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Summary

Prominence oscillations are frequently detected by means of oscillatory vari-
ations in Doppler signals and spectral lines intensity. These oscillations seem
to be strongly damped after a few periods. While oscillations have been in-
terpreted in the context of the magnetohydrodynamic (MHD) theory in terms
of the normal modes and propagating MHD waves supported by the filament,
the mechanisms responsible for the damping are not well known and their
investigation is the aim of the present research.

Prominence observations also indicate that these large scale coronal struc-
tures are formed by partially ionised plasma, although the quoted degree of
ionization varies a lot from one work to another.

In this Thesis, the study of the effect of ion-neutral collisions on the dam-
ping of magnetohydrodynamic waves is started. First of all, we develop a set
of one-fluid equations for a partially ionised plasma and use it in different
plasma configurations.

As a first step in the study of partially ionised plasmas, the simplest plas-
ma configuration is considered, an unbounded homogeneous partially ionised
plasma. We study the temporal and spatial damping of magnetoacoustic wa-
ves (fast and slow) and Alfvén waves in the case of adiabatic and non-adiabatic
plasmas. While the time damping of MHD waves in adiabatic partially ionised
plasmas is due to ion-neutral collisions, in the non-adiabatic case it is possible
to study the importance of each of the different damping mechanisms involved
which are ion-neutral collisions, radiative losses and thermal conduction. On
the other hand, in the case of spatial damping we have considered adiabatic
and non-adiabatic MHD waves in fully ionized resistive as well as partially
ionised plasmas, and we have also included the presence of flows. The conside-
ration of all these effects has allowed us to obtain a more in-depth knowledge
about their influence in the spatial damping of the studied MHD waves.

This work is intended to serve as a basis for future studies of more complex
models such as the effect of the surrounding coronal material (slab configura-
tion), the inclusion of threads or the influence of helium and its ions.
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Resum en catala

Les oscil-lacions de les protuberancies son detectades freqiientment mitjan-
cant variacions oscil-latories en senyals Doppler i en la intensitat de les linies
espectrals. Aquestes oscil-lacions pareixen fortament esmorteides després de
pocs periodes. Mentre que les oscil-lacions s’han interpretat dins el context
de la magnetohidrodinamica (MHD) en termes de modes normals i ones MHD
que es propaguen suportades pel filament, els mecanismes responsables de
I'esmorteiment encara no es coneixen amb precissié i sén objecte d’investiga-
cions actuals.

Les observacions de protuberancies mostren que aquestes estructures co-
ronals de gran escala estan formades per plasmes parcialment ionitzats, tot i
que el grau d’ionitzacié varia molt entre els diferents estudis realitzats.

En aquesta Tesi s’inicia I'estudi de l'efecte de les col-lisions entre ions
1 atoms neutres en I'esmorteiment de les ones magnetohidrodinamiques.
S’inicia l'estudi amb el desenvolupament de les equacions magnetohidro-
dinamiques per un fluid considerant ionitzacié parcial i s’aplica aquest con-
junt d’equacions a diferents configuracions de plasmes.

Com a treball precursor, es considera la configuracié geometrica més sim-
ple, un plasma parcialment ionitzat, infinit i homogeni, i s’analitza I'esmor-
teiment temporal i espacial de les ones magnetoacustiques (rapides i lentes) i
les ones d’Alfvén tan en el cas de plasmes adiabatics com en el cas de plasmes
no adiabatics. Mentre 'esmorteiment temporal de les ones MHD en plasmes
adiabatics parcialment ionitzats és degut a les col.lisions entre ions i neutres,
en el cas no adiabatic és possible estudiar I'importancia de cada mecanisme
d’esmorteiment involucrat. Aquests mecanismes son: col.lisions ions-neutres,
perdues radiatives i la conduccié termica. Per altre banda, en el cas de l’es-
morteiment espacial s‘han estudiat també ones MHD adiabatiques i no adi-
abatiques en plasmes resistius totalment ionitzats aixi com en plasmes parci-
alment ionitzats, i hem inclés la presencia de fluxes. La consideraci6 de tots
aquests efectes ha perms obtenir un coneixement molt més profund de la seva
influencia en ’esmorteiment espacial de les ones MHD estudiades.

Aquest treball forma una base per a l'estudi de models més complexes
com ara l’efecte del material coronal, la inclusié d’estructura de fibres o la
influéncia de la presencia d’heli i dels seus ions.



Preface

People have worshipped the Sun and solar deities for all recorded history.
Hence, many beliefs and legends have been formed around this worship, ex-
plaining several natural phenomena, such as the disappearance of the Sun at
night, the shorter days during the winter or solar eclipses.

To understand the importance and respect that this body has generated
on mankind, here there is a selection of some of the most relevant myths that
involve the Sun.

In Egyptian mythology, the Sun god Ra (Figure [1t) passes through the
Duat (the underworld) every night, in order to rise in the morning, in his
solar barge, to avoid being extinguished by the waters. Each night he has
to fight and defeat Apep (also known as Apophis in Greek), an evil demon
personification of darkness and chaos.

In Hinduism, Surya (Figure [1Ib) was the solar deity and was represented
with hair and arms of gold. His chariot was pulled by seven horses, a rep-
resentation of the seven chakras. Occasionally, Surya was represented as an
inanimate object, a shining gem placed in the midst of the heaven.

Amaterasu (Figure [1Id) was the Japanese Sun goddess that hides herself
in a cave, plunging the world into darkness, because she was angered, em-
barrassed or scared, depending on the source, by the behaviour of her brother
Susanoo, the storm deity. With this myth, the Japanese mythology explained
the shorter days during the winter.

In a Chinese myth, solar eclipses were caused by the dog of heaven biting
off a piece of the Sun. In China there was the tradition of hitting pots and
pans during a solar eclipse to drive away the dog with the noise.

In Norse mythology, Sol rode through the sky on her chariot pulled by two
horses, Arvak and Alsvid. She was chased every day by the wolf Skoll, that
wanted to devour her (while every night his brother Hati chased the Moon).
Solar eclipses meant that Skoll had almost caught up to her. In Norse belief,
the Sun did not give light, this was caused by the manes of the horses that
pulled her chariot.

Helios (Figure [1ja), the Greek god of the Sun, represented as a youth with
a halo standing in a quadriga, rises each morning from the ocean in the east
and rides his chariot drawn by four horses through the sky, to descend at
night in the west. The great pride of Rhodes was the huge bronze statute in
honour of the Sun god, reckoned as one of the Seven Wonders of the ancient
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Figure 1: a) Helios ridding his quadriga in a Greek krater dated in 435 BC (British Museum,
London). b) A representation of Surya on his chariot pulled by seven horses. ¢) Ra in the solar
barge through Duat. d) Amaterasu emerging from a cave.

World.

Only with these few different examples of the rich mythology about the
Sun one can see how some of these myths and stories are repeated in different
mythologies with little changes: the Sun deity represented as an auriga or
driving a barge, the explanation of eclipses as a bite on the solar disc, the
daily chase of the Sun by a monster or demonic being, ...

There exist a lot more myths and legends related to the Sun and solar
deities: Tama-nui-te-ra in Maori mythology, Maelare in the south coast of
Papua New Guinea, Inti in Inca’s beliefs, Tonatiuh for the Aztecs, ...

Making a complete and detailed list of all different myths and worships
of the Sun and their influence in tradition, arts, constructions and heritage
would extend over pages and pages. And, to add more difficulty to this titanic
work, one needs to take into account the variation of the myths or deities over
time. These were not immutable and far from this, mythology changed over
the years. For instance, in late Greek mythology, Apollo became the Olympic
Sun god, relegating Helios.



Chapter 1
The Sun

The Sun is an ordinary main sequence star of spectral type G2 V with an
absolute bolometric magnitude of 4.74, and a surface temperature of, approxi-
mately, 5800 K. The only thing that makes this star so unique is its proximity
to the Earth. This proximity allows us to study it in detail in order to under-
stand the behaviour of stars.

Like other stars, the Sun is an autogravitating spheric object of plasma,
with a radius of 700 000 km and an age of 4.5x10° years, located at 1 AUE]
from the Earth. The main physical parameters of the Sun are summarised in
Table 1.1/ together with a comparison with the Earth’s ones.

The surface composition of the Sun is X =0.74,Y = 0.24 and Z = 0.02 (mass
fractions of hydrogen, helium and metals, respectively). The high abundance
of heavy elements suggests that the Sun is a Population I, or third generation,
star formed from the remains of former dead stars.

The Sun, as the other stars, generates energy by nuclear fusion and is in a
hydrostatic balance state since pressure gradient balances the gravity force.

Parameter Sun (©) Earth (®) Ratio (0o/®)
Radius 6.96x 10 m 6.371 x 10° m 109.24
Mass 1.99 x 10 kg  5.97 x 10** kg 333333
Average density 1.5x10°kgm™  5.515kgm™ 0.255
Surface gravity 273.95 m s~2 9.78 m 52 28.01
Escape velocity 617.6 m s~ 11.19 ms™ 55.19
Luminosity 3.827 x 10 W

Visual magnitude -26.74

Absolute magnitude +4.83

Equatorial rotation period 25.38 days 23 h 56 min

Table 1.1: Sun’s and Earth’s main physical parameters.

11 AU (Astronomical Unit) = 1.5 x 108 km.
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1.1 Solar structure

1.1.1 Solar interior

The interior of the Sun is hidden from our view, only its surface layers can
be seen. However, thanks to models and indirect observations, as the ones
provided by helioseismology (the study of the internal oscillations of the Sun)
and neutrino detection, we have been able to understand part of the solar in-
terior behaviour and properties. In the solar interior, three different regions,
namely, the core, the radiative zone and the convective zone (Figure [1.1) are
considered. Some references include also the tachocline (the thin interface
layer between the radiative and convective zones) as a fourth layer of the
solar interior.

Figure 1.1: Scheme of the solar interior.

The core is the region where the nuclear fusion reactions take place, con-
suming 5, 64x 108 tons of hydrogen every second to form helium (5, 60x 108 tons)
and releasing energy (coming from the mass difference). This region contains
half the mass of the Sun in only a radius of 0.25 R

Nuclear fusion reactions require that individual hydrogen nuclei collide
with each other with enough energy to overcome the repulsive electrical forces
between them. The temperature at the centre of the Sun is estimated, ac-
cording to models, at 15 000 000 K and the density at 150 000 kgm™. Both

2R, is the symbol used to denote the solar radius.



1.1 Solar structure 13
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Figure 1.2: Solar interior temperature versus distance from the centre normalised to the
solar radius.
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Figure 1.3: Solar interior density versus distance from the centre normalised to the solar
radius.

temperature and density decrease as one moves outwards from the centre of
the Sun (see Fig.[1.2 and [1.3).

The energy generated by the Sun in one second is enough to cover all hu-
man energetic needs, at the actual rate, for 50 000 years. This energy, gener-
ated in the core, is slowly transferred outwards by radiative diffusion across
the radiative zone, which extends from the core to 0.7 R,. The solar interior is
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so opaque that a photon needs 107 years to complete the journey from the core
to the surface because of the many times that it is absorbed and re-emitted.
In comparison, an unimpeded photon would reach the solar surface in only
two seconds. These constant emission, absorption and reemission of photons
also increase the wavelength of the original y-rays coming from the nuclear
fusion up to visible light.

In the radiative zone the density drops from 20 000 kg m™ down to 200
kg m™>, while the temperature falls from seven to two milion degrees.

In our journey from the centre to the surface of the Sun, we next find the
interface layer between the radiative and convective zones, the tachocline.
The interest in this layer has increased in recent years because it is believed
that the Sun’s magnetic field is generated here by a combination of convection
and rotation, a process known as the solar dynamo.

The outer layer of the solar interior, the convective zone, extends from
the tachocline to a depth of 200 km from the surface. At the base of the
convection zone, the plasma is cool enough to allow the heavier ions to keep
some of their electrons, making the material more opaque and difficulting the
radiation to get through. This makes the plasma unstable and convection sets
in (such as water boiling in a pan). These convective motions carry heat quite
rapidly to the surface, where the temperature and density drop to 5800 K and
2x10~* kg m, respectively.

1.1.2 Solar atmosphere

The solar atmosphere lies on top of the convective zone and is directly ob-
servable by means of its electromagnetic radiation. It consists of three re-
gions with different physical properties: the photosphere, the chromosphere
and the corona. Coronal material is continuously flowing away from the Sun
forming the solar wind, that travels through the Solar System and eventually
reaches the Earth and beyond. Aurorae and geomagnetic storms in the Earth
are caused by strong perturbations of the solar wind.

The photosphere (Figure [1.4p) is the visible surface of the Sun, an ex-
tremely thin layer of only a few hundred kilometers thick (around 500 km),
where most of the Sun’s emission takes place.

The photosphere does not only emit in visible range, but it emits in a con-
tinuous spectrum in all frequencies, nearly like a black-body at a temperature
of 5600 K, with absorption lines superimposed. The photospheric temperature
decreases from 5800 K at the bottom to 4300 K at the top of the layer.

High resolution images of the photosphere show that it appears covered
with irregularly shaped granules with a typical size of 1000 km and which are
in continual motion. These granules correspond to the tops of the convective
cells that overshoot the upper convective zone (Figure [1.4b).

Other remarkable features that can be observed in the photosphere are
sunspots (Figure [1.4p), which are magnetic phenomena caused by the emer-
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Figure 1.4: From left to right: a) the photosphere seen in visible light; b) a close look to
a sunspot group, where granulation is also visible; ¢) image of the chromosphere at 304 A
(60 000-80 000 K) obtained with the EIT instrument onboard the SOHO spacecratft.
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Figure 1.5: Evolution of the temperature and the mass density in the solar atmosphere as

function of the distance above the convection zone given by the VALC model of
(1981).

gence of magnetic flux tubes from the solar interior. At their centres, the
magnetic field strength can reach 1000 G or more. At about 4000 K, sunspots
are cooler than the rest of the photosphere and, because of this, they appear
as dark features.

Above the photosphere the temperature surprisingly rises from 4300 K to
about 20 000 K in a layer with a typical thickness of 2000 km called chro-
mosphere. Using an adequate filter (Figure [I.4c) one can observe the chro-
mosphere and identify new features like bright plages around sunspots and
the chromospheric network. Prominences, made from chromospheric-like ma-
terial, can be also observed using these filters although they are above the
chromosphere (more information about prominences is given in Section [1.2).

Usually the temperature falls as one moves away from a heat source. This
is true in the Sun’s interior right up to the visible surface, but then, over a
relatively thin layer, the chromosphere-corona transition region (CCTR), the
temperature increases rapidly from around 10 000 K to temperatures of the
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order of 10° K, where the corona begins. Figure shows an schematic draw-
ing of the density and the temperature as a function of height in the solar
atmosphere. The mechanism responsible for this big increase of the temper-
ature from the chromosphere to the corona is still unknown and the explana-
tion of this phenomenon, commonly known as the coronal heating problem,
has become one of the most important goals in solar physics.

The corona is the Sun’s outer and by far the largest atmospheric layer.
Due to the dazzling light of the photosphere, the corona is visible only during
eclipses or using a coronograph (which is a disc that hides the solar disc emu-
lating an eclipse) as a pearly white crown surrounding the Sun (Figure [1.6p).
This white light is emitted by the photosphere and is scattered by the fast
moving coronal electrons or emitted by the gas as spectral lines.

Early observations of the visible spectrum of the corona revealed a set of
bright emission lines that did not correspond to known elements. The true
nature of these lines remained unknown until it was determined that the
temperature of the corona is of the order of one million degrees (Edlén &
Swings||1942). At this temperature, only the heavier trace elements, like iron
and calcium, are able to retain a few of their electrons. These highly ionised
elements are responsible for the spectral lines that once were a mystery to
astronomers.

Due to this high temperature, the corona emits in abundance in the ul-
traviolet, extreme-ultraviolet (EUV) and soft X-rays parts of the spectrum.
This emission forces us to observe the corona by means of instruments in
space, in order to avoid the shielding of the Earth’s atmosphere at these wave-
lengths. The most oustanding missions with instruments working at these
wavelengths are Yohkoh (1991-2005), SOHO (launched in 2005), TRACE
(1998-2010), Hinode (launched in 2006), STEREO (launched in 2006) and
SDO (launched in 2010). With the observations obtained by their telescopes
(Figure[1.6p) it has become clear that the coronal plasma is dominated by the
magnetic field, which emerges from below the photosphere and changes con-
tinuously. One can infer the geometry and strength of the coronal magnetic
field by means of the analysis of the appearance of the corona.

