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Resumen

El trabajo presentado en esta tesis se centra en la dinámica compleja de
láseres de semiconductor (SL) cuando reciben retroalimentación óptica con
retraso de una cavidad externa o bien, se encuentran acoplados con retraso
a un segundo láser de semiconductor. Investigamos las propiedades fun-
damentales y la dinámica inducida por la retroalimentación con retraso y
por el acoplamiento con retraso. Además, se estudia el uso de la dinámica
compleja transitoria de un único SL, surgida de la retroalimentación con
retraso y de la inyección de señal externa, para esquemas neuro-inspirados
de procesamiento de datos. Basándonos en experimentos y en simulaciones
numéricas, investigamos sistemas de dos SLs acoplados, comprendiendo el
papel del láser y de los parámetros de acoplamiento en las propiedades de sin-
cronización de dichos sistemas. Relacionamos ciertos aspectos de la dinámica
de sincronización, como eventos intermitentes de desincronización, con la
dinámica no lineal subyacente en el sistema láser acoplado.

Por consiguiente, nuestro trabajo combina tanto conocimientos funda-
mentales sobre láseres acoplados con retraso como perspectivas para nuevas
aplicaciones.

Con el objetivo de explorar el potencial de un único SL con retroali-
mentación con retraso, seguimos el concepto de �reservoir computing� (RC)
basado en sistemas con retraso. En particular, estudiamos dos tareas com-
putacionalmente exigentes para los sistemas de cálculo tradicionales. Explo-
ramos diferentes con�guraciones de retroalimentación, métodos de inyección
de datos y regímenes de funcionamiento del láser e identi�camos las condi-
ciones óptimas en función de la tarea. Nuestro trabajo demuestra el potencial
de montajes fotónicos sencillos y del concepto de RC para futuros paradig-
mas computacionales.
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Asimismo, estudiamos las propiedades de sincronización en sistemas de
dos SLs acoplados con retraso por medio de un relé. Se exploran las con-
secuencias de las asimetrías en este montaje en las propiedades dinámicas
y de sincronización. Un aspecto relevante es cómo decrece o se pierde la
sincronización, siendo de especial importancia para aplicaciones en esque-
mas de comunicaciones caóticas y protocolos de intercambio de llaves (key-
exchange protocols). Llevamos a cabo una aproximación basada en eventos,
y relacionamos cambios en los niveles de sincronización al variar diferentes
parámetros o desajustes con el inicio de los eventos de desincronización y sus
características. Nuestros resultados con respecto a los niveles y capacidad
de sincronización enfatizan la importancia de la simetría y del ajuste entre
parámetros para alcanzar sincronización idéntica de osciladores acoplados
con retraso.
Aplicamos nuestros descubrimientos sobre la posibilidad de desarrollar e im-
plementar un método experimental basado en sincronización idéntica para
identi�car determinismo en la dinámica caótica de un SL con retroalimentación
retrasada. Nuestro método se basa en la sincronización a retraso cero (zero-
lag) del láser con un sistema gemelo. Centramos nuestra investigación en las
caídas de potencia (power dropouts) que tienen lugar en el régimen de Fluc-
tuaciones de Baja Frecuencia (Low Frequency Fluctuations) del SL, puesto
que representan características dinámicas cuyo origen ha sido fuente de con-
troversia en el pasado. Nuestro trabajo es de gran relevancia en la inves-
tigación de la dinámica no lineal, pues la mayoría de nuestros resultados
y procedimientos pueden adaptarse a otros sistemas con retraso y propor-
cionar conocimientos generales a las propiedades de los sistemas acoplados
con retraso.



Abstract

The work in this thesis is focused on the complex dynamics of semiconductor
laser (SL) devices which receive time-delayed feedback from an external cav-
ity or are delay-coupled with a second semiconductor laser. We investigate
fundamental properties of the dynamics and study the utilization of transient
complex dynamics of a single SL arising from delayed feedback and external
signal injection for a neuro-inspired photonic data processing scheme. Based
on experiments and numerical modelling, we investigate systems of two cou-
pled SLs, gaining insights into the role of laser and coupling parameters for
the synchronization characteristics of these systems. We link certain features
of the synchronization dynamics, like intermittent desynchronization events,
to the underlying nonlinear dynamics in the coupled laser system.

Our research thus combines both fundamental insights into delay-coupled
lasers as well as novel application perspectives.
In order to explore the capabilities of a single SL with delayed feedback, we
follow the concept of reservoir computing (RC) based on delay systems. In
particular, we study two di�erent tasks, which are computationally hard for
traditional computing concepts. We explore several feedback con�gurations,
data injection methods and operating regimes of the laser and identify the
task-dependent optimal operating conditions. Our work demonstrates the
potential of simple photonic setups and the RC concept for future computa-
tional paradigms.
Furthermore, we study the synchronization properties in systems of two
delay-coupled SLs with relay. We explore the consequences of asymmetries
in this basic setup for the dynamics and synchronization properties. One
key question is, how synchronization decays or is lost, which is of signif-
icant importance for applications in chaotic communications schemes and
key-exchange protocols. We follow an event-based approach and connect
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changes in the synchronization levels for varying operating parameters or
varying mismatches to the onset and characteristics of desynchronization
events. Our results regarding synchronization levels and synchronizability
underline the signi�cance of symmetry and matching parameters for the
identical synchronization of delay-coupled oscillators.
We apply our �ndings regarding the possibility for identical synchronization
to develop and implement an experimental method to identify determinism
in the chaotic dynamics of a SL with delayed feedback. Our method is based
on zero-lag synchronization of the laser with a twin system. We focus our
investigation on power dropouts in the Low Frequency Fluctuations regime
of a SL since they represent distinct dynamical features whose origin had
been controversially discussed in the past. Our method can be adapted in
principle to other nonlinear delay systems which exhibit intrinsic noise to
test for traces of determinism.
Our work is of general relevance for research in nonlinear dynamics, as many
of our results and methods can be adapted for other delay systems and pro-
vide general insights into the characteristics of delay-coupled systems.
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1
Introduction

Synchronization is one of the most important phenomena of interacting dy-
namical systems. The principle was discovered by Christiaan Huygens in the
17th century while studying pendulum clocks attached to the same wall. He
noticed how the pendulums would adjust their rhythm to each other, even
after being intentionally perturbed.

Synchronization is ubiquitous in nature [1�4] and it is essential to cer-
tain biological processes [5]. It is observed in physiology [5�7], in neuronal
systems [8, 9], in chemical systems [10] and even in human behavior [11, 12].

The strongest form of synchronization is complete or identical synchro-
nization, describing the situation where the dynamics of the interacting sys-
tems coincide completely. A subset of identical synchronization is zero-lag or
isochronous synchronization, where the dynamics are instantaneously syn-
chronized. Identical synchronization may involve a �nite timeshift between
the synchronized dynamics of the respective subsystems. In principle, it can
only be achieved for identical systems. A weaker form of synchronization is
generalized synchronization (GS) [13�16]. GS does not require identical or
even similar oscillators. It implies that the dynamics of the interacting sys-
tems are not identical but that there is a well-de�ned relationship between
them. The dynamics of two systems exhibiting GS may be signi�cantly
correlated with or without a certain time shift. However, generalized syn-
chronization can also exhibit no signi�cant correlation among the involved
dynamical systems [17, 18].

In the early 1990s, Pecora and Carroll found that it is even possible to
synchronize chaotic dynamics [19, 20]. Since then, chaos synchronization has
been shown in many di�erent systems, like electrical circuits, optoelectronic
systems, lasers, generic oscillators, and neuron populations [2, 21�29]
Synchronization requires interaction between the involved oscillators. In
real-world systems time-delayed interactions are ubiquitous due to the �nite
speed of information propagation. Synchronization of systems with delay
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2 CHAPTER 1. INTRODUCTION

turned out to be relevant in many �elds of research and have been inves-
tigated in many contexts, including neural networks, laser dynamics [30],
tra�c dynamics [31], chaos control [32, 33], and gene regulatory networks,
among others. From a mathematical standpoint, delayed self-feedback ren-
ders a system in�nite dimensional. It was shown that delayed feedback can
induce chaotic behavior in nonlinear dynamical systems, including semicon-
ductor lasers, which are the central topic of this thesis.

Semiconductor lasers are omnipresent in our lives. Since their �rst de-
velopement in the 1960s [34�36] they have been extensively researched and
developed into technologies for applications in communications, as sensors,
as scienti�c tools, in consumer products, and for medical and industrial ap-
plications. When feedback-induced instabilities in SLs, e.g. from a distant
re�ector, were discovered [37], they were, and sometimes still are, viewed
as a nuisance, since they can act as noise-like perturbations and deteriorate
performance in applications like communications. Nevertheless, SLs with
delayed feedback have since then received widespread attention from the
nonlinear dynamics community, as it was recognized that they serve as ex-
cellent testbed systems to study delay-dynamics, chaos-synchronization and
applications based thereon (see e.g. [30]). They are well-controllable sys-
tems and their structure plus the feedback lead to the emergence of several
dynamical timescales, which make them especially versatile. SLs with de-
layed feedback or coupling were shown to exhibit rich dynamical behavior,
including chaos [38�52]. Moreover, the study of SLs has contributed to the
understanding of the classical routes to chaos, i.e., via intermittency [53],
bifurcation cascades [54], period-doubling [44, 46] and quasi-periodicity [41].

Semiconductor lasers are intrinsically noisy systems because of sponta-
neous emission. The complex dynamics arising in a semiconductor laser with
time-delayed feedback can be interpreted as an interplay between determin-
istic mechanisms and noise perturbations. There has been a long discussion
about the origin or the dominant drive underlying the complex dynamics
of a chaotic semiconductor laser, focusing on whether stochastic processes
due to noise or deterministic behavior dominate certain dynamical behaviors
[39, 42, 55�62]. In this work we will introduce a method based on identical
synchronization to test for traces of determinism in certain features of the
dynamics of an SL subject to time-delayed self-feedback pumped with a low
pump current.
It was shown that for large coupling delays, bidirectionally coupled lasers can
not synchronize isochronously, even if the coupling is completely symmetri-
cal and the lasers are identical. The laser dynamics then show signi�cant lag
correlation with the coupling delay [23, 63�70]. This behavior has been iden-
ti�ed with generalized synchronization of leader-laggard type, even though
in the symmetric case, the roles of leader and laggard are not �xed and
may switch irregularly [23]. The zero-lag synchronized solution exists but is
unstable to perturbations [63, 65].

In order to achieve stable identical synchronization between mutually
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delay-coupled nonlinear systems, a relay element can be introduced in be-
tween the coupled oscillators. With a relay, very distant coupled oscillators
can synchronize identically, due to the increased symmetry. Employing a
relay results in the coupled oscillators receiving the same delayed signal
(comprising self-feedback and coupling) at any time and irrespective of their
current dynamical state. If the relay is placed in the exact middle between
the coupled oscillators, they can exhibit zero-lag synchronization. This was
demonstrated for optically coupled lasers [71, 72], optoelectronically coupled
lasers [73�75], �ber ring lasers [66, 67], neurons [76, 77], optoelectronic oscil-
lators [78] and electronic circuits [79]. The relay can be active, e.g., a relay
laser or relay neuron, or passive, like a semitransparent mirror or a relay
�ber loop for the coupled laser case. In the case of an active relay, the outer
elements do not synchronize identically with the relay element, but rather
with each other

Klein et al. [80] showed, that if one introduces delayed feedback to two
mutually coupled subsystems identical synchronization can be established.
If the feedback delays equal the coupling delay, zero-lag synchronization
is possible. Adding self-feedback with appropriate delay times to coupled
nonlinear oscillators has the same e�ect for the stability of identical syn-
chronization as introducing a relay element between them.
The possibility of chaos synchronization led to the development of the idea
to use it in chaos-based applications, such as chaos encrypted communica-
tion schemes or chaos-based key-exchange [24�27, 81�91]. Commonly, this
involves hiding messages in chaotic carrier dynamics that are synchronized
between the coupled dynamical systems. The above described relay con�g-
urations might be attractive for chaos-based communications.

Using SLs for chaos communication schemes has several advantages com-
pared to other oscillators: SLs exhibit broadband dynamics on fast timescales,
enabling rapid and e�cient exchange of data. Furthermore, since modern
�beroptic communication is based on SLs, existing infrastructure can be
used to employ chaos communication over medium to long distances, as was
done by Argyris et al. during a �eld experiment in Athens [86].

Even in coupled systems in which identical synchronization is stable,
there exists, an e�ect that can lead to the loss of synchronization, if noise or
parameter mismatches are present. This phenomenon was named attractor
bubbling or riddling [45, 92, 93], and is associated with transversely unsta-
ble invariant sets in the chaotic attractor. Bubbling has been observed in
e.g. coupled electronic oscillators [94]. It has also been observed [95, 96]
and theoretically shown to exist [97, 98] in systems of delay-coupled lasers.
The bubbling phenomenon is characterized by intermittent desynchroniza-
tion events, interrupting time intervals of complete synchronization.

Attractor bubbling thus has adverse e�ects on synchronization-based
communication schemes like chaotic key-exchange protocols. In this thesis
we will investigate noise- and mismatch- induced bubbling events in bidirec-
tional relay-con�gurations of two coupled semiconductor lasers. We charac-
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terize their occurrence in dependence on the operating regimes and on the
magnitude of certain mismatches.
The richness in complex dynamics that SLs with delayed feedback or injec-
tion exhibit, has also garnered interest to use them as reservoir elements
in the framework of Reservoir Computing (RC). Reservoir computing [99]
is based on Recurrent Neural Networks (RNN), which are inspired by and
emulate some functionalities of the brain. RC utilizes the transient response
of a complex network of nonlinear nodes to injected input signals for data
processing purposes. These may include pattern recognition (classi�cation)
[100], time series prediction [101] and even mathematical operations [102].
Traditionally, RC requires complex networks with many elements, forming
high-dimensional dynamical systems [103]. It was demonstrated, however,
that a single nonlinear node with time-delayed feedback can perform clas-
sic RC tasks as well, due to the high-dimensional dynamics induced by the
feedback [104]. RC has been demonstrated in electronic systems [104], in
optoelectronic systems [105, 106] and with semiconductor optical ampli�ers
[107, 108]. Recently, all-optical RC using a single semiconductor laser with
feedback was experimentally demonstrated [109].

We implement an extensive numerical study analyzing the computational
potential of such a basic setup of a single SL with delayed feedback, and in-
vestigate the in�uence of di�erent feedback and injection con�gurations, re-
spectively, on the performance in two benchmark RC tasks. We furthermore
study and analyze the system's performance in di�erent operating regimes
resulting from the variation of key parameters which are accessible experi-
mentally.
The work in this thesis covers the study of the dynamics of semiconductor
lasers receiving time-delayed optical feedback and the application of the dy-
namics, as well as the extension from a single SL system to a system of two
mutually coupled semiconductor lasers receiving self-feedback. In the cou-
pled system we focus on the investigation of the synchronization properties
of the complex dynamics.

The thesis is organized as follows: �rst, in Chapter 2, we introduce the
particularities of a single SL subject to time-delayed feedback, and describe
typical dynamical regimes. We introduce models, based on rate equations,
for the description of such a laser. We will adapt these models in the following
chapters for systems of two mutually coupled lasers with feedback.

In Chapter 3 we investigate the synchronization properties of a system
of two lasers with feedback that are mutually coupled via a passive relay. In
particular, we investigate analytically the transverse stability of the synchro-
nized solution when di�erent asymmetries come into play. We consider an
asymmetrically placed relay leading to a feedback delay mismatch and a mis-
match of the coupling and the feedback strength, respectively. We analyze
numerically the dynamics in the system resulting from these asymmetries.
We also study qualitatively the dynamics and synchronization properties in
the case of frequency detuning of the two SLs in a numerical simulations.
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Chapter 4 covers the exploration of intermittent desynchronization in the
relay con�guration due to noise or mismatch. We follow an event-based ap-
proach and characterize individual desynchronization events stemming from
noise-induced bubbling for di�erent operating conditions in an experimental
system. Furthermore, we analyze detuning-induced episodic desynchroniza-
tion observed in experiments and numerics. Moreover, we numerically study
bubbling events that are induced by a small mismatch of the pump currents
of the coupled SLs and compare them with noise-induced bubbling.

In Chapter 5 we apply our previously obtained results regarding the in-
�uence of asymmetries, mismatches and noise on synchronization of coupled
SLs. We develop a method to test whether speci�c dynamical events in the
chaotic dynamics of a single SL subject to delayed feedback are dominantly
driven by the underlying deterministic drive or by stochastic processes due
to intrinsic noise. The method is based on isochronous synchronization with
a twin laser.

Finally, Chapter 6 is devoted to extensive numerical studies of the data
processing capabilities of a single SL with time-delayed feedback in the con-
text of reservoir computing. We explore di�erent feedback con�gurations,
di�erent input injection methods, as well as di�erent operating regimes and
their e�ect on the system's performance in two di�erent computational tasks.
We corroborate previous experimental results and identify optimized oper-
ating conditions for e�cient low-error data processing in di�erent kinds of
tasks.
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2
Single laser with feedback: Modeling

and characteristics

2.1 Introduction

Semiconductor lasers (SLs) are ubiquitous in our world. Since their invention
in the 1960s [34�36], they have been researched and developed to great ex-
tent. Nowadays, technology based on SLs is prevalent in our daily lives. SLs
are used in optical data storage, in communications, in material processing,
in medical applications, as pump sources and in consumer products. Because
of the large diversity of SLs, referring to di�erent SL materials, di�erent cav-
ity geometries (e.g. edge-emitting lasers [EELs], semiconductor ring lasers,
vertical-cavity surface-emitting lasers [VCSELs], distributed feedback lasers
[DFB], etc.) and di�erent gain concepts (e.g. bulk semiconductor, quan-
tum well [QW], quantum dash, quantum dots [QD], and quantum cascade),
a variety of characteristics can be accessed as needed for tailored research
conditions or applications. Moreover, semiconductor lasers are cheap, mass-
produced devices with low power consumption and high wall-plug e�ciency.
Since most of the world's communication networks are based on �ber-linked
semiconductor lasers, one can also use existing infrastructure for application
and large-scale experiments.

Although SLs can be considered a mature technology, one has to be aware
of certain particularities they have. One particularity of SLs is their strong
sensitivity to external perturbations by optical feedback or optical coupling,
around which the work in this thesis is centered. In Fig. 2.1, we show a
schematic of a semiconductor laser with feedback from an external cavity.

The very strong susceptibility of SLs to external optical feedback was �rst
observed decades ago by Risch and Voumard [37]. On the one hand, this sen-
sitivity was (and sometimes still is) considered a nuisance and detrimental to

7



8 CHAPTER 2. SINGLE LASER WITH FEEDBACK

applications. This is especially the case if the feedback-induced instabilities
fall within the signal bandwidth they can deteriorate the usefulness of the
laser in e.g. communications.

Figure 2.1: Schematic of a semiconductor laser (SL) in an external cavity.
The external cavity is characterized by the cavity length LEC, the corre-
sponding round trip delay τ , the feedback strength κ, and the feedback
phase φ.

On the other hand, the sensitivity of SLs to optical feedback also provides
many opportunities in research and applications, as it was recognized that
SLs are excellent devices to study Nonlinear Dynamics (NLD), especially
when it comes to delayed feedback-induced dynamics. They are versatile
devices o�ering a large range of di�erent nonlinear behaviors, including chaos
[38�52] and, as test-bed systems, are well-controllable in a set of system
parameters that in�uence the dynamics. Most critical parameters are usually
known or can be measured, which provides ideal circumstances for de�ned
and controllable experimental conditions.

The intrinsic nonlinearity of SLs manifests itself in their strong amplitude-
phase-coupling and is usually expressed by the so-called linewidth enhance-
ment factor α. SLs also provide a number of time scales that can span
several orders of magnitude. This provides a basis for complex nonlinear dy-
namics and phenomena. The slowest relevant timescale in SLs is related to
the carrier decay and corresponds to an order of nanoseconds. It is roughly
the timescale of the complex laser dynamics due to external perturbations.
Since the dynamics is still very fast, it enables experimentalists to measure
long dynamics timeseries for analysis while the system parameters' variation
can be considered constant during acquisition.

The susceptibility of SLs to external perturbations is not only bene�cial
for the use of SLs as testbed systems in the study of NLD. Especially the
possibility to generate chaotic intensity dynamics via optical feedback also
led to the developement of several application concepts, such as chaos-based
encrypted communication schemes or chaos-based key-exchange protocols
[24�27, 81�91, 110]. Several approaches of chaos communications and key
exchange using SLs have already been demonstrated (see e.g. [86]). Further-
more, due to their various dynamical characteristics, SLs have also been in-
vestigated regarding their capabilities in photonic computing and all-optical
data processing [109]. We will pursue this concept in Chapter 6.
In this chapter we introduce some of the fundamental properties of semi-
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conductor lasers with delayed optical feedback in Section 2.2. We introduce
the most-used model for the dynamics of such SLs, which is based on rate
equations, in Section 2.3, where we also calculate and analyze their basic
solutions, called External Cavity Modes. In Section 2.4, we present an ex-
tension of the model from Section 2.3 that considers two di�erent othogonal
modes, which are related to polarization orientation. Finally, we show char-
acteristic dynamical regimes of SLs when subject to delayed optical feedback
in Section 2.5, such as Low Frequency Fluctuations (LFF), Coherence Col-
lapse (CC) and square-wave switching (SW).
This chapter can be considered introductory to the following ones, though
the features shown here were obtained by original experimental and numer-
ical investigations. Since we study coupled laser systems, their synchro-
nization and their application in later chapters, we consider it essential to
start with the characteristics of the core element of all the con�gurations
and schemes that are discussed later on: a single semiconductor laser device
subject to delayed optical feedback.

2.2 Characteristic features

2.2.1 Susceptibility to perturbations

Compared to other laser types, SLs exhibit very fast timescales stemming
from light-matter interaction in the semiconductor material. The photon
lifetime is typically of the order of picoseconds, while the carrier decay takes
place on a timescale of the order of nanoseconds or sub-nanoseconds. The
interaction between the electric �eld and the carrier inversion determines the
timescale of the laser dynamics.

Semiconductor laser materials as gain media exhibit high optical gain
values. This results in the strong sensitivity to external perturbations. This
sensitivity is additionally supported in SL devices in which the facet re�ec-
tivity is de�ned only via the refractive index of the SL material [110]. A
low or moderate re�ectivity leads to a low Q-factor which in turn results
in the enhanced susceptibility to external perturbations [110]. However, a
low Q-factor is not necessary for an SL device to exhibit a strong sensitivity
to perturbations. VCSELs, for example, often exhibit strong sensitivity to
perturbations and a high Q-factor. The perturbations can be delayed optical
feedback signals, injected light, or noise. Feedback from external cavities can
induce instabilities in the emitted intensity [37, 39]. With increasing strength
of the feedback, the dynamics undergoes several bifurcations that can ulti-
mately lead to chaos [46, 49, 111]. Depending on the system parameters,
many di�erent dynamical regimes are attainable like period-2-periodicity,
period-4-periodicity, bistability, intermittency and di�erent chaotic regimes.
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2.2.2 Amplitude-phase coupling

SLs exhibit a particularly strong amplitude-phase coupling of the electric
�eld in the laser medium. Small changes in intensity (e.g. by spontaneous
emission, current transients or feedback) lead to excess perturbations in
the phase of the lasing modes. This is due to the particular nature of the
lasers' semiconductor material. In contrast to other types of lasers, e.g.
gas lasers, which exhibit lasing transitions between discrete energy levels
during stimulated emission, semiconductor lasers have partially �lled (quasi-
)continuous energy bands. This property of SLs lead to an asymmetric gain
curve [112] and thus to a dispersion relation for the refractive index with
a zero crossing at higher frequencies than the maximum of the gain curve
[110, 113]. A small change in the gain g due to a change in carrier density
(by intensity variation) in the laser material is accompanied by a variation
of the refractive index µ of the semiconductor material. This then leads to
a phase change of the lasing modes.

The gain g and refractive index µ are directly related to the imaginary
and real parts of the semiconductor material's susceptibility χ = χr+iχi(n),
respectively. The amplitude-phase coupling is caused by simultaneous varia-
tion of the imaginary part χi and the real part χr by carrier variation, both of
which are linked by the Kramers-Kronig-relations [114, 115]. The amplitude-
phase coupling is described by the so-called linewidth-enhancement factor or
simply α-factor [116, 117]:

α = −d(χr(n))/dn
d(χi(n))/dn

(2.1)

where n is the carrier density. Any change in χi (i.e., the gain) leads
to a change in χr (i.e., the frequency). For laser types with discrete energy
levels involved in the lasing transitions the gain curve is symmetric [118].
The refractive index crosses zero at the maximum gain frequency and the
symmetry is independent of the inversion n. Therefore, two-level lasers have
a negligible α-factor. In contrast, for many types of SLs α usually takes
nonzero values due to the asymmetry of their gain curves.

Several methods have been developed to experimentally determine the α
parameter [119]. The most popular methods are based on net gain measure-
ments of the SL material [120, 121], on the investigation of injection locking
e�ects [122], or self-mixing phenomena [123] but many others exist (see e.g.
[124]).

Because of the great diversity of semiconductor lasers, one has to be
speci�c about the type of lasers under investigation. Lasing transitions in
quantum-dot (QD) lasers and quantum cascade lasers, for example, are fun-
damentally di�erent from common quantum well (QW) lasers, even though
they are semiconductor lasers too. The lasing transitions in QD- and in
quantum cascade lasers, like in many non-semiconductor lasers, take place
between discrete energy levels. Consequently, these types of lasers are, in
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theory, expected to exhibit zero α in ideal cases because of their symmetric
gain pro�les. However, di�erent physical reasons, like inhomogeneous broad-
ening due to a broad QD size distribution, result in α-values signi�cantly
di�erent from theoretical predictions.

In this thesis we focus our studies on common edge-emitting lasers (EELs)
of the quantum-well (QW) type. These lasers usually exhibit an α between
α = 1 and α = 7 [110]. In the future, we will refer to QW edge-emitters as
SL.

The α parameter is one of the fundamental SL parameters and is impor-
tant for a number of dynamical processes, especially optical feedback-related
e�ects [41]. It was called linewidth-enhancement factor because it results in
an excess linewidth broadening by a factor of 1+ α2 [117, 125] as compared
to the prediction of Schawlow and Townes [126]. The α parameters de-
pends on the detuning of the emission wavelength from the gain maximum
[119, 125]. This spectral dependence can be linearized around the solitary
lasing threshold:

α = −kdµ/dn
dg/dn

(2.2)

Here, dµ/dn and g/dn are the derivatives of the refractive index and
the gain per unit length, respectively, with respect to the carrier density. k
denotes the free-space wave vector. The spectral dependence is dominated
by the pronounced spectral dependence of the gain.

However, because the spectral dynamics occurring in the studies pre-
sented in this thesis are con�ned to a small range where the frequency vari-
ation is small, we assume constant α in all cases.

2.2.3 Relaxation oscillations and characteristic timescales

Relaxation oscillations (ROs) are a characteristic feature of Class B lasers,
as which semiconductor lasers are often described, though the Class B laser
model includes many approximations. Class B lasers have at least two de-
grees of dynamical freedom which is necessary for periodic solutions. In
SLs, periodic solutions can occur as energy oscillations between the opti-
cal �eld and the carrier inversion. In solitary SLs, these oscillations are
damped. If the laser is operated in the continuous wave (CW) regime, the
gain and losses balance each other and the output power stays constant is
over time. Spontaneous emission can lead to a deviation from the stable out-
put power after which the power returns to the solitary CW power via the
damped relaxation oscillations. These oscillations have a natural frequency
ωRO which originates from the light-matter interactions in the laser cavity
[91, 118, 127, 128]:

ωRO =

√
γγe

(
I

Ithr,sol
− 1

)
− λRO (2.3)



λ =
1

2
γe

I

I

γ
γe I I

I = 1.05I
δI = 0.09I

ω ≈ 1.67

I = 1.05I
δI = 0.09I

ω

R2 = 0.994



2.2. CHARACTERISTIC FEATURES 13

Figure 2.3: Measured relaxation oscillation frequencies of a SL in depen-
dence of its normalized pump current. The black squares are the measured
frequencies, the red line depicts a square-root �t.

even with very small amplitude, can undamp the relaxation oscillations.
Undamped ROs are of crucial importance for the dynamics of SLs with
delayed optical feedback. Their frequency de�nes one of the fundamental
dynamical timescales in such a system. Because of the strong sensitivity
of semiconductor lasers to perturbations and the fact that optical feedback
undamps the ROs, feedback-induced instabilities in the intensity domain
emerge on the timescale of the relaxation oscillations which corresponds to
a sub-nanosecond timescale. This way, the ROs impose an upper limit to
the modulation speed of SLs. High relaxation oscillation frequencies thus
also allow for sub-nanosecond modulation of the laser's output intensity, a
requirement for modern high-transmission-rate optical communication sys-
tems.

The undamped relaxation oscillations enable broadband dynamics in the
laser, a fact that is also re�ected in the comparison of radio frequency (rf)
spectra between the solitary case and the case with feedback. The optical
feedback undamps a broad range of frequencies, and the peak frequency is
shifted toward higher frequencies. In the solitary laser case, the RO fre-
quency is visible as a resonance in the rf-spectrum. In Fig. 2.4 we show
experimentally obtained spectra of an SL in both situations.

Characteristic timescales

In a system of a single semiconductor laser that receives time delayed op-
tical feedback from a distant re�ector or via a feedback �ber loop (each
forming an external cavity), several important timescales are prevalent: As
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Figure 2.4: Experimentally obtained rf-spectra of a single semiconductor
laser for the cases of solitary operation and with feedback, respectively. The
peak in the solitary laser spectrum corresponds to the relaxation oscilla-
tion frequency. The feedback leads to an undampening of a broad range
frequencies. Figure courtesy of Xavier Porte.

we learned above, the RO frequency plays a very important role for the dy-
namics timescale since it usually de�nes the dynamical bandwidth of the
semiconductor laser.

The feedback delay time τ which is the roundtrip time through the ex-
ternal cavity is another crucial timescale intrinsic to this system. Among
e�ects on spectral dynamics (see below), the signature of the feedback delay
can be found in the output dynamics as well as in the rf-spectra.

In Fig. 2.5 we show the low frequency part of an rf-spectrum of a laser
subject to feedback from a �ber loop resulting in a round-trip time of τ ≈ 70
ns. The spectrum exhibits peaks that are evenly spaced and come from the
roundtrip in the external cavity. The corresponding round-trip frequency de-
�nes the spacing between neighboring peaks. In general, higher-order delay-
peaks are also prevalent throughout the spectrum. However, for increasing
order, the peaks are more and more suppressed.

Another important timescale is the intra-cavity round-trip time through
the laser cavity. Commonly sized cavities of edge-emitters have a corre-
sponding round-trip time of 2-20 ps. This time de�nes the spacing of the
longitudinal modes in a conventional SL which thus have mode spacing of
the order of 50-500 GHz.
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Figure 2.5: Delay time signature in the low frequency part of the rf-spectrum
of a single laser subject to moderate feedback for two di�erent pump currents.
The peak spacing corresponds to the inverse of the round-trip time through
the external cavity (i.e., the delay time) τ .

2.2.4 Feedback-a�ected power-current characteristics

Solitary semiconductor lasers exhibit an (almost) linear relation between
output power and bias current starting at the threshold current Ithr,sol. The
threshold is de�ned as the point where the internal and external losses of
the laser are compensated by the gain. Coherent optical feedback reduces
the e�ective lasing threshold because the photons that are reinjected into
the laser cavity reduce the losses and thus lasing starts for a lower pump
current.

