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Resumen

La presente tesis está dedicada a la descripción, análisis y modelado cuantitativo
de sistemas complejos sociales en forma de redes sociales en internet. Mediante
el uso de métodos y conceptos provenientes de ciencia de redes, análisis de redes
sociales y mineŕıa de datos se descubren diferentes patrones estad́ısticos de los
sistemas estudiados. Uno de los objetivos a largo plazo de esta ĺınea de inves-
tigación consiste en hacer posible la predicción del comportamiento de sistemas
complejos tecnológico-sociales, de un modo similar a la predicción meteorológica,
usando inferencia estad́ıstica y modelado computacional basado en avances en el
conocimiento de los sistemas tecnológico-sociales. A pesar de que el objeto del
presente estudio son seres humanos, en lugar de los átomos o moléculas estudia-
dos tradicionalmente en la f́ısica estad́ıstica, la disponibilidad de grandes bases de
datos sobre comportamiento humano hace posible el uso de técnicas y métodos
de f́ısica estad́ıstica. En el presente trabajo se utilizan grandes bases de datos
provenientes de redes sociales en internet, se miden patrones estad́ısticos de com-
portamiento social, y se desarrollan métodos cuantitativos, modelos y métricas
para el estudio de sistemas complejos tecnológico-sociales.

Los grupos juegan un papel fundamental en sistemas sociales, como muestran
numerosos estudios sociológicos. Por ello, buena parte de este trabajo se centra
el estudio de grupos humanos. La presente tesis contribuye al campo emergente
de la ciencia social computacional en los siguientes aspectos:

• Descripción y modelado de la evolución temporal del tamaño de grupos.

• Análisis de patrones estad́ısticos de interacción de personas dentro y a través
de de grupos.

• Desarrollo de métodos de inferencia estad́ıstica para la diferenciación de
grupos según su tipo.
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• Introducción de un modelo de creación de enlaces acoplado a movilidad
que da lugar a la formación de redes sociales con propiedades estad́ısticas
geográficas y estructurales realistas.

Las distribuciones de probabilidad de tipo ley de potencias y “cola larga” son
caracteŕısticas de los sistemas complejos, entre ellos las redes sociales. Usual-
mente, su existencia se explica como consecuencia del mecanismo “rich-gets-
richer” (el que es rico se hace aún más rico) y con modelos basados en crecimiento
preferente. Sin embargo, en muchos casos, el crecimiento de los elementos de
un sistema dado no está determinado únicamente por este mecanismo, sino que
también depende de propiedades intŕınsecas de los elementos. La variación de es-
tas propiedades entre los elementos es un origen de heterogeneidad en el sistema.
El efecto de la heterogeneidad puede ser más importante que el mecanismo “rich-
gets-richer” y sin embargo dar lugar a las mismas distribuciones de tipo ley de
potencias. De hecho, en el Caṕıtulo 2 se muestra que las propiedades estad́ısticas
de grupos declarados por los usuarios en la red social Flickr pueden explicarse a
partir de un modelo basado únicamente en heterogeneidad.

A continuación, pasamos del estudio de grupos declarados por usuarios al
estudio de grupos de individuos detectados mediante métodos basados en teoŕıa
de grafos. La identificación de grupos es uno de los intereses centrales en ciencia
de redes. En los últimos años se han desarrollado numerosos algoritmos para la
detección de comunidades en redes. Una pregunta natural concierne la relevancia
de los grupos detectados con dichos métodos. En el Caṕıtulo 3 se muestra,
mediante el uso de bases de datos de la red social Twitter, que las interacciones
dentro de y entre los grupos detectados dan lugar a propiedades estad́ısticas no
triviales que corresponden a predicciones de la teoŕıa de Granovetter. Esto es,
las interacciones de tipo personal suceden considerablemente más a menudo de lo
esperado dentro de los grupos, mientras que las interacciones de tipo transmisión
de información suceden más a menudo entre grupos. Además, los usuarios que
pertenecen a varios grupos actúan como puentes entre ellos, y los enlaces sociales
de estos usuarios son usados más frecuentemente para la difusión de información.

Es importante señalar que en las redes sociales en internet los grupos pueden
ser identificados de varias formas. Por un lado, los grupos pueden ser creados y
declarados expĺıcitamente por los propios usuarios, de modo que la existencia y
composición de estos grupos puede inferirse directamente de los datos. Por otro
lado, se pueden usar algoritmos de detección de comunidades para identificar
los grupos a partir de la estructura de la red de enlaces. En el Caṕıtulo 4, se
comparan los conjuntos de grupos obtenidos mediante estos dos métodos y se
muestra que la coincidencia entre ellos es mayor que la esperada a partir de una
asignación aleatoria.

Además, la comparación es extendida mediante la consideración de la natu-
raleza y el tipo de los grupos, esto es, si están basados en identidad común (grupos
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tópicos) o en enlaces comunes (grupos sociales). En este caṕıtulo también se es-
tudia la manera de clasificar los grupos en estos dos tipos usando una gran base
de datos procedente de Flickr. Para ello, se desarrollan nuevas métricas basadas
en las teoŕıas de la identidad común y del enlace común y se muestra que predi-
cen el tipo de grupo con gran precisión. Finalmente, se muestra que los grupos
detectados son de tipo social más a menudo que los grupos declarados.

La última parte de la tesis se centra en las propiedades espaciales de redes
sociales en internet. De hecho, las relaciones sociales y la localización espa-
cial están intŕınsecamente entrelazadas, ya que a menudo la gente con la que
interaccionamos y mantenemos relaciones se localizan geográficamente cerca de
nosotros. En el Caṕıtulo 5, es introducido un modelo que acopla la creación de
enlaces sociales y la dinámica espacial de una población. El modelo simula el
movimiento de los usuarios y crea enlaces entre ellos cuando se encuentran ge-
ográficamente cercanos, imitando las interacciones cara a cara. Las predicciones
del modelo son comparadas con grandes bases de datos de las redes sociales
Twitter, Brightkite, and Gowalla que incluyen localización espacial. El modelo
reproduce varias propiedades estad́ısticas de la red social y la distancia geográfica
entre los usuarios. Varias componentes del modelo son analizadas para identi-
ficar los mecanismos más importantes y entender su impacto en la red generada
y sus propiedades espaciales. Por ejemplo, se muestra que la tendencia de pares
de nodos enlazados a un tercero a estar enlazados entre śı, puede derivarse del
hecho de que los nodos coinciden temporal y espacialmente.

Esta tesis está formada por una Introducción, reproducciones de cuatro de
mis publicaciones, Eṕılogo y Apéndice. Los Caṕıtulos 2, 3, 4, and 5 son repro-
ducciones, respectivamente, de las siguientes publicaciones:

• Grabowicz, P. A. and Egúıluz, V. M. (2012). Heterogeneity shapes groups
growth in social online communities. Europhysics Lett., 97(2):28002.

• Grabowicz, P. A., Ramasco, J. J., Moro, E., Pujol, J. M., and Egúıluz, V. M.
(2012). Social Features of Online Networks: The Strength of Intermediary
Ties in Online Social Media. PLoS One, 7(1):e29358.

• Grabowicz, P. A., Aiello, L. M., Egúıluz, V. M., and Jaimes, A. (2013a).
Distinguishing topical and social groups based on common identity and
bond theory. In Proceedings of The Sixth ACM International Conference
on Web Search and Data Mining - WSDM ’13, page 627, New York, New
York, USA. ACM.

• Grabowicz, P. A., Ramasco, J. J., Gonçalves, B., and Egúıluz, V. M.
(2013b). Entangling mobility and interactions in social media. Submit-
ted, preprint: arXiv:1307.5304.
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Preface

This thesis is devoted to quantitative description, analysis, and modeling of com-
plex social systems in the form of online social networks. Statistical patterns of
the systems under study are unveiled and interpreted using concepts and meth-
ods of network science, social network analysis, and data mining. A long-term
promise of this research is that predicting the behavior of complex techno-social
systems will be possible in a way similar to contemporary weather forecasting,
using statistical inference and computational modeling based on the advance-
ments in understanding and knowledge of techno-social systems. Although the
subject of this study are humans, as opposed to atoms or molecules in statistical
physics, the availability of extremely large datasets on human behavior permits
the use of tools and techniques of statistical physics. This dissertation deals with
large datasets from online social networks, measures statistical patterns of social
behavior, and develops quantitative methods, models, and metrics for complex
techno-social systems.

Groups play a fundamental role in social systems, as shown by numerous
sociological studies. Thus, a good part of this dissertation focuses on groups.
The thesis contributes to the emerging field of computational social science in
the following respects:

• It describes and models the temporal evolution of group sizes;

• It analyzes the statistical patterns of interactions of people in the landscape
of groups;

• It develops methods of statistical inference for distinguishing types of groups;

• It introduces a model of coupled mobility and link formation that produces
social networks with realistic geographic and structural statistical proper-
ties.
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Power-law and heavy-tailed distributions are ubiquitous in complex systems,
including social networks. Typically, they are explained with the rich-gets-richer
rule and models based on preferential growth. However, in many cases, the
growth of elements of the given system is not only driven by this mechanism,
but it also depends on the intrinsic quality of the elements. This property of
the elements, also known as intrinsic fitness, is a source of heterogeneity. The
impact of heterogeneity may in fact prevail over the rich-gets-richer phenomenon
and nevertheless drive the system to similar power-law distributions. In fact, in
Chapter 2 we show that statistical properties of user-declared groups in Flickr
can be explained with a model based solely on heterogeneity.

Next, we move the focus of the thesis away from user-declared groups to
groups of people detected with graph-based methods. The detection of groups
is one of the focal interests in network science. Numerous community detection
algorithms have been developed in recent years. A natural question is what is the
importance of groups found with such methods. In Chapter 3, using a dataset
from Twitter, we show that user interactions within the detected groups and
between them yield non-trivial statistical features that correspond to predictions
of the Granovetter’s theory. Namely, personal interactions happen considerably
more often than expected inside groups, and information transmission interac-
tions happen more often between groups. Moreover, users who belong to several
groups act as bridges between them, and social links of such users are more
frequently used for the diffusion of information.

Note that in online social networks groups can be identified in a few ways.
On the one hand, groups can be created and declared explicitly by the users
themselves, and subsequently directly retrieved from the data. On the other hand,
community detection algorithms can be used to identify them from the network
structure. In Chapter 4, we directly compare the two sets of groups showing that
indeed the overlap between the two is higher than expected by random chance.
Furthermore, we extend the comparison by considering the nature and type of
groups, i.e., whether they are based on common identity (topical) or on common
bond (social). We investigate how to classify groups into these two types using a
large dataset from Flickr. We introduce metrics based on the common identity
and common bond theories and show that they predict the group type with high
accuracy. Finally, we show that the detected groups are more often social than
the declared groups.

In the last part of the thesis, we switch the focus from groups to spatial prop-
erties of online social networks. In fact, social relationships and physical location
are inextricably entangled. The people we interact and maintain relations with
are often those that stay close to us geographically. In Chapter 5, we introduce a
model that couples social link creation and the spatial dynamics of a population.
The model simulates the movements of users and creates links when they are
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physically close to each other by imitating face-to-face interactions. The model
is tested against large geo-localized data from Twitter, Brightkite, and Gowalla.
It reproduces several statistical properties of the social network and the physical
distance between people. We investigate different components of the model to
identify its most important ingredients and to understand their impact on the
generated network and its geography. For instance, we show that triadic closure
can be achieved by means of spatio-temporal co-occurrences with friends.

This dissertation consist of Introduction, reproductions of four of my publi-
cations, Outlook and Appendix. Chapters 2, 3, 4, and 5 reproduce the following
publications, respectively:

• Grabowicz, P. A. and Egúıluz, V. M. (2012). Heterogeneity shapes groups
growth in social online communities. Europhysics Lett., 97(2):28002.

• Grabowicz, P. A., Ramasco, J. J., Moro, E., Pujol, J. M., and Egúıluz, V. M.
(2012). Social Features of Online Networks: The Strength of Intermediary
Ties in Online Social Media. PLoS One, 7(1):e29358.

• Grabowicz, P. A., Aiello, L. M., Egúıluz, V. M., and Jaimes, A. (2013a).
Distinguishing topical and social groups based on common identity and
bond theory. In Proceedings of The Sixth ACM International Conference
on Web Search and Data Mining - WSDM ’13, page 627, New York, New
York, USA. ACM.

• Grabowicz, P. A., Ramasco, J. J., Gonçalves, B., and Egúıluz, V. M.
(2013b). Entangling mobility and interactions in social media. Submit-
ted, preprint: arXiv:1307.5304.
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Chapter 1

Introduction

If we knew what it was we were doing, it would
not be called research, would it?

— Albert Einstein

Historically, social systems have been studied in sociology, frequently using
results of self-reported surveys conducted on small samples of population. Nowa-
days, information about large fraction of population is gathered unobtrusively
due to trances left by the users of online services and mobile devices, allowing
the quantitative revision and advancement of sociological theories. In this thesis,
we develop methods, models and metrics that contribute to the emerging field
of computational social science. In this chapter, the foundations of this field are
explored including complex networks, social network analysis, and data mining.
We describe concepts, definitions, and methods of each of the fields related to
this dissertation.

First, we introduce the mathematical framework of network theory used in
our studies. Definitions of graph-related quantities are provided and their values
in real social networks are given.1 Additionally, topological and spatial prop-
erties of social networks are described. Later, we will introduce a model that
reproduces these properties. Next, we introduce models of growth of networks,
random models of networks, and the problem of community detection.2 Among
the growth models, preferential growth and heterogeneity models are reported.
We will compare the two families of models in the study of groups’ growth. Also,
a special emphasis is put on community detection, as we will present a couple of
studies of groups found with such methods.

1 Word “network” is used in this thesis interchangeably with word “graph”.
2 Word “group” is used in this thesis interchangeably with word “community”. Words “cluster”

and “module” are related but used only in the context of networks.
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Then, we introduce sociological theories related to social networks and groups,
which are exploited in order to pose research questions and to interpret results
of the forthcoming analyses. Basic mechanisms of tie formation are listed; the
strength of a tie is defined; the relation between network structure, tie strength,
and information diffusion is introduced. We will measure the strength of ties
in the study of interaction patterns in groups found by community detection
algorithms. Also, two types of groups based on the theories of common identity
and common bond are described. Based on these theories, we will propose metrics
that allow the characterization and the prediction of group types.

Finally, in the last section of this chapter we characterize and review struc-
tural properties of three established OSNs. Two of these networks (i.e., Flickr
and Twitter) will be analzed in our studies. We list common features of these
OSNs and show how they can be abstracted to declared social links and different
types of pairwise interactions corresponding to, e.g., personal communications
and information diffusion. We will use this abstraction in the study of interac-
tion patterns in the landscape of groups. Furthermore, in OSNs, users can create
and declare groups on their own. These two sets of groups are introduced to the
reader. Then, we will describe and model their growth, and compare them with
groups detected by a clustering algorithm.3

Groups constitute the common topic of this dissertation. We will present
the results of our studies starting from the description of the growth of declared
groups in Flickr (Chapter 2). Then, we will extend the scope of the studies by
focusing on groups detected with graph-based clustering algorithms (Chapter 3).
We will show that such groups are correlated with statistical patterns of user
interactions in Twitter. Next, the two sets of groups, i.e., the declared and
detected groups in Flickr, will be directly compared in terms of their membership
composition (Chapter 4). We will introduce a method of statistical inference to
find if a given group is topical or social and apply this method to the two sets
of groups. The dissertation concludes with a discussion of our contributions to
computational social science and an outlook for the future (Chapter 6).

1.1

Computational social science

In recent years, a new scientific discipline has emerged dubbed computational so-
cial science (Lazer et al., 2009; Watts, 2007; Miller, 2011; Giles, 2012; Conte et al.,
2012). It is a field that connects several other disciplines, namely mathematics
and physics (through the fields of statistics, graph theory, statistical physics,

3 “Community detection algorithms” are also known as graph-based “clustering algorithms”.

In this thesis, these terms are used interchangeably.

2



1.1. COMPUTATIONAL SOCIAL SCIENCE

complex networks, and through computational modeling), sociology (through
the field of social network analysis), and computer science (through the fields of
data mining and machine learning). The term “computational social science” was
coined by social network analysts and network scientists. However, the field is
known as social computing in computer science. Nowadays, a part of the research
in the field of social computing is happening at Internet and phone companies
such as Facebook, Yahoo, Microsoft, and Telefónica, but public research in this
field increases with data availability. Computational social science is the center
of the focus of this dissertation.

1990 1995 2000 2005 2010
Year

101

102

103

Pa
pe

rs

Complex network
Social network analysis

Figure 1.1: Number of papers found by searching for the topics “complex
network” and “social network analysis”. Retrieved in September 2013 from
http://apps.webofknowledge.com.

Almost contemporarily, in the last fifteen years, the field of network science,
also known as complex networks, has experienced a period of exponential growth
(black curve in Figure 1.1). The evolution of this field is coupled with the growth
of social network analysis, which also has experienced a decade of rapid growth
(red curve in Figure 1.1). The two fields began to be used as fuel for new com-
putational models based on complex networks (Macy and Willer, 2002; Epstein,
2006; Buchanan, 2009; Vespignani, 2009; Schweitzer et al., 2009).

One of the reasons why network science has emerged so rapidly is the in-
creasing availability of data from growing technological networks, particularly
from the Internet. In fact, the two seminal and most cited papers of network
theory (Barabási and Albert, 1999; Watts and Strogatz, 1998) used examples of
networks that either represented technological systems (the power grid) or were
created in a collaborative effort mediated through the Internet (the actor collab-
oration graph, the World Wide Web).4 Along with the growth of technological

4 The only network used in one of the two papers that is not related to technology is a neural

network.

3

http://apps.webofknowledge.com
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networks, the amount of data stored online started to grow rapidly, causing the
development of the data mining field. Currently, the amount of data stored online
is estimated to be around 2.7 billion terabytes,5 almost half of which is generated
by users (Gantz and Reinsel, 2012). Among the services provided online, OSNs
have gained extremely high popularity.6 Nowadays, the biggest OSNs have up
to a billion active users7, and for instance the penetration in Spain reaches 42%
of the population (82% of young adults) (Borondo et al., 2012). Suddenly, the
amount of data on social networks started to reach enormous levels that were
impossible to obtain with traditional user studies. The datasets of this size have
become so important that it was given its own name, big data,8 and caused shifts
at the economic, technological, and scientific levels. The number of things that
scientists can learn from big data in social networks is very promising, e.g., how
different information diffuses, what is the mechanism of social influence, how
social conventions are formed, or how to detect bias of opinions.

The mutual influence of network science, social network analysis, data min-
ing, computational modeling, and the paradigm of big data has caused the rise of
computational social science. In what follows, we dissect the three main compo-
nents that triggered the emergence of computational social science, i.e., network
science, social network analysis, and data mining.

1.1.1 Complex networks

The exponential growth of network science started with the introduction of the
small-world network model (Watts and Strogatz, 1998) and the description and
modeling of scale-free networks (Barabási et al., 1999; Barabási and Albert, 1999).
The field has been commenced and advanced mainly by physicists, mathemati-
cians, and sociologists; but also by biologists, economists, and computer sci-
entists. The growth of the field led to the development and the collection of
statistical measures and methods for real-world networks, which are nowadays
at the very core of network science and used in numerous other disciplines. The
metrics and methods include degree distribution (Barabási et al., 1999; Barabási
and Albert, 1999), modularity (Newman and Girvan, 2004; Newman, 2006), as-
sortativity (Newman, 2002, 2003a), centrality measures (Newman, 2010), and
community detection algorithms (Fortunato, 2010). These metrics and methods

5 Given that there are around 2.4 billion Internet users worldwide, this means that there is
over 1 terabyte stored online per each Internet user.
6 Five out of the top ten most popular websites are OSNs or related sites, according to the Alexa
ranking from September 2013. For a recent ranking, visit http://www.alexa.com/topsites.
7 Facebook in its second quarter 2013 financial report declared 1.15 billion monthly active users
and growing. See more at http://bit.ly/1bifDuL.
8 In general, big data refers to data that is difficult to manage without a distributed system.
Big data includes datasets from large scientific experiments and simulations, e.g., from the

Large Hadron Collider and the NASA Center for Climate Simulation.
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have started to be widely used in studies of economics (Jackson, 2010), biology
(Maslov and Sneppen, 2002; Guimerà and Amaral, 2005), neuroscience (Egúıluz
et al., 2005; Bullmore and Sporns, 2009), and ecology (Dunne et al., 2002). Com-
plex networks are used in computational modeling, e.g., of the spread of epidemics
(Pastor-Satorras and Vespignani, 2001; Hufnagel et al., 2004; Balcan et al., 2009)
and influence dynamics (Kempe et al., 2003; Klemm et al., 2012). Furthermore,
the community structure has been renowned as one of the key characteristics
of real networks (Newman, 2010), and a whole family of graph-based clustering
algorithms has been developed to detect dense modules of nodes in networks
(Fortunato, 2010). Groups play a particularly crucial role in social networks
(Granovetter, 1973; White and Harary, 2001).

Other focal interests in network science are currently under intensive de-
velopment, e.g., time-varying networks (Holme and Saramäki, 2012), multiplex
networks (Szell et al., 2010; Mucha et al., 2010; Gómez-Gardeñes et al., 2012;
Gómez et al., 2013), and dynamical processes on complex networks (Barrat et al.,
2008). These research lines are motivated by the characteristics of real networks.
Namely, real networks vary in time, e.g., phone calls are temporal; different types
of relations are present, which can be represented by multiplex networks, e.g.,
users of phones can either call or text each other; several dynamic processes
happen on the network structure, e.g., information diffuses through telecommu-
nications.

1.1.2 Social network analysis

The idea of treating human beings as social atoms of a larger system dates back
to the first part of the nineteenth century. Several thinkers (e.g., Comte and
Durkheim) argued that social systems can be modeled as physical ones, that
human communities are like biological systems in that sense, and that they are
made of interrelated elements. Comte hoped to found a new field of “social
physics” (Borgatti et al., 2009). As a matter of fact, in the early twentieth cen-
tury, Moreno developed sociometry, a quantitative method for the evaluation of
an individual’s role in a community through analysis of the network of relations
between the members (Moreno, 1934). Since then, social systems have often been
described by their network representations (Granovetter, 1973; Freeman, 1978;
Coleman, 1988; Uzzi, 1996; Freeman, 2004; Butts, 2009). Nowadays, the field
of social network analysis investigates the structure, interactions, attributes, and
events and their outcomes in the social networks (Borgatti et al., 2009). The spir-
itual successor of the idea of social physics is so-called sociophysics (Cho, 2009),
which is focused on developing agent-based models of various social processes
(Macy and Willer, 2002; Bonabeau, 2002).

One of the main questions tackled in social network analysis is the very origin
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of social ties. There exist various families of theories about why people create,
maintain, and dissolve network ties. Among them, one distinguishes (Katz et al.,
2004) theories of self-interest, social exchange, mutual interest, homophily, and
cognitive theories. Each of these theories corresponds to a different school. The
self-interest paradigm assumes that people form ties in a rational process that
maximizes their personal preferences (Coleman, 1988). The social exchange the-
ory considers that people are interdependent and that by creating social ties, they
try to minimize dependence on resources from others and to maximize dependence
of the others on the resources that they can provide (Emerson, 1976). The theory
of public goods assumes that mutual profits of connected people outweigh self-
interests of its members (Samuelson, 1954). The homophily hypothesis suggests
that people who are similar form social ties and derives from the phenomenon
widely known as birds of a feather flock together (Byrne, 1971; McPherson et al.,
2001). Finally, the cognitive theories consider how an ego perceives others as
a factor influencing tie formation, e.g., in case other person knows something
that ego does not know (the theory of transactive memory introduced in Weg-
ner (1987)) or she has positive relations with a friend of ago (the balance theory
introduced in Heider (1958)).

Interestingly, ties connect people tightly in a social network in the sense that
the path in the network between any two people who do not know each other is
very short. This concept is known as six degrees of separation (Milgram, 1967).
For instance, in a well-known experiment conducted on a group of individuals in
the United States (Travers and Milgram, 1969), any person could be reached by
any other person in the network by passing, in most cases, through fewer than
six different people. One of the follow-ups to these findings was the introduction
of the aforementioned small-world networks (Watts and Strogatz, 1998).

A family of studies considers the relation between the position of a person
in the social network and the benefits to that person. The seminal theory of
the strength of weak ties analyzes the relation between the strength of ties, their
structural position, and the potential to diffuse information (Granovetter, 1973),
showing that weak ties are important for spread of novel information. Another
study suggests that the rise to power of the Medici family in fifteenth-century
Florence is related to high betweenness centrality in the political, economic, and
marriage networks of the family members (Padgett and Ansell, 1993). The the-
ory of social capital generalizes such findings by suggesting that the structural
position of a person in the network helps in getting better job offers, obtain-
ing faster promotions, and learning about innovations in less time (Burt, 2005).
Furthermore, several recent studies have investigated simple and complex conta-
gions that describe the mechanisms of diffusion and social influence (Christakis
and Fowler, 2009; Bond et al., 2012; Ugander et al., 2012; Centola and Macy,
2007; Centola et al., 2007; Centola, 2010).
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Nowadays, network studies are among the most cited in sociology (Rivera
et al., 2010). Given new sources of digital data the studies influence other fields
as well, such as computer (Bakshy et al., 2011; Ugander et al., 2012) and political
sciences (Lazer, 2011; Bond et al., 2012).

1.1.3 Data mining

In recent years, a large amount of information on human behavior is generated
unobtrusively whenever people interact through modern technologies such as on-
line services, cell phones, and mobile applications. The advent of big data in
social media has opened the gates to the analysis of massive datasets on several
aspects of society, e.g., information diffusion (Bakshy et al., 2012), political polar-
ization (Conover et al., 2012), voter turnout during elections (Bond et al., 2012),
and human mobility (Song et al., 2010a). It has made possible the pursuit of a
computational approach to the study of problems traditionally associated with
social sciences (Lazer et al., 2009; Watts, 2007; Miller, 2011; Giles, 2012). Not
only it allows quantitative approaches toward traditionally qualitative theories
but also enables researchers to have more precise and daring research questions
and problems.

Take as an example the theory of the strength of weak ties (Granovetter, 1973,
1983). It is one of the most cited studies in sociology and has been tested by
sociologists. Surveyed people were asked to identify the source of the information
that led them to find their current jobs. The final result showed that people most
often learn about job openings from their weak ties. These studies, however, did
not take into account that the numbers of strong and weak ties of a given person
differ, e.g., the number of weak ties tends to be larger than the number of strong
ties. Thus, weak ties may transmit information with lower frequency than strong
ties and still be more important for information diffusion due to their sheer volume
(Bakshy et al., 2012). Namely, in such case, the overall amount of weak ties in the
system prevails over the lower frequency of information transmission per one tie.
The datasets and experiments in OSNs not only allow unobtrusive user studies
but also enable calculation of information diffusion probability as a function of
the number of influencers and the tie strength (Bakshy et al., 2012).

Over the last few years, big data has allowed the development of greater
insights, for instance, into human mobility (Brockmann et al., 2006; González
et al., 2008; Song et al., 2010a), structure of OSNs (Kwak et al., 2010; Mislove
et al., 2008), human cognitive limitations (Miritello et al., 2013; Gonçalves et al.,
2011), information diffusion and social contagion (Bakshy et al., 2012; Ugander
et al., 2012; Leskovec et al., 2009; Lehmann et al., 2012), the importance of
social groups (Grabowicz et al., 2012, 2013a; Ferrara, 2012), and how political
movements emerge and develop (Borge-Holthoefer et al., 2011; Conover et al.,
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2012). Such empirical findings build the skeleton of computational social science
and lay the foundations for more realistic computational modeling.

1.2

Network theory and properties of social networks

In this section, we define basic concepts and properties of network science. At
the end of each of the subsections, we characterize real networks in terms of these
properties, focusing especially on social networks. Social networks show a rich in-
ternal structure, far from random graphs (Newman and Park, 2003). It is a broad
category of networks that represent a particular relation or interaction between
people, e.g., co-appearance in movies, participation in boards of directors, or co-
authorship (Newman and Park, 2003; Newman, 2002, 2003b); phone calls and
communications (Onnela et al., 2007a; Palla et al., 2007; Leskovec and Horvitz,
2008); or online friendship (Mislove et al., 2007; Ahn et al., 2007; Leskovec et al.,
2008; Ugander et al., 2011). A detailed description of the structural properties of
large OSNs will be provided in Subsection 1.6.2, after the introduction of these
online services.