Active regions are areas on the Sun where magnetic fields emerge through
the photosphere into the chromosphere and corona. These regions appear
bright in X-ray and ultraviolet images and may last for several weeks or
even months. The magnetic field is stronger in an active region and is where
sunspots can be formed.

There are two types of regions, depending on whether the magnetic field
lines are open and connect to the interplanetary field (coronal holes) or closed
over the surface, forming arches with their two endpoints in the photosphere.
These closed regions are, in fact, composed of a great number of coronal loops,
which delineate the magnetic field structure through the coronal plasma
trapped within it, with a wide range of dimensions, densities and tempera-
tures. Other structures, like prominences, streamers and plumes, are also
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Figure 1.6: From left to right: a) the corona seen during an eclipse. The red clouds are
limb prominences such as those seen in Fig. . b) A colour wheel with different views
of the corona. Blue, green and yellow images have been obtained with EIT (onboard SoHO)
and correspond to 171 A (2-2.5 milion K), 195 A (1.5 milion K) and 284 A (0.9-1.0 milion
K), respectively. The red-orange image has been obtained by Yohkoh in X-rays. The bright
regions in these images are the coronal counterparts of the active regions seen in Fig.[T.4h, b.

common in the corona.

1.2 Prominences

In this section, we give a brief introduction to prominences and their prop-
erties. For a more detailed information about the physics of solar promi-
nences we refer to recent reviews by |[Patsourakos & Vial (2002), [Labrosse
et al. (2010), and Mackay et al. (2010).

The first observations of prominences were undertaken during solar eclip-
ses, and were explained as holes or clouds on the Moon. In 1239, Muratori
interpreted them as ‘burning holes’ in the corona. Russian medieval chroni-
cles mention prominences, but their first scientific description was not made
until the eclipse of May 2, 1733. That day, Vassenius observed three or four
prominences from Goteborg. He called them ‘red flames’ and believed that
they were clouds in the Moon’s atmosphere. It was not until 1842 when these
observations of prominences were rediscovered |

In 1851, more accurate descriptions of prominences began and with the
introduction of photography in the Spanish eclipse of 1860 and spectrography
in the eclipses of India and Malacca of 1868, the idea of prominences as big
shining masses of gas was formed.

Now we know that prominences are coronal magnetic structures. Although
they are embedded in the corona, they possess temperatures a hundred times

3And some things that should not have been forgotten... were lost. Cate Blanchett playing
Galadriel in the film The Lord of the Rings: The Fellowship of the Ring, based on the book of
d. R. R. Tolkien.
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Figure 1.7: A prominence seen with an He filter at different times and changing its position
because of solar rotation. In the first image it is seen as a bright prominence at the solar
limb, while in the last one the same structure is clearly a dark filament on the disk.

Figure 1.8: An eruptive prominence (SOHO-EIT, NASA & ESA)

smaller and densities a hundred or a thousand times larger than those of the
surrounding corona.

The fact that their physical conditions are akin to those in the chromo-
sphere suggests that prominences are made of chromospheric material which
has been lifted up into the corona as a possible scenario to explain the promi-
nence formation. Another proposed scenario to explain the origin of promi-
nence material is condensation and cooling of plasma from the surrounding
corona.

Prominences can be observed with an Ha filter as bright features above
the solar limb and as thin, dark ribbons (called filaments) on the disc. In
the beginning it was thought that filaments and prominences were different
features, but with more careful observations it was discovered that the two
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Parameter Value
Density 2x1072-5x 100 kgm™
Temperature 5000 — 15 000 K
Magnetic field 4-20G
Length 60 — 600 Mm
Height 10 — 100 Mm
Width 4 —30 Mm
Thread’s length 3 -28 Mm
Thread’s width 100 — 600 km

Table 1.2: Typical physical parameters of quiescent prominences and their fine structure.
Adapted from [Patsourakos & Vial|(2002), Aschwanden|(2004) and [Lin| (2004)

objects correspond to the same feature observed from different points of view
(Figure [1.7). Now we use the words prominence and filament to refer indis-
tinctly to both features.

Many models have been developed to explain how these cold clouds of
dense plasma are supported against gravity and why they are thermally iso-
lated from the hotter surrounding coronal medium. The key to these models
is the magnetic field structure, which shields the prominence from the coronal
medium and supports it in the corona.

The time-scale of prominence formation is about one day, and the life-
times range from several months for quiescent prominences to only minutes
or hours for active prominences (i.e. those located in active regions). At the
end of their lives, some prominences suffer an instability that originates an
eruption (Figure[1.8). Such eruptions are sometimes accompanied by flares or
coronal mass ejections. Due to their longer life-time, quiescent prominences

have been studied in more detail. Their typical parameters are summarised
in Table

High resolution images have revealed the fine structure of solar promi-
nences. These fine structures, usually called threads, appear as a myriad of
long (300028 000 km) and thin (100—600 km) dark ribbons in He images of
filaments (see Figure on the solar disk (Lin 2004; Lin et al.|[2005, 2007,
2008, 2009), as well as in observations of prominences in the solar limb from
the Solar Optical Telescope (SOT) aboard the Hinode spacecraft (Okamoto
et al.[|2007; Berger et al. 2008; Chae et al.|2008; Ning et al.|2009; |Schmieder
et al.|2010).

A considerable effort to measure prominence magnetic fields was started
almost forty years ago (Leroy |1989; Paletou & Aulanier| 2003), and the ob-
tained results can be summarized as follows: The magnetic field in quiescent
prominences has a strength of 3—-15 G, is mostly horizontal, makes an acute
angle of about 20 degrees with respect to the long axis of the prominence, and
seems to increase slightly with height, indicating the presence of dipped field
lines (Bommier & Leroy/1998). In the case of filament fine structure, statisti-
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Figure 1.9: Two high resolution He images of quiescent prominences in which the fine
structure can be appreciated. The images have been taken with the Swedish Solar Telescope

on La Palma. From (2007).

Figure 1.10: From left to right: a) An Ha image of a region of the solar disc where a filament
is seen and b) a photospheric magnetogram of the same region. One can see that the filament
is located between two regions of opposite magnetic polarity (black and white colours on the
magnetogram).

cal studies show that the orientation of threads with respect to the filament
long axis can significantly vary within the same filament and a
mean value of 20 degrees has been reported.

It is also known that prominences exist above the polarity inversion line
that separates two regions of opposite magnetic polarity in the photosphere
(Figure [1.10), and because of the complex structures and the varied forms
of prominences, it is difficult to establish definitive values for the different
parameters (temperature, density, ionisation degree, magnetic field, ...).
points out three features as the reason for our limited knowledge about
the nature of prominences:

e There is no such thing as a canonical prominence. Instead of that a wide
range of parameters is observed in different objects.

e No prominence has a uniform structure. They are made of fibrils (thin
threads) and different parameter values can be detected in different
parts of the prominence.
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Figure 1.11: Coordinate system showing the simplified prominence magnetic field geometry
assumed in |Gilbert et al.[|(2002), together with directions of secondary drifts in the y-direction
and the tertiary drifts in the positive and negative z-direction. The horitzontal gravitational
drift is in the same direction as the horitzontal ion drift produced by the frictional interaction
with the downflowing neutrals.
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e No structure is really isolated. One needs to understand the interaction
between the prominence and the corona at their interface.

On the other hand, it is also known that the prominence plasma is only
partially ionised for typical prominence temperatures. The hydrogen ionisa-
tion degree could probably vary in different prominences or even in different
regions within the same prominence (Patsourakos & Vial 2002).

In the past, the equilibrium of solar prominences within the solar corona
has been explained in terms of a fully ionised plasma supported against grav-
ity, and compressed, by magnetic forces (Kippenhahn & Schliter |(1957). With
the consideration of a partially ionised plasma, the support needs to be un-
derstood in terms of the frictional coupling between the neutral and ionised
components of the prominence plasma. In that way it is possible to explain
the support of the neutral fraction of the plasma. Gilbert et al. (2002) describe
a simple model in which the magnetic field, B, is in the x-direction and the
gravitational acceleration, g, is in the negative z-direction, and also assumes
no flow along the magnetic field lines (Figure[1.11).

In this scenario, the ions drift in the negative y-direction (in the direction
of g x B), while the electrons drift in the opposite direction. These drifts pro-
duce a current density, j, and a consequent j x B force that just balances the
downward gravitational force on the ions and electrons. The neutral atoms
do not sense the magnetic field, and thus fall downward in the direction of
the gravitational force. The downward flow of neutral atoms relative to the
ionised components of the plasma creates frictional forces between the neutral
and ionised components: specifically, the ions and electrons exert upward fric-
tional forces on the neutrals, meanwhile the neutrals exert equal and opposite
downward forces on the ions and electrons. The downward frictional forces on
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the ions and electrons enhance the drift current produced by the downward
gravitational force. Under the condition of equilibrium the net drift current
is such that the upward j x B force just balances the total downward grav-
itational force on the entire prominence plasma. It is in this way that the
magnetic field supplies support for the entire prominence plasma including
the neutrals, which do not directly feel its effect.

1.3 Prominence seismology

Oscillations are present everywhere in the Sun, the 5-minute photospheric
oscillation being the most significant example. The existence of oscillations
reflects a dynamic behaviour of the Sun and provides us with tools to under-
stand the properties of our star.

Solar atmospheric seismology aims to determine physical parameters that
are difficult to measure by direct means in magnetic and plasma structures.
It is a remote diagnosis method that combines observations of oscillations
and waves in magnetic structures, together with theoretical results from the
analysis of oscillatory properties of given theoretical models. The philosophy
behind this discipline is akin to that of Earth seismology, the sounding of the
Earth interior using seismic waves, and helio-seismology, the acoustic diag-
nostic of the solar interior. The main difference between solar atmospheric
seismology and helioseismology (which deals with the modes of oscillations of
the whole Sun) is that single features studied in the corona can only be inves-
tigated for a short period of time, whereas the Sun as a whole remains prac-
tically unchanged over much longer intervals, which it can be observed. So-
lar atmospheric seismology was first suggested by |Uchidal (1970) and Roberts
et al. (1984), in the coronal context, and by Roberts & Joarder (1994) and
Tandberg-Hanssen| (1995) in the prominence context, and the increase in the
number and quality of high resolution observations in the 1990s has lead to
its rapid development.

The branch of solar atmospheric seismology that deals with oscillations in
prominences is also known as prominence seismology. The first reports about
the presence of oscillations in prominences go back to the 1960s. The applica-
tion of inversion techniques to prominence seismology is less developed. This
is due to the complexity of these objects in comparison to, e.g., coronal loops.
The recent refinement of theoretical models that incorporate the fine structur-
ing of prominences and the high resolution observations of small amplitude
oscillations have produced an increase in prominence seismology studies. Sev-
eral techniques for the inversion of physical parameters have been developed
that make use of observational estimates for quantities such as phase veloci-
ties, periods, damping times and flow speeds. In general, the solution to the
inverse problem cannot provide a single value for all the physical parameters
of interest. However, important information about unknown physical quanti-
ties can be obtained using this method.
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Using different theoretical models as well as damping mechanisms, seis-
mological studies have been performed using large and small amplitude
prominence oscillations. These studies have allowed to estimate physical
properties of prominences such as prominence Alfvén and kink speeds, thick-
ness of inhomogeneous layers, angle of the vector magnetic field with the
prominence long axis, magnetic field, etc.

A thorough review about the current state of prominence seismology can
be found in |Arregui et al.| (2012).

1.3.1 Observational background

From the observational point of view, prominence oscillations can be classi-
fied into two groups according to the amplitude of periodic variations: large
amplitude and small amplitude oscillations.

1.3.1.a Large amplitude oscillations

Large amplitude oscillations arise when a disturbance, such as a Moreton
wave (Moreton 1960) produced after a flare, impacts on a prominence and
shakes its whole body. As a consequence of this large-scale perturbation, the
prominence gas undergoes a large, horizontal displacement from its equilib-
rium position and the complete prominence vibrates with velocity amplitudes
of the order of 20 km s™' or higher during several periods until the oscillation
is damped.

Because of the large velocities involved, large amplitude oscillations some-
times modify the absorption/emission wavelengths of the prominence. During
the observations in Ha, the filament becomes visible when the prominence is
at rest, i.e. when it reaches its maximum displacement from the unperturbed
position. Meanwhile, when the line-of-sight velocity is sufficiently large, the
emission from the material falls outside the bandpass of the filter and the
prominence becomes invisible in Ha. The resulting optical effect gave rise to
coining the term ‘winking filament’.

Ramsey & Smith|(1966) presented the first detailed study of the large am-
plitude oscillation motions although there are previous observations of ‘wink-
ing filaments’ (Dodson/ (1949). The work performed by H. E. Ramsey and
S. F. Smith consists of the study of 11 flare-induced oscillations by using three
narrow filters corresponding to the Ha centre line and two in the line wings
at +0.5 A. They found no correlation between the period of the oscillations
and filament dimensions, distance to the flare or its importance. Besides, a
single filament was perturbed by four different flares during three consecu-
tive days (June 25, 26 and 27, 1960) and the period was essentially the same
in the four cases. So, the conclusion of this work was that prominences have
their own frequency of oscillation and that this frequency cannot be related
to the dimensions of the prominence or the characteristics of the triggering
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flare. The amplitude of this oscillations is rapidly damped, disappearing after
the observation of about four complete oscillations.

In spite of large amplitude oscillations being discovered half a century ago
and the trigger for these motions being highly visible, unlike other types of
solar oscillations, the topic has remained practically dormant for more than
thirty years until the recent revival during the first years of the 21st century.

Modern observations of winking filaments indicate that the velocity of the
plasma is in excess of 20 km s™' (Eto et al.[/|2002; Okamoto et al. 2004) and
that the filaments oscillate with periods from 30 minutes to 3 hours (Isobe &
Tripathi 2006; Jing et al. |2006) and damping times of 2—3 times the corre-
sponding period (Jing et al.[2006).

Recently, Jing et al. (2003, 2006) reported observations of periodic motions
along the filament produced by a disturbance coming from a subflare at one
end of the filament, whereas ‘winking filaments’ are activated by Moreton or
EIT waves impinging on their sides.

On the other hand, large-amplitude oscillations have been also observed
before or during prominence eruption (Isobe & Tripathil [2006; Isobe et al.
2007). These observations can be applied to diagnose the stability and the
eruption mechanism.

Since the aim of this thesis is restricted to the study of small amplitude
oscillations we refer the reader to Tripathi et al. (2009) for a complet review
of both observational aspects and modelling efforts of large amplitude oscilla-
tions.

1.3.1.b Small amplitude oscillations

Quiescent prominences are also subject to small-amplitude oscillations, not
related to flare activity and with velocity amplitudes much smaller than those
observed in large-amplitude oscillations. In this case, the detected peak veloc-
ity ranges from the noise level (down to 0.1 km s™! in some cases) to 2-3 km s™',
although larger values have also been reported (Bashkirtsev & Mashnich
1984; Molowny-Horas et al.|1999; Terradas et al.|2002). These periodic chan-
ges in solar prominences do not normally affect the whole object at a time, but
are of local nature instead.

Early observational studies revealed a wide range of characteristic peri-
ods that lead to classify small amplitude prominence oscillations according
to their period in short (P < 10 min), intermediate (10 < P < 40 min) and
long period oscillations (P > 40 min). However, recent reports of observations
have induced a change into this classification adding two new categories: very
short-period oscillations, with periods less than a minute (Balthasar et al.
1993), and ultra-long-periods of more than 8 h (Foullon et al. 2004).

This classification does not appear to reflect a different origin of the de-
tected prominence perturbations for each of the period ranges. Presumably,
periodic perturbations in prominences are produced by an external agent that
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Reference Period (min) Structure
Harvey|(1969) 1-17 Prominence
Bashkirtsev & Mashnich|(1984) 42 — 82 Prominence
Tsubaki & Takeuchi (1986) 2.7,3.5 Prominence
Yi et al. (1991) 5,9, 16 Thread
Balthasar et al.|(1993) 0.5, 12, 20 Prominence
Bashkirtsev & Mashnich (1993) 5 —90 Prominence/Filament
Suetterlin et al. (1997) 3-10, 20, 60 Prominence
Terradas et al. (2002) 30-40,75 Prominence
Foullon et al.| (2004) 720 Filament
Lin! (2004) 4 — 20, 26,42, 78 Thread
Lin et al. (2007) 3-9 Thread

Table 1.3: Examples of observations of small-amplitude prominence oscillations, reported
periods and structures in which observations were carried out.

excites different eigenmodes of the structure.