The pump-power (P-I-)characteristics of a semiconductor laser with feed-
back exhibits another distinct feature. In contrast to the solitary case, the
P-I curve shows a kink for pump currents around the solitary lasing thresh-
old [39, 42, 53]. This divergence from the otherwise linear relation of power
and pump current above threshold can be attributed to the onset of irregular
intensity �uctuations with a signi�cant low-frequency component, which are
induced by the feedback (see Section 2.5).

Two experimentally obtained P-I-curves, one for the solitary case and
one for the situation with feedback, respectively, are depicted in Fig. 2.6. In
this example, the feedback reduces the threshold by ≈ 15%. Furthermore,
the slope e�ciency is reduced. This is a common feature for edge-emitters
due to asymmetric re�ection coating in the laser cavity [129, 130].
The reduction of the lasing threshold in dependence of the feedback strength
follows a complicated logarithmic relation depending on the di�erent re�ec-
tivities in the laser cavity and in the external cavity [129, 131, 132]. Fig. 2.7
depicts experimentally obtained lasing thresholds normalized by the solitary
threshold Ithr/Ithr,sol in dependence of the feedback attenuation in dB where
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Figure 2.6: Experimentally obtained power-bias current characteristics for
a single mode QW edge-emitting laser. Shown are the P-I-curves of the
solitary laser (blue) and of the laser receiving optical feedback (red).

zero attenutation corresponds to full feedback strength.

Figure 2.7: Measured threshold pump currents (normalized with the solitary
threshold) for di�erent feedback strengths/feedback attenuations. The feed-
back strength increases exponentially with decreasing feedback attenuation
(in dB). Zero attenuation means full strength feedback. In the experiments
that corresponded to a few percent of emitted light coupled back into the
cavity.
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2.2.5 E�ect of feedback on spectral characteristics

As noted earlier, optical feedback can result in complex dynamical behavior
of the laser's output. In conjunction the spectrum of the laser broadens sig-
ni�cantly. The corresponding dynamical regime has been accordingly coined
Coherence Collapse by Lenstra [38]. Additionally, the emission frequencies
are redshifted by the feedback in comparison to the solitary case. Both e�ects
are related to the SL-intrinsic nonlinearity represented by the α parameter.
In Fig. 2.8 we show exemplary optical spectra obtained from experiments
for the solitary laser case and for the feedback case. The relevant spectral
part broadens signi�cantly to several GHz due to moderate optical feedback.

Figure 2.8: Optical spectra of a solitary edge-emitting SL (black) and of
the same laser subject to optical feedback (red). The spectrum broadens to
several GHz, the feedback accounted for ≈ 6− 7% of the emitted light.

As we will see later (see Section 2.3), we can roughly estimate the α-
factor from the linewidth broadening in highly resolved optical spectra if the
feedback rate is known.

2.3 Single mode rate equations

2.3.1 Lang-Kobayashi model

The dynamics of a semiconductor laser subject to time-delayed optical feed-
back from an external cavity (e.g. from a mirror placed at a distance) can
often be decribed by a rate equation model for the slowly varying electric
�eld amplitude E(t) and the carrier inversion N(t) and by adding feedback
terms to the �eld equation as introduced by Lang and Kobayashi in 1980
[133]:
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Ė(t) =
1

2
(1 + iα) (G(E , N)− γ) E(t) + κeiψE(t− τec) + FE (2.5)

Ṅ(t) =
I

e
− γeN(t)− G(E , N) |E(t)|2 (2.6)

with the gain function

G(E , N) = g
N(t)−NT

1 + ε |E(t)|2
. (2.7)

Here, α is the linewidth enhancement factor describing the amplitude-
phase coupling (note the imaginary i), γ is the photon decay rate describing
the losses in the laser cavity, κ represents the strength of the optical feedback
in terms of a feedback rate, ψ corresponds to the feedback phase, τec is the
feedback delay time from round-trip through the external cavity, I is the
laser's pump current, e is the elementary charge, and γe is the carrier decay
rate.

The gain is modeled as nonlinear with the di�erential gain g, the carrier
number at transparency NT and the gain saturation coe�cient ε. Without
considering gain saturation ε = 0, the gain is linear with the carriers N . The
nonlinear gain saturation is a phenomenologically introduced term that is
motivated by nonlinear e�ects in the semiconductor gain medium like spec-
tral hole burning and carrier heating. A linear gain theory cannot account
for those phenomena. With increasing pump current (and thus increasing
output intensity |E|2), the nonlinear gain saturation becomes more relevant
and has an increasing e�ect on the dynamics of the lasers. The gain only
signi�cantly saturates for large intensities.

Spontaneous emission e�ects are included in the model by adding a
Langevin noise term FE to the �eld equation. Its characteristics are de-
scribed in the following. In general, an additional noise term for carrier
noise can be added to Eq. (2.6) to accout for shot noise. Some works have
investigated the e�ect of carrier noise on the dynamics [134, 135]. However,
carrier noise is most often omitted in the literature considering the numerical
treatment of semiconductor laser using rate equations, as it was found that
it can be disregarded in many instances. In this thesis, we also choose to
omit carrier noise terms and thus neglect carrier noise.

Noise implementation

The noise from spontaneous emission is implemented as a complex Gaussian
white noise term FE in the �eld equations:

FE = F1 + iF2. (2.8)

where the real and imaginary parts are independent random processes. The
term has zero mean

〈FE(t)〉 = 0 (2.9)
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and the following holds〈
FE(t)FE(t′)

〉
= βγeN(t)δ(t− t′) (2.10)

Here, β is the spontaneous emission factor, describing the fraction of spon-
taneously photons emitted into the respective lasing mode.

Nondimensionalization

In order to be able to numerically study the system's equations in a conve-
nient way, they are often transformed into a dimensionless form by nondi-
mensionalization [98]. This has two main advantages: very large and very
small numerical values are avoided and the number of parameters is reduced
in the dimensionless form by combining several parameters into one. The de-
tailed nondimensionalization is not shown here but is provided in Appendix
A.

After nondimensionalization, Eqs. (2.5)-(2.7) reduce to

Ė(s) =
1

2
(1 + iα) (G(E, n)− 1)E(s)

+KeiψE(s− τ) + FE (2.11)

ṅ(s) =
1

T

(
p− n(s)−G(E, n) |E(s)|2

)
(2.12)

G(E,n) =
n(s) + 1

1 + µ |E(s)|2
. (2.13)

The times are scaled to the photon lifetime (i.e., the inverse of photon
decay γ) s = t/γ. Furthermore, τ is the dimensionless feedback delay time,
K is the dimensionless feedback strength and ψ is the feedback phase. α
remains since it is already dimensionless, T is the so-called timescale param-
eter, describing the relation of the photon and carrier decay rates T = γ/γe,
p describes the dimensionless pump parameter in excess of the threshold
(p = 0 corresponds to I = Ithr,sol, where Ithr,sol is the solitary lasing thresh-
old current), and µ is the dimensionless gain saturation coe�cient.
The noise is converted in the same way. The correlation corresponding to
Eq. (2.10) then comes out to〈

FE(s)FE(s′)
〉
= β (n+ n0) δ(s− s′).

n0 = 1+ g
γNT takes the role of the carriers at threshold in dimensionless

units.

2.3.2 External cavity modes

External Cavity Modes (ECMs) are the basic solutions to the the rate Eqs.
(2.11), (2.12) with constant amplitude, frequency and carrier number, re-
spectively:
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E(t) = Aeiωt (2.14)

n(t) = n (2.15)

A,ω, n = const (2.16)

They are often referred to as continuous wave (CW) solutions or CW-
states, while mathematically they are periodic orbits in (E, n)-phase [136].
ECMs are divided in two groups - modes and antimodes, respectively. They
stem from constructive (modes) and destructive (antimodes) interference in
the external cavity and thus strongly depend on the length of the cavity,
which corresponds to the feedback delay τ , and the strength of the feedback,
but also on other parameters.

They organize the phase space and provide a skeleton for the output
dynamics of the laser with feedback from an external cavity [50, 55, 98, 136].

To calculate these solutions, we �rst convert the dimensionless model
(Eqs. (2.11),(2.12)) to equations for amplitude, phase and inversion by sub-
stituting E(t) = A(t)eiφ(t):

Ȧ(t) =
1

2
(G(A,n)− 1)A(t)

+KA(t− τ) cos (φ(t− τ)− φ(t) + ψ) (2.17)

φ̇(t) =
α

2
(G(A,n)− 1) +K

A(t− τ)

A(t)
sin (φ(t− τ)− φ(t) + ψ)(2.18)

ṅ(t) =
1

T

(
p− n(t)−G(A,n)A2

)
, (2.19)

with the gain

G(A,n) =
1 + n(t)

1 + µA(t)2
. (2.20)

We now insert the ECM-ansatz (2.14)-(2.16) into (2.17)-(2.19) and gain
after some algebra

ω = −K
√
α2 + 1 sin(ωτ + arctanα+ ψ) (2.21)

n =
pµ− 2K cos(ωτ + ψ)

1 + µ
(2.22)

A =

√
p− n

n+ 1
=

√
p+ 2K cos(ωτ + ψ)

(1 + µ)(1− 2K cos(ωτ + ψ))
. (2.23)

We numerically solve the transcendental equation (2.21) and gain a full
set of solutions (ω, n,A). These �xed point solutions lie on an ellipse in the
phase space of (angular) frequency shift and excess carriers (ω, n) around the
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solitary laser mode (ωsol, nsol). We set ωsol = 0 and nsol = 0, so the phase
space coordinates are relative to the solitary laser. The �xed points with
lower inversion and therefore higher gain have lower frequencies as compared
to the solitary laser mode. The extent of the ellipse in the frequency domain
is ±ωmax = ±K

√
α2 + 1. This extent is measurable in experiments with

high-resolution optical spectrum analyzers. If the feedback rate is known,
one can estimate the α-factor.

The solutions are created in pairs via a saddle-node bifurcation [48]. The
�xed points on the stable branch are called modes, the ones on the unstable
branch are called antimodes. If the feedback strength is increased, new
mode-antimode pairs are created at the low-frequency end of the ellipse. The
modes may be destabilized by the feedback via a Hopf bifurcation and remain
as attractor ruins. At least one mode is stable: the mode with maximum
gain, i.e., with the minimum inversion. This mode is consequently called
Maximum Gain Mode (MGM) [57, 137]. Other modes close to the MGM
can remain stable as well, depending on the α-parameter. The condition for
mode stability was found to be [137, 138]

− arctan(α−1) < ωτ mod 2π < 0 (2.24)

The modes that remain stable besides the MGM are called Stable High
Gain Modes (HGM). We will later see the signi�cance of these modes for the
laser's dynamics. The stronger the laser's nonlinearity, meaning the larger
the α-factor, the fewer modes are stable.

The number of modes Zmodes with negative frequency shift relative to
the solitary laser mode can be calculated by dividing the frequency extent
of the ellipse K

√
α2 + 1 by the frequency separation between neighboring

modes i and j, |ωi − ωj | = 2π
τ :

Zmodes = Kτ
√
α2 + 1/(2π). (2.25)

In Fig. 2.9 we show exemplary cases for the positions of the ECMs in
phasesapce for di�erent values of α. As is obvious from Eq. (2.21), the
α parameter not only in�uences the extent of the mode ellipse but also its
eccentricity because of the addtional phase term arctanα. This and the
decreasing number of stable modes with increasing α is re�ected in Fig. 2.9
for α = 1.0 (a), α = 2.0 (b), α = 3.0 (c) and α = 3.5 (d). There, the
blue diamonds represent stable modes with the MGM shown in yellow. The
unstable modes are shown as green circles and the antimodes are represented
by red squares. With α increasing from α = 1.0 to α = 3.5, the number of
stable modes decreases from 6 to 2 (including the MGM).

We will describe how the laser's dynamics is organized by the ECMs and
a�ected by their relative position in detail in Section 2.5.
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Figure 2.11: Numerically produced P-I-characteristics of a single SL subject
to delayed optical with di�erent strengths K. The growing reduction of the
lasing threshold with increasing feedback level is reproduced. The simulation
parameters correspond to those given for Fig. 2.10.

were found to be reproduced by the LK-model in spite of its simplicity
[23, 42, 44, 48, 50, 58, 138�140]. For a review see e.g. [30]. Some of the most
prominent dynamics of SLs with feedback like Low Frequency Fluctuations
[42, 48, 50] and Coherence Collapse [38] are well-reproduced by the model
and discussed in Section 2.5.

Several modi�cations of the Lang-Kobayashi-based model exist to ac-
count for other behaviors like multimode emission, spatial inhomogeneities
and other spatial e�ects. In this work we consider the basic one-mode model
(Eqs. (2.5)-(2.7)) which captures the e�ects of polarization-maintained feed-
back, which we are most interested in, as well as an extended two-mode
model considering dynamics in two orthogonal modes linked to the polar-
ization alignment of the feedback. The latter model is introduced in the
following section.

2.4 Polarization modes - extended model

2.4.1 Polarization-rotated optical feedback

In this section, we introduce an extension to the common Lang-Kobayashi-
based rate equation model (Eqs. (2.5)-(2.7)). This extension describes the
laser's dynamics via two equations for the electric �elds that we equate with
polarization modes. This extended model allows us to simulate polarization-
rotated optical feedback (PROF) in an edge-emitting SL, i.e., feedback whose
polarization direction is rotated by 90◦relative to the emission. PROF
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results in interesting dynamical regimes di�erent from those induced by
polarization-maintained optical feedback (PMOF) as modeled by Eqs. (2.5)-
(2.7).

In most edge-emitting lasers (EELs), one of the orthogonal modes is usu-
ally dominant while the other is strongly suppressed [141, 142]. We will call
the modes the parallel polarization mode (‖) and the perpendicular polar-
ization mode (⊥), and will assume in the following, that the parallel mode
dominates over the perpendicular one. This is, however, not a generality.
The two modes are also often referred to as TE- (transverse electric) and
TM- (transverse magnetic) mode, respectively. The perpendicular mode
can be excited by rotating the polarization axis of the feedback signal by 90
degrees, in �ber-based experiments this is often accomplished via a Faraday-
mirror or by adjusting the polarization axis with a polarization controller
(PC). However, much stronger feedback levels are necessary to stimulate the
perpendicular mode as compared to the dominant parallel mode. Then the
perpendicular polarization mode can overcome the losses and compete for
the gain with the parallel polarization mode.
Already the P-I-characteristics of an SL subject to PROF di�ers signi�cantly
from that of a laser with polarization-maintained feedback: the lasing thresh-
old is usually not or only minutely reduced by PROF, in contrast to PMOF
[139]. This is illustrated in Fig. 2.12 in comparison with Fig. 2.6 which
depict experimenal pump current-power characteristics of SLs subject to
PROF and PMOF, respectively.

Figure 2.12: Experimentally obtained pump current-output power charac-
teristics of an SL subject to polarization-rotated feedback (red) compared
with the solitary case (blue). As can be seen, the lasing threshold and the
slope of the P-I curve remain similar.

The PROF-induced dynamics have been described as only weakly chaotic
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and sometimes quasiperiodic [139] for small to intermediate feedback strengths.
However, dynamics induced by larger PROF rates are seen as to exhibit a
high complexity which is re�ected by vanishing autocorrelation peaks of the
intensity outputs [143]. Radio-frequency (rf) spectra of a laser with PMOF
or PROF, respectively, exhibit signi�cant di�erences underlining the dynam-
ical di�erences in both feedback regimes. Fig. 2.13 depicts two rf-spectra
for a PMOF and a PROF scheme, respectively, with comparable feedback
attenuation along the optical path. The curve for PROF exhibits enhanced,
relatively narrow peaks at the relaxation oscillation (RO) frequency and its
�rst resonance, while the spectrum of a laser with PMOF exhibits a broad
continuum, indicating more complex dynamics. We note, however, that
during the corresponding experiment the feedback strengths were low, cor-
responding to only a few percent of emitted light coupled back into the laser
cavity after the external cavity round-trip. For strong polarization-rotated
feedback, broad bandwidth rf-spectra can be obtained as well.

Figure 2.13: Experimentally obtained rf-spectra of a single SL with
polarization-maintained feedback (PMOF, black) and with polarization-
rotated feedback (PROF, red). The feedback attenuation along the optical
path in the experimental setup is of comparable magnitude and in results in
a low feedback level of a few percent of emitted light coupled back into the
laser cavity after the external cavity round-trip.

PROF has been investigated experimentally and numerically and deci-
cive di�erences between PROF-induced and PMOF-induced dynamics and
spectral characteristics, respectively, have been found [139, 141, 142, 144].

It was shown experimentally that PROF can induce square-wave switch-
ing behavior in both modes with a period corresponding to approximately
twice the feedback delay [145�149]. Additionally, it can result in synchro-
nization of the parallel polarization mode and the orthogonal polarization
mode [147, 150, 151]. Square wave switching resulting from PROF has po-
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tential applications in communications, data processing etc.

PROF-induced dynamics has been investigated with respect to its appli-
cation in random number generation [143, 152]. These schemes bene�t from
the fact that due to the additional indirect interaction between the per-
pendicular polarization mode and the dominant parallel polarization mode
via the carrier reservoir, the delay signature in the dynamical time series
and the autocorrelation can be suppressed. This is thought to enhance the
randomness of the generated number in these schemes.

It is important to note the di�erence between two di�erent schemes to
produce PROF: �rst, a rotation by 90◦of the polarization direction of the
feedback signal which leads to the light from one of the modes being coupled
into the respective other and vice versa. Second, a coupling scheme where
only light from the dominant mode is coupled into the suppressed one, which
is often called selective orthogonal feedback [147, 153�155]. Both schemes
lead to di�erent characteristics. Nevertheless, square-wave switching and
synchronization between both orthogonal modes can be accomplished in both
schemes.

2.4.2 Model

The question how to model polarization-rotated feedback has been investi-
gated and discussed for quite some time now [139, 141, 151, 156�160]. Often,
a model with a single mode (the dominant one) was employed with the feed-
back term going only into the equation of the carriers. The rotated feedback
was called "incoherent feedback" because this simple model did not allow for
coherent interaction between the delayed feedback signal and the main mode
[141, 142, 156, 157]. Features like square wave switching [147, 149, 151, 160],
which have been observed experimentally, can not be reproduced with such
a simple model.

To date, PROF is mostly modeled by extending the LK-equations (2.5)-
(2.7) to two �eld equations, one for the parallel polarization mode (E‖) and
one for the perpendicular polarization mode (E⊥), with both modes sharing
one carrier reservoir:

Ė‖(t) =
1

2
(1 + iα)

(
G‖(E‖, N)− γ‖

)
E‖(t)

+κ‖E‖(t− τec) + FE‖ (2.26)

Ė⊥(t) = −i∆ΩE⊥(t) +
1

2
(1 + iα)

(
G⊥(E‖, N)− γ⊥

)
E⊥(t)

+κ⊥E‖(t− τec) + FE⊥ (2.27)

Ṅ(t) =
I

e
− γeN(t)− G‖(E‖, N)

∣∣E‖(t)∣∣2 − G⊥(E⊥, N) |E⊥(t)|2(2.28)

with the correspondingly de�ned gain functions
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G‖(E‖, N) = g‖
N(t)−NT

1 + ε
∣∣E‖(t)∣∣2 (2.29)

G⊥(E⊥, N) = g⊥
N(t)−NT

1 + ε |E⊥(t)|2
. (2.30)

Here, ∆Ω describes the frequency detuning between both modes. The
other parameters are de�ned like for the one-mode-model in Section 2.3.
Because the parallel polarization mode is dominant, the detuning is given
relative to its frequency. It is important to note, that both modes may
have signi�cantly di�erent parameters, especially the di�erential gains g‖,
g⊥ should re�ect the dominance of mode E‖ over mode E⊥. The photon
lifetimes in both modes might be di�erent as well.

There are only two feedback terms in our model: the feedback κ‖E‖(t−
τec) from the parallel mode to itself with feedback strength κ‖ and the
polarization-rotated feedback term κ⊥E‖(t − τec) that is coupled from the
dominant mode into the suppressed perpendicular polarization mode with
strength κ⊥. Since in experiments often the whole polarization state of a
feedback signal with both orthogonal components is rotated to obtain PROF,
one might expect bidirectional coupling between both modes in terms of feed-
back, i.e., a feedback term going from the perpendicular to the parallel mode
and addtionally a self-feedback term for the perpendicular mode. However,
due to the natural suppression of the perpendicular mode, we choose to ne-
glect feedback from the perpendicular to the parallel mode and thus model
the coupling between the modes as unidirectional in this thesis (i.e. 'selective
orthogonal feedback').

We will only consider two di�erent "pure" feedback cases: polarization-
maintained optical feedback (PMOF), meaning κ⊥ = 0, or polarization-
rotated optical feedback (PROF) with κ‖ = 0. We will use this polarization-
resolved two-mode model in Chapter 6, when investigating the transient
complex dynamics of a single laser subject to delayed feedback with di�erent
polarization orientations: PMOF and PROF.

2.4.3 Nondimensionalization

In correspondence to Section 2.3, we employ the same nondimensionaliza-
tion to reduce our model to dimensionless units and fewer parameters. The
procedure is described in Appendix A. Eqs. (2.26)-(2.30) then become
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Ė‖(s) =
1

2
(1 + iα)

(
n(s) + 1

1 + µ
∣∣E‖(s)

∣∣2 − 1

)
E‖(s) (2.31)

+K‖E‖(s− τ) + FE‖

Ė⊥(s) =
1

2
(1 + iα)

(
σ

n(s) + 1

1 + µ
σ |E⊥(s)|2

− ρ

)
E⊥(s) (2.32)

+K⊥
√
σE‖(s− τ)− i∆E⊥(s) + FE⊥

ṅ(s) =
1

T
(p− n(s)− n(s) + 1

1 + µ
∣∣E‖(s)

∣∣2 ∣∣E‖(s)
∣∣2 (2.33)

− n(s) + 1

1 + µ
σ |E⊥(s)|2

|E⊥(s)|2).

The extra parameters compared to the dimensionless model (2.11)-(2.13)
here are the ratio of photon lifetimes ρ = γ⊥

γ‖
, the ratio of the modal gains

σ = g⊥
g‖
, and the spectral detuning between the modes∆ = ∆Ω

γ‖
. These de�ne

the relation of the two modes in terms of excitability (gain ratio), timescale
(photon lifetime ratio) and emission spectrum (frequency detuning).
Because we focus on edge-emitting lasers (EELs) in this work, we set the
frequency detuning between the two modes to ∆Ω = 0, in agreement with
previous work. However, zero detuning between polarization modes is not
generally observed in EELs. Oliver from our lab measured the frequency de-
tuning between the polarization modes of several edge-emitters to be ≈ 200
GHz. Nevertheless, in numerical simulations, a detuning of that magnitude
has negligible e�ects on the dynamics. Vertical-cavity-emitting lasers (VC-
SLs) for example often exhibit a detuning between both orthogonal modes
of the order of several to tens of GHz. Furthermore, for simplicity we as-
sume equal photon lifetimes ρ = 1.0. As for the gain ratio we typically set
σ = 0.84, a value we adapt from [139].

With this model we can reproduce the P-I-characteristics of a single SL
with PROF like shown in Fig. 2.12. This is shown in Fig. 2.14. Like in
our experiments, simulated PROF does not reduce the lasing threshold and
does not signi�cantly change the slope e�ciency.

We qualify the di�erence of the two modes with respect to their sensitiv-
ity to feedback by calculating bifurcation diagrams of local overall intensity
extrema |E‖|2 + |E⊥|2 for varying feedback strengths corresponding to the
respective feedback scheme: K‖ for PMOF and K⊥ for PROF. This is de-
picted in Fig. 2.15. We see that in order to induce instabilities, PROF
strengths K⊥ of an order of magnitude higher than for the PMOF scheme
are required for the given parameter set. These parameters are given in the
caption of Fig. 2.15.
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The dropouts occur on a much slower timescale than the chaotic �uctua-
tions - the regime has thus been named appropriately. We show exemplary
numerically obtained LFF-intensity dynamics in Fig. 2.16(a).

Figure 2.16: Numerically obtained LFF-dynamics in intensity (a) and fre-
quency (b). The power buildup coincides with a drift toward lower frequen-
cies. The simulation parameters are p = 0.1, τ = 2000, K‖ = 0.1, α = 3.0,
µ = 0.02, T = 200, β‖ = β⊥ = 10−6.

To investigate the system from a spectral point of view we calculate the
instantaneous frequency ω(t) via the delay-phase di�erence averaged over
the previous delay time interval of length τ :

ω(t) = (φ(t)− φ(t− τ)) /τ. (2.34)

while the momentary continuous phase φ(t) is gained by connecting non-
continuous jumps in the phase computed from the complex �eld E(t):

φ(t) = arctan (= [E(t)] /< [E(t)]) . (2.35)

From the spectral perspective, the LFF regime has been described as
chaotic itinerancy with a drift [48, 50]. This is, because the dynamics'
trajectory in frequency-carrier phase space itinerates between di�erent Ex-
ternal Cavity Mode (ECM) solutions with a drift toward lower frequencies,
i.e., toward the High Gain Modes (HGM) region, until the subsequent power
dropout. We illustrate this for an exemplary set of parameters in Fig. 2.17(b)
where the trajectory in the (ω, n)- phase space corresponds to the intensity
and frequency dynamics, respectively, that are shown in Fig. 2.17(a). The
spectral drift slows down while the dynamics approach the high gain region
- the dwell time of the phase space trajectory around modes at the lower
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end of the ECM ellipse (see Section 2.3) is longer than for modes closer to
the solitary laser frequency. This is illustrated by the decreasing slope in
the corresponding frequency dynamics' time series (see Fig. 2.17(a) lower
panel). In Fig. 2.16(b) we show the frequency dynamics over a longer in-
terval including several corresponding power dropouts which are re�ected in
frequency jumps to the vicinity of the solitary laser frequency.

The origin of the power dropouts was long debated, especially whether it
is a intrinsic deterministic property of the system or mainly driven by noise
from spontaneous emission. Sano explained the occurrence of the power
dropouts as "crisis" events when the trajectory gets too close to the saddle
node of an unstable antimode [55]. This brings the system back to the "o�
state" ( the solitary laser state) - the power drops and the trajectory is
ejected toward the solitary laser frequency and the power buildup and spec-
tral drift starts anew. This repeating process has been appropriately coined
the "Sisyphos e�ect" [48]. It was shown, that purely deterministically ob-
tained dynamics without noise reproduce the LFF structure with dropouts
but that noise can in�uence the frequency of the power dropouts. We in-
vestigate the question of the dominant drive underlying the dropouts on an
individual event basis in Chapter 6.

Fig. 2.17(c) depicts an optical spectrum generated by Fast Fourier Trans-
form (FFT) of the complex �eld variable for parameters corresponding to
the dynamics shown in (a) and (b). The spectrum illustrates the feedback-
induced spectral broadening, time-resolved by the trajectory in (b) and the
red-shifting of the emission frequencies relative to the solitary laser fre-
quency, which corresponds to the spectral drift to lower frequencies over
time. The inset depicts a magni�cation for a narrow frequency band show-
ing peaks corresponding to emission around di�erent ECMs involved in the
chaotic intineracy.

In�uence of α and stable High Gain Mode emission

We have seen in the previous Sections that the α-factor is a crucial parameter
of our system in terms of nonlinearity as well as in terms of position and
frequency extent of the ECMs. Because LFF-dynamics are mediated by the
modes, a changed position in phase space results in altered characteristics of
the LFFs. The dynamics' dependence on the α-parameter will be signi�cant
especially in Chapter 5 where we investigate the deterministic nature of
LFF power dropouts. An increased α increases the eccentricity of the mode
ellipse. Increasing the eccentricity means that the distance between modes
and unstable antimodes is reduced, the intensity (or carrier) �uctuations
are thus more likely approach the stable manifold of a saddle earlier in the
itinerancy process. An increased α also results in a faster intineracy and
thus a shorter dwell time of the trajectory around an individual ECM.

We illustrate this in Fig. 2.18 for α = 3.5 (a) and α = 4.0 (b). The
length of the depicted dynamics correspond to that shown in Fig. 2.17(a,b),
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of the above described is also true: a smaller α slows down the itinerancy,
the dynamics are enabled to reach lower frequencies relative to the spec-
tral bandwidth for the corresponding α. We present a similar phase space
trajectory for α = 2.5 in Fig. 2.18(c).
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Figure 2.18: Dynamics trajectory in (ω, n)-phase space for α = 3.5 (a),
α = 4.0 (b), and α = 2.5 (c). The lengths of the dynamics match as do
their other simulation parameters. These correspond to the ones given in
the caption of Fig. 2.17. Note the di�erent scales in the frequency (x-
) axis. Green symbols represent modes, red symbols are antimodes, the
yellow squares corresponds to the Maximum Gain Mode (MGM) and the
blue symbols are Stable High Gain Modes.
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As we have seen in Section 2.3, a decreased α increases the number of
stable modes in the vicinity of the maximum gain mode (MGM) called the
High Gain Modes (HGM). The probability of the dynamical trajectory for a
given pump current and a given feedback strength to be (at least temporar-
ily) captured by one of these stable modes increases with decreasing α. If
the dynamics remain in the vicinity of a single HGM, the laser emits a stable
output. This coexistence between LFF dynamics and stable emission that
can occur for certain values of the pump current and the feedback strength,
respectively, has been shown experimentally before [57, 138]. Increasing the
pump current leads to larger �uctuations around each ECM and therefore
again increases the probability of a critical event with an antimode and a
subsequent power dropout.

In Fig.2.19 we present an experimentally obtained dynamics timeseries
showing the coexistence of LFF and stable emission. The narrow band cor-
responds to emission at a HGM, while the bursts are Low Frequency Fluc-
tuations.

Figure 2.19: Coexistence between stable output and LFF in the dynamics
of a single laser with feedback. The laser was pumped with p = 1.1, the
feedback delay corresponded to τ = 75.2 ns, and the feedback rate was
κ ≈ 45 ns−1. Figure courtesy of Xavier Porte.

In Fig. 2.20(a) and (b) we present numerically obtained timetraces of
intensity and frequency, respectively, showing the capture of the laser dy-
namics by a stable HGM for a value of α = 2.1. The dynamics approach a
stable HGM, is captured by its attractor and remains within its direct vicin-
ity. The frequency reaches a �xed value while the intensity exhibits very low
amplitude oscillations around the ECM value. Due to hardware restrictions
we can not simulate very long timeseries. We therefore note, that the shown
behavior could be either in the coexistence regime or transient behavior. We
note that Zamora-Munt et al. interpreted LFF as predominantly transient
behavior [166].
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Figure 2.20: Numerically obtained dynamics showing the transition between
LFF and stable emission. (a) depicts intensity dynamics and (b) shows the
time evolution of the frequency ω. After three LFF cycles, the dynamics
gets stuck within the basin of attraction of one high gain mode (HGM). The
parameters are p = 0.2, τ = 2000, K‖ = 0.1, α = 2.1, µ = 0.02, T = 200,
β‖ = β⊥ = 10−6

2.5.2 Full Coherence Collapse

The LFF regime is usually associated with lasers that are pumped close to
their solitary lasing threshold current. If one increases the pump current
further, the de�ning features of the LFF regime will gradually disappear
until the full Coherence Collapse (CC) regime is attained. In CC, the low-
frequency components are lost as the clearly de�ned power dropouts vahish,
the dynamics exhibit large intensity �uctuations on only fast timescales.