1.2.1 Basic concepts and definitions

A graph G is the basic entity of graph theory. It consists of a set of vertices
V (G) and a set of edges E(G) that connect the vertices. Each edge is a pair of
vertices from the set V (G). A network that does not have any edge is called an
empty graph. A graph in which every vertex is connected with every other vertex
is referred to as a complete graph. Finally, a network that consists of the subset
of vertices V (G) and edges between them is called a subgraph of G. In sociology,
an ego network represents a subgraph created from an individual, i.e., the ego,
other individuals related to her, i.e. the alters, and the relations between them.

A graph can be mathematically represented as an adjacency matrix A = [aij ],
where i ∈ {1, 2, ..., N} and N is the number of vertices in the graph. The elements
aij of the matrix define the existence or absence of an edge between the two
vertices i and j, thus taking value of 1 or 0, respectively. A graph can contain
self-loops, that is, edges that have the beginning and the end in the same node,
thus aii 6= 0. In this dissertation, we only consider networks without self-loops.
The edges can be directed, meaning that an edge from vertex i to j is different
from an edge from j to i. In other words, in undirected networks aij = aji,
while in directed networks aij can be different from aji. A directed graph is
also called a digraph. Next, each edge of a graph can have a weight attached to
it, represented by aij ∈ R instead of a binary value. Finally, a graph can have
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multiple edges per each pair of nodes.9 In such case, E(G) is a multiset, and the
graph is called a multigraph, or a multidigraph if it is directed. In this thesis, we
study undirected, directed, and multidigraphs.

The vertices and edges have alternative names, depending on the context in
which they appear. In computer science, they are often called nodes and links; in
sociology, actors and ties. In agent-based modeling, they usually represent agents
and interactions between them; while in OSNs, users and pairwise interactions
or declared relations between them.

1.2.2 Degree distribution and link directionality

Properties of a graph can be directly derived from the adjacency matrix. We
introduce them in this and the following subsections. For example, the total
number of links L in a graph is calculated as

Lu =
N∑
i=1

N∑
j=i+1

aij , (1.1)

while in a directed graph

Ld =

N∑
i=1

N∑
j=1

aij . (1.2)

In this thesis we will use the term L to refer to either undirected or directed
edges, depending on the context. The degree ki of a node i is the number of
edges connected to that node. In a simple graph it is defined as

ki =
N∑
j=1

aij =
N∑
j=1

aji, (1.3)

while in a directed graph we have two types of degrees, out-degree kout and
in-degree kin:

kouti =

N∑
j=1

aij , kini =

N∑
j=1

aji. (1.4)

Average node degrees are, respectively, k = 〈ki〉 = 2Lu

N , kout = kin = 〈kouti 〉 =

〈kini 〉 = Ld

N .
In the case of directed networks, the average reciprocity of edges in the net-

work is defined as the ratio of the number of edges in both directions divided by

9 In graph theory, an undirected graph without self-loops and without multiple edges per each

pair of vertices is called a simple graph.
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the total number of edges

R =
Lrec

Lrec + 2Lnrec
, (1.5)

where Lrec corresponds to the edges in two directions (reciprocated), while Lnrec

in only one direction (non-reciprocated). Note that in a multidigraph mul-
tiple reciprocated and non-reciprocated edges are possible for a pair of ver-
tices. A directed network is easily converted into its undirected counterpart
by replacing all reciprocated and non-reciprocated edges with undirected edges.
This procedure is called symmetrization. The total number of directed edges is
Ld = Lrec + Lnrec, while the total number of undirected edges after symmetriza-
tion is Lu = Lrec/2 + Lnrec. In such case, the following relation takes place

k =
1

1 +R
(kout + kin), (1.6)

where k corresponds to average degree of the converted undirected network.
We denote the distribution of degrees as P (k). The first moment of P (k)

is the average degree. The complementary cumulative distribution function is
defined as

CCDF(k) = P (k∗ ≥ k) = 1− P (k∗ < k) = 1−
k−1∑

k∗=kmin

P (k∗), (1.7)

where kmin corresponds to the minimum degree. Most real networks consist of
many nodes with small degrees and few nodes with extremely high degrees that
are called hubs. In this context, the kind of distribution that decays slowly with
the degree, slower than an exponentially decreasing function, is called heavy-tailed
distribution (Newman, 2010; Boccaletti et al., 2006; Albert and Barabási, 2002;
Dorogovtsev and Mendes, 2003). The tail of the distribution corresponds to the
few nodes that have extremely large degree. One of the most studied distributions
of this kind is the power-law distribution

P (k) =
α− 1

kmin

(
k

kmin

)−α
, (1.8)

where α corresponds to the exponent of the power-law. The CCDF holds the
same power-law functional form with its exponent equal to α−1. The power-law
distributions are straight lines if plotted in log-log scale. In real systems, often
just the tails of distributions are fitted with a power-law. Examples of heavy-
tailed and power-law degree distributions in real networks are shown in Figure 1.2.
Note that all moments m ≥ α−1 of the power-law distribution diverge, e.g., when
2 < α < 3 then the mean exists, but the variance and the higher-order moments

10



1.2. NETWORK THEORY AND PROPERTIES OF SOCIAL
NETWORKS

Figure 1.2: Examples of: (a,b) heavy-tailed, (c,d,f) power-law, and (e) exponen-
tial complementary cumulative degree distributions in real networks. The x-axis
is degree k and the y-axis is CCDF(k). Note that all the figures are plotted in
a log-log scale, apart from (e), which is plotted in the log-linear scale. The net-
works shown are: (a) the collaboration network of mathematicians; (b) citations
to scientific papers; (c) a large subset of the World Wide Web; (d) the Internet
at the level of autonomous systems; (e) the power grid of the western United
States; (f) the interaction network of proteins in the metabolism of the yeast S.
Cerevisiae. Adapted from (Newman, 2003b).

diverge. Networks with power-law distribution do not have a scale, meaning that
the distribution does not change its form under degree transformation consisting
of multiplication by a common factor (Barabási and Albert, 1999).

The degree distribution in social networks tends to be broad and usually has a
heavy-tail decaying as a power-law or a log-normal function with a cutoff at some
value of the number of friends (Newman, 2003b; Boccaletti et al., 2006; Mislove
et al., 2007; Ahn et al., 2007; Leskovec and Horvitz, 2008), with the exception
of an exponentially decaying distribution in a network of face-to-face proximity
(Isella et al., 2010). The exponent of the power-law distributions ranges from
around 2 in OSNs with directed links (Kumar et al., 2006; Kwak et al., 2010) to
5, or even 8.4 in the tail, in a network of mobile phone calls (Lambiotte et al.,
2008; Onnela et al., 2007a). In and out-degrees are correlated and have similar
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distributions in social networks (Ahn et al., 2007; Mislove et al., 2007). However,
in general they differ (Kwak et al., 2010).

1.2.3 Triangles and clustering

The clustering coefficient measures the probability that two vertices sharing a
common neighbor (a vertex to which both nodes are linked) are connected. This
property can be quantified as the global clustering coefficient

C =
∆

Λ
, (1.9)

where Λ is the number of all triads in the network and ∆ is the number of closed
triads. A triad is a sequence of 3 nodes i, j, k such that the central node j is
connected to both extreme nodes i and k. A closed triad is a triad that has
also an edge between i and k. Note that in directed networks the order in the
sequence matters, e.g., while a triad i, j, k is closed the triad k, j, i can remain
open, if there is an edge from i to k but no otherwise. This definition of the
clustering coefficient is valid for both undirected and directed networks. The
local clustering coefficient cj of a node j is defined as

cj =
∆j

Λj
, (1.10)

where Λj and ∆j are the corresponding numbers of triads centered on the node
j. In this case, a global value of the clustering coefficient may be obtained av-
eraging the local cj over all the nodes of the network, although one should note
that it is different from the global clustering coefficient C. Usually, the local clus-
tering coefficient decreases with degree in social networks (Ugander et al., 2011).
Because of this, the two coefficients differ, particularly so in networks with heavy-
tailed distributions. In such cases, the value of the global clustering coefficient
is dominated by the high-degree nodes, and the local clustering coefficient is the
preferred choice.

One of the most important feature distinguishing social networks from other
types of networks is their high level of clustering, also known as transitivity
(Newman, 2003b; Newman and Park, 2003; Watts and Strogatz, 1998; Mislove
et al., 2007; Ahn et al., 2007; Leskovec and Horvitz, 2008; Ugander et al., 2011).
At the structural level, a high clustering coefficient indicates the presence of many
triangles in the network. At the social or personal level, this means that friends
of an individual tend to be connected between themselves too, i.e., friends of our
friends tend to be our friends too. The process that leads to creation of such
structure in social networks is called triadic closure (it is described in Subsection
1.5.1). Several network models are based on the assumption of triangle closure,
some of which are discussed in the latter part of the thesis (Subsection 1.4.4).
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1.2.4 Average shortest path

If in a given subgraph there exists a path between every pair of vertices, then
this subgraph is called a connected component. The component that contains the
highest number of vertices is called the largest connected component. In directed
networks we distinguish between weakly and strongly connected components. The
former is defined as a set of nodes to which a network crawler can arrive while
crawling the component. The latter, i.e., strongly connected component, is de-
fined as a set of nodes to which a network crawler can arrive and from which the
crawler can reach all other nodes in the component as well.

An important property characterizing the structure of complex networks is the
shortest path between nodes. A path between two nodes i and j is a sequence of
vertices Pij = (i, ..., j) such that each of the vertices in the sequence is connected
to the vertices that appear after it and before it. The length of the path is
defined as the number the nodes in the sequence minus one. The shortest path
is the path that has the least number of vertices in the sequence. The average
shortest path is the average shortest path length between any two nodes of a
connected component.

Almost all users of OSNs are connected in the largest connected component
(Leskovec and Horvitz, 2008; Ugander et al., 2011). Some of the studies also
point out that OSNs contain a densely connected core (Mislove et al., 2007;
Leskovec and Horvitz, 2008) consisting in clusters of high-degree nodes that hold
the network together. Such cores provide paths for connecting distinct parts
of the network and reduce the average shortest path. The importance of the
shortcuts for decreasing the network path-length was highlighted in (Watts and
Strogatz, 1998).

Low average shortest path in comparison to the number of nodes is a char-
acteristic property of most of real networks (Newman, 2010; Boccaletti et al.,
2006; Albert and Barabási, 2002). This property has been of special interest in
sociology and it is popularly known as the small-world effect or the concept of six
degrees of separation, which suggests that the distance between any two people
in a social network is on average very short (it is close to six or smaller in the
experimental study of Travers and Milgram, 1969). This characteristic is also
present in OSNs (Mislove et al., 2007; Ahn et al., 2007; Leskovec and Horvitz,
2008; Ugander et al., 2011).

1.2.5 Community structure and modularity

At the macroscopic level, a high density of triangles is related to the existence of
community structure in the network. In networks with high value of clustering
coefficient community structure emerges without any additional ingredients in-
cluded ( (Foster et al., 2011)). The community structure means that the network
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Figure 1.3: An example of an hierarchical community structure. Each cluster is
depicted with different color. Adapted from (Lancichinetti et al., 2011).

is built of modules. The modules are often called clusters and are sets of nodes
that are well connected internally (intra-connected), while being just loosely con-
nected between each other (inter-connected). An example of a network with a
clear community structure is illustrated in Figure 1.3.

Naturally, some networks have less and others have more modular structure.
The most popular method of quantifying this property is the modularity Q of an
undirected network that is partitioned in g groups (Newman and Girvan, 2004;
Newman, 2006):

Q =

Ngroups∑
g=1

[
Lint
g

2L
−
(
Kg

2L

)2
]
, (1.11)

where the Lint
g is the number of internal links of the group g, while Kg is the

total degree of nodes in that group, and L is the total number of links. The
modularity compares the number of internal links with the expected number of
internal links by subtracting the two numbers. The expected number is the av-
erage number of internal links in random graphs with fixed degree Kg per each
group. The modularity takes values from −1 to 1. It is supposed to be positive if
the network has an underlying community structure and if the partition captures
it. If the network is not modular or if the partition does not capture it, then
the modularity is close to zero. Finally, the modularity takes a negative value
if the community structure is present in the network, but the network is parti-
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tioned into groups that are anti-correlated with the community structure, i.e.,
the connections are more abundant between groups than inside groups, given the
expectation in a random graph as a reference point. The problem of detection
of communities in networks is one of the focal interests in complex networks.
The methods that partition networks into clusters are known as community de-
tection algorithms or clustering algorithms. Some of the first methods of this
kind were based on modularity optimization (Blondel et al., 2008; Newman and
Girvan, 2004; Newman, 2006). We elaborate on modularity optimization and the
problem of community detection in the next section, and we analyze results of
several clustering algorithms for various OSNs in the following chapters of this
dissertation.

It was suggested that in biological networks modularity has evolved to reduce
connection costs (Clune et al., 2013). Such costs include creating and maintaining
links, and transmitting along them; it increases as a function of connection length,
e.g., in neural networks or genetic and metabolic pathways. In sociology the
modules are called communities or groups. Existence of communities in social
networks is considered by sociologist to have fundamental relevance (Granovetter,
1973; Burt, 2005), e.g., for the diffusion of information. In the following parts of
this dissertation, we show that groups correlate with the activity of the users of
an OSN.

1.2.6 Assortativity, homophily and similarity measures

Nodes within a network that are one hop away from a central node are called the
neighbors of that node. The second neighbors are two hops away from the node
etc. Often the neighboring nodes are related to each other, e.g., share certain
attributes or properties in common, are connected to the same groups of nodes,
or have related functions. Here, we introduce a set of measures that capture
correlations and similarities between connected nodes.

From the point of view of network topology the similarity between nodes
may be expressed as the correlation between the degrees of neighboring nodes,
which is known as assortative mixing, or as the rich-club effect. In assortative
networks nodes with high degree tend to be connected to other nodes with high
degree, and low-degree nodes tend to be connected to other low-degree nodes.
In disassortative networks it is the opposite. The assortativity coefficient r is
defined as a Pearson correlation coefficient of node degrees

r =

∑
ij (aij − kikj/2L)kikj∑
ij (kiδij − kikj/2L)kikj

, (1.12)

where δij is the Kronecker delta, which is 1 if i = j and 0 otherwise. If the
assortativity coefficient is positive, then the network is assortative, if negative,
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then the network is disassortative.
To measure the similarity between non-scalar properties of nodes, we need to

use a different method than the Pearson correlation coefficient. Here, we present
two other methods of measuring the similarity: the Jaccard coefficient for a pair
of sets and the cosine similarity of a pair of vectors.

The Jaccard coefficient measures the similarity between two sets A and B,
and is defined as the cardinality of the intersection divided by the cardinality of
the union of the sets:

J(A,B) =
|A ∩B|
|A ∪B|

. (1.13)

This coefficient takes values from 0 to 1. It is close to 0 when the two sets do not
share almost any elements in common, and it is close to 1 when they share most
of their elements.

The cosine similarity measures the similarity between two vectors ~A and ~B,
and it is defined as a dot product of the vectors divided by product of their
magnitudes

SC( ~A, ~B) =
~A · ~B
‖ ~A‖‖ ~B‖

. (1.14)

In general, the cosine similarity is used to measure the similarity between various
attributes of nodes, which often are represented as a vector.

Social networks are assortative (Newman, 2002; Newman and Park, 2003), in
contrast to networks of other types, e.g., information, technological, or biological
networks (Newman, 2003b). Naturally, the node degree is not the only property
in which neighbors are similar. People who are connected in OSNs tend to have
similar age, live in close locations, and have similar interests (Palla et al., 2007;
Ugander et al., 2011; Leskovec and Horvitz, 2008; Schifanella et al., 2010). It is
also predicted that people who belong to the same community, namely the same
well-connected group of people, talk about similar topics, which has an important
impact on information and innovation diffusion in social networks (Granovetter,
1973). In general, the similarity between characteristics of connected individuals
is called homophily and it is present broadly in social networks. It is popularly
known as birds of a feather flock together phenomenon (McPherson et al., 2001).

1.2.7 Spatial properties of networks

Real networks often represent systems of elements that exist in a physical space.
In such cases, one can add an attribute to each node that localizes the nodes
in physical space. In most practical cases, the space is a two-dimensional space
with the Euclidean distance. In general, we call a graph a spatial network if its
nodes are located in a space equipped with a metric. In spatial networks there is
usually a cost associated with the length of edges, which has strong effects on the
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topological structure of such networks, e.g., wiring costs determine placement of
neurons in animals (Chen et al., 2006; Rivera-Alba et al., 2011) leading to highly
modular networks (Clune et al., 2013). Several studies explore the mechanisms
of spatial link creation and try to identify the cost functions for various spatial
networks (for a recent review, see Barthélemy, 2011).

Physical space plays also an important role in social networks. People tend
to maintain relations and interact with geographically close peers (Liben-Nowell
et al., 2005). This is reflected by the decay of the linking probability Pl(d) with
physical distance, which is measured as the number of links L(d) at a given
distance d divided by the total number of pairs of people who are separated by
this distance

Pl(d) =
L(d)

pairs(d)
. (1.15)

An example of the dependence of this property on the distance is shown in Fig-
ure 1.4. This probability decays as a power-law of the physical distance in social
networks, with the exponent depending on the characteristics of the social system:
between 0.7 and 1 in online friendships (Liben-Nowell et al., 2005; Scellato et al.,
2011; Grabowicz et al., 2013c) and around 2 in phone call records (Lambiotte
et al., 2008). Furthermore, in OSNs a plateau is observed after the initial power-
law decay, for distances over 200-500 km,10 which implies that above a certain
distance interactions are independent of the distance. Some further aspects of
the relation between geography and online social contacts have been studied. For
instance, the probability that a link at a given distance closes a triangle decays
with the distance and saturates for distances above 40-200 km (Lambiotte et al.,
2008; Grabowicz et al., 2013c). Furthermore, the Jaccard similarity of neigh-
bors of connected users decays with the distance as well (Volkovich et al., 2012).
Both the Jaccard similarity and the link reciprocity appear to decay slowly with
distance following − log(d).

Geographic constraints affect not only the structure of spatial networks but
also the processes that take place on these networks, such as social interactions,
epidemic spreading, and network navigation. In disease spreading it is important
to take geography, social networks, and virus properties into account to make
predictions. The flow of people between cities is usually described by the gravity
model (Zipf, 1946; Krings et al., 2009; Balcan et al., 2009). This model assumes
that the flow of people is proportional to product of population sizes of the two
cities and inversely proportional to square of the distance between them. Note
that the gravity model corresponds to the power-law with exponent equal 2 in
Pl(d). A comparison of the results of the gravity model and the more complex
radiation model against census data was presented in (Simini et al., 2012).

10 The exact value of this distance depends on the online service and the geography of the

country for which it is measured (Grabowicz et al., 2013c).
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Figure 1.4: Probability of an online friendship as a function of distance in Live-
Journal, adapted from (Liben-Nowell et al., 2005).

1.3

Selected methods of complex networks

Random models of networks play a fundamental role. Features extracted from
real networks are compared to the values in corresponding random null models to
understand how a real network differs from random graphs and if these differences
are statistically significant. For instance, random graph models are used in the
definition of modularity or in clustering methods.

1.3.1 Models generating random networks

Random graph model is an ensemble of graphs, defined as a set of distinct graphs
with probabilities of their appearance in the model. Random graphs are created
under certain assumptions, e.g., the number of edges is given, or the distribu-
tion of degrees is fixed, while links are placed at random. In this subsection, we
introduce two fundamental random graph models, namely classic random graph
and configuration models, a method of network randomization, and two more
complex, yet still basic, models of preferential attachment and small-world net-
work. The graphs created with classic random graph and configuration models
are expected to have clustering coefficients, modularity, and assortativity close
to zero in the limit of large number of nodes.

The Erdős–Rényi (ER) model (Rapoport, 1957; Erdos and Rényi, 1960) is a
classic example of a random graph model: a network is constructed by randomly
connecting pairs of nodes with probability p, independently of any other factor.
The degree distribution in ER graphs is thus binomial:

P (k) =

(
N � 1

k

)
pk(1� p)N�1�k, (1.16)
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where N is the total number of vertices in the graph. Naturally, this distribution
becomes Poissonian

P (k) =
(Np)ke−Np

k!
. (1.17)

as N → ∞ while Np = const. These distributions decay fast with the degree,
what corresponds to the lack of hubs in the network. Interestingly, the ER model
is equivalent to a system maximizing Gibbs entropy under a simple Hamiltonian
controlling the number of edges (Park and Newman, 2004).

Before rewiring After rewiring

Figure 1.5: An illustration of the rewiring procedure.

Whereas in the ER model the degree distribution has a particular functional
form, in the configuration model (Bender and Canfield, 1978; Molloy and Reed,
1995) a degree sequence, and consecutively degree distribution, is given a priori.
In this random model, the connections are created between pairs of nodes with
fixed degrees by randomly selecting disconnected edges of different nodes and
linking them. (Naturally, the total sum of degrees has to be even to connect all
the edges.) This process leads to creation of self-loops and multiple edges per
a pair of vertices, which often is not desired. However, the average number of
self-loops and multiedges is a constant as the network becomes large, meaning
that they can be neglected in the limit of large graphs (Newman, 2010). A similar
procedure can be applied to randomize existing networks (Maslov and Sneppen,
2002). It consists of rewiring the links in the way that preserves the degrees
of nodes. It proceeds as follows (Figure 1.5). First, two edges between distinct
nodes are randomly chosen; one between nodes i and j, another one between k
and l. Next, one of the ends of each of the two edges is swapped, so that now i
is connected with k, and j is connected with l, while the old edges are destroyed.
Note that such method can produce multiple edges per each pair of nodes, unless
an explicit instruction forbids it. This rewiring method, also known as reshuffling,
is widely used in the studies involving complex networks as a mean of network
randomization that maintains the degree distribution intact.

A more complex, yet still basic, random models generating graphs include the
model introduced by Barabási and Albert, i.e., the BA model (Barabási et al.,
1999) and small-world network (Watts and Strogatz, 1998). The former is based
on the rule of preferential attachment. To describe it shortly: at each time step,
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one node is introduced to the system with m edges that get connected to existing
nodes in the system with probability proportional to the degree of the nodes.
The model is initiated with m0 > m vertices present in the system that form a
fully connected graph. As a result, a network with power-law distribution of node
degrees with the exponent α = 3 emerges. In that latter small-world network
model a regular lattice is taken as a base with a high clustering coefficient and low
average shortest path length (Figure 1.6). A percentage p of all connections in the
regular lattice is rewired randomly to control the values of clustering coefficient
and average shortest path length. The larger the p, the lower is the clustering
coefficient, the higher gets the shortest path length, and the more similar the
small-world network becomes to ER random graphs.

Figure 1.6: The small-world networks. The amount of the randomness introduced
by the random rewiring interpolates between a regular ring lattice and a random
graph. Illustration adapted from (Watts and Strogatz, 1998).

A comparison of an ER graph, a network created with the BA model, and
a small-world network is shown in Figure 1.7. The graph created with the ER
model shows a random structure, while the network created with the BA model
has a scale-free structure with clearly visible hubs, and the small-world network
yields a regular structure with random edges, characterized by lack of hubs, a
high number of triangles, and a low average shortest path. While the ER model is
a plain random model, the BA and the small-world models introduce the concepts
of preferential attachment and clustering into random network structure. Because
of their simplicity and characteristics, these three models are widely used as a
toy-models in various studies, e.g., in agent-based modeling.
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(a) Erdős–Rényi graph (b) Barabási-Albert model (c) Small-world graph

Figure 1.7: A comparison of various random graph models in a circular layout.
Each of the graphs contains 10 nodes and around 20 edges. The rewiring prob-
ability in the small-world network is set to 0.1. (a) The classic random graph
model shows no specific structure; (b) the preferential attachment model shows
hubs and heterogeneity in the degrees; and (c) the small-world network shows a
high number of triangles and a couple of random shortcuts.

1.3.2 Clustering algorithms

One of the important topics in network science is the detection of communities
defined as more densely connected subgraphs of the network comparing with their
neighborhood. Various community detection algorithms have been developed and
they continue to be developed. A recent review described available methods,
which differ in techniques, features, and capabilities (Fortunato, 2010). Here, we
offer an introduction to these methods.

Perhaps the most popular method of community detection consists of modu-
larity maximization, defined by Equation 1.11. It detects communities by search-
ing over possible partitions of the network to find the one with high modularity.
Since exhaustive search over all possible partitions is usually intractable, practical
algorithms are based on approximate optimization methods such as greedy algo-
rithms, simulated annealing, or spectral optimization, offering different balances
between speed and accuracy (Danon et al., 2005; Fortunato, 2010). Despite its
popularity modularity optimization is not free of certain problems, such as the
resolution limit (Fortunato and Barthélemy, 2007; Good et al., 2010; Fortunato,
2010), or difficulties to find the absolute maximum of the modularity due to a
rough landscape of its value in the space of the possible network partitions (Good
et al., 2010). Furthermore, the modularity yields positive values even in random
networks (Guimerà et al., 2004), which may lead to detection of communities in
such networks, even though they are not present there.

Clustering methods are distinguished by other aspects apart from the ap-

21



CHAPTER 1. INTRODUCTION

proach that they use to find groups. To start with, some of the algorithms take
directionality of links into account, while others are designed only for undirected
networks. To convert a directed network to an undirected one a symmetrization
procedure is applied. This procedure, however, neglects information that may be
important to define the groups, and it can affect the performance of the meth-
ods. Another aspect is the ability to find overlapping communities, i.e., nodes
belonging to many groups. Many of the clustering algorithms assume that each
node belongs just to one community, which is not realistic, for instances, in the
context of social communities. Finally, the accuracy of the methods varies. Clus-
tering methods are compared using benchmark networks in which the groups
are defined a priori; the level of disorder is increased by introducing random
connections; and the methods are tested by measuring to which point they re-
cover the planted groups. One of the best performing algorithms in this sense
is OSLOM (Lancichinetti et al., 2011). It is a local optimization method using
order statistics. It estimates statistical significance of each group, defined as a
probability of finding the cluster in a random null model, namely the config-
uration model. OSLOM takes directionality of links into account and detects
overlapping communities (see Appendix I). We use it for group detection in the
studies presented in the following chapters.

1.4

The growth of complex networks

This section describes models of the growth of complex networks and systems.
The methods based on preferential growth and intrinsic heterogeneity are used
in complex systems, including complex networks. The methods based on triangle
closing are used particularly for modeling social networks.

1.4.1 Preferential growth

Many features of complex systems are characterized by heavy-tailed distributions
(Newman, 2005; Saichev et al., 2009). This property is typically perceived as a
symptom of the rich-gets-richer principle, from which the so-called preferential
growth stems. Imagine a system of elements with a certain property that can grow
incrementally for each of the elements. The common idea behind preferential
growth models is that a property of the elements grows proportionally to its
current value, i.e., the elements that are big grow faster than elements that are
small. Typically, in preferential growth models a constant number of increments
are introduced to the system at each time step. The increments are used to
create new elements and/or to increase the value of the growing property of the
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existing elements accordingly to the preferential growth rule. Such models are
usually the first approach to explain heavy-tailed distributions in many different
systems (Simon, 1955; Albert and Barabási, 2002). In the case of networks,
preferential attachment models were among the first studies igniting the field of
network science (Barabási and Albert, 1999; Barabási et al., 1999; Huberman and
Adamic, 1999; Dorogovtsev et al., 2000; Bornholdt and Ebel, 2001). The first
such model, namely the aforementioned BA model, was introduced in (Barabási
et al., 1999).