Some of the periods obtained in different works have been summarised
in Table which is only a representative compilation of values and by no
means pretends to be exhaustive.

Unfortunately, on its own, a period reveals very little information about
the conditions in the prominence since it corresponds to many combinations
of density, temperature, magnetic field, etc.

On the other hand, there are also some determinations of wavelength
and phase speed obtained from observations of oscillations in slab-like promi-
nences. For instance, Molowny-Horas et al. (1997) determined a maximum
value 4, ~ 20 000 km, while the corresponding phase speed was v, < 44 km s'.
Terradas et al. (2002) analysed small amplitude oscillations in a polar crown
prominence reporting the presence, along two selected paths in the promi-
nence region, of two plane propagating waves, as well as a standing wave.
The plane waves propagate in opposite directions with wavelengths of 67 500
and 50 000 km and phase speeds of 15 km s™! and 12 km s~!, while in the
case of the standing wave, the estimated wavelength is of 44 000 km and the
phase speed of 12 km s~'. The reader is refered to Oliver & Ballester (2002),
Wiehr (2004), and [Engvold (2008), among other recent reviews, for more in-
formation about the observational background of small amplitude prominence
oscillations

1.3.1.c Fine structure oscillations

Individual oscillations of prominence fine structures have been frequently re-
ported since telescopes with a high time and spatial resolution became avail-
able.

Threads have dynamics that can be easier to understand than that of the
whole body. Early works (Y1 et al. 1991} Y1 & Engvold |1991) detected oscilla-
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Figure 1.12: Observed Doppler velocity (dots) and fitted function (solid line) versus time at
two different points in a quiescent prominence. The period is 70 min in both points and the
damping time is 140 and 101 min, respectively. The function fitted to the observational data
is of the form vy cos(wt + @) exp(—t/7p). Adapted from Molowny-Horas et al.[(1999)

tory variations in Doppler signals and He I line intesity from threads in quies-
cent prominences and already noted the possible link between the prominence
fine structure and the periodic motions in prominences. Furthermore, Yi et al.
(1991) reported wavelengths greater than 20 000 km.

Later, |Lin| (2004), and Lin et al. (2007, |2009), using Hao and Doppler obser-
vations with better spatial resolution, found evidence of oscillations and prop-
agating waves along quiescent prominence threads with wavelengths around
4000 km. In addition, observations from Hinode spacecraft have shown trans-
verse oscillations of thread-like structures in both active region (Okamoto
et al.[2007) and quiescent (Ning et al. |[2009; Schmieder et al. 2010) promi-
nences.

With these observations we can narrow the period of these oscillations to
a range between 2 and 10 minutes, with velocity amplitudes smaller than ~3
kms™.

On the other hand, Y1 et al.| (1991), Lin et al.| (2007), and Schmieder et al.
(2010) suggested the presence of groups of neighboring threads that moved in
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phase, which may be a signature of collective interactions and oscillations.

1.3.1.d Damping of small amplitude oscillations

The oscillatory amplitude tends to decrease in time in such a way that the
periodicity totally disappears after a few periods (Oliver & Ballester 2002),
just as observed in large amplitude oscillations. This is then interpreted as a
signature of wave damping by some mechanism. The importance of observing
and identifying the process of wave damping is that we can gain some infor-
mation about the physical conditions and processes going on in the plasma.
On the other hand, the ratio between the damping time 7p and the period P,
i.e. Tp/P, gives us information about how fast oscillations are damped, and in
prominence oscillations this ratio seems to be /P < 10.

The attenuation of the oscillations was previously suggested by some ob-
servations (Landman et al. |1977; Tsubaki & Takeuchi [1986) but it was first
extensively investigated by Molowny-Horas et al. (1999) and Terradas et al.
(2002). Molowny-Horas et al. (1999) and Terradas et al. (2002) derived reli-
able values of the damping time, 1p, after fitting a sinusoidal function multi-
plied by a factor exp(—t/7p) to Doppler velocity time series recorded simultane-
ously at different positions of a quiescent prominence (Figure [1.12). The val-
ues of 7p thus obtained are usually between 1 and 3 times the corresponding
period, and large regions of the prominence display similar damping times.
Similar results were obtained in a more recent work by Mashnich et al./ (2009).
Furthermore, the analysis made by [Terradas et al. (2002) suggests the pres-
ence of a propagating wave, which was interpreted as an slow mode, for which
the amplitude of the oscillations spatially decreases in a substantial way in a
distance of 2 — 5 x 10* km from the generation location. This distance can be
considered as the typical spatial damping length, L4, of the oscillations.

Although the spatial resolution in |Molowny-Horas et al. (1999) and Ter-
radas et al.| (2002) was not enough to distinguish individual threads, one
could assume that, as for large-scale oscillations, the individual and/or col-
lective thread motions are also damped in time. This statement was recently
confirmed by some high-resolution observations, which were able to resolve
damped fine structure oscillations (Lin/[2004; Ning et al.[2009).

The determination of the temporal decay law may have several implica-
tions, since it can give information about the physical damping mechanism,
as different physical processes have their own decay profile.

1.3.1.e Flows

A typical feature of prominences is the presence of flows which are observed in
Hea, UV and EUYV lines (Labrosse et al.[2010). In Ha quiescent filaments, the
observed velocities range from 5 to 20 km s~ (Zirker et al.[1998; Lin et al./2003,
2007) and, because of the physical conditions in filament plasmas, they seem
to be field-aligned. In the case of active region prominences, flow speeds can be
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higher than the previous values. Recent observations made with Hinode/SOT
by |Okamoto et al. (2007) reported the presence of synchronous vertical oscil-
latory motions in the threads of an active region prominence, together with
the presence of flows along the same threads. However, in limb prominences
different kind of flows are observed and, for instance, observations made by
Berger et al. (2008) with Hinode/SOT have revealed a complex dynamics with
vertical downflows and upflows.

Okamoto et al. (2007) studied six different threads observed in an active
region prominence with the Hinode Solar Optical Telescope. They found flow
velocities in the range 15-46 km s™!, oscillatory periods in the range 135—
250 s and thread lengths in the range 1700-16 000 km. [Terradas et al. (2008)
performed an independent seismological study of the same events assuming
that the thread is a dense plasma moving along a horizontal and straight
magnetic tube tied to the dense photosphere at its ends. They also consider
low-3 and linear approximations. They considered three different models: (a)
the thin tube approximation with no flow, (b) the thin tube approximation
with flow, and (c) the full ideal MHD equations with flow. The results of the
models are in excellent agreement with the observations by Okamoto et al.
(2007) and they conclude that the period of transverse oscillations is almost
insensible to the presence of a flowing thread.

1.3.2 Theoretical background

The combination of observations and theoretical models of prominence oscil-
lations constitutes a powerful diagnosis tool. With the help of this tool we can
perform prominence seismology with the aim to determine difficult to mea-
sure prominence parameters.

1.3.2.a Large amplitude oscillations

From the theoretical point of view, there is a lack of models explaining large
amplitude oscillations. This lack is perfectly explained by the scarce number
of observations of this kind of oscillations during the last third of the 20th
century. Hyder (1966) proposed a model for the vertical motions in terms of
harmonically damped oscillations. The restoring force was provided by the
magnetic tension while coronal viscosity was considered the damping mech-
anism. Later, Kleczek & Kuperus| (1969) proposed a similar model in order
to explain the horizontal oscillations but considering that the damping was
provided by the emission of acoustic waves.

Vrsnak et al. (2007) applied the idea of prominence seismology to a promi-
nence oscillation recorded on January 22th, 2002. They developed a simple
model to deduce the poloidal and axial component of the magnetic field from
the observed parameters obtaining an axial component of magnetic field of
10-30 G, which is a reasonable value for quiescent prominences.
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Since the aim of this work is the study of small-amplitude oscillations we
refer to Tripathi et al. (2009) for a complete review about large-amplitude
oscillations, both observations and theory.

1.3.2.b Small amplitude oscillations

On the other hand, the great number of observations of small-amplitude oscil-
lations have favoured an extense bibliography centred on theoretical models
to explain these oscillations.

Simplified models for small-amplitude prominence oscillations were stu-
died by Roberts (1991) considering the prominence as a point mass suspended
on an elastic string, representing the locally deformed magnetic field which
supports the prominence. This model provides with some insight into the pe-
riod of vertical oscillations of the whole prominence, consistent with the 10-20
minute range of observed values. Another view of a quiescent prominence is
the three-dimensional picture of a rectangular membrane. Once again, the
periods obtained with this model are of the order of 30 minutes, which is con-
sistent with observations.

More sophisticated studies, related to small-amplitude oscillations, have
appeared since then, using the linearised magnetohydrodynamic equations.
The inclusion of the magnetic field yields a magnetic pressure and magnetic
tension as available restoring forces. The theoretical studies of magnetohy-
drodynamic waves in prominences reduces to solving the set of differential
equations with the appropriate boundary conditions. Such theoretical studies
can be divided into two groups depending on the equilibrium choice.

Global oscillations. The first group represents the prominence as an iso-
thermal plasma slab of finite width. In this line, there are models which
restrict to the prominence itself and do not consider the overlying arcade and
the external coronal medium. Following this approach Oliver et al.|(1992) stu-
died the oscillatory modes of the Kippenhahn & Schliiter (1957) prominence
model while Joarder & Roberts|(1993) considered a Menzel/(1951) prominence
model in order to study the effect of gravity. Terradas et al. (2001) studied the
effect of Newtonian cooling in the Kippenhahn-Schiilter and Menzel equilib-
rium models.

Models in which the effect of the external medium is taken into account
have also been developed. Joarder & Roberts (1992a,b) studied adiabatic per-
turbations of a prominence slab in a hot corona with a homogeneous mag-
netic field across and along the long axis of the slab. These authors created
the distinction between internal, external and string modes. |Oliver et al.
(1993), analysing oscillations in the Poland & Anzer (1971) equilibrium model,
found that the fundamental mode was internal and external at the same time,
which lead to the term hybrid mode. Oliver et al. (1996) considered differ-
ent prominence-corona transition regions (PCTR) and found that the former
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classification in internal, external and hybrid modes could be maintained. Fi-
nally, /Anzer (2009) has determined the basic modes of oscillation of simple 1D
prominence configurations.

Fine structure oscillations. The second group is formed by the models of
oscillations that take into account the fine structure of the prominence and
make use of a single fibril. The first theoretical study of this kind was carried
out by Joarder et al. (1997) adapting the slab model of Joarder & Roberts
(1992b). They considered a magnetic field oriented along the fine structure
which was considered as a thin thread with finite width and length. Once
again internal, external and hybrid modes are supported. A more in-depth
study of the fibrils oscillations, including 3-dimensional prominence fibrils,
was performed by Diaz et al.[ (2001, |2002, 2003, 2005) and Diaz| (2004).

These models can reproduce the range of observed periods in prominences.
Nevertheless, the ignorance of the precise values of prominence physical
conditions and the little information available about some relevant oscilla-
tory parameters prevents us from performing an unequivocal comparison
between theoretical wave modes and observations. However, it seems that
intermediate- and long-period oscillations are related to slow magnetoacous-
tic waves, whereas short-period oscillations can be connected to fast magne-
toacoustic waves.

1.3.2.c Damping of the oscillations

A number of recent works have studied, from a theoretical point of view, the
attenuation of prominence oscillations attempting to explain the damped os-
cillations reported by Molowny-Horas et al. (1999) and Terradas et al. (2002).
Several non-ideal damping mechanisms have been proposed to explain the
damping of prominence oscillations. The complexity of the models has been
improved from very simple configurations to more realistic models including
prominence fine structures and flows.

Homogeneous and unbounded medium. By removing the ideal assump-
tion and including dissipative terms in the basic MHD equations, it is pos-
sible to study the attenuation of propagating waves in a homogeneous and
unbounded medium. Carbonell et al. (2004, 2006) studied the time and spa-
tial damping by non-adiabatic effects (optically thin radiation losses, ther-
mal conduction, and plasma heating). These works concluded that only slow
waves are efficiently damped by non-adiabatic effects, being radiative losses
the dominant mechanism, while fast waves are slightly damped and Alfvén
waves are unaffected. (Carbonell et al.| (2009) explored also the time damp-
ing of non-adiabatic slow and thermal waves in an unbounded prominence
medium with a background flow.
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Forteza et al.| (2007, |2008) and |Carbonell et al. (2010) have included par-
tial ionisation in this type of models in order to study the influence of the
ion-neutral collision mechanism in the attenuation of prominence oscillations.
These works are extensively explained in this Thesis, therefore we refer the
reader to the following chapters.

Slab models. In both the Kippenhahn & Schliiter|(1957) and Menzel (1951)
prominence models, Terradas et al. (2001) studied the damping of oscillations
by radiative losses, based on the Newtonian cooling with a constant relaxation
time, in Kippenhahn-Schiilter and Menzel equilibrium models. Later, Ter-
radas et al.| (2008) assumed a more complete treatment of the non-adiabatic
effects with the incorporation of optically thin radiation, heating and thermal
conduction. The main conclusion that arises from these works is that only the
slow wave is damped by the thermal effects in an efficient way, being the radi-
ation the dominant attenuation mechanism in the range of typically observed
Wavelengthsf_f]; in contrast, the fast wave remains practically unaffected.

Soler et al. (2009c) considered a prominence slab embedded in the corona
with magnetic field parallel to the slab axis and, performing a treatment of
the non-adiabatic effects as in Terradas et al. (2005), obtained that the pres-
ence of the corona reduces the damping time of the fast waves due to the
influence of coronal thermal conduction, although this effect is not enough to
obtain damping times compatible with those observed. On the other hand,
Soler et al.| (2009¢) studied the same configuration with the magnetic field
perpendicular to the slab axis. In this case, fast modes may be thermally un-
stable for some wavelengths due to the heat transfer from the corona to the
prominence slab along magnetic field lines.

Cylindrical models. The plasma density varies by about two orders of
magnitude between a prominence and the surrounding corona. In such
a highly inhomogeneous configuration, fast kink modes can be efficiently
damped by transfering their energy to Alfvén modes through resonant ab-
sorption. Arregui et al.| (2008) considered a transverse inhomogeneous tran-
sitional layer between a cylindrical filament thread and the corona, and in-
vestigated the damping by resonant absorption in the Alfvén continuum. The
damping time obtained is approximately 3 periods for typical wavelengths
of prominence oscillations and a typical density contrast between the promi-
nence and the coronal plasma, meaning that resonant absorption is a plausi-
ble candidate to be the damping mechanism of transverse thread oscillations.

This study was extended by |Soler et al. (2009a) by considering also reso-
nant absorption in the slow continuum and by Soler et al.|(2009d) that study
the joint effect of resonant absorption and partial ionization.

4From 5000 km to 10° km according to Oliver & Ballester (2002).
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Models including flows. |Carbonell et al.| (2009) explored the time damp-
ing of non-adiabatic slow and thermal waves in an unbounded prominence
medium with a background flow in the case of field-aligned propagation. Fast
mode is ignored in this work because non-adiabatic effects do not contribute
in a significant way to its attenuation (Carbonell et al.[2004). The authors
find that the period and damping per period show a strong dependence on the
flow speed and also that the greatest period and damping per period of slow
waves is obtained for flow speeds close to the real part of the non-adiabatic
sound speed.

The thermal mode, which in the absence of flow does not propagate, be-
comes a propagating mode in the presence of a background flow. Therefore,
may not be possible to determine whether an observed period and damping
time is associated to a slow or thermal wave. In order to distinguish the origin
of such wave it would be necessary to look at the temperature perturbation,
which, for the thermal wave, should be larger than for the slow wave.

Soler et al. (2008) perform a similar study in the case of a single thread
embedded in an unbounded corona considering flow motions parallel to a uni-
form magnetic field. This work points out that in the absence of flow, slow
modes are efficiently damped by non-adiabatic effects, while fast kink modes
are practically not affected.

