) and around discontinuous (GV)
non-equilibrium transitions (only in high-dimensional systems).

Therefore, we confirm that TGPs may also appear in systems with two sym-
metric absorbing states, illustrating the generality of the underlying mechanism:
the appearance of a region, induced by temporal stochasticity of the control pa-
rameter, where first-passage times scale as power laws of the system size. The
algebraic scaling of the crossing time, compared with the exponential one ob-
served in pure system, shows that temporal disorder makes the ordered/active
phase less stable. This implies that the system becomes highly susceptible to
perturbations. This appears to be a rather general and robust phenomenon and
an relevant result with applications in ecology. As it has been said before, the ex-
tinction times that have been quantified in this chapter can be identified, in some
cases, with population lifetimes. Considering the effect of the environmental
variability, habitat fragmentation becomes a more important threat when sys-
tems become larger, where the exponential behavior scales much faster than the
algebraic one.

Additionally, although it is of secondary interest to our focus on ecological sys-
tems and it has been not shown in this chapter, we have also confirmed that the
response function of the system (i.e. susceptibility) diverges in a finite region
close to the critical point. This complementary result has been also obtained in
Vazquez et al. [2011] and confirms the phenomelogical similarities between Tem-
poral Griffiths Phases and Griffiths Phases in systems with quenched disorder.
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SYSTEMS

Italso seems to be a general property that TGPs do not appear in low dimensional
systems, where standard fluctuations dominate over temporal disorder. In all
the cases studied so far, a critical dimension d, —at and below which TGPs do not
appear— exist (d. = 1 for DP transitions, d. = 2 for Ising like systems, and d. ~ 3
for GV ones). Calculating analytically such a critical dimension and comparing
it with the standard critical dimension for the relevance/irrelevance of temporal
disorder at the critical point (i.e. at the renormalization group non-trivial fixed
point of the corresponding field theory) remains an open and challenging task.

Future research might be oriented to the effect of temporal disorder on the
formation and dynamics of spatial structures.
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APPENDIX F -

[tO-Stratonovich discussion.

The integration of stochastic differential equations with multiplicative white
noise presents some problems because the integral of the noise is not well defined.
These problems are solved choosing either the It6 or the Stratonovich definition
of the integral.!

We have chosen one or the other depending on the origin of the noise term in
the Langevin equation. This Appendix explains how Itd’s calculus works, and
the connection between It6 and Stratonovich schemes. We will finish discussing
in what of them is more suitable in each situation.

F1

Stochastic integration.

Let us start providing a precise definition of the second integral in

t t
M(t)—M(O):fOf[M(s),s]ds+f0g[M(s),s]dW(s), (E1)

that is

t
f GE)AW(S). (F2)
0

The integration interval [0, ] is divided into n subintervals,
0<tH <th<tz3..<t,1 <t, (E3)
and the intermediate points in each interval 7; defined

Ti = tiog + alti — tiq). (F4)

1Any definition can be chosen or even made, but these two are the most often used.
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The stochastic integral in Eq. (F.2) is defined as the limit of the partial sums,

Su =), GEW(E) - W(ti)), (E5)

i=1

where the Itd vs Stratonovich dilemma resides in the fact that the limit of S,
depends on the particular set of points 7; that are used. It6 stochastic integral is
defined taking a = 0, so Eq. (F.5) becomes

Su= Y Glti)(W(t) = Wti)), (F6)
i=1

that is, the known function g(x(t)) is evaluted on the beginning point of the
interval while Stratonovich is obtained if « = 1/2 and

&zicﬁﬁﬁmww—wmm. (E7)

i=1

E2

[t6’s formula.