The preferential attachment model is simple, which is a desirable feature, but
may cause some concerns. In models of preferential growth, the time unit is
directly coupled to the number of new arriving elements, which complicates the
comparison of the dynamics of these models with real data. Some other draw-
backs include the lack of diversity between the elements and strong correlation
between age of elements and their size (Adamic and Huberman, 2000; Klemm
and Egúıluz, 2002b) (Figure 1.8). For the presented systems, the model repro-
duces the dependence between time and average node degree, but it does not
explain the high fluctuations of the degree present in the scatter plot, nor the
anti-correlation of degree growth with the age of the nodes. Because of these is-
sues, the basic preferential growth model is typically used as a simple toy-model
for the generation of networks with power-law distribution of degrees. On the
other hand, it is also successfully used as a component of more complex models
simulating the growth of real social networks (Mislove et al., 2008; Leskovec et al.,
2008).

1.4.2 Heterogeneity

In many real systems, especially in social systems, individuals or elements are
diverse. This factor may be one of the reasons why heavy-tailed distributions are
so commonly found in complex systems, i.e., due to the diversity in the intrinsic
properties of the elements of the system. In this direction, some models of growth
incorporating heterogeneity in the form of fitness, hidden variables, or rank-
ings have been proposed (Bianconi and Barabási, 2001b; Caldarelli et al., 2002;
Söderberg, 2002; Boguñá and Pastor-Satorras, 2003; Ratkiewicz et al., 2010). A
detailed discussion of a fitness-based model can be found in the chapter devoted
to the description of groups’ growth in an OSN. In general, in this family of
models the growth rate of elements depends on an intrinsic property that char-
acterizes them. Whereas in preferential attachment models the growth is often
proportional to the current size of the elements, in fitness models it is usually
proportional to the intrinsic fitness of each element. Typically, the fitness is a
random variable specific for each element drawn from a given distribution. If
the distribution is broad, then high heterogeneity is present in the system. How-
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Figure 1.8: The correlation between age and degree of nodes in a network of:
(A, B) actors starring together in the same movies, (C, D) scientific publications
connected by citations. The figures shown are: (A) A scatter plot of the degree
as function of the age; (B) The average of degree as a function of the age in
the real network (symbols) and in the BA model (line); (C) the dependence of
the probability of degree growth on the age in a model reproducing the degree
distribution and clustering (solid line) and in the BA model (dashed line); (D)
The average of degree as a function of the age in the real network (symbols).
The model reproduces well the average dependence (B), however, it is unable
to explain neither the high fluctuations in the scatter plot (A), nor the anti-
correlation of degree growth with the age of the nodes (C). Figures (A, B) are
adapted from (Adamic and Huberman, 2000) and Figures (C, D) from (Klemm
and Egúıluz, 2002b).
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ever, there is rather little empirical work showing how intrinsic heterogeneity is
distributed and what is its role in complex system growth (Garlaschelli and Lof-
fredo, 2004; De Masi et al., 2006; Kong et al., 2008). In the next chapter, we
show that fitness is log-normally distributed in a system of growing groups and
directly compare results a model based on heterogeneity to a model based on
preferential growth.

1.4.3 Coupling between heterogeneity and preferential attachment

Heterogeneity and preferential growth, play a crucial role in the growth of pop-
ularity of content (Salganik et al., 2006), as shown by experiments in an online
platform in which users can listen to and download songs. The experiments are
performed in different conditions: independent (user choice of songs is unaffected
by any social factors, i.e., users do not see the number of downloads of a song),
social influence (users see how many times a song was downloaded) and stronger
social influence (users see a sorted list of songs in a descending order of the num-
ber of downloads). On the one hand, increasing the strength of social influence
increases both inequality and unpredictability of success (measured as the num-
ber of downloads). Users tended to download songs that were already many times
downloaded by others, as in preferential growth. On the other hand, the intrinsic
quality measured in the independent condition is correlated with the popularity
of songs measured in the other conditions. In other words, the best songs rarely
did poorly, and the worst rarely did well. Therefore, the experiment shows that
both preferential growth and intrinsic heterogeneity influence the popularity of
the songs. In conclusion, an interplay of both mechanisms shapes the growth of
popularity in such social systems, e.g., the growth of the number of citations of
scientific papers (Wang et al., 2013).

1.4.4 Triangle closing

The concept of triadic closure derives from sociology. Due to the fact that the
clustering coefficient is remarkably high in social networks, several models have
been introduced in order to reproduce the high number of triangles in such net-
works. One of the first simple network models accounting for the high clustering
is the aforementioned small-world network (Watts and Strogatz, 1998). Other
random models introduce high clustering in growing scale-free networks (Holme
and Kim, 2002; Klemm and Egúıluz, 2002a; Dorogovtsev et al., 2002) or in the
configuration model (Holme and Kim, 2002), and allow to tune the level of clus-
tering (Serrano and Boguñá, 2005; Toivonen et al., 2006).

A more sophisticated model based on triangle closure simulates the growth
of OSNs (Leskovec et al., 2008). In this model, each node draws its arrival time
using a node arrival function and its lifetime from an exponential distribution.
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Next, it connects to a random node with the preferential attachment rule. Then,
it draws the waiting time to create its next link from a degree-dependent power-
law distribution with a cutoff. Finally, it creates its next connection by closing
a triangle with a random neighbor. The last two steps are repeated until the
node lifetime passed. The study has tested other linking mechanism than the
preferential attachment for the first connection and the random triangle closure
for all other connections, and found that these two mechanisms yield the best
results. The model produces networks with the structure corresponding to the
real structure of OSNs in terms of the degree distribution, the dependence of
clustering coefficient on degree, and the distribution of the shortest path length
between nodes (Leskovec et al., 2008). In a latter chapter of this thesis, we
introduce a model of coupled mobility and network growth that induces triangle
closing by spatial coincidences of people visiting their friends. In the next section,
we offer the sociological definition of triadic closure and show further proofs of
its existence and its relation to other phenomena found in social networks.

1.5

Sociological theories

On the one hand, OSNs are the outcome of technological development. On the
other hand, they can be considered a representation of social relations and the
interactions of people. In that context, one can think of OSNs as a product of a
crossover of supply and demand, where supply refers to the technological capa-
bilities, while demand refers to the needs of the human population (emergence
of an information dissemination model based on personal subscriptions enabled
by computer-based systems was foreseen by Brown et al., 1967). As such, OSNs
are meant to satisfy social needs of people and they provide information on their
social behavior. Until the end of the twentieth century, social behavior has been
studied by traditional means by sociologists with self-reported surveys or small-
scale field experiments. One can expect that many of the sociological theories
developed for offline social systems also hold in online systems. To this end,
we introduce sociological concepts and theories describing social systems in the
following subsections and test some of them in the subsequent chapters (for a
summary see Table 1.1).

1.5.1 Tie formation mechanisms

There are various theories explaining why social ties are formed, persist, and
dissolve. An interested reader can find a broad classification in the review (Katz
et al., 2004), which we have briefly introduced at the beginning of this chapter, in
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Theory/Theories Tested mechanisms or concepts Desc. Chap.
Relational and proxim-
ity mechanisms of tie
formation

Network distance of two hops and
physical coincidence dramatically
increase chances of tie formation.

1.5.1 5

The strength of weak
ties

Strong ties are inside groups,
whereas weak ties are between
groups. Weak ties facilitate infor-
mation diffusion.

1.5.3 3

The diversity-
bandwidth tradeoff
and structural folds

The strong ties between groups dif-
fuse more information than the weak
ties between groups due to high di-
versity and wide bandwidth.

1.5.3 3

Identity-bond theory Groups in social systems are based
on social bonds or common identity
and yield different characteristics.

1.5.4 4

Table 1.1: List of sociological theories and concepts explored and/or tested in
the following chapters of the thesis.

Subsection 1.1.2. Here, we introduce the classification listed in the review of soci-
ological research (Rivera et al., 2010). Three specific sociological mechanisms are
responsible for tie formation: relational, assortative, and proximity. Naturally,
this is just one of the possible classifications.

In the relational mechanism, the formation of ties is determined by the struc-
ture of the social network. One of the earliest and most important concepts of this
kind is triadic closure (Simmel, 1950), depicted in Figure 1.9. It suggests that, if
an actor has ties with two other people, then these two individuals will likely have
a tie between themselves as well. This implies that there are many social trian-
gles in social networks. Recent large-scale studies have confirmed the existence of
triadic closure in both offline (Kossinets and Watts, 2006) and OSNs (Leskovec
et al., 2008; Gallos et al., 2012) and compare it against other mechanisms. The
triadic closure is related to the formation of groups and social cohesion (Moody
and White, 2003; Forsyth, 2009), that is an inclination to actively participate
in the group interactions. It is important for the development of strong social
ties (Krackhardt and Handcock, 2007; Granovetter, 1973), as there exists a cor-
relation between the strength and the number of common friends shared between
two actors, and affects the emergence of positive and negative relations (Leskovec
et al., 2010; Szell et al., 2010), e.g., good and bad relationships, friends and foes.

The assortative mechanism suggests that ties are formed due to the compat-
ibility and complementarity of actors’ attributes. This concept corresponds to
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Figure 1.9: An illustration of triadic closure. According to the rule, if the actor
A has ties with actors B and C, then actors B and C will likely have a tie.

homophily and heterophily. Note that actors in their choice of social ties may seek
a balance between similarity on some dimensions and heterogeneity on different
dimensions.

The proximity mechanism assumes that ties are formed due to physical or
cultural proximity. The former concept is straightforward, as physical co-location
dramatically increases the chances of interaction and the formation of a social
tie, and results in the distinctive geographic properties of social networks (see
Subsection 1.2.7). The latter corresponds to cultural and social environments or
interests that bring actors together, and increase the chances of positive sentiment
and interactions.

Note that the three mechanisms correspond to the characteristics of social
networks (see Section 1.2): high clustering, assortativity/homophily, and geo-
graphic proximity; respectively. In the reminder of this dissertation, we intro-
duce a model that realizes two of the three mechanisms, namely the triadic closure
and the proximity mechanism, to create artificial social networks with realistic
geographic and structural properties.

1.5.2 Strength of ties

Intuitively, strong social ties correspond to close friends, strong relationships,
kinship, etc. The strength of ties and the relation between strong and weak ties
were first considered at the beginning of twentieth century Simmel (1950). It was
a much later work of Granovetter (1973), however, that popularized the concept.
Here, we introduce the meaning and ways of measuring the strength of ties in
practice.

Granovetter suggested that strong ties are characterized by four properties.
First, actors connected by a strong tie spend a great deal of time together. Sec-
ond, there is a high emotional intensity between them, for instance, in the form
of parental or romantic feelings. Third, there exists a certain level of trust and in-
timacy between the actors. Fourth, interactions and services between the actors
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tend to be reciprocal. Each of these indicators may be present in a tie to a cer-
tain degree. How to define and measure the strength of a tie is an open problem.
For instance, Krackhardt (1992) defined alternative philos relationship.11 as the
one that meets the following three conditions: it contains frequent interactions,
certain affection is involved, and there is a history of interactions.

Several studies investigate ways of measuring tie strength in both offline
(Marsden and Campbell, 1984) and OSNs (Gilbert and Karahalios, 2009; Jones
et al., 2013). Such studies are conducted through surveys asking the participants
about kinship, closeness, and the intensity of their relations to contrast these
properties with other indicators that are more easily quantified. It has been
demonstrated that the time spent together is positively correlated with the tie
strength (Marsden and Campbell, 1984). In OSNs, the number of interactions
(various types of interactions are introduced in the next section) and coincidences
in photos (signaling physical meetings and geographical proximity) predict the
tie strength between a pair of users (Gilbert and Karahalios, 2009; Jones et al.,
2013). Similar measures of tie strength have been used in other studies, e.g., ag-
gregated duration of phone calls (Onnela et al., 2007b) or number of comments
and private messages exchanged between users (Bakshy et al., 2012).

Measuring the number of interactions and photo coincidences is straightfor-
ward in online systems and can be done automatically for the whole system on a
scale of millions or even a billion users. It is not straightforward in such systems
to measure intimacy. To this end, intermediary metrics are used. For instance,
the context of physical proximity signals intimacy; i.e., time spent together af-
ter work hours and during weekends signals intimacy, in contrast to time spent
together at work during work hours (Eagle et al., 2009). Furthermore, intimate
words can be identified in textual conversations and signal a strong relationship
(Gilbert and Karahalios, 2009).

1.5.3 Structure, tie strength, and information diffusion

The theory known as the strength of weak ties deals with the relation between
structure, tie strength, and the diffusion of information in social networks (Gra-
novetter, 1973). First, a tie is characterized by its strength, which is related to
the time spent together, intimacy, the emotional intensity of a relation, and reci-
procity. Strong ties refer to relations with close friends or relatives, while weak
ties represent links with distant acquaintances. Second, a tie can be character-
ized by its structural position in the network. Granovetter’s theory suggests that
strong ties occur between people who have many friends in common, i.e., inside
social groups, while weak ties occur between actors who have few friends in com-

11 “Philos” is the name of a type of relationship. It comes from Greek and was introduced by

Krackhardt as a noun.
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mon, i.e., between social groups. Third, a social tie can transport information
between the two connected actors. Granovetter’s theory predicts that weak ties
are important for the diffusion of new information across the network because
they act as bridges between groups of people, likely having different sources of
information. Strong ties are predicted to be less important for information dif-
fusion, as they tend to be located in the interior of groups between actors who
have many friends in common and the same sources of information.

The advantage of connecting different groups to access novel information due
to the diversity in the sources was emphasized by Burt (2005). It described the
concept of bridging structural holes, which refers to the connections bridging the
sparse areas between communities. An example of a structural hole is illustrated
in Figure 1.10 (left illustration). The importance of structural overlap for the
emergence of trust and intimacy and for the formation of social groups is empha-
sized in the theory of structural cohesion (Moody and White, 2003).

Figure 1.10: Illustration of structural holes (brokerage and closure) versus struc-
tural folds (intercohesion). The person marked with the black circle is in the
brokering position in the left and right cases, but in the right case, she is also in
cohesive positions with both groups; while in the left case, she is not. Illustration
adapted from (Vedres and Stark, 2010).

More recent works have pointed out that information propagation depends on
a diversity-bandwidth tradeoff (Aral and Van Alstyne, 2011) and an interplay of
brokerage and social cohesion (Vedres and Stark, 2010). Diversity relates to the
heterogeneity in knowledge and information held between the two communicating
parties. The bandwidth of a tie is defined as the rate of information transmission
per unit of time. Aral and Van Alstyne noted that weak ties interact infrequently
and have low bandwidth, whereas strong ties interact more often and have high
bandwidth. The authors claimed that both diversity and bandwidth are relevant
for the diffusion of novel information. Since both are anti-correlated, there must
be a tradeoff to reach an optimal point in the propagation of new information.
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They also suggest that strong ties may be important to propagate information
depending on the structural diversity, the number of topics, and the dynamic of
the information.

The study of Vedres and Stark (2010) suggests that actors can be members of
multiple groups, creating so-called structural folds, as shown in Figure 1.10 (right
illustration). Such structural position guarantees the maintenance of cohesive ties
between actors sharing friends in common, as well as ties that connect diverse
environments, i.e., groups that have access to different sources of information.
The study shows that actors in structural folds tend to have better access to
novel information.

1.5.4 Common identity and common bond theory for groups

Notions of community and social groups have been widely studied in the behav-
ioral sciences (Riger and Lavrakas, 1981; Tajfel, 1982). It has been shown that
the internal dynamics of social groups emerge from the combination of complex
cognitive processes, such as a sense of membership, influence between people, ful-
fillment of individual and collective needs inside the group, and shared emotional
connections (McMillan and Chavis, 1986).

The common identity and common bond theory describes social groups along
the dimensions of topicality and sociality (Prentice et al., 1994; Ren et al., 2007).
Attachment to a group, as well as its permanence and one’s involvement in it,
can be explained in terms of a common identity or common bond. Identity-
based attachment holds when people join a group based on their interest in the
community as a whole or in a well-defined common theme shared by all of the
members. People whose participation occurs due to identity-based attachment
may not directly engage with anyone and might even participate anonymously.
Conversely, bond-based attachment is driven by personal social relations with
other specific members, so the main theme of the group may be disregarded.
The two processes result in two different group types, which for simplicity are
named in this dissertation “topical” for identity-based attachment and “social”
for bond-based attachment.

In practice, groups are formed from a mix of identity and bond-based attach-
ment, but often they lean more toward either sociality or topicality. According
to the theory, the group type is related to the reciprocity and the topics of dis-
cussion. Interactions in topical groups are generally not directly reciprocated,
whereas members of social groups tend to have reciprocal interactions with other
members. This is related to the definition of tie strength, which involves reci-
procity, according to Granovetter. In addition, discussions tend to be related to
the group theme and cover specific areas in topical groups, while in social groups
topics of discussion tend to vary drastically and cover multiple subjects. Further-
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more, topical groups tend to be bigger than social groups, due to cognitive limit
to the number of stable relations an individual can maintain (Dunbar, 1998).
The limit is usually assumed to be around 150 individuals, however, other values
have been also proposed (Gonçalves et al., 2011; Miritello et al., 2013).

According to the theory, topical groups are more open to newcomers and more
robust to departures of members. Social groups, on the other hand, are founded
on individual relationships between their members, so it is harder for newcomers
to join and integrate with members that already have strong relationships with
each other. One implication is that social groups are vulnerable to turnover since
the departure of a person’s friends may influence his own departure.

1.6

Online social networks

An increasing number of social interactions occur using OSNs as communication
channels. Some OSNs have become extremely popular, reaching up to a billion
active users. They differ in the character of the service they provide to online
users. For instance, Twitter is mainly used to propagate and receive news, Flickr
gathers amateurs and professionals in photography, Facebook is primarily a plat-
form for keeping in touch with close friends and relatives. Albeit different, all
these online platforms share an ingredient that pervades all their applications.
There exists an underlying social network that allows their users to keep in touch
with each other and helps to engage them in common activities or interactions
leading to a better fulfillment of the service’s purposes. This is the reason why
these platforms share a good number of functionalities, e.g., personal commu-
nication channels, easy one-step information sharing, and news feeds containing
broadcasted content (see more in Table 1.2). As a result, OSNs are an interesting
field in which to study online social behavior that seems to be consistent among
different online services and offline social networks.

Common functionality Twitter Flickr Facebook Sect.
Declared social network followers contacts friends

1.6.3
Personal communication channel mentions comments comments

One-step information sharing retweet - share
Collaborative content assessment favorites favorites likes

Groups maintained by users lists groups groups 1.6.5
Content tagging hashtags tags tags

1.6.6
Geo-localized content posts photos posts

Table 1.2: Common functionalities in various globally established OSNs.
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Since at the bottom of these services lies a network of declared relations
and the basic interactions in these platforms tend to be pairwise, i.e., between
pairs of users, a natural methodology for studying these systems is provided by
network science. One of the most natural questions about OSNs concerns their
relation with offline social networks (Wellman et al., 1996). It can be tackled
in a few ways, although all methods have demonstrated that offline and online
behaviors are related to a considerable extent. First, direct studies have been
conducted comparing online relations with offline ties (Jones et al., 2013). Second,
sociological theories have been tested in OSNs (Leskovec et al., 2010; Szell et al.,
2010; Gruzd et al., 2011; Bakshy et al., 2012; Ugander et al., 2012). Third,
various psychological (Quercia et al., 2011, 2012b) and economical (Quercia et al.,
2012a; Mitchell et al., 2013) variables have been correlated with online behavior.
We test sociological theories related to groups in the following chapters of this
dissertation.

The next subsections describe the common infrastructure of the three men-
tioned OSNs, i.e., Twitter, Flickr, and Facebook. Note that in the following
chapters we will present studies based on datasets from Twitter and Flickr, fo-
cusing on the features of the OSNs that constitute the abstract frame outlined
in Table 1.2.

1.6.1 Description of exemplary online social networks

Twitter12 is a micro-blogging social site. Each user has her own profile with a
timeline that can be accessed by logging in. A user can write short messages of up
to 140 characters, called tweets, which are saved in her timeline and broadcasted
to the users who follow her. Her followers see tweets from her, and other users
who they follow, in an integrated timeline called the news feed. When a new
follower relation is established, the targeted user is notified, although his or her
explicit permission is not required. Thus, the declared network is directed, and
the connections are cheap to form. Furthermore, using modern mobile devices,
the user can choose to attach to the tweet his current geographic position in the
form of GPS coordinates with a single click. By default, all the tweets created
by the user are publicly visible.

Flickr13 is an image and video hosting website that implements social me-
dia features. Each user has her own profile with the timeline of all the photos
uploaded by the user to date, called a photostream. As in the case of Twitter,
the user can mark other users as contacts, creating directional links. The photos
and videos uploaded by the contacts are broadcasted to the user and shown in
his news feed. The photos can contain information about the geographic loca-

12 Available at http://twitter.com. 13 Available at http://flickr.com.
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tion where they were taken. The users can comment on one another’s photos by
simply writing underneath them and mark favorite photos with a single click to
express their satisfaction. Furthermore, the users can create, join, and adminis-
ter groups. The photos can be posted in group pools of photos to increase their
exposure. If the user does not choose otherwise, all the content uploaded by the
user is publicly visible.

Facebook14 is currently the largest OSN15 and the second most popular web-
site on the Internet.16 It is a social media platform for sharing content with
friends. A user can add other users to her set of friends, but her consent is re-
quired, and a bidirectional link is formed between the two, in contrast to Twitter
and Flickr. Thus, the underlying declared network is undirected. Facebook is
an integrated platform in the sense that it allows broadcasting of messages of
various sizes and uploading of photos and videos. By default, all the uploaded
content is not visible publicly, in contrast to Twitter and Flickr once again.

1.6.2 Structure of declared networks

The declared connections in OSNs represent a relation between the users, in the
form of either undirected or directed links, i.e., directed followers in Twitter,
directed contacts in Flickr, and undirected friends in Facebook. These declared
networks exhibit properties found in other social networks (see Table 1.3).

The number of users in the networks is large, from several million to a billion.
The average degree varies from 17 in Flickr to 190 in Facebook and it increases
as the networks grow. The degree distribution in these networks is heavy-tailed,
as shown in Figure 1.11. Although these are not power-law distributions, some of
their parts can be approximated with a power-law, e.g., the distributions of out-
degree in Flickr above and below 500 contacts (Figure 1.11C). Furthermore, the
bump in the distribution for Twitter (Figure 1.11A) around 20 and the plateau
for degrees up to 50 in Facebook (Figure 1.11B) correspond to certain policies of
the services, i.e., recommender systems suggesting the first 20 friends, etc. The
maximum degree in Facebook is around 5, 000, which corresponds to a limitation
imposed in this platform. Some users in Twitter have extremely large numbers of
followers. These include celebrities and large news outlets, e.g., Britney Spears,
CNN, and New York Times. A study suggested that a log-normal distribution
fits well the degree distribution in Twitter (Galuba et al., 2010).

Link reciprocity in OSNs differs. Low reciprocity signals that the network’s
social component is not strong and that the graph fulfills other roles, e.g., Twitter

14 Available at http://facebook.com.
15 It has almost twice as many users as the second largest OSN, according to GlobalWebIndex;
see more at http://zd.net/17ziSKc.
16 Popularity in terms of traffic according to the Alexa ranking from September 2013. For a

recent ranking, visit http://www.alexa.com/topsites.
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Figure 1.11: Complementary cumulative distribution of node degrees in: (A)
Twitter, (B) Facebook, (C,D) Flickr (out-degree and in-degree). Adapted from
(Kwak et al., 2010; Ugander et al., 2011; Mislove et al., 2007), respectively.

is considered a news media rather than a social network (Kwak et al., 2010).
Most of the celebrities present in Twitter do not follow their followers in return.
Facebook has a strong social component because its content is not publicly visible
and the connections are bidirectional.

The average clustering coefficient in the networks is one or more orders of
magnitude higher than its expected value in an ER random graph or a preferential
attachment network (Mislove et al., 2007). The clustering coefficient varies with
the degree of nodes; e.g., in Facebook, it takes values from 0.1 for the nodes of
degree around 1, 000 up to 0.5 for the low-degree nodes. High clustering is related
to the community structure; e.g., the clustering coefficient is 50% higher in the
groups created by the users of Flickr (Mislove et al., 2007). Some of the largest
communities correspond to countries. In fact, most of Facebook connections are
internal to countries, that is, over 84% of the connections. The modularity of the
Facebook friend graph partitioned into countries is 0.75, an extremely high value
exposing a high-level community structure.

The average path length in the three networks is low and ranges from 4.1 in
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Property Twittera Flickrb Facebookc Introduction
Year measured 2009 2007 2011 -

N 42 M 6.9 M 721 M 1.2.1
kout or k 35 12 190

1.2.2
R 0.22 0.62 undirected
〈ci〉 0.11d 0.31 0.1-0.5 1.2.3
l 4.1 5.7 4.7 1.2.4
r > 0 0.20 0.27 1.2.6

Table 1.3: Properties of declared social networks in Twitter, Flickr, and Face-
book, based on the respective studies: a(Kwak et al., 2010), b(Mislove et al.,
2007), c(Ugander et al., 2011), d(Java et al., 2007).

Twitter to 5.7 in Flickr, which corresponds to the concept of six degrees of sepa-
ration. The strongly connected component contains a majority of nodes in each
of the OSNs, i.e., 92% in Twitter (Galuba et al., 2010), 45-60% in Flickr (Ku-
mar et al., 2006; Mislove et al., 2007), and 99.91% in Facebook (Ugander et al.,
2011). One of the reasons why the average path is so short may be the exis-
tence of a dense core, as argued in (Mislove et al., 2007). The study showed
that the removal of 1-10% of the nodes with the highest degree from the Flickr
network fragments it into numerous smaller components. The dense core consists
of many very high-degree nodes connected to each other due to the assortative
mixing present in the OSNs. The assortativity coefficient takes positive values in
the networks, up to the value of 0.27, meaning that nodes of similar degrees tend
to be connected to each other, i.e., nodes of high degree tend to be connected to
other nodes of high degree.

1.6.3 Pairwise interactions

In general, a social network is a broad term that refers to a set of actors and
a set of ties between them representing some kind of relation or interaction. In
fact, however, there are many types of both relations and interactions (Borgatti
et al., 2009; Butts, 2009), and they usually happen on top of each other.

In OSNs, the types of relations and interactions are often specified, allowing
for more in-depth studies. On the one hand, such networks have the declared
connections. On the other hand, a variety of interactions are possible in these
systems (for a summary, see Table 1.2). Some of them have emerged organically
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through the development of online social conventions (Kooti et al., 2012)17 and
represent the natural social needs of the users. The interaction types that are
the most popular and related to this dissertation are personal communications,
information sharing, and content assessment.

First, personal communications can be interpreted as one type of such inter-
actions, e.g., through mentions in Twitter or comments in Flickr and Facebook.
These examples correspond to interchanges that are publicly visible. However,
most OSNs have also a private communication channel that is accessible only
to the parties involved. Unfortunately, such private interactions are usually not
available to researchers due to privacy concerns. In either case, the communi-
cated messages are directed to a specific person, who may choose to respond in
the same way. Second, another type of interactions corresponds to information
sharing, e.g., retweets in Twitter or shares in Facebook. A user can select a piece
of content from a person she is connected to, and share it to her own followers,
so that they can see it as well. Third, users can also interact with others by
positively evaluating their content, e.g., with favorites in Twitter and Flickr or
likes in Facebook. The receiver of a positive evaluation may decide to reciprocate
it as a way of expressing gratitude or friendship. Each such interaction between
two users can be represented by a link in a graph. Each of these interaction types
has its own characteristics and its own representation in most of the established
OSNs.

1.6.4 Interaction networks versus declared networks

The pairwise interactions of users of OSNs are related to their declared social
relations. The comparison of a network built from declared online relations and
a network built from user interactions shows several differences at the structural
level. First, the actors tend to interact with much fewer people than they declare
as friends, which results in smaller degrees of nodes in the interaction network
(Viswanath et al., 2009; Wilson et al., 2009). Moreover, the friends they interact
with change rapidly, and only about 30% of pairwise interactions in one month
continue over the next month (Viswanath et al., 2009). A study of mobile phone
calls shows that it is natural to maintain both long-term persistent and short-
term exploratory relations, and that the exact ratio between the two varies from
person to person (Miritello et al., 2013). Because the degrees are lower, the
properties related to the small-world effect are also less evident. Namely, the
average path length is higher (Wilson et al., 2009), and there are less densely
connected cores (Chun et al., 2008).