Meanwhile, in the presence of flow, the damping time of slow and thermal
waves is not affected, while for realistic values of the flow velocity, the larger
the flow, the larger the attenuation of parallel fast kink modes, whereas the
contrary occurs for antiparallel fast kink modes. Nevertheless, the values of
the damping time obtained considering this model differ from the observed
damping times of fast kink waves.

The observational and theoretical knowledge of waves and oscillations in
solar prominences has been reviewed by (Oliver (1999, 2004, 2009), Engvold
(2001), Oliver & Ballester (2002), Ballester| (2005, 2006, 2010), Banerjee et al.
(2007), Tripathi et al. (2009), Labrosse et al. (2010), Mackay et al. (2010),
Arregui & Ballester (2010), and |Arregui et al.| (2012).

1.4 Outlook of the Thesis

After having reviewed the current observational and theoretical backgrounds
about prominence oscillations, it becomes clear that the study of how promi-
nence oscillations are damped is of great interest. Therefore, the aim of this
Thesis is to contribute to the theoretical understanding of the damping of
prominence oscillations. In particular, we are going to focus in the effects of
the ion-neutral collision mechanism in the damping of magnetohydrodynamic
waves. The outline of the Thesis is as follows: In Chapter [2| we introduce the
equations of magnetohydrodynamics and the wave equations, describing the
different MHD modes. We end this chapter reviewing some of the classical
results about oscillations in simple structures. In Chapter [3| we derive the
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single-fluid MHD equations for a partially ionised plasma. In Chapter |4 we
study the behaviour of Alfvén, fast and slow MHD waves in an unbounded,
homogeneous, adiabatic and partially ionised plasma, which is the simplest
configuration that can be used to understand the effect of ion-neutral colli-
sions in the damping of MHD waves. In Chapter |5 we consider the same
simple model but we include non-adiabatic effects in order to study the joint
effect of ion-neutral collisions and thermal mechanisms on the damping of
MHD waves. In Chapter [6, and using the same equilibrium model as before,
we study the spatial damping of MHD waves in different kinds of plasmas
(ideal, resistive and partially ionised) with and without background flows.

Finally, in Chapter (7| the results and conclusions of this work are pre-
sented, and a brief discussion of future developments and applications of
these results is carried out.






Chapter 2

Magnetohydrodynamics

It is well known that matter in the Sun is in a plasma state, that is, an
ionised gas with enough abundance of free charges. One way to have a rea-
sonable description of the plasma under solar conditions, among other appli-
cations, is magnetohydrodynamics, or MHD for short. This chapter is devoted
to present the MHD equations and some relevant simple plasma configura-
tions which will be used as initial equilibrium configurations in the following
chapters.

2.1 But... what is a plasma?

Some estimations suggest that up to 99% of the matter of the visible Universe
is in plasma state: stars, nebulae, the solar wind, the interstellar hydrogen,
the Van Allen belts, ... So, we are living on the other 1%, the small fraction of
the Universe where plasmas are not produced naturally. It is because of this
that most people think that there are only three states of matter, i.e. solid,
liquid and gas. But the truth is that plasma can be considered the fourth state
of matter with its own properties.

A plasma is, essentialy, a fluid composed by charged particles (electrons,
ions and neutrals), or, in other words, an ionised gas. Nevertheless, there are
others, more accurate definitions as the one given by Chen|(1974): a plasma
is a [macroscopic] quasi-neutral gas of charged particles and neutral particles
which exhibits collective behaviour. So, besides the fact that a plasma is elec-
trically neutral, the existence of charged particles means that it can support
electric currents and interact with electric and magnetic fields.

The main difference between a neutral gas and a plasma is that the first
one is dominated by two-body billiard-ball-like collisions, that are strong and
short range forces, while in a plasma, a charged particle interacts through the
Coulomb force with the other charged particles of the plasma and, in addition
to this, a moving charged particle creates a magnetic field which also interacts
with the other charged particles. Since the electromagnetic forces are weak
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and of long range, in comparison with the forces dominant in a neutral gas,
a charged particle interacts with a large number of other charged particles,
resulting in a collective behaviour of the plasma.

In order to have this collective plasma behaviour the following conditions
must be satisfied:

e The long-range Coulomb interaction between charged particles should
dominate over the short-range binary collisions with neutrals.

e There should be frequent enough collisions between electrons and ions
to establish a fluid behaviour.

e The length-scale of plasma dynamics should be much larger than the
minimum size over which the condition of quasi-neutrality is satisfied.
Thermal fluctuations can produce local charge imbalances and create
huge electric fields. These electric fields cause the acceleration of par-
ticles, and the charge imbalance is neutralised almost instantaneously.
This lenght-scale is definied by the Debye length, /lDEL

e For statistical considerations, the number of particles inside a Debye
sphere (i.e. a sphere of radius Ap) must be big enough.

2.2 Magnetohydrodynamic equations

It has previously been stated that the matter in the conditions present in the
Sun is in plasma state. Under these conditions, the macroscopic behaviour of
the plasma in certain regions can be reasonably well described by Magneto-
HydroDynamics (MHD). This theory can be introduced from two different for-
malisms. The first one starts directly from Boltzmann kinetic theory and com-
bines it with Maxwell’s equations of electromagnetism, taking into account
certain approximations and properties of the plasma state. This derivation
can be followed in |Goossens| (2003). The second formalism introduces MHD
from fundamental equations of fluid dynamics together with Maxwell’s equa-
tions, considering that a plasma is a fluid made of charged particles perme-
ated by electric and magnetic fields. This second approach can be followed in
Priest (1984) and is the one we use throughout this chapter in order to intro-
duce the MHD equations. We want to note that we need to consider several
fundamental assumptions to obtain the general equations for MHD. These
assumptions are:

IThe Debye length is defined as

[eokgT
Ap ~ 80213 ,
en

where g is the electric permittivity, n is the number density, ¢ is the electron charge and kg
is Boltzmann’s constant.
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e The plasma is treated as a continuum. This is valid because the length
scale for variations is larger than the typical internal plasma lengths,
characterised by the ion cyclotron radius.

e The plasma is assumed to be in thermodynamic equilibrium with distri-
bution functions close to Maxwellian. This holds for time-scales much
larger than the collision times and length-scales much longer than the
mean free paths.

e Most of the plasma properties are assumed isotropic.

e The plasma is treated as a single fluid. This means that global plasma
magnitudes are considered, which are computed as the sum of the mag-
nitudes of each species present in the plasma (i.e. ions, electrons and
neutrals).

e The equations are written in an inertial frame.

e Relativistic effects are neglected since the typical plasma velocities (flow,
sound and Alfvén speeds) are much smaller than the speed of light.

¢ In many processes in the solar atmosphere the plasma can be considered
as electrically neutral to a high degree of approximation, that is n; —n. <
n, with n the total number density and »n; and n. the ion and electron
number densities. In practice, a local charge imbalance produces an
electric field with a spatial range given by the Debye length, which is
a measure of the distance over which the charge density can deviate
appreciably. In fact, as we have previously said, a plasma may be defined
as an ionised gas for which Ap is much smaller than all other scales of
interest.

Taking into account all the previous considerations one can obtain the set
of non-adiabatic MHD equations. Now we summarise the non-adiabatic MHD
equations:

%+V-(pv):(), (2.1)
pj—::—Vp+%r(VxB)xB+pg, (2.2)
‘;—1; - %% - —(y-1e, (2.3)
(;—]::VX(VXB), (2.4)
V-B=0, (2.5)

p= [ﬂ, (2.6)

i



38 Magnetohydrodynamics

namely the continuity equation (Eq. [2.1]]), the equation of motion (Eq. [2.2])),
the energy equation (Eq. [2.3])), the induction equation (Eq. [2.4])), the solenoi-
dal condition (Eq. [2.5]]) and the equation of state (Eq. [[2.6]]), with p the den-
sity, v the velocity, p the pressure, B the magnetic field, g the gravitatory field,
v the adiabatic index, € the energy loss function, 7 the temperature and i the
ionisation fraction.

The energy loss function ¢ in Eq. has different terms which represent
the rate of energy loss or gain. Heat flux due to particle conduction, radiation
or ohmic dissipation and any other sources or sinks are included in the en-
ergy loss function. Formally, ¢ is negligible when the time-scale for changes
in pressure, density and temperature is much smaller than the time-scales
for the different mechanisms considered in the energy loss function. This sit-
uation is often valid for rapid changes associated with, for example, waves,
so that all changes of state can be considered adiabatic. In this case, the en-
ergy loss function is set to zero (adiabatic approximation) and the plasma is
considered thermally isolated, i.e. there is no exchange of heat, and so the
entropy is conserved.

Non-adiabaticity can be considered by introducing a more complete form
of the energy loss function such as

Q=V.-(k-VI)-L, - j*/oc +H, 2.7

where « is the thermal conduction tensor, L, is the radiation term, j?/o stands
for the ohmic dissipation, with o being the conductivity, and H groups other
heating terms, such as viscous dissipation or heating by waves or reconnec-
tion. In the case of a perfect conducting plasma (o0 — ) the ohmic dissipation
term vanishes.

2.3 Magnetohydrodynamic waves

In a gas, sound waves propagate due to the presence of a pressure restoring
force: local compression or rarefactions of the gas set up a pressure gradient
in opposition to the motion, which tries to restore the original equilibrium.
When the gas is uniform, the waves propagate isotropically at the sound speed
of the medium, denoted by c.

These waves carry energy away from the source but they possess such a
small amplitude that the gas is only slightly disturbed. When this amplitude
is large enough, the wave may steepen into a shock wave, as in the case of the
sonic boom from a supersonic aircraft.

In the presence of a magnetic field, variations in the gas pressure generally
lead to disturbances of magnetic lines, and any attempt to propagate sound
waves results in variations in the magnetic field, which also exert a restoring
force.
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Oscillations, interpreted in terms of MHD waves, have been observed in
many solar structures, such as sunspots, prominences, coronal loops and oth-
ers, so MHD waves are important to understand the Sun’s dynamics.

The basic theory of wave motion in the presence of a magnetised plasma
can be found in Cowling (1976), among other references. The mathemati-
cal discussion of wave motion adopted in this work follows a standard pat-
tern, consisting of considering an equilibrium situation and then perturbing
it slightly in order to see whether linear disturbances propagate as waves.

2.3.1 Linearised equations

Since we only consider small-amplitude oscillations in prominences, non-
linear effects are not very important and it is enough to consider the linear
regime. After this linearisation, the set of equations reduces to a more simpli-
fied form and it is even possible to obtain analytical solutions to some simple
problems.

Before linearising the equations we need to define an equilibrium back-
ground. As a background model, we use a homogeneous unbounded medium
threaded by a uniform magnetic field along the x-direction, and with no back-
ground flow. The equilibrium magnitudes of the medium are given by

Ppo = const., po = const., Ty = const.,

By = Bye,,

with By, = const.
Next, we assume that physical variables suffer small displacements from
their equilibrium values in the form

B =B, + B(r, 1),
v = ¥(r, 1),
p = po+ p(r,1),
p =po+p(r,1),
T=Ty+T(r,1), (2.8)

where the subscript 0 denotes equilibrium quantities and the tildes, the per-
turbed quantities. Now, we insert these physical quantities into the continu-
ity, momentum, energy, induction and state equations (Egs. [2.1]-2.6]) and
linearise them neglecting products of the perturbed quantities, which are as-
sumed to be small in comparison with the equilibrium values (i.e. |B|/|By| < 1,
1p/pol < 1, 1p/pol < 1, |T/To| < 1).

Neglecting gravity effects we end up with the following set of linearised
equations
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op
— V-v=0, 2.9
o +tpoV -V (2.9)
oV 1 3
'DOE =-Vp+ E(V X B) X By, (2.10)
o _ymdb _ MY - [(Bo - VT)Bo| — po (Lo + L T) (2.11)
ot py Ot B i’
B
6_l =V X (Vv X By), (2.12)
V-B=0, (2.13)
r_p_T_, (2.14)
po po To

where L, and L; are the partial derivatives of the heat-loss function with
respect to density and temperature, respectively,

o) o[
‘D — apT7 T — ana

with T and p held constant, respectively, at the equilibrium state.

(2.15)

2.3.2 Adiabatic magnetohydrodynamic waves

In the adiabatic case, i.e. in the absence of radiative losses, thermal conduc-
tion and heating, Eq. (2.11) becomes,

0p _ 20p _

ci— =
ot ot
where the sound speed squared is defined by

0, (2.16)

> _ YPo
;= —.
Po
Now we consider that perturbations are in the form of plane waves, so one
can Fourier-analyse perturbed quantities as follows

(2.17)

fx, 1) = fie ko, (2.18)
where f; is the perturbation amplitude and, with no loss of generality, we
choose the wave vector in the xz-plane, k = kX + k.Z. Then, the set of linear
adiabatic equations reduces to the following set of scalar expressions,

wpy + po(kevie + ki) =0, (2.19)
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wpovix + kipr =0, (2.20)

Bo,
wpoV1y — ﬁkaly =0, (2.21)

By,

wpov1, + k.py + ﬁ(szu — kB, =0, (2.22)
iw (p1 - cfpl) =0, (2.23)
wB, + Boxkzvlz =0, (224)
(/.)Bly - Boxkxvly = O, (225)
(,()BlZ - B()xkxvlz = O, (226)
kB, + kB, = 0. (2.27)

Alfvén waves

Eqgs. (2.21) and (2.25) are decoupled from the rest and from them we can ob-
tain the dispersion relation for Alfvén waves

w? = kv =0, (2.28)
where the Alfvén speed squared is defined by
B2
vi= (2.29)
4mpo

Alfvén waves propagate with a constant phase speed along magnetic field
lines, w/k, = v,, and are driven by tension and pressure forces with no pressure
or density variations (they are incompressible). This last fact makes Alfvén
waves insensible to non-adiabatic effects.

Plasma motions associated to this mode are transverse to both the mag-
netic field and the direction of propagation. It is a highly anisotropic mode,
unable to propagate across the field, with energy flowing along field lines at
the Alfvén speed.

Magnetoacoustic waves

Eqgs. (2.19)—(2.27) excluding (2.21) and (2.25) describe slow and fast magne-

toacoustic modes. The slow wave is essentially an acoustic wave modified by
the magnetic field, while the fast wave is a magnetic wave driven by magnetic
pressure and weakly affected by acoustic effects (Goossens|2003).

Next, it is possible to obtain a general dispersion relation for magnetoa-
coustic waves by imposing that the determinant of this algebraic system be
zero. This provides us with the well-known dispersion relation for magnetoa-
coustic waves,

w* - (cf + vﬁ) Kw? + k*c2v: cos? 6 = 0, (2.30)
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with k* = k2 + kZ and the propagation angle 6 being the angle between the equi-
librium magnetic field, By, and the propagation direction, k. The analytical

solution of Eq. (2.30) is,

2
z_k
w = —

Cl@ o) = Ve +127 -acizeosa). (2.31)

where the positive sign corresponds to the fast magnetoacoustic wave while
the negative sign corresponds to the slow magnetoacoustic wave.

In the low B plasma approximation (i.e. for ¢; < v,), that is suitable for a
prominence plasma, the solutions to the dispersion relation become

w = k.cs, (2.32)

for the slow wave and

w = kv,, (2.33)

for the fast wave.

The slow mode is driven by tension and pressure forces, with pressure and
density variations. It is an anisotropic mode, unable to propagate across the
magnetic field lines, and the energy flow is confined to the vicinity of certain
magnetic field lines.

The fast mode, like the slow mode, is driven by tension and pressure forces,
with pressure and density variations. This mode is roughly isotropic, al-
though it propagates faster across the magnetic field.

It should be pointed out that in other conditions, the distinction between
the three modes (Alfvén, fast and slow) is not clear, because they become cou-
pled. Anyway, in general it is still possible to identify the characteristics of
a wave and to classify it by comparing with the most suitable mode in an
infinite homogeneous medium.

2.3.3 Non-adiabatic magnetohydrodynamics

With the inclusion of non-adiabatic effects the previous MHD modes are mod-
ified and a fourth mode appears, the thermal mode.