In spite of being much more elegant from a mathematical point of view, Ito’s
prescription is not always the most suitable choice for physical interpretation.
Calculus we are used to does not work in this scheme and a different change
of variables must be considered. To begin with, lets take an arbitrary function
a[x(t)] with x(t) obeying the SDE

dx(t
"0~ oo + g0 0000, ©8)
where &(x, t) is a white Gaussian noise. Consider

dalx()] = alx(t) + dx(t)] — a[x(t)]
a'[x(t)]dx(t) + %a”[x(t)]dxz(t) + ...

a’[x(D]{f(x, £) + g(x, HE®)} dt + %a"[x(t)]g2(x, HAWA(t) + ...,
(F.9)

where higher terms in dt have been neglected. Now, replacing dW?(t) = dt (see
[Gardiner, 1985] for a proof),

da[x(t)] = a’[x(t)] {f(x, f) + %a”[x(t)]gz(x, t)} dt +a"[x(H)]g(x, )dW(t),  (E.10)

which is known as the It¢’s formula and shows that change of variables is not
given by ordinary calculus unless a[x(t)] is linear in x(t).
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E3

From Stratonovich to Ito.

As may be expected, both interpretations of the stochastic integral are somehow
related. To show it, consider an stochastic differential equation

% = afx(t), 1+ BIx(), ), (E11)

where 1)(t) is a white, zero mean, Gaussian noise. Integrating, it is,

¢ ¢
x(if):x(O)+‘f0 ac[x(s),s]ds+5‘f0 Blx(s), sldAW(s), (F12)

where S denotes that a Stratonovich integration is used. We will derive the
equivalent It6 stochastic differential equation.

Assuming that x(t) is a solution of
dx(t) = a[x(t), t]dt + b[x(t), t]dW(¥), (F.13)

the corresponding a[x(t), t] and p[x(t),t] will be deduced. The first step is to

compute the connection between S fot Blx(s),s]dW(s) and fot Blx(s),s]dW(s), where
the lack of notation in the second integral means an It6 interpretation. Then,

t . .
s [ ﬁ[X(S)IS]dW(S)z;ﬁ[w,tﬂ] W) - W)l (B19)

Taking into an account
x(ti) = x(ti-1) + dx(ti-1), (F.15)

in the Stratonovich integral, then

8 [x(ti) +2x(ti—1)’ ;

i—l] =p [x(ti—l) + %dx(ti—l)r tiq|. (F.16)

Now, the It6 SDE (F.13) is used in order to write

dx(t;) = al[x(ti_1), tioal(t; — tica) + blx(ticq), i [[W(t:) — W(ti-1)]. (F17)

Using It6’s formula given by Eq. (F.10) as well as simplifying the notation writing
B(ti-1) instead of B[x(ti-1), ti—1], Eq. (F.16) becomes,

B [M/ti—l] = PB(ti-) + [a(fi—l)axﬁ(ti—l) + jzbz(fi—l)] [%(ti - ti—l)] +

+ 2UEBEIVE) - Witi)) (E18)
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Finally, substituing into Eq. (F.14), neglecting terms in dt?> and dWdt and setting
dAW? = dt,

s f = Y Bl W) - W) + 3 Y b)2p )t = ), (E19)
or going back to integrals,

t ¢ 1
Sjo‘ﬁ[x(s),s]dW(s)—foﬁ[x(s),s]dW(s)+§£b[x(s),s]&xﬁ[x(s),s]ds, (E.20)

which means that the stochastic integral in Stratonovich representation is equiv-
alent to a stochastic integral in It6’s and a drift term. Itis also important to remark
that this formula gives a connection between both integrals of function B[x(s), s],
in which x(s) is the solution of the It6 SDE (E13). It does not give a general
connection between the It6 and Stratonovich integrals of arbitrary functions.

The Itd6 SDE dx = a(x, H)dt + b(x, HHdW(t)
is the Stratonovich SDE dx = [a(x, t) — %b(x, £)d.b(x, t)] dt + b(x, )dW(t).