The transition from LFF to CC was found to be smooth. This can be
understood if one again considers spectral dynamics in conjunction with
intensity dynamics: The mechanism underlying spectral dynamics are the
same as for the LFF regime. The trajectory in phase space tends toward fre-
quencies smaller than the solitary frequency. When the trajectory comes too
close to an antimode, the trajectory jumps to a higher frequency. In the CC
regime the dynamics comprises a chaotic itinerancy among the modes and
global antimode dynamics [97, 167]. Between clear LFFs and fully developed
CC, there exist intermediate dynamical regimes where the chaotic dynamics
still exhibit remnants of the low-frequency structure of LFF, though these
become increasingly overshadowed by fast timescale �uctuations when in-
creasing the pump current.

In the fully developed CC, the frequency jumps to higher frequencies
occur more often and the itinerancy is more erratic as compared with the
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LFF case. Consequently, there is no power buildup like in the LFF regime.
Thus, ejections of the phase space trajectory to the vicinity of the solitary
laser mode do not occur, instead, the frequency dynamics jump to modes
with higher frequencies within an extended neighborhood. Concurrently, the
spectral range is often restricted to a narrower band. This is illustrated in
Fig. 2.21(a) and (b), where we show exemplary CC dynamics in the time-
domain (a) for intensity and frequency (upper and lower panel, respectively)
and in (ω, n)-phase space (b). Fig. 2.21(c) depicts the corresponding optical
spectrum obtained from the FFT of the simulated complex �eld variable.

For very large pump current values, the output intensity saturates, if
the laser has a saturable gain medium or if gain saturation is included in
the model (µ 6= 0). Otherwise, the averaged output intensity increases fur-
ther. Since the dynamics timescale is limited by the relaxation oscillation
frequency which depends on the square root of the bias current, dynamics
in the CC regime can be much faster than the fast �uctuations in the LFF
regime.
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Figure 2.21: Dynamical and spectral characteristics in the CC regime: (a)
depicts intensity (upper panel) and frequency (lower panel) dynamics within
a comparably short time interval. (b) shows the corresponding phase space
trajectory in (ω, n) space, where the green dots represent modes, red dots are
antimodes, blue squares represent stable High Gain Modes and the yellow
square depicts the Maximum Gain Mode (MGM). (c) shows a numerically
computed optical spectrum for the corresponding parameters. The simula-
tion parameters for all plots are p = 2.0, τ = 2000, K‖ = 0.1, α = 3.0,
µ = 0.02, T = 200, β‖ = β⊥ = 10−6. These parameters correspond to those
of Fig. 2.17, except for the pump parameter.
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2.5.3 Dynamics induced by Polarization-rotated feedback

Dynamics induced by PROF have signi�cantly di�erent characteristics than
dynamics which are incited by PMOF [139, 141, 142, 150]. The two or-
thogonal polarization modes E‖ and E⊥ can exhibit in-phase as well as
antiphase correlations. Depending on the operating conditions, periodic or
quasiperiodic oscillations can be easily obtained. We show exemplary inten-
sity dynamics incited by PROF in Fig. 2.22.

Figure 2.22: PROF-induced intensity dynamics in the parallel polarization
mode |E‖|2 (a), in the perpendicular polarization mode |E⊥|2(b) and in the
overall intensity output |E‖|2 + |E⊥|2 (c). The parameters to obtain these
dynamics are σ = 0.84, ρ = 1.0, ∆ = 0, p = 1.0, τ = 2000, K⊥ = 0.3,
α = 3.0, µ = 0.02, T = 200, β‖ = β⊥ = 10−7.

Oliver et al. from our lab experimentally found, that very strong PROF
in conjunction with a large bias current can lead to highly complex dy-
namical behavior in the overall dynamics resulting in vanishing second order
autocorrelation peaks ac(2τ) of the output dynamics of the laser [143]. They
utilized this highly complex PROF-induced dynamics in a random number
generation scheme [143, 152].
We showed earlier in Section 2.4, that if the parallel polarization mode
strongly dominates over the perpendicular polarization mode, a quite large
feedback strength is necessary to induce intensity �uctuations (compare with
Fig. 2.15). However, this was the case for zero detuning between both po-
larization modes. It can be shown that the required feedback levels to excite
instabilities in the laser's dynamics can be reduced, if the detuning between
the two modes is negative.

We illustrate this in Fig. 2.23. The Figure shows intensity outputs for
K⊥ = 0.1, p = 0.1 and σ = 0.84. Noise was disregarded in this simulation.
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Figure 2.23: PROF-induced instabilities in the overall intensity dynamics
|E‖|2 + |E⊥|2 for low feedback strength K⊥ = 0.1 and for two di�erent
frequency detunings between the polarization modes. (a) shows stable emis-
sion for zero detuning ∆ = 0, (b) shows periodic relaxation oscillations for
∆ = −0.2. The other parameters to obtain these dynamics are σ = 0.84,
ρ = 1.0, p = 0.1, τ = 2000, K⊥ = 0.1, α = 3.0, µ = 0.02, T = 200,
β‖ = β⊥ = 0.

Fig. 2.23(a) shows the overall overall intensity dynamics |E‖|2 + |E⊥|2 for
zero detuning ∆ = 0 between the modes, and (b) depicts the situation for
a negative detuning of ∆ = −0.2. We see, that while the feedback strength
is not su�cient to excite sustained instabilities in the dynamics for zero
detuning, if a negative frequency detuning is implemented, the feedback
results in periodic relaxation oscillations. The 2τ -periodicity in Fig. 2.23(b)
stem from RO-modulated square wave oscillations in both modes that have a
relative τ shift (not shown here). The following Subsection will cover square
wave switching.

Square waves in the Polarization-rotated feedback regime

Experiments and numerical studies by di�erent groups over the last years
[147, 149, 151] identi�ed an interesting dynamical regime which can be
incited in semiconductor lasers (edge-emitters) if subject to polarization-
rotated feedback with a medium to large feedback rate: square wave switch-
ing in the dynamics of both polarization modes. Di�erent symmetric and
antisymmetric square wave regimes were identi�ed, depending on system pa-
rameters that characterize the relation between the polarization modes like
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equations. If the feedback is implemented as polarization-maintained feed-
back (PMOF), the simpli�ed one-mode model (2.11)- (2.13), which is an
approximation of the extended two-polarization-modes-model (2.32)-(2.34)
for vanishing PROF strength K⊥ = 0, is su�cient to reproduce a multitude
of dynamical behaviors with good correspondence to experimental observa-
tions.

PROF-induced dynamics can be qualitatively reproduced with the ex-
tended model, however, some speci�c investigations may require modi�ca-
tions in terms of the way both modes are coupled. For our investigations
presented in this thesis, we assume an adequate agreement of experiments
and numerics using this model.



3
Coupled semiconductor lasers:

In�uence of asymmetries on

dynamics and synchronization

3.1 Introduction

3.1.1 Synchronization of chaotic lasers in di�erent cou-
pling schemes

Synchronization of coupled nonlinear systems has been investigated for the
last decades and in many di�erent �elds of research. These include e.g.
neuroscience, biology, chemistry and social sciences [1, 2, 168].

For many technological applications and biological processes synchro-
nization is essential. In the brain for example synchronization of neuron
populations is believed to play an important role for instance in the binding
problem [169, 170].

An especially interesting phenomenon from a nonlinear dynamics per-
spective is synchronization of chaos, the possibility of which was only dis-
covered about 20 years ago by Pecora and Carroll [19�21]. Chaos syn-
chronization is also of interest considering secure communication technol-
ogy [24]. In this framework semiconductor laser systems have been proposed
[25, 83, 87, 90] as a physical realization of chaos based crypto systems. Semi-
conductor laser systems have a number of advantages for physical implemen-
tations, a major one being that their use in communication schemes would
allow the use of already existing �ber-based communication infrastructure
[86].

Coupling lasers over signi�cant distances introduces a coupling delay,
due to the �nite signal propagation speed. From a mathematical perspective,

45
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such delays render the system in�nite dimensional and also lead to a richness
in di�erent dynamical bahaviors including hyperchaos [161, 171]. Coupling
delays also in�uence the synchronization properties of coupled systems [68�
70, 172].

For instance, it was shown that in a setup of bidirectionally coupled
lasers, which exhibit complex dynamics on their own, indentical zero-lag
synchronization of chaotic dynamics is impossible, if the coupling delay is
longer than the intrinsic dynamical time scale [173]. In this case of mutu-
ally coupled lasers the zero-lag synchronized solution exists but is unstable
[63]. These �ndings were later generalized [68, 69] to evaluate the ability to
synchronize of any network with large coupling delay and arbitrary type of
nodes.

Of particular interest is that it was shown that chaos synchronization
is generally unstable in the network motif of two bidirectionally coupled
systems. What occurs instead is a generalized synchronization dynamics of
leader-laggard type [23, 63]. The lasers then do not synchronize identically,
but exhibit a constant time-lag equal to the coupling delay in the cross-
correlation functions [23, 68]. Under fully symmetric conditions, i.e., with
identical coupled subsystems and equal coupling strengths, which subsystem
is leading the dynamics and which is following is de�ned by initial conditions
and may switch irregularly [65�67]. The above applies for a single coupling
delay. Englert et al. found that introducing multiple couplings with certain
integer delay time ratios enables zero-lag synchronization [174].

Soriano et al. showed that the dynamics in this scheme can be identi�ed
with the dynamics of a single laser subject to delayed feedback by a simple
construction method [175]. The dynamics of the single laser with feedback
delay 2τ is subdivided into two sequences of timeseries of length τ with rela-
tive timeshift τ , i.e., the sequences describe the dynamics in intervals starting
at an odd number τ -shift [(2m+ 1)τ, (2m+ 2)τ ] and intervals beginning at
an even number τ -shift [2mτ, (2m+ 1)τ ], respecively, with integer m. The
concatenated τ -length intervals then form the new constructed timeseries.
In a similar manner for the bidirectional coupled system with coupling delay
τ , two sequences of timeseries are constructed by concatenating odd- and
even-numbered delay intervals. Each of the newly constructed timeseries for
the coupled system and the single system, respectively, then gives rise to the
chaotic attractor as its corresponding counterpart [175].

An important step forward for bidirectional chaos synchronization was
made when it was discovered that a relay component, be it passive, such as
a semitransparent mirror for coupled lasers [80, 176], or active, like a third
laser [75, 78, 177], between the two coupled lasers, can stabilize zero-lag
synchronization. This stabilization occurs due to the fact that both lasers
always receive the same input from the relay, no matter if they are showing
synchronized dynamics or not. Some similar processes might even take place
in the brain, where neuron populations serving as relay can help synchronize
two other neuron populations that are spatially separated [76, 77, 178].
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Other coupling schemes, apart from bidirectionally coupled lasers, have
been considered for chaos synchronization and communication purposes.
The most common con�guration is the transmitter-receiver scheme, where a
transmitter laser is unidirectionally coupled to a receiver laser [64, 161, 179,
180].

From a nonlinear dynamics perspective, in the above described coupling
schemes chaos synchronization is stable, if the chaotic attractor in the syn-
chronization manifold (SM) is transversely stable, i.e., the maximum trans-
verse Lyapunov exponent is negative. It has also been recognized that the
transverse stability of individual periodic orbits that are embedded in the at-
tractor is crucial for the transverse stability properties of the attractor [181].
This is especially the case if the considered system has intrinsic noise, such
as spontaneous emission noise in lasers. In that case, and even if the usual
global transverse stability requirements for synchronization are given, noise
may induce desynchronization of the dynamics close to transversely unstable
periodic orbits in the attractor of the coupled system. This phenomenon of
desynchronization due to local loss of transverse stability has been named
bubbling [92] and has also been found for delay coupled lasers [95�97]. For
systems consisting of a single laser with self-feedback or that are made up
of coupled lasers, the fundamental periodic orbits which structure the phase
space are the external cavity modes (ECMs) [136, 182]. They organize the
dynamics of the system and, in case of a coupled system, their own transverse
stability a�ect the synchronization properties and synchronization dynamics
of the whole system.

Here we investigate chaos synchronization properties of di�erent coupling
schemes of two lasers under the in�uence of di�erent asymmetries between
them or within the coupling topology. In particular, we analytically and
numerically investigate the e�ect of mismatched feedback delays and mis-
matched feedback and coupling strengths.

Another relevant possible asymmetry in systems of two coupled lasers is
a detuning of their emission frequencies. We numerically study its e�ect on
the lasers' synchronizability and their synchronized dynamics in an otherwise
symmetric relay-con�guration. We link the spectral overlap and frequency
locking properties of the lasers with the synchronization properties of the
coupled system and describe the occurrences of desynchronized dynamics in
terms of episodic synchronization as introduced by Búldu et al. [183] who
investigated a unidirectional coupling scheme with similar synchronization
properties.

We investigate the coupling- and feedback-related asymmetries by ana-
lytically and numerically investigating the modes arising from the particular
setup and the stability properties of these modes. For the case of frequency
detuning, detailed analyses of mode stability and dynamical bifurcations
and locking behavior in systems of bidirectionally coupled lasers have been
performed before [182, 184]. However, those studies were limited to setups
with bidirectional coupling of autonomous lasers excluding the possibility of
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zero-lag chaos synchronization. Here, we investigate the relay con�guration
allowing for zero-lag identical synchronization of chaotic dynamics and con-
centrate on the connection between synchronization and frequency dynam-
ics. We relate the mechanism underlying desynchronization with frequency
locking properties and consequently explain the synchronization behavior in
terms of episodic synchronization.

The study of the e�ect of asymmetries on synchronization is of general
importance and especially so for real-world systems where unavoidable mis-
matches always result in asymmetries.

3.1.2 Chapter Outline

This chapter is organized as follows. In Section 3.2, we study a model of two
lasers bidirectionally coupled via a semitransparent mirror and investigate
the e�ect of a mismatch in re�ection and transmission of the relay-mirror.
We show that desynchronization episodes are enhanced as the mismatch is
increased.

In Section 3.3 we make a comparison between the synchronization dy-
namics of a bidirectional relay-con�guration and a drive-response setup. We
�nd that the stability of synchronization for the open- and closed-loop con-
�guration corresponds to the synchronization stability for a bidirectional
setup with symmetrical and asymmetrical coupling, respectively.

In Section 3.4 we consider a con�guration where the semitransparent mir-
ror relay is not positioned centrally between the lasers leading to a mismatch
of the feedback delays of the two lasers. We show that in this case the lasers
nevertheless synchronize identically, but with a time-lag corresponding to the
delay mismatch. Moreover, we study the changes in the ECM spectrum and
thus the dynamics which result from the introduction of a delay mismatch.

In Section 3.5 we analyze the in�uence of nonlinear gain saturation in
our rate equation model on the dynamics and stability of synchronization in
the bidirectional relay setup.

Section 3.6 is concerned with optical frequency detuning between both
coupled lasers and its e�ect on their synchronization properties and dynamics
in the LFF regime. We connect the spectral properties and spectral dynamics
of the coupled system with synchronization levels and the occurrence of
desynchronzation in regimes with small to intermediate detuning.

Finally, in Section 3.7 we summarize our results.

3.1.3 Collaborative work related with this chapter

The results presented in Sections 3.2-3.5 of this chapter have been published
as "K. Hicke, O. D'Huys, V. Flunkert, E. Schöll, J. Danckaert, and I. Fischer:
Mismatch and synchronization: In�uence of asymmetries in systems of two
delay-coupled lasers, Physical Review E 83, 056211 (2011)".
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The nonlinear laser dynamics can be described via the dimensionless
equations

f

(
Ej
nj

)
=

(
1
2 (1 + iα)(G(nj , Ej)− 1)Ej + FE

1
T (p− nj −G(nj , Ej) |Ej |2)

)
(3.4)

with the gain function

G(nj , Ej) =
nj + 1

1 + µ|Ej |2
(3.5)

and the �eld noise FE originating from spontaneous emission which is mod-
elled as Gaussian white noise with correlation 〈FE(s)FE(s′)〉 = β(n+n0)δ(s−
s′) and zero mean 〈FE(s)〉 = 0. The model characteristics and parameters
are described in Chapter 2. Since we describe general dynamical features
and synchronization properties of the Lang-Kobayashi model, we use the
one-mode dimensionless model as described in Section 2.3.1 for simplicity.
Without self-feedback (L = 0) the two lasers are coupled face to face. As dis-
cussed in section 3.1, it is known that the identically synchronized solution
X1(t) = X2(t) is unstable in such a con�guration, the lasers are in general-
ized synchronization of leader-laggard type [23, 65]. With self-feedback but
vanishing coupling strength K = 0 we have two separate identical chaotic
systems. If the coupling is symmetric in strength (L = K) and in-phase
(here: φL = φK = 0) the zero-lag synchronized solution can be stable [80].
However, intermittent desychronization due to bubbling [97] is present in
the system for nonzero noise. The bubbling phenomenon is described and
investigated for such a system in detail in Chapter 4.
To analyze the stability of the zero-lag synchronization, we de�ne a symmet-
ric variable

S(t) = 1
2 (X1(t) +X2(t)) (3.6)

and an antisymmetric variable

A(t) = 1
2 (X1(t)−X2(t)) (3.7)

The dynamics in these variables is then described by

Ṡ = 1
2 (f(S +A) + f(S −A)) + (L+K)CS(t− τ) (3.8)

Ȧ = 1
2 (f(S +A)− f(S −A)) + (L−K)CA(t− τ) . (3.9)

The identically synchronized state A(t) = 0 always exists, independent of
L and K due to the symmetry of the system. When the system is synchro-
nized, it behaves like a single laser subject to feedback with a strength equal
to the sum of feedback strength and coupling strength K + L. Its synchro-
nized dynamics does, in particular, not depend on the coupling mismatch
L−K.
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The linear stability of the isochronously synchronized state is derived
from the time dependent variational equation for a small perturbation δA(t)
transverse to the synchronization manifold

˙δA(t) = Df(S(t))δA(t) + (L−K)CδA(t− τ) (3.10)

and depends on the mismatch L − K between self- and crosscoupling.
Here, Df(S(t)) denotes the Jacobian of f evaluated along the trajectory
S(t). We note that for symmetric strengths of coupling and feedback (L =
K) the explicit delay dependence vanishes.
We calculate numerically the crosscorrelation, de�ned as

C(∆t) =
∞∑

s=−∞
I1(s)I2(∆t+ s), (3.11)

at zero lag∆t = 0 for varying feedback and coupling strengths. Ij = |Ej |2
is the optical intensity of laser j. We obtain a correlation plot (Fig. 3.2) ex-
hibiting axial symmetry regarding the axis L = K. A large value C(0)
corresponds to a high overall level of synchronization. The synchronization
level depends only on the absolute value |L −K| of the coupling mismatch
and not on its sign. Our system exhibits this symmetry for large delays τ (as
is the case here). This symmetry can be explained with the rotational sym-
metry in the complex plane of the Master-Stability-Function (MSF) [185]
for large delays that was found by Flunkert et al. [69]. The MSF describes
the transverse stability of a coupled system via the maximal Lyapunov ex-
ponent, which is calculated for the eigenvalues of the coupling matrix. In
our case, these are λ1,2 = L ± K. With the rotational symmetry around
the complex origin of the MSF, the transverse stability depends only on the
absolute di�erence |L−K|, thus the symmetry in Fig. 3.2.

The chaotic dynamics of a laser with delayed feedback is to some extent
organized by the external cavity modes (ECMs) [44, 49, 50, 55, 136, 182, 186].
The ECMs are rotating wave solutions of the form E(t) = A?e

iω?t and n(t) =
n? with constant amplitude A?, frequency ω? and carrier number n? of the
lasers. These modes are arranged along an ellipse in the (ω, n)-plane. On the
lower half of the ellipse the solutions result from constructive interference
in the external cavity. These solutions are periodic orbits and are called
modes. The solutions on the upper half of the ellipse, on the other hand,
originate from destructive interference. They are called antimodes. The
ECMs are not only the steady-state solutions of the single laser system with
feedback but are also steady state solutions in the case of synchronization
of the corresponding coupled system. They then structure the dynamics of
the coupled system within the synchronization manifold (SM). The ECMs
are discussed in detail in Chapter 2.
A well studied dynamical regime of a semiconductor laser with feedback is
the low frequency �uctuation (LFF) regime. In the LFF regime [42, 55], the
laser switches chaotically between the modes, with a drift over time toward
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Figure 3.2: Zero-lag crosscorrelation C(0) of the two coupled lasers' intensi-
ties in dependence of coupling strengthK and feedback strength L. Coupling
and feedback have the same delay τ . The parameters used for this simulation
are µ = 0.26, p = 1.0, α = 4.0, T = 200, τ = 1000 and β = 10−5.

the maximum gain mode located at the bottom of the ellipse. During this
process intensity builds up, until the trajectory is ejected along the unstable
manifold of a saddle point (antimode), causing a power dropout (see also
Chapter 2).

Also for two coupled lasers, it has been shown that the occurrence of
desynchronization (bubbling) can be related to the ECMs in the synchro-
nization manifold [97, 187]. Starting from Eq. (3.10) it is possible to calcu-
late the transverse stability of the ECMs. This is discussed in more detail
in Appendix B. Close to transversely stable modes, the two lasers' outputs
synchronize well, while bubbling typically occurs in the neighbourhood of
transversely unstable ECMs [97].
Without mismatch between self- and crosscoupling (L = K), the modes
involved in the coupled lasers' dynamics are transversely stable, and the
antimodes are transversely unstable. Consequently, the lasers only desyn-
chronize during a power dropout, as shown in Fig. 3.3(a). The system has
this characteristic because only during power dropouts, which result in an
excursion of the dynamics toward the solitary laser mode, does the trajectory
approach an unstable antimode and desychronization can occur.

However, since noise-induced, desynchronization does not occur during
all power dropouts as both lasers can exhibit a dropout simultaneously, i.e.,
stay synchronized during the dropout. This is investigated in detail in Chap-
ter 5.
With an increasing mismatch L−K, and while keeping K +L constant, an
increasing number of modes involved in the buildup process become trans-
versely unstable. We thus observe desynchronized dynamics not only during
power dropouts, but also during the power buildup process (Fig. 3.3(b)).
The synchronized dynamics itself only depends on the sum K + L (see Eq.
(3.8)) and thus remains qualitatively the same if K + L is kept constant
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The dynamics in the synchronization manifold is the dynamics of the
transmitter laser, S(t) = X1(t). It is important to note that the coupling
delay τc does have no e�ect on the dynamics in a drive-response con�gura-
tion.

We de�ne the antisymmetric direction for the unidirectional coupling
scheme as A(t) = X1(t) − X2(t − (τ − τc)). The dynamics can then be
rewritten as

Ṡ = f(S) +KCS(t− τ) (3.14)

Ȧ = f(S)− f(S −A) + εKCA(t− τ) . (3.15)

When we linearize around A(t) = 0, we �nd that the linear stability of
the zero-lag synchronized solution in an open loop con�guration (ε = 0) is
the same as for the setup of two bidirectionally coupled lasers with feedback
where feedback and coupling have the same strengths L = K. The stability
in this case is also derived from Eq. (3.10) (compare Eq. (3.9) with Eq.
(3.15)).

A closed-loop receiver contrasts with an open-loop receiver in terms of
the stability of the synchronization manifold. The stability is the same as
for a bidirectional coupling setup with self-feedback (as shown in Fig. 3.1)
with mismatched feedback and coupling strengths L 6= K. Consequently,
a closed-loop con�guration has to be carefully symmetrized with respect to
the involved coupling/feedback strengths for high level synchronized behav-
ior. A closed-loop con�guration is thus more complicated to implement in
experiments.

On the one hand, the open-loop con�guration is usually preferred over
the closed-loop scheme in chaotic communication because it is more robust
against parameter mismatches and much easier to implement. In addition,
the resynchronization time in case of a sudden interruption of the connection
is much shorter (see Ref. [90] and references therein). One has to consider,
however, that an increased requirement of the receiver to well-match the
transmitter increases the security of this communication scheme.

On the other hand, it was shown [64], that if the feedback delays in a
closed-loop scheme are identical, the synchronization level is higher than for
an open-loop due to increased symmetry of the setup. Vicente et al. showed
that the performance of closed-loop receivers is less sensitive to a frequency
detuning between emitter and receiver laser [64, 188]. Furthermore, several
methods considering chaotic communications have been proposed that take
advantage of speci�c properties of the closed-loop con�guration [90, 189].

3.4 Relay con�guration with delay mismatch

We return to the case of a bidirectional coupling between two interacting
lasers that are subject to their own feedback. As mentioned above, this
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synchronized solution X1(t) = X2(t − ∆τ) is possible[78]. To analyze the
stability of this time-shifted identically synchronized solution we de�ne the
symmetric S(t) and antisymmetric A(t) variables, respectively, as

S(t) = 1
2 (X1(t+∆τ) +X2(t)), (3.18)

A(t) = 1
2 (X1(t+∆τ)−X2(t)). (3.19)

The temporal evolution of these two variables is then given by

Ṡ =
1

2
[f(S +A) + f(S −A)]

+ 1
2 (L+K)C [S(t− τ1) + S(t− τ2)]

+ 1
2 (L+K)C [A(t− τ1)−A(t− τ2)] (3.20)

Ȧ =
1

2
[f(S +A)− f(S −A)]

+ 1
2 (L−K)C [S(t− τ1)− S(t− τ2)]

+ 1
2 (L−K)C [A(t− τ1) +A(t− τ2)] . (3.21)

The time-shifted identically synchronized solution A(t) = 0 only exists if
self- and cross-coupling are equal L = K. Otherwise, the temporal evolution
of the antisymmetric variable A would depend on the symmetric one S. This
is in contrast to the case without delay mismatch (see Section 3.2), where,
for any values ofK and L, a synchronized solution exists in general, although
it may be unstable. Therefore, for the case with delay mismatch, we expect
a strong dependence of the synchronization level on the coupling mismatch
L−K.
For K = L the synchronized solution corresponds to one laser subject to two
di�erent feedbacks with the same strength 1

2 (K +L) = K and the delays τ1
and τ2. We perform a linear stability analysis of Eq. (3.21), describing the
dynamics orthogonal to the synchronization manifold. We linearize around
the synchronized state A(t) = 0 and obtain

δȦ(t) = Df (S)δA. (3.22)

Comparing this characteristic equation for the stability of the case with
delay mismatch with the situation without delay-mismatch (Eq. (3.10)), we
notice that the variational equations are identical. Therefore we conclude
that similar ECMs (i.e., solutions S(t) with similar frequency ωS and similar
carrier numbers nS) will have comparable stability properties.

Provided that the feedbacks and couplings have equal strengths L = K,
we can thus assume that an asymmetrically placed semitransparent mirror
leading to di�erent feedback delays, that sum up to two times the coupling
delay τ = 1

2 (τ1 + τ2), does not have large e�ect on the synchronization prop-
erties of the considered system.



∆τ
∆t = � ∆τ

∆τ = 100
τ = 2000

α = 4.0 p = 1.0 µ = 0.26 T = 200 L = K = 0.05

∆τ

0 ≤
∆τ < τ

L 6= K ∆τ 6= 0
L ≈ K
L � K

� ∆τ



C(δt) ∆t = ∆τ

∆t = 2τ

∆τ

τ = 1000 α = 4.0 p = 1.0 µ = 0.26 T = 200 β = 10 � 5

L = K = 0.05

L K ∆τ = 20
∆τ = 900

L � K

τ1 τ2

E(t) = A?e
iω?t n(t) = n?



C(∆t) ∆t = ∆τ

L K
∆τ = 20 ∆τ = 900

L � K
τ = 1000 µ = 0.26 p = 1.0 α = 4.0 T = 200

β = 10 � 5

A? L = K

ω? = � 2K
√
1 + α2 sin(ω?τ + arctanα) cos(ω?∆τ) ,

n? =
pµ � 4K (cos(ω?τ) cos(ω?∆τ))

1 + µ
.

2K
rτ = τ1/τ2 ∈ Q rτ

∆τ 6= 0
τ



62 CHAPTER 3. ASYMMETRIES AND SYNCHRONIZATION

spectral range (FSR) of the interferometer. Because we can identify the syn-
chronized dynamics in our coupling setup with the dynamics of a single laser
subject to two di�erent feedbacks, the FSR of the Michelson-interferometer
directly corresponds to the delay mismatch ∆τ in our system. Würtenberger
furthermore calculated the mode structure of the Michelson system in a cor-
responding way to Eqs. (3.23) and (3.24) and showed the formation of mode
islands for values of the FSR that correspond to small delay mismatches.
The extent of the mode island surrounding the solitary laser mode (SLM)
corresponds to the free spectral range of the Michelson-interferometer.

Similar to her results, we �nd mode islands for small ∆τ forming within
the phase space area of the mode ellipse for matching feedback delays. The
double feedback setup (Fig. 3.6) exhibits a similar �ltering e�ect as the
Michelson-interferometer. The frequencies for which ω∆τ ≈ (2m + 1)π2 ,
m ∈ Z are �ltered out. Close to simple rational ratios of rτ we observe
similar phenomena.

We calculate here the mode structure for a broad range of delay mis-
matches and study its e�ects on the dynamics of the synchronized system.
The makeup of our con�guration allows for an arbitrary delay mismatch in
the interval ∆τ ∈ [0, τ [ for which we calculate the transverse stability of the
modes resulting from this double delay con�guration.
Fig. 3.10 depicts exemplary portraits of the frequency-carriers (ωS , nS)-
phase space showing the position of the ECMs and the resulting dynamics
in the synchronization manifold for di�erent values of the delay-mismatch
∆τ for a mean delay time/ coupling delay of τ = 1000. The phase space
areas where transversely stable modes are located are similar for all delay
mismatches. Due to the changes in the ECM spectrum the dynamics are sig-
ni�cantly altered compared to the case with equal feedback delays ∆τ = 0.
For some values of the delay mismatch, the system's dynamics becomes reg-
ular or stable, respectively, a feature also found for certain values of the FSR
in the Michelson-interferometer setup [190].

A semiconductor laser subject to two self-feedbacks with di�erent strength
and delay has been studied by Liu and Ohtsubo [191], who showed that one
can stabilize the dynamics to �xed points or limit cycles. This e�ect was
found strongest for unequal feedback strengths. Rogister et al. [192] showed
that chaotic dynamics and LFF can be suppressed for a single laser subject
to two di�erent feedbacks, by suppressing the antimodes that are responsi-
ble for the power dropouts [55]. This stabilization of the dynamics occurs
mainly for a short second feedback. Increasing the second feedback strength
from a low level to the magnitude of the �rst one results in a bifurcation
cascade in the laser leading to several dynamical regimes including stable
behavior.

In our coupling con�guration here, we observe a richness in dynamical
behaviors as well, including stabilization of the dynamics for one long and
one very short delay τ1 � τ2 (very large delay mismatch).

We calculate the secondary peak of the autocorrelation (at shift ∆t =
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Figure 3.10: Dynamics of the symmetrized solution S(t) (see Eq. (3.6)) in
(ωS , nS)-phase space for di�erent values of the delay mismatch parameter
∆τ after t = 5 · 104. For de�nition of ωS and nS see Fig. 3.3. Green circles
indicate transversely stable modes, red triangles are transversely unstable
modes and antimodes. The dynamics trajectory (in blue) is marked with
an arrow if stabilized. The mean delay time τ is �xed at τ = 1000, the
other parameters are α = 4.0, p = 1.0 (except lower right), µ = 0.26 and
L = K = 0.05. Note that the lower right plot has a di�erent y-scale than
the others.
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2τ) of each laser to indentify the regularity of the dynamics. The height
of the autocorrelation peak exhibits signi�cant extrema for certain delay
mismatches. The autocorrelation secondary peak value as a function of the
delay mismatch is depicted in Fig. 3.8 (blue line). In particular, we �nd
dips and peaks in the vicinity of simple rational values of rτ , around rτ = 1,
meaning ∆τ ≈ 0, and around rτ → ∞, meaning an almost vanishing second
delay. Concurrently, the crosscorrelation also exhibits extrema (see Fig.3.8
(red line)) for the same∆τ . Magni�cations of the cross- and autocorrelations
in Fig.3.8 for the ranges encompassing delay mismatches corresponding to
these special delay time ratios are shown in Fig. 3.11.