Now, we proceed as in the previous section but considering the non-
adiabatic terms. Then, we end up with the following set of scalar equations,

wp1 + polkvi, + kviy) =0, (2.34)
wpovix + kypr =0, (2.35)

Box
wWPoV1y — ﬁkaly =0, (2.36)

By,
wpovy; + kzpl + ﬁ(szlx - kalz) = 0, (237)
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*

Regime b% a  Reference
Prominence (1) 1.76 x 10°° 7.4 [Hildner (1974)
Prominence (2) 1.76 x 107* 17.4 Milne et al.[(1979)
Prominence (3) 7.01x 10" 30 Rosner et al./(1978)
Corona 1.97x 10" -1 |Hildner (1974)

Table 2.1: Parameter values (in cgs units) of the radiative loss function considering different
plasma optical thicknesses. The three prominence regimes represent different plasma optical
thicknesses, Prominence (1) being valid for an optically thin plasma, Prominence (2) for opti-
cally thick and Prominence (3) for very thick plasmas. An optically thin plasma is assumed
for the coronal regime.

iw (p] - cfpl) +(y-1) (K”ki +p0LT) T+ (y—-1D(L+poL,)p1 =0, (2.38)
wB1 + Bokvi, =0, (2.39)
wByy — Bykyvyy = 0, (2.40)
wBy; — Byk,vi, =0, (2.41)
k.Bi, + kB, =0, (2.42)
po_p Ty, (2.43)
po po  To

Again, Egs. (2.36) and (2.40) are decoupled from the rest and govern Alfvén
waves, which are not affected by non-adiabatic effects.

From the rest of equations and imposing that the determinant of this al-
gebraic system be zero we obtain the general dispersion relation for thermal
and magnetoacoustic waves,

asw’ + ayw* + a30° + w* + ayw + ap = 0, (2.44)

whose coefficients are given by:

ik*k2v?
ap = — (ATo — Hpy),
Po
a, = K22,
AT, - H, AT 2
azzikz[ 0 Po+ Oa]’
Po Po
as = —k* (cg + vﬁ),
ATy
as = —i—,
Po
as =1, (2.45)

with

A= (y = 1) (kjk} + poLr). (2.46)
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Figure 2.1: Period, damping time and ratio of the damping time to the period versus the
wavenumber k for fast (dotted line) and slow (solid line) waves. Eq. has been solved
considering typical prominence conditions (7 = 8000 K, po = 5 x 10~ kgem™, i = 0.5), By =
10 G, Prominence (1) regime radiation conditions (Table and constant heating per unit
volume (a = b = 0). Adapted from (Carbonell et al.| (2004).

H = (y - 1)(L + poL,). (2.47)

The solutions of this dispersion relation were studied by Carbonell et al.
(2004). Considering a real wavenumber, k, the solutions for the frequency are
complex, w = wg + iw;. Hence, the amplitude of the perturbations is multiplied
by a factor exp(—wit). For w; > 0 oscillations are damped in time, while, on
the contrary, if w; < 0 oscillations are amplified. The dispersion relation,
Eq. (2.44), has one purely imaginary root, corresponding to the thermal or
condensation mode which is a non-propagating solution (Field 1965). The rest
of roots correspond to wave modes and consist of two pairs, one representing
the slow mode and the other corresponding to the fast mode.

In the adiabatic limit, A = H = 0, Eq. becomes the well-known dis-
persion relation for adiabatic perturbations (Eq. [2.30]).

Carbonell et al.|(2004) solved Eq. for a wide range of wavenumbers
and for different values of equilibrium physical conditions akin to those of
prominences. They also considered different optical thicknesses of the promi-
nence plasma and several heating mechanisms (Table [2.I). One of the main
results of this work is that waves are always attenuated (w; > 0) for promi-
nence conditions?

The period P, the damping time 7, and the ratio of the period to the damp-
ing time can be computed from the real and imaginary part of the frequency;
respectively:

2n 1 D WR
P_wR’ TD_wI’ P 2nw;
Figure [2.1| reproduces some results from Carbonell et al. (2004). We can ob-
serve that both magnetoacoustic waves are damped by non-adiabatic effects,

(2.48)

2They also found that waves can be amplified (w; < 0) in time for the prominence-corona
transition region (PCTR) and coronal conditions in some ranges of k depending on the heating
scenario. This situation corresponds to a thermal instability (Field|[1965).
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the slow wave being more attenuated than the fast wave. For the wavenum-
bers corresponding to the observed range of wavelengths (shaded regions of
the figures), the theoretical value of /P is compatible with observations in
the case of the slow wave, but larger values are obtained in the case of the
fast wave.






Chapter 3

Partially ionised plasma:
one-fluid MHD equations™

Prominences seem to be constituted by partially ionised plasmas since neu-
tral hydrogen lines are observed. The ionisation degree of prominences varies
over a wide range, with the ratio of electron to neutral hydrogen density
roughly between 0.1 and 10 (Patsourakos & Vial 2002). Therefore, we should
consider this fact and a new set of MHD equations, including the effect of
collisions between ions and neutrals present in the plasma, is needed.

The frictional damping of magnetoacoustic waves in a partially ionised
plasma is much stronger than in a fully ionised plasma because the presence
of neutral atoms causes the Joule heating dissipation to increase as a result
of collisions of electrons with neutrals and ions and, what is more important,
of collisions of ions with neutrals (Khodachenko et al. 2004). The cause for
the collisions between ions and neutrals is in Alfvén’s frozen flux theorem: if
a perturbation gives rise to a transverse displacement of the magnetic field,
charged particles move bodily with magnetic field lines, while neutrals stay
motionless. This comparative study of the role of ion-neutral damping of MHD
waves and their damping due to viscosity and thermal conductivity was made
by Khodachenko et al. (2004} [2006) and it was found that collisional damping
is dominant. It is well known that the role of neutrals can be very relevant in
a cold plasma (7' ~ 10000 K), such as has been found by Leake & Arber (2006)
in the context of the magnetic flux emergence from the solar interior into
the corona. These authors found that the chromospheric partial ionisation
leads to an increased rate of flux emergence and, more importantly, that the
magnetic field becomes force-free after crossing the chromosphere.

The goal of this chapter is to add to the single-fluid MHD equations (pre-
sented in the previous chapter) the effect of the ion-neutral collision mecha-
nism, i.e. to derive a set of single-fluid MHD equations for partially ionised

*This Chapter is based on: Forteza, P., Oliver, R., Ballester, J. L., & Khodachenko, M. L.
2007, “Damping of oscillations by ion-neutral collisions in a prominence plasma”, Astronomy
and Astrophysics, 461, 731.
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plasmas.

3.1 General assumptions

We consider the prominence material as a partially ionised hydrogen plasma
with T,, p., ne, p. and v, respectively representing the temperature, density,
number density, pressure and velocity of the different plasma species: elec-
trons (@ = e), ions (@ = i) and neutrals (@« = n). Obviously, in a hydrogen
plasma the number density of ions and electrons is equal, i.e n. = n;. More-
over, the density can be defined as p, = m,n,, with m, the particle mass.

The total density, total pressure and centre of mass velocity are defined as

P = Pe+Pi+ Pn X Pi + Pos (3.1)

P = Pe+ Pi+ Pn = 2pi + P, (3.2)
a=e,i,n aVa

V= Z:e+ ~ ‘fiVi + ‘fnvn’ (33)

where the assumptions p.|v.| < p;|v;| and p.|v.] < p,|v,| have been made. Here
the relative densities of ions and neutrals are defined as

_pi
fl_p n+n,
n nn
gn:'%zn._'_n, (3.4)

The degree of ionisation of the plasma is characterised by the ionisation
fraction defined as the mean atomic weight (the average mass per particle in
units of the proton mass, m,),

1
L+&

This definition implies that i = 0.5 for a fully ionised plasma and i = 1 for
a neutral gas. Although we retain the relative densities of ions and neutrals
in the following, these can be expressed in terms of the ionisation fraction as
=1/p-1land & =2-1/f.

Is important to note that here we do not include the effects of particle ion-
isation and recombination, so the number of ions, neutrals and electrons in
the plasma remains constant, and also assume a strong thermal coupling be-
tween the different species, which leads electrons, ions and neutrals to have
the same temperature (7. = T; = T, = T). Then, it makes no sense to consider
separate continuity, momentum and energy equations for the three compo-
nents. The separate governing equations for the three species can be eas-
ily substituted by a set of one-fluid equations for the whole partially ionised
plasma. In the following sections we outline the derivation of this set of ex-
pressions.

(3.5)

/_]:
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3.2 Continuity equation

To obtain the continuity equation of a partially ionised plasma one only needs
to add the individual continuity equations for the different species present in
the plasma (i.e. electrons, ions and neutrals):

85: + V- (peve) = 0, (3.6)
Wi L5 (v =0 (3.7)
ot ’

9pn

22+ V- (pav) = 0. (3.8)

The addition of these three equations together with the definitions of the
density (Eq. [3.1]) and the centre of mass velocity of the partially ionised

plasma (Eq. [[3.3]]) yields

op 3
Yl V- (pv) = 0. (3.9)

3.3 Momentum equation

The general form of the momentum equation, neglecting gravity effects, is

do Vo 1
nam(td_‘tl = _Vpoz + noZqe (E + ;Voz X B) + ; R,Baa (3.10)

where d,/dr = 0/0t + v, -V and Z, is the charge of the particles (i.e., in our case
Z.=-1,7Z =1 and Z, = 0). In addition,

Rg, = namav;ﬁ(v/; - V) (3.11)

is the momentum interchange between the species a and the other species,
B # a, present in the plasma. Using the fact that momentum is conserved in
a collision we find

R,G’a = _Raﬂ’ Aop = Apa- (312)
The effective collision frequency v, ; can be obtained from

mg
Vg = p——_C (3.13)
where Vog = Vo and v,; = vg, and only the three collision frequencies v, Ve
and v;, need to be computed using the following expressions

10_24 n; In Acz2

Vei = 5.89 X ST

(3.14)
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Ven = Ny \’ Sk—BTzena (315)
TTMen

Vin = Ny 8k—BTZ:ins (316)

Tm;

where ., ~ 7x107' cm? and Z;, ~ 5x1071 cm? are the electron-neutral and ion-
neutral collisional cross-sections, m,, = m,m,/(m,+m,) with @ = ¢, i and In A¢ is
the Coulomb logarithm, whose value has a weak dependence on temperature
and density (Priest|1984) and usually takes values between 5 and 10.

One can define

Qo = nam(,vzlﬁ, (3.17)

Ay = Aip + Aey. (3.18)

Now, introducing the relative ion-neutral velocity and the electric current
density,

W=V, -V, (3.19)

J = nie(vi — ve), (3.20)

one can write the momentum equations for electrons, ions and neutrals for
our partially ionised plasma as follows

dev. 1 j
nimed—: = —-Vp. — nje (E + =V, X B) + (e + Qen) J_ QenW, (3.21)

¢ i

di i 1 j

nimi—v = —-Vpi + me (E + —v; X B) - aeii — Qip W, (3.22)

dt c n;e

dnVy J

nami—— = =Vpy — @en— + (An + Qen) W. (3.23)

dt n;e

Adding these three equations, taking into account Eqgs. (3.2) and (3.20) and
neglecting the electrons inertia term, we obtain the momentum equation for
the whole partially ionised plasma

V- 1
nimi—t + nymi—— = -Vp+ —jxB. (3.24)
c
After some algebra[l| the momentum equation leads to

pcji—: =-Vp+ 1j X B =V - (&&,0WW). (3.25)
c

1See Appendix@for a detailed derivation of the momentum equation.
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where d/dt = 0/t +v - V.

The term containing w is caused by the species inertia and can be usually
neglected in solar applications and also vanishes in the linear regime. An
expression for w is given in Section 3.6

3.4 Energy equation

We start with the energy equation of each species, neglecting thermal effects

Ope
apt + Ve Vpe +ypV - ve = (y = 1)Q., (3.26)
dp;
5 Vi Vpi+ypiV-vi = (y - 1)Q;, (3.27)
Opn
5tV Voo +ypaV vy = (y = 10 (3.28)

Adding the three equations we obtain

0
a_l; + Za: (Vo - VPo +¥PeV Vo) = (y = 1) Za: Qas (3.29)

where the 0, = 35 0., and Q. is the heat generated in a gas of particles of
species a as a consequence of collisions with particles of species S.
Considering

Oup + Opa = —Rgpy - (Vo — Vp), (3.30)

and Eqgs. (3.19) and (3.20) we can write the right-hand side summatory of
Eq. (3.29) as

O+ Qi+ Qn = o5 P+ an? — 20w |, (3.31)
en, en;

After some algebraic manipulationf] we end up with the energy equation for
the whole partially ionised plasma

dt

1

d ) ;
Ly ypV - v +yV - QEpiw — EpaW) —yj - V (ei) = (v = Dqyoutes (3.32)

which considering Eq. (3.9) can be written as

d d . i
LI V- epw - EpW) - Y V[ L) = - Do (3.33)
dt p dt en;

2See Appendixfor a complete derivation of the energy equation.
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Now, one can generalise this energy equation in order to obtain a more
general expression including the thermal effects,

d d . ;
d—’t’—y—Pd—p+yV-<2§npiw—fipnw>—n-v (i) = —(y=D) [pL(0, T) = V - (k- VT) = Goutc] -
e o (3.34)

3.4.1 Radiation and heating

The heat-loss function represents the difference between an arbitrary heat
imput, H, and radiative losses, L,,

L, T) = Li(p,T) - H(p, T). (3.35)
Radiative losses can be written following Priest (1984) as

_ ne.ny
0

where the electron density, n., and the density of hydrogen atoms and neu-

trals, ny = n; + n,, can be expressed in terms of & by means of using Eq. (3.4).
The function Q(T) has been evaluated by different authors (Cox & Tucker

1969; Tucker & Koren/1971; McWhirter et al. 1975; Raymond & Smith/1977)
and can be aproximated by

L,

o(T), (3.36)

Q(T) = mx' T, (3.37)

whith y* and « being piecewise functions that depend on the temperature.

This approach was taken by |Hildner|(1974) who assumed an optically thin
plasma. While the use of this approach seems reasonable for coronal con-
ditions, it may not be valid for prominence conditions because they are, at
least in part, optically thick. The radiative losses from the internal part of
prominences are greatly reduced and this can be represented by changing the
values of y* and « in the cooling function (see Table [2.1).

The processes involved in the solar atmospheric heating are still not well
known, so several possible heating mechanisms or scenarios have been pro-
posed, like heating by acoustic or Alfvén waves or by current dissipation. In
some works (Rosner et al.|[1978; Dahlburg & Mariskal|1988), the heating func-
tion is written as

H(p,T) = hpT". (3.38)
and the values taken into account for the exponents a and b are
1. Constant heating per unit volume (a = b = 0).

2. Constant heating per unit mass (a = 1, b = 0).
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3. Heating by coronal current disipation (a = 1, b = 1).
4. Heating by Alfvén mode/mode conversion (a = b = 7/6).

5. Heating by Alfvén mode/anomalous conduction damping (¢ = 1/2, b =
-1/2).

So, the heat-loss function for a partially ionised plasma takes the form

L(p,T) = &Epx* T — hpT?. (3.39)

Finally, the constant % in Eq. can be obtained by considering an
equilibrium with uniform temperature (L(p,, Ty) = 0) and one of the heating
scenarios. In our investigation we have chosen a constant heating per unit
volume (a = b = 0), so

3.4.2 Thermal conduction

Now, we need an expression for the thermal conduction in a partially ionised
plasma. Following Parker| (1953) and Ibanez & Mendozal (1990), the thermal
conduction coefficient in a partially ionised plasma can be expressed as the
sum of the contributions of electrons and neutrals

K = Ke + K. (3.41)

In typical coronal and prominence conditions the magnetic field is strong
enough to make the perpendicular component of the electron’s conductivity
tensor negligible («; > «,), so

K. = Ke||6f), (342)
with

T5/2
o = 1.84 x 1077 2—. 3.43
el Y A (3.43)

On the other hand, the neutrals contribution to thermal conduction is
isotropic since neutrals do not sense the magnetic field, so

Ky = Kyl (3.44)
with

ko = 2.5 x 10%(1 - &). (3.45)
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3.5 Equation of state

The equation of state is only needed to determine the temperature from the
number density, n, and pressure, p, of the plasma. It is given by the sum of
the equations of state of electrons, ions and neutrals

Pe = nckgT = nikgT, (3.46)
pi = nikgT, (3.47)
Pn = nnkBTy (348)

so, the equation of state for the partially ionised plasma is

D = Pe+ Di+ pn = 2ni + ny) kT = nkgT. (8.49)

3.6 Ohm’s law

The first step to obtain the generalised Ohm’s law is to calculate an ex-
pression for w by adding the momentum equations of electrons and ions
(Egs. and [3.22])) multiplied by &, and the momentum equation of neu-
trals (Eq. [3.23])) multiplied by —¢;. The result is

W = _E + ‘fn j < B + a’eni _ ‘fné:i divi _ ngn i (350)
a, cay a, en; ay dt dt
where G is the pressure function (defined in Braginskii/|1965),
G =&V(pe +p)— &V, (3.51)
Taking into account that the partial pressures of the different species are
é:i fn
= = = . 2
Pe = Di 1+§ip, Pn 1+§ip’ (3.52)
the pressure function can be cast as
G =24V ¢ pl-&v il rl. (3.53)
1+& 1+
From Eqgs. (3.3), (3.19) and (3.20) we can write
Ve = VA4 EW-— L. (3.54)
eny

Now, considering Egs. (3.21), (3.50) and (3.54) and neglecting the term con-

taining derivatives of v; and v, in the formula of w one obtains
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eG—Vpe+i+ l—2a§nj

E'=E + lv xXB = - . x B
c en; o en;c (3.55)
4 Lo [GxB—é(]xB)xB]
can
where € = a.,/a, < 1 and
o2 2
o= ni€ ~ ¢ (3.56)

Me [véi +(1 - s)vgn] Mme (v(;i + v{m)

is the conductivity.
The Joule heating term, that appears in the energy equations (3.32) or

(3.34) can be cast using Eq. (3.55) as

_ 2 2
M.“J_ fnng) G+ f (JxB) (3.57)

— .
qioule = E J=
n; a cQa.