(F.21)
Or
The Stratonovich SDE  dx = adt + BdW(t)
is the It6 SDE dx = |a(x,t) + %ﬁ(x, HoxB(x, t)] dt + B(x, ydW(t).
(F.22)

There are many consequences of this transformation formula, but the more
important are

e Itis always possible to change from the Stratonovich to the It6 interpreta-
tion of a SDE by adding 1p(x, t)d:B(x, ) or in the inverse direction subtract-
ing a similar term.

o In the case of additive noise, i.e., g(x,t) = const. in Eq. (E.8) there is no
difference between the It6 and Stratonovich integral.

o In the case of multiplicative noise, i.e., g(x,t) # const. in Eq. (F.8), where
the influence of the random force depends on the state of the process, the
correlation between both the random force and the state of the process is
implicit in the Stratonovich integral. It gives raise to the noise induced drift
when moving to It6 appearing in the deterministic part of the equation.

o The Stratonovich calculus obeys the classical chain rule, Itd’s formula de-
rived in Section E.2 plays a similar role on It6’s calculus.
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F4

Stratonovich / It6 dilemma.

The long controversy in the physical literature about what is the right definition
of the stochastic integral has created some confusion on this topic. That’s why,
although a much more mathematically rigorous and longer discussion can be
found in the references, [van Kampen, 2007; Horsthemke and Lefever, 1984;
Jazwinski, 2007] some hand waving arguments will be given in this section.

First of all it is important to say that this kind of ambiguity when working
with SDE only yields for the particular, but most common, case of differential
equations with multiplicative white noise?. As a first approach, it is natural
to tend to believe that due to invariance of the equations under “coordinate
transformation” y = u(x) when working on Stratonovich scheme it is the proper
choice. However, it means nothing but it obeys the classical calculus rules
we are familiar with. The only quantities that have to be invariant under a
transformation u = y(x), where u is one to one, are the probabilities,

p(y, )dy = p(x, t)dx, (F23)
and this is of course guaranteed in both calculi. They lead to a consistent calculus.

It looks sensible, then, to change the question. The matter is not what is the
right definition of the stochastic integral, but how do we model real systems
by stochastic processes. That is, in which situation either Itd’s or Stratonovich’s
choice is the most suitable.

On the one hand, if the starting point is a phenomenological equation in which
some fluctuating parameters represented through colored noise terms are ap-
proximated by Gaussian white noise, then the most appropiate process is the
one that is defined by the Stratonovich interpretation of the equation.

On the other hand, in many systems the appropiate starting pointis a discret time
equation, as it happens, for instance, in biology when working with populations
of insects. In these cases the equation reads

X(t) = X(tie1) + f(X(ti1)) At + 08(X(£i1))Q(ti-1), (E24)

where t; = t;_; + At in every time step and Q; are Gaussian independent random
variables with expected values < Q(t;) >= 0 and < Q*(t;) >= At.

If times considered are longer compared to At, the continuous time limit can be
taken. Then the system is described by

X(t) = fIX(B)] + og[XOIW(D), (E.25)

which is also a SDE where W(t) is the Wiener process. However, due to the
asymmetric form of Eq. (F.24) with respect to time it is much more appropiate
the stochastic process defined according to the It6 interpretation in this case.

2Cases where the rapidly fluctuating external force depends on the state of the system.
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To sum up, as a take to home message from this section, two different cases can
be considered when working with SDE. When the white Gaussian noise limit is
considered as the limit of a colored noise when the correlation time tends to zero,
the Stratonovich interpretation is more sensible, when It6’s is more suitable when
it represents the continuous limit of a discrete time problem. In any case, there
are no universally valid theoretical reasons why one or the other interpretation
of an SDE should be preferred and the ultimate test must be the confrontation of
the analytical (or numerical) results with the experimental facts.
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Analytical calculations on the
escape time for the Ising Model

We will show here all the analytical calculations done to obtain the result of
Eq. (6.22). To make the integrals analytically solvable we take g1 () = 0, so the
Langevin equation is

i = fo(m) + VKjo(m)y(), (G.1)
with

fom) = agm—com®,

jo(m) = om(1- b(z)mz), (G.2)

whereay =by—1,cp = bg/ 3 and y(t) is, again, a white Gaussian noise defined by
its autocorrelation function < y()y(t') >= 6(t—t’), and its mean value < y(t) >= 0.