Figure 3.11: Cross-correlation C(δt) at lag ∆t = ∆τ (red lines) and auto-
correlation at ∆t = 2τ (blue lines) vs the delay mismatch parameter ∆τ
for rational ratios of the feedback delays rτ = τ1/τ2. Magni�cation of Fig.
3.8 around (a) rτ = 1, (b) rτ = 2/1, (c) rτ = 3/1 and for (d) ∆τ ≈ τ .
Simulation parameters are as for Fig. 3.8.

The extrema in the crosscorrelation function are caused by a change in
the underlying dynamical state of the system and not primarily by a change
of the synchronization. Lowered crosscorrelation values have been found to
be caused by small signal-to-noise ratio when the dynamics is stabilized to
a �xed point. Delay mismatches that lead to a stabilization of the dynamics
to a limit cycle result in a peak in the auto- and the crosscorrelation due to
the regular behavior.
To study the dynamical changes caused by varying delay mismatch in the
intensity domain, we compute a bifurcation diagram as a function of ∆τ .
Fig. 3.12 shows this bifurcation diagram with resulting intensity minima
and maxima plotted against the delay mismatch. From the distribution of
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the extrema we notice signi�cant dynamical changes over the entire range
of 0 ≤ ∆τ < τ , which is evident for example by the changes in the variance
of the intensity outputs. When the delay times are close to simple rational
ratios, the e�ect on the dynamics is most pronounced in such a way that the
variance of the intensity dynamics strongly narrows, implying (more) regular
dynamics. Especially for ∆τ ≈ 0 (almost equal delay times) and ∆τ / τ
(when one delay is very short), the variance decreases dramatically. Also
we notice a signi�cant drop in variance at around ∆τ = 333. This delay
mismatch corresponds to a rational ratio of rτ = 2/1 of the delay times. At
these values of the delay mismatch the dynamics settles on a stable periodic
orbit. The bifurcation corresponding to these three cases are shown in the
magni�cations in Fig. 3.12.

Figure 3.12: Intensity extrema of the two lasers versus the delay mismatch
parameter ∆τ . Green points are maxima, red points are minima. Magni�ca-
tions are shown for a small delay mismatch ∆τ < 15 (lower left), for a delay
times ratio of rτ ≈ 2/1 (lower center) and for one of the delays being very
short τ1 � τ2 (lower right). The other simulation parameters are: τ = 1000,
α = 4.0, µ = 0.26, p = 1.0, T = 200, β = 10−5, K = L = 0.05.

The smallest di�erences between maxima and minima indicate stable
single mode emission. For these cases the auto- and crosscorrelation show
large peaks, however, this does not correspond to chaos synchronization.

The stabilization of the dynamics for several delay mismatches is illus-
trated in the phase space plots in Fig. 3.10, which shows the laser dynamics
projected onto the (ωS , nS)-phase space of the synchronization manifold.
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Close to the rational ratio rτ = 2/1 (here ∆τ ≈ 333) we see oscillations of
the dynamics around a single mode (Fig. 3.10(e),(g)). The values for the
delay mismatch correspond to those of the local peaks in the autocorrelation
function in Fig. 3.11(b). For delays corresponding to the exact rational ra-
tio ∆τ = 333, however, no such stabilization is observed (Fig. 3.10(f)). For
small delay mismatches (Fig. 3.10(b),(c)) the dynamics exhibits robust and
fast stabilization to a single mode.

This stabilizing property for a slightly misaligned semitransparent mirror
tested robust against the variation of several parameters such as the mean
delay τ , the coupling strength K and the noise magnitude β. Simulations
over a range of these parameters result in stabilization of the dynamics.

With a su�ciently large gain saturation coe�cient µ, the dynamics and
mode spectrum can exhibit high-level synchronization as well as stabilization
of the dynamics. The e�ect of nonlinear gain saturation is described in more
detail in Section 3.5.

We explain the stabilization at small delay mismatches and at delay
mismatches close to simple delay ratios rτ as follows: We consider a laser
subject to a delayed feedback from two feedback loops with delays τ + ∆τ
and τ −∆τ which corresponds to the synchronized dynamics of two coupled
lasers subject to their respective feedback with di�erent delays τ +∆τ and
τ−∆τ . Let us assume that at ∆τ = 0, the laser operates in a chaotic regime,
where the chaos is induced by the feedback. Although the laser dynamics is
chaotic, there is, on average, a short term phase correlation of the electric
�eld, i.e., the peak at the origin of the autocorrelation function of the �eld
is surrounded by local minima and maxima. The �rst local minimum and
maximum are usually very pronounced, because of a characteristic small
oscillation period present in the chaotic signal. If the delay mismatch is
adjusted such that it corresponds to the �rst minimum, then on average
the incident feedback signals destructively interfere and thus diminish the
amplitude and the �uctuations of the feedback signal. This may lead to more
regular behavior of the laser dynamics. The above usually also holds for the
choice of a small rational ratio of the delay times, i.e. τ1

τ2
∈ Q. Modifying ∆τ

will then evidently lead to a di�erent shape of the autocorrelation function,
in particular in case of dynamical stabilization. Nevertheless, it can still be
assumed that a mechanism of destructive interference of this kind can result
in stabilization of the dynamics.
We demonstrate this mechanism via an exemplary case. We �rst consider
a case with no delay mismatch ∆τ = 0 for τ = 997. The dynamics of the
coupled system is then chaotic (LFF-regime) as shown in Fig. 3.13(a). The
autocorrelation function of the dynamics is shown in Fig.3.13(b) and exhibits
the �rst minimum next to the peak at ∆t = 34.

We thus now construct the case with a delay mismatch of ∆τ = 17 which
corresponds to the case of a single laser with two feedbacks with τ1 = 997
and τ2 = 1031. According to our above explanation this should lead to
a stabilization/regularization of the coupled system's dynamics because of
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Figure 3.13: Dynamics of the coupled system without delay mismatch
∆τ = 0 (a) and the corresponding autocorrelation function (b). The other
simulation parameters are L = K = 0.05, α = 4.0, p = 0.0, µ = 0.0, T = 200,
β = 10−6, τ = 997.

destructive interference between the feedback of each laser and the delayed
coupling signal from the respective other laser. We plot the resulting dy-
namics in the (ωS , nS)-phase space in Fig. 3.14(a). It indeed exhibits a
stabilization to a single ECM after a transient time.

To check whether this stems from destructive interference, we calculate
the phase di�erence between the feedback signal of one laser and the coupling
signal from the respective other laser, which corresponds to the interference
condition at the laser facet. The phase of the �rst laser is delayed by τ+∆τ ,
the phase of the coupling signal is delayed by the coupling time τ . We now
compute a histogram of φ1(t + τ + ∆τ) − φ2(t + τ) to see the distribution
of the relative phase di�erences. The histogram is depicted in Fig. 3.14(b)
and shows a dominant peak at a phase di�erence of −9π. Since this is an
odd number π-shift, this corresponds to destructive interference in terms of
relative phases.

The above serves as indication for our hypothesis that stabilization for a
small delay mismatch or a delay mismatch resulting in a delay ratio close to
a simple rational one stems from destructive interference of the two incident
signals to one of the coupled lasers, one being the delayed self-feedback, the



(ωS , nS)
∆τ = 17

τ = 1014 L = K =
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φ1(t+ τ +∆τ) � φ2(t+ τ)
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(otherwise linear, see Chapter 2) characteristic dependence of the optical
power on the pump current far above the lasing threshold.

The nonlinear gain saturation is a phenomenologically introduced term
that is motivated by nonlinear e�ects in the semiconductor gain medium
like spectral hole burning and carrier heating. A linear gain theory cannot
account for those phenomena. With increasing pump current, the nonlinear
gain saturation becomes more relevant and has an increasing e�ect on the
dynamics of the lasers. This is because the laser modes that organize the
dynamics change position with varying pump current p if the gain saturation
coe�cient is nonzero (see Eq. (3.24)). The transverse stability of the external
cavity modes is also a�ected (see Appendix B).

Figure 3.15: E�ect of the nonlinear gain saturation on the position and
transverse stability of the external cavity modes in (ωS , nS)-phase space.
The pump current p = 1.0 results in coherence collapse dynamics. The
larger the pump current value, the more pronounced the e�ect is. Red
circles incicate transversely unstable modes and antimodes, green circles
represent transversely stable modes. The dynamics is shown in blue. The
other simulation parameters are: τ = 1000, ∆τ = 0, α = 4.0, T = 200,
L = K = 0.05 and β = 10−5.

When operating in the LFF-regime, the e�ect of nonlinear gain saturation
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can often be neglected due to the relatively low powers. In the coherence
collapse (CC) regime, on the other hand, the higher power means that gain
saturation plays an increasing role. The e�ect of gain saturation on the
position of the ECMs and on transverse mode stability is illustrated in Fig.
3.15.

Increasing the nonlinear gain saturation µ leads to a shift of the ECMs
to a region of larger transverse stability. The number of transversely stable
modes increases with increasing µ and the modes are shifted such, that
critical events with antimodes and subsequent desynchronization (bubbling)
are less likely. The synchronized state is thus more stable. However, because
of the dampening e�ect, the dynamics is also less complex.

Additionally, raising the gain saturation coe�cient also results in a smaller
maximum �eld intensity and a decreased variance of the intensity and of the
carrier number. Fig. 3.16 illustrates this e�ect via a distribution of intensity
maxima and minima for varying µ.

Figure 3.16: Intensity extrema of the coupled system for varying µ. Green
points represent intensity maxima, the red points are intensity minima. The
numerical parameters are the same as for Fig. 3.15.

If the considered model omits the nonlinear gain (µ = 0), all modes in the
vicinity of the minimum gain mode (around ω = 0) are transversely unstable
above a critical pump current (see Fig. 3.15). Without gain saturation the
lasers experience many desynchronization events or do not synchronize at
all, depending on parameters. The plots in Fig. 3.17 show the dependence
of the maximum correlation peak on the feedback and coupling strengths,
respectively, for vanishing gain saturation coe�cient µ = 0 and symmetric
delay times (a) as well as for a delay mismatch of ∆τ = 20 (b).

When we compare these results with the corresponding ones for nonzero
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3.6.1 Modeling and synchronization properties

There are two prominent methods of frequency detuning in a system of two
interacting semiconductor lasers: the �rst case is that the detuning is sym-
metric, meaning both lasers main frequencies are at the same time equally
shifted to opposing sides of the mean frequency of the system. We then write
the nondimensional model (see Section 2.3.1) in the reference frame of the
mean frequency. The other possible case is asymmetric detuning where one
laser's frequency remains �xed (the undetuned laser) and the main frequency
of the other laser is shifted (the detuned laser). The nondimensional model
we use then works in the reference frame of the undetuned laser. In experi-
ments related to detuning, the latter option is often chosen since symmetric
spectral adjustments are di�cult to accomplish in real-world systems.

To introduce the detuning into our model, we have to modify Eq. (3.4)
and add the detuning terms [193] corresponding to the case - symmetric or
asymmetric detuning, respectively. For symmetric detuning the �eld equa-
tions are modi�ed to

Ėj =
1
2 (1 + iα) [G(Ej , nj)− 1]Ej + (−1)j i22π∆Ej

+LEj(t− τ) +KE3−j(t− τ) + FEj , (3.25)

for j = 1, 2, where ∆ = Ω1 − Ω2 is the optical frequency detuning in
dimensionless units and G is the nonlinear gain function as de�ned in Eq.
(3.5). The term 2π∆ describes the anglular frequency detuning. For asym-
metric detuning, the term only goes into the �eld equation of the detuned
laser:

Ė1 =
1

2
(1 + iα) [G (E1(t), n1(t))− 1]E1(t)

+LE1(t− τ) +KE2(t− τ) + FE1 , (3.26)

Ė2 =
1

2
(1 + iα) [G (E2(t), n2(t))− 1]E2 + i2π∆E2

+LE2(t− τ) +KE1(t− τ) + FE2 , (3.27)

whereas the carrier equations for both ways of detuning remain unmod-
i�ed like given by Eq. (3.4):

ṅj(t) =
1

T

(
p− nj(t)−G(Ej , nj) |Ej(t)|2

)
(3.28)

for j = 1, 2. In the following we restrict our studies to the case of
symmetric detuning.

In order to quantify the synchronization level depending on varying fre-
quency detuning, we calculate the crosscorrelation function between the
lasers' output dynamics. It has been shown [23] that a certain frequency
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detuning between two coupled lasers leads to the predominance of general-
ized synchronization with a time lag corresponding to the delay. The laser
leading the dynamics is the one emitting at a higher frequency. Even though
correlation at a time shift of ∆t = −τ or ∆t = τ might be larger than at
zero-lag, the zero-lag correlation remains at a comparably high level within
the locking range. Fig. 3.18 shows the crosscorrelation at zero lag C(0) as
well as the correlations C(τ) and C(−τ) in dependence of the symmetric
detuning coe�cient ∆.

Figure 3.18: Zero-lag crosscorrelation (blue squares), crosscorrelation at
∆t = τ (red pluses) and crosscorrelation at ∆t = −τ (green crosses) versus
the detuning ∆. Already for comparably small detuning lag-synchronization
becomes predominant, even though the zero-lag synchronization exhibits
high levels as well. The numerical parameters are: α = 3.0, µ = 0.02,
p = 0.0, T = 200, τ = 2000, K = L = 0.15 and β = 10−6.

The blue squares depict the zero-lag crosscorrelation which exhibits a
range of high level correlation for |∆| / 0.045 which corresponds to the
central locking range. With further increasing detuning, the correlation
rapidly decreases, a feature we will explain in the following section in terms
of spectral overlap and episodic synchronization [183].

The lag correlations at τ (red pluses) and −τ (green crosses) underline
the change of the system to predominant generalized synchronization with a
time lag for increasing detuning and make clear the fact, that role of leading
laser switches if the sign of the detuning ∆ switches.

If the detuning is asymmetric, the vertical symmetry of the crosscorrela-
tion in respect to the axis ∆ = 0 vanishes, but the locking range will have
comparable extent for both positive and negative detuning if the coupling
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strength is not too large. Otherwise, because feedback-induced dynamics
usually exhibit a drift to lower frequencies [50], the dynamics will remain
synchronized for a larger negative detuning than for a positive detuning.

We will describe the mechanism underlying the correlation decay with
increasing detuning in the following section.

3.6.2 Spectral and dynamical features with detuning

Frequency detuning in�uences the dynamical regimes of the two coupled
lasers via their frequency dynamics. Here we connect the overlap of the
optical spectra with the dynamics and synchronization level of both lasers.

Búldu et al. [183] introduced the concept of episodic synchronization
for the case unidirectional injection: A semiconductor laser, which exhibits
stable emission without input, is being dynamically injected by a drive laser
exhibiting chaotic dynamics for di�erent detunings of their solitary emission
frequencies. They showed that the dynamics of the response laser, which is
induced by the injected signal from the drive laser, is synchronized if and
when it is within the injection locking range of the drive laser. In that
manner, synchronization is related to the overlap of the spectral ranges of
the drive and response lasers, respectively. Here, we investigate a system of
two coupled lasers dynamically injecting each other. We adapt the notion
of episodic synchronization for the bidirectional coupling case and link the
correlation characteristics with varying detuning to the overlap of each laser's
spectral range and injection locking range. We attribute the correlation
decay with increasing absolute detuning (the detuning is symmetric) to an
increasing fraction of the lasers' dynamics occurring outside the overlap of
their respective locking ranges.

We evaluate the time-resolved correlation by calculating the sliding-window
crosscorrelation (slcc) and analyze the spectral overlap depending on the de-
tuning.
For our numerical investigation we consider the cases of small, intermediate
and large detuning. We simulate the lasers as being operated in the LFF
regime so the changes in the dynamics induced by the detuning become easily
visible. In addition, LFF dynamics exhibit more extended phase space itin-
erancies than coherence collapse (CC) dynamics (see Chapter 2), so changes
of the frequency range due to detuning are more obvious for LFFs than for
CC. The system parameters for our simulations are chosen as in Fig. 3.18.

In Fig. 3.19 we show averaged several frequency extrema ω1,2(t) of both
lasers extracted versus the detuning ∆. We identify the range from the
averaged minimum to the averaged maximum frequency (the shaded areas
in Fig. 3.19) for each laser with its respective (e�ective) spectral range.

The frequencies ω1,2 are calculated as follows: First the connected (in-
creasing) phases φ1,2 are calculated from the complex �eld variables E1,2

by



φ1,2(t) = arctan

(
= [E1,2(t)]

< [E1,2(t)]

)
ω1,2

ω1,2 = (φ1,2(t) � φ1,2(t � τ)) /τ,

ω = (ω1 + ω2)/2

ω = (ω1 + ω2)/2 = 0
8 · 105

∆
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3.18. For an increasing absolute detuning the overlap diminishes while the
spectral range of the laser that is tuned to higher frequencies decreases sig-
ni�cantly (laser 1 (red) for negative symmetric detuning, laser 2 (green) for
positive symmetric detuning∆). For very large absolute detuning |∆| > 0.13
the lasers' average frequencies unlock completely and their overlap vanishes.
However, since the frequencies calculated from the delay phase (Eq. (3.29))
are averaged and collapsed into one value, we emphasize that the actual
complete spectra still have a signi�cant overlap (see below).
Because the diagram in Fig. 3.19 describes a stationary perspective and we
want to unveil the mechanism underlying the synchronization decline, we
study the time-dependent frequency variables. To qualify the current syn-
chronization state we compute the sliding-window cross-correlation (slcc). It
is calculated as cross-correlation of the intensities for a shifting window of
length 200 points with a step size of 1.
Time traces of the lasers' emission frequencies (as computed by Eq. (3.30))
and intensity outputs as well as the corresponding slcc are shown in Fig.
3.20 for detuning values ∆ = 0.01 (a), ∆ = 0.025 (b) and ∆ = 0.04 (c). The
center panels depicting the time evolution of ω1,2 exhibit the unlocking of
both lasers (averaged) frequencies during the power dropouts for small de-
tuning (a) as well as unlocked behavior during the increasingly large interval
encompassing the power dropouts for larger detuning (b,c). The slcc-time
traces (top panels) show corresponding dips con�rming desynchronization
which can also be seen in the intensity dynamics as depicted in the lower
panels.

Unlocking occurs at low frequencies close to the end of the spectral range
of the laser tuned to a higher solitary emission frequency. We interpret this
behavior as corresponding to episodic synchronization in [183]: the dynamics
of the laser tuned to lower frequencies move out of the locking range of the
other laser and desynchronization sets in. As the lasers are increasingly
detuned from each other, the shared spectral range diminishes and less of
the dynamics are synchronized. Resynchronization takes place close to the
upper edge of the locking range of the laser tuned to lower frequencies.
Because an increasing symmetric frequency detuning reduces the spectral
overlap of both lasers from both the high and the low frequency end, the
desynchronization episodes are centered around the times of occurrence of
power dropouts. Their increasing duration leads to the decay of correlation
of the lasers' outputs as shown in Fig. 3.18.
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By the length of the time interval shown, one can also see that the length
of one LFF dynamical cycle is signi�cantly reduced by an intermediate de-
tuning (Fig. 3.20 (b,c)) as compared to the case with small detuning (Fig.
3.20(a)). The characteristics and the occurrence of the unsynchronized in-
tervals in dependence of the detuning is investigated further in Chapter 4.

The unlocking of both lasers frequencies is accompanied by a power
dropout and spectral jump toward the solitary lasing frequency of the laser
tuned to higher frequencies. The other laser emits further at the lower end of
its frequency range until it experiences a power dropout and spectral jump
induced by the coupling signal of the �rst laser after the coupling delay τ .
In that way a frequency detuning between the two lasers increases the fre-
quency of occurrence of the power dropouts which is a de�ning timescale in
the LFF regime.

Fig. 3.21 shows dynamical trajectories ω1,2(t), n1,2(t) in the (ωS , n) phase
space for the same detuning ∆ = 0.01 (a), ∆ = 0.025 (b) and ∆ = 0.04 (c).
The light green and light red parts describe the dynamics of laser 1, the
dark green and dark red parts are the dynamics of laser 2. The red portions
of the trajectories describe unsynchronized intensity dynamics according to
a correlation threshold Cthr = 0.95 of the sliding-window cross-correlation,
the fractions that are green describe synchronized dynamics (for the slcc
timetraces see Fig. 3.20).

In Fig.3.21(a) we see phase space trajectories of both lasers with extended
frequency range, corresponding to the time traces in Fig. 3.20, that mirror
the large spectral range shown in Fig. 3.19 for small detuning. This range
roughly corresponds to the extent of the ECM mode ellipse of a single laser
subject to feedback with strength L + K. The dynamics are synchronized
almost completely, except during their power dropouts. This desynchroniza-
tion during dropouts is investigated in more detail in Chapters 4 and 5.
For the case of an increased detuning ∆ = 0.025 which is depicted in Fig.
3.21(b), the frequency range of both lasers is signi�cantly diminished because
of temporary unlocking. Also, both dynamics need longer to resynchronize
after the preceding power dropouts and subsequent frequency jump. Fig.
3.21(c) shows the situation for ∆ = 0.04; an even longer resynchronization
time of the dynamics is illustrated. However, since most of the dynamics
in the LFF regime take place for lower frequencies (corresponding to the
lower end of the ECM ellipse, see Chapter 2), most of the dynamics are
still well-synchronized. This can be recognized in Fig. 3.18 and in the top
panels of Fig. 3.20. During the time intervals in which the frequencies are
unlocked, the dynamics exhibit unsynchronized behavior. These unsynchro-
nized episodes become longer with increasing detuning and thus decrease the
overall synchronization as depicted for |∆| / 0.045 in Fig. 3.18.
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laser which is negatively detuned with respect to the average solitary laser
frequency ωS . For∆ = 0.075 the lasers' spectra are signi�cantly more shifted
from each other, they unlock for most of their dynamical trajectories and
exhibit individual main peak structures that are highly suppressed in the
respective other laser.
To sum up, in a phenomenological way, we have linked the frequency dy-
namics and the spectral overlap of two mutually coupled lasers with relative
detuning to their synchronization properties. The synchronization character-
istics are also connected to dynamical changes due to the detuning. Desyn-
chronization events that are related to LFF-power dropouts show increased
frequency with increasing detuning. They result in the overall decline of the
synchronization within the detuning range of well-synchronized behavior (see
Fig. 3.18).

3.7 Summary

We have numerically and analytically investigated the dynamical and syn-
chronization properties of a system of two delay-coupled semiconductor lasers
in di�erent coupling schemes. We employed a model for a scheme of two
lasers coupled via a semitransparent mirror, which serves as a passive relay,
and studied the in�uence of a mismatch between the transmission and re�ec-
tion of the mirror, i.e., a mismatch between coupling and feedback strength.
Furthermore, we investigated the e�ect of a delay mismatch corresponding
to a misalignment of the mirror from the middle. We have further stud-
ied numerically the e�ect of frequency detuning of the two lasers on their
synchronization level and dynamics, respectively, the detuning serving as
another important potential mismatch.
We have shown that a mismatch of coupling and feedback strengths dete-
riorates the stability of the synchronized solution, but does not change the
synchronized dynamics. An increasing mismatch leads to longer desynchro-
nization events, since less modes are transversely stable. However, high level
synchronization is still observed if the mismatch |L−K| remains comparably
small. The zero-lag crosscorrelation of the lasers' dynamics does not depend
on the sign of the mismatch between coupling and feedback L−K but only
on the modulus.
Considering a saturable nonlinear gain, a reduction of complexity in the
timeseries is observed. At the same time a broader domain of parameter
mismatches exists that leads to high synchronization levels, because the gain
saturation increases the transverse stability of the ECMs.
Our analysis has shown that the synchronization properties of a con�gura-
tion with a semitransparent mirror are the same as those of a drive-response
con�guration, at least on the level of the ECMs. Comparing open-loop and
closed-loop drive-response con�gurations, it was shown that an open loop
con�guration synchronizes best; the transverse stability of the modes in-
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volved in the dynamics of both lasers equal those in a bidirectional setup
without coupling mismatch. Adding self-feedback to the receiver laser has
the same e�ect on stability as introducing a coupling mismatch in the relay
con�guration.
In the situation of a mismatch of the feedback and coupling delays, we have
found that the lasers can synchronize identically with a nonzero lag. The
output time series then exhibit a relative time shift proportional to the delay
di�erence. The stability of the time-shifted identical synchronization of the
lasers is almost una�ected by the magnitude of the delay mismatch. How-
ever, the dynamics are drastically altered by a varying ∆τ , because the ECM
positions are changed compared to the case of symmetric delays.

In particular very small mismatches, mismatches leading to rational ra-
tios of the delay times and cases where the second delay is very short com-
pared to the �rst one, respectively, result in the possibility of suppressing
the chaotic dynamics and stabilizing them toward either single mode out-
put or periodic dynamics. These qualitative features do not depend on the
amount of the delay, but solely on the ratio of the delay times. We found
these characteristics to be robust for broad ranges of the coupling strengths
(i.e., the transmission and re�ection of the relay-mirror) and even for strong
spontaneous emission noise levels. We speculate that they are caused by
destructive interference phenomena.

We also found that applying a delay mismatch to the system leads to
a much increased sensitivity toward an addtional coupling mismatch. The
synchronization level decreases faster when both, a delay and a coupling
mismatch, respectively, are present in the con�guration, than in the case
with only a coupling mismatch but symmetric delays.
Furthermore, we have phenomenologically linked the decreasing spectral
overlap occurring for two coupled lasers that are increasingly spectrally de-
tuned with the synchronization level of the lasers' dynamics. In the LFF
regime, the alterations of the dynamics due to (small to intermediate) de-
tuning can be connected with changes in synchronization levels. Intervals
of desynchronization, related to the power dropouts, occur more often with
increasing detuning and longer periods of unlocking lead to longer periods
of desynchronization.
The presented results are of great relevance for further investigations into the
dynamics and synchronizability of delay-coupled lasers. The possibility to
target speci�c stability regions via intentionally introduced mismatches can
for example be helpful for chaos communication systems or random number
generation. Moreover, our results are not only relevant for chaotic commu-
nication, but may also be helpful to scientists in other �elds, such as com-
putational neuroscience, engineering, and biology. The presented analytical
results can be transferred to other delay-coupled systems with corresponding
network topology and thus could facilitate the developement of applications,
e.g., in electro-optic or neuronal systems.



4
Identical synchronization and

intermittent desynchronization

events in delay-coupled lasers

4.1 Introduction

4.1.1 Bubbling and on-o� intermittency

Chaos synchronization is an interesting phenomenon in coupled nonlinear
systems. Besides its fundamental importance in laser systems, also applica-
tions of the phenomenon add to its appeal. One can take advantage of chaos
synchronization in laser systems for chaos-based communication schemes and
key-exchange-protocols [25, 83, 84, 86, 90, 176]. Message recovery in these
concepts heavily depends on synchronization of the involved lasers because
information can not be recovered from unsynchronized output states. It was
shown, that coupling two nonlinear subsystems via a relay, which can be
active [71, 194] or passive [78, 176], or adding corresponding self-feedbacks
to the coupled subsystems [80], can lead to zero-lag synchronization. As we
show in Chapter 3, symmetric setups and coupling topologies and identi-
cal subsystems (or subsystems with minimal parameter mismatches) favor
zero-lag synchronization.

There have been studies that investigated quantitatively the issue of syn-
chronization loss in coupled chaotic systems under the in�uence of noise or
key parameter variation [92, 93, 95, 97, 195�197]. Studies that address the
underlying mechanisms behind the synchronization loss, especially from an
experimental perpective, are, however, rare. Changes in operating param-
eters or introduction of mismatches frequently alter the dynamics of such
coupled systems and are therefore might modify the desynchronization mech-

83



84 CHAPTER 4. INTERMITTENT DESYNCHRONIZATION

anisms as well.

There are two major mechanisms for the loss of synchronization of near-
identical coupled nonlinear oscillators: Transverse instability of the synchro-
nization manifold (SM) due to a blowout-bifurcation [92, 93] and attractor
bubbling [92, 94, 95, 97, 195, 196, 198, 199].

Transverse stability of a manifold is often characterized by the largest
transverse Lyapunov exponent. A negative exponent means transverse sta-
bility. A blowout-bifurcation is de�ned as the zero-crossing point of the
largest Lyapunov exponent under variation of a key parameter, often the
coupling strength. A transition through a blow-out bifurcation results in
intermittent desynchronization events. This phenomenon is called on-o�
intermittency [93, 95, 200, 201] and occurs close to a blowout-bifurcation.

Attractor bubbling arises via a so-called bubbling bifurcation. It de-
scribes how invariant sets (such as periodic orbits), that are embedded in
a transversely stable attractor within the (invariant) synchronization mani-
fold, lose their transverse stability. Transverse perturbations by noise or by
small mismatches between the coupled elements can then induce intermittent
desynchronization events, even though the maximum transverse Lyapunov
exponent of the chaotic attractor is negative. In this case, the trajectory can
be pushed toward the transversely unstable sets by noise or mismatch and
leave the SM. If no other attractor is present, the trajectory will then return
to the SM and the coupled subsystems resynchronize. The bubbling bifur-
cation is the point where the very �rst invariant set becomes transversely
unstable. Similar to on-o�-intermittency, the bifurcation can be traversed
by varying a key system parameter, often the coupling strength between the
involved subunits. Dynamically, bubbling is characterized by intermittent
desynchronization events, similar to on-o�-intermittency. The latter, how-
ever, occurs also in systems with coupled identical elements and without
noise, since the attractor lacks transverse stability. Furthermore, certain
scaling laws have been found to describe the time the dynamics spend close
to the synchronized state [95, 201].

Venkataramani et al. showed analytically, that there are two transitions
to bubbling: the hard transition and the soft transition [195, 196]. In soft
transitions, the desynchronization burst amplitude scales with the square
root of a normal parameter µ [96, 195, 202]. This normal parameter describes
the distance to the bubbling bifurcation. A normal parameter only changes
the transverse stability of solutions in the synchronization manifold, but not
the dynamics within the synchronization manifold. In hard transitions the
bursts set in with a �nite burst amplitude.

Here, we investigate the time-resolved synchronization properties in a sys-
tem of bidirectionally coupled semiconductor lasers with feedback. Bubbling
has been shown to exist in such a system [97], and the transverse stability of
the external cavity modes (see Chapters 2 and 3) play an important role for
the stability of the chaos synchronization. If our system is completely sym-
metric, bubbling is mostly induced by noise and the transversely unstable
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antimodes, which are saddle nodes. However, small parameter mismatches
between the lasers can also destabilize other modes, which then can, too,
mediate desychronization events.

In delay-coupled Stuart-Landau oscillators and Kuramoto oscillators sim-
ilar unstable periodic orbits, as in the chaotic attractor of our system, exist
as well [68]. Thus bubbling can be expected to occur in these kinds of sys-
tem, too. Overall, bubbling has been found for a multitude of dynamical
systems: lasers [95, 96], electronic circuits [94, 203], biological cells [204],
and various generic oscillators (see e.g. [195]).