3.7 Induction equation

To obtain the induction equation we need to take the curl of Eq. (3.55) and in-
sert it into Faraday’s lawf, so one can obtain the general form of the induction
equation(!

6—B:Vx(va)—EVx(M)—Vx(anB)
ot e n;

_Vx(gnGxB)—4—V 8§H(V xB)xB (3.58)
@y i

é_‘Z

+V><{ (VxB)xB]xB}

dray,

where the coefficient of magnetic diffusivity is defined as
2
n=— (3.59)

dno’

and the quantity ¢2/(4na,) is sometimes written as (Khodachenko et al.|2004;
Leake et al. 2005; Khodachenko et al. 2006)

& ne-n
= (3.60)

SVxE=-1%
“Here j = 1~V x B has been used.
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Here the Cowling’s coefficient of magnetic diffusivity, 7, is defined in a similar
way as 7, but with the Cowling electroconductivity o instead of o,

(oa
= — 3.61
G (3.61)

anc

The terms on the right-hand side of Eq. are known in the literature
as the convective term, Biermann’s battery, Ohm’s diffusion, diamagnetic cur-
rent term, Hall’s diffusion and ambipolar diffusion, respectively. Among these
terms, Biermann’s battery is the less important in solar atmospheric plasmas,
since it is only relevant when large pressure gradients are present, whereas
this term is identically zero in a homogeneous plasma.

Ohm’s diffusion is mainly governed by electron-ion collisions and ambipo-
lar diffusion is mostly caused by ion-neutral collisions. On the other hand,
Hall’s effect is also present in the fully ionised case and is enhanced by ion-
neutral collisions since they tend to decouple ions from the magnetic field
while electrons remain able to drift with the magnetic field (Pandey & War-
dle2008). The diamagnetic current term couples the magnetic field evolution
with pressure gradients and its effect is larger for intermediate values of the
ionization fraction since G vanishes when we consider the fully ionised or the
fully neutral limits.

3.8 Summary of single-fluid MHD equations for
partially ionised plasmas

Thus, to describe the behavior of a partially ionised plasma one must consider
the set of one-fluid Egs. (3.9), (3.25), (3.34), (3.49) and (3.58), where gjou is
obtained from Eq. (3.57). The terms containing w are usually neglected in
solar applications and they also vanish in the linear regime. Therefore, the
plasma variables in these formulae are p, p, T, v and B and so the set of
nine scalar equations contains nine scalar dependent variables. The one-fluid
MHD equations for a non-adiabatic partially ionised plasma reduce to their
counterparts for a non-adiabatic fully ionised plasma by taking & = 1 (and &, =
0) and a perfectly conducting plasma (c = n = 0). To retrieve the equations
for an ideal plasma we need to neglect the non-adiabatic terms.

Following |Leake et al.|(2005) the Hall term can be dropped from the gener-
alised Ohm’s law if the plasma is magnetised, i.e. if the ions and electrons are
tightly bound to the magnetic field. This condition can be written in terms of
the ion-gyrofrequency and the collision time as w;r > 1. Using the definition
of the ion-neutral collision frequency this is equivalent to

eB Th; 1
} / . 1, 3.62
cm; \ 16kgT n,%;i, > ( )
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which depends on the strength of the magnetic field as well as the tempera-
ture and number density. Since this condition is satisfied in prominences one
can neglect the Hall term of the induction equation.

In summary, assuming a homogeneous plasma, isotropic pressure, neglect-
ing gravity, viscosity and species inertia in Eq. (3.25), and neglecting also the
Biermann’s battery and Hall’s current term in Eq. (3.58), our set of single-
fluid MHD equations for partially ionised plasmas is,

‘z_f; £V (pv) =0, (3.63)
p@ =-Vp+ 1.] X B, (3.64)
dt c
J .
d—’; +ypV v - yi Vpi = ~(y = D[pL(, T) =V - (k- VT) = growe],  (3.65)
V-B=0, (3.66)
aa—B =V x (vXB) +7V*B - EZV x (Vp x B)
! S (3.67)
-
+ BP V x{[(VxB)xB] xB},
p= p%T, (3.68)
with the parameter = defined as
_ &8
T+ & (3.69)

and where L(p, T), k and gj.. are obtained from Eqs. (3.35), (3.41) and (3.57),

respectively.

At this point, it could be worth to keep in mind that in order to study MHD
waves in partially ionised plasmas other approaches could be taken. For in-
stance, Zaqarashvili et al. (2011) have considered two-fluid, one made of ions
and electrons and the other one made by neutrals. In order to obtain the set
of MHD equations applicable to this case, they start from three fluid equa-
tions (Braginskii [1965; (Goedbloed & Poedts 2004) plus Maxwell’s equations,
and, after neglecting the electron inertia and viscosity effects, they derived a
set of two-fluid MHD equations for partially ionised plasmas. Once derived,
this set of equations can be used for the study of MHD waves in the two-fluid
approach. The interest of this approach is related with the time-scales of the
phenomena under study since for timescales longer than the ion-neutral colli-
sion time, the system can be considered as a single-fluid. However, when the
time-scales are near or shorter than the ion-neutral collision time, two-fluid
equations should be considered. Taking into account that in prominence os-
cillations the observed periods are much larger than the ion-neutral collision
time-scale, it is fully justified to use of a single-fluid approach for our study.
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3.9 Non-adiabatic and linear MHD waves in a
flowing partially ionised prominence plasma
As a background model, we use a homogeneous unbounded medium threaded
by a uniform magnetic field along the x-direction, and with a field-aligned
background flow. The equilibrium magnitudes of the medium are given by
po = const., py = const., Ty = const.,
By = Boé., Vo = ey,

with By = const., and vy = const..
To obtain the dispersion relation for linear MHD waves in presence of a
flow, we consider small perturbations from the equilibrium in the form

B = B, + B(r, 1),
vV =vy+ V(r,1),
p = po+ p(r,1),
p =po+p(r,1),
T =T,+T(r,0), (3.70)

and we linearise the single fluid basic equations. Since the medium is un-
bounded, as in Chapter |2, we perform a Fourier analysis in plane waves as-
suming that perturbations behave as

f = fie . (3.71)

Choosing the z-axis so that the wavenumber k lies in the xz-plane (k = kX +
k.z) the operator % + vy - V becomes i (w + k,vy), which points out that in the
presence of a background flow the frequency suffers a Doppler shift given by
k,vo and that the wave frequency, w, for the non-adiabatic case with flow can
be obtained from

w=Q+ kv, (3.72)

Q being the wave frequency for the non-adiabatic case without flow. Also,
these frequencies can be described in a different manner: Q corresponds to
the frequency measured by an observer linked to the flow intertial rest frame,
while w corresponds to the frequency measured by an observer linked to an
external inertial rest frame.

After the Fourier analysis, the following linearised scalar equations are
obtained.

Qo — polkviy + kvy,) =0, (3.73)
Qoovix — kip1 =0, (3.74)
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BOx
onvly + Ekaly =0, (375)
BOx
Qpovi; — k;p1 + E(kalz — k.B1,) =0, (3.76)

iQ (p1 - cfpl) +(y-1) (Ke”ki + Kok? +p0LT) T+ (y—-1D(L+pL,)p1 =0, (3.77)

By, (iQ + K + Knc) + (i = ncYkuk.Br: — Bouk(ivi. — k-Epy) = 0, (3.78)
By, (iQ + kinc + k2n) + iBosk,vy, = 0, (3.79)
By (iQ + K2nc + k2n) + (7 = nc)kok.By, + +Bok (ivi: - k-Epy) = 0, (3.80)
kB, + kZBlz =0, (381)

T
pr_pr_ 1t _ g (3.82)

po po To

Equations (3.75) and (3.79) are decoupled from the rest and lead to the fol-
lowing dispersion relation for Alfvén waves in a partially ionised plasma with
background flow

Q? — iQk*(5c cos® 0 + nsin® ) — v2k* cos® 6 = 0, (3.83)
From Eq. we can define a modified and complex Alfvén speed,
T(0)* =17 +iQ(nc + ntan’ 6). (3.84)
Then, the dispersion relation for Alfvén waves becomes,
Q> —T(6)*k* cos* 6 = 0. (3.85)

From the remaining linearised equations, and after imposing that the de-
terminant of the algebraic system must be zero, we obtain our general disper-
sion relation for thermal and magnetoacoustic waves in presence of a back-
ground flow, which is given by,

(Q* = IPA)(ik*ncQ — Q%) + K2vI(Q% — IEAY) + ik K2V AP EpyQ = 0, (3.86)
where A is the non-adiabatic sound speed?| defined by
Topg —H+ic’Q
PO

P T e (3.87)
%A'FZQ

Here

5A modified sound speed was introduced by Soler et al. (2007) for the non-adiabatic fully
ionised case, and by|Carbonell et al. (2009) for the non-adiabatic fully ionised case with back-
ground flow.
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A= (y=1)(kgk? + kK> + poLr) . (3.88)
H = (y - 1)L+ poL,), (3.89)

and L, and Ly are defined as in Eq. (2.15), and using the propagation angle, 6,
between k and B, the wavenumber components can be expressed as k, = kcos 6
and k, = ksiné.

On the other hand, setting A = H = v, = 0, we obtain the dispersion relation
for Alfvén and magnetoacoustic adiabatic waves in a partially ionised and
non-flowing plasma. Setting &, = 0 and = 0, we recover the dispersion
relations for Alfvén and magnetoacoustic adiabatic waves in a fully ionised
ideal plasma.

3.10 Prominence plasma parameters

Since our aim is to study MHD waves in a partially ionised prominence
plasma, the chosen values for the different parameters correspond to those
commonly used in prominence studies. Therefore, and unless otherwise is
stated, we consider the magnetic field B, = 10 G, density py = 5 x 10~ kgm™
and temperature 7, = 8000 K. Furthermore, for the radiative loss function
we use the parameter values corresponding to Prominence (1) regime in Ta-
ble and the ionisation fraction, /i, is a free parameter in our calculations
which enables us to consider from fully ionised to almost neutral plasmas.
Another important issue for our study is the numerical value of the sound
(c;) and Alfvén speeds (v,) and their dependence on the parameter values. In
the case of a fixed density and a fixed magnetic field, the Alfvén speed has a
constant numerical value of 126.15 km/s. However, since the sound speed de-
pends on the gas pressure, which is a function of the number densities of ions
and neutrals, its numerical value is not constant but depends on the ionisa-
tion fraction considered. For a fully ionised plasma, the sound speed is 14.84

km/s, while for a partially ionised plasma with 7 = 0.95 its value decreases to
10.76 km/s.



Chapter 4

MHD waves in an adiabatic
partially ionised prominence
plasma®

Once we have defined our general dispersion relation for linear non-adiabatic
MHD waves in a partially ionised plasma, it is time to start with the study of
MHD wave propagation.

In this chapter we will study the propagation of adiabatic MHD waves in
an unbounded, homogeneous and partially ionised plasma with physical prop-
erties akin to those of solar prominences. This is the simplest configuration
which can be studied and the most convenient one to start the research about
the effect of ion-neutral collisions in the damping of MHD waves.

4.1 Dispersion relation
Setting the flow velocity and the non-adiabatic terms to zero (vo = 0, A = H = 0)

in Egs. (3.85), (3.86) and (3.87), we obtain the dispersion relation for adiabatic

magnetoacoustic waves in a partially ionised plasma,

w' - ik*ncw’ — k2 (cf + vi) w? + ik*c? (kznc - kzzviEpo) w + kK*kchv?: =0, (4.1)
as well as for Alfvén waves,

w* — K’T(6)* = 0. (4.2)

*This Chapter is based on Forteza, P., Oliver, R., Ballester, J. L., & Khodachenko, M. L.
2007, “Damping of oscillations by ion-neutral collisions in a prominence plasma”, Astronomy
and Astrophysics, 461, 731 and Forteza, P., Oliver, R., & Ballester, J. L. 2008, “Time damping
of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma”, Astron-
omy and Astrophysics, 492, 223.
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Figure 4.1. Period, damping time and ratio of the damping time to the period for the fast
(top) and slow (bottom) waves in an adiabatic partially ionised plasma with g = 0.8. In all
figures, the shaded region corresponds to the interval of observed wavelengths of prominence
oscillations. The parameter values are: T, = 8000 K, py = 5 x 107" kgem™, By = 10 G and
tan = 0.2/x (kyxo = /2 and k,xy = 0.1).

with
L@ =2 +iw (nc + ntan® 9) , (4.3)

which is the modified Alfvén speed in absence of flow.

On the other hand, since we are interested in the time damping of mag-
netoacoustic waves we consider the wavenumber, k, to be real and seek for
complex solutions of the frequency w expressed as w = wg + iw;. Then, the
period and damping time of the waves can be calculated as P = 2n/wr and
7p = 1/w;. We also calculate the ratio of the damping time to the period, /P,
in order to compare theoretical results with observations.

4.2 Magnetoacoustic waves

Figure shows the period, the damping time and the ratio of the damp-
ing time to the period computed from the numerical solution of Eq. for
a partilly ionised plasma with g = 0.8. The values of 7p/P reveal that ion-
neutral collisions, which are the main cause for the damping of magnetoa-
coustic waves in the present scenario, are more important for fast waves than
for slow waves; for ji = 0.8 a difference of an order of magnitude can be appre-
ciated.

Perhaps the most interesting feature is that above a certain wavenumber
(~ 7x107* m™!) the fast wave disappears. In order to understand this effect, let
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us consider the dispersion relation Eq. (4.1) for parallel propagation (k, = 0,
k =k,

(w* - B10)) (w? - kic2) = 0, (4.4)

so that the fast and slow waves decouple. In this case, the fast wave becomes
an Alfvén wave, and its frequency is obtained by imposing that the first factor
of the previous equation vanishes. Then, solving this dispersion relation for

w we obtain,
2 TN T e

In order to have wg # 0, 4v2 — k5% must be greater than zero, which leads

to

2v,
< —_—
Ule

Hence, in a partially ionised plasma the fast mode only exists as a damped
propagating wave for wavenumbers below the critical value, k.. For wavenum-
bers greater than this critical value we have a damped disturbance instead of
a propagating wave.

Using the parameter values mentioned before we obtain k. ~ 7.3 x 10™* m™!,
very similar to the value ~ 7 x 10 m™! derived from Fig. Given that
Eq. has been derived for parallel propagation, § = 0, this agreement
indicates that non-parallel propagation does not produce a substantial modi-
fication of k..

On the other hand, Eq. points out that, in the case of parallel propa-
gation, the slow waves are not affected by resistive effects.

k = k.. (4.5)

4.2.1 Exploring the space parameter

In this section we study the dependence of the fast and slow wave solutions on
different parameters of the equilibrium configuration. These parameters are
the ionisation fraction, the propagation angle, the density and the magnetic
field. The reason behind this study is the fact that these quantities are not
very well known for prominences.