The Langevin equation (G.1) presents one absorbing state in m = 0 induced by
the simplification done when neglecting thermal fluctuations.

Working in the Stratonovich scheme !, the associated Fokker-Planck equation is

oP(m, t 9 K., ., K & .
PD = o)+ ulmjon) | P, )+ 5 2 [P, )
(G3)
where
2 2 2b2
fo(m)+§j0(m)j6(m) - (ao+gaz)m+%b3m5—(co+ TZ 0]7713,
. 2
Di(m) = %szz (1 - B3nr?)". (G.4)

According to Gardiner [1985] and Redner [2001], the escape time from an starting
point m obeys,

[ folm) + g jo(m) j(’)(m)] T’ (m) + %Kjé(m)T"(m) -1, (G.5)

1Because the noise term comes from taking the white noise limit in a colored one
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As the size of the system does not appear naturally in the problem because of the
simplification done when taking g1 = 0, the mean escape time will be defined
as that needed to pass through m = 2/N, which is the length of the jumps of the
Brownian particle to whose movement the problem has been mapped. Then,
taking into an account that there is an absorbing barrier in m = 0 and a reflecting
one in m = 1 and the initial condition, the solution is [Gardiner, 1985]

o ~ m,:ld_y 1 l,D(Z)
TW“”)‘3LN v J, k2™ (G0

with

_ = 2f(@) + Kj()p(Z)
P(z) = exp L N dz ) , (G.7)

which involves 6 and 4" order polynomial functions.

To make the integral simpler, we expand the functions up to 3 order, and takre
the low integration limit in Eq. (G.7) at 1 instead of 2/N. This change can be done
because 1(z) appears both in the numerator and the denominator of T(m), so the
contribution of the lower limit vanishes, allowing to take it in our interest. The
first assumption leads to

m(r — sm?),

Q

o) + 5 o))
Kj3(m) wm?, (G.8)

Q

where it has been defined w = 76%/3;r = ag+ w/2; s = (co + 2wb§). The size of the
system will be rescaled too, so the lower limit in the expression of the escape time
Eq. (G.6) is 1/N. This simplifies the notation and does not affect the qualitative
behaviour of the results in the asymptotic limit (only a constant factor appears).

Now, it can be written,

Y(z) = expf 22(r = sz7%) 52 = z%ef1-2), (G.9)

CL)Z'Z

where @ = 2r/w and § = s/ w.

Lets now define the function

1 gl )
= 4= f 22 g, (G.10)
y K]o(z) w Y

which presents a singularity when @ = 1 as can be seen integrating by parts.
With the definition made of the parameters, it can be shown that it corresponds
to bo =1= bO,c'
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Considering the definitions of Eq. (G.9) and Eq. (G.10), the mean escape time is

given by
1
(y)
T=2 f (G.11)
UN IP(y)
Each case will be studied separately.
G1
Casea # 1
Integrating by parts Eq. (G.10)
e:B e_ﬁ — e_ﬂyZy“_l 1 Z“e_ﬁzz
I(y) = 5 [T +Zﬁfy n—1 dz|, (GlZ)
where the new integral can be solved again integrating by parts. Working
recursively this way,
B e_ﬁ — e_ﬁyzy("_l e_ﬁ — e_ﬁyz y‘“’l
I(y)_z[ Z-1 +2’8(a—1)(a+1) + } (G.13)
or B(y2-1),,a-142k
1—e Py -Dya-i+
I(y) = ¢ )k : (G.14)
! Z d [T o(a =1+ 2i)
The mean escape time is given now by
== 2 [L(N) = Lk, N1, (G.15)
perll P O(a 2i
where
1
L(N) = y b Dy (G.16)
1N
1
L(k,N) = f vy dy. (G.17)
1N

Integrating I;(N) by parts (taking again the exponential part as u and the rest as

dv) and following the same procedure as in Eq. (G.10) it is obtained
I - Nat7172leﬁ(1/N271)]

o (—28)']
Li(N) =
' ,; TTy(a —1+2))

while I;(k, N) is easily solved

—In(N"!) = In(N) fork =0,

I(k,N) = { Pﬁfk fork > 1.