Whether the bubbling transition in our coupled laser system is a hard or
a soft transition can not be rigorously determined, because a normal parame-
ter does not exist in this system [96, 98], as all laser and coupling parameters
a�ect the synchronized dynamics. However, numerical simulations of Lang-
Kobayashi rate equations have shown [98], that the desynchronization burst
amplitude (synchronization error) is not changed by parameter variations in
that model, which we employ also. This suggests, that the bubbling transi-
tion is a hard transition in our system.
In this chapter, we connect the general synchronization level of two bidi-
rectionally coupled laser with feedback, as quanti�ed by crosscorrelation
coe�cients, with the occurrence of distinct desynchronization events. We
follow this approach for three di�erent cases: First, we investigate noise-
induced bubbling in an experimental laser system, and second, we study
mismatch-induced bubbling in numerical simulations. Studying the e�ect of
mismatches on synchronization dynamics numerically enables us to disregard
noise, a feature that is prevalent in real physical systems. In experimental
laser systems, intrinsic noise stems from spontaneous emission.

For the third case, we study the characteristics of intermittent desynchro-
nization events due to frequency detuning between the two lasers in experi-
ments and via a numerical study, respectively. We described the mechanism
of this desynchronization phenomenon in Chapter 3 from the viewpoint of
episodic synchronization as introduced in [183]. In this concept, the desyn-
chronization is linked with diminishing spectral overlap of both lasers with
increasing detuning. Here, we characterize the properties of these desyn-
chronization episodes in a quantitative manner.

4.1.2 Chapter Outline

This chapter is organized as follows: First we introduce our experimental
setup in Section 4.2. We then present experimental results showing high-
level zero-lag synchronization of two bidirectionally coupled semiconductor
lasers, that are coupled in a relay-con�guration in Section 4.3. Furthermore,
we show the decline of synchronization with increasing pump currents in that
system. In Section 4.4, we investigate the synchronization characteristics for
di�erent pump currents on a local time scale using a sliding-window cross-
correlation (slcc) analysis and connect the occurence of the found desyn-
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chronization events with the dynamical features of the respective operating
regime. We interpret these desynchronized intervals as bubbling events. Our
results are supported by a statistical analysis of the characteristics of these
desynchronization events. Then, in Section 4.5 we investigate �rst experi-
mentally in 4.5.1 as well as numerically in 4.5.2 the synchronization char-
acteristics and -dynamics (also using slcc) in the same scheme as described
above but introducing a frequency detuning. We describe and characterize
the arising desynchronization events due to detuning in terms of episodic
synchronization. Finally, we study the e�ect that a mismatch between the
pump currents of the two lasers has on their synchronization in Section 4.6.
For this, we simulate the system without noise and analyze the synchro-
nization dynamics. We �nd that for small mismatches, synchronization is
deteriorated only by intermittent desynchronization events, for large mis-
matches, however, overall correlation is lost and the two subsystems only
rarely synchronize intermittently, if at all.

4.1.3 Contributions to the work in this chapter

A part of the results presented in this chapter has been published as "J.
Tiana-Alsina, K. Hicke, X. Porte, M. C. Soriano, M. C. Torrent, J. Garcia-
Ojalvo, and I. Fischer: Zero-lag synchronization and bubbling in delay-coupled
lasers, Physical Review E 85, 026209 (2012)".

The experiments described here were planned and prepared in collab-
oration with Jordi Tiana-Alsina and Xavier Porte and executed together
with Xavier Porte. The analysis of synchronization dynamics using sliding-
window cross-correlation for the zero-detuning case with varying pump cur-
rents and for the experimental frequency detuning case, respectively, were
done in colloboration with Jordi Tiana-Alsina.

4.2 Experimental setup

Our experimental setup is depicted in Fig. 4.1. It consists of two simi-
lar discrete mode semiconductor lasers (Eblana Photonics), operating at a
nominal wavelength of λ ≈ 1540 nm. The lasers are coupled symmetrically
via a �ber loop. This loop serves as a semitransparent mirror, accounting
for symmetric feedback and coupling. It comprises a 50/50 optical coupler,
whose output arms on one side are connected, forming the loop. An optical
isolator is placed in the loop to ensure a single propagation direction in the
�ber loop and thus to avoid interference e�ects between counter-propagating
waves. The two laser outputs are combined in the loop via the ingoing arms
of the 50/50 optical coupler and then redistributed evenly via the same cou-
pler upon leaving the loop. Therefore, we assume identical feedback and
coupling strengths. The relay loop provides for feedback and coupling with
equal delay times, if both arms of the setup (optical path between each re-
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spective laser and the main optical coupler) are of equal length. The coupling
relay thus leads to chaotic behavior in both lasers, in addition to identical
synchronization of their outputs. The absence of asymmetries in the coupling
provides near-optimal synchronization conditions [205] (see also Chapter 3).

We are using single-mode optical �ber (SMF) in our experiments. Since
the polarization states are not maintained in these �bers and are a�ected
by birefringence, we use polarization controllers in both arms of the setup
to assure appropriate polarization and phase conditions for polarization-
maintained feedback (see also model sections in Chapter 2).
By autocorrelation analysis of the intensity dynamics of both lasers in the
coupled con�guration, the feedback and coupling delay in our setup was
determined to be τ = 73.125±0.025 ns. On the one hand, the autocorrelation
method does have an inherent absolute bias, depending on the operating
regime [206], which may result in an o�set to the determined delay times.
On the other hand, determining the relative delay di�erence is una�ected.
Hence, delay symmetry in our setup can be assumed.

The e�ective coupling strengths can be calculated from the losses in each
component in the optical paths, the connector losses and the losses at the
�ber-laser cavity coupling. With these, we estimate the coupling and feed-
back strengths as corresponding to ≈ 6% of emitted light being coupled
back into the respective laser. This relatively strong coupling ensures that
we avoid the regime of transverse instability due to a blow-out bifurcation
[97].

The spectral characteristics of the two lasers, i.e., their emission frequen-
cies, are adjusted by tuning their temperature. The laser temperatures and
pump currents are controlled by a Thorlabs PRO8000 laser controller with
accuracies of ∆T = ±0.01 oC and ∆Ip = ±0.01 mA, respectively.

We measure the laser outputs by using fast Miteq DR-125G-A photode-
tectors with 13 GHz bandwidth, whose outputs are recorded by a LeCroy
WaveMaster 816Zi oscilloscope with an analog bandwidth of 16 GHz and a
sampling rate of 40 GS/s. The high time resolution enables us to resolve the
fast intensity dynamics on a picosecond timescale, and allows us to observe
and distinguish very short intervals of synchronization or unsychronized be-
havior with unprecedented detail.

4.3 Identical synchronization of two delay-coupled

semiconductor lasers

In this section we show experimentally, that two semiconductor lasers, cou-
pled with delay via a passive relay, can exhibit high level identical chaos
synchronization. We will show that the lasers synchronize identically with
zero lag, i.e., that they exhibit isochronous synchronization, due to the delay
symmetry of our experimental setup.
In order to achieve optimal synchronization conditions, we have to assure
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Figure 4.2: (a) Experimental time series of synchronized fast intensity dy-
namics in the coherence collapse regime. A short desychronization event is
highlighted. The lasers are pumped with a pump current corresponding to
p = 1.25. The intensities have been normalized by shifting the traces by
their respective mean values and scaling with their standard deviations. (b)
shows the corresponding synchronization error, i.e. the normalized intensity
di�erence.

global dynamics on the mode ellipse (see previous Chapters, especially 2).
The regime manifests itself in the intensity dropouts, followed by a subse-
quent intensity buildup until the next dropout. During the buildup process,
the lasers dynamics drifts over several optical modes. This chaotic itiner-
ancy almost monotonically tends toward higher average intensities [50]. The
dropout occurs when the trajectory approaches the stable manifold of an
antimode, which has the characteristics of a saddle point [55]. This anti-
mode also corresponds to a transversely unstable mode of the laser's chaotic
attractor. In contrast to the LFF regime, the global dynamics in the CC
regime occurs on a faster timescale. The dynamics of the laser in the CC
regime exhibits larger intensity �uctuations and more frequent critical events
with transversely unstable antimodes. This results in more frequent subse-
quent bubbling (desynchronization) events. The dynamical characteristics
of these two regimes are described in more detail in Chapter 2. Here, we
compare the di�erent synchronization dynamics in the two regimes.
We quantify the degree of zero-lag synchronization between the two lasers by
using the cross-correlation coe�cient at zero lag Ccorr of two corresponding
intensity time series
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Ccorr =
〈[I1(t)− 〈I1〉] [I2(t)− 〈I2〉]〉√〈
[I1(t)− 〈I1〉]2

〉〈
[I2(t)− 〈I2〉]2

〉 (4.2)

where 〈·〉 denotes time averaging. To further account for fast dynamical
�uctuations, we integrate and normalize the synchronization error |I1 − I2|
over shifting windows of one delay time τ , and calculate the mean value over
all windows:

χ =
〈|I1 − I2|〉
〈I1 + I2〉

. (4.3)

This de�nition corresponds to the normalized average synchronization
error. In our numerical simulations, the denominator is calculated by aver-
aging over the entire time series while the numerator is calculated for shifting
windows of length τ and subsequently averaged. The two quanti�ers Ccorr

and χ are shown in Fig. 4.3 for equally increasing applied normalized pump
currents of the two lasers.

Figure 4.3: Cross-correlation coe�cient at zero lag Ccorr (black circles), frac-
tion of the sliding-window cross-correlation above the correlation threshold
of Cthr = 0.5 (red squares) and mean averaged synchronization error χ (blue
diamonds), respectively, versus the applied normalized pump current of both
lasers.

As the currents increase, the zero-lag cross-correlation (black circles) de-
creases, and correspondingly the mean integrated synchronization error χ
(blue diamonds) increases almost linearly.
We want to understand why the correlation (synchronization level) deteri-
orates with increasing pump current, and how that decrease is related to
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changes in the dynamical regime (from LFF for p ≈ 1 to coherence collapse
for p ≈ 1.5). Figure 4.2(b) shows that the instantaneous synchronization er-
ror is subject to short bursts that correspond to desynchronization events. To
account for fast-timescale synchronization and desynchronization events of
this kind, we additionally introduce and calculate the sliding-window cross-
correlation slcc, for which the standard cross-correlation coe�cient at zero
lag Ccorr is calculated over a shifting window of 1 ns width with a step
size corresponding to 0.1 ns. That way we obtain a time trace of instanta-
neous correlation values. A signi�cant drop of the slcc below a correlation
threshold Cthr implies the occurance of a desychronization event. We can
then quantify the fraction of synchronized dynamics with respect to the to-
tal length of the dynamics time series. This fraction decreases with pump
current, similarly to the zero-lag cross correlation, as shown in Fig. 4.3 for
Cthr = 0.5.

4.4 Bubbling in di�erent pump regimes

In this section we investigate how intermittent loss of synchronization leads
to a decrease in overall synchronization level for increasing pump current.
We identify the experimentally measured intermittent short-lived desynchro-
nization events as manifestations of bubbling in our system. Here, we inves-
tigate the bubbling characteristics in dependence on the pump currents and
therefore on the dynamical regime - LFF and CC.

As it is unrealistic to calculate transverse stability in terms of the max-
imum transverse Lyapunov exponents from experimental data, we can not
prove that the intermittent desynchronization events we measure in our ex-
periments are manifestations of bubbling, rather than of on-o�-intermittency.
There are, however, indications that we indeed observe bubbling and not on-
o�-intermittency, apart from the fact, that the e�ective coupling strength in
our experiments is quite large, which should provide for a transversely sta-
ble synchronization manifold. We will present these indications during the
discussion of our experimental results in the following subsection.

4.4.1 Synchronization degradation due to bubbling

In the LFF regime, intensity dropouts that occur simultaneously in both
lasers can be interpreted as deterministically induced events. The issue of
deterministic dropout events and noise-driven ones is investigated in detail
in Chapter 5. In some cases noise can lead to a dropout in only one laser,
therefore resulting in the loss of synchronization. In these cases, the other
laser is usually a�ected by the dropout after one coupling delay τ , subse-
quently undergoing a power dropout itself. After this second dropout, the
lasers can, and usually will, resynchronize. [23].

Fig. 4.4(a) depicts output intensity time traces of both lasers in the
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LFF regime that include a few desychronization events as marked by a large
drop in the corresponding sliding-window cross-correlation (slcc) time series
shown in Fig. 4.4(c). Fig. 4.4(b) and (d) show a magni�ed view on one of
the bubbling events in the intensity and the slcc time series, respectively.

Figure 4.4: Zero-lag synchronization of experimentally obtained LFF dy-
namics. Output intensity time series of the two lasers (a,b) and correspond-
ing sliding cross-correlation (c,d) for a long time interval of 20 µs (a,c) and
a magni�cation in time (b,d). The time series depicted in red was verti-
cally shifted for better visibility. The applied pump current in this case
corresponds to p = 1.04, being close to the solitary lasing thresholds. The
intensities are normalized by shifting their mean values to zero and scaling
them by their standard deviations.

The �gure shows that the desynchronization events in the LFF regime
coincide with intensity dropouts at the end of each LFF cycle, in agreement
with previous numerical results [97, 161]. The desynchronization events be-
gin, when the trajectory approach a transversely unstable antimode. As
mentioned above, the dropouts of both lasers usually occur with a rela-
tive time shift of τ , resulting in desynchronization (bubbling) events of that
length (Fig. 4.4(d). Between the desynchronization events the dynamics of
both lasers are well-synchronized with slcc-values of 0.95 or higher in our
experiments.
This experimentally obtained desynchronization characteristic is evidence for
the onset of bubbling in this con�guration. The fact that desynchronization
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events are connected to the power dropouts implies that desynchronization is
restricted to a certain region of the chaotic attractor of this system. This cor-
responds well to model predictions for bubbling [97, 98]. Flunkert [98] found,
that desynchronization in the LFF regime occurs mainly for larger carrier
numbers. This corresponds to dynamics around external cavity modes in
the vicinity of the solitary laser mode, which have been transversely desta-
bilized by the bubbling bifurcation. The lasers remain unsynchronized while
their trajectory is close to these transversely unstable periodic orbits. The
compliance of this localization of desynchronization events in the attractor
with theoretical predictions [97, 98] serves as indication for the occurrence
of bubbling instead of on-o�-itermittency. In case of the latter, the entire
synchronization manifold is transversely unstable, and intermittent desyn-
chronization can take place over larger parts of the attractor.
In the case of fully developed coherence collapse (CC), which ariser for larger
pump currents, the synchronization dynamics is very di�erent. This is due
to the fact that the overall dynamics di�ers substantially from the LFF be-
havior. In particular, there exists no slow time scale comparable to the one
associated with the power dropouts in the LFF regime. Evidence for this is
also the lack of signi�cant low-frequency components in the rf-spectra of the
CC-dynamics, in contrast to the LFF dynamics (not shown). Concurrently,
the ejections of the trajectory due to unstable antimodes are more frequent
and much shorter than in the LFF case. The duration of the desynchroniza-
tion events is of the order of 1 ns. Fig. 4.5(a) shows synchronized intensity
time traces in the CC exhibiting short desynchronization events with high
frequency of occurrence emphasized by drops in the corresponding slcc time
trace (Fig. 4.5(c)).

The desynchronization events are linked to the phase space ejections of
the trajectory and thus have a comparable duration and the same frequency
(Fig. 4.5(c,d)). After a critical event with a transversely unstable antimode,
the dynamics rapidly intinerates through unstable modes until resynchro-
nization occurs. For the case of CC, the restriction of desynchronization to
a certain attractor region is not as clear as for the case of LFF dynamics.
Nevertheless, the correspondence of the synchronization characteristics we
found in our experiments with theoretical predictions make it plausible to
assume that the measured desynchronization events in the CC regime are
manifestations of bubbling and not on-o�-intermittency too. It is, however,
important to note, that increasing the pump current of a laser with feedback
can result in the transition of the dynamics from weakly to strongly chaotic
[207]. This corresponds to a transverse destabilization of the entire synchro-
nization manifold.
The intervals of synchronized dynamics exhibit a high correlation with values
of SLCC around 0.95, as is observed for the LFF regime. The high temporal
resolution of the measurements and the comparably short window size for
the slcc calculation allow us to resolve the fast synchronization dynamics
with good accuracy (Fig. 4.5(b,d)).
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Figure 4.5: Synchronization of laser outputs in the CC regime. Normalized
output intensity time series of the two lasers (a,b) and corresponding sliding
cross-correlation (c,d) for a time interval of 200 ns (a,c) and a magni�cation
in time (b,d). The blue intensity time series was vertically shifted for better
visibility. The applied pump current in this case corresponds to p = 1.39.
The normalization was done corresponding to Fig. 4.4.

The results shown in Figs. 4.4 and 4.5 allow us to infer that the overall dete-
rioration of synchronization that is observed with increasing pump current
(Fig. 4.3) is due to an increase in the frequency of occurrence of bubbling
events. This deduction is seen as valid mainly due to the fact that the maxi-
mum value of the slcc, which measures the instantaneous correlation, during
synchronized time intervals does not change much with increasing current.

We quantify the issue of the average slcc-value during intervals of syn-
chronization in Fig. 4.6, which shows the normalized slcc distribution for six
values of the normalized pump current. The normalization is done such that
the integral over all 401 bins equals 1.

The histograms group into two qualitatively di�erent sets. The distri-
butions in the �rst group correspond to lower pump currents and the LFF
regime (p = 1.04 and p = 1.13) and have bimodal characteristics. For the
cases of higher currents and correspondingly the CC regime, the distributions
are characterized by a single, broad and asymmetric peak.

The lower peaks in the slcc distributions for the two LFF-cases are dips to
negative correlation that occur at the LFF-power dropouts. As for the coher-
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Figure 4.6: Normalized distributions of the sliding cross-correlation (slcc)
for 6 di�erent pump currents (see legend). The histograms have 401 bins.
Note the log-scale.

ence collapse regime, although the distributions broaden signi�cantly with
increasing current, they nevertheless clearly have their maximum peak at a
correlation close to 1. Consequently, we conclude, that intervals of high-level
synchronization still occur even for large pump currents: A global decrease
in synchronization would shift the distribution maxima in Fig. 4.6 toward
lower correlation values. This conclusion is supported by calculating the
fraction of time, during which synchronized dynamics persists, as depicted
by the red squares in Fig. 4.3. We choose Cthr = 0.5 as synchronization
threshold for the slcc, guided by the bimodal LFF distributions of Fig. 4.6.
Even though this value is chosen arbitrarily, a di�erent threshold changes
the slope of the curve slightly, but the overall monotonic behavior persists.
In view of the slcc-dips due to desynchronization in the CC regime as shown
in Fig. 4.5(c), the choice of Cthr = 0.5 can be considered appropriate for the
coherence collapse as well.

4.4.2 Bubbling event statistics for di�erent pump currents

Since the correlation level within the synchronized intervals does not dimin-
ish with the pump current, but the overall correlation does (see black circles
in Fig. 4.3), the bubbling events must necessarily become either longer or
more frequent as the dynamics transitions from the LFF to the coherence
collapse. The increased desynchronization frequency can already be inferred
from a comparison between Figs. 4.4(c) and 4.5(c). To gain more insight,
we follow a systematic approach.
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The IEI are of the order of microseconds in these cases. Therefore, we
present only histograms for the characteristic lengths of bubbling in the CC
regime.

The IEI distributions shown in Fig. 4.7(a) reveal, that bubbling events
become more closely spaced, i.e., become more frequent, (the distribution
decays faster to 0) with increasing current. Isolated events (with a large
value of the IEI) become continously scarcer with increasing p. The bub-
bling durations (Fig. 4.7(b)) are not much a�ected by a change in current.
Nevertheless, for increasing pump current, fewer of the longer desynchro-
nization events are captured. The enhancement of a bubbling duration of 1
ns can be considered a numerical artifact, caused by the choice of a window
size of 1 ns for the computation of the slcc.
In this section, we have been able to explain the degradation of the over-
all correlation of dynamics in an experimental system of two bidirectionally
relay-coupled lasers with increasing pump current with increasingly frequent
occurring desynchronization events. We have found evidence, that these
events are bubbling events, by connecting their occurrence with the overall
dynamics in the corresponding dynamical regimes.

4.5 Detuning-induced intermittent desynchro-

nization

In this section, we study the e�ect of frequency detuning between two simi-
lar and symmetrically coupled semiconductor lasers on their synchronization
characteristics from an event-based perspective. We again consider a sym-
metric con�guration where coupling and feedback are provided via a passive
relay. Like in the previous section, we connect changes in the overall cor-
relation levels with varying detuning with the occurrence of intermittent
desynchronization events with varying frequency of occurrence. Following
the approach in Section 3.6, the desynchronized episodes are interpreted in
view of the concept of episodic synchronization as introduced in [183].

The section is structured in two parts: in the �rst we analyze data ob-
tained from experiments and in the second one we consider numerical sim-
ulations. The latter allows us to access a case without laser-intrinsic noise
and without any mismatches, which is not possible in the experiments.

4.5.1 Experimental work

For our experimental work we use the same setup as depicted in Fig. 4.1. By
varying the temperature of one of the lasers and leaving the other one �xed,
we accomplish (asymmetric) spectral detuning of the two lasers. Because
desynchronization events are more unique in the LFF regime, we pump both
lasers close to threshold at p = 1.04 for our detuning investigation. We can
then more easily observe alterations to the desynchronization characteristics
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with respect to the undetuned case, than if we considered fully-developed
CC-dynamics.
Similar to Section 4.4, we calculate several overall measures to character-
ize the synchronization level in dependence on the detuning ∆Ω. These
quantifyers are depicted in Fig. 4.8. They are the cross-correlation at zero-
lag (black circles), the fraction of the slcc above a correlation threshold of
Cthr = 0.5 (red squares) and the mean integrated synchronization error χ
(blue diamonds), calculated according to Eq. (4.3). The slcc is calculated,
like in the previous section, for a shifting window of length 1 ns with a step
size of 0.1 ns.

Figure 4.8: Crosscorrelation coe�cient at zero lag (black circles), fraction
of the sliding-window cross-correlation above the correlation threshold of
Cthr = 0.5 (red squares) and mean integrated synchronization error χ (blue
diamonds), respectively, versus the applied frequency detuning of both lasers
∆Ω.

One notices immediately the central (around ∆Ω = 0) detuning range,
which is characterized by high correlation values and a rapid drop in corre-
lation. This range also features a large fraction of the slcc above the syn-
chronization threshold and comparably low mean integrated synchronization
errors. Because of the dramatic decrease of the correlation measures at the
edges of this detuning interval, we identify it with the locking range, al-
though spectral properties are not recorded in these experiments. However,
locking is a necessary condition for identical synchronization, so we attribute
the sudden signi�cant drop in correlation, and thus the loss of synchroniza-
tion to unlocking of both lasers. The features shown in Fig. 4.8 serve as
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indications that the detuning range with highly correlated dynamics is ap-
proximately congruent with the locking range.
If we look at the slcc-dynamics for di�erent detunings (see Fig. 4.9), we see
that the low-frequency structure of the dropout-related correlation dips is re-
tained for detuning-values inside the high-correlation range (Fig. 4.9(a-d)).
This is due to the persistence of LFF dynamics for these detuning values
(not shown). Fig. 4.10 shows a magni�cation of one slcc-trace around one of
the power dropouts and the corresponding dynamics of both lasers. For in-
creasing detuning, the correlation �uctuates towards the dropout but retains
a high-valued maximum.

Figure 4.9: Exemplary time series of the sliding-window cross-correlation
(slcc) for �ve experimentally obtained pairs of intensity time series, corre-
sponding to �ve di�erent detuning values: (a) ∆Ω = 0 GHz, (b) ∆Ω = −1.0
GHz, (c) ∆Ω = −4.1 GHz, (d) ∆Ω = −7.2 GHz, (e) ∆Ω = −10.4 GHz.

Apart from synchronization dynamics, the detuning clearly has a signif-
icant e�ect on the dynamics of the lasers. The LFF-cycles tend to shorten
with increasing absolute detuning as is clear from the increased frequency
of dropouts. This can be understood as follows: As the absolute detuning
increases, the overlap of the broadened optical spectra of both lasers dimin-
ishes. The laser with the higher solitary lasing frequency - the (un)detuned
one for negative (positive) detuning - exhibits the power dropout �rst, the
lasers desynchronize. The dropout signal is fed into the other laser with a
delay τ and induces a dropout in the second laser, the lasers then resynchro-
nize (relock) close to the high-frequency limit of the spectral overlap of both
lasers. Since the overlap is decreased by detuning, the dropouts are thus
more closely spaced.
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Figure 4.13: Distribution of inter-event intervals of desynchronization
episodes determined from experimentally obatined time series for di�erent
detunings ∆Ω. (a) ∆Ω = −10.4 GHz, (b) ∆Ω = −7.3 GHz, (c) ∆Ω = −4.1
GHz, (d) ∆Ω = −1.0 GHz, (e) ∆Ω = 0 GHz, (f) ∆Ω = 2.1 GHz, (g)
∆Ω = 5.3 GHz, (h) ∆Ω = 8.4 GHz, (i) ∆Ω = 11.5 GHz. The detection
thresholds for the events are Tthr = 0.5 ns, Cthr = 0.5, IEIthr = 0.5 ns.

very short average inter-event intervals (Figs. 4.13(a,i). Again, this is due
to the chosen detection thresholds for desynchronization events. As the
slcc �uctuates around 0.5, many pseudo-events are detected, even though
the dynamics are unsynchronized and only exhibit statistically distributed
short-time correlation peaks.

4.5.2 Numerical modeling of the noiseless system

In this subsection we consider the same con�guration as in the experiments,
whose results are discussed in the previous subsection. We numerically simu-
late the described coupled laser system without spontaneous emission noise,
making use of the rate equation model introduced in Chapter 2.

This way, we want to gain further insight into the characteristics of
detuning-induced desynchronization without having to consider the e�ect
of system-intrinsic noise. In experimental systems, noise is always prevalent;
we discussed in Section 4.4 how noise leads to desynchronization due to bub-
bling. Here, we want to attain a re�ned perspective on the synchronization
dynamics in the bidirectional coupling setup with frequency detuning, by
excluding noise as a source for desynchronization and only considering the
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Parameter Value

α 3.0
γ 200 ns−1

γe 1 ns−1

β 0
κfb 20 ns−1

κc 20 ns−1

τ 10 ns
g 10−5 ns−1

ε 0
nT 1.8 · 108
I1,2 1.01Ithr

Table 4.1: Laser parameter values used in the numerical simulations.

e�ect of detuning.
To describe our system we use the coupled rate equations model as intro-
duced in Section 3.6. In order to limit our investigation to e�ects of detuning
on synchronization characteristics and synchronized dynamics, we assume
identical laser parameters and full symmetry of the delays and the coupling
and feedback strengths. We neglect the Langevin noise terms (β = 0) and
add a detuning term [193] for asymmetric frequency detuning:

Ė1(t) =
1

2
(1 + iα) (G1 − γ) E1(t) + κfbE1(t− τ) + κcE2(t− τ) (4.4)

Ė2(t) =
1

2
(1 + iα) (G2 − γ) E2(t) + κfbE2(t− τ) + κcE1(t− τ)

+i∆E2 (4.5)

ṅ1(t) =
I1
e

− γen1(t)− G1 |E1(t)|2 , (4.6)

ṅ2(t) =
I2
e

− γen2(t)− G2 |E2(t)|2 , (4.7)

where ∆ = 2π∆Ω is the angular frequency detuning between the two
lasers and G1,2 = g

n1,2−nT

1+ε|E1,2(t)|2
are the gain functions, following the de�ni-

tions in Chapter 2. Because of the long delays we neglect the coupling and
feedback phase o�sets. The parameter values are listed in Table 4.1. The
equations are numerically solved using Milshtein's method [208, 209] with a
stepsize correspondingh to 0.1γ−1.

Like for the experimental case, we calculate overall measures to charac-
terize the synchronization level in dependence of the detuning. The crosscor-
relation at zero-lag (black circles), the fraction of the slcc above a correlation
threshold of Cthr = 0.5 (red squares) and the mean integrated synchroniza-
tion error χ (blue diamonds) are depicted in Fig. 4.14.
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The central detuning range exhibiting high correlation values is not as dis-
tinct as in the experiments, as the zero-lag cross-correlation decreases more
gradually with increasing absolute detuning. There is no sudden dramatic
decrease in correlation when the detuning exceeds a certain value. Nev-
ertheless, larger zero-lag correlation values and larger slcc-fractions above
Cthr = 0.5 of ' 0.9, respectively, are restricted to absolute detunings of
|∆Ω| / 5 GHz. The mean integrated synchronizaion error χ exhibits a
steep incline with increasing absolute detuning and a saturation for large
detunings, i.e., for unlocked operation of the two lasers.

Figure 4.14: Cross-correlation coe�cient at zero lag (black circles), fraction
of the sliding-window cross-correlation above the correlation threshold of
Cthr = 0.5 (red squares) and mean integrated synchronization error χ (blue
diamonds), respectively, versus the applied spectral detuning of both lasers.
The simulation parameters are given in Table 4.1.

To observe the e�ects of the detuning on the dynamics and on the syn-
chronization dynamics, we study the timetraces of the sliding-window cross-
correlation for several increasing detuning values. Since the simulated sys-
tem is noiseless and fully symmetric, the dynamics are completely identical
for zero detuning. Therefore we present only traces with |∆Ω| > 0. Four
slcc-timetraces for positive detuning are shown in Fig. 4.15.

Similar to the experimental case, we notice an apparent overall short-
ening of the LFF dynamical cycles with increasing ∆Ω. The concurrent
higher dropout-frequency leads to more desynchronization events that clus-
ter around the time of the dropout in agreement with the experimental
results presented in the previous section. Fig. 4.16 shows magni�ed views
of individual desynchronization structures in the slcc-time series depicted in
Fig. 4.15 and the corresponding intensity dynamics of both lasers.
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Figure 4.15: Exemplary time series of the sliding-window cross-correlation
(slcc) for four numerically obtained pairs of intensity time series, correspond-
ing to four di�erent detuning values: (a) ∆Ω = 1 GHz, (b) ∆Ω = 2 GHz,
(c) ∆Ω = 3 GHz and (d) ∆Ω = 4 GHz. The other parameters are given in
Table 4.1.

We understand the intervals of strongly �uctuating instantaneous corre-
lation around the power dropouts as episodes of unsynchronized dynamics.
The duration of these episodes increases with increasing detuning, in agree-
ment with the concept of episodic synchronization: The more the lasers are
detuned, the longer are the intervals where each laser exhibits dynamics out-
side the spectral overlap of both lasers, and thus the longer are the times of
unsynchronized behavior. The �uctuations of the slcc within these episodes
can be understood as well. The slcc is computed for 1 ns windows, which
in our numerical study corresponds to 200 points. Thus, coincidental higher
correlation values are statistically bound to occur. These intermittent large
instantaneous correlations do not imply resynchronization.
The slow gradual decrease in overall correlation and in synchronized fraction
of the dynamics can be attributed to the increase in occurrence of unsynchro-
nized episodes associated with the dropouts and to their increasing duration
with increasing detuning.

A statistical investigation of the characteristics of the desychronization
episodes reveals the expected results: for small detuning we observe few and
short desynchronization episodes, with the duration usually limited by the
delay time τ = 10 ns. As the detuning increases, more events are captured
and they become shorter on average. As the lasers are detuned such, that
locking only occurs intermittently, long intervals of desynchronization are



∆Ω = 1 ∆Ω = 2 ∆Ω = 3
∆Ω = 4

∆Ω = � 20, � 14, � 11 �
6, � 2, � 1, 1, 2, 6, 11, 14, 20



∆Ω ∆Ω = � 20
∆Ω = � 14 ∆Ω = � 11 ∆Ω = � 6 ∆Ω = � 2

∆Ω = � 1 ∆Ω = 1 ∆Ω = 2 ∆Ω = 6
∆Ω = 11 ∆Ω = 14 ∆Ω = 20

T = 0.5 C = 0.5
= 0.5

κc = κ = 10 � 1



4.6. BUBBLING DUE TO MISMATCH 109

average, every nanosecond. This implies, that synchronization no longer
persists for such large detunings.