17 Blog posts from Twitter developers describing the first implementation to the sys-
tem of social conventions for mentions/replies and retweets: http://blog.twitter.

com/2009/03/replies-are-now-mentions.html and http://blog.twitter.com/2009/08/

project-retweet-phase-one.html.

37

http://blog.twitter.com/2009/03/replies-are-now-mentions.html
http://blog.twitter.com/2009/03/replies-are-now-mentions.html
http://blog.twitter.com/2009/08/project-retweet-phase-one.html
http://blog.twitter.com/2009/08/project-retweet-phase-one.html


CHAPTER 1. INTRODUCTION

1.6.5 Groups

In OSNs, groups can be identified in a few ways. On the one hand, groups can
be created and/or declared explicitly by the users themselves and subsequently
directly retrieved from the data. On the other hand, community detection al-
gorithms can be used to identify them from the network structure (see Subsec-
tion 1.3.2). A natural question is whether groups found with such methods are
related and what their importance is. It has been found that declared groups
internally tend to have higher clustering coefficients than the rest of the network
(Mislove et al., 2007), so they may be correlated with the more densely connected
parts of the network found by community detection algorithms. We make a direct
comparison of detected and declared groups in Chapter 4.

Several aspects have been identified as positively influencing groups’ growth
and their persistence. The growth of declared groups is facilitated by low or
medium clustering coefficient (Backstrom et al., 2006) and high internal con-
nectivity (Taraborelli, 2011). Other work argues that flexibility of big detected
groups helps them stay alive longer, while small detected groups are more per-
sistent if their composition stays unchanged (Palla et al., 2007).

Furthermore, there exist different types of groups, i.e., in Subsection 1.5.4 we
have introduced the notion of topical and social groups. The information about
the type of groups is not given in OSNs. A natural question is whether declared
and detected groups are topical or social.

1.6.6 Tagged content

Interactions in OSNs can have various attributes and content associated with
them. For instance, some of the interactions between users of OSNs are moder-
ated through user-generated posts or photos. A comment directed to a specific
user can be posted underneath a photo that the target user has uploaded to her
profile. The owner of the photo is notified and can either respond underneath
her photo or through different means with a different type of interaction. These
attributes and content can be leveraged to characterize the interactions beyond
their structural properties and to understand better the behavior of users.

The content often has tags associated with it (examples are shown in Ta-
ble 1.2). The tags refer to semantically compressed keywords describing the
content. A system consisting of users, tags, and content pieces is called a folk-
sonomy (Cattuto et al., 2007, 2008). In a latter chapter, we use tags to distinguish
between the aforementioned topical and social groups. Another type of tags is
the geo-localizing tags, which are simply the longitude and the latitude of geo-
graphic positions, usually localizing the piece of content in geographical space.
Using them, one can draw conclusions about human mobility and the geograph-
ical properties of social networks and interactions. In the last chapters of this
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thesis we use this information to analyze spatial properties of various OSNs.

1.7

Outline

In this thesis, we use methods of complex networks and complex systems to
study OSNs. In the following chapters, we present four studies, three of which
are concerned with groups of people, and the fourth one considers coupled spatial
and structural properties of OSNs.

More specifically, Chapter 2 analyzes the growth of declared groups in Flickr.
In this study, exceptionally, we do not use any network representation of the
system. Instead, we focus on the time series of group sizes and on the properties
of the system as a whole. The growth of groups is simulated with a model based
on heterogeneity and compare its results with an alternative model based on
preferential growth. We find that the model based on heterogeneity reproduces
better the properties of the real system.

In Chapter 3 we extend the study of declared groups to groups detected with
various graph-based clustering algorithms. Namely, we study the patterns of in-
teractions in the landscape of groups detected in the follower network in Twitter.
We distinguish between two types of interactions, i.e., personal communication
and information sharing. We test if the interactions in this OSN follow the pre-
dictions of the sociological theories for offline social networks relating structure,
tie strength, and information diffusion. We find that the statistical patterns of
the interactions can be explained by these theories.

We explore the similarities and the difference between detected and declared
groups in Chapter 4 using a dataset from Flickr. The detected groups are found
with OSLOM, described in detail in Appendix I. The declared groups are created
by users. First, we explore the membership overlap of the two sets of groups
to check if they match each other. Second, based on the common-identity and
common-bond theory, we classify statistically each group as either topical or so-
cial, using metrics quantifying reciprocity and diversity of topics of conversations.
Our results are consistent with the theory. We compare the detected and declared
groups in terms of their topicality and sociality.

Chapter 5 analyzes spatial and structural properties of three different OSNs,
including Twitter. We measure several network properties as a function of phys-
ical distance between nodes, e.g., link probability, reciprocity, social overlap, and
clustering coefficient. We introduce a model that couples mobility of agents and
network growth and reproduces the statistical properties with a good accuracy.
We compare its results against a triangle closing model and a random network
model that connects nodes depending on the distance between them.

39



CHAPTER 1. INTRODUCTION

The dissertation is summarized in Chapter 6 with a discussion of our contri-
butions to the emerging field of computational social science and a consideration
of the importance of big data for the studies of social systems. For each of the
topics of our studies we provide a broad outlook for the future research. The
thesis concludes with a generic outlook for computational social science.
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Chapter 2

Impact of heterogeneity on groups’
growth

Heavy-tailed distributions, such as power-law distributions, are widely encoun-
tered in real systems and networks. We have introduced growth models that
lead to such distributions in Subsections 1.4.1 and 1.4.2. In general, the mecha-
nisms of preferential growth and heterogeneity are coupled, and both play a role
in growth processes in real social systems, e.g., in the growth of popularity (see
Subsection 1.4.3). Here, we show that groups in Flickr grow according to a model
based on heterogeneity.

2.1

Introduction

Many complex systems are characterized by broad distributions capturing, for
instance, the frequency of words (Zipf, 1949), the wealth of nations (Pareto,
1896), or the degree distribution of complex networks (Barabási and Albert, 1999)
(for more examples in networks, see Subsection 1.2.2). Typically, this feature is
explained by means of a preferential growth mechanism. In line with the rich-
gets-richer principle, Gibrat’s law suggests that the expected growth of a firm,
a city, or social activity is proportional to its size (Gibrat, 1931; Gabaix, 1999;
Rozenfeld et al., 2008; Rybski et al., 2009). However, less attention has been
devoted to the time evolution of complex systems, probably due to the lack of
empirical data over time (for some exceptions, see Saichev et al. (2009); Barabási
et al. (2002); Palla et al. (2007); Tessone et al. (2011)). In many network growth
models, the time unit is mapped to the number of new arriving elements, which
makes it difficult to compare the results with real data. Moreover, many models
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assume that the elements are born identical, leading to correlations between age
and frequency, which are not fully supported by empirical observations (Adamic
and Huberman, 2000) (as in Figure 1.8). In many real systems, especially in social
systems, individuals or elements are very diverse. In this direction, some models
incorporating heterogeneity in the form of fitness, hidden variables, or ranking
have been proposed (Caldarelli et al., 2002; Söderberg, 2002; Boguñá and Pastor-
Satorras, 2003; Fortunato et al., 2006; Ratkiewicz et al., 2010). However, there
is rather little empirical work showing how intrinsic heterogeneity is distributed
and its role in complex system growth (Garlaschelli and Loffredo, 2004; De Masi
et al., 2006). Based on data collected on a daily basis on the time evolution of an
online social system, we characterize the heterogeneity of the groups and identify
the heterogeneity and the distributed birth dates as key players explaining the
heavy-tailed distribution of group sizes and the apparent proportional growth of
groups to their size.

2.2

Dataset

We study groups created and declared by users of Flickr. These groups are
mainly used to collaboratively post photos associated with the theme of the
group. We consider each group an element of the system characterized by the
number of members belonging to the group (group size). We have collected two
datasets containing in total over 260, 000 member-created groups in Flickr, which
accounted for over 65% of all public groups existing in Flickr. The first dataset
has high temporal resolution and a wide time window. It contains 9, 503 groups
tracked for 350 days, between June 5, 2008 and May 20, 2009, by the publicly
accessible external service called GroupTrackr.1 The service tracked on a daily
basis the number of members of the groups. The second dataset has a shorter
time window and minimal temporal resolution, but it covers a larger number of
groups. It contains over 260, 000 public groups for which we gathered information
on the number of members, collected in two snapshots on December 18, 2009 and
January 29, 2010. For these groups, we also gathered estimated information on
their birth date. As an estimation of the group birth date we consider the time
when the first photo was posted to the group pool, as the first photo is normally
posted to the pool soon after the group’s creation. The oldest groups in our
dataset date back to July 16, 2004.

1 The Web page of the tool is available at http://nitens.org/taraborelli/webcommunities.
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Figure 2.1: Characterizing the time evolution of online groups. (a) Time evolu-
tion of the group size for a representative sample of small and large groups. (b)
Distributions of groups’ growth α (open circles) with fitted log-normal distribu-
tion (line). The growth per day α is estimated based on growth over 6 weeks.
(c) Distribution of group ages.

We first analyze the time evolution of groups. In Figure 2.1a, we show how
typical groups grow in the number of members on a daily basis during a period
of one year. As the first approach, linear growth captures the individual trend
(despite evident deviations in the form of sudden jumps). We have performed a
linear regression of the time evolution of the sizes of 9, 503 groups over a period of
one year. For about half of these groups, the coefficient of determination R2 has
a value over 0.95, and more than 80% of the groups larger than 1, 000 have R2

higher than 0.95. The difference comes from the fact that the larger groups are
affected less by fluctuations in size. Aggregated residual plots do not show any
clear trend deviating from the linear model. The time series covers a considerable
part of the average lifespan of the groups. Thus, we consider that groups grow
linearly over time; the size sg of the group g evolves as

sg = 1 + αg(t− t0g) = 1 + αgτg , (2.1)
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where αg is the growth per unit of time, t0g is the birth date, and τg is the current
age of group g. We estimate the two parameters for 260, 000 groups. The growth
αg for each group g is calculated as the change in its size per day over six weeks. A
log-normal distribution provides the best fit to the distribution of growth values
α (Figure 2.1b) with an average µ = lnα = −3.62 and the standard deviation
σ = 1.57. Finally, we estimated the current ages of all groups, finding that the
number of groups created daily grew (almost linearly) over time (Figure 2.1c).

2.4

Linear growth model with heterogeneous birth and
growth

Based on the aforementioned findings, we propose a minimal model of the time
evolution of group sizes in Flickr, a linear growth model with heterogeneous birth
and growth, which we refer to as the heterogeneous linear growth model. The
model proceeds as follows: at each time step t, (i) new groups are created in the
system. The number of groups created at each time step increases linearly with
t. Each newly created group g starts with one member, and it is assigned its own
growth value αg, drawn from a log-normal distribution. Growth value αg remains
unchanged for the simulation time; (ii) the size of each group g is increased by
αg.

We have performed numerical simulations of the heterogeneous linear growth
model such that each time step of the simulation corresponds to a single day.
We have simulated 1, 959 days in Flickr, from the moment when the first group
from our dataset appeared. As a result of the numerical simulations, we obtain
the daily evolution of the sizes of over 260, 000 artificial groups. The distribution
of the final sizes of the groups reproduces with good agreement the observed
distribution (Figure 2.2a). As shown in Figure 2.2a, there is a small divergence
for large group sizes, which can be explained by the deviations, mostly for small
groups, from the linear growth assumption. The strong fluctuations of the time
evolution of sizes of the small groups (see the jumps in Figure 2.1) lead to a larger
apparent growth than the real one, leading to an over-estimation of their growth
α; as a consequence, the model displays a larger number of big groups than in
the real system.

The average growth of groups of the same size, 〈α|s〉, shows that bigger groups
grow faster (Figure 2.2b) both for the real data and the model in accordance with
Gibrat’s law: 〈α|s〉 ∝ s. This result is obtained even though the microscopic rules
of the model do not implement the rich-gets-richer principle. The average growth
is an average over all groups of a given size, with each of them growing linearly.
Due to the heterogeneity and the linear growth, at a given time, larger groups
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Figure 2.2: The heterogeneous linear growth model vs. real data. (a) Comple-
mentary cumulative distribution function of group sizes for the real data (circles),
the heterogeneous linear growth model (filled triangles), and its analytical solu-
tion (solid line). (b) Average daily growth as a function of the initial size of
the groups, estimated for the period of six weeks and averaged over all groups
of a given initial size for the real data (circles), the model (triangles), and its
numerical solution (line). The dashed line corresponds to the linear behavior
〈α|s〉 ∼ s.

consist of old groups that grow slowly and younger groups that grow faster. Thus,
the observation of preferential growth for groups of the same size does not reflect
in this case an underlying rich-gets-richer principle; rather it is a consequence of
the competition of groups with different growth values and ages.

The statistical properties of the model can be estimated analytically. From
the definition, the average growth of groups of the same size is given by:

〈α|s〉 =

∫∞
(s−1)/t αpαs(α, s)dα∫∞
(s−1)/t pαs(α, s)dα

, (2.2)

where pαs(α, s) is the joint probability of having a group of size s and growth
rate α, and

∫
pαs(α, s)dαdg = 1. The lower limit of the integral is given by

Equation 2.1 and depends on s, and the maximum value of τ is limited to t if the
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first group was created at time t = 0. We transform Equation 2.2 by replacing
the joint probability pαs(α, s) with pατ (α, τ) and making the assumption that τ
and α are independent random variables:

〈α|s〉 =

∫∞
(s−1)/t αpα(α)pτ (τ(α, s))∂τ∂s dα∫∞
(s−1)/t pα(α)pτ (τ(α, s))∂τ∂s dα

. (2.3)

The numerical solution of Equation 2.3 for log-normal pα and linear pτ is plotted
in Figure 2.2b. Similarly the distribution of group sizes:

ps(s) =

∫ τmax

0

psτ (s, τ)dτ (2.4)

=

∫ τmax

0

pα(α(s, τ))pτ (τ)
∂α

∂s
dτ , (2.5)

is plotted in Figure 2.2a. As shown, the solutions for both the average growth
and the size distribution are in good correspondence with the results of numer-
ical simulations, which indicates that the assumptions of independent random
variables and linear growth are reasonable.2

2.5

Heterogeneity versus preferential growth

The heterogeneous linear growth model captures the statistical properties that
commonly are attributed to the preferential growth mechanism. Thanks to the
intrinsic heterogeneity, different growth patterns are permitted, even if groups
have the same number of members at any point in time. An example of this
effect is in Figure 2.1a, where group sizes cross each other in time, though they
continue to grow as they grew before the crossing. To make a direct comparison
between the two mechanisms, heterogeneity vs. preferential growth, we consider
the Simon model (Simon, 1955). The Simon model was originally proposed to
explain the distribution of words’ frequency in a written text. At every time
step, a word is added to the text: with a given probability q, it is a new word;
otherwise, the word is chosen at random from the text, so the words that appear
more frequently are chosen more often. We have adapted the Simon model to our
system. The values of the parameters are set to obtain the same total number of
groups and members as in the real case; in addition, the number of new groups
created in the system at each time step of the Simon model grows linearly, to

2 Equations (2.3) and (2.5) are easy to solve if α and τ are independent random variables and

pα is a power-law distribution. In such a case, 〈α|s〉 ∝ s and that ps(s) is a power-law as well.
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Figure 2.3: Comparison of the Simon and heterogeneous linear growth models
vs. real data. (a) Initial and final group sizes over a period of 350 days for the
real data (circles), the heterogeneous linear growth models (filled triangles) and
the Simon model (diamonds). Each point represents a single group, 9, 503 points
are plotted for each set of points. (b-d) Box plots with whiskers at the 9th/91st
percentile of the final size of groups as a function of their age at the time of
the measurement for 260, 000 groups for (b) the real data, (c) the heterogeneous
linear growth model, and (d) the Simon model.
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isolate the effect of the heterogeneity. First, in the Simon model, the final size
of groups is heavily determined by their initial size measured one year before
(Figure 2.3a); thus, there is little heterogeneity among the groups, in contrast
to the heterogeneous linear growth model that displays a degree of heterogeneity
similar to that of real groups. Second, for the Simon model, the correlation of size
and age is strong, while it is weak for real groups and the heterogeneous linear
growth model (Figures 2.3b-d).3 The wide spread of group sizes corresponds
to the high heterogeneity of groups, which is not captured by the preferential
growth model (as observed in other systems such as, for instance, in the World
Wide Web, where the number of links to a page is not strongly correlated with
the age of the Web page (see Figure 1.8) (Adamic and Huberman, 2000).

2.6

Conclusions

In this chapter, we have proposed a simple growth model of heterogeneous ele-
ments with associated growing counters, based on the findings for a social system
in an online community. We found that the model captures many of the features
of the real system of online groups, namely the heavy-tailed distribution of group
sizes, the average growth proportional to the current size of groups, and the weak
correlation between the age and the size of groups.

Furthermore, we made a direct comparison of the heterogeneous linear growth
model with a preferential growth model and showed the similarities and the
differences between these models. In the heterogeneous linear growth model, the
heavy-tailed distribution of the final sizes of elements does not emerge from the
growth process itself (e.g., the rich-gets-richer principle) but from the intrinsic
heterogeneity of elements that take part in this growth process. This certainly
does not answer the question of why some groups grow faster than others, as
we do not understand yet what factors influence the fitness of the groups. The
simplicity of our approach suggests that the characterization of the heterogeneity
may play an important role in understanding the origin of broad distributions
and the time evolution of many real systems.

3 In the heterogeneous linear growth model, the average size of groups of a given age is 〈s|τ〉 =

1 + τ exp (µ+ σ2

2
), where µ and σ are parameters of the log-normal distribution. In the Simon

model, it is given by 〈s|τ〉 = ( 2+mT2

2+m(T−τ)2 )1−q , where T is the age of the system, m controls the

number of new users introduced into the system at each time step (mT ), and q is the probability

of new group creation within the model (in our case, T = 1959, m = 10 and q = 0.014).
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Chapter 3

Strength of intermediary ties in
online social networks

In the first chapter, we introduced theories that relate network structure, strength
of ties and information diffusion, i.e., Granovetter’s theory of strength of weak
ties, Burt’s theory of structural holes, Aral’s diversity-bandwidth theory and the
concept of structural folds introduced by Vedres and Stark. Twitter’s distinction
between different types of interactions allows us to establish a parallelism between
online and offline social networks, and to test if the offline theories hold also
in the online environment. Here, we demonstrate it by showing that personal
interactions are more likely to occur on internal links of groups (the weakness
of strong ties), events transmitting information pass preferentially through links
connecting different groups (the strength of weak ties), or even more through
links connecting to users belonging to several groups that act as brokers (the
strength of intermediary ties).

3.1

Introduction

There exists an open discussion on the validity of online interactions as indica-
tors of real social activity (Cummings et al., 2002; Van Dijk, 2006; Watts, 2007;
Avnit, 2009; Danon et al., 2005; Vespignani, 2009; Lazer et al., 2009). Most of the
OSNs incorporate several types of pairwise interactions that satisfy different user
needs and different level of involvement between users (as in Subsection 1.6.3).
The cost of establishing the declared links is usually very low. These connec-
tions can accumulate and pile up to an extremely large number (as shown in
Subsection 1.6.2). If the number of connections increases to the thousands or
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the millions, the amount of effort that a user can invest into the relation that
each link represents must fall to near zero. Does this mean that declared on-
line connections are irrelevant for understanding social relations or for predicting
where higher quality activity (e.g., personal communications, information trans-
mission) is taking place? By analyzing the clusters found in the network of the
declared follower links between users of Twitter, we show that even this network
bears valuable information on the localization of more personal interactions be-
tween users. Furthermore, we show that certain types of users act as brokers of
information between groups.

The theory of the strength of weak ties (Granovetter, 1973) deals with the
relation between structure, strength of social ties and diffusion of information in
offline social networks. It has raised some interest in the last decades (Onnela
et al., 2007a; Csermely, 2006; Iribarren and Moro, 2011) and its predictions have
been checked in a mobile phone calls dataset (Onnela et al., 2007a). Social
networks are usually composed of groups of individuals, connected among them
by long range ties known as bridges. Thus, a tie can be internal to a group
or a bridge. Granovetter’s theory predicts that weak ties act as bridges between
groups and are important for the diffusion of new information across the network,
while strong ties are usually located at the interior of the groups. Furthermore,
Burt’s work (Burt, 2005) emphasizes the advantage of connecting different groups
to access novel information. More recent works, however, suggest that the people
with strong ties in different groups are the most exposed to novel information
(Vedres and Stark, 2010) and consider existence of a tradeoff between diversity
and bandwidth (Aral and Van Alstyne, 2011) (see Subsection 1.5.3). Due to the
different nature of online and offline interactions, it is not clear whether online
networks organize following these principles. Our aim in this work is to test if
these theories apply also to OSNs.

The study focuses on the two following types of interactions in Twitter. Men-
tions (tweets containing “@username”) are messages that are either directed only
to the corresponding user or mentioning the targeted user as relevant to the in-
formation expressed to a broader audience. Retweets (tweets containing “RT
@username”) correspond to content forward with the specified user as the nom-
inal source. In contrast to the normal tweets, mentions usually include personal
conversations or references (Honeycutt and Herring, 2009) while retweets are
highly relevant for the viral propagation of information (Galuba et al., 2010).
Moreover, these interaction types have emerged in Twitter as social conventions
(Kooti et al., 2012) and have been later implemented as part of Twitter’s sys-
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tem.1 This particular distinction between different types of interactions qualifies
Twitter as a perfect system to analyze the relation between topology, strength of
social relation and information diffusion in OSNs.

The properties of the follower network have been extensively analyzed es-
pecially in relation to its topological structure, propagation of information, ho-
mophily, tie formation and decay, etc (Kwak et al., 2010; Mendoza et al., 2010;
Ratkiewicz et al., 2011; Asur et al., 2011; Romero and Kleinberg, 2010; Pujol
et al., 2010; Borge-Holthoefer et al., 2011). Finding users with thousands or even
millions of followers is not exceptional (Avnit, 2009), so the question is whether
the structure of the follower network carries any information on where personal
relations (mentions) or information transmission events (retweets) take place. To
answer this question, we first analyze a sample of the follower network with com-
munity detection algorithms and identify a set of groups. Whether the clusters we
identify are traces of underlying groups is a question we cannot answer directly
due to the lack of ground truth in Twitter. We tackle this problem directly in
the next chapter, where we calculate the overlap between detected and declared
groups in Flickr. Here, we check the correlation between the location of the per-
sonal conversations (mentions) and information diffusion events (retweets) and
the structural properties of the links bearing those activities with respect to the
detected groups in the network. Note that we consider mentions and retweets
to happen always on follower links. This restriction allows us to describe user
activity in terms of the detected groups.

3.2

Dataset and preprocessing

Network Followers Mentions Retweets

Users 2, 408, 534 377, 760 26, 480
Links 48, 776, 888 1, 224, 484 32, 169

Table 3.1: Overall characteristics of the follower network and the interactions
taking place on it.

The data analyzed in this chapter was collected in a two step process: the
first stage corresponds to the collection of the follower network (followers and

1 Blog posts from Twitter developers describing the first implementation to the sys-
tem of social conventions for mentions/replies and retweets: http://blog.twitter.

com/2009/03/replies-are-now-mentions.html and http://blog.twitter.com/2009/08/

project-retweet-phase-one.html.
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followees), while the second consists in the retrieval of the user activity from the
stream of Twitter (plain tweets, mentions and retweets). In the first stage, the
directed unweighted network is obtained from the information on the followers
and followees of each user. The data was collected using a breadth-first search
technique. Starting from several seeds, followers and followees of the seeds were
retrieved. Then, the same procedure was repeated for the newly discovered users
obtaining a so-called snowball sampling of the follower network. The procedure
is stopped after several steps when the number of newly discovered users in n-th
breadth is small compared with the total number of users already discovered in
the (n − 1)-th step. This method tends to detect the users with the highest in
or out-degree that belong to the largest connected cluster of the network. The
process was run in November 2008, gathering information for a total of 2, 408, 534
users.

The second stage consists in searching for all the tweets of the users found in
the follower network for a period of time from November 20 to December 11. The
activity dataset was constructed from these gathered tweets. The tweets contain-
ing usernames with a “@username” functional syntax were used for the mentions.
Tweets that were reposted from other users, and which also hold a special format
of the form “RT @username”, were used to build our retweet dataset. In some
cases of mentions and retweets, multiple users were specified. Then, we count
only the first user for the purpose of our analysis. It is also worthy to note that
at the moment of the data collection mentions and retweets were not yet fully
implemented into Twitter system and existed as a social convention. The subset
of retweets has been removed from a set of mentions to avoid overlap. In total,
we obtained 12, 486, 784 tweets from 587, 142 users in the network, what stands
for 24% of all users from the follower network. The rest of users either did not
posted any tweet in their profile during the period of data collection (80-90% of
cases), had a protected profile (5-10% of cases) or removed their profiles (5-10% of
cases). Out of these tweets 1, 742, 956 where mentions and 46, 156 where retweets.
For the purpose of the analysis we have filtered out mentions and retweets which
happened without underlying follower relation, in order to avoid inclusion of
messages sent to not-known users and also to be able to perform comparisons
with our baseline model consisting of the follower network. The resulting set of
links with different interactions is summarized in Table 3.1. Note that links with
mentions/retweets can have multiple mentions/retweets happening over them.

The dataset is a good representation of what Twitter was at the end of 2008
both in the social network and in the activity of the users. At the time of the data
collection Twitter had almost 5 million registered users.2 Therefore we estimate
that our dataset contains information about around 50% of the most active users
from that time. Additionally, in order to test if our results are independent on

2 According to http://bit.ly/1cLMwxa.
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the sample of the network we repeat our analysis on various subsamples of the
collected follower network arriving to the same conclusions (see Appendix B).
Other aspects of this dataset related to system scalability and trace generation
were studied by (Pujol et al., 2010, 2009; Erramilli et al., 2011).

3.3

Description of the groups

Our first step is to identify the groups in the follower network. Due to the size,
density and directness of the follower network, and in order to capture the possible
inclusion of users in multiple groups or in none, we have used OSLOM (Lanci-
chinetti et al., 2011, 2010) (see Appendix I of the dissertation). The analysis has
also been performed with other clustering techniques (Rosvall and Bergstrom,
2008; McDaid and Hurley, 2010; Raghavan et al., 2007; Blondel et al., 2008)3,
reaching similar conclusions (see Appendix B for a detailed account on these re-
sults). We have detected 92, 062 groups at the lowest hierarchical level, three of
which are graphically depicted in Figure 3.1A with each sphere corresponding
to a single user. In general, the links can be classified according to their posi-
tion with respect to the user groups: internal, between groups, intermediary, and
links involving nodes not assigned to any group as shown in Figure 3.1B. Note
the correspondence of the intermediary position to the concept of structural fold
(compare Figure 3.1B and Figure 1.10, respectively).

The statistics characterizing the groups and links are displayed in Figure 3.2.
The group size distribution decays slowly for three orders of magnitude and does
not show a characteristic group size (Figure 3.2A). For instance, the largest group
contains around 10, 000 users. Also the number of groups each user belongs to
shows high heterogeneity: 37.4% of the users have not been allocated to any
group, while there exists a user belonging to more than 100 groups (see Fig-
ure 3.2B). The percentage of links falling in the different types regarding the
groups is depicted in Figure 3.2C. Although the non-classified users are 37% of
the total, the links connected to them are less than 6% and the percentage is even
lower for those with mentions or retweets. The most common type of connections
is the between-group links. One may wonder if the algorithm for clusters detec-
tion is doing a good job when there is such a large proportion of between-group
links. The clustering method is trying to find groups of mutually interconnected
nodes that would be extremely rare in a randomized instance of the network,
rather than optimizing the ratio between number of between-group and internal
links. In Appendix A, this argument is further developed and the capacity of

3 We also used an implementation of modularity optimization available online at http://deim.

urv.cat/~aarenas/data/welcome.htm
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A

between groups intermediary links no-group linksinternal links

B

Figure 3.1: Groups and links. (A) Sample of Twitter network: nodes represent
users and links, interactions. The follower connections are plotted as gray arrows,
mentions in red, and retweets in green. The width of the arrows is proportional to
the number of times that the link has been used for mentions. We display three
groups (yellow, purple and turquoise) and a user (blue star) belonging to two
groups. (B) Different types of links depending on their position with respect to
the groups’ structure: internal, between groups, intermediary links, and no-group
links.
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Figure 3.2: Group and link statistics. (A) Size distribution of the group. (B) Dis-
tribution of the number of groups to which each user is assigned. (C) Percentage
of links of different types, e.g., follower links (black bars), links with mentions
(red bars) or retweets (green bars), staying in particular topological localizations
in respect to detected groups.