(G.18)

(G.19)
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At the end, an expresion for the mean escape time is achieved

T - 2 Il(N) —In(N)
Cw -1
ZQWWM41N%m]
+
[Tico(a@ =1+ 2i)
(G.20)
In the asymptotic limit N — oo two different cases must be considered.
Gllax<l1
Under this prescription, @ —1 -2 < 0 when [ > 0 so in I;(N)
1- Ne-12gBUN-D g _ & g (G21)
Nv !
which leads to
. (—2p)
L(N) = Z ——— = C(a,p). (G.22)
= [0l +2j-a
Finally, for the mean escape time,
-1 < (28)*(C(a, p) — (2k)!
e SGIORSLL N f ,( pr- ) (G.23)
@ a-1 o limola—1+2))
what means,
T = Lln(N). (G.24)

w(a—-1)

Gl2a>1

It is taken as a starting point

- (_2;8)1[1 - Na_l_ZZeﬁ(l/Nz_l)]
o ’ (G.25)
1 ; H;zo((l -1+2j)

where considering that N®~1 > N@~1-2 V] > 0, only the first term in Eq. (G.25) is
relevant. It implies

1-e N> e BNo-l

I = > 2
N ——— (G26)
and in the mean escape time
1 2In(N) -
~ a=1 _ ~ Na-1
T = K(a, )N o@-1) N (N>1).
(G.27)
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G.2

Case o = 1 Critical point.

It has to be solved now

1 B 1 )
I(y) = f ve 4 ¢ f yleFd, (G.28)
y K ]O(Z) w Jy
using the expansion of the exponential function and integrating it is
ef (=P (L -2y
I(y) = —|~In(y) + ; |- (G.29)

It makes the mean escape time to obey, taking the form of I(y) Eq. (G.29) into
Eq. (G.11)

2¢f > (—B)f
=2+ Y O (14(N>+15(k,N>>l, (G.30)
k=1
where
1 2
IZ(N) = —f ln(y)y‘leﬁ(y ‘”dy,
1/N
1
L = [ et ay,
1/N
1 2
Is(k,N) = f Y 1ef gy, (G.31)
1/N

First of all, lets consider the solution of I3(N) integrating by parts (u = ef¥" and
dv = In(y)y~'dy) so,

InN)? ;-
I3(N) = %eﬁ(l\f

1
B 1/N<1ny>2eﬁ<f-“dy, (G32)

where the new integral is solved again integrating by parts taking

u = &PV gy = Zﬁeﬁ(yz—l)
dv = (Iny)’dy — v =2y - 2ylny + y(Iny)*.
(G.33)
It leads to a solution behaving like
1
B | (ny2efDay =28 - ON) + O (ln—N) (G.34)
1N N
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so finally,

Is(N) = (lnN) SN 4o O(NY) +o(InN ) (G.35)
which scales in the asymptotlc limit as
1 2
I(N) ~ (“i\’) e (G.36)

Secondly, lets focus on I4(N), where, again, an expansion of the exponential
function has to be done

1 . 5 1 ﬁkka
L(N) = f y eV gy = e‘ﬁf - i ——dy (G.37)
1N 1N k o
which can be easily solved

— B
LiN)=e K12k

InN + b ‘ (1—N2k)]. (G.38)

The leading behavior when the size of the system is big enough (N > 1) is

L(N) ~ e PInN + C4(B). (G.39)

The last integral to be solved, also using the expansion of the exponential func-
tion, is

— o . nBl —2l-k
IS(k,N)—e‘BIZm(l—N ) ~ cte
=0
N >1

(G.40)

It finally leads to an expression for the mean escape time in the critical point

-B B 1 2 s
T~ 2€ {e (InN)" ; o [e‘ﬁlnN+ c (ﬁ)]} (G.41)

@

In the limit of very big systems (N > 1) the mean escape time scales as

T~

o k
(lnN)2 %2 P nN + K(B), (G.42)

with asymptotic behaviour
(InN)?
o

T ~

(G.43)