4.6 Bubbling and operating parameter mismatch

Intermittent desynchronization due to bubbling can also be induced by a
small mismatch of parameters in the coupled lasers. Then, even in a noise-
less and completely deterministic system, intermittent desynchronization can
occur. Mismatches in operating parameters are common in experimental
systems, their exact matching is challenging in real-life systems. In our
bidirectional coupling scheme, the pump currents of both lasers need to be
matched relative to the invidual laser's threshold to ensure the same dy-
namical regime and the same relaxation oscillation frequency (see Chapter
2).

Here, we investigate numerically the in�uence of a mismatch of the pump
currents of both lasers on the synchronization and analyze the occurrence of
bubbling events in dependence on on the mismatch and the pump parameter
[210], respectively. To exclude the in�uence of noise on the bubbling charac-
teristics of this scheme, we simulate both lasers without intrinsic noise, i.e.,
β = 0.

Similar to the noise-induced bubbling case we covered in Section 4.4, we
�nd indications for bubbling in the present scheme. An analytical treatment
is complicated with asymmetries present as the calculation of the maximal
transverse Lyapunov exponent is hard to achieve. We thus can not prove
bubbling. In this section, we link again the occurrence of desynchronization
with certain dynamical states, in terms of a correlation analysis as before.
In the present system, desynchronization does not occur without noise or
mismatch and varying the pump currents (or introducing a pump current
mismatch ∆p) does not result in the traversing of a blowout-bifurcation.
Therefore, the desynchronization events, that are prevalent for small pump
mismatches, can not be seen as manifestations of on-o�-intermittency but
rather as bubbling events.
We employ the set of equations (4.4)-(4.7) for our simulations, choosing the
parameters as given in Table 4.1. For our numerical investigation, we vary
the normalized pump currents of both lasers corresponding to p1 = 1.0−1.5
and p2 = 1.0− 1.5.

The crosscorrelation coe�cients at zero lag in dependence of both nor-
malized pump currents are depicted in Fig. 4.18. On the diagonal, i.e.,
for matched pump currents, the crosscorrelation coe�cients are 1.0.We no-
tice that for only slight mismatches the correlation drops relatively sudden
toward values C < 0.9 for most of the studied pump current ranges (corre-
lation around diagonal in Fig. 4.18). The exception is, when both lasers are
pumped close to threshold. The lower left region in Fig. 4.18 shows a broader
region of high correlation coe�cients. We attribute this behavior to LFF
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Figure 4.18: Cross-correlation at zero lag versus the normalized pump cur-
rent values p1 and p2, respectively. The simulation parameters are to those
given in Table 4.1, except for κc = κfb = 10 ns−1.

dynamics persisting for small mismatches and low pump currents. For this
parameter region, desynchronization takes place around the power dropouts,
with dynamics still being well-synchronized during the power buildup pro-
cess. With such very small mismatches, mostly antimodes in the lower part
of the mode ellipse, the high gain region, (see Chapter 2) are inducing the
desynchronization events. If one increases the mismatch further, more and
more modes that are involved in the LFF-power-buildup become transversely
unstable. This leads to longer desychronization (bubbling) events and to a
decrease in overall correlation.

If one laser is pumped close to threshold, giving rise to LFF dynamics,
while the other is being pumped with a larger current, inducing fully devel-
oped coherence collapse, the correlation decays more rapidly with increas-
ing mismatch, probably because of their di�ering dynamical timescales. For
large mismatches, the dynamics are still signi�cantly correlated with C > 0.4
in the explored parameter ranges. However, identical zero-lag synchroniza-
tion does not occur for too large mismatches. We note, nevertheless, that
for larger mismatches the system shows a transition to a more generalized
synchronization state with a signi�cant correlation at a lag corresponding
to the delay τ . The sign of the maximum peak position depends on which
laser is pumped with a larger current. We exemplify this by calculating
the crosscorrelation function (ccf) for the case p1 = 1.0 and p2 = 1.5. The
ccf is depicted in Fig. 4.19. Its maximum peak is at a lag ∆t = τ and is
signi�cantly larger than the zero lag peak Ccorr(0). We note, that synchro-



p1 = 1.0 p2 = 1.5
∆t = τ

p1 = 1.01 p2 = 1.02

p1 = 1.2 p2 = 1.22

p1 = 1.01
p2 = 1.2



p1 = 1.01
p2 = 1.02 p1 = 1.2 p2 = 1.22 p1 = 1.01 p2 = 1.2



C = 0.5
∆T = 0.5

= 0.5

p1 = 1.01 p2 = 1.02

≤ 10



p1 = 1.2 p2 = 1.22

≈ 0.8



p1 = 1.2 p2 = 1.22

p1 = 1.01 p2 = 1.2



116 CHAPTER 4. INTERMITTENT DESYNCHRONIZATION

Thus, we have found, that small pump current mismatches lead to bub-
bling behavior on a timescale that is linked to the complex dynamics of both
lasers in the respective operating (pump) regime. This means, that in the
LFF regime, pump-mismatch-induced bubbling occurs with the frequency
of the power dropouts. In the CC regime, bubbling takes place on a faster
timescale. We have linked the occurrence of intermittent desynchronization
to transversely unstable antimodes and its persistence to transversely unsta-
ble modes with larger carrier number which have a frequency close to the
solitary laser frequency. The larger bubbling frequency in the CC regime
is then explained by the fact, that the trajectory approaches the unstable
antimodes more often in the CC than in the LFF regime due the CC char-
acteristics (see Chapter 2).

4.7 Summary

In this chapter we investigated the synchronization properties of two semi-
conductor lasers which are coupled bidirectionally and receive self-feedback
via a passive relay. Implementing this con�guration, we have experimentally
achieved high level zero-lag synchronization resulting in correlation coe�-
cients larger than 0.95. Our investigations, making use of high-resolution
measurements, have revealed general di�erences between the synchroniza-
tion dynamics in the LFF regime and those in the CC regime. We have
identi�ed distinct desynchronization events which we interpret as manifes-
tations of the bubbling phenomenon. We have found indications that these
events are indeed bubbling events rather than on-o�-intermittency, the lat-
ter implying transverse instability of the entire chaotic attractor embedded
in the synchronization manifold. We see these events responsible for the
decline of synchronization level (quanti�ed by decreasing correlation coe�-
cients) with increasing pump current. The desynchronization events become
more frequent for an increasing current, especially with the transition from
the LFF to the CC dynamical regime, and thus increasingly reduce the over-
all correlation. The episodes of unsynchronized dynamics are distinct from
the rest of the dynamics, because the synchronized dynamics (in between
the desynchronization events) maintain a high level of correlation, while the
unsynchronized dynamics exhibit signi�cantly lowered instantaneous corre-
lation coe�cients (quanti�ed by the slcc).

We have also investigated experimentally and numerically the in�uence
of frequency detuning of both lasers on the synchronization dynamics in the
LFF regime. In accordance with the concept of episodic synchronization,
which was introduced for unidirectional injection in a drive-response con�g-
uration, we have found in the previous chapter, that the lasers' dynamics
show synchronization when emitting at frequencies within the mutual spec-
tral overlap. This overlap is reduced with increasing detuning. Here, we have
found, that such a reduction leads to longer and more frequent episodes of
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desynchronized behavior, as the lasers emit more often and for a longer time
at frequencies outside the mutual locking range. This results in the degra-
dation of correlation of the dynamics. For too large detuning, no distinct
episodes of synchronization can be found anymore as the spectral overlap
vanishes.

Furthermore, we have studied the e�ect of a mismatch of the pump cur-
rents of both lasers on the synchronization properties in a noiseless numerical
framework. A pump mismatch leads to bubbling behavior as the dynamics
are pushed towards transversely unstable periodic orbits. For small mis-
matches, desynchronization is only intermittent and high-level synchroniza-
tion is maintained in between those intervals. The occurrence of the bub-
bling events can again be connected to the overall dynamics in the respective
pumping regime. In the LFF regime, mismatch-induced bubbling occurs
with power dropouts, while in the CC regime, the dynamics approach un-
stable antimodes more often and bubbling thus takes place more frequently.
Larger pump current mismatches result in the loss of zero-lag synchroniza-
tion, though a certain correlation is retained. With increasing pump current
mismatch, the system shows a transition toward a more generalized syn-
chronization behavior with a dominant delay-lag correlation. The sign of
the τ -lag of the maximum correlation peak is determined by which laser is
pumped with a larger current.

Desynchronization due to bubbling, be it noise- or mismatch-induced, is
seen to occur due to unstable antimodes and modes (periodic orbits) that
have been transversely destabilized. The current dynamical characteristics
of the lasers (which may be in�uenced by mismatches or asymmetries) a�ect
the occurrence of desynchronization by determining the likelihood that the
dynamics trajectories approach these transversely unstable sets and leave
the synchronization manifold.

Dynamical excursions away from the synchronization manifold are ad-
verse to all applications that rely on synchronization of the involved lasers.
This is especially the case for chaotic optical communication. Noise- or
mismatch/asymmetry-induced desynchronization events can strongly a�ect
the e�ciency of bidirectional communication schemes and must be consid-
ered during evaluation of the e�ciency of these schemes. Our results may
therefore be helpful for future studies of concepts of chaotic communications
or key-exchange.
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5
Characterizing the deterministic

nature of individual events in chaotic

laser dynamics

5.1 Introduction

There has been a long ongoing debate in the complex systems community
on how to qualify the dominant underlying mechanism of certain dynami-
cal features or characteristic irregular events in noisy chaotic systems. An
example that we are going to investigate here is the origin of the character-
istic Low Frequency Fluctuations (LFF) dynamics, especially of the power
dropouts in dynamics of semiconductor lasers subject to time-delayed feed-
back that are pumped close to threshold (as described in Chapter 2). These
have led to controversial discussions in the past [39, 42, 55�62]. Some groups
have argued that the power dropouts are mainly stochastically induced by
spontaneous emission noise [39, 42]. Others have denoted the deterministic
chaos induced by the delayed feedback as the principal drive [55, 211]. From
a modeling point of view, it can be shown that the overall Low Frequency
Fluctuations and the power dropouts are retained when applying the rate
equation model introduced in Chapter 2 without the Langevin noise terms,
i.e., β = 0 (see Fig. 5.1).

Therefore, noise is not required to evoke these dynamical characteristics.
However, introducing noise to the system can have an e�ect on the dura-
tion of the LFF cycles. In general, increasing the noise strength can lead
to shorter cycles, and the dynamics of a laser with feedback is a�ected by
an intricate interplay between the deterministic mechanisms, i.e. the time-
delayed feedback, and stochastic processes taking place due to spontaneous
emission noise.
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ical study using the rate equations introduced in Chapter 2. Furthermore, we
use the modeling to investigate the dependence of the synchronized dropout
fraction on the intrinsic noise strength to study the impact of stochastic pro-
cesses on the laser dynamics.
Large parts of the results presented in this chapter have been published as
"K. Hicke, X. Porte, and I. Fischer: Characterizing the deterministic na-
ture of individual power dropouts in semiconductor lasers subject to delayed
feedback, Physical Review E 88, 052904 (2013)". The experiments were
performed in collaboration with Xavier Porte.

5.2 Method

Our procedure to test for determinism is based on the zero-lag synchro-
nization of the investigated single SL with feedback with a twin laser, the
two laser subsystems thus have to be able to synchronize identically for our
method to work. The synchronizability depends on their coupling and feed-
back topology (see Chapter 3) and their dynamical regime (see chapter 4).
For this reason, we operate in the moderate feedback regime and use a setup
that is as symmetric as possible. An asymmetry or parameter mismatch can
a�ect the coupled systems' dynamics to leave the synchronization manifold
or prevent isochronal synchronization alltogether. We employ a passive relay
con�guration to couple both lasers. We have shown that the implementation
of a relay, which provides feedback and coupling for both lasers, allows for
identical synchronization of the outputs of the laser systems. In case both
arms of the con�guration have the same optical length, zero-lag synchro-
nization can be achieved (see Chapter 3 and e.g. [71]) and the synchronized
dynamics is identical to the dynamics of a single laser system with corre-
sponding feedback strength. If both laser experience a drop in power at the
same time, we consider the (pair of) dropout(s) as being dominantly driven
by a deterministic mechanism induced by the delayed feedback.

In case both lasers exhibit dropouts but at di�erent times, several reasons
can be postulated. We show in Section 5.4, that non-synchronized dropouts
do not necessarily mean that one or both dropouts are noise-driven. Nev-
ertheless, a common situation is that noise induces a dropout event in one
laser and after the coupling delay the other laser receives this dropout signal
and experiences a dropout as well. Afterwards the lasers resynchronize fast.

5.3 Experiments

Our experimental setup is based on optical �bers, a schematic is depicted in
Fig. 5.2. The coupling con�guration consists of two single-mode quantum-
well (QW) edge-emitting discrete mode semiconductor lasers (Eblana Pho-
tonics), operating at a nominal wavelength of λ ≈ 1540 nm with a side-mode
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Analyzing the autocorrelation peak positions to determine the delay time in-
volves a systemic error which depends on the operating regime [206], which
may result in an o�set to the determined delay times. However, determining
the relative delay di�erence is una�ected. Thus, with the coupling delay
τc =

1
2 (τfb,1 + τfb,2), all delays in our setup can be considered equal within

the uncertainty limits. We measured the feedback attenuation along both
optical feedback paths as ≈ 11 dB, both values were determined to be equal
within a margin of 1%. Due to this symmetry, the coupling between both
lasers has the same attenuation and thus the same strength.

Considering the geometry and coupling topologies of the laser cavities
we estimate the total feedback rates (and thus the coupling rates) for each
respective laser as κ1 = κ2 = κc = 34 ns−1. The feedback strengths corre-
spond to a few percent of the output power coupled back into the respective
cavity.

Both lasers are being operated in the low-frequency �uctuations (LFF)
regime. This means that the pump current is relatively close to the solitary
threshold. The lasing threshold pump currents are Ithr1 = 10.89 and Ithr2 =
10.92 mA, respectively. We de�ne the normalized pump currents as p1,2 =
I1,2/Ithr1,2 . For our experiments p1 and p2 are varied simultaneously from
p1,2 = 1.01 to p1,2 = 1.12 in steps corresponding to ≈ 0.15 mA. For each
step, six output intensity time traces with a length of 100 µs of both lasers
are recorded.

Because of its near-optimal symmetry in optical path length, our exper-
imental setup exhibits an especially strong sensitivity to the optical phase.
Even minor temperature gradients in the lab environment can a�ect the cou-
pling phases in our con�guration and alter the dynamical characteristics and
coupling e�ciency. We therefore identify and only record time series with
appropriate phase conditions, presenting with clear LFF dynamics. Never-
theless, the actual instantaneous phase conditions can not be determined.

The classi�cation as synchronous or nonsynchronous dropouts is done
manually for all measured power dropouts because this proved to be the most
reliable method. If corresponding dropouts in both lasers occur within a 2
ns window they are considered as synchronized. Figure 5.3 shows exemplary
time traces of (a) an unsynchronized and (b) a synchronized pair of dropouts,
respectively.

To evaluate our results we de�ne the total number of detected pairs of
dropouts for a speci�c normalized pump current value asNtotal and its subset
of synchronized pairs of dropouts as Nsynced. The extent of our data is shown
in Fig. 5.4. As explained in Chapter 2, the frequency of dropouts increases
with increasing pump current, the total number Ntotal therefore increases
with pump as well.

The main quantity we analyze is the synchronized dropout fraction ζ
which is de�ned as

ζ = Nsynced/Ntotal.
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Figure 5.3: Experimental intensity time traces of both lasers. Panel (a)
shows unsynchronized dropouts. The desynchronization lasts for approxi-
mately one delay τc ≈ τfb. (b) depicts a pair of synchronized dropouts in
both lasers.

We compute ζ to qualify the degree to which the dropout dynamics for a
given pump current are dominated by deterministic mechanisms.

Our experimental results for ζ in dependence of the normalized applied
pump currents p1 and p2 are depicted in Fig. 5.5. They exhibit a large
maximum percentage of 83% of synchronous dropouts close to the solitary
lasing threshold at p1,2 = 1.009 and a signi�cant decrease with increasing
bias current. The minimum of ζ = 13% is reached for p1,2 = 1.092.

The �rst result is unanticipated: the fraction ζ has its maximum of
ζ = 0.85 only slightly above the solitary lasing threshold. A stronger e�ect
of the intrinsic noise close to threshold could have been expected. This
is due to the relatively large contribution of spontaneous emission to the
output power at low pump currents. What we observe is contrary to that
expectation. We assume that the noise is not su�ciently strong to induce
more power dropouts with the pump current close to threshold as compared
to cases with higher pump currents. This hypothesis is veri�ed via our
numerical studies presented in Section 5.5. With the ratio of synchronized
dropouts ζ being this large, we can conclude that close to threshold a large
majority of LFF power dropouts is induced by deterministic mechanisms
rather than by noise. Moreover, we can identify which speci�c events are
deterministic.

Since the noise due to spontaneous emission is independent for each laser
and correlated noise even for a single round trip is much smaller due to the
feedback attenuation and coupling attenuation, we can dismiss stochastic
e�ects as the principal drive of power dropouts in the low pump current
regime. An analysis of the inter-dropout-interval (IDI) probability distri-
butions with a 2 ns resolution reveals that the probability of dropouts in
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Figure 5.4: The total number Ntotal of measured pairs of power dropouts
versus the applied normalized pump currents.

both lasers occurring within a 2 ns window is negligible (� 10−4). Once
we classify a pair of dropout events as synchronized we can, therefore, name
determinism as the dominant mechanism with high con�dence.

For a larger pump current, the synchronized dropout fraction decreases.
This can have multiple reasons. It might be due to an increased noise-
sensitivity of the dynamics in a higher pump current regime. With a stronger
pump current, the intensity �uctuations have a larger amplitude, the dy-
namics get closer to unstable antimodes and smaller perturbations by the
intrinsic noise are necessary to lead to a collision of the laser's trajectory
with an antimode which is then followed by power dropout. As our numeri-
cal results suggest, this may be considered the main cause for the decline of
the synchronized dropout ratio with increasing pump current p.

However, several other causes that are related to imperfections in the
experiment can also lead to a decrease in ζ. Those are distorting the result-
ing fraction of synchronized power dropouts and, as ζ re�ects not only the
deterministic dynamics of a single laser with feedback and intrinsic noise,
arti�cially amplify the fraction of unsynchronized pairs of dropouts. We will
discuss these factors in the next section.

5.4 Limitations of method

Considering the lower synchronized dropout fraction for higher pump cur-
rents we have to be aware of certain limitations our method has. On the in-
dividual event basis we can only classify synchronized dropouts as determin-
istically driven, we can not determine the main cause of the unsynchronized
ones. Attractor bubbling (see Chapter 4), mismatches in feedback strength
and/or delay (see Chapter 3), mismatches in laser parameters and detection-
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Figure 5.5: Experimental results for the fraction of synchronized power
dropouts ζ versus the normalized pump currents p1 and p2 averaged among
the corresponding measured time series. The error bars show the correspond-
ing standard deviation. The gray curve results from a 3rd order polynomial
�t and is only meant as guide to the eyes.

related misclassi�cations reduce the fraction of synchronized dropouts with-
out being related to the delayed feedback attractor. As described in Chapter
4, bubbling is an intermittent desynchronization phenomenon which makes
the system's trajectory temporarily leave the synchronization manifold. In
the LFF regime, occurrences of bubbling and of dropouts are strongly linked
as we show in 4. If we assume complete symmetry in our con�guration and
identical lasers, the desynchronization events take place only due to trans-
versely unstable saddle nodes not because of the drop in power. Because the
frequency of occurrence of bubbling is connected to characteristic frequen-
cies in the dynamics, increasing the pump current leads to more bubbling
events. This would in part explain the strong decline in ζ with increasing
pump current as shown in Fig. 5.5. Pairs of dropouts that are unsynchro-
nized due to bubbling will be (mis-)classi�ed by our approach as not being
deterministically driven. Since bubbling-induced desynchronization induces
dynamics transverse to the synchronization manifold, our method loses ap-
plicability and we can thus make no statement about the actual principal
mechanism underlying these dropouts.

With slight asymmetries in the experimental conditions and parameters,
some of the laser's modes also become transversely unstable and bubbling can
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occur at di�erent parts of the attractor as well. In these cases the phase space
trajectories diverge and the lasers might exhibit their dropouts at di�erent
times due to bubbling. Again, because the coupled lasers' dynamics can at
these points no longer be identi�ed with a single laser's dynamics, we can
draw no conclusion about whether the corresponding dropouts are driven by
determinism or not.

Furthermore, certain slight asymmetries or mismatches in the experimen-
tal setup, which in experiments are commonplace and unavoidable, will lead
to more unsynchronized dropouts and therefore to additional misclassi�ca-
tions, since they can result in dynamics partly outside the synchronization
manifold as well and thus outside the single delay system's dynamics mani-
fold. During preparation of the experiment, all asymmetries were minimized
as much as possible. Although these mismatches still might have an e�ect,
the dynamics within the synchronization manifold is a good approximation
for the dynamics of the single delayed feedback system.

There are two further possible sources for misclassi�cation. One is de-
tection noise which might blur the measured dynamics around the dropout
event and contribute to the synchronization error. The second source is re-
lated to instances of LFF-dynamics where the precise time of occurrence is
hard to determine. These uncertainties in the determination of the exact
dropout time can arise because the shape of a dropout is not as clear. This
particularly occurs toward higher pump currents, e.g. within the transi-
tional range from the LFF regime to the fully developed coherence collapse
regime where the characteristic shape of the dropouts get lost. In a situation,
where the coincidence of corresponding dropouts is less than clear, the pair
is classi�ed as non-synchronous and thus does not contribute to the share of
deterministically induced power-dropouts.

Considering these misclassi�cation sources our resulting fraction of syn-
chronized dropouts ζ represents a lower limit to the fraction of actually deter-
ministically driven dropouts. We conclude that it is impossible to make clear
statements about the overall dominant mechanism underlying the dropouts
in the operating regimes where our results show only small to intermediate
values for ζ. Since ζ is highest when the lasers are pumped close to their
solitary thresholds, we can draw the strongest conclusions there.

5.5 Numerical corroboration

To corroborate our experimental results and also to gain further insight into
the sensitivity of our system to spontaneous emission noise we numerically
study the problem making use of the single mode rate equation model in-
troduced in Section 2.3 and extended rate equations for a coupled system
in Chapter 4. Here, we assume the gain to be linear in the carriers (ε = 0),

thus the gain reads as G1,2 = g
n1,2(t)−nT

1+ε|E1,2(t)|2 = g (n1,2(t)− nT ). The equations

then read
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Ė1(t) =
1

2
(1 + iα1) (g(n1(t)− nT )− γ) E1(t) + κfb,1E1(t− τfb,1)

+κcE2(t− τc) + FE1
(5.1)

Ė2(t) =
1

2
(1 + iα2) (g(n2(t)− nT )− γ) E2(t) + κfb,2E2(t− τfb,2)

+κcE1(t− τc) + FE2 (5.2)

ṅ1(t) = p1
I1

eIthr1
− γen1(t)− g (n1(t)− nT ) |E1(t)|2 (5.3)

ṅ2(t) = p2
I2

eIthr2
− γen2(t)− g (n2(t)− nT ) |E2(t)|2 . (5.4)

E1,2 denote the slowly varying complex electric �eld amplitude of laser
1,2 and n1,2 the carrier numbers. I1,2 denote the bias currents, Ithr1,2 are
the respective threshold currents, e is the elementary charge, and p1,2 are
the normalized pump current parameters. γ denotes the photon decay rate,
γe is the carrier decay rate, g is the di�erential gain, and nT represents
the carrier number at transparency. τfb,1,2 and κfb,1,2 describe the feedback
delay times and feedback rates, respectively, while τc and κc are the coupling
delay and coupling rate, respectively. The two coupled lasers are simulated
as being identical in every parameter and the coupling scheme is set to be
completely symmetrical, neglecting any possible feedback delay or -strength
mismatch. The parameter values of the simulation are given in Table 5.1.
The noise is again modeled as Gaussian white noise with 〈FE1,2(t)FE1,2(t

′)〉 =
2β1,2γen1,2δ(t− t′) and 〈FE1,2(t)〉 = 0. The equations are numerically solved
using Milshtein's method [208, 209] with a stepsize corresponding to 0.1γ−1.
We solve the above equations to �nd the dependence of the fraction ζ on the
normalized pump current p and on the strength of the spontaneous emission
noise β. For this we vary p from p = 0.98 to p = 1.2, and the spontaneous
emission factor β from β = 10−9 to β = 10−3.

For each set of parameters 20 timeseries with 10µs length are computed.
The stepsize corresponds to 5 ps.

Classi�cation of synchronized and non-synchronized dropouts is performed
using an automated algorithm for the modeled time series. The dropouts
are identi�ed by the following algorithm:

The original time series are window-averaged with a window size of 2000
points corresponding to the delay time τ = 10 ns and a step size of 5 ps.
When the averaged intensity drops below the overall intensity average for
at least 340 out of the consecutive 400 point interval (2 ns), the occurance
of a power-dropout is identi�ed. If a dropout is detected in both lasers
within a 1 ns window, the drops are considered synchronized. Although this
automated classi�cation may be not as reliable as a manual one it is su�-
ciently accurate. Due to the extent of the studied parameter dependencies,
a manual classi�cation can not be implemented. In Fig. 5.6 we show two ex-
emplary pairs of timeseries (black and red lines) from simulation which also



5.5. NUMERICAL CORROBORATION 129

Parameter Variable Value

linewidth enhancement factor α 3.0
di�erential gain g 10−5 ns−1

photon decay rate γ 200 ns−1

carrier decay rate γe 1 ns−1

feedback delay τfb 10 ns
feedback rate κfb 20.0 ns−1

coupling delay τc 10 ns
coupling strength κc 20.0 ns−1

carrier number at transparency nT 1.8 · 108

Table 5.1: Laser and coupling parameters used for the numerical study. The
laser-speci�c parameters are set as identical for both lasers.

illustrate the detection algorithm. Panel (a) shows an instance of detected
synchronized dropouts, (b) displays two unsynchronized dropouts where the
time di�erence between the occurrences approximately corresponds to the
delay τfb = τc. The black and red vertical dashed lines indicate the detected
dropout time of timeseries 1 and 2, respectively, the grey and magenta hor-
izontal dashed lines depict the overall mean intensity of timeseries 1 and
2, respectively, and the solid grey and magenta lines are the corresponding
sliding window-averaged intensity timeseries. Whenever one of these lines
listed above is not visible it is overlain by the corresponding line for the other
timeseries.

The main results for the numerically obtained fraction ζ versus the nor-
malized pump currents p1,2 versus the spontaneous emission factors β1,2 are
shown in Fig. 5.7. A spontaneous emission factor of β ≈ 10−6 − 10−5 is
considered realistic for quantum-well (QW) single-mode edge-emitting semi-
conductor lasers which is the type of laser used in our experiment.

Our numerical �ndings qualitatively reproduce the trends we �nd in the
experimental data: the maximum of ζ for a given noise strength lies very
close to the solitary threshold p = 1.0 for β = 10−9 to β ≈ 5 ·10−4, including
the range of the spontaneous emission factor β = 10−6−10−5 considered re-
alistic for the lasers used in the experiments. Furthermore, the synchronized
dropout fraction decreases with increasing pump current when applying noise
with a magnitude from that range. This also corroborates the experimental
results for ζ. In Fig. 5.8 we show horizontal (a) and vertical (b) cross sec-
tions of the data depicted in Fig. 5.7 to further underline the characteristics
described in this paragraph.

The maximum values for a given noise factor shows a decrease from ζ = 1
for β ≈ 10−9 to ζ ≈ 0.1 for β ≈ 10−3. For noise strengths β < 10−4 the
synchronized dropout fraction maximum is close to threshold and decreases
with increasing current. From the numerics we can see the e�ect of noise
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(a) (b)

Figure 5.8: Cross sections of the data presented in Fig. 5.7. (a) ζ versus the
normalized pump currents for di�erent noise strength values. (b) ζ versus
the noise strength β for di�erent values of the normalized pump currents.

�ndings. This can be understood considering the complete symmetry of the
simulated setup. Mismatch- and asymmetry-caused desynchronization is not
present and detection or measurement-related e�ects can also be dismissed.

For better comparability of the experimental and numerical results for ζ
we apply a set of mismatches to our model (5.1)-(5.4) to account for slight
asymmetries in the experimental setups and minor mismatches in the laser
parameters of the order of 1%.

The set of mismatches reads:

τfb,1 = 2000, τfb,2 = 2040 → τc = 2020; (5.5)

Kfb,1 = 0.1, Kfb,2 = 0.103 → Kc = 0.1015;

α1 = 3.0, α2 = 3.02;

p2 = p1 + 0.001.

The results for ζ with these mismatches included in the model and for
the same parameter ranges as in Fig. 5.7 is depicted in Fig. 5.9.

The resulting synchronized dropout fractions indeed better agree with
the experimental outcome for larger pump current values but still re�ect the
main features from the symmetric case. The minimum value of ζ for small
to moderate noise strengths β = 10−9− 10−6 has decreased from ζ = 0.7 for
the completely symmetric case to ζ = 0.4 for the case with mismatches and
asymmetries as described by (5.5).

A horizontal cross section of Fig 5.9 at β = 10−6 is shown in Fig. 5.10
together with the corresponding cross section from the symmetric case (Fig.
5.7) and the experimentally obtained pump current dependence of ζ (Fig.
5.5). The much better correspondence of the numerical results for the asym-
metric setup with the experimental results is clearly visible.
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Figure 5.9: Numerical results for the fraction of synchronized power dropouts
ζ versus the normalized pump current p1 versus the spontaneous emission
factor β in a setup with small asymmetries and slightly mismatched lasers.
The simulation parameters correspond largely to those listed in Table 5.1
with the mismatches given by (5.5). p2 = p1 + 0.001

5.6 Discussion, Adaptability and Outlook

We have presented a method to characterize the deterministic nature of in-
dividual power dropouts in the LFF regime of a single semiconductor laser
with feedback, utilizing zero-lag synchronization with a twin. From experi-
mental data, we found 85% of dropouts to be synchronized when the laser is
pumped close to its solitary threshold. We conclude that at least 85% of the
power dropouts in that pump regime are deterministically driven. Within
our approach, conclusions are strongest the larger the synchronized dropout
fraction ζ is. For the regime with a smaller ζ one can complement the pre-
sented method with statistical measures based on an information theoretical
analysis, which are based on di�erent approaches and therefore exhibit other
opportunities and limitations. Aragoneses et al. for example implemented
ordinal pattern analysis by codifying successive inter-drop-intervals (IDIs)
in experimental intensity timeseries as symbols and categorizing these pat-
terns by statistically obtained characterstic features related to a dynamical
resting state. They use these features to distinguish signatures of determin-
ism and stochasticity and thus allow to statistically infer the prevalence of
deterministically driven or noise driven power dropout for speci�c operating
parameters [62]. Combining an individual event-based approach with oth-
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Figure 5.10: ζ versus normalized pump currents p1, p2 for the experimen-
tal and the symmtric numerical results (dark grey diamonds and light grey
circles, respectively) and ζ versus normalized pump current p1 for the nu-
merical results with applied mismatches (see (5.5)), including p2 = p1+0.001
(red squares). For the numerical curves β = 10−6.

ers based on statistical methods like the one described above could give a
broader access to characterizing semiconductor laser dynamics over a wider
range of parameters. This might enable further tailoring of dynamical fea-
tures and their utilization in applications.
The presented approach can in general be applied to other chaotic systems
with intrinsic noise that are synchronizable and exhibit irregular charac-
teristic events (e.g. spikes, dips, patterns). As a necessary condition, the
synchronized dynamics of two coupled twin subsystems have to be identical
to the dynamics of a corresponding single system. If the required symme-
try conditions apply, the presented method can even be applied to systems
whose governing equations are unknown. Since bubbling is not present in all
coupling schemes of noisy chaotic oscillators, the corresponding fraction ζ of
synchronized characteristic events could have an even higher signi�cance for
those kinds of systems.