OSLOM to detect planted communities is proved in a benchmark even in situa-
tions with a high ratio between the number of between-groups and internal links.
Another relevant point to highlight is the different potential of each type of links
to carry mentions and retweets. As it can be seen in Figure 3.2C, the red bars for
mentions in internal links and intermediary links almost double the abundance
of links in the follower network in these categories. The links between groups, on
the other hand, attract far less mentions.
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3.4

The strength of ties

Besides their location with respect to the groups, the links can be also charac-
terized by their intensity. In Twitter mentions are typically used for personal
communication, which establishes a parallelism between links with mentions and
strength of social ties. The more mentions has been exchanged between two users,
even more so if reciprocated, the stronger we consider the tie between them. We
define intensity of a link as the number of mentions interchanged on it. Dif-
ferent predictors have been considered to estimate social tie strength (Marsden
and Campbell, 1984) including, for instance, time spent together (Marsden and
Campbell, 1984) or the duration of phone calls (Onnela et al., 2007a). We con-
sider the intensity as an approximation to social strength given that writing a
mention involves some effort and addresses only single targeted users.

3.5

Internal links

According to Granovetter’s theory, one could expect the internal connections
inside a group to bear closer relations. Unfortunately, there is no means to
measure the closeness of a user-user relation in a sociological sense in our Twitter
dataset. However we can verify whether the link has been used for mentions,
whether the interchange has been reciprocated or whether it has happened more
than once. We define the fraction f ip of links with interaction i in position p with
respect to the groups of size s as

f ip(s) =
Lip(s)

Li
, (3.1)

where Lip(s) is the number of links with that type of interaction in position

p with respect to the groups of size s and Li in the total number of links with
interaction i. The fractions f iinternal(s) reveal an interesting pattern as function of
the group size (Figure 3.3A). Note that the fraction of links in the follower network
(black curve) is taken as the reference for comparison. Links with mentions are
more abundant as internal links than the baseline follower relations for groups of
size up to 150 users. This particular value brings reminiscences of the Dunbar
number (Dunbar, 1992), the cognitive limit to the number of close relationships
that has recently been discussed in the context of Twitter (Gonçalves et al., 2011).
Although we have identified larger groups, the density of mentions is similar to
the density of links in the follower network. In addition, the distribution of
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Figure 3.3: Internal activity. (A) Fraction f of internal links as a function of
the group size in number of users. The curve for the follower network acts as
baseline for mentions and retweets. Note that if mentions/retweets were randomly
appearing over follower links then the red/green curve should match the black
curve. (B) Distribution of the number of mentions per link. (C) Fraction of
links with mentions as a function of their intensity. The dashed curves are the
total for the follower network (black) and for the links with mentions (red), while
the other curves correspond (from bottom to top) to fractions of links with: 1
non-reciprocated mention (diamonds), 3 mentions (circles), 6 mentions (triangle
up) and more than 6 reciprocated mentions (triangle down).
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the number of times that a link is used (intensity) for mentions is wide, which
allows for a systematic study of the dependence of intensity and position (see
Figure 3.3B). The more intense (or reciprocated) a link with mentions is, the more
likely it becomes to find this link as internal (Figure 3.3C). This corresponds to
Granovetter expectation that the stronger the tie is the higher number of mutual
contacts of both parties it has and the higher the chance that the parties belong
to the same group. Similar trends are found using other clustering algorithms
(see Appendix B [Figure 3.7-3.9]).
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Figure 3.4: Group-group activity. (A) Distribution of the number of links in
the follower network between groups as a function of the size of the groups.
(B) Fractions f of links of the different types (follower, with mentions and with
retweets) as a function of the size of the group at the link origin, and (C) at
the targeted group. (D) Frequency of between-group links as a function of the
group-group similarity for the different type of links. In the inset, ratio between
the frequency of links with retweets and with mentions.
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The next question to consider is the characteristics of links between groups.
These links occur mainly between groups containing less than 200 users (Fig-
ure 3.4A-C). However, their frequency depends on the quality of the links (if
they bear mentions or retweets). While links with mentions are less abundant
than the baseline, those with retweets are slightly more abundant. According to
the strength of weak ties theory (Granovetter, 1973; Onnela et al., 2007a; Irib-
arren and Moro, 2011; Burt, 2005), weak links are typically connections between
persons not sharing neighbors, being important to keep the network connected
and for information diffusion. We investigate whether the links between groups
play a similar role in the online network as information transmitters. The ac-
tions more related to information diffusion are retweets (Galuba et al., 2010)
that show a slight preference for occurring on between-group links (Figures 3.4B
and 3.4C). This preference is enhanced when the similarity between connected
groups is taken into account. We define the similarity between two groups, A
and B, in terms of the Jaccard index of their connections: The similarity is the
overlap between the groups’ connections and it estimates network proximity of
the groups. The general pattern is that links with mentions more likely occur
between close groups and retweets occur between groups with medium similarity
(Figure 3.4D). Mentions as personal messages are typically exchanged between
users with similar environments, what is predicted by the strength of weak ties
theory. Links with retweets are related to information transfer and the simi-
larity of the groups between which they take place should be small according
to the Granovetter’s theory. The results show that the most likely to attract
retweets are the links connecting groups that are neither too close nor too far.
This can be explained with Aral’s theory about the trade-off between diversity
and bandwidth: if the two groups are too close there is no enough diversity in the
information, while if the groups are too far the communication is poor. These
trends are not dependant on the size of the considered groups (see Appendix B
[Figure 3.10]).

3.7

Intermediary links

The communication between groups can take place in two ways: the informa-
tion can propagate by means of links between groups or by passing through an
intermediary user belonging to more than one group. We have defined as inter-
mediary the links connecting a pair of users sharing a common group and with at
least one of the users belonging also to a different group (see Figure 3.1B). These
users and their links have a high potential to pass information from one group to
another in an efficient way (Csermely, 2006). Several previous works pointed out
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to the existence of special users in Twitter regarding the communication in the
network (Asur et al., 2011; Wu et al., 2011). In order to estimate the efficiency
of the different types of links as attractors of mentions and retweets, we measure
a ratio rip for links in position p and for interaction i defined as

rip =
Lip
Lp
, (3.2)

where, as before, Lip is the number of links with the interaction i in position p
and Lp is the total number of links in that position. The bar plot with the values
of rip is displayed in Figure 3.5A. We compare how well the different types of
links attract mentions (red bars) and retweets (green bars). Links internal to
the groups attract more mentions and less retweets than links between groups in
agreement with the predictions of the strength of weak ties theory. Intermediary
links attract mentions as likely as internal links: the fraction of intermediary links
with mentions is very close to the fraction of internal links with mentions. This is
expected because intermediary links are also internal to the groups. However, the
aspect that differentiates more intermediary links from other type of links is the
way that they attract retweets. Intermediary links bear retweets with a higher
likelihood than either internal or between-groups connections (see Figure 3.5).
This fact can be interpreted within the framework of the tradeoff between di-
versity and bandwidth (Aral and Van Alstyne, 2011): strong ties are expected
to be internal to the groups and to have high bandwidth, while ties connecting
diverse environments or groups are more likely to propagate new information.
High bandwidth links in our case correspond to those with multiple mentions,
while links providing large diversity are the ones between groups. Intermediary
links exhibit these two features: they are internal to the groups and statistically
bear more mentions, and introduce diversity through the intermediary user mem-
bership in several groups. Although some theoretical works (Granovetter, 1973;
Aral and Van Alstyne, 2011) suggest that ties with high bandwidth and high
diversity should be scarce, we find that intermediary links are as abundant as
internal links (see Figure 3.2C). Similar results have been found in sociological
studies of offline entrepreneurial groups (Vedres and Stark, 2010). The authors
recognize the importance of individuals belonging to multiple groups (see Fig-
ure 1.10). Their concept of structural fold is strikingly similar to our concept of
intermediary individual (at the time of our study we were unaware of the Vedres’
and Stark’s study). Moreover, in line with the theories (Granovetter, 1973; Burt,
2005; Aral and Van Alstyne, 2011), higher diversity increases the chances for a
link to bear retweets (Figure 3.5B), which implies a more efficient information
flow. The number of non-shared groups assigned to the users connected by the
link positively correlates with a higher than expected number of retweets (results
with another clustering algorithm are presented in Appendix B [Figure 3.11]).
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the follower network (black curve), those with mentions (red curve) and retweets
(green curve) as a function of the number of non-shared groups of the users
connected by the link. Inset, ratios between these distributions and the follower
network.

3.8

Conclusions

In summary, we have found groups of users analyzing the follower network of
Twitter with clustering techniques. The activity in the network in terms of men-
tions and retweets clearly correlates with the landscape that the presence of the
groups introduces in the network. Mentions, which are supposed to be more per-
sonal messages, tend to concentrate inside the groups or on links connecting close
groups. This effect is stronger the larger the number of mentions exchanged and if
they are reciprocated. Retweets, which are associated to information propagation
events, appear with higher probability in links between groups, especially those
that connect groups that do not show a high overlap, and more importantly on
links connected to users who intermediate between groups. These intermediary
users belong to multiple groups and play an important role in the spreading of
information. They acquire information in one group and launch retweets target-
ing the other groups, which they are members of. At the same time, the access
to new information can transform them into attractive targets to be retweeted
by their followers. Our method provides a way to identify these special users as
brokers of information between different groups using as only input the follower
network.

From the sociological point of view, the way that the activity localizes with
respect to the groups allows us to establish a parallelism with the organization
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of offline social networks. In particular, the theory of the strength of weak ties
proposed by Granovetter to characterize offline social network applies also to an
online network. Furthermore, some of our results can be explained within the
framework of Burt’s brokerage and closure and Aral’s diversity-bandwidth trade-
off theories. The specific properties of Twitter offer an opportunity to study
directly the importance of the links for personal communications or for informa-
tion diffusion. According to these theories, the strong social ties tend to appear
at the interior of the groups or between close groups as it happens for the links
with mentions in Twitter. In addition, the socially weak ties are expected to
be more common connecting different groups and to be important for the prop-
agation of information in the network. This is similar to what we observe for
the links with retweets that concentrate with high probability in links between
dissimilar groups or in intermediary links. Besides the roles assigned by these
two theories to the links, we have found that intermediary users and links are
also an important component to take into account for understanding informa-
tion propagation, in accordance with the theory of structural folds of Vedres and
Stark. The intermediary links tend to be characterized by high bandwidth and
diversity in the context of Aral’s study, and exhibit high information diffusion
efficiency. Based on all these findings, despite the myth of one million friends and
the doubts on the social validity of online links, the simplest connections of the
online network bear valuable information on where higher quality interactions
take place.

Appendix A: Balance between the number of internal
links and links between groups

In this section we discuss in more detail the imbalance between the number
of internal and between-group links that is seen in Figure 3.2C. The objective
of a clustering algorithm is to detect areas of the network with high number
of connections. How is it possible that the overall number of internal links is
lower than that of links between groups? The answer is that OSLOM, as many
other community detection algorithms, is not attempting to optimize the balance
between internal and between-group links in a straightforward manner. The
method searches for areas denser in internal connections than the baseline for
random graphs obtained by reshuffling the links of the original network while
maintaining the node’s in and out-degrees (see Appendix I of the dissertation).

To illustrate this idea, we have generated a benchmark graph formed by
Nc cliques (i.e., fully connected subgraphs) of size Sc each. We add to it Lbet

between-group links connecting nodes of different cliques at random. To quan-
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Figure 3.6: Normalized mutual information as a function of the ratio between
the number of links between groups and internal links in a benchmark. The
benchmark is composed of Nc cliques (fully connected subgraphs) of size Sc each.

tify the level of similarity between the original cliques and the groups detected
by OSLOM, we use the normalized mutual information between partitions NMI
(Danon et al., 2005; Lancichinetti et al., 2009). This quantity is equal to one
when the two partitions of the network in groups, i.e., the original cliques and
the groups detected by OSLOM, are identical. It tends to zero when there is
no relation between the groups. The value of normalized mutual information is
shown in Figure 3.6 as a function of the ratio between the number of links be-
tween groups and the number of internal links Lint = Nc Sc (Sc− 1)/2). OSLOM
is able to detect the planted cliques even for high values of the ratio, higher in
any terms than the values seen in the follower network that we study. Note the
performance of the method improves with larger groups and with a larger number
of cliques.

The connections between groups are introduced at random, without any clear
statistical preference for connections between two particular groups. OSLOM
detects these random links and ignores them to evaluate which nodes belong to
each group despite the high ratio of between-groups link to internal links. Only
if a systematic bias existed in the connections between certain groups, OSLOM
would detect the groups as a single group.

Appendix B: Results with other clustering algorithms

Here, we check the reliability of the results presented in the main text by repeating
the analysis for clustering algorithms different than OSLOM for various network
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samples.
The reasons to select OSLOM as the main method are the following (i) the

source code is publicly available, (ii) the method is able to analyze the full di-
rected follower network in reasonable amount of time, (iii) it detects the overlap-
ping communities and nodes not belonging to any group, and (iv) the clusters
obtained are statistically significant according to a clear null model (as presented
in Appendix I of the dissertation) (Lancichinetti et al., 2011)4. The other algo-
rithms that we test here meet the following minimal conditions: (i) the methods
are available online in the form of software tools; (ii) they are able to deal with
relatively large samples of dense graphs in a reasonable amount of time. We have
found several methods satisfying these conditions and we show in the remainder
results for groups detected by:

1. Infomap (Rosvall and Bergstrom, 2008, 2011)5,

2. Moses (McDaid and Hurley, 2010)6,

3. A message-passing algorithm proposed by Raghavan et al (Raghavan et al.,
2007; Leung et al., 2009) that we refer to as “Real-time” method,

4. Louvain method for community detection based on modularity optimization
(Blondel et al., 2008)7.

We apply each of the clustering algorithms to three samples of the follower
network: the full network, the snowball sample of the network (i.e., all nodes and
all directed connections between them within 3 neighbors from a random seed
in the symmetrized version of the network) and the full network with all hubs
removed (i.e., nodes having more than a thousand of followers).

Internal links

The links with mentions are more abundant than the follower links for groups
of size up to 150 users. Larger groups do not behave in the same way and the
fraction of links with mentions falls to the baseline. We find a similar signal
when the groups are extracted with other clustering algorithms, see the sum-
mary in Table 3.2. The results for the full network for 2 out of 3 algorithms
tested are in qualitative correspondence with the results of OSLOM (see Fig-
ure 3.7). Furthermore, Infomap’s results show the signal for all the network
samples (see Figures 3.7 to 3.9). OSLOM and Infomap are supposed to be one of

4 Source code available at http://www.oslom.org. 5 Source code available at

http://www.tp.umu.se/~rosvall/code.html. 6 Source code available at

http://clique.ucd.ie/moses. 7 Implementations available at
https://sites.google.com/site/findcommunities/.
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Figure 3.7: Internal activity for different clustering algorithms. Fraction f of
internal links as a function of the group size in number of users. The struc-
ture of the figure reproduces Figure 3.3. The curve for the follower network
(black circles) acts as baseline for mentions (red squares) and retweets (green
diamonds). Other curves correspond (from bottom to top) to fractions of links
with: 1 non-reciprocated mention (triangles up), 3 mentions (triangles left), 6
mentions (triangle down) and more than 6 reciprocated mentions (triangle right).
Note that if mentions/retweets were randomly appearing over follower links then
the red/green curves should match the black curve.
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Figure 3.8: Internal activity for different clustering algorithms for the snowball
sample of the network. Fraction f of internal links as a function of the group size
in number of users. The structure of the figure reproduces Figure 3.7.
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Figure 3.9: Internal activity for different clustering algorithms for the sample of
the network without hubs. Fraction f of internal links as a function of the group
size in number of users. The structure of the figure reproduces Figure 3.7.
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Whole network 2, 408, 534 48, 776, 888 4 4 - 4 7 3.7
Snowball 3 hops 175, 078 10, 356, 020 4 4 4 7 4 3.8
No hubs 2, 395, 415 23, 404, 103 - 4 4 7 7 3.9

Table 3.2: Summary of the results for different clustering algorithms and various
samples of the network. We evaluate the trend of links with mentions to con-
centrate inside groups. A hyphen is inserted if the results are not available, i.e.,
the clustering algorithm has crushed or has been running for a long time without
finishing.

the most trustworthy methods for community detection (Lancichinetti and For-
tunato, 2009b; Lancichinetti et al., 2011). The figures reveal that the fraction of
links with mentions inside of groups is higher than the fraction of any links inside
groups irrespectively of the algorithm and the network sample used. In case of
all clustering algorithms, the effect is not visible for groups larger than 100-5, 000
users (this number varies for different algorithms). Finally, taking into account
the number of mentions and whether they are reciprocated, the results show a
remarkably consistent pattern. The more mentions, especially reciprocated, the
link has the higher the probability that it is inside of a small group, indepen-
dently on the community detection algorithm used or the sample of the network
considered (see Figures 3.7 to 3.9).

Links between groups

In order to check whether the interaction localization patterns in the links be-
tween groups (discussed in Figure 3.4) can be reproduced with groups obtained
by other clustering methods, we repeat the analysis of the group-group links us-
ing the groups found by Infomap. We present the results in Figure 3.10. Even
though shape of some of the curves is different, the main qualitative results
confirm the trends observed with OSLOM. Mentions appear less often between
groups and tend to concentrate in the links between similar groups, while retweets
appear more often between groups and tend to concentrate in the links connect-
ing groups with medium or low similarity. The difference in similarity is observed
irrespectively of the size of the groups of origin and destination of links (compare
Figures 3.10E and 3.10F)
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Figure 3.10: Group-group activity for Infomap for the network sample without
hubs. The structure of the figure reproduces Figure 3.4. (A) Distribution of
the number of links in the follower network between groups as a function of the
size of the groups. (B) Fractions f of links of the different types (follower, with
mentions and with retweets) as a function of the size of the group at the link
origin, and (C) at the targeted group. (D) Frequency of between-group links as
a function of the group-group similarity for the different type of links. (E) Ratio
between the average group similarity for the between-group links with mentions,
or (F) retweets, and the follower network as function of the size of the groups of
origin and destination.
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Figure 3.11: Intermediary links for Moses for the network sample without hubs.
(A) Distribution of the links in the follower network (black curve), those with
mentions (red curve) and retweets (green curve) as a function of the number of
non-shared groups of the users connected by the link. (B) Ratios between these
distributions and the follower network. (C) Distribution of the number of groups
to which each user is assigned

The role of the intermediary users and the intermediary connections can only
be investigated with clustering algorithms capable of detecting overlapping com-
munities, and so capable of assigning nodes to more than one group, i.e., with
OSLOM and Moses. The distributions of number of groups a user belongs to for
the two clustering algorithms are shown in Figures 3.2B and 3.11C, respectively.
The results of the analysis of the intermediary links for OSLOM are presented
for the full network in Figure 3.5. Here we present the results for the Moses al-
gorithm for the sample of the network with removed hubs (see Figure 3.11). The
shape of the curves, especially for the ratios of distributions for different types of
links, is consistent for the two clustering algorithms. The probability of having a
retweet over an intermediary link steadily grows with the number of non-shared
groups by the interacting users until it reaches a maximum and then decreases
(see inset of Figure 3.5C and Figure 3.11B).
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Appendix C: An alternative procedure to validate our
results

The Granovetter’s theory of the strength of weak ties has two formulations. The
macroscopic formulation predicts strong ties to be inside of communities, whereas
weak ties as the bridges between these communities. The microscopic formulation
states that strong ties happen between users having many friends in common, and
vice versa. Since the main text focuses on the communities here we also show
that in fact the microscopic prediction takes place in this social system as well.

Figure 3.12: Distribution of users’ similarity for pairs of users connected by a
follower link (black circles), by a link with a mention (red squares) or by a link
with retweet (green diamonds). Inset: ratio between these distributions taking
the follower network as a baseline.

Jaccard similarity of two users is equal to number of shared followers by the
two users divided by total number of unique followers the two users have. In
Figure 3.12 we plot the distribution of the similarity for pairs of users connected
with a follower link with or without mention and retweet interactions. The dis-
tribution of similarity for the links with mentions is shifted to the right, showing
that indeed mentions tend to happen between users who share contacts. This
result and the finding that mentions are more abundant inside of communities
are consistent with the expectations of the Granovetter’s theory.
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Chapter 4

Predicting types of groups based
on identity and bond theories

In this chapter, we use network theory to develop metrics that quantify some
of the characteristics of identity-based and bond-based groups, which was char-
acterized in Subsection 1.5.4. We show that the metrics can be used to make
accurate predictions of group type with statistical classifiers. In this study we
characterize and compare two different sets of groups, i.e., declared and declared
groups in Flickr (see Subsection 1.6.5). We measure their overlap as well as their
social and topical properties.

4.1

Introduction

The theories of common identity and common bond (Prentice et al., 1994) about
the creation of social communities affirm that people join groups driven by either
the interest in the group as a whole or by strong personal ties with other members,
respectively. As a result, depending on the prevalent motivation of members,
spontaneously generated groups can be categorized as either topical or social. The
theories assume that the two types of groups have distinct and well recognizable
traits that characterize them (see Subsection 1.5.4).

In recent years, the theories have been widely commented and elaborated by
social scientists from a theoretical perspective and through small-scale experi-
ments both in online and offline settings (Sassenberg, 2002; Utz and Sassenberg,
2002; Ren et al., 2007), but a validation over large-scale datasets together with
the development of rigorous, automated methodologies to distinguish the group
types is missing. Indeed, the availability of big data from OSNs provides the op-
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portunity to study the dynamics of the online communities from a data-mining
perspective (Mislove et al., 2007; Negoescu and Perez, 2008; Kairam et al., 2012).
None of those experiments, however, have been directly aimed at verifying the
common identity and common bond theory.

In this chapter, we contribute to fill this gap by proposing a set of general
metrics based on the theory. We establish the ground truth in an editorial pro-
cess by labeling groups as topical or social. We show that the metrics’ values
computed on a large corpus of groups extracted from Flickr confirm the cardinal
points of the theory are indeed good predictors of the group type. In addition,
we repeat the same analysis on groups identified by a graph-based community
detection algorithm. This allows us to compare the user-generated communities
to the automatically detected ones not only from a structural perspective but
also along the dimensions of sociality and topicality. Since community detection
techniques have been largely employed in recent years to describe the structure
of complex social systems (Fortunato, 2010), the need for a clearer assessment
of the meaning of the detected clusters has been often expressed from different
angles (Lancichinetti and Fortunato, 2009a; Yang and Leskovec, 2012), but never
completely satisfied. Our study also contributes to shed light on this matter.

To the best of our knowledge, this is the first attempt of formalization of the
common identity and common bond theory, and of its validation over a large and
diverse set of user communities. The obtained results open a new perspective on
the semantic interpretation of implicit and explicit user groups in OSNs.

Our main contributions are summarized as follows:

• Translation of the common identity and common bond theory into general
metrics applicable to social graphs. An insightful characterization of a large
group dataset from Flickr is performed using the proposed metrics.

• Comparison between user-declared groups and groups discovered by a com-
munity detection algorithm, both in terms of their overlap and their prop-
erties of sociality and topicality.

• Design of a method to predict whether a group is social or topical, based
on the defined metrics. Prediction on the user-generated groups from the
Flickr data yields surprisingly good results.

For the prediction task we perform statistical classification that is introduced
to the reader in the following subsection. Related work is described in the sub-
sequent subsection. The description of the metrics, the comparison between
declared and detected groups, the detailed description of the prediction method
and its results are presented in the next sections.
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4.1.1 Statistical classification

In machine learning and statistics, classification is a problem of identifying to
what category an item belongs, on the basis of a set of other items. The method
that performs the classification task is known as a classifier. A wide variety
of methods has been proposed to solve this task (Caruana and Niculescu-Mizil,
2006). Here, we introduce the problem and describe briefly how to evaluate
accuracy of results of a classifier.

In classification task each item is represented by a set of features with integer,
real or categorical values. These features are known for all the items. The
classifier can be understood as a mathematical function that maps features of an
item to a category. This function can be learned in a supervised or unsupervised
fashion. In supervised learning the function is learned from a training set of items,
whose category, also known as class, is given explicitly. In unsupervised learning
the function is implied a priori without any training set, usually through a cost
function in clustering algorithms. The simplest supervised classifiers are based
on linear or logistic regressions. The category is known only for the training set.
The classifier learns the prediction model based on the training set and tries to
make accurate predictions on the testing set.

Actual class (measured)
P′ N′

Predicted class
(expected)

P TP (correct results) FP (spurious results)
N FN (incorrect absence ) TN (correct absence)

Table 4.1: Confusion matrix of a binary classification problem. The variable
to be predicted (the dependent variable)) can take two values: positive (P) or
negative (N). The terms positive and negative refer to the classifier’s prediction,
and the terms true and false refer to whether that prediction corresponds to the
result of observation.

The number of classification categories, i.e., classes, can vary. In practice
binary classification with only two categories is most frequently used. The classes
are named as positive and negative, both for the actual and predicted classes.
Furthermore, the predictions are called true positive, false positive, false negative,
and true negative, to mark the outcome of the prediction, as shown in Table 4.1,
where terms “positive” and “negative” refer to the classifier’s prediction, and
the terms “true” and “false” refer to whether that prediction corresponds to the
result of observation. One of the ways of measuring how good the classifier is
predicting the classes of items in the testing set is

accuracy =
TP + TN

TP + TN + FP + FN
, (4.1)
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that is a ratio of the number of correct predictions and the number of all items.
However, the accuracy does not provide complete information about the perfor-
mance of the classifier. If we deal with a strongly unbalanced set of items; e.g., a
set of items where there are many more items of negative than positive class; we
can artificially inflate the accuracy by predicting the class of all the items as neg-
ative. This problem is known as the accuracy paradox. For that reason another
methods are used to evaluate a classifier, some of which we describe below.

Figure 4.1: An illustration of measures of the performance of a binary classifica-
tion. The actual class of the items is marked both for the positive class (filled
circles) and the negative class (open circles). The ellipse in middle contains the
elements predicted as positive. The green regions show true predictions, i.e.,
correct results, while the red regions represent false predictions, i.e., errors. Ad-
ditionally, true positive rate (TPR) and false positive rate (FPR) are illustrated.

Typically a binary classifier has a parameter that affects its outcome. For
instance, the parameter can be the discrimination threshold of the mapping func-
tion above which the prediction is positive and below which it is negative, or vice
versa. The accuracy and precision depend on the value of this parameter. Other
relevant measures of performance used in such circumstances are true positive
rate

TPR = TP/P = TP/(TP + FN ), (4.2)

and false positive rate

FPR = FP/N = FP/(FP + TN ). (4.3)

The TPR measures how many correct positive results occur among all positive
items, while the FPR quantifies how many incorrect positive results occur among
all negative items, as shown in Figure 4.1. Both TPR and FPR take values from
0 to 1.

One of the most common and established ways of demonstrating the perfor-
mance of a binary classifier is receiver operating characteristic curve (ROC). The
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ROC is a figure that plots TPR (on y-axis) versus FPR (x-axis) as the discrim-
ination threshold of the classifier is varied, depicting relative trade-off between
true positive and false positive. An illustration of the ROC is shown in Figure 4.2.
Each instance of the confusion matrix for the given threshold represents one point
in the ROC space. The best possible prediction would be represented by a point
in the upper left corner of the ROC space, corresponding to FPR = 0 (no false
positives) and TPR = 1 (no false negatives). A completely random prediction
would be represented by points along the diagonal line from the left bottom to
the top right corner. Note that the results of a consistently poor predictor can
simply be inverted to obtain a good predictor. Finally, the area under the curve
(AUC) in the normalized units is equal to the probability that a classifier will
rank a randomly chosen positive item higher than a randomly chosen negative
one. The closer it is to 1 the better is the prediction. The AUC is commonly
used to compare performance of different classifiers.

Figure 4.2: An illustration of the receiver operating characteristic curve (ROC).
The diagonal corresponds to completely random predictions, while the solid line
corresponds to results of an exemplary classifier. The large black dot corresponds
to the results of a perfect classifier.