To sum up, it has been obtained analytically the finite size scaling of the mean
escape time, defined as the time taken by the system for reaching m = 0 from an
initial condition m; = 1. Itis
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—2 _InN fora<1,

or in terms of the original parameters

w(a—%)
@ fora =1, (G.44)
No-1 for a > 1.
blo_ni\ll . for bo < b(),c,
SN for by = bo,, (G.45)
W ’
02 for bo > bO,c-
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Part V

CONCLUSIONS AND OUTLOOK

Blas Cabrera y Felipe
(1878-1945)

Spanish physicist born in Arrecife (Lanzarote). He is considered
one of the fathers of physics in Spain as well as one of the most
prominent Spanish scientist. His work was mainly experimental,
investigating the magnetic properties of matter.+++
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CHAPTER 7 -

Conclusions and outlook

This thesis has addressed a series of ecological problems from the point of view
of statistical physics, that has provided the theoretical framework to develop
different mathematical models.

The origin of the regular structures of vegetation that are observed in many
regions around the world has been studied. They appear in landscapes where
there is a limited amount of rainfall during the year, regardless of the type of
soil and vegetation. This scarcity of water is an important constraint for the es-
tablishment of new plants. Traditionally, it has been thought that the emergence
of the patterns comes from the presence of facilitative and competitive interac-
tions among plants acting simultaneously but at different spatial scales. This
phenomenon has been referred to as scale-dependent feedback in the literature.
The findings presented in this thesis, using mathematical models that contain
only competitive interactions, suggest that facilitative interactions could be su-
perfluous if the finite length of the roots is considered in the equations. As an
alternative to the scale-dependent feedback, we have introduced the concept of
exclusion areas. They are regions, typically between two maxima of vegetation
density, where the competition is so strong that it cannot be overcome by new
plants. The extension and the location of these areas are given by the interaction
kernel of the different species of plants, which is intimately related to the length
of their roots. This concept allows to know in which regions the vegetation
will disappear and in which it will remain given an initial ditribution of plants.
Determining the existence of exclusion areas could also have important impli-
cations on the design of farming strategies that minimize the competition in the
crops. This would allow an optimal exploitation of the water resources, mainly
in arid regions.

In addition, the proposed models follow previous results that allow the use
of these patterns as early warning signals of desertification in arid regions,
allowing the development of conservation strategies by anticipating the death of
vegetation. As the amount of rainfall decreases, the shapes of the distributions
show a universal sequence of gaps, stripes and, finally, spots of plants when
the water is very limited. This sequence is independent on the species in that
particular landscape. Unveiling the basic mechanisms that drive the formation
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of these structures becomes essential to change the natural tendency that would
lead arid regions to dessert states.

The collective searching behavior of some animal species with communication
skills has been also studied. Although the main focus of the work is on forag-
ing strategies, our results could be extended to many other situations, such as
mating or predation. The influence of different classes of random movements
on the results is also analysed. This work constitutes one of the first theoretical
approaches tackling the effect that animal interactions have on the duration of
their daily tasks. The main result is that the effect of communication on searching
times is maximum when they send information at intermediate length scales.
Longer communication ranges, that suppose interacting with more individuals,
overwhelm the searchers with too much information coming from all the direc-
tions. On the other hand, short ranges do not provide all the population with
information enough to expedite the search. In both extreme situations the dis-
placements of the foragers lose directionality to the targets. This result is robust
against changes in the type of movement, either Brownian jumps or Lévy flights.
As a general result, Lévy strategies give faster searches, but Brownian jumps are
more influenced by a communication mechanism.