One example is the spiking dynamics of a cortical column. A few years
ago, it was shown that two single neurons of Hodgkin-Huxley-type can syn-
chronize identically their spiking behavior if coupled via a "relay-neuron".
This also works for bidirectionally coupled neuron populations (for both
cases see e.g. [77]). In a soon-to-appear paper [212] the authors investigate
the possibility to synchronize spikes of two neuron populations that are cou-
pled bidirectionally via a third populations. Each of the neuron populations
are subject to independent noise which also drives the dynamics, still most
spikes are synchronized. In comparison, in a motif where a pair of identical
neuron masses are being unidirectionally stimulated by a third driver neu-
ron mass but not coupled to each other exhibit no correlation in their spik-
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ing behavior. The statistical distribution of the interspike-intervals (which
corresponds to the spiking frequency) of the relay-coupled neuron masses
corresponds to that of a single one. One could then investigate the deter-
ministic nature of individual spikes or spike trains via synchronization and
distinguish them from other spikes that are possibly dominantly induced by
noise.
Future work could entail classi�cation of dropout events as being determin-
istically driven using statistical or pattern-recognition approaches utilizing
machine learning concepts (see Chapter 6 and [99, 101, 104, 213]). This
ansatz would work only if we assume the existence of common dynamical
features as precursors of deterministically induced power dropouts. The dy-
namics preceding known deterministic dropouts would be used to train the
data processing reservoir. Yet unclassi�ed dropout events would then be
fed into the trained reservoir and be classi�ed binarily - as deterministically
driven or not. Another potential implementation of reservoir computing
concepts within this scheme could be the prediction of occurence of deter-
ministic dropouts from precursors in the intensity timeseries utilizing the
memory capabilities of a reservoir [104, 109, 213].
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6
Data processing using transient laser

dynamics

6.1 Reservoir computing

Our time exhibits a soaring amount of information and an ever-increasing
number of information processing tasks due to new information technologies.
At the same time there is a higher demand for faster and more e�cient data
processing techniques that require novel computational concepts that sur-
pass the capabilities of tradional computers [214, 215]. New concepts some
of which are neuro-inspired are being considered and developed [101, 216],
one of the most promising ones is known as Reservoir Computing (RC).
RC comprises Echo State Networks (ESN) [101] and Liquid State Machines
(LSM) [103]. Traditional RC is based on utilizing the transient dynamics of
complex recurrent networks for computational tasks. A schematic illustra-
tion of the RC concept is shown in Fig. 6.1. These complex networks form
the reservoir and often consist of a large number of randomly connected non-
linear nodes. The large number of nodes induces a high-dimensional state
space of the reservoir.

Previously, arti�cial neurons have been chosen to serve as dynamical
nodes. Recently, however, new approaches are being considered which in-
clude using other types of nonlinearities as nodes and employ di�erent cou-
pling topologies within the reservoir. Among others, delayed feedback non-
linear systems [104], coupled semiconductor optical ampli�ers (SOAs) [107,
217] or photonic crystal cavities [218] are being contemplated.

No matter what the nonlinear nodes are that form the network, the reser-
voir always serves as the core element for the information processing. The
input signals, which are mostly low dimensional, are fed into the reservoir
through certain input channels, as illustrated in Fig. 6.1. The connections

137
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Figure 6.1: Schematic of the classic reservoir computing (RC) approach
based on a complex network of coupled nonlinear nodes. ul(t) represents the
input signal, wilm are the input weights, wrmk are the readout weights and
yk(t) corresponds to the output. Figure courtesy of D. Brunner.

from the input layer to the nodes of the reservoir are usually assumed to
have random weights wilm. The signal dimension is expanded in proportion
to the number of nodes via the dynamical response of the reservoir. The
readout processing, i.e. the processing of the network's response to the in-
jected information, is evaluated via a linear weighted sum with coe�cient
wrmk of the states of all nodes in the reservoir. These weights connect each
node with the output layer of the RC scheme. This evaluation of the pro-
cessed data in the reservoir via a linear weighted sum is possible because
the input signal is nonlinearily projected onto the high-dimensional state
space that is created by the many nodes in the reservoir. Because of the
characteristics of the reservoir and its large number of dynamical degrees
of freedom, complex classi�cation tasks (like pattern recognition) and any
nonlinear appproximation can be realized.

For the RC concept to work, the system needs to be trained for any task
with known signals that correspond to that task. This training procedure
determines the readout weights wrmk. After the training stage has �nished,
unknown signals that belong to the same group as the training signals can
be analyzed and classi�ed using the trained reservoir.

Reservoir computing requires the system to conform to certain properties
to achieve good performance results, one of the most important ones being
consistency [219]. Consistency means that the system's responses to identical
or almost identical input signals have to be identical or su�ciently similar.
Getting a similar response of the reservoir for di�erent but similar inputs
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is called the approximation property, a crucial condition for RC to work.
Consistency in the networks response is typically attained by setting the
reservoir to operate in an asymptotically stable quiescent state (�xed point)
if no input is injected. When the reservoir is excited by an external stim-
ulus (i.e., the to-be-processed information), it exhibits nonlinear transient
dynamics. The transient states are essential for the information processing
and have to exhibit some speci�c characteristics. First the approximation
property is required, second, if two injected input signals belong to di�erent
classes, the corresponding transient states of the network must di�er suf-
�ciently (separation property). Moreover, these two properties should be
complemented by a short-term (fading) memory of the system [213]. With
such a memory, input information is processed in the context of information
injected in the past, which enables meaningful processing of sequences of
input information. If all these crucial requirents are met, the system can be
used for Reservoir Computing.
In this chapter we perform a thorough numerical study of the computa-
tional performance of a system consisting of a single semiconductor laser
node which receives its own delayed feedback. We demonstrate how the rich
dynamical properties of such a system can be employed to sucessfully pro-
cess time-dependent input signals. The chapter is organized as follows: In
Section 6.2, we introduce the concept of single-node RC, motivate the use
of semiconductor lasers as dynamical node and describe some fundamental
speci�cations of the approach. Following that, we describe the two com-
putational tasks we have chosen to evaluate the computational capabilities
of our system in Section 6.3. In Section 6.4, we characterize in detail the
numerical model we use. Next, we present the results obtained from exten-
sive numerics for the two data processing tasks in Section 6.5, after which
we compare some of those results to recent experimental implementations of
RC using a single laser with feedback in Section 6.6. The following Section
6.7 describes two simple methods to further improve upon the performance
of our scheme. Finally, we summarize our �ndings and give an outlook for
future work in Section 6.8.
Large parts of the results presented in this chapter have been published as
"K. Hicke, M.A. Escalona-Moran, D. Brunner, M.C. Soriano, I. Fischer, C.R.
Mirasso: Information Processing Using Transient Dynamics of Semiconduc-
tor Lasers Subject to Delayed Feedback, IEEE Journal of Selected Topics in
Quantum Electronics 19, 1501610 (2013)". The RC input training and the
testing and evaluation procedures have been adapted to the laser system
and implemented for the speci�c data processing tasks in close collaboration
with Miguel-Angel Escalona. The program code framework for training and
testing was adapted from the Oger toolbox [220]. The experiments described
in Section 6.6 have been executed and their results have been analyzed by
Daniel Brunner et al. from our lab. Their results have been published in
[109].
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6.2 Single dynamical node - semiconductor laser

with delayed feedback

The experimental implementation of RC brings a key challenge with it. Large
networks of randomly-connected nonlinear dynamical elements are required
for traditional RC but hard to implement in hardware. Therefore, until
recently, mostly software realizations were considered. To overcome this
challenge, the use of delay-coupled systems has been recently proposed and
proven to be as e�cient as traditional RC in certain tasks, or even outper-
forming them [104�106].

One of the simplest possible delay systems consists of a single nonlinear
node which receives time-delayed feedback from itself. Such a system is
relatively easy to implement, since it comprises only two main elements,
a nonlinear node and a delay loop. Recently, experimental evidence was
given for the capability of simple systems to perform computational tasks.
In particular, the strengths of nonlinear systems, either electronic circuits
[104], optoelectronic [105, 106, 221] or all-optical systems [108, 109], subject
to delayed feedback have been demonstated. Such systems have been shown
to perform similarly well as traditional reservoir computing techniques for
certain computationally hard tasks.

Semiconductor lasers subject to delayed optical feedback from an exter-
nal mirror [133] thus represent excellent candidates to implement all-optical
RC. This system has been well-studied and exhibits a rich complex dynam-
ical behavior under various conditions (see Chapter 2 and e.g. [30]). More-
over, semiconductor lasers are o�-the-shelf, high bandwidth components that
are power e�cient and already the main component in current actual �ber
communication networks. Realizing information processing utilizing semi-
conductor lasers could lead to a paradigm shift in the �eld of photonic in-
formation processing, leaving behind traditional approaches and employing
novel concepts of machine learning.

From a mathematical perspective, dynamical systems become in�nite di-
mensional when delayed feedback is introduced. This is because their state
at time t depends on the output of the nonlinear node during the continuous
time interval [t− τ, t[, with τ being the delay time. In practice, the dynam-
ics of the delay system remains �nite dimensional [222], but posesses the
property of high dimensionality and a short-term memory, as is necessary
for RC. Delay systems are very attractive from the implementation point of
view, since only few components are required to build them. A schematic
representation of single-node RC utilizing a semiconductor laser with delayed
optical feedback is shown in Fig. 2.

Within one delay interval of length τ we de�ne N equidistant points sep-
arated in time by Θ = τ/N . These N equidistant points are called "virtual
nodes", since they play a role analogous to the (physical) nodes of a tra-
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Figure 6.2: Schematic representation of RC based on a single semiconductor
laser subject to time-delayed feedback via time multiplexing. SL stands for
the semiconductor laser and the blue circles represent the N virtual nodes
in the feedback delay loop. They are separated by time Θ. yk(t) represents
the output signal. Figure courtesy of D. Brunner.

ditional reservoir. The values of the dynamical variable at each of the N
points, in this case extracted from the light intensity at the output of the
laser, de�ne the states of the virtual nodes. These dynamical states of the
nodes characterize the transient response of the laser to a certain input sig-
nal at a given time. The temporal separation Θ of the virtual nodes plays an
important role and can be used to optimize the reservoir performance. We
choose Θ < T , where T is the characteristic time scale of the semiconductor
laser dynamics. The time scale T is given by the inverse of the relaxation
oscillation frequency. Due to this choice of Θ, the states of the virtual nodes
become dependent on the states of neighboring nodes. Interconnected in
this way, the virtual nodes emulate a network serving as reservoir [104].
The virtual nodes are subjected to a time-continuous input stream u(t) or
time-discrete input u(k) which can be a time-varying scalar variable or a
vector of any dimension Q. The injection of the respective information into
the individual virtual nodes is realized by serializing the input using time
multiplexing. Time multiplexing works as follows. The input stream u(t) or
u(k) undergoes a sample and hold operation to de�ne a stream R(t) which
is constant during one delay interval τ before it is updated. Our approach
therefore always involves time-discretized inputs to the reservoir, irrespective
of whether the input signals originate from time-continuous or time-discrete
input streams. To de�ne the coupling weights from the stream R(t) to the
virtual nodes we introduce a random (N ×Q) matrix M , called the connec-



142 CHAPTER 6. DATA PROCESSING USING LASER DYNAMICS

tivity mask. Upon carrying out the multiplication S(t0) = M × R(t0) at a
certain time t0, we obtain a N dimensional vector S(t0) which represents the
temporal input sequence within the interval [t0, t0 + τ [. Each virtual node is
updated using the its corresponding component of S(t0). Alternatively one
can view S(t) as a continuous time scalar function which is constant over
periods corresponding to the node separation Θ. After a period τ the states
of all virtual nodes are updated and the new reservoir state can be obtained.
For this, R(t0) is updated in order to drive the reservoir during the next τ
period. For each period the reservoir state is read out for further processing.
A training algorithm assigns an output weight to each virtual node, such
that the linear weighted sum of the node states approximates the desired
target value as closely as possible (see [104] for details). The training of the
readout follows the standard procedures for RC (see e.g. [99, 101]). Testing
of the reservoir is executed using previously unseen input data of the same
kind as those used for the training procedure.
All-optical implementations of the Reservoir Computing paradigm can be
built with o�-the-shelf components, either based on semiconductor optical
ampli�ers [108] or semiconductor lasers [109]. These two approaches have
been developed in parallel. The utilization of a semiconductor laser allows
to bene�t from injection locking of the laser to the injected optical informa-
tion, thus increasing the signal to noise ratio considerably. This, in turn,
enables to achieve better performance and to employ faster data injection.
The capacity of a single semiconductor laser subject to optical feedback to
process information will be the focus of this chapter.

For our numerical investigation, our reservoir is set to consist of N = 400
nodes with the delay being τ = 80 ns. The resulting virtual node spacing
Θ = τ/N is therefore Θ = 200 ps, which ful�lls the condition Θ < T (see
above).

6.3 Computational tasks

In this chapter we consider two di�erent tasks to evaluate the information
processing capabilities of a single semiconductor laser subject to time-delayed
optical feedback: a pattern recognition task where digital signals of spoken
digits are classi�ed and the prediction of a chaotic time-series. These two
tasks are well-recognized in the machine-learning community as benchmark
tests for the data processing power of the system under investigation. How-
ever, also di�erent mathematical operations have also been implemented as
computational tasks, using this scheme [102].

6.3.1 Isolated spoken digit recognition

We begin with the spoken digit recognition task. The spoken digit dataset
consists of a total of 500 audio samples of �ve female speakers uttering num-
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equations for the slowly varying complex electric �eld amplitude in two or-
thogonal polarization directions and the carrier number n. The parallel
polarization direction of E‖ is de�ned by the axis of the laser cavity. We
adapt the equations for two methods of signal injection (electrical and opti-
cal, respectively). The model reads

Ė‖(t) =
1

2
(1 + iα)

(
G‖(E‖, n)− γ‖

)
E‖(t) +K‖‖ +K⊥‖

+
√
Pinj‖(t)e

i∆ω‖t + FE‖ , (6.2)

Ė⊥(t) =
1

2
(1 + iα) (G⊥(E⊥, n)− γ⊥) E⊥(t) +K⊥⊥ +K‖⊥

+
√
Pinj⊥(t)e

i∆ω⊥t − i∆ΩE⊥(t) + FE⊥ , (6.3)

ṅ(t) =
I(t)

e
− γen(t)− G‖(E‖, n)

∣∣E‖(t)∣∣2
− G⊥(E⊥, n) |E⊥(t)|2 , (6.4)

The rate equations are normalized such that
∣∣E‖(t)∣∣2 and |E⊥(t)|2 repre-

sent the number of photons in the parallel and perpendicular polarization
direction, respectively. The output power is computed as

P = [hc2αm/(2µgλ)] |E|2 (6.5)

where h is the Planck constant, c the speed of light, λ the emission wave-
length, αm the facet losses and µg the group refractive index.
The quantity we use as readout measure to test the computational properties
of this single laser system is the overall output intensity

Pout =
∣∣E‖∣∣2 + |E⊥|2 . (6.6)

In the set of parameters, K‖‖ denotes the delayed feedback from the
parallel mode to itself, K‖⊥ is the feedback term from the parallel mode
to the perpendicular one and so forth. Optical signal injection into each
mode is modeled by the injection term

√
Pinj‖,⊥(t)e

i∆ω‖,⊥t where Pinj‖,⊥(t)
is the time-dependent power injected into the ‖, ⊥ mode and ∆ω‖,⊥ is the
frequency detuning between the optical injection and the respective mode.
I(t) is the time-dependent injection current which is used to model electrical
signal injection. Details about the two injection methods will be given in
subsection 6.4.4.

The gain functions are modeled as nonlinear to account for nonlinear
gain saturation e�ects (see Chapter 2). The gain reads
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G‖(E‖, n) = g‖
n(t)− nT

1 + ε
∣∣E‖(t)∣∣2 , (6.7)

G⊥(E⊥, n) = g⊥
n(t)− nT

1 + ε |E⊥(t)|2
. (6.8)

Furthermore, α is the linewidth enhancement factor, γ‖,⊥ are the pho-
ton decay rates, ∆Ω is the detuning between E‖(t) and E⊥(t), I(t) is the
time-dependent injection current, e is the elementary charge, γe denotes the
electron decay rate, g‖,⊥ are the di�erential gains, nT is the carrier number
at transparency and ε is the gain saturation coe�cient.

The spontaneous emission noise is implemented as complex Gaussian
white noise terms FE‖,⊥ in the �eld equations where the real and imaginary
parts are independent random processes. The noise terms have zero mean〈

FE‖,⊥(t)
〉
= 0 (6.9)

and a variance given by〈
FE‖,⊥(t)FE‖,⊥(t

′)
〉
= 2β‖,⊥γen(t)δ(t− t′) , (6.10)

where β‖,⊥ are the spontaneous emission factors, describing the fraction
of spontaneously emitted photons coupled into the respective lasing modes.

In principle, carrier noise can be implemented in this model in a similar
manner, i.e., by adding a Langevin term Fn to the carrier equation (6.4).
Though some works have investigated the in�uence of carrier noise on the
dynamics, it has been found that its e�ect can often be disregarded.

6.4.2 Relation of modes

Due to the characteristics of edge emitting lasers, the two orthogonal modes
E‖ and E⊥ di�er in sensitivity to perturbations. For simplicity we assume
that the dominant �eld component is E‖(t) and consequently only the delay
term of the parallel component appears in the equation for E⊥(t) but not
vice versa, i.e., K⊥‖ = 0. Because of its relative suppression, feedback from
the orthogonal mode E⊥ to itself is here neglected for simplicity: K⊥⊥ = 0.

Furthermore, also because of the geometry of edge-emitting laser cavi-
ties, the di�erential gains for both modes is assumed to be di�erent, with
the gain for the parallel mode g‖ being larger than the gain for the perpen-
dicular mode g⊥. The ratio of the di�erential gains are chosen according to
[139]. They are considered adequate to describe single mode edge-emitting
semiconductor lasers. The photon decay rates of both modes are assumed
to be equal: γ‖ = γ⊥ ≡ γ.

In addition, we assume that both polarization components have the same
frequency. Accordingly, the detuning is set to zero: ∆Ω = 0.
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6.4.3 Feedback con�gurations

The delayed optical feedback is modeled for two di�erent con�gurations:
polarization-maintained optical feedback (PMOF) and polarization-rotated
optical feedback (PROF). For the case of PMOF, as the polarization di-
rection is yielding a higher optical gain, the optical feedback goes from the
dominant mode (E‖) back to itself. For PROF, the feedback goes from the
dominant polarization mode (E‖) to the weaker polarization mode (E⊥). The
two remaining feedback terms are modeled as

K‖‖ = κ‖E‖(t− τ) (6.11)

K‖⊥ = κ⊥E‖(t− τ) (6.12)

where κ‖,⊥ are the respective feedback rates, and τ is the external cavity
roundtrip time, de�ning the feedback delay. In the case of PMOF the feed-
back rate κ⊥ = 0 and in case of PROF κ‖ = 0.

6.4.4 Signal injection methods

Now we consider the injection of a time-dependent input signal S(t) into
the laser to study its data processing capabilities. We consider two di�er-
ent methods: electical injection and optical injection. The electrical signal
injection scheme corresponds to a modulation of the laser injection current
I(t) around a pump (bias) current Ib, corresponding to

I(t) = Ib + χIthrS(t) (6.13)

with the signal scaling χIthr. Here, Ithr denotes the solitary laser threshold
current. For electical injection S(t) is normalized and always positive; the
modulation is therefore asymmetric. The modulation frequency is chosen to
correspond to 5 GHz, thus the signal is injected with a rate of 5 Gigasamples
per second (5 GS/s). Fig. 6.6 shows an example for the intensity response
of our laser system (blue line) for the case of electical signal injection. The
input, which corresponds to the spoken digit "nine", modulates the injection
current I(t) (red line). The inset shows a zoomed view of both input current
and output intensity time series, respectively. The feedback is PMOF with
κ‖ = 10 ns−1.

In the case of optical injection, the signal S(t) is injected optically via
the time-dependent optical power Pinj. For the sake of comparison with
experiments we assume that the injected light which is coming from a second
(driver) laser is modulated externally via a Mach-Zehnder (MZ) electro-optic
modulator device. The input is then modeled as the power Pinj modulated
with a sine-squared nonlinearity around a mean value P 0

inj:

Pinj(t) = P 0
inj + P sinj sin

2
(
a
π

4
S(t) + Φ0

)
. (6.14)



κ‖ = 10 � 1

P 0
inj = P̄inj/4 P sinj = 3/2P̄inj

Pinj(t) = P̄inj

[
1/4 + 3/2 sin2

(
a
π

4
S(t) + Φ0

)]
,

±75%
P̄

S(t)
±1 a = 1 Φ0 = π

4 S(t)
a = 2 Φ0 = 0

E‖
P ⊥(t) = 0



∆ω = 0

Pinj(t)

Ib = Ithr P̄inj = 436µ
κ‖ = 10 � 1



P̄inj = 436µ
κ‖ = 10 � 1

Ė‖(t) = 1
2 (1 + iα)

�
G‖ � γ

)
E‖(t) + κ‖E‖(t � τ) +

√
P (t) + FE‖

Ė⊥(t) = 1
2 (1 + iα) (G⊥ � γ) E⊥(t) + κ⊥E‖(t � τ) + FE⊥

ṅ(t) = I(t)
e � γen(t) � G‖

∣∣E‖(t)∣∣2 � G⊥ |E⊥(t)|2 .

0.1γ � 1

κ⊥ = 10 � 1

κ⊥ = 0
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Parameter Value

α 3.0
γ 200 ns−1

β‖ 10−6

β⊥ 10−6

κ‖ 10 ns−1

κ⊥ 10 ns−1

τ 80 ns
∆ω 0.0
∆Ω 0.0
γe 1 ns−1

Parameter Value

g‖ 10−5 ns−1

g⊥ 8.4·10−6 ns−1

ε 10−7

λ 1.5 µm
αm 45 cm−1

µg 4
nT 1.8 · 108
χ 0.4
P̄inj 436µW
Ithr 32.0 mA

Table 6.1: Laser parameter values used in the numerical simulations.

nition as a classi�cation task, then time series prediction is studied. The
results are obtained from the simulations of a semiconductor laser subject to
delayed optical feedback. While the former does not require much memory,
and consequently the feedback is expected not to play an important role,
the latter is memory dependent and feedback is expected to be essential. In
our numerical analysis, the reservoir consists of N = 400 virtual nodes and
the delay is τ = 80 ns, resulting in a virtual node spacing of Θ = 200 ps
(τ/N). We begin with analyzing the performance in both tasks in depen-
dence of laser pump current and feedback strength. The latter is evaluated
both for PMOF and for PROF, respectively. Then we investigate the ro-
bustness of our scheme against spontaneous emission noise for both di�erent
computational tasks.

6.5.1 Spoken digit recognition

We begin by evaluating the performance of the system for the spoken digit
recognition task. Figure 6.9 depicts the word error rate (WER) as a function
of the normalized laser pump current

p ≡ Ib/Ithr. (6.19)

Here, Ib is the laser bias current and Ithr is the solitary threshold cur-
rent. The exibited results are for the case of electrical input injection for
three di�erent feedback conditions. In particular, these are PMOF (black
circles in Fig. 6.9), PROF (green diamonds in Fig. 6.9) and the case without
any feedback (red squares in Fig. 6.9). We �nd that the best classi�cation
performance is found for pump currents around the solitary lasing thresh-
old, independent of the feedback conditions. For all three feedback schemes
excellent performances with WER of 0.008, 0.008 and 0 for the PMOF,
PROF and the laser without feedback, respectively, were obtained. We note
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that bias currents around threshold ensure that the laser starts its dynam-
ics from a steady state, which is important for a consistent response. For
larger pump currents the complex (chaotic) dynamics prevail and injecting
identical information leads to di�erent transients, thus computations become
less reproducible and the system's performance decreases. Interestingly, the
classi�cation is best in the absence of optical feedback. This is due to the
fact that in this task with a small number of classes the memory, and con-
sequently the feedback, is not so crucial. We �nd no signi�cant di�erences
between the PMOF and PROF conditions in the case of electrical input
injection if the laser is pumped below or close to its threshold. However,
for larger currents p > 1.02 the PROF con�guration performs signi�cantly
better than PMOF.

Figure 6.9: Word error rate (WER) for the spoken digit recognition task
versus the normalized pump current p = Ib/Ithr for electrical signal injec-
tion. Black circles denote the results for feedback with parallel polarization
(PMOF) with a feedback rate of κ‖ = 10 ns−1. Green diamonds are the re-
sults PROF with the feedback rate κ⊥ = 10 ns−1. Red squares represent the
resulting word error rates for the case without any feedback κ‖ = κ⊥ = 0.
The other parameters are set as in Table 6.1. The lines are meant only as
guide to the eyes.

The classi�cation performance, as function of the normalized pump cur-
rente, for the case of optical input injection is illustrated in Fig. 6.10. We
again �nd that the WER depends on the laser bias current. We observe that
the classi�cation performance is qualitatively similar for PROF (red squares
in Fig. 6.10) and in the absence of feedback (green diamonds in Fig. 6.10),
with even better WER compared to the case of electrical input injection as
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shown in Fig. 6.9. In contrast, the classi�cation error in the case of PMOF
(black circles in Fig. 6.10) increases signi�cantly above threshold. Like for
the case of electical signal injection, this is due to the increasing dominance
of feedback-induced complex dynamics and the subsequent lack of consis-
tency in the laser response. For optical injection, the classi�cation error is
minimum, reaching a 0 WER, for pump currents slightly below the solitary
lasing threshold independent of the feedback conditions.

Figure 6.10: WER for the spoken digit recognition task versus the normal-
ized pump current p for optical signal injection. Black circles denote the
results for PMOF with a feedback rate of κ‖ = 10 ns−1. Red squares are
the results for PROF with the same feedback rate κ⊥ = 10 ns−1. Green
diamonds are the resulting word error rates for the case without feedback.
The other parameters are chosen according to Table 6.1. Note that the lines
are only guide to the eyes.

These results suggest that the classi�cation of spoken digits only requires
the nonlinear transients created by the information injection and that the
memory introduced by the optical feedback is not important for this task.
One can argue that a similar reason applies for the obviously better perfor-
mance of the PROF con�guration in this task when compared to PMOF.
Since PROF excites the weaker mode with orthogonal polarization axis, the
feedback has less impact (feedback-induced instabilities) on the transient dy-
namics than PMOF with the same feedback strength. Less feedback-induced
irregular behavior means a more consistent response from the laser to inputs
from the same class, thus exhibiting a better performance in this classi�ca-
tion task.



6.5. NUMERICAL RESULTS 155

6.5.2 Time series prediction

The second task that we tackle is time series prediction. We restrict our-
selves to optical injection of the information and study the dependence of
the normalized mean squared error (NMSE) on the normalized laser pump
current p = Ib/Ithr, the feedback rate and the injection strength, i.e., the
average injected power P̄inj. This prediction task requires the system to have
memory, i.e. optical feedback is crucial for this task.
In Fig. 6.11, we show the NMSE as a function of p for two di�erent values
of the optical injection power. The �rst one corresponds to a large average
power of the injected light, compared to the power of the laser subject to
feedback, P̄inj = 436µW. In this case, the NMSE for the Sante Fe time
series prediction task is below 0.2 both for polarization-maintained optical
feedback (PMOF) (see blue squares in Fig. 6.11) and polarization-rotated
optical feedback (PROF) (see green circles in Fig. 6.11) for laser bias cur-
rents above threshold, with a minimum NMSE for PMOF and p = 1.25 of
0.036 and 0.087 for PROF at p = 1.5I.

Figure 6.11: Normalized mean squared error (NMSE) for the Santa Fé time
series prediction task versus the normalized pump current p for PROF with
P̄inj = 436µW (green circles), PMOF with P̄inj = 436µW (blue squares),
PMOF with P̄inj = 11µW (black diamonds) and PROF with P̄inj = 11µW
(red triangles), respectively. The feedback rates were set to κ‖ = 10 ns−1

and κ⊥ = 10 ns−1, respectively, while the respective other was set to zero.
The other parameters are set as in Table 6.1. Note that the lines are only
guide to the eyes.

We also present the results for a smaller average power of the optical
input injection, P̄inj = 11µW . In this case we �nd that for PMOF low
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prediction errors are restricted to laser pump currents close to the solitary
lasing threshold (see black diamonds in Fig. 6.11), with a minimal NMSE
value of 0.164 for p = 1.0. The prediction error increases signi�cantly for
higher pump currents due to the onset of delayed feedback instabilities. For
PROF and low injection power the pump current range for good performance
is signi�cantly broader (see red triangles in Fig. 6.11) with the minimal
NMSE being 0.206 for p = 1.1. The error increases less with increasing
bias current for PROF. In the case of high injection power the prediction
hardly changes with the pump current (above threshold) for both feedback
con�gurations. On the contrary, the prediction errors strongly increase for
low current for both low and high injection powers. Nevertheless, in both
cases, competitive prediction errors can be achieved. It is interesting to
note, though, that a larger average optical injection power allows for a wider
range of bias currents providing good performance. This can be interpreted
such, that because external optical injection can stabilize the dynamics to
some degree, it counteracts some of the destabilizing e�ects of time-delayed
feedback.
As the Santa Fé time series prediction requires the presence of memory in
the system, we investigate in detail the in�uence of the feedback strength on
the prediction performance.

Figures 6.12 and 6.13 show the NMSE, coded in color scale, versus the
feedback rate and the average injected power for the case of PMOF. Results
are shown for two di�erent laser pump currents, namely a current close
to threshold (p = 1.01, Fig. 6.12) and a current clearly above threshold
(p = 1.18, Fig. 6.12), respectively.

The same parameter dependencies as for PMOF are studied for the case
of PROF. The resulting NMSE for p = 1.18 is shown in Figure 6.14.