Ionisation fraction

Figure. [4.2| presents the variation of the period, the damping time and the
ratio of the damping time to the period when the ionisation fraction of the
plasma is changed. It is clear that the damping of both waves, fast and slow,
becomes stronger for plasmas with a larger proportion of neutrals. For nearly
fully neutral plasmas (@ — 1) the values of p/P for the fast wave in the re-
gion of observed wavelengths in prominence oscillations are compatible with
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Fig.

observations. On the other hand, the slow wave damping ratio is much larger
than the observed one even for the largest considered value of .

There is also a dependence of the fast wave critical wavenumber on the
ionisation fraction. This can be appreciated in Fig. where the critical
wavenumber for the fast wave, and for parallel propagation (Eq. [4.5]), has
been plotted versus the ionisation fraction of the plasma. When the fraction of
neutrals is increased, Cowling’s magnetic diffusivity increases and the critical
wavenumber decreases.
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Propagation angle

Figure |4.4] shows the dependence on the propagation angle of the period, the
damping time and the ratio of the damping time to the period for fast and
slow waves. We observe that all these quantities are not affected by the prop-
agation angle for the fast wave, while for the slow wave the main influence
of the propagation angle appears in the damping time, the period only being
slightly affected. Of course, /P shows also a strong dependence with 6, and
in Fig. a variation of five orders of magnitude in /P, when the propaga-
tion angle is varied between 6 = 0.01 and 6 = n/3, can be observed.

Density and magnetic field

Figure [4.5 shows that when the plasma density is modified the behaviour of
the fast wave is strongly affected since the values of the Alfvén speed and
of both magnetic diffusivities are modified. In particular, when the density
is decreased, small values of the damping time and damping ratio, 7p/P, are
obtained. Something similar happens for slow waves since the sound speed
is also modified. In this case, there is also a displacement of the minima of
7p/P to small wavenumbers when the density decreases. All this means that
the efficiency of the ion-neutral collisions mechanism increases in low density
plasmas.

Figure 4.6/ shows the behavior of magnetoacoustic wave parameters when
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the value of the magnetic field is modified. The slow wave is not sensitive to
these variations, while the fast wave presents a slight dependence on B, due to
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the modification of the Alfvén speed and Cowling’s magnetic diffusivity. From
this behaviour, we can conclude that, in the case of fast waves, ion-neutral
collisions mechanism becomes more efficient in presence of strong magnetic
fields.

4.2.2 Perturbations

Since we are in the linear regime, to determine the perturbed variables once
the frequency has been computed one can impose an arbitrary value to one of
them. Then, all other perturbations can be computed from

c2k.k,
Vy = m\/z, (46)
p= —pko—wvx, 4.7)

ke | B vz + k,Ep) + 4n( = ne)(kep + powvs) |

B, = ; , 4.8)
By (k?n + iw)

_ BkaBz B 4ﬂ(kzp + p0wvz)

T Bok. ‘

In Fig. we plot the moduli of the perturbed variables computed from
Egs. (4.6)—(4.9) (solid lines) together with the solutions for the ideal, fully-
ionised plasma (squares), computed from the ideal expressions for the pertur-
bations. Regarding the fast wave, we find that perturbations coincide for the
two cases. Although this may seem a surprising behavior for values of /i close
to 1, for which the interactions with neutrals result in the largest modifica-
tion to the fast wave properties, an explanation can be found from Eq. (4.8).
All the non-ideal terms and the influence of the neutral component of the
plasma are concentrated in this formula, and are absent in the expressions
of the other perturbed variables. In addition, the largest contribution in this
expression comes from the term with k,Zp and, since the pressure perturba-
tion is quite small for fast waves, Eq. results in a B, that is similar for
the two cases represented in Fig. Then, since B, does not change much,
all other perturbed quantities are similar in the fully ionised ideal case and
in the partially ionised, non-ideal case.

As for the slow wave, the two sets of perturbations are rather different
and, again, the pressure perturbation is crucial to understand this behavior.
To plot the slow mode perturbations we have fixed v,, so by virtue of Eq.
the pressure is fixed to its ideal value (such as found in Fig.[4.7). Now, the slow
wave is characterised by a large pressure perturbation compared to that of the
fast wave, so p has an amplification effect on the value of B,, and therefore of
B,, compared to the corresponding ideal value. This effect is more noticeable
for propagation with a large angle with respect to B, because of the presence
of k, in the term k.Zp in Eq. (4.8).

(4.9)
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Figure 4.7: Perturbation amplitude of the velocity, the pressure and the x- and z-components
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those in Fig. In addition, for fast and slow waves the arbitrary amplitudes, v, = 1 km/s,
v, = 1 km/s have been respectively considered.
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Another conclusion one can extract from Fig. is that the inclusion of
partial ionisation and non-ideal effects does not influence the predominant
polarisation of the magnetoacoustic wave motions since v, > v, for slow waves
and v, > v, for fast waves.

4.2.3 Approximate solution

We can obtain approximate expressions for the real and imaginary parts of
the frequency obtained from Eq. (4.1). For this we need to write w = wg + iw;
and split the dispersion relation into its real and imaginary parts,

— 6wiwh + wy + K [ Newr (wl SwR) +v; (w% - sz)] €10
+C§k2 [a)lz + ki (Vﬁ — UCwI) + kzz (_UC + vigpo) Wy — sz] _o, .

et (2w1 = Pne + K2v2Epo) + 4w (] — wp)
(4.11)
+k* [2v§w1 +1c (a)f2 - 3w12)] =0.

If we consider the case of weak damping, which means that the imaginary
part of the frequency is much smaller than the real part (w; < wg), then the
real part of the dispersion relation, Eq. (4.10), leads to the dispersion relation
for magnetoacoustic waves in an ideal plasma, Eq. (2.30). This means that for
¢, < v, the real part of the frequency can be calculated from Egs. and
(2.33),

slow fast

W™ ~ kycs, Wi~ kv,. 4.12)

On the other hand, the imaginary part of the dispersion relation, Eq. (4.11),
leads to the following expression

k*c? (Za)I — K*nc + kv 2_p0) dwywy + kK (2v§w1 + nca)zR) =0, (4.13)

that allows to derive the following expression for the imaginary part of the
frequency,

Z 9 3.
4wk = 2k (2 +12)

And after substituting the value of wy from Egs. (4.12) we obtain expressions
for the imaginary part of w for the slow waves

1{ & ¢ poct &
slow S 72 S n 2
WV [ — 2k + —k|, 4.15

! 2(47r0'v§ o, 1+ 4 Z) ( )

k*k2c2v2Epy + nek? (w3 — k*c?
(v - ) (4.14)

w1 ~

and fast waves
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dro 4drna,

fast 1 |:Czk2 + é:Ile% (k2 + c_zkzz é:i )

W™~ =
I Vi 1+§i

1 (> &B;
2 )

— 4 —k2) = %kznc. (4.16)

dro  4dra,

In Fig. we have represented the numerical solution of the dispersion
relation (Eq. [4.1]]) together with the approximate expressions derived in this
section. We can conclude that there is a perfect agreement between the nu-
merical and the approximate solutions for small wavenumbers, including the
interval of observed wavelengths. The approximate expressions are not valid
in the range of large wavenumbers because the weak damping approximation
is valid no more (Fig.[4.8). The wavenumber where this happens is similar to
k., the wavenumber where the fast wave becomes a damped oscillation instead
of a propagating wave.
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4.2.4 Comparison with Braginskii (1965)

Braginskii (1965) gives approximate expressions for the logarithmic damping
decrement, § = w;/wg, of the magnetoacoustic and Alfvén modes in an un-
bounded medium and in the low-8 plasma limit. The path followed by this
author in the derivation of ¢ is different from the way that led us to Eq.
or Egs. and (4.16), so a comparison between both results is necessary.
Since we have neglected the viscous and conductive contributions, they are
removed from Braginskii’s expressions before performing the comparison.
For the fast mode, using Braginskii’s Eqgs. (8.38), (8.41) and (8.47b) we get

cz Czkz szz
k* LU 4.17
dro * 4r @, c? ( )

whereas for the slow waves Eqs. (8.38), (8.44) and (8.49) yield

2 w{ast —

2 = 2
n2

J_
dno V2 ay

C2 pOC2§2 [kz kZ M] ) (418)
We rewrite these expressions in our own variables by making the substitu-
tions k| = k, and k, = k, and by also taking into account the definitions of the
relative densities of ions and neutrals, Eq. (3.4). Then, the former formulae
can be written as

1| & 2p2 1
fast 2 n—0 ;2 2

2020 = 2 4.1
wy —2[47Tk+4 nk] 2kr]c, (4.19)

(4.20)

2 2 2 2
slow __ l[ c C_Sk2+pocs ‘fn

= 22+ k7).
2 |aro v T T (L4 &) (&% + k)

Now, Braginskii’s formulae can be easily compared with our analytical ap-
proximations for the imaginary part of the frequency (Eqs 4.15]] and [4.16} -)
It can be appreciated that in the case of the fast wave Eqgs. (4.16] and are
identical, although, quite surprisingly, in the case of slow waves, Eqs
and disagree. The difference between these two expressions appears
in the second term on the right-hand side, i.e. the one coming from the col-
lisions of electrons and ions with neutrals, that correspond to the dominant
term. To assess the importance of this discrepancy we plot the damping time
obtained from the numerical solution of Eq. together with the results
obtained from Braginskii’s expressions and our set of approximate equations
(see Fig. [4.9). In the case of the fast wave there is a perfect agreement be-
tween the three results, as expected. Nevertheless, for the slow wave there
is a divergence of tp as we move towards parallel propagation (9 = 0). Bra-
ginskii’s solution is such that for purely parallel propagation the slow wave
has a finite damping time, whereas our developments, both numerical and
approximate, lead to no damping of the slow wave for § = 0; the cause for this
difference is the term proportional to 2 in Eq. (4.20).
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Figure 4.9: Damping time for the fast (left) and slow (right) waves for an adiabatic partially

ionised plasma with i = 0.8 and k = 1077 m~!. The three different lines correspond to the

numerical solutions of Eq. (4.1) (solid line), Braginskii’s approximation Eqgs. (4.19) and (4.20)
(dotted) and results from the aproximate Eqs. (4.15) and (4.16) (dashed).

The damping of fast and slow magneto acoustic waves was derived by Bra-
ginskii (1965), Khodachenko et al. (2004) and |[Khodachenko & Rucker (2005)
using the energy equation. Such as we have seen above, the damping rates for
fast waves obtained from the energy equation or from a normal mode analysis
are the same while for slow waves they do not agree. Recently, Zagarashvili
et al.| (2011) have studied MHD waves in a partially ionised plasma using
a two-fluid approach, and they have found that for parallel propagation the
damping rates for slow waves obtained from Braginskii (1965) and the two-
fluid approach are fully coincident. They conclude that the discrepancy is
caused by the neglect of the inertial terms in the equation of motion for the
relative velocity when the single-fluid MHD equations are derived.

4.3 Alfvén waves
Now we study the behaviour of the Alfvén wave in a partially ionised plasma.
This behaviour is described by Eq. (4.2). Since I'(9) is a complex quantity, the

real and imaginary parts of the Alfvén frequency are given by:

WR = ikxFR,

and

wy = +k,I7,

with

1
Ir = @ [ \/Vg — w; (¢ +ntan®6) + \/wlzg (nc + ntan? 9)2 + (=2 + wy (nc + ntan? 6?))2
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Figure 4.10: Period, damping time and ratio of the damping time to the period for the Alfvén
wave in an adiabatic fully ionised resistive plasma (dotted), and in adiabatic partially ionised
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Figure 4.11: Period, damping time and ratio of the damping time to the period for the
Alfvén wave in an adiabatic partially ionised plasma with # = 0 (dash-dotted), 8 = 7/4 (solid)
and 6 = 77/16 (dashed). All other parameter values are the same as those in Fig.

and

. Wg (nc + ntan® 9)

\/5[ \/vﬁ — w; (e + ntan? @) + \/a)fe (n¢ + ntan? 9)2 + (=2 + wy (¢ + ntan? 0))2]

Fig. shows the results obtained for the period, the damping time and
the ratio of the damping time to the period. In this figure the solution for a
fully ionised plasma (i = 0.5) with Spitzer’s magnetic diffusivity (Ferraro &
Plumpton/|1961; Kendall & Plumpton||1964) is also shown.

The Alfvén wave behavior is similar to that of the fast wave. Fast and
Alfvén waves have similar period and damping time and, as for the fast wave,
the ratio of the damping time to the period decreases when going to almost
neutral plasmas. Also, from Fig. one can conclude that the period, damp-
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Figure 4.12: Critical wavenumber versus the ionisation fraction for the Alfvén wave for
different propagation angles: § = 0 (dash-dotted), § = 7/4 (solid) and 6 = 77/16 (dashed). All
other parameter values are the same as those in Fig.

ing time and damping per period of the Alfvén wave depend slightly on the
angle of propagation.

On the other hand, from Eq. we can obtain the critical wavenumber,
kZ, for the Alfvén waves,

. 2v,

= : 4.21
¢ cosf(nc + ntan? ) ( )

This quantity depends on the ionisation fraction (as the fast wave critical
wavenumber does) and on the propagation angle (Fig. [4.12). Usually, & is
bigger than k. and both critical wavenumbers become equal for parallel prop-
agation. On the other hand, when we consider 5 = n we can recover from
Eq. the critical wavenumber, k", of fully ionised and resistive plasmas
(Ferraro & Plumpton/1961; Kendall & Plumpton|1964),

2v,
n

The ratio between the critical wavenumber for a partially ionised plasma,
Eq. (4.21), and that of a fully ionised resistive plasma, Eq. (4.22) is given by

kit = — cos 6. (4.22)

FP 7
= =5in?0 + = cos?6, (4.23)

ke n

whose interval of variation is from 1 for a fully ionised resistive plasma (5c =
n) to infinity for a neutral plasma.

Figure [4.13] shows the modified Alfvén speed, Eq. (3.84), computed for dif-
ferent values of the ionisation fraction. One observes that I'y is equal to the
ideal Alfvén speed, v,, for wavenumbers smaller than the critical wavenum-
ber, k2, while for wavenumbers larger than &2 the modified Alfvén speed falls

sy Moo

almost vertically to 0, so there is no propagating wave since wg = 0.
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4.4 Summary

In this chapter we have studied the time damping of MHD waves in an adi-
abatic partially ionised plasma, considering an equilibrium model with uni-
form magnetic field and assuming linear perturbations. The results show that
ion-neutral collisions are able to damp the three MHD waves (fast, slow and
Alfvén) in different ways.

In prominence conditions the damping by ion-neutral interactions is much
stronger for the fast wave than for the slow wave. This is contrary to the ef-
fect of other damping mechanisms, such as radiative cooling and conduction,
for which the slow wave is strongly attenuated while the fast wave remains
almost undamped (Carbonell et al.|[2004; Terradas et al. 2002, |2005). A con-
sequence of the present and previous studies is that the observed damped
oscillations in prominences could be explained by slow waves attenuated by
radiative cooling and thermal conduction or by fast waves attenuated by ion-
neutral collisions. The behaviour of Alfvén waves is similar to that of fast
waves. For almost neutral plasmas, fast and Alfvén waves are efficiently
damped, with values of 7,/ P compatible with observations. The importance of
collisions between ions and neutrals grows with the proportion of neutrals in
the plasma. This means that this effect is more relevant for small ionisation
fractions and that it can be neglected for nearly fully ionised plasmas.

From the magnetoacoustic wave dispersion relation we have obtained an
analytical approximation for the real and imaginary parts of the frequency
that matches the numerical results for small wavenumbers. This analytical
approximation has been compared with the formulae provided by Braginskii
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(1965) and a discrepancy between them has been found. The most impor-
tant difference between the two sets of formulae is the term proportional to
k? in Braginskii’s formula for the slow wave damping time, which (according
to Braginskii) results in the damping of this wave for propagation nearly par-
allel to the unperturbed magnetic field. This discrepancy has been recently
solved by Zaqarashvili et al. (2011) who have studied MHD waves in a par-
tially ionised plasmas using a two-fluid approach. They have found that for
parallel propagation the damping rates for slow waves obtained from Bragin-
skii (1965) and the two-fluid approach are fully coincident, concluding that
the discrepancy, when a single-fluid approach is considered, is caused by the
neglect of the inertial terms in the equation of motion for the relative velocity
when the single-fluid MHD equations are derived.