The learning process optimizes classifier’s parameters to make the classifier
fit the training data as well as possible. However, in general, the classifier will
not fit the validation data as well as it fits the training data. This is a result
of overfitting, which is particularly likely to happen when the size of the set of
training items is small or the number of parameters in the classifier is large. The
overfitting consists of memorizing training data, rather than generalizing it in
order to retrieve the trends. In an extreme case, the classifier can completely
memorize the training data and make perfect predictions for the training set, but
it will fail drastically when making predictions about new or unseen data.

Cross-validation helps to mitigate the overfitting by repeatedly partitioning
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the data into training and testing sets. Each partition is called a fold and is
obtained randomly. One performs the classification task for each of the folds and
calculates the performance of the classifier as an average over all the folds.

4.1.2 Related work

Social and thematic components of communities have been widely studied in
social science. Nevertheless, the principles behind the common identity and com-
mon bond theories have never been translated into practical methods to catego-
rize groups, nor tested on large datasets. On the other hand, data-driven studies
have investigated social and thematic components separately when characterizing
groups (Cox et al., 2011). Preliminary insights on the interweavement between
such dimensions have been given in exploratory work on Flickr, where signals of
correlation between social density and tag dispersion in groups is shown (Prieur
et al., 2008). In this chapter, we go far beyond that point, defining metrics that
can be used to predict if a group is social or topical and testing their effectiveness
against a reliable ground truth.

Since the emergence of online social media, the global structure, evolution,
and dynamics of groups have been investigated over large-scale and heterogeneous
datasets (Grabowicz et al., 2013b). Evolution of groups has been characterized
as a broad phenomenon (Mislove et al., 2007; Cox et al., 2011) that is dependent
on the nature of the group (Cummings et al., 2002), its intrinsic fitness (Grabow-
icz and Egúıluz, 2012) and on the density of social ties connecting its members
(Backstrom et al., 2006). Dependency of activity and connectivity on group size
has been studied in several platforms (Grabowicz et al., 2012; Kairam et al.,
2012; Gonçalves et al., 2011), showing relations to Dunbar’s theory on the upper
bound of around 150 stable social relationships for an average human (Dunbar,
1998). Besides activity, similarity between users is an important dimension in
modeling individual users in groups (Tang et al., 2011), particularly given that,
to a large extent, users of OSNs tend to aggregate following the homophily prin-
ciple (Aiello et al., 2012). Nevertheless, similarity is not necessarily the best
indicator for group activity and longevity, as diversity of content shared between
group members is a relevant factor to keep alive the interest of members (Ludford
et al., 2004).

At a finer scale, social communities can be described in terms of user engage-
ment. From a quantitative perspective, the amount of participation of members in
activities related to the group is varied and dependent on group size (Backstrom
et al., 2008). Intra-group activity has been characterized in terms of propensity
of people to reply to questions of other members (Welser et al., 2007), coherence
of discussion topics (Gloor and Zhao, 2006), or item sharing practices (Negoescu
and Perez, 2008). Modeling inner activity of groups has helped in finding effec-
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tive strategies to predict future group growth or activity (Kairam et al., 2012),
recommend group affiliation, or enhance the search experience on social plat-
forms (Negoescu et al., 2009).

Besides the analysis of user-declared groups, communities detected with the
graph-based algorithms are supposed to represent meaningful aggregations of peo-
ple where social interactions take place among members (as shown in Chapter 3).
Nevertheless, even if synthetic methods to verify the quality of clusters have been
proposed (Lancichinetti and Fortunato, 2009a), the question of whether such ar-
tificial groups capture some notion of community perceived by the users remains
open. Although the computation of cluster-goodness metrics over user-created
groups gives useful hints about their structural cohesion (Yang and Leskovec,
2012), a direct comparison between user-created groups and detected communi-
ties is still missing, particularly in terms of the amount of sociality or topicality
they embed.

4.2

From theory to metrics

Based on the theoretical principles of common identity and bond theories (see
Section 1.5.4), it is possible to construct metrics to differentiate between the
two types of groups. In particular, it is possible to quantify the reciprocity
of interactions, and the topicality of the information exchanged between group
members. For the representation of the system under study we adopt a generic
multidigraph model that fits most of the current OSN platforms. Members are
represented as nodes, and each distinct interaction between any two members
is represented by a directed arc. Nodes can belong to multiple groups and we
associate, with each group, a bag of user-generated terms (e.g., tags, group posts).

Next, we describe: i) reciprocity metrics, used to quantify group sociality;
ii) entropy of terms, to determine how broad is the topic of discussion within a
group; and iii) activity metrics, to measure the liveliness of the group.

4.2.1 Reciprocity

Reciprocity occurs whenever a user interacts with another user and that user
responds her at any time later with the same type of interaction. We define
intra-reciprocity of a group g as:

Rint
g =

Lint,rec
g /2

Lint,rec
g /2 + Lint,nrec

g

, (4.4)
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where Lint,rec
g and Lint,nrec

g are, respectively, the number of reciprocated and non-
reciprocated links internal to the group g. Correspondingly, the inter-reciprocity
at the border of the group is defined by Rext

g , accounting for the reciprocity
between members and non-members.

We normalize the intra-reciprocity score using the average reciprocity value〈
Rint
g

〉
over all groups:

tg =
Rint
g〈

Rint
g

〉 . (4.5)

The larger the intra-reciprocity, the higher the probability that the group is social.
Alternatively, to compensate for the effect of the correlation between reciprocity
and the number of internal interactions, and to account for local effects, the
intra-reciprocity can be normalized by the inter-reciprocity:

ug =
Rint
g + 1

Rext
g + 1

. (4.6)

We add 1 to both numerator and denominator to reduce the fluctuations of ug
at low values of Rext

g . This relative reciprocity compares the reciprocity between
the members with their reciprocity toward people not belonging to the group. It
reflects how sociality of group members distinguishes itself from the environment.

4.2.2 Topicality

The set of terms T (g) associated with a group indicates the topical diversity of
the group. Thus we measure the Shannon entropy of the group as

H(g) = −
∑
t∈T (g)

p(t) · log2 p(t), (4.7)

where p(t) is the probability of occurrence of the term t in the set T (g). The
higher the entropy, the greater is the variety of terms and, according to the theory,
the more social the group is. Conversely, the lower the entropy, the more topical
the group is. In addition, since not all groups have the same number of terms
and the entropy value grows with the total number of terms, we introduce the
normalized entropy hg, which is normalized by the average value of entropy for
the groups with the same number of terms:

hg =
H(g)

〈H(f)〉|T (g)|=|T (f)|
. (4.8)
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4.2.3 Activity

Even if, for the considered theory, activity is not a discriminating factor between
social and topical groups, it is useful to characterize the liveliness of a community.
Activity is quantified in terms of the number of internal interactions normalized
by the expected number of internal interactions for a set of nodes with the same
degree sequence:

ag =
Lint
g

(K in
g K

out
g )/E

. (4.9)

Kout
g and K in

g are total numbers of interactions originated by members of the
group g or being targeted to members of this group, where E is the total number
of interactions in the network. If this property has a value higher than 1, then
the number of internal interactions is higher than the number of interactions
expected in a random scenario with the same group activity volume.

Another way of measuring activity of a group is by comparing density of its
internal interactions with the density of its external interactions:

bg =
Lint
g /(sg(sg − 1))

Lext
g /(2(N − sg)sg)

, (4.10)

where sg is the cardinality of group g and N is total number of nodes in the net-
work. Values of bg greater than 1 indicate a density of internal interactions higher
than interactions between the group and the rest of the network. This metric
effectively compares intensity of interactions between members of the groups with
the intensity of their interactions with the entire network.

4.3

Dataset and preprocessing

The wide variety of user groups and the richness of interaction types make Flickr
an ideal platform for our study. We use only public, anonymous data retrievable
via the Flickr public API, until the end of 2008. Table 4.2 summarizes the data
described below.

comments favorites contacts declared groups detected groups
238M 112M 71M 504K 646K

Table 4.2: Total number of interactions and groups.
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4.3.1 User interactions

We collected three types of pairwise, directed interactions:

Comments. User u comments on a photo of user v. This interaction is medi-
ated through the photo. We filter out the comments of users on their own photos,
obtaining a total of 238M comments.

Favorites. User u marks one of user v’s photos as a favorite. The interaction
is mediated through the favorited photo. We extract 112M favorite interactions.

Contacts. User u adds user v among his contacts. Social contacts in Flickr
are directed and may be reciprocated. One person can choose another person as
his contact only once and the relation remains in the same state until the contact
is removed. There are 71M contacts in our dataset.

4.3.2 Groups

Users of Flickr can create, moderate and administer their own groups. Most
groups are open, so users can join without an invitation. Others are only by
invitation and joining requires the administrator’s permission. There are over
500K groups in our Flickr dataset.

In addition to user-defined groups (we refer to them as declared), we analyze
the sociality and topicality properties of groups that are not created by users but
are instead found by community detection algorithms (we name these detected
groups). We applied the OSLOM community detection algorithm (see Appendix
I) over the entire network of social contacts in our dataset. We choose OSLOM
because of similar reasons as the ones stated in the previous chapter, i.e., it detects
overlapping communities, which is a natural feature of real groups, it performs
well in recent community detection benchmarks (Lancichinetti and Fortunato,
2009a), and it outperformed other algorithms that we tested. OSLOM detected
646K groups.

4.3.3 Tags

We use tags of the photos as terms for our model. The primary set of photos from
which we extract tags is the photo pool of the group (i.e., the photos uploaded to
the group by its members). Photo pools are available for declared groups only. In
addition, in both declared and detected groups, the interactions between members
of the group that are mediated through photos (i.e., comments, favorites) result
in two additional photo sets from which tags are extracted. We process the three
tag sets separately (pool, comments, favorites), and for each of them we compute
the normalized entropy (hpoolg , hcomg , hfavg ).
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4.4

Group labeling

To determine whether the defined metrics correctly capture the sociality and
topicality of groups, we compare them against a reliable ground truth. We asked
human editors to label groups based on well-defined guidelines extracted directly
from the common identity and common bond theory (Ren et al., 2007). For the
labeling we randomly selected groups meeting the following requirements: i) more
than 5 members, ii) more than 100 internal comments, iii) relative activities acomg
and bcomg higher than 102. The third requirement ensured us that the selected
groups were active well above the expected values in a random case. After this
selection we obtained over 34K declared groups and over 33K detected groups. We
describe the labeling process of such groups in detail in the following subsections.

4.4.1 Information provided to editors

The labeling is based on the human capability of processing the semantics and
sentiment behind text and photos. The labeling was performed to generate a
ground truth of social and topical groups. The editors were asked to make judg-
ments in this respect and were presented with the following information for each
group:

Group profile. The Flickr group profile consists of the group name, description
by the creator of the group, discussion board, photo pool, and map of places where
photos uploaded to the group pool were taken. This information is available only
for declared groups.

Comments. We provide text of all comments that happen between the mem-
bers. Comments are shown in chronological order and are grouped by thread,
if they appear under the same photo. Additionally a link to the photo is also
included.

Tags. Editors are shown the list of the 5 most frequent tags attached to
the photos that mediate the internal comments to the group. The list is sorted
alphabetically.

4.4.2 Labeling guidelines

Human labelers were shown the information described above and asked to catego-
rize groups as either “social”, “topical” or “unknown”. The last case is reserved
for groups for which text is written in a language unknown to the labeler, making
the task impossible to accomplish. Intentionally, no “unsure” category was al-
lowed to keep the categorization strictly binary, as the theory does. Some groups
can be both topical and social, and therefore, difficult to categorize, but for the
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sake of clarity and conformity with the theory we kept the categorization as a
binary task. Editors were provided with specific instructions on how to recog-
nize social and topical groups, and on how to perform the categorization. The
guidelines are summarized as follows:

Comments and photos. By examining comments and photos, find traces of
people who know each other or who have a personal relationship. Knowing each
other’s real names, spending time together, co-appearing in photos, sharing com-
mon past experiences, referencing mutually known places, and disclosing personal
information are all signals of the presence of a social relationship (Collins and
Miller, 1994). The predominance of friendly and colloquial comments (e.g., jokes,
laughter) is another element distinguishing social groups from topical groups. In
topical groups, the atmosphere is more formal and comments tend to be more
impersonal (Sassenberg, 2002). Examples of impersonal comments include ex-
pressing appreciation for photos, praising the photographers, thanking them for
their work, or commenting on any particular topic in a neutral way. As a rule of
thumb, if many personal comments are detected, then the sociality of the group
should be considered high. If such comments are not many (e.g., just between
small subsets of members), but the overall atmosphere of the interaction is rather
personal and friendly, then we consider the sociality of this group as fairly present.
If, on the other hand, comments are mainly impersonal and neutral, sociality has
to be considered low, in favor of higher topicality.

Tags and description. Read the tags and the profile description of the group.
If the tags are semantically consistent, then the topicality of the group should
be considered high, and even higher if the name and description of the group
corresponds to the content of the tags. In some cases, tags or group descrip-
tions can contain words indicating personal relations or events (e.g., “wedding”,
“grandpa”, names, etc.), indicating a higher sociality of the group. Tags can also
contain names of specific locations. Geo-characterized tags can be reasserted by
looking at the map of places where photos were taken. Such tags are a good
indication that the sociality of the group is present, but that has to be confirmed
through the inspection of comments.

The editors labeled the groups after judging the two aspects above. If both
tags and comments are highly social or topical, then the choice of label is straight-
forward. If the tags are highly topical and the comments are not social, then the
group is labeled as topical, and vice versa. If the tags are a bit topical and com-
ments highly social, then the group is labeled as social. The labelers were asked
to read as many comments as needed to arrive to a fairly clear decision.
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4.4.3 Group examples

To provide a sense of how the defined guidelines were applied in practice, we de-
scribe two examples. The first one is a group titled “Airlines Austrian”, tagged
with labels “aircraft”, “airport”, and “spotting.” Photos are from different coun-
tries in Europe and most of them depict airplanes. Members are active in com-
menting and writing comments related on the aircraft theme (e.g., “I just love
this airplane, the TU-154M is just a plane Boeing or Airbus could never de-
sign”). In this case, all of the features are aligned with the concept of topical
group defined in the guidelines. The second group is named “Camp Baby 2008”
and it is described in the main page as a collection of photos of a two-day event
for young mothers taking place at a specific location. Photos depict people at-
tending the event and interacting with each other with a friendly attitude. Tags
and comments often contain names of individuals and references to past common
experiences (e.g., “I love Mindy and can not wait to see her again!!”). Although
the group has a specific topic, its social component is very strong.

In practice, more ambiguous cases can occur and, ultimately, the decision of
the labeler has an arbitrary component, as in every complex annotation process.
Nevertheless, the defined guidelines gave the labelers precise instructions and, as
described next, we recurred to multiple independent editors to assess the quality
of the extracted ground truth.

4.4.4 Labeling outcome

A total of 101 declared groups and 69 detected groups were labeled by 3 people:
two of the authors and an independent labeler who was not aware of the type of
study nor of the purpose of the labeling. The inter-labeler agreement, measured
as Fleiss’ Kappa, is 0.60 for the declared groups, meaning that there exists good
agreement between labelers.

In order to assess the quality of the labels, we also counted the number of mes-
sages exchanged between group members. The counting was done anonymously
in aggregate and the content of the messages was not accessed. Groups labeled as
social contain around twice as many messages between their members compared
to topical groups of similar size. Even if this does not constitute a proof of higher
sociality, intuitively people who get in touch via one-on-one communication are
more likely to have a more intimate social relationship.

The Kappa value for detected groups is around 0.44, revealing lower agree-
ment. A factor that partially determined such result is the lack of information
about the group’s profile, since it is not available for detected groups. Another
cause of the disagreement is a higher variability in the comments. This can hap-
pen because we use a network of contacts for the purpose of finding clusters and
defining detected groups, which may not be the best proxy of personal relations.
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In total we label 565 distinct declared groups and 126 distinct detected groups.
We characterize them in the following section.

4.5

Characterization of groups

We begin the analysis with a direct comparison of the overlap between the de-
clared and detected groups. Then, we characterize the two sets of groups in terms
of the metrics that we introduced in Section 4.2. Finally, we study the relation
between the labels of the declared groups annotated by the editors and the values
of the metrics. Additionally, we report the ratio of groups labeled as social and
topical among both declared and detected groups.

4.5.1 Membership overlap of declared and detected groups

The groups from the two sets share typical properties of groups found in on-line
social networks. The distribution of sizes of groups in both cases is heavy-tailed
and close to power-laws (not shown). Declared groups tend to be much bigger,
having on average 61 members versus 7 members in detected groups.

To test if the groups from the two sets overlap, and to what extent, we measure
the Jaccard similarity between their sets of members. Similarity is computed
for all declared-detected group pairs and for each detected group we select the
declared one with the highest similarity value as the best match. We plot the
average similarity of the best matches as a function of the size of groups in
Figure 4.3a. Zero values of similarity are not taken into account for these averages.
For the purpose of comparison with a null model, in Figure 4.3b we draw the same
plot after randomly reshuffling the members of detected groups, while preserving
their sizes. We observe that the two plots differ in values significantly along
the diagonal, and that the difference between them is substantial, as shown in
Figure 4.3c, meaning that indeed detected groups are, to some extent, similar to
the declared ones. Further insights are shown in Figure 4.3d, where we depict the
distribution of similarities of pairs of groups extracted from a small sector of the
diagonal, having between 32 and 64 members. The figure shows that there exist
multiple detected groups that overlap significantly with declared groups, and that
randomized groups do not show this pattern. This holds for groups of all sizes,
as shown in Figure 4.3e, in which we plot the 91th and 99th percentiles of the
best match similarity for detected groups of various sizes (e.g., 1% of detected
groups of size 20 have similarity with declared groups higher than 0.75, while
for the randomized case 1% of the groups have similarity higher than just 0.05).
Therefore, in some cases, the community detection algorithm finds groups that
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Figure 4.3: (a) Jaccard similarity between declared and detected groups as a
function of their sizes. Diagonal shows an interesting pattern, which (b) is not
reproduced for randomized detected groups. We subtract (b) from (a) and plot
(c) the result. (d) Histogram of the similarity between declared and detected
groups for a sample of groups lying at the diagonal, for both real detected groups
and the randomized ones. (e) 91th and 99th percentiles of the similarity between
declared and detected groups.

87



CHAPTER 4. PREDICTING TYPES OF GROUPS BASED ON
IDENTITY AND BOND THEORIES

are close to the ones defined by users (i.e., declared groups). We present evidences
that this does not occur by chance through the comparison with the randomized
case. Nevertheless, a substantial overlap is found for just a small percentage of
groups. Most of the group pairs have similarity close to 0. Consequently, the
similarity of detected groups to the best-matching declared groups is 0.082, while
for the randomized detected groups it is not much lower, yielding 0.058.

4.5.2 Statistical properties of metrics

Besides directly comparing membership overlap, we study the variation of the
metrics defined in Section 4.2 with the group size. Reciprocity and normalized
entropy have a wide local maximum for groups of sizes between 50 and 100
members, both for declared and detected groups, as shown in Figures 4.4a-d.
This holds for all interactions and all sets of tags, with the exception of contacts,
for which the curves are relatively flat. We have found a similar local maximum
for pairwise interactions in Twitter using various community detection algorithms
in Section 3.5. We perform a randomization of photos between groups, keeping
the number of photos per group fixed. The normalized entropy calculated for
the shuffled photos stays close to 1, as expected, and the maximum disappears.
A possible interpretation of the existence of the maximum is that these sizes
tend to correspond to social groups, while bigger groups are more frequently
topical. Further findings to support this interpretation are presented in the next
subsection.

Strong correspondence of the maxima for normalized entropy and reciprocity
suggests that these properties are correlated, as shown in Figure 4.5. Whereas it
seems straightforward to explain the correlation between reciprocity of comments
and normalized entropy based on commented photos, it is not clear why there is
also a positive correlation with normalized entropy based on other sets of photos.
Apparently, high intra-reciprocity correlates with wider variety of topics covered
inside of that group, and vice versa. The theory predicts that social groups
have high intra-reciprocity and wide variety of topics, while topical groups have
both properties low, which implies the correlation between the two properties.
Therefore, this result is the first signal that predictions of the theory are valid to
some extent.

The values of relative activity both in declared and detected groups are very
high, as presented in Figures 4.4e,f. As expected, activity of randomized groups
exhibits values around 1 for all group sizes. For real groups instead, the value
of relative activity decreases with the size of groups and gets close to 1 for very
large ones. This is caused by the fact that larger groups cannot be as engaging to
the users as smaller groups and the social commitment of their members towards
other members of the group drops. Additionally, we observe a sharp decay in
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the activity for groups of size around 200, in agreement with Dunbar’s theory on
the upper bound of the number of stable relationships manageable by a human.
We have found a corresponding drop in the fraction of links with mentions in
respect to the baseline in Twitter in Section 3.5. The drop in the activity for
detected groups is continuous and more moderate (Figure 4.4f), since community
detection algorithms tend by design to output node clusters with high numbers
of connections between them.

4.5.3 Relation between metrics and group label

Here we analyze properties and values of the metrics for groups labeled through
the editorial process. First, the ratio of groups labeled as social differs between
declared and detected groups. In declared groups we find around 48% social
groups, whereas among detected groups almost 69% are labeled as social. Addi-
tionally, we picked 50 detected groups among the ones that are the most similar
to declared groups. Specifically, we selected them randomly from the 99th per-
centile shown in Figure 4.3. These groups have significant overlap with declared
groups and should share similar properties. Indeed, the ratio of groups labeled as
social among them is closer to that of declared groups and equal to 53%. We con-
clude that detected groups are more likely to be social than declared ones. It is a
somewhat expected result, since clustering algorithms detect dense parts of a net-
work, and so they are inclined to detect areas with more reciprocal connections.
Note that the theory envisions more reciprocal relations in social groups. Thus,
community detection algorithms are more likely to find social groups, however,
determining to what extent it happens is not trivial.
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One of the expectations is that bond-based groups should not be very large,
as the human capacity for stable relationships is limited. As pointed in Sub-
section 4.5.2, the Dunbar number is considered as a possible cap for the size of
such groups, while topical groups do no yield such a restriction. In line with
this expectation, we find that declared groups labeled as social have on aver-
age 35 members, whereas groups labeled as topical have on average around 172
members.
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Figure 4.6: Averages of various properties of topical (black circles) and social
(blue squares) groups as a function of their size. Each point corresponds to 30
groups.

We find insightful differences and similarities in various properties, which we
explore in detail in Figures 4.6 to 4.8. We plot them as a function of the size
of groups as they vary drastically with it, and one needs to compare groups of
similar sizes in order to draw unbiased conclusions.

First, there are almost no differences in the number of photos (not shown),
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Figure 4.7: Averages of various properties of topical (black circles) and social
(blue squares) groups as a function of their size. Each point corresponds to 30
groups.

favorites, and contacts (as in Figures 4.6b,c) inside social and topical groups.
The number of comments is, however, around 2 times higher in social groups
than in topical groups of similar size (Figure 4.6a). More differences can be
found when looking at relative activity (Figures 4.6d-i), which compares the
interaction internal to the group with the overall activity level of users belonging
to groups. In all three types of interaction the relative activity metrics for social
groups yield values from 2 to over 10 times higher than for topical groups. The
activity metric bg compares the density of internal interactions with the density
of external interactions. Therefore this result reflects a stronger focus or even
an isolation of members belonging to social groups from the rest of people they
interact with.

Most importantly, we observe large differences in values of reciprocity and
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Figure 4.8: Averages of various properties of topical (black circles) and social
(blue squares) groups as a function of their size. Each point corresponds to 30
groups.

relative reciprocity of comments and favorites. Social groups exhibit significantly
higher reciprocity than topical groups (Figures 4.7a-f), in line with common iden-
tity and common bond theory. There is no difference in reciprocity of contacts.
A plausible interpretation is that contacts do not reflect personal relations be-
tween connected users, as users often add people they do not know and do not
interact with as contacts in order to follow their content. Finally, we observe sig-
nificantly higher values of entropy and normalized entropy in social groups than
in topical ones (Figures 4.8a,b,d,e). This holds for the tags extracted from pho-
tos commented and favorited between members. Assuming that tags of photos
represent topics of interactions, the result is consistent with bond attachment.
It is expected for members of bond-based groups to cover many different topics
and areas in their interactions, whereas members of identity-based groups focus

93



CHAPTER 4. PREDICTING TYPES OF GROUPS BASED ON
IDENTITY AND BOND THEORIES

their interactions on specific topics. However, this effect is weaker for the tags
extracted from photo pool of the group (Figures 4.8c,f). Apparently, the con-
tent of the photo pool does not always reflect well the interactions and relations
between members of the group.
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Figure 4.9: Dependence of fraction f of groups labeled as social on various met-
rics: based on comments, favorites, contacts, and photo pools. The remaining
(1− f) groups are topical. Each point corresponds to 50 groups.

Additionally, we plot the fraction of groups labeled as social with respect to
group size, activity, reciprocity, and entropy (Figure 4.9). The fraction correlates
negatively with group size, as expected (Figure 4.9a). The correlations with the
number of interactions and relative activity ag are rather weak (Figures 4.9b,c),
whereas, surprisingly, there is a strong dependency on relative activity bg (Fig-
ure 4.9d). For the lowest values of bcomg , 95% of the groups are topical, while for
the highest, 80% of the groups are social. High values of bg can mean stronger
focus on the group, or even an isolation of the group members from the rest of
people they interact with. This result is related to the observation that it is
hard to enter bond-based groups due to strong relations existing between their
members and because high investment is required to create such relations with
them (Ren et al., 2007). Direct reciprocity of interactions, with the exception of
contacts, correlates strongly with the fraction of social groups (Figures 4.9e,f).
This result is expected based on common bond theory. Furthermore, we found
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that the entropy of tags correlates with social groups, but entropy based on other
sources does not (Figure 4.9g). However, we find that our normalized entropy
performs much better than this, and a strong correlation is found both for tags
extracted from comments and from favorites (Figure 4.9h). This shows that the
normalized entropy of tags is a more appropriate method of measuring topical
diversity of communications of a set of people.

4.6

Group type detection

The properties of labeled social and topical groups tend to confirm the validity
of the principles identified by the common identity and common bond theory. A
further confirmation comes from the ability of the defined metrics to predict the
tendency of a group towards sociality or topicality. To this end, we propose and
compare two methods to predict the group type and we test their accuracy over
the corpus of the labeled groups.

4.6.1 Prediction methodology

The first approach we use is a linear combination of the metrics. To this end,
we select the features that are the most related to the sociological theory and for
which we built specific metrics, i.e., tg, ug and hg. Each of them is applied to the
3 different interaction types and bags of tags, which produces a total of 9 values.
We transform the values of the metrics into their t-statistics by subtracting the
average value and dividing them by the standard deviation of the distribution.
Then, we weight the normalized scores evenly by dividing them by the total
number of metrics considered and we finally sum them up to obtain a single
sociality score Sg. All of the components are supposed to score high for social
groups. Therefore, the higher the value of the score, the higher the chance that
the group is social rather than topical. To convert the score into a binary label,
a fixed threshold above which groups are predicted to be social must be selected.
Using this approach, we aim at testing if those metrics, based on the theory, can
be successful in predicting the type of group (social or topical).

The second approach relies on machine-learning supervised methods that use
the metrics’ values as features. Features are combined in a classifier that is first
trained on a sample of labeled data to learn a prediction model. The trained
classifier then outputs a binary prediction for any new group instance defined in
the same feature space. Due to the limited size of our corpus of labeled groups,
we estimate the classifier performance using 10-fold cross validation. We report
results on a Rotation Forest classifier, which performed best in comparison to
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several algorithms implemented in WEKA (Hall et al., 2009). For the classifier
we used a wider set of features than for the linear combination approach, namely:
group size sg and Lint

g , ag, bg, tg, ug, H(g), hg, each applied to the 3 different
interaction types and bags of tags. This results in a total of 22 features. Such a
wide set of features to test if indeed the metrics proposed to distinguish between
the social and topical groups are the best ones for the task. The relative predictive
power of the features is measured through a feature selection algorithm.