An application of this model to the foraging behavior of the gazelles inhab-
iting the Eastern Steppe of Mongolia is also presented. The steppe is one of
the largest remaining grasslands in the world, where gazelles have to find each
other and small areas of good resources. In addition, because of the orography of
this landscape, sound can travel long distances therein. This, together with the
strength of gazelle’s vocal tract allows them to communicate accoustically over
long distances. The model predicts an optimal search for resources when the
communication is on a frequency of 1.25 kHz, a value that lies in the range mea-
sured for gazelles in the wild (0.4 kHz to 2.4 kHz). This result not only confirms
the robustness of the model against changes in the communication channel, but
also gives realistic values for the measured quantities. This is the central finding
of this research, and suggests that, during its evolution, the species could have
optimized its vocal tract to efficiently communicate in the steppe. This work
aims to open new research lines in the interrelation between communication,
optimal search and mobility patterns. From a theoretical point of view, we pro-
pose a new collective searching strategy that offers a wide range of potential
fields of applicability, even far away from an ecological context. Similar algo-
rithms, based on collective animal behavior, have been recently implemented in
collectivities of robots to tackle different problems [Penders et al., 2011; Werfel
et al., 2014]. Due to its simplicity, our model could be applied to several search-
ing processes, optimizing the first hitting times if the individuals are enforced to
communicate over intermediate lengths. Furthermore, the comparison between
Brownian jumps and Lévy flights makes possible to choose the mobility strategy
that better works in a given scenario.

Finally, it has been studied the effect of external variability on the diversity, ro-
bustness, and evolution of many interacting particles systems. The behavior of
the crossing times changes substantially when driven by fluctuating environ-
ments. It appears a finite region around the critical point where the this time
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scales with the system size as a power law with continuously varying expo-
nent. These results have clear implications in the mean lifetimes of species in
an ecological context (species coexistence, competition...) and also allow, from
a theoretical point of view, to extend the concept of Temporal Griffiths Phases,
originally found in epidemic spreading models, to a larger variety of systems.

This thesis leaves several open questions in the interface between ecology and
statistical physics to be tackled in the future. Many of them are related with the
influence of patterns and the role that different scales play on its formation. Most
of the future challenges in ecology involve many spatial and temporal scales.
In fact, most of the natural systems do not have a characteristic scale and the
observed spatial strucutres most of the times have their origin in phenomena
that take place at smaller scale. The key for understanding and predicting lies
in unveiling the mechanisms underlying these structures [Levin, 1992].

In this dissertation, vegetation pattern formation has been addressed develop-
ing mathematical models with a single spatial scale. However, trees also present
facilitative interactions, related to the size of the tree canopy, that act at a shorter
scale than competition which are mediated by the roots. Although one of our
main results is that positive interactions could be superfluous in the formation of
patterns, they could have further implications on its shape and stability. In ad-
dition, nature is full of examples where many interaction scales are involved, as
it is the case of the regular distributions observed in many mussel beds. Beyond
spatial degrees of freedom, ecological systems also show different organizational
scales. In the particular case of plants, they are not isolated in the landscape but
in interaction with many other species that influence its evolution. This is the
case of termites or some microbials, that are known as ecosystems engineers.
Investigating its influence on the evolution and formation of the vegetation dis-
tributions constitutes a promising challenge.

Establishing relationships between vegetation distributions and animal mobil-
ity presents also many challenging questions. Most of them should focus on
merging both research lines, addressing the influence that grazing could have
on the patterns, and how the formation of groups of animals could modify their
shapes or destroy them. While larger groups have clear benefits in terms of
group defense and predator swamping, they also lead to a faster degradation
of the vegetation. This is the problem of foraging influencing the vegetation
patterns which should be treated in the future.

The study of how an information flow can modify collective searching processes
is attracting more attention last years. In this thesis, we have studied how the
ranges at which the information is shared modify the duration of foraging. How-
ever, many other questions, such as how informed individuals in a population
may adapt its mobility pattern in order to increase the success of the group
remain still open.

In summary, coming years promise an intense activity trying to answer these
and more open questions. Statistical physics is now much more than a discipline
devoted to the study of the macroscopic properties of thermal systems, and
theoretical ecology is a well established quantitative field. Their development

131



CHAPTER 7. CONCLUSIONS AND OUTLOOK

during these years has brought them to a common point, from where natural
environment can be better described and understood.
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