In the case of a bias current close to threshold (p = 1.01) shown in
Fig. 6.12, we �nd that PMOF yields low NMSE values for feedback rates
below κ‖ = 20 ns−1 independent of the average power of the injected signal
P̄inj , reaching a minimum value of NMSE = 0.099. In addition, the time
series prediction performance with PROF and a small bias current p = 1.01
shows almost no dependence on injection power or feedback strength, re-
spectively. The minimum NMSE value in this situation is 0.161 while the
overall average for the considered parameter ranges is NMSE = 0.201.
In the case of a current well above threshold (p = 1.18), as shown in Fig. 6.13
for PMOF, we �nd that PMOF yields low NMSE values for intermediate
feedback rates and high average powers of the injected signal P̄inj , with a
minimum value of 0.021. Interestingly, an increase in the laser pump cur-
rent requires an increase in the average injection power and feedback rate to
achieve a low prediction error in the case of PMOF. This result suggests that
a balance between laser emission power, and the average injection power is
needed. As shown in Fig. 6.14, PROF yields low NMSE values (minimum
value 0.022) for high average powers of the injected signal and for large feed-
back rates.
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mands a winner-takes-all decision, time series prediction actually requires
the precise approximation of a nonlinear transformation. Furthermore, time
series prediction tasks are more sensitive to noise than classi�cation tasks
[175]. Soriano et al. [227] investigated the e�ect of quantization noise on
the performance of a single nonlinear node for classi�cation and prediction
tasks, respectively. They also found, that classi�cation tasks are generally
more robust against noise than timeseries prediction, with quantization noise
always having a crucial in�uence on the performance.

6.6 Comparison with experiments

Here we compare our numerically obtained results for the computational
performance of a single semiconductor laser with delayed feedback to the
�ndings gained from corresponding experiments and show the robustness of
the scheme. In our lab, Brunner et al. [109] investigated a system of a single
semiconductor laser subject to its own delayed feedback with regards to its
performance in the same two tasks we tackle as well with our numerical sys-
tem. The input signals in their work were electrically and optically injected,
respectively, as well. They were able to achieve competive performance re-
sults in both benchmark tasks when compared to traditional RC concepts.
The experimental con�guration and operating conditions were very similar
to the ones modeled in this work. The experiments involved a standard
Z-mounted laser diode with an emission frequency of λ = 1542 nm. The
feedback was provided by a �ber loop and a had a time-delay of τD = 77.6
ns. The feedback conditions were controlled by employing a polarization
controller and an optical attenuator in the optical path to achieve PMOF
or PROF conditions and to regulate the feedback strength, respectively.
For the case of electrical information injection, the laser diode current was
directly modulated. Optical signal injection was realized via the modu-
lation of an externally injected driver laser's output by a Mach-Zehnder
electro-optic modulator with the injected power being modulated between
15 nW ≤ uo(t) ≤ 15µW. The polarization direction of the injected signal
was parallel to the laser emission's. For electical signal injection the laser
current was modulated between 0 mA ≤ ue(t) ≤ 12mA, which corresponds
to 0 ≤ χS(t) ≤ 1.62 (see Eq. (6.13)). The polarization of the optical feed-
back was rotated for PROF.

The information was injected with a rate of 5 GSamples/s in both schemes.
This con�guration and the operating conditions are partly the same as or
very similar to our own simulated conditions, it is thus legitimate to com-
pare the performance results for the two tasks. The word-error-rate (WER)
results for the spoken digit recognition task for both electrical and for optical
information injection are shown in Fig. 6.16.

The achieved classi�cation errors were very low for pump (bias) currents
close to the solitary lasing threshold. The minimum WER were WER =
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Figure 6.16: Experimentally obtained WER results for the spoken digit
recognition task considering electrical (asterisks) and optical (circles) sig-
nal injection, respectively, versus the laser bias current Ib. Courtesy of D.
Brunner.

(1.4(+5.1/− 1.4)) · 10−4 at a normalized pump current p = 1.04 for optical
signal injection and WER = (6.4±0.17) ·10−3 at p = 1.03 for electical signal
injection. Further above threshold the classi�cation performance degrades
for electrical injection due to the prevalence of complex dynamics of the laser.
The e�ect is such that the same injected input can lead to di�erent transient
states and therefore to a lack of consistency. For the case of optical injection
the performance is best close to threshold and the WER is higher farther
from threshold, though the dependency is not monotonous. The results for
the spoken digit recognition task compare well with our numerically obtained
ones. We also �nd that the system performs best close to threshold and the
WER increases with a larger pump current. The characteristics of the WER
for optical injection resembles the numerically attained one reasonably well
(see Figs. 6.15 (green diamonds) and 6.10 (red quares)). The absolute WER
values are very similar for experiment and numerics.
The experimentally attained prediction performance for the Santa Fé time
series prediction task as a function of the laser bias current is shown in
Fig. 6.17. The best performance with NMSE = 0.106 was again obtained
for a bias current close to threshold. As for the spoken digit recognition,
the performance signi�cantly deteriorates for currents signi�cantly above
threshold.
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Figure 6.17: Experimentally obtained NMSE results for the Santa Fé time
series prediction task considering electrical (asterisks) and optical (circles)
signal injection, respectively, versus the laser's bias current. The signal was
injected optically. Figure courtesy of D. Brunner.

Qualitatively, this compares well with our numerically gained results for
the Santa Fé task (see red triangles in Fig. 6.11), although a relatively
good performance with a NMSE around 0.2-0.3 is retained for larger pump
currents. The error increases further only for much larger pump currents
p > 1.4. This is due to the much higher average injected power in our
numerical scheme (P̄inj = 436µW) as compared to the experimental value
(P̄inj ≈ 10µW). The strong injected optical signal stabilizes the dynamics of
the laser for a broader pump current range, thus leading to a more consistent
response and better prediction performance. We expect that simulating with
a comparable injection power, a curve for the NMSE similar to the one in
Fig. 6.17 could be obtained by numerical simulations.
When we take into account certain di�erences between the experimental and
the numerical scheme, we see that the experimental results for spoken digit
recognition and for time series prediction are quite well reproduced by our
numerical work. We expect that our �ndings in other operating regimes and
conditions not investigated in the experiments presented in [109] can be used
as guidelines for future experiments.
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6.7 Possible improvements

There are a few possible modi�cations to our single laser node reservoir com-
puting scheme as described so far that are easy to implement and that can
result in signi�cantly improved performance characteristics. We focus here
on polarization-resolved intensity readout and optimization of the virtual
node separation Θ.

6.7.1 Polarization-resolved intensity readout

So far, the readout of the laser output states has been modeled as an overall
output intensity measurement where the intensity in each of the two orthog-
onal modes is collapsed into one (Eq. (6.6))

Pout =
∣∣E‖∣∣2 + |E⊥|2 .

The information in Pout is used to create readout state vectors with di-
mension N which are then used for training and testing. However, if the
intensity in both modes is measured independently and the information is
concatenated into a larger output state with dimension 2N , the additional
information can increase the system's computational performance. This ap-
proach corresponds to a mapping of the input information onto a higher-
dimensional reservoir state when compared to a non-polarization-resolved
readout. Experimentally, this modi�cation can be implemented simply by
introducing a polarization beam splitter in the readout line of the setup and
measuring the laser output with two detectors instead of one.
To show the potential for performance improvements of this modi�cation
of our scheme, we focus on the results for the time series prediction error.
Fig. 6.18 depicts the the resulting NMSE values as a function of the pump
current if the modal intensities are measured (read out) separately for a low
average injection power P̄inj = 11µW (black diamonds for the PMOF case,
red triangles for PROF). We compare those errors with the ones obtained
by simulating the corresponding case with an overall intensity readout (grey
diamonds for PMOF, light red triangles for PROF) as already presented in
Fig. 6.11.

One can see that the additional information provided by a polarization-
resolved readout markedly improves the performance of our scheme for the
PROF case. For PMOF, there is no change in the prediction error for pump
currents below or around threshold but a deterioration for larger pump cur-
rents. This can be easily understood: in the case of PMOF, the weaker per-
pendicular polarization mode remains unexcited and therefore only exhibit-
ing noise-like characteristics because of spontaneous emission. This noise
does not depend on the input signal, the additional information is redun-
dant and can not be used for the distinction of input signals in a meaningful
way. The noise lessens the impact of the dynamics in the relevant parallel
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Figure 6.18: NMSE versus the normalized laser pump current for the case of
PMOF (diamonds) and for PROF (triangles). The grey and light red colored
symbols, respectively, correspond to the results shown in Fig. 6.11 with a
non-polarization-resolved intensity readout. The black and dark red symbols
depict the �ndings for separate modal intensity readouts. The feedback
rates correspond to κ‖ = 10 ns−1 and κ⊥ = 10 ns−1 for PMOF and PROF,
respectively. The average injection power is P̄inj = 11µW.

polarization mode and leads to an increased error. Therefore, for PMOF, a
polarization-resolved readout is unnecessary and counterproductive.

In the case of PROF on the other hand, both modes are excited signi�-
cantly and since the dynamics in both modes have di�erent characteristics
their readout provides a truly increased amount of information. This leads
to a better performance, especially for larger pump currents since then the
perpendicular mode E⊥ is stimulated more strongly.
To underline this conclusion we present further results for the NMSE in the
Santa Fé timeseries prediction task corresponding to the ones speci�ed for
p = 1.01 and shown in Fig. 6.14 for p = 1.18, but with polarization-resolved
readout. We see a negligible improvement of the error rates for a pump
current close to threshold p = 1.01 (Fig. 6.19) when compared to the results
for the case without polarization-resolution. This is because with the laser
pumped that close to threshold, the perpendicular mode excitation is still
not very strong. In contrast, if the laser is pumped at p = 1.18 (Fig. 6.20),
the parameter regions with low NMSE increase signi�cantly in size when
compared to the non-polarization-resolved readout case.
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6.7.2 Virtual node separation optimization

Another way to further improve the performance of our single laser node
RC scheme is to optimize the virtual node separation Θ. So far we rather
arbitrily have chosen Θ = 200 ps as a �xed value only applying the condition
Θ < T where T is the characteristic time scale of the semiconductor laser
(see Section 6.2). Changing Θ can be implemented in our scheme simply by
changing the feedback delay τ or the number of virtual nodes N correspond-
ing to

Θ = τ/N. (6.20)

To test the possibility to improve performance of our system by applying
a di�erent virtual node separation, we investigate the dependence of the
Santa Fé prediction error on Θ for several di�erent pump currents (Fig.
6.21) and for di�erent feedback rates κ‖ (Fig. 6.22). We choose this task to
be able to see a signi�cant change in performance.

We vary Θ by adjusting the feedback delay time τ of our system while
keeping the number of virtual nodes �xed at N = 400.

Fig. 6.21 exhibits the NMSE results versus Θ for di�erent pump currents
p = 1.0 (black circles), p = 1.05 (red squares), p = 1.1 (green diamonds) and
p = 1.2 (blue triangles) for the case of PMOF with κ‖ = 10 ns−1. It is
apparent that the optimal value for Θ is smaller than the previously chosen
one. The improvement in performance can be considerable, depending on
the operating regime, i.e., the pump current. For p = 1.0, for example, the
performance is enhanced from NMSE ≈ 0.132 for Θ = 200 ps to NMSE ≈
0.056 for Θ = 50 ps. With increasing pump current, the minimum NMSE
value is given for a decreasing Θ. Increasing the pump current means to
decrease the characteristic time scale of the dynamics which is related to the
laser's relaxation oscillations. The virtual node separation should be short
enough to prevent the dynamics from getting close to a steady state so that
all response dynamics are transient states. Since the dynamics become faster
for an increasing pump current, the optimal Θ has to decrease.

Fig. 6.22 shows the prediction error versus Θ for di�erent PMOF feed-
back rates κ‖ = 10 ns−1 (black circles), κ‖ = 20 ns−1 (red squares) and
κ‖ = 40 ns−1 (green diamonds). The laser is pumped at threshold p = 1.0.
Again, we see that the optimal value of Θ = 75 ps is smaller than Θ = 200
ps as previously chosen. The performance improves from NMSE ≈ 0.132
to NMSE ≈ 0.055. Also, the Θ with minimal prediction error decreases
with increasing feedback rate. A similar argument can be applied as for
the case of varying pump current. Faster dynamical �uctuations induced by
an increasingly strong feedback can - in terms of the resulting NMSE - be
partially compensated for by decreasing the virtual node separation Θ.

The above results indicate that there is no single optimal Θ for our con-
sidered system of a single laser with delayed feedback. The optimal value
depends signi�cantly on operating parameters like the pump current and
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Figure 6.21: NMSE for the time series prediction task versus Θ for di�er-
ent normalized pump current values p = 1.0 (black circles), p = 1.05 (red
squares), p = 1.1 (green diamonds) and p = 1.2 (blue triangles). The feed-
back is modeled as PMOF with rate κ‖ = 10 ns−1. The other parameters
are set as in Table 6.1. Note the log-log scale.

the feedback strength. With carefully chosen Θ depending on operating
conditions, the performance of our scheme can be substantially improved.

We note, that Nguimdo et al. [228] recently also investigated the Θ
dependence of the scheme we consider here. However, the studied a case with
N = 200 nodes, a di�erently constructed input mask and with a di�erent
injection strength, so our results can not be easily compared with theirs.

6.8 Summary and Outlook

In this chapter, we have studied the computational capabilities of a semi-
conductor laser subject to delayed optical feedback in an reservoir comput-
ing (RC) approach. Our numerical simulations highlight the potential and
robustness of the proposed scheme. Moreover, the modeling provides guide-
lines for the experimental implementation of the scheme. We have achieved
a qualitative agreement with �rst experimental results employing a corre-
sponding setup.

We �nd that this con�guration exhibits excellent computational perfor-
mance for both investigated computational tasks, spoken digit recognition
and time series prediction. Optical injection of the input signals result in gen-
eral in a better performance of our scheme than electrical injection. Pumping
the laser close to its threshold allows for the laser dynamics to stay in a tran-
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Figure 6.22: NMSE results versus Θ for di�erent PMOF feedback rates
κ‖ = 10 ns−1 (black circles), κ‖ = 20 ns−1 (red squares), and κ‖ = 40
ns−1 (green diamonds). The normalized pump current is p = 1.0, the other
parameters are chosen according to Table 6.1. Note the log-log scale.

sient regime without too much interference from feedback-induced complex
dynamics and therefore usually leads to the best performance. A stronger
optical injection of the input signals can to a degree stabilize the dynamics
and thus compensate for a stronger optical feedback which might be needed
for memory-intensive tasks.

The results obtained for the spoken digit recognition task (WER=0) are
better as those obtained with other systems [229, 230]. For the case of time
series prediction, our best numerical results of NMSE=0.02 are of the order
of those obtained with more traditional techniques (<0.01 [231]), although
in the latter additional memory is arti�cially added into the input data.

We further �nd potential to signi�cantly improve the performance of
the present scheme by implementing polarization-resolved intensity readouts
and by optimizing the virtual node separation depending on the operating
regime. The polarization-resolved readouts promises a marked improvement
in the time series prediction task if the feedback is con�gured as PROF.
The peak performance for p = 1.1 and κ⊥ = 10 ns−1 then improves from
NMSE ≈ 0.206 to NMSE ≈ 0.069, for Θ = 200 ps and Θ = 75 ps, respec-
tively. With optimized Θ for di�erent operating regimes, the NMSE can
in our simulations be signi�cantly reduced as compared to the case with
Θ = 200 ps. With κ‖ = 10 ns−1 and p = 1.0 the optimum node separation
is Θ = 75 ps and the NMSE reduced from 0.132 to 0.055. For κ‖ = 10
ns−1 and p = 1.05, the best performance is obtained for Θ = 25 ps where
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the NMSE is reduced from 0.458 to 0.164. In the situation with κ‖ = 20
ns−1 and p = 1.0 the error decreases from NMSE ≈ 1.009 for Θ = 200 ps to
NMSE ≈ 0.273 for Θ = 10 ps.
Many parameter dependences and opportunities that this con�guration of-
fers remain unexplored so far. Also, other types of lasers than QW edge-
emitters (e.g. quantum dot lasers or VCSELs) might o�er an additional way
to increase computational performance of a single laser system with feed-
back. They can exhibit di�erent timescales than in the system investigated
here, a more bene�cial interplay between di�erent laser modes (polarization
mode detuning, multimode lasers, ...) or dynamical characteristics better
suited for transient state excitation.

Another possible future work could be to study RC with multiple coupled
laser nodes in a network with coupling and feedback topologies tailored to
speci�c computational needs. Nonidentical coupled nodes could o�er an
even larger dimensional state space with the node diversity resulting in a
larger-dimensional state space.

The full potential of single laser systems or small laser networks for data
processing is yet unknown.
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Summary and Conclusions

The work in this thesis was focused on the complex dynamics of semiconduc-
tor laser (SL) devices which receive time-delayed feedback from an external
cavity or are delay-coupled with a second semiconductor laser. These sys-
tems are of general interest as they serve as excellent testbeds for the study
of delay systems and provide opportunities for photonic applications.

We investigated fundamental properties and dynamics induced by the
time-delayed feedback and delayed coupling. Moreover, we explored the con-
sequences for existing applications and we studied the utilization of transient
complex dynamics of a single SL arising from delayed feedback and exter-
nal signal injection for a neuro-inspired photonic data processing scheme.
Based on experiments and numerical modelling, we investigated systems of
two coupled SLs, gaining insights into the role of laser and coupling param-
eters for the synchronization characteristics of these systems. We could link
certain features of the synchronization dynamics, like intermittent desyn-
chronization events, to the underlying nonlinear dynamics in the coupled
laser system.

This way, our research combined both fundamental insights into delay-
coupled lasers as well as novel application perspectives.
To explore the capabilities of a single SL with delayed feedback, we followed
the concept of reservoir computing based on delay systems. In particular,
we studied two di�erent computational tasks: time series prediction and
classi�cation of input patterns, representing computationally hard tasks for
traditional computing concepts. We explored several feedback con�gura-
tions, data injection methods and operating regimes of the laser and were
able to identify the task-dependent optimal operating conditions. The best
performance results we obtained are very competitive when compared to
other, more traditional RC approaches. We also found that the performance
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of the single laser system with feedback exhibits a remarkable robustness
against noise when it comes to classi�cation, i.e., pattern recognition. Time
series prediction utilizes more the inherent memory of the delay system, and
the system performance is signi�cantly a�ected by noise. Our work demon-
strates the potential of simple photonic setups and the RC concept for future
computational paradigms.
In one of the main lines of investigation in this thesis, we studied the syn-
chronization properties in systems of two delay-coupled SLs with relay. We
explored the consequences of asymmetries in the setup for the dynamics and
synchronization properties. One key interest was, how synchronization de-
cays or is lost, which is of signi�cant importance for applications in chaotic
communications schemes and key-exchange protocols that require synchro-
nization. We followed an event-based approach and connected changes in
the synchronization levels for varying operating parameters or varying mis-
matches to the onset and characteristics of desynchronization events. We
studied these desynchronization events in experiments as well as in numer-
ical simulations. We interpreted events induced by noise or by mismatches
of the laser or operating parameters as bubbling, while desynchronization
due to frequency detuning was interpreted following the concept of episodic
synchronization. Our results regarding synchronization levels and synchro-
nizability underline the signi�cance of symmetry and matching parameters
for the identical synchronization of delay-coupled oscillators. For chaos com-
munication concepts based on synchronization, it is of crucial importance to
keep asymmetries or mismatches small to suppress the occurrence of inter-
mittent desynchronization events as much as possible.
We applied our �ndings regarding the possibility for identical synchroniza-
tion to develop and implement an experimental method to identify deter-
minism in the chaotic dynamics of a SL with delayed feedback. Our method
is based on zero-lag synchronization of the laser in question with a twin sys-
tem. We focused our investigation on power dropouts in the Low Frequency
Fluctuations (LFF) regime of a SL since they represent distinct dynamical
features whose origin had been controversially discussed in the past. The
method identi�es isochronously synchronized power dropouts with predom-
inantly deterministic events. One central result was the surprisingly large
fraction of 85% of LFF power dropouts being synchronized when the lasers
were pumped close to their respective solitary threshold. This fraction being
only a lower bound, we could thus identify the large majority of occurring
power dropouts in the LFF regime as being deterministically driven and not
primarily induced by the intrinsic noise. Our �ndings were con�rmed by
numerical simulations. Those resulted in an even larger fraction when the
coupling setup was modeled as completely symmetric. Introducing a number
of small scale asymmetries led to results comparable with the experimental
results. Our method can be adapted in principle to other nonlinear delay
systems which exhibit intrinsic noise to test for traces of determinism. The
major necessary requirement for the adaptation is that the studied oscillator
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must be able to identically synchronize with a twin oscillator.
Several of the results obtained in this thesis can be adapted or generalized to
other systems of coupled nonlinear oscillators. They are, thus, of interest to
other researchers and experimentalists beyond laser dynamics community.
Our analytical �ndings regarding the e�ect of delay mismatches or coupling
mismatches in a basic binary coupling con�guration are of general validity.
They hold for pairs of nonlinear oscillators that are delay-coupled in a relay
con�guration, irrespective of the nonlinear function describing their solitary
dynamics. Moreover, the analytical and numerical results are relevant when
studying the dynamics and synchronization properties of larger networks of
delay-coupled semiconductor lasers. This might be helpful for the design of
tailored network structures for speci�c applications. The insight we gained
for the simple motif of two coupled semiconductor lasers is especially rele-
vant since a coupled pair of elements forms the basic motif in more complex
network structures.

From the perspective of applications in chaos communications and cryp-
tography, our results on intermittent desynchronization due to bubbling or
detuning will be helpful to determine optimal operating conditions and es-
timate performance limitations of bidirectional transmission schemes based
on synchronization of coupled lasers. Our work underlines the necessity for
high symmetry in those schemes. This refers speci�cally to the respective
operating regimes of the communicating lasers and symmetric transmission
over the communication channel.

Furthermore, we see our work on the application of complex laser dy-
namics in reservoir computing schemes as the foundation for prospective
work in all-optical RC. Future research will explore more complex coupling
topologies and larger networks of coupled lasers as reservoirs to increase the
versatility of the systems and to provide more complex dynamical responses
to input signals. An increasingly complex coupling topology of the reservoir
network should also enable the capability to process more complex data. We
see the extensive study of the single laser with feedback system as essential
and a necessary �rst step before considering larger networks consisting of
more than one hardware node.
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A
Nondimensionalization of

Lang-Kobayashi rate equations

When studying dynamical systems it is convenient to bring the di�erential
equations into a dimensionless form. This procedure is called nondimension-
alization [98, 232].

Using dimensionless equations has signi�cant advantages. First, it re-
duces the number of parameters by combining them into fewer independent
constants, and second very large and very small numbers are avoided and
the dimensionless equations are therefore better suited for numerical simu-
lations.

Here we consider the two-mode Lang-Kobayashi (LK) model correspond-
ing to Eqs. (2.26)-(2.30). The nondimensionalization of the one-mode model
(Eq. (2.5)-(2.7)) works correspondingly. We convert the equations without
the Langevin noise terms as we will convert the noise separately.

The noiseless two-mode LK rate equation model reads

Ė‖(t) =
1

2
(1 + iα)

(
G‖(E‖, N)− γ‖

)
E‖(t) + κ‖E‖(t− τec) (A.1)

Ė⊥(t) =
1

2
(1 + iα)

(
G⊥(E‖, N)− γ⊥

)
E⊥(t) + κ⊥E‖(t− τec)

−i∆ΩE⊥(t) (A.2)

Ṅ(t) =
I

e
− γeN(t)− G‖(E‖, N)

∣∣E‖(t)∣∣2 − G⊥(E⊥, N) |E⊥(t)|2 (A.3)

with the gain functions
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G‖(E‖, N) = g‖
N(t)−NT

1 + ε
∣∣E‖(t)∣∣2 (A.4)

G⊥(E⊥, N) = g⊥
N(t)−NT

1 + ε |E⊥(t)|2
. (A.5)

In order to convert the equations into dimensionless form, we introduce
a dimensionless time s and dimensionless variables E‖, E⊥ and n. They
are related to the original variables by a characteristic scaling factor, which
carries the proper dimensions:

s = t/tc (A.6)

E‖(t) = Ec‖E‖(t/tc) (A.7)

E⊥(t) = Ec⊥E⊥(t/tc) (A.8)

N(t) = Ncn(t/tc) +N0
c . (A.9)

We have to determine the values of the characteristic factors Ec‖, Ec⊥ and
Nc. Note that we included a constant shift N0

c in the transformation of the
carrier variable N . We will choose it such, that the new dimensionless carrier
variable n is zero at the lasing threshold and thus describes the carriers in
excess of the threshold.

Inserting ansatz (A.6)-(A.9) into Eqs. (A.1)-(A.5) yields

Ė‖(t) =
Ec‖
tc
Ė‖(s) =

1

2
(1 + iα)

g‖Ncn(s) +N0
c −NT

1 + εE2
c‖
∣∣E‖(s)

∣∣2 − γ‖

 Ec‖E‖(s)

+κ‖Ec‖E‖(s− τec/tc) (A.10)

Ė⊥(t) =
Ec⊥
tc
Ė⊥(s) =

1

2
(1 + iα)

(
g⊥
Ncn(s) +N0

c −NT

1 + εE2
c⊥ |E⊥(s)|2

− γ⊥

)
Ec⊥E⊥(s)

+κ⊥Ec‖E‖(s− τec/tc)− i∆ΩEc⊥E⊥(s) (A.11)

Ṅ(t) =
Nc
tc
ṅ(s) =

I

e
− γeNcn(s)− γeN

0
c

−g‖
Ncn(s) +N0

c −NT

1 + εE2
c‖
∣∣E‖(s)

∣∣2 E2
c‖
∣∣E‖(s)

∣∣2
−g⊥

Ncn(s) +N0
c −NT

1 + εE2
c⊥ |E⊥(s)|2

E2
c⊥ |E⊥(s)|2 . (A.12)

This then leads to
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Ė‖(s) =
1

2
(1 + iα)

tcNcg‖n(s) + (N0
c −NT )/Nc

1 + εE2
c‖
∣∣E‖(s)

∣∣2 − γ‖tc

E‖(s)

+tcκ‖E‖(s− τec/tc) (A.13)

Ė⊥(s) =
1

2
(1 + iα)

(
tcNcg⊥

n(s) + (N0
c −NT )/Nc

1 + εE2
c⊥ |E⊥(s)|2

− γ⊥tc

)
E⊥(s)

+tcκ⊥
Ec‖
Ec⊥

E‖(s− τec/tc)− i∆ΩtcE⊥(s) (A.14)

1

γetc
ṅ(s) =

I

eNcγe
− N0

c

Nc
− n(s)

−
E2
c‖

γe
g‖
n(s) + (N0

c −NT )/Nc

1 + εE2
c‖
∣∣E‖(s)

∣∣2 ∣∣E‖(s)
∣∣2

−E2
c⊥
γe

g⊥
n(s) + (N0

c −NT )/Nc

1 + εE2
c⊥ |E⊥(s)|2

|E⊥(s)|2 . (A.15)

By choosing the scaling factors tc, Ec‖, Ec⊥ and Nc and shift N0
c appro-

priately, we can simplify the equations such:

tc → 1/γ‖ (A.16)

Ec‖ →
√
γe
g‖

(A.17)

Ec⊥ →
√
γe
g⊥

(A.18)

Nc →
γ‖

g‖
(A.19)

N0
c →

γ‖

g‖
+NT . (A.20)

Eqs. (A.13)-(A.15) then become
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Ė‖(s) =
1

2
(1 + iα)

(
n(s) + 1

1 + µ
∣∣E‖(s)

∣∣2 − 1

)
E‖(s)

+K‖E‖(s− τ) (A.21)

Ė⊥(s) = −i∆E⊥(s) +
1

2
(1 + iα)

(
σ

n(s) + 1

1 + µ
σ |E⊥(s)|2

− ρ

)
E⊥(s)

+K⊥
√
σE‖(s− τ) (A.22)

ṅ(s) =
1

T
(p− n(s)− n(s) + 1

1 + µ
∣∣E‖(s)

∣∣2 ∣∣E‖(s)
∣∣2

− n(s) + 1

1 + µ
σ |E⊥(s)|2

|E⊥(s)|2). (A.23)

with the dimensionless gain saturation coe�cient µ = εγe/g‖, the ratio
of photon lifetimes ρ = γ⊥

γ‖
, the dimensionless feedback strengths K‖,⊥ =

γ‖κ‖,⊥, the ratio of the modal gains σ = g⊥
g‖
, the spectral detuning between

the modes ∆ = ∆Ω
γ‖

, the time scale coe�cient T =
γ‖
γe
, and the dimensionless

pump current p(s) =
g‖
γ‖

(
I/e
γe

−NT

)
− 1.

Noise conversion

The noise from spontaneous emission is implemented as complex Gaussian
white noise terms FE‖,⊥ in the �eld equations, which have zero mean

〈
FE‖,⊥(t)

〉
= 0 (A.24)

and the following correlations

〈
FE‖,⊥(t)FE‖,⊥(t

′)
〉
= β‖,⊥γeN(t)δ(t− t′). (A.25)

The noise in dimensionless variables is calculated by inserting (A.6)-(A.9)
into Eq. (A.25):
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〈
FE‖,⊥(s)FE‖,⊥(s

′)
〉

=
g‖,⊥

γe

〈
FE‖,⊥(t)FE‖,⊥(t

′)
〉

=
1

γ2‖,⊥

g‖,⊥

γe

〈
FE‖,⊥

(
s

γ‖,⊥

)
FE‖,⊥

(
s′

γ‖,⊥

)〉

=
1

γ2‖,⊥

g‖,⊥

γe
β‖,⊥γeNδ

(
1

γ‖,⊥
(s− s′)

)
=

g‖,⊥

γ‖,⊥
β‖,⊥Nδ(s− s′) (A.26)

=
g‖,⊥

γ‖,⊥
β‖,⊥

(
γ‖,⊥

g‖,⊥
n+

γ‖,⊥

g‖,⊥
+NT

)
δ(s− s′)

= β‖,⊥

(
n+ 1 +

g‖,⊥

γ‖,⊥
NT

)
δ(s− s′) (A.27)

=: β‖,⊥
(
n+ n0‖,⊥

)
δ(s− s′).

Here, n0‖,⊥ take the role of the carriers at threshold in dimensionless
units for the respective mode.
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B
Transverse stability of External

Cavity Modes

For the case of potentially mismatched coupling strength K and feedback
strength L, the transverse stability of a trajectory S(t) is governed by the
variational equation for a small transverse perturbation δA

˙δA(t) = Df(S(t))δA(t) + (L−K)CδA(t− τ) (B.1)

where Df(S(t)) is the Jacobian of f , which describes the laser dynam-
ics, evaluated along S(t) and C is a coupling matrix describing the optical
feedback and optical coupling.
An external cavity mode (ECM) of the Lang-Kobayashi equations is a ro-
tating wave solution of the form E = A?e

iω?t and n = n?. To calculate its
(transverse) stability, we make the transformation E → Ee−iω?t, such that
the ECM becomes a steady state and split the electric �eld into a real and
an imaginary part E = A = x+ iy.

We calculate the Jacobian Df to

Df = 1
2

(
G− 1− 2x2 ∂G∂I

)
ω − α

2

(
G− 1−2 y2 ∂G∂I

)
1
2
∂G
∂n (x− αy)

−ω + α
2

(
G− 1−2 y2 ∂G∂I

)
1
2

(
G− 1− 2x2 ∂G∂I

)
1
2
∂G
∂n (αx+ y)

−2x
T

(
G+ I ∂G∂I

)
− 2y
T

(
G+ I ∂G∂I

)
− 1
T

(
1 + I ∂G∂n

)


where I represents the intensity of the laser, I = |A|2 = x2 + y2. With
this we calculate the Jacobian Df(S) with trajectory S corresponding to
the transformed ECM solution. We then determine the eigenvalues λ of the
linearized right hand side of Eq. (B.1) according to

det
[
Df + (L−K)Ce−λτ

]
= 0 (B.2)
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If all the resulting eigenvalues have negative real parts, it indicates that
the ECM is transversely stable: the magnitude of the small perturbation δ(t)
in Eq. (B.1), decreases over time. On the other hand, if at least one eigen-
value has a positive real part, it means the ECM in question is transversely
unstable.
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