4.6.2 Prediction results

The ratio of groups labeled as social increases quickly with the score Sg, as shown
in Figure 4.10a. This summarizes the findings of the previous sections, suggesting
that the features embedded in the score are able to capture well the nature of the
groups. The higher the score, the higher the probability that the group is social;
the lower, the more topical. If we fix the threshold for the Sg value in order to
perform a binary group classification, it is clear that several misclassifications
will occur, especially around the threshold value. An example for threshold at 0
is shown in Figure 4.10a. Conversely, the classifier performs significantly better
and achieves the ratio that adheres much more to the actual ratio of social and
topical groups.

Both methods, however, fail more frequently for groups with mixed social and
topical features. When the score is around zero, groups can be either social or
topical, or both, and the decision about the nature of the group is more difficult.
The prediction accuracies of the classifier and of the score-based predictions have
an evident drop of performance around 0 (Figure 4.10b). The accuracy at the
extreme values of the score is close to 0.95, while it falls below 0.6 for groups with
a score close to 0. On the other hand, this drop appears also in the agreement
between two of the human labelers, measured as a ratio of groups that have been
given the same label. Apparently, this is a shortcoming of the binary classification
itself, as opposed to multi-label classification.

The overall performance of the two approaches can be compared fairly through
ROC curves (Figure 4.10c), which astray from the selection of a fixed threshold.
The curve for the classifier (computed for the 10-fold cross validation) always
performs better, and this is reflected in the considerably higher AUC value and
accuracy, as shown in Table 4.3.

In addition, to determine the most predictive features, we rank the features
using chi-square feature selection. The top 5 features are, in decreasing order
of importance: hcomg , tcomg , ucomg , hfavg , and bcomg . The selected set is the opti-
mal for the prediction performance: retraining the classifier on such restricted
set of features results in stable performance, as shown in Table 4.3. The top
4 most predictive features correspond directly to the expectations of the theory
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and results of the analysis from Section 4.5. Reciprocity-based metrics and nor-
malized entropy are significantly more predictive than other features. The high
position of relative activity bcomg is rather unexpected. However, its importance
and interpretation is discussed in Section 4.5.
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Figure 4.10: Comparison between the prediction methods. (a) Dependence of the
ratio of the groups labeled as social on the score for the score-based (threshold
at 0) and the supervised classifiers. (b) The accuracy of prediction of the two
techniques and agreement between two of the labelers against the score values.
(c) ROC curves for the prediction with the two techniques.

Method Accuracy AUC
Score 0.763 0.749

Classifier 0.801 0.879
Classifier χ2

top5 0.803 0.872

Table 4.3: Group type prediction performance using i) the score with threshold
at 0, ii) 10-fold cross validation on a Rotation Forest classifier trained on all the
features, or iii) the same classifier trained on the set of top 5 predictive features,
according to the chi-square feature selection.
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4.7

Conclusions

Common identity and common bond theory indicates a high-level characteriza-
tion of topical and social groups. We propose metrics capturing reciprocity of
interactions and entropy of user-generated terms, to realize the concepts discussed
in the theory and to measure sociality and topicality of groups. We label a set of
groups from Flickr as either topical or social based on semantics and sentiment
behind text and photos. We leverage this ground truth to show that the metrics,
combined with a machine-learning approach, predict the group type with high ac-
curacy. Moreover, we note that the degree of isolation of the group activity from
the rest of the social network, measured in terms of the density of interactions, is
a good predictor of the group type, in addition to the elements identified in the
theory. Besides the main prediction results, the supporting analysis of the group
properties in terms of the identified dimensions confirms the theory from different
angles and highlights other interesting findings. In particular, dependencies of
the metrics with the group size confirm previous observations about the effective
size of social communities, peaking around rather small sizes and being limited
by a cap of 100-200 members.

The study is complemented with a comparison of the structure and sociality
and topicality traits between declared groups and groups from a community de-
tection algorithm. Declared groups do not overlap much with detected groups
on average, but they match each other significantly more than the random case
for groups of comparable sizes. Furthermore, detected groups are more often
social than the declared ones. A natural question is if this result holds also for
declared groups from other OSNs and for groups detected with other clustering
algorithms. For instance, one can expect that system-wide privacy settings of
groups may affect the way the groups are used. This is an interesting question
for the future research.

Extensions to the study include a more exhaustive extraction of detected
groups using a different network than the network of contacts e.g., we find mutual
comments to carry more social traits than the contacts do. Another interesting
extension could be multi-label classification of groups, in order to better cate-
gorize groups with mixed social and topical components. Furthermore, relations
between tags could be taken into account, e.g., identifying synonyms between
different tags would improve the accuracy of the prediction.

Finally, development of the method for the group type detection can con-
tribute to the design of OSNs. The service offered to group members could be
tailored depending on the nature of a group. Such contextualized services could
range from the change of the user interface (e.g., highlight more the content
shared in a topical group or the members and their activity in a social group),
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or the type of advertisement shown (e.g., ads related to the topic of conversation
for topical groups, while viral-marketing campaigns for social groups).

99



CHAPTER 4. PREDICTING TYPES OF GROUPS BASED ON
IDENTITY AND BOND THEORIES

100



Chapter 5

A model coupling link forma-
tion and mobility

Individuals tend to be friends with the people they spend time with and they
choose to spend time with their friends, inextricably entangling physical location
and social relationships (see Subsection 1.2.7). As a result, it is possible to pre-
dict not only someone’s location from their friends’ locations but also friendship
from spatial and temporal co-occurrence. Although several models have been
developed to separately describe mobility and the evolution of social networks,
there is a lack of studies coupling social interactions and mobility. In this chap-
ter, we introduce a new model that bridges this gap by explicitly considering the
feedback of mobility on the formation of social ties. For validation we use data
coming from three OSNs (Twitter, Gowalla and Brightkite).

5.1

Introduction

People tend to interact and maintain relations with geographically close peers,
a tendency reflected by the decay of the probability to interact with physical
distance, described in Subsection 1.2.7. Furthermore, it has been shown that
online (Crandall et al., 2010) and offline (González et al., 2006) social links can
be inferred from user co-occurrences in space and time (see Figure 5.1A) and,
likewise, that the location of a person can be predicted from the geographic posi-
tions of his or her online friends (Backstrom et al., 2010). Some further aspects of
the relation between geography and online social contacts have been studied such
as the probability that a link at a given distance closes a triangle (Liben-Nowell
et al., 2005; Lambiotte et al., 2008; Scellato et al., 2011), the connections between
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Figure 5.1: The probability of a link as a function of the number of spatio-
temporal coincidences: (A) measured in Flickr for a spatial box size of 0.001◦

and a time window of one day, adapted from (Crandall et al., 2010); (B) assumed
in our TF model, for the same size of spatial box and assuming that one time
step of the simulation corresponds roughly to one day.

users in different countries (Takhteyev et al., 2012), the social interactions and
mobility in emergency situations (Lu et al., 2012) or the overlap between users’
ego networks and how it decays with the distance (Volkovich et al., 2012). Multi-
parametric inference methods have been applied to empirical data with the aim of
predicting link presence and users’ locations (Wang et al., 2011; Cho et al., 2011;
Sadilek et al., 2012). These works show that the accuracy of link prediction is
considerably improved by taking into account the geographical information, and
that the accuracy of location prediction is enhanced when the online social links
are provided.

The wide availability of geo-localized data has allowed for a detailed explo-
ration of human mobility (Brockmann et al., 2006; González et al., 2008; Balcan
et al., 2009; Wang et al., 2009; Brockmann, 2010; Phithakkitnukoon et al., 2012;
Simini et al., 2012). The length of displacements between consecutive locations
of a person was found to follow a broad distribution, well fitted by a power-law
decaying function (Brockmann et al., 2006; González et al., 2008). Mobility mod-
els are introduced in more detail in the next subsection. However, despite the
supporting evidence (Phithakkitnukoon et al., 2012), most of these models lack
a connection between mobility and social interactions (Giannotti et al., 2012).

In this study, we lay a bridge between these two worlds by introducing a
model coupling social tie formation and spatial mobility. The model simulates the
movement of individuals and creates links between them when they are physically
close mimicking the effect of face-to-face interactions. We study the model both
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numerically and analytically and confront its results with empirical data obtained
from three OSNs.

5.1.1 Models of mobility

Diffusion plays an important role in physics and various other sciences. Brownian
motion is a mathematical model used first to describe movements of a particle
suspended in a fluid that result from frequent bombardments by fast atoms or
molecules. It is known that under such conditions the movement of the particle
is described by a normal distribution (Mörters et al., 2010), namely that the
jump lengths between consecutive locations in equal time intervals are normally
distributed. Note that the normal distribution decays faster than exponentially.
It follows that the average distance from the starting positions of the particle,
known as the radius of gyration rg, grows as a square root of time rg ∝ t0.5.
Brownian motion is broadly found in nature understood as material world.

Considerably different mobility patterns are found in movements of animals
and human beings. In these cases, usually the distribution of jumps between
consecutive locations is heavy-tailed. Therefore, movements of animals such as
monkeys, marine predators, and humans, are approximated better with Lévy
flight than the Brownian motion (Giannotti et al., 2012). Here, we focus on the
human mobility. It has been reported that the probability of the displacements for
humans follows a power-law (González et al., 2008; Song et al., 2010a; Brockmann
et al., 2006)

P (∆r) ∼ ∆r−β . (5.1)

Naturally, various studies provide different exact values of the exponent 1.5 <
β < 2.0, which depends on the specific system under study. Note that such
distributions allow occasionally very far travels that correspond to the heavy tail
of the distribution. As a consequence, the radius of gyration rg diverges for β < 2.
Random walks having this property are called super-diffusive. However, it has
been measured that the radius of gyration for human grows in time slower than for
the Brownian motion, even slower than logarithmic growth. In fact, human tend
to come back home and to known places, what leads to an ultra-slow diffusion
(Song et al., 2010a). Such properties can be obtained by assuming a cutoff in
the distribution of jump lengths and adding memory effects to mobility model.
The specific form of the distribution and the cutoff depends mainly on the time
interval used for the measurements and on the system under study.

Several more advanced models have been introduced. For instance, the asym-
metry of the travels was studied by considering ellipsoidal boundaries to the
average individual displacements and analyzing the scaling of the radius of gyra-
tion (González et al., 2008). Memory effects in the individual displacements were
also analyzed, finding that individuals’ home and workplace have a considerable
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TOTAL(×103) US(×103) UK(×103) DE(×103)
N L N L N L N L

Twitter 714 15, 000 132 1, 100 28 117 3.8 8.5
Gowalla 196 950 46 350 5.2 20 5.2 30

Brightkite 58 214 27 167 3.1 10 1.3 7.2

Table 5.1: Datasets. Number of users (nodes) N and of links L of the networks
obtained from the different geo-localized datasets for the United States (US), the
United Kingdom (UK) and Germany (DE).

impact on their mobility patterns (Song et al., 2010a). These results motivated
the introduction of several mobility models with the aim of explaining the fea-
tures observed in the data (Song et al., 2010a; Simini et al., 2012; Jia et al., 2012;
Szell et al., 2012; Hasan et al., 2012). For the purpose of this study, we couple
the basic mobility models with the network growth models.

5.2

Datasets

We have collected data from OSNs containing both social links and information
about the users’ physical positions. The first dataset was obtained from Twitter
by means of its API.1 We identify over 714, 000 single users, who tweeted using a
GPS enabled mobile device during the month of August 2011 (Ratkiewicz et al.,
2011). If those users reported various locations in different tweets, the most
recent one is taken for the purpose of the study. The other two datasets contain
information referring to the users’ location check-ins and the social networks
of Gowalla and Brightkite (Cho et al., 2011). Both were location-based OSNs,
in which users can check-in at their current locations and receive information
about services in the area as well as about their friends’ positions. Gowalla
and Brightkite are no longer active but the data is available online.2 The main
statistical features of our three datasets are displayed in Table 5.1.

Social interactions across country borders have particular properties and are
affected by political, linguistic or cultural factors. We overcome this difficulty
by restricting our analysis to the networks within each country. Intra-country
mobility and social contacts account for the large majority of user activity (State
et al., 2013; Ugander et al., 2011). For simplicity, we focus on the three major

1 See Twitter API at https://dev.twitter.com
2 Data available at the Stanford large network dataset collection, http://snap.stanford.edu/

data
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countries with more than one thousand users in each of our datasets: the United
States (US), the United Kingdom (UK) and Germany (DE). Similar results are
found for other countries.

5.3

The TF model

New position of u{
{

{
Detect all

encounters e
in the box of u

Visit a random
neighbour

Jump to
a new location

Starting position
of user u

Created new
social links

Figure 5.2: Schematic of the TF model. The central node is the filled red
circle and its neighbors are marked in blue. Directionality of links is neglected in
this schematic to maintain simplicity.

The model structure is illustrated in Figure 5.2. The initial condition is a set
of individuals located in the last known positions of the online network users as
extracted from the data. At each step of the model, a randomly chosen agent
performs two actions:

1. Travel

(a) Visit a randomly selected friend at his current location with probability
pv.

(b) Otherwise, travel to a new location. The distance of travel is obtained
from a distribution of jump lengths, while the direction is chosen pro-
portionally to the population density at the target distance.

2. Friendship

(a) With probability p, create directed links to agents within a neighbor-
hood of size δ × δ .
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(b) With probability pc, create a directed connection to a randomly chosen
agent anywhere in the system.

The model is iterated until the number of created connections is equal to
the number of links measured in the empirical networks. Despite its simplicity,
the model incorporates several major features of human behavior. The travel
component accounts for both recurring visits to the same location and exploration
of new places and the friendship component generates both face-to-face contacts
and online acquaintances independent of the geography. In the reminder of this
chapter we refer to this model as the TF model.

The model has four parameter pv, p and pc and δ, and the distribution of jump
lengths. Following Ref. (Song et al., 2010a) we consider a power-law distribution
of jump lengths with an exponent of −1.55. The values of the probability p = 0.1
and the box size δ = 0.001◦ are chosen to reproduce the dependence of the
probability of friendship link on the number of daily spatio-temporal coincidences
of users measured in Flickr (Crandall et al., 2010). To this end, we assume that
one time step of the model corresponds roughly to one day and we obtain a good
agreement,3 as shown in Figure 5.1. We have tested different parameter values
and we did not observe any strong differences in the results; different shapes of
the jump distributions are discussed in Section 5.7. The other two parameters, pv
and pc, are explored in the remainder, since, as it will be shown, they are essential
for the final model result. The effect of each of the underlying assumptions is
systematically explored through analysis of model variants in Section 5.9.

5.4

Geo-social properties of the networks

In this section we report six different geographic and social properties of spatial
networks and measure them in Twitter, Gowalla and Brightkite, separately for the
different countries. The results for the United States are presented in Figure 5.3,
while the results for the United Kingdom and Germany are shown in Figures 5.4.

We start by comparing the empirical networks with those generated by the
TF model using a set of metrics. First, we measure the probability of two users to
have a link at a certain distance Pl(d). Defined as the ratio between the number
of existing links at distance d and the total number of users pairs separated by d,
Pl(d) it is constrained to always lie in the interval [0, 1]. It decays slowly with the
distance as a power-law with exponent −0.7, which is followed by a plateau for
very large distances (see Figure 5.3A). This functional shape remains identical

3 Most of our simulations finish in less than a 1, 000 time steps, corresponding to a few years,

which is of the order of magnitude of users’ lifetime.
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Figure 5.3: Network geo-social properties. Various statistical network prop-
erties are plotted for the data obtained from Twitter (red squares), Gowalla (blue
diamonds), Brightkite (green triangles) and the null models (dashed lines), for
the US (see Figures 5.4 for the UK and Germany). The spatial model (magenta),
based on geography, matches well the data in Pl(d), but yields near-zero values
for R(d), Jf(d) and C(d). The linking model (cyan), based on triadic closure,
produces enough clustering, but it does not reproduce the distance dependencies
of Pl(d), R(d), Jf(d) and C(d).

for all the countries and all the datasets considered (Figures 5.4A) and matches
the behavior reported in the literature for online social systems (Liben-Nowell
et al., 2005; Scellato et al., 2011).

A second metric that we consider is the degree distribution of the social net-
works (Figure 5.3B). For Twitter, which has a directed network, we consider the
degrees of its symmetrized version. The distribution P (k) displays heavy tail in
all the datasets, even though there are slight differences between them.

Connections in Twitter typically are not reciprocal (Kwak et al., 2010). Recip-
rocated connections indicate mutual interest between the two users and a closer
type of social relation (Gonçalves et al., 2011; Grabowicz et al., 2013a). To assess
how geography and reciprocity correlate, we measure the fraction of reciprocated
connections as a function of distance R (d) (Figure 5.3C). We find that the reci-
procity decreases with the distance in all the countries analyzed. This trend is
consistent with the idea that stronger relations occur close to where users spend
most of their time, with some longer connections composed of friends who moved,
former residences, online acquaintances, etc. Furthermore, long not-reciprocated
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UK

DE

Figure 5.4: Networks geo-social properties. Various statistical network prop-
erties are plotted for the data obtained from Twitter (red squares), Gowalla (blue
diamonds), Brightkite (green triangles) and the null models (dashed lines), for
the UK and Germany.
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connections may include users following public figures or celebrities.
With the aim of quantifying social closeness between users, we define the

social overlap Jf of two connected users i and j as

Jf =
|Ki ∩ Kj |
|Ki ∪ Kj | − 2

(5.2)

where Ki represents the set of friends of user i. This property is a slightly
modified Jaccard index that accounts for the fact that a node i does not have
itself among its neighbors, while the node j has i among its neighbors, and vice
versa. Without this modification the index could not reach its maximum value
of 1. In Figure 5.3D, the average of the social overlap Jf (d) over all pairs of
connected users is plotted as a function of the distance between them. The social
overlap decreases with the distance. The functional shape of the curves is similar
for all the datasets, even though the overlap level is different for each of them. For
Twitter, we use the symmetrized version of the network to study social overlap
and clustering.

Another well known phenomenon in social networks is triadic closure. As one
individual has a close relation with other two persons, there are high chances that
these two individuals end up creating a social relation between themselves. In
network analysis, a magnitude that quantifies this effect is the average clustering
coefficient C. The effect of the distance can be incorporated by measuring the
distances from each central node i to two neighbors j and k forming a triad,
d = dij + dik, and calculating the network clustering restricted to triads with
distance d. This new function C(d) is the probability of closing a triangle given
the distance d in a triad

C(d) =
∆(d)

Λ(d)
, (5.3)

where Λ(d) and ∆(d) are the numbers of triads and closed triads for the distance
d, respectively. The value of the global clustering coefficient C can be recovered
by averaging C(d) over d. In the datasets, we observe a drop in C(d) followed by
a plateau, which is best visible for the US networks (Figure 5.3E).

Given a triangle, several configurations are possible if there is diversity in
the edge lengths. The triangle can be equilateral, if all the edges have the same
length, isosceles, if two have the same length and the other is smaller, etc. We
estimate the dominant shapes of the triangles in the network by measuring the
disparity D defined as:

D = 6

[
d21 + d22 + d23

(d1 + d2 + d3)2
− 1

3

]
, (5.4)

where d1, d2 and d3 are the geographical distances between the locations of the
users forming the triangle. The disparity takes values between 0 and 1 as the
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shape of the triangle passes from equilateral to isosceles, where one edge is much
smaller than the other two. D shows a distribution with two maxima in the
OSNs (Figure 5.3F), for low and high values. The two most common geometries
of the triangles are: i) all 3 users are at a similar distance, ii) 2 users are close
to each other, while the third one is distant. Since most edges correspond to
small distances, this means that most triangles are constituted by three users
who are all close to each other geographically. However, the stretched isosceles
configuration is also relatively common.

Summarizing, we have defined the following metrics in order to characterize
the networks structure and its relation to geographical distance:

• Pl(d): Probability of linking at a distance d (Figure 5.3A).

• P (k): Degree distribution (Figure 5.3B).

• R(d): Reciprocity as a function of the distance (Figure 5.3C).

• Jf(d): Average overlap as a function of the distance (Figure 5.3D).

• C(d): Clustering coefficient as a function of the triad distance (Figure 5.3E).

• P (D): Distribution of distance disparity for the triangles’ edges (Figure 5.3F).

We will use these metrics in the coming sections to estimate the ability of model
to reproduce social networks comparable with those obtained from the empirical
datasets.

5.5

Model fitting

Next, we will find a compromise between the different metrics and search for the
parameter values for which a given model best fits simultaneously the various
statistical properties. To do so, we define an overall error E to quantify the
difference between the networks generated with the model and the empirical ones.
The parameters of the model are then explored to find the values that minimize
E. We measure the error E [X] for each property X and take the average over
all the properties

E =
1

8

{
E [Pl (d)] + E [P (k)] + E [R (d)] + E [Jf (d)]

+ E [C (d)] + E [P (D)] + E [Nc] + E [Cavg]
}
, (5.5)
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where Nc is number of nodes in all connected components of the network and
Cavg is the undirected local clustering coefficient averaged over the Nc connected
nodes. The properties X integrating E can be scalars, functions or distributions
and encompass different orders of magnitude. We define the error of a property
X as

E [X] =

∑n
i=1

∣∣yXi − fXi ∣∣∑n
i=1

∣∣yXi ∣∣ , (5.6)

where yXi is the i-th observed value of the property X, fXi is the corresponding
i-th value of the property obtained by the model. In the case of a distribution, i
runs over the n measured bins, while for a scalar (such as the number of nodes
or the clustering coefficient) the sum has only one term.

5.5.1 Parameter estimation

E(A) US E

E(C) DE

(B) UK

Figure 5.5: Fitting the TF model. Values of the error E when pv and pc are
changed. The minimum error for each of the plots is marked with a red rectangle.

We perform a Latin square sampling of the parameter space of pv and pc as
shown in Figure 5.5 in order to find the minimum value of E. The parameter
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space is covered uniformly in a linear scale for pv and in a logarithmic one for
pc. For all the countries, the minimum value of the error is obtained for pv in
the interval (0.05, 0.3) and pc in the range (10−3, 10−2). The values of E found
at the minimum are 0.30 for the US, 0.18 for the UK and 0.39 for Germany. For
simplicity, we focus on the Twitter networks only, although similar results are
obtained for the other datasets.

5.5.2 Simulations for the optimal parameters

Figure 5.6: Simulation results: mobility and social networks. Mobility
(upper row) and ego networks (lower row) of 20 random users (different colors)
for the instances of the TF model yielding the lowest error E (see Figure 5.5).

An example with the displacements between the consecutive locations and
the ego networks for a sample of individuals, as generated by the TF model, are
displayed in Figure 5.6. The parameters of the model are set to the ones that
correspond to the minimum of the error E. As shown, the agents tend to stay
close to their original positions. Occasional long jumps occur due to far friend
visits. In this range of parameters and simulation times, the main mechanism for
initiating long distance connections is random linking (controlled by pc). Agents
typically return back to their original positions because this is where most of
their contacts live. The frequency of the long distance jumps and connections
varies for the three countries due to the different spatial distribution of the user
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E FD

B CA

Figure 5.7: Geo-social properties of the model networks. Various sta-
tistical properties are plotted for the networks obtained from Twitter data (red
squares) and from simulation of the TF model (black circles) for the US (for the
UK and DE, see Figures 5.8).

populations. In the ego networks, the presence of multiple triangles with long
distance edges can be observed.

The geo-social properties of the networks generated by the TF model are
shown in Figure 5.7 for the US and in Figures 5.8 for the UK and Germany, re-
spectively. The model is able to reproduce the trends in the probability Pl (d), the
reciprocity R (d), the social overlap Jf (d) and the disparity distribution P (D)
with good accuracy. The difficulties encountered with the degree distribution
P (k) and the clustering as a function of the distance C (d) are not unexpected
since the model does not incorporate mechanisms to explicitly enhance the hetero-
geneity in the agents’ contacts nor favor any specific dependence of the clustering
on the distance.

5.6

Insights of the TF model

In this section, we explore two null models to help us interpret the mechanisms
acting in the TF model. The first null model, the spatial model (S model), is
based solely on the geography and consists of randomly connecting pair of users
with a probability depending on the distance, but does not take network structure
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UK

DE

Figure 5.8: Geo-social properties of the model networks. Various sta-
tistical properties are plotted for the networks obtained from Twitter data (red
squares) and from simulation of the TF model (black circles) for the UK and
Germany.
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Figure 5.9: Comparison of different models. The minimal values of the error
E for the TF model, the two null models: spatial (S model) or linking (L model),
and the TF model with normally or uniformly distributed travel distances.

into account. The second null model, the linking model (L model), in contrast, is
based only on random linking and triadic closure, and it is equivalent to the TF
model without the traveling to new locations. We consider the two uncoupled
null models and compare them with the TF model. Finally, we demonstrate the
importance of the coupling through a realistic mobility mechanism.

The spatial model (S model) consists of randomly connecting pair of users with
a probability that decays as power-law of the distance between them (suggested
in (Butts et al., 2012)). The exponent of the power-law is fixed at �0.7 following
Figure 5.3A. The results of the S model are shown in Figure 5.3. Although the
model is set to match Pl (d), other properties such as P (k), R (d), Jf (d), C (d),
or P (D) are not well reproduced. The S model fails to account for the high level
of clustering and reciprocity in the empirical networks and for their dependence
on the distance. The error E of this null model is between 0.66-0.76 for the three
countries, around twice the error of the TF model (see Figure 5.9).

The linking model (L model) is a simplified version of the TF model, without
random mobility and the box size δ → 0. Agents move to visit their contacts with
probability pv, whereas with probability 1� pv they do not perform any action.
In this version of the model, users connect only by random connections or when
directly visiting each other, what leads to triadic closure. These two processes
do not depend on the distances between the users. A thorough description can
be obtained with a mean-field approach (see Section 5.8). The results of the L
model are shown in Figure 5.3. Due to the triangle closing mechanism this null
model creates networks with a considerable level of clustering. However, it does
not reproduce the distance dependencies of Pl(d), R(d), Jf(d) and C(d). The
error E of the L model also tends to be twice higher than the error of the TF
model (see Figure 5.9).

The geography and the structure are coupled in the TF model through the
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random mobility. Changes in the underlying mobility mechanism affect the qual-
ity of the results. The lowest E values are obtained with the power-law distribu-
tion in the jump lengths. The normal or uniformly distributed jumps yield worse
results, increasing the error E by a value from 0.2 to 1.5 (Figure 5.9). These
cases are described in more detail in Section 5.9.

In summary, simplified models that neglect either geography or network struc-
ture perform considerably worse than the TF model in reproducing the properties
of real networks. Likewise, non-realistic assumptions on human mobility mecha-
nism yield worse results than the default TF model. To conclude, the coupling
of geography and structure through a realistic mobility mechanism produces net-
works with significantly more realistic geographic and structural properties.

5.7

Sensitivity of the TF model to the parameters and its
modifications

Figure 5.10: Impact of pv on the TF model. We change the value of pv
while keeping pc fixed to the optimal value, for the US network (for the UK and
Germany see Figure 5.12). Note that this corresponds to an exploration of the
parameter space along the vertical line crossing the minimum of E as plotted in
Figure 5.5 for the US.

The results presented so far have been obtained at the optimal values of pv
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Figure 5.11: Impact of pc on the TF model. We change the value of pc
while keeping pv fixed to its optimal value, for the US network (for the UK and
Germany see Figure 5.13). Note that this corresponds to an exploration of the
parameter space along the horizontal line crossing the minimum of E as plotted
in Figure 5.5 for the US.

and pc. The question remains, however, of how robust these results are to changes
in the values of the parameters.

In Figure 5.10, we report the effect of varying pv while pc is maintained
constant in its optimal value. The linking probability Pl (d) loses its power-law
shape for very low values of pv, marking the limit in which random mobility is
the main mechanism for the agents’ traveling in detriment of friend visits. In this
case, most of the links are created due to encounters occurring in nearby locations
or are random connections, and so the distribution of triangles disparity P (D)
loses its bimodal shape. Furthermore, the friend visits provide opportunities to
reciprocate the connections. This is why for extremely low values of pv, the
reciprocity R (d) is close to zero. Towards the other limit, i.e., pv → 1 the
social overlap Jf(d) and the triangle-closing probability C (d) steadily increase
from near-zero values. In this limit, the linking probability Pl (d), the reciprocity
R (d) and the distribution of triangles disparity P (D) recuperate their shapes of
the optimum.

In Figure 5.11, we explore the impact of varying pc while pv is fixed to its
optimal value. The effect of pc on Jf(d) and C(d) is the opposite to that of pv:
these metrics decrease at all distances with increasing pc. The reason for this is
that visits to friends are the main forces behind the creation of new triads and
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the subsequent closure of triangles. Note that the more connections are created
randomly (higher pc), the less links will be a result of friend visits. We will
expose and describe in detail the interplay between these two mechanisms in the
mean-field calculations.

A possible variation of the TF model consists of eliminating friend visits or
random connections (i.e., setting pv or pc to 0). This prevents the model from
producing networks with characteristics comparable to the real ones in all the
cases, leading to increase in E of around 0.5 (see Section 5.9).

5.8

Mean field approach

In this section we consider the L model, introduced in Section 5.6, to gain ana-
lytical insight. Although this model is a simplified version of the TF model, the
results of the simulations yield a relatively low value of E (shown in Figures 5.9,
5.15 and 5.16). We write the equations for the time evolution of the properties
of the network and solve them numerically. Among all the properties, we focus
on the average clustering coefficient C, the overall reciprocity R and the degree
distribution P (k).

The clustering coefficient is defined as a ratio of all closed triads to all triads
existing in the network, i.e., C = ∆/T . The number of triads Λ can be calculated
knowing the degree distribution. The number of closed triads ∆ in the L model
grows with time mostly due to the friend visits mechanism. A triangle is formed
every time two friends of the same hosting agent meet in the host’s place and
decide to connect. Note that an undirected triangle corresponds to 3 undirected
closed triads. Assuming that the contribution of random links is negligible, the
time evolution of the number of closed triads is described by

d∆

dt
= 3N (k > 0)

(
1− (1− p)2

)
(1− C) M S, , (5.7)

where k =
(
kin + kout

)
/2, meaning that we do not distinguish between in-degree

and out-degree; N (k > 0) represents the number of nodes with the degree higher
than 0, i.e., the number of potential hosts; M is an estimate of the lower bound

for the number of triangles closed by one closing link M = 1 + C2
(

2
1+R k − 2

)
;

and S is the expected number of encounters per host, which can be calculated as

S =
∞∑
k=2

N (k)

N

k∑
i=2

(
pv
〈k〉

)i (
1− pv
〈k〉

)k−i(
k

i

)(
i

2

)
, (5.8)
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UK

DE

Figure 5.12: Impact of pv on the TF model. We change the value of pv while
keeping pc fixed to the optimal value, for the UK and Germany.
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Figure 5.13: Impact of pc on the TF model for the UK and Germany.
We manipulate the value of pc, while keeping pv fixed to its value from the best
fit, for the UK and Germany
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where N(k) is the number of nodes with a given degree k in the network. Finally,
note that the above definition of degree and the one obtained from symmetrizing
directed networks (used in previous sections) are related by a proportionality
factor k = ksym(1 +R)/2.

The reciprocity of connections R can be expressed as R = Lrec/(Lrec+2Lnrec),
where Lrec is the number of reciprocated links, Lnrec is the number of non-
reciprocated links and the total number of links L = Lnrec + Lrec. The numbers
of links evolve as

dLrec

dt
= 2N(k > 0) {prec + p2 (1− C)S + p (1−R)C S},

dLnrec

dt
= pcN +

1

3M

d∆

dt
− 1

2

dLrec

dt
, (5.9)

where prec = p pv (1− pv) (1−R) corresponds to the probability that an agent
visiting a neighbor gets her connection reciprocated (their connection is initially
single directional). As can be seen, ∆, Lrec and Lnrec are mutually dependent.

To calculate the degree distribution P (k), we estimate the probability pcon of
a node to increase its degree by one unit in the current time step due to multiple
encounters with friends of her friends

pcon =

∞∑
k′=2

k′N (k′)

〈k〉N

(
k′ − 1

2

)
p2c (1− pc)k

′−2
, (5.10)

where pc = p pv/〈k〉 (1− (1 +R) /2C). In the L model, however, every node
can increase its degree by multiple links at each time step. For simplicity, we
neglect higher order terms induced by the possibility of creating multiple links.
Moreover, we note that Equation (5.10) is a good estimate if there is not a strong
correlation between node degrees. The number of nodes of certain degree k is
given by

k > 1 :
dN (k)

dt
= pinc (N (k − 1)−N (k)) ,

dN (1)

dt
= pcN (0)− pincN (1) + precNs (0) ,

dN (0)

dt
= −pcN (0)− precNs (0) , (5.11)

where pinc = pc + prec/2 + pv pcon is an estimate of the probability that the
node degree increases, Ns(0) is the number of nodes with 0 out-degree and non-
zero in-degree. Such nodes are important because their connection can be easily
reciprocated as a result of a friend visit. However, these nodes are not counted
directly into N (1), and so a correction is needed to account for them explicitly,
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as in Equation (5.11). The number of such nodes can be calculated as

dNs(0)

dt
= pcN (0)− precNs (0) . (5.12)

pc = 0.01, pv  = 0.3, UK

prc= 0.001, pfv = 0.3, DE

Figure 5.14: Mean field approximation. Predictions of the analysis versus
results of the simulation of the L model for the clustering coefficient C, the reci-
procity R and the degree distribution P (k). In this case, we are taking the users
from the UK and Germany because their lower numbers facilitate the numerical
integration of the Equations 5.7, 5.9, 5.11 and 5.12

The numerical solution of this set of equations describing the evolution of the
L model is shown in Figure 5.14. The equations accurately predict the dynamics
of the clustering coefficient C, the reciprocity R and the degree distribution P (k)
for certain values of the parameters (i.e., for medium and high values of pc, as in
Figure 5.14A). The approximation yields slightly worse results when the number
of random connections is small in comparison with the number of connections
created due to friend visits (i.e., for low values of pc, as in Figure 5.14B). In the
latter case, neither the degree distribution is well approximated, probably due to
the degree-degree correlations introduced through the friend visit mechanism.
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5.9

Variants of the TF model

In this section, we consider several variants of the TF model and the L model and
evaluate their results. We describe a total of 36 variants marked with different
colors in the tables in Figures 5.15 and 5.16. For each variant we explore the
space of the parameters pv and pc. We run the models for pv from the set
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} and pc from {0, 0.0003, 0.001, 0.003, 0.01, 0.03},
yielding in total 48 parameter combinations. For each of the model variants,
we find the parameters that minimize the fitting error E. We plot its value in
Figures 5.15 and 5.16. In the following paragraphs we describe in detail each of
the variants and its results.

First, we modify the jump size distribution to understand its impact on the
geo-social properties. We consider the following cases: the default power-law
jumps with exponent 1.55, a minimal jump length of 1 km and a cutoff at 100 km,
as in (Song et al., 2010a) (the TF model), uniformly distributed random jumps up
to 100 km (TF-uniform), normally distributed jumps (TF-normal) with standard
deviation of 1 km, and no jumps to new locations at all (the L model). We plot
the minimal fitting error of these cases in Figures 5.15 and 5.16 using different
colors of the curves. The default power-law jumps show the best results with
the lowest error for most of the variants. The wiener distribution and the L
model tend to perform considerably worse. The highly unrealistic uniform jumps
understandingly provide the worst results and the highest error values for almost
all variants.

To assess the role of friend visits and random connections we turn on and off
these two components by setting to zero the corresponding parameters pv and pc.
We plot the results in Figures 5.15 and 5.16 with dashed and dotted lines. We
observe significantly higher error values whenever one of these two components is
turned off, for most of the model’s variants, what demonstrates their importance
for the TF model.

To prevent users from spreading into inhabited regions, we include in the TF
model an angular preference for the jumps. Namely, the direction of each jump
is chosen randomly with a probability proportional to the number of inhabitants
present at the destination. Note that this does not affect in any way the length of
the jumps, which is drawn independently beforehand. To estimate the population
of the target area, we use the gridded population of the world4. To test how this
angular preference impacts the results, we consider a variation of the models
without it and compare the results. The two variants are included in the lowest

4 The Gridded Population of the World and The Global Rural-Urban Mapping
Projects, Socioeconomic Data and Applications Center of Columbia University,

http://sedac.ciesin.columbia.edu/gpw.
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Figure 5.15: The model variants. Values of the fitting error E for the UK for
the variants of the following models: the TF model, the TF model with pv = 0,
the TF model with pc = 0, the L model and the TF model with uniformly
or normally distributed jumps. The default variant described in Section 5.3 is
marked with the red rectangle.

Figure 5.16: The model variants. Values of the fitting error E for Germany
for the variants of the models as in Figure 5.15.
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row of the table in Figures 5.15 and 5.16. They show almost no difference in
the error values for the Germany, although a systematic difference exists for the
UK; the error of the variant with direction preference is consistently lower in
the case of that country. The presence of the sea around the UK introduces a
distorting factor for the TF model. Without the directional preference the agents
freely spread over the sea independently on the geographical shape of the country,
leading to unrealistic results.

Agents’ traveling and link creation can be realized in the simulation in various
update orders. By default, at each time step, each agent first moves, next connects
to other random agents, and then connects locally; the following agent performs
the same actions in the same order, etc. We call this method sequential (“seq”).
In an alternative update rule, which we call simultaneous (“sim”), first all the
agents move, then all of them create random connections, and finally all of them
create connections locally. The two update rules are included in the second row,
counting from the bottom, of the table in Figures 5.15 and 5.16. The update
rules have little impact on the final networks resulting from the simulation.

In the TF and L models, the agents create with probability pc random con-
nections. These links can be created in different ways; we consider three variants.
First, each agent chooses another agent uniformly at random, what constitutes
the default mechanism (“rnd”). Second, each agent randomly picks another node
with probability proportional to the current degree of the node, which corre-
sponds to the preferential attachment mechanism (“pa”). Third, the agent draws
another node with probability decaying as a power-law of the distance between
the two agents (“dist”), with its exponent equal to 1.4 and the minimal distance
of 0.1 km. The type of random connecting mechanism used is listed in the third
row, counting from the bottom, of the table in Figures 5.15 and 5.16. In some
cases, e.g., for Germany, the distant-dependent probability of creating a random
link provides better results than the other variants.

We consider similar variants for the connections formed inside spatial boxes,
which are created with the probability p. The agents can connect uniformly at
random (“rnd”), with a preference for high-degree nodes (“pa”), or a preference
toward the nodes with high intrinsic fitness (“fitn”). The fitness of the nodes
is drawn from a power-law distribution with an exponent of 1.5, which roughly
corresponds to the distribution of the growth rates reported in Chapter 2. These
variants are implemented in the following way. First, we note that the number of
connections created by the agent is a result of a binomial process with probability
p and the number of trials equal to the number of agents that currently stay in the
given spatial box. The expected number of links created in such binomial process
is known, therefore, an equivalent number of connections can be created with one
of the two mentioned preferential processes. The type of connecting mechanism
applied in the spatial boxes is listed in the top row of the table in Figures 5.15
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and 5.16. There is no consistent difference in the error values between these
variants. Thus, the connecting mechanism applied in the spatial boxes has little
impact on the results.

We conclude that the main components of the TF models are crucial to re-
produce the structure and geography of the social networks. These components
include the mobility model, friend visits and random connections. The power-
law mobility model tends to produce the best results. The angular preference of
travels is important for countries whose geography is strongly restrained, e.g., by
sea. Other modifications to the model have low or no consistent impact on the
results, with the exception of the distance dependent random connections, which
in certain cases consistently influence the results.

5.10

Conclusions

We introduce a model that couples human mobility and link creation in social
networks. The aim is to characterize the relation between network topology and
geography observed in empirical online networks. The model has two free param-
eters pc and pv but, despite its simplicity, it is able to reproduce a good number
of geo-social features observed in real data at a country level. Due to comparisons
with null models we find that the coupling of geography and structure through a
realistic mobility mechanism produces significantly more realistic social networks
than the uncoupled models.

Social links in our model are formed mostly with relational (due to triadic clo-
sure), and proximity (through spatio-temporal coincidences) (Rivera et al., 2010)
mechanisms. Visiting friends helps to reinforce the existing relations and favors
the closure of triads with particular properties regarding the distance balance of
their edges. Random link creation accounts for online acquaintances or for his-
torical face-to-face encounters as individuals move their residence from one city
to another. Finally, individual random mobility allows the agents to explore new
locations. Our results show that by establishing an appropriate balance between
friend visits and random link creation, the model can reproduce the main features
of OSNs, e.g., we show that 10%−30% of the mobility has to be directed towards
existing friends. We demonstrate that these are the fundamental mechanisms at
play in the model.

The model is generic and functional for different datasets. Human mobility
driven by social ties has impact on the modeling of disease spreading, and may
improve its predictions. The model can also be used in simulations of processes
that involve social networks and geography, e.g., simulations of opinion formation,
language evolution, or responses of a population to extreme events. Moreover,
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it can also be helpful to design network benchmarks with realistic geo-social
properties to test, for instance, the scalability of technical solutions in social
online networks related to geography of its physical infrastructure.
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Chapter 6

Discussion and outlook

In this dissertation, we described quantitatively and modeled several aspects of
online social systems. Using concepts and methods of network theory, statistical
physics, and data mining we characterized the growth of groups and the struc-
ture, activity, and geography of several OSNs. We unveiled various statistical
patterns and confronted them with different sociological theories finding a good
correspondence between the online and offline worlds. Our studies contribute
to the emerging field of computational social science through the introduction
of models, metrics, and methods for complex social systems. We learn that
heterogeneity plays important role in the growth of groups, that groups are cor-
related with the interactions of users of OSNs accordingly to the predictions of
sociological theories, that the type of groups can be predicted based on metrics
evaluating characteristics of group interactions, and finally that spatio-temporal
coincidences generate realistic social networks.

The studies presented here were based on large datasets from several OSNs,
which include information about social links, pairwise interactions, groups, con-
tent tags and geo-localizing tags. On the one hand, the level of completeness
of the datasets allowed us to develop quantitative methods suited specifically
for studies and predictions of social systems, e.g., we propose several metrics to
describe group sociality and topicality. On the other hand, the large volume of
information available in the datasets permitted us to derive statistics per links
of different types and to find refined statistical patterns, e.g., we show that links
internal to communities attract different interactions than links between commu-
nities. Finally, a dataset with high temporal resolution combined with a dataset
of low temporal resolution but spanning all the elements in the system allowed
us to describe the dynamics of the elements and its impact on system-wide prop-
erties, e.g., we show that groups grow linearly in time, whereas heterogeneity
shapes statistical properties of the whole system of groups. To conclude, the
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recent availability of fairly complete and large datasets capturing the temporal
dynamics of social systems empowers researchers to perform detailed quantitative
studies of such systems and leads to emergence of computational social science.

6.1

Heterogeneity and temporal dynamics in social sys-
tems

We showed that the heavy-tailed distribution of group sizes in an OSN is the
result of the growth process based on heterogeneity. We contrasted the hetero-
geneity approach with a preferential growth model to discuss the shortcomings
of the latter approach. Our study shows that a simple model based solely on
heterogeneity explains the heavy-tailed distribution and other properties of the
system better than a model based solely on preferential growth. In general, in
real systems both mechanisms are coupled (Salganik et al., 2006; Wang et al.,
2013). However, there is no consensus on what kind of model could be used
in order to describe such interplay. The existing contributions in this direction,
which couple preferential growth and heterogeneity, are still lacking and require
further work (Bianconi and Barabási, 2001b,a). How do these two components
influence each other? How could we measure the contribution of each of them
in shaping statistical properties of real systems? These questions are still not
answered and motivate the need for further research.

Furthermore, it is unclear whether the heterogeneity-based model of growth
of declared groups in Flickr generalizes to groups from other systems. First,
it depends on the type of groups, i.e., whether the groups tend to be social or
topical. Social groups are limited in size due to human cognitive limits (Dunbar,
1992). Topical groups are not limited in size. Thus, the growth process of the
two types of groups must differ. Second, the properties of the growth of groups
depend on the growth of the system as a whole, e.g., whether the number of users
in an OSN grows or is stable during the period of the observation. These matters
can be addressed by future research.

The availability of data on time evolution of social systems has improved
significantly in recent years. Large temporal datasets from social and commu-
nication networks have already proved that the dynamics of human behavior is
bursty and complex (Barabási, 2005; Miritello, 2013) and that individuals adopt
various social strategies (Miritello et al., 2013). Temporal networks have become
one of the focal interests in network science (Holme and Saramäki, 2012). Such
methods are promising for the studies of social systems.
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6.2

Information diffusion and groups

News spread in OSNs in a way that depends on their topic (Romero et al.,
2011) and the social network of its spreaders (Rodrigues et al., 2011), but it is
hard to predict how will a given piece of content spread among users (Bakshy
et al., 2011; Kooti et al., 2012). On the one hand, social contagion needs a
better understanding. Two competing ideas suggest that social reinforcement is
crucial for spreading of controversial concepts (Centola and Macy, 2007) or that
structural diversity is important for adoption of services (Ugander et al., 2012).
On the other hand, community structure influences the way news spread in social
networks. This dissertation has shown that information diffusion tends to happen
more often between groups. Furthermore, the way the news spread between
groups affect the virality of the news (Weng et al., 2013). Therefore, the studies
of groups are vital for understanding spreading processes in social networks. This
thesis has contributed to the quantitative description and classification of groups.
Given that we know how to distinguish between different types of groups, i.e.,
topical and social groups, we can study how these types of groups influence
information diffusion and other processes happening in social networks.

In the study of common identity and common bond groups we show that high
reciprocity correlates with high normalized entropy, and that both properties
correlate with the perception of social group conceived by human labelers. This
perception is based on higher cognitive abilities to understand semantics, such
as friendly and personal sentiment or coherent topical alignment. Naturally,
there exist more group characteristics that are quantifiable and correlate with
the metrics that we introduced. Finding other metrics describing sociality and
topicality of groups will allow better understanding of the two types of groups.

Given that we distinguish between topical and social groups, one could build
community detection algorithms specifically aimed at detection of these two types
of groups. Methods for finding topical groups could combine network science and
machine learning approaches by clustering users into topics of their interests based
on the social graph and their profiles. The methods should allow overlapping
clusters, to reflect multiple interests per user, and should be fast enough to cluster
millions of users. An early approach to solve this problem has already been
suggested (Bhattacharya et al., 2014).

Finally, in our studies we described various types of interactions by repre-
senting them as separate networks. Advancements in the theory of multiplex
networks can provide additional methods and tools to analyze social systems in
which interactions of various types happen interchangeably.

131



CHAPTER 6. DISCUSSION AND OUTLOOK

6.3

Geography of social networks and modeling

In the last chapter of this dissertation, we show that triadic closure can be
achieved by means of spatio-temporal co-occurrences with friends. Since high
clustering in networks is reported to cause community structure (Foster et al.,
2011), it would be interesting to find if our model creates a network with a com-
munity structure corresponding to the real one. In general, the relation between
geography and groups has not been investigated in OSNs due to the lack of proper
data and problems with the detection of viable communities. Furthermore, one
can expect that topical and social groups exhibit different geographic properties,
i.e., that social groups tend to be more often geo-localized. These questions may
be tackled in the future with improved data availability and community detection
techniques.

Finally, our model coupling mobility and tie formation is a generic model
aimed at explaining geographic and structural properties of OSNs. While it
reproduces the statistical features of the real networks, it is not valid for detailed
predictions of each user movements. Our model has only two free parameters,
in contrast to multi-parametric interference methods (Wang et al., 2011; Cho
et al., 2011; Sadilek et al., 2012). Although there exists an open discussion on
the validity of hypothesis testing in the wake of statistical inference based on
correlations (Anderson, 2008), our modeling efforts can inform future studies
leading to more accurate models and better understanding of social systems.

6.4

Outlook for computational social science

The recent availability of complete and large datasets capturing the dynamics of
social systems has lead to the emergence of computational social science. Re-
searchers start to perform studies of social systems on such a scale for the first
time in the history, promising the development of quantitative theories for social
systems. This thesis contributes to the development of such quantitative statisti-
cal description of social systems. The digital traces of human behavior not only
allow the advancements of our knowledge about such systems but also making
predictions for social systems based on this knowledge. Various studies showed
that social systems are highly predictable, but the predictability has certain lim-
its (Song et al., 2010b; Krumme et al., 2013). These estimates of the limits of
predictability, however, are based on the datasets available at the moments of the
studies. Given that the amount and the completeness of data on social systems
keep growing, it is unclear what is the potential of computational social science
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and what are the limits of predictability of social systems. The future research
of social systems can clarify these matters.
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Appendix I: Order statistics lo-
cal optimization method of com-
munity detection

Here, we describe in more detail the clustering algorithm that is used in a couple
of studies described in this dissertation, presented in Chapters 3 and 4. It is
based on order statistics local optimization method, due to which it is called
OSLOM. In fact, it is one of the most accurate algorithms to detect communities
(Lancichinetti et al., 2011; Lancichinetti and Fortunato, 2009a). It uses statistical
significance as a measure of quality of clusters (Lancichinetti et al., 2010), which
is defined as a probability of finding the cluster in a random null model, namely
the configuration model described in Section 1.3.1.

Imagine a graph G with N vertices and L directed edges. The goal is to assess
the significance of a cluster C. We consider a node i that belongs to G \ C, as
shown in Figure 1. The total degree of the subgraph C is KC =

∑
j∈C kj , the

degree of node is ki and the total degree of the rest of the network is KG\C . Each
of these degrees can be split into the part that connects to C and to the rest
of the network, i.e., kinti , kexti , K int

C , Kext
C , K int

G\C , K
ext
G\C , respectively. Keeping

these degrees (both internal and external to C) fixed and assuming that all the
edges are drawn randomly, we calculate the probability that the node i has kinti
neighbors in C

p(kinti |i, C,G) = A
2−k

int
i

kexti ! kinti ! (Kext
C − kinti )! (K int

G\C/2)!
. (1)

This equation is derived by enumerating the possible configurations of the graph
assuming the fixed degrees. The factorials in the denominator express the respec-
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Figure 1: An illustration of the configuration model in a scenario with a group
having fixed degree, which is considered in OSLOM to assess the statistical sig-
nificance of the group. The probability of a node i to have kinti links connecting
to the group is considered. Illustration adapted from (Lancichinetti et al., 2010).

tive connection combinations, while the power of 2 in the numerator corresponds
to permutations of directionality of edges connecting i and C. Finally, A is a nor-
malization factor. The higher is the probability p(kinti |i, C,G) the more likely it is
that the node i has kinti links in a random scenario. The lower is the probability
the less likely it is that the internal links are due to random factors. The nodes
with the lowest p(kinti |i, C,G) will be considered for inclusion in C.

The ranking of nodes considered for addition to C is prepared as follows.
First, one must calculate the cumulative probability r(kinti ) =

∑ki
k=kinti

p(k|i, C,G)

of having kinti or more internal connections to the group. Next, one ranks the
cumulative probabilities from lowest to highest. The first candidate node to be
included to the cluster has the lowest cumulative probabilities r1. In fact, the
variable r is a uniformly distributed random variable between zero and one for
vertices of the null model. It follows that it is fairly easy to compute its order
statistic distributions. The cumulative distribution of rq in the null model is

Ωq(r) = P (rq < r) =

N�nC∑
i=q

(
N � nC

i

)
xi (1� x)

N�nC�i , (2)

where nC is the number of vertices in C. One cannot assume that nodes inside the
cluster follow the null model, because of the correlations between nodes belonging
to the cluster that the method looks for. However, we can assume that the nodes
that do not belong to the cluster follow the null model. For these nodes the
statistics can be calculated. The values of Ωq(r) inform us if the nodes external
to the community follow the null model. To evaluate the quality of the cluster
we calculate cm = minq (Ωq(rq)). Finally, the score of the cluster is defined as
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the cumulative distribution P (c∗m < cm) = φ(cm, N − nC).
The algorithm optimizes the score by partitioning the network into a set

of clusters. The initial clusters can be provided with another method at the
start. The algorithm optimizes the scores of the clusters as follows. First, the
algorithm considers node additions to each cluster by calculating the values of
φ(cm, N −nC) for nodes external to the cluster that are connected to the cluster.
Second, the method considers removals of the nodes by calculating the same
score for nodes internal to the cluster, by treating them as if they were external.
Finally, the algorithm merges communities if they become too similar. Only
modifications and clusters whose score φ(cm, N−nC) is smaller than the statistical
significance P are accepted. The statistical significance is an input parameter to
the algorithm.

OSLOM takes directionality of links into account and detects overlapping
communities, and it is one of the best performing methods in benchmarks (Lan-
cichinetti and Fortunato, 2009a; Lancichinetti et al., 2011). Furthermore, this
method can decide to leave a node without a group assignment in case it does
not find any statistically significant community containing the node. It has been
shown that nodes with random connections in a graph with bona fide group
structure are detected by the algorithm as no-group nodes (Lancichinetti et al.,
2011). For these reasons this method is useful in studies of groups in OSNs.
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Conover, M. D., Gonçalves, B., Flammini, A., and Menczer, F. (2012). Partisan
asymmetries in online political activity. EPJ Data Sci., 1(1):6.

Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J.,
Loreto, V., Moat, S., Nadal, J. P., Sanchez, a., Nowak, a., Flache, a., San
Miguel, M., and Helbing, D. (2012). Manifesto of computational social science.
Eur. Phys. J. Spec. Top., 214(1):325–346.

Cox, A., Clough, P., and Siersdorfer, S. (2011). Developing metrics to characterize
Flickr groups. J. Am. Soc. Inf. Sci. Technol., 62:493–506.

Crandall, D. J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., and Klein-
berg, J. (2010). Inferring social ties from geographic coincidences. Proc. Natl.
Acad. Sci., 107(52):22436–41.

143



Csermely, P. (2006). Weak links: Stabilizers of complex systems from proteins to
social networks. Springer.

Cummings, J. N., Butler, B., and Kraut, R. (2002). The quality of online social
relationships. Commun. ACM, 45(7):103–108.

Danon, L., Dı́az-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing com-
munity structure identification. J. Stat. Mech. Theory Exp., 2005(09):P09008–
P09008.

De Masi, G., Iori, G., and Caldarelli, G. (2006). Fitness model for the Italian
interbank money market. Phys. Rev. E, 74(6):066112.

Dorogovtsev, S., Goltsev, A., and Mendes, J. (2002). Pseudofractal scale-free
web. Phys. Rev. E, 65(6):066122.

Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of Networks: From
Biological Nets to the Internet and {WWW}. Oxford University Press.

Dorogovtsev, S. N., Mendes, J. F. F., and Samukhin, A. N. (2000). Structure of
Growing Networks with Preferential Linking. Phys. Rev. Lett., 85(21):4633–
4636.

Dunbar, R. (1992). Neocortex size as a constraint on group size in primates. J.
Hum. Evol., 22(6):469–493.

Dunbar, R. I. (1998). The social brain hypothesis. Evol. Anthropol. Issues, News,
Rev., 6(5):178–190.

Dunne, J. a., Williams, R. J., and Martinez, N. D. (2002). Network structure and
biodiversity loss in food webs: robustness increases with connectance. Ecol.
Lett., 5(4):558–567.

Eagle, N., Pentland, A. S., and Lazer, D. (2009). Inferring friendship network
structure by using mobile phone data. Proc. Natl. Acad. Sci., 106(36):15274–8.
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Holme, P. and Saramäki, J. (2012). Temporal networks. Phys. Rep., 519(3):97–
125.

Honeycutt, C. and Herring, S. (2009). Beyond microblogging: Conversation and
collaboration via Twitter. In Fielding, N., Lee, R. M., and Blank, G., editors,
42st Hawaii Int. Int. Conf. Syst. Sci., pages 1–10, Waikoloa, Big Island, HI,
USA. IEEE.

Huberman, B. A. and Adamic, L. A. (1999). Internet: Growth dynamics of the
World-Wide Web. Nature, 401(6749):131.

147



Hufnagel, L., Brockmann, D., and Geisel, T. (2004). Forecast and control of
epidemics in a globalized world. Proc. Natl. Acad. Sci., 101(42):15124–9.

Iribarren, J. L. and Moro, E. (2011). Affinity Paths and information diffusion in
social networks. Soc. Networks, 33(2):134–142.
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