The existence of a critical wavenumber in fully ionised resistive plas-
mas was already pointed out by Ferraro & Plumpton (1961), Chandrasekhar
(1961), Kendall and Plumpton (1964), while for partially ionised plasmas it
was already reported by Balsara (1996), in the context of waves in molecular
clouds. In our case, both fast and Alfvén waves present a critical wavenum-
ber. For wavenumbers below the critical one, fast and Alfvén waves exist as
damped propagating waves, while for wavenumbers greater than the critical
one, we have damped disturbances instead of propagating waves. The criti-
cal wavenumber depends on the ionisation fraction and, in the case of Alvén
waves, it also depends on the propagation angle. Later on, the presence of crit-
ical wavenumbers in partially ionised plasmas has been reported by Singh &
Krishan|(2010) and (Soler et al.|[2009a,b,d) in the case of MHD waves in solar
coronal structures. However, Zaqarashvili et al. (2012) have made a thorough
analysis of the process of derivation of single-fluid MHD equations. Going
from two-fluid to single fluid equations, they have shown that the presence of
a cut-off wavenumber in Alfvén waves is due to the neglect of several terms
during the derivation process. In particular, the cut-off wavenumber appears
when, after neglecting the inertial term, the Hall current term and electron-
neutral collisions are also neglected in the induction equation. This points
out that the presence of a cut-off wavenumber in Alfvén (and fast) waves in
partially ionised plasmas considered under the single-fluid approximation is
not connected to any physical process. The cut-off wavenumber is an arti-
fact coming from the approximations made during the derivation of the most
commonly used single-fluid MHD equations.



Chapter 5

MHD waves in a non-adiabatic
partially ionised prominence
plasma®

From the theoretical point of view, and as we have stated in previous chap-
ters, small-amplitude prominence oscillations can be interpreted in terms of
linear MHD waves. Their attenuation has been studied considering non-
adiabatic effects such as radiative losses based on the Newtonian cooling with
a constant relaxation time (Terradas et al.|2001), or considering a more com-
plete treatment with the incorporation of optically thin radiation, heating and
thermal conduction (Carbonell et al. 2004; Terradas et al.|2005). The main
conclusion that arises from these works is that only slow waves are damped
by thermal effects in an efficient way, radiation being the dominant attenua-
tion mechanism in the observed range of wavelengths. In contrast, in Chap-
ters(3|and |4| we have proposed ion-neutral collisions as a damping mechanism
of prominence oscillations, and it seems to be efficient in attenuating the fast
and Alfvén waves in adiabatic plasmas with a small fraction of ions.

In this chapter, our aim is to study the joint effect of ion-neutral collisions
and thermal mechanisms on the damping of MHD waves in a partially ionised
prominence plasma.

5.1 Dispersion relation

From Egs. (3.83) and (3.86), and setting the flow velocity to zero, the disper-
sion relation of non-adiabatic magnetoacoustic waves in a partially ionised
plasma is given by,

*This chapter is based on: Forteza, P., Oliver, R., & Ballester, J. L. 2008, “Time damping
of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma”, Astron-
omy and Astrophysics, 492, 223.
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(@ - A?) (iK'ncw - o) + 2V (0 = BA?) + kK2 A*Epow = 0. (5.1)

From Eq. (5.1), and imposing the appropriate conditions, we can obtain al-
ready known dispersion relations. For instance, imposing Z = nc = n = 0, we
obtain the dispersion relation of non-adiabatic magnetohydrodynamic waves
in a fully ionised ideal plasma (Eq. [2.44])); imposing only A = H = 0 we obtain
the dispersion relation of adiabatic MHD waves in a partially ionised plasma
(Eq. [4.1]); and, finally, imposing =& = nc = n = A = H = 0 we obtain the
dispersion relation of adiabatic MHD waves in a fully ionised ideal plasma.

On the other hand, since Alfvén waves are not affected by non-adiabatic
processes and are decoupled from magnetoacoustic waves, their dispersion
relation is given by Eq. (4.2), and their properties are those described in the
previous chapter.

5.2 Results

We have numerically solved the dispersion relation (Eq. [5.1]]) and Fig.
shows the results obtained for P, rp and /P corresponding to fast and slow
waves. The thermal mode does not correspond to a propagating wave (wg = 0)
and its behaviour is quite similar to that of the non-adiabatic fully ionised
case. For this reason, it is not considered here.

Once again, the fast mode only exists as a damped propagating wave for
wavenumbers below a critical wavenumber (~ 7 x 10~ m™!). This value is very
similar to the value k. ~ 7.3 x 10 m™' that can be obtained from Eq. (4.5).
We must remember that Eq. has been obtained for an adiabatic par-
tially ionised plasma with parallel propagation. So, after comparing these
two values one can conclude that the critical wavenumber, ., is not affected
significantly by non-adiabatic terms and non-parallel propagation.

5.2.1 Effect of the ionisation degree

Now, we study the effect of the ionisation fraction on the magnetoacoustic
waves period and damping time. Figure |5.1 shows the results for fast and
slow waves for four different values of the ionisation fraction going from fully
ionised plasma (i@ = 0.5) to almost neutral plasma (@2 = 0.99). In the case
of fast waves we observe that, for a fixed wavenumber, the damping time
decreases when the ionisation degree is decreased, in agreement with the
results obtained in Chapter 4] (Forteza et al.[2007). As expected from Eq. (4.5),
the curve representing the period of the fast wave stops at different critical
wavenumbers, k., when the ionisation fraction is modified.

In the case of slow waves the behaviour is more complex. First, the mini-
mum of /P at long wavelengths suffers a displacement towards longer wave-
lengths when i is increased, and when & > 0.8 it is located within the interval
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Figure 5.1. Period, damping time and ratio of the damping time to the period for the fast
(top) and slow (bottom) waves for different ionisation fractions: i = 0.5 (dashed), i = 0.8 (solid),
i = 0.95 (dash-dotted) and & = 0.99 (dotted). In all figures, the shaded region corresponds to
the interval of observed wavelengths in prominence oscillations. The parameter values are:
To = 8000 K, po = 5x 10! keem™, By = 10 G and 6 = n/4.

of observed wavelengths in prominence oscillations. This means that a higher
attenuation efficiency is obtained for smaller ionisation degrees. In addition,
the minimum of 7p/P at short wavelengths displays two different features.
On one hand, as happens with the other minimum, there is a displacement
towards longer wavelengths, although it is less pronounced. On the other
hand, for 7 > 0.8 this minimum splits in two different minima that become
more separated as j is increased. The presence of a new minimum in 7p/P
yields the possibility of achieving very large damping rates for three wave-
length ranges centered about the three minima.

Finally, in order to assess the effect of ion-neutral collisions on the real
part, Ag, of the non-adiabatic sound speed A (see Eq. [3.87])), we compare its
behaviour with and without ion-neutral collisions (Fig.[5.2). This comparison
has been performed for two different ionisation degrees and Ag shows a sim-
ilar behavior, with and without ion-neutral collisions, but suffers a displace-
ment towards smaller wavenumbers when ion-neutral collisions are consid-
ered. Furthermore, the maximum value of Ay decreases when the ionisation
degree increases.

5.2.2 Effect of damping mechanisms

In this section we assess the influence of the different damping mechanisms
on the ratio of the damping time to the period (rp/P). First of all, we focus on
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Figure 5.2: Comparison of the real part of modified sound speed as a function of wavenumber
k in a non-adiabatic partially ionised plasma (solid) with & = 0.8 (left) and i = 0.99 (right) and
in a non-adiabatic fully ionised plasma (dotted). All other parameter values are the same as

those in Fig.

the fast wave, and according to the top left panel of Fig. (corresponding
to i1 = 0.8) the wavenumber interval considered can be divided in two regions
with different dominant damping mechanisms. For small wavenumbers the
ratio of the damping time to the period is dominated by radiative cooling,
while for large wavenumbers it is dominated by ion-neutral collisions. The
behavior is similar for i = 0.99, but the wavenumber at which the dominant
mechanism changes is larger. Thermal conduction by neutrals and electrons
does not influence the damping of the fast wave in a significant way.

The slow wave presents a more complex behaviour and we need to con-
sider two different values of the ionisation fraction. For almost neutral plas-
mas (@ = 0.99) the ratio of the damping time to the period presents three
minima of maximum attenuation, each of them corresponding to a different
dominant damping mechanism. The first one, situated at long wavelengths, is
caused by radiative cooling; the second one, in the mid range of the wavenum-
ber interval, is due to ion-neutral collisions mechanisms; and finally, the last
peak, corresponding to short wavelengths, is produced by neutrals thermal
conduction. Such as mentioned in Sect. in a partially ionised plasma
the expression of « has two terms (Eq. [3.41]]), corresponding to the contribu-
tions of neutrals and electrons. For a typical prominence temperature, the
contribution of electrons to thermal conduction is negligible in front of that
of neutrals. In Fig. the curve corresponding to the neutrals contribution
to the thermal conduction is indistinguishable from the curve considering the
joint contribution of neutrals and electrons.

For a larger ionisation fraction (i = 0.8; bottom left panel of Figure[5.3), the
separation between the minima caused by ion-neutral collisions and thermal
conduction decreases. Because of this, the two minima merge and both effects
are important in the same region of the considered wavenumber interval.
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Figure 5.3: Ratio of the damping time to the period for fast (top) and slow (bottom) waves
corresponding to different ionisation fractions, i = 0.8 (left) and i = 0.99 (right). Different
line styles correspond to: ion neutral collisions plus thermal mechanisms (solid line), only
ion-neutral collisions (dotted line), only thermal mechanisms (dash-dotted line) and only ra-
diation, heating and electronic thermal conduction (dashed line). All other parameter values
are the same as those in Fig.

5.2.3 Comparison with Carbonell et al. (2004)
and Forteza et al. (2007)

Next, we compare our results with previous ones in which non-adiabatic (Car-
bonell et al.[2004) and partially ionised (Forteza et al.|2007; Chapter [4) effects
were considered separately. Figure shows the period, damping time and
the ratio of the damping time to the period of the magnetoacoustic waves
for three different cases: adiabatic partially ionised plasma (dashed line),
non-adiabatic fully ionised plasma (dotted line) and non-adiabatic partially
ionised plasma (solid line). We can observe that the wavenumber at which
the fast wave disappears is not affected by the non-adiabatic terms because
it arises from magnetic diffusion and is influenced by partial ionisation ef-
fects. On the other hand, while non-adiabatic and partial ionisation effects
influence only slightly the period of the waves, which remains basically the
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Figure 5.4. Period, damping time and ratio of the damping time to the period for the fast
(top) and slow (bottom) waves. Solid lines: non-adiabatic partially ionised plasma; dashed
lines: adiabatic partially ionised plasma; dotted lines: non-adiabatic fully ionised plasma.
All other parameter values are the same as those in Fig.

same as in the ideal case, the damping time is modified such as can be seen in
Fig. In particular, for the same wavenumber, and for both magnetoacous-
tic waves, the damping time is smaller in the case of a non-adiabatic partially
ionised plasma, with the only exception of fast waves in a narrow wavenum-
ber interval. As a consequence, the ratio between damping time and period
also becomes smaller for both waves, which means that the damping efficiency
improves. Furthermore, in Sect. there is an explanation about the be-
haviour of the two minima of /P of the slow wave.

We have also studied the differences in the behaviour of the magnetoacous-
tic waves produced by the change of the parameters y* and a corresponding to
the different prominence radiative loss regimes. The results are very similar
to those of Carbonell et al.| (2004) for a fully ionised plasma, and the only dif-
ference is that the different prominence regimes only affect the region of the
wavenumber interval in which thermal mechanisms are the dominant damp-
ing mechanisms.

5.2.4 Dependence with the propagation angle

Figure [5.5] shows the ratio of the damping time to the period for different
propagation angles and the three different scenarios considered in Sect.[5.2.3}
non-adiabatic fully ionised plasma (Carbonell et al. [2004), adiabatic par-
tially ionised plasma (Chapter [4) and non-adiabatic partially ionised plasma
(present chapter).
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Figure 5.5: Ratio of the damping time to the period for three different scenarios: non-
adiabatic fully ionised plasma (left), adiabatic partially ionised plasma (center) and non-
adiabatic partially ionised plasma (right). The top panels correspond to the fast wave, while
the bottom ones correspond to the slow wave. Different propagation angles have been consid-
ered: 0 = 0.01 (dotted), 8 = n/8 (dash-dotted), 6 = n/4 (solid) and 6 = n/3 (dashed). All other
parameter values are the same as those in Fig.

For the non-adiabatic fully ionised plasma (left panels), the damping of
the slow wave presents a weak dependence on the propagation angle while
the damping of the fast wave is strongly affected by the value of the propaga-
tion angle (Carbonell et al.|2006). This behaviour is reversed in an adiabatic
partially ionised plasma: the slow wave is considerably affected while the fast
wave remains unaffected (center panels).

In the non-adiabatic partially ionised case (right panels) both waves are
notably affected by the variation of the propagation angle. Fast waves present
a dependence on the propagation angle only in the wavenumber interval in
which non-adiabatic effects are the dominant damping mechanisms. Mean-
while, for slow waves, the dependence on the propagation angle is stronger
in the region in which ion-neutral collisions and thermal conduction are im-
portant. We observe that for large propagation angles the minimum caused
by ion-neutral collisions is more pronounced, while for small angles this min-
imum completely disappears.

5.3 Summary

In this chapter we have studied the time damping of magnetoacoustic waves
in a partially ionised plasma considering non-adiabatic effects (thermal con-
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duction, radiative losses and heating) in the energy equation. We have as-
sumed small amplitude oscillations, so the linearised non-adiabatic one-fluid
MHD equations for a partially ionised plasma have been considered and the
dispersion relation for magnetoacoustic waves has been found. While fast
and slow waves are more efficiently damped in the non-adiabatic partially
ionised case than in the adiabatic partially ionised case, the Alfvén wave is
not affected by the non-adiabatic terms, so its behaviour is only affected by
the ion-neutral collision mechanism. Because of that, the Alfvén wave is not
discused in this chapter since it has been described in Chapter

Looking at the period of the different waves, one can observe that the pe-
riod of magnetoacoustic waves remains basically the same as in the ideal case.
The modification to these ideal values introduced by non-adiabatic terms and
ion-neutral collisions is practically negligible. On the contrary, the inclusion
of non-adiabatic terms in the partially ionised set of equations decreases the
damping time of fast and slow waves in the interval of observed wavelengths
as compared with the results obtained for a non-adiabatic fully ionised plasma
(Carbonell et al.[2004) and an adiabatic partially ionised plasma (Chapter [4).
Moreover, in the case of slow waves, values of the ratio of the damping time to
the period similar to those obtained from observations (1-10) can be obtained.

For slow waves, the minima of /P, corresponding to a maximum of atten-
uation, are displaced to longer wavelengths as compared to the case when only
non-adiabatic effects are considered. An increase of the neutral portion in
the plasma produces a displacement of these ranges of maximum damping to
longer wavelengths. Radiative losses are dominant at long wavelengths while
the rest of the wavenumber interval is dominated by thermal conduction and
ion-neutral collisions. For ionisation fractions with & < 0.8 both mechanisms
dominate in the considered wavelength interval (a single minimum with max-
imum damping caused by the combination of the two effects appears), while
for i > 0.8 the minimum splits and ion-neutral collisions dominate in the mid
range interval while thermal conduction dominates at short wavelengths.

In the case of fast waves, radiation is the dominant damping mechanism
for long wavelengths, while in the rest of the considered wavenumber interval
the damping is dominated by the effect of ion-neutral collisions mechanism.
As in the adiabatic partially ionised plasma (Chapter [4)), fast waves only ex-
ist for wavenumbers smaller than a critical wavenumber that depends on the
ionisation fraction and that is not affected by the non-adiabatic terms. In
spite of this, the value of this critical wavenumber is large in comparison with
the typical wavenumbers of waves in prominences. Therefore, our results are
completely meaningful within the range of observed wavelengths in promi-
nence oscillations.

In general, for typical prominence temperature values, the contribution of
electrons to thermal conduction is negligible in front of the contribution of
neutrals. This dominance of neutrals thermal conduction means that in this
case thermal conduction is isotropic. Finally, it has been shown by Soler et al.
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(2010) that if realistic abundances of helium are taken into account (~ 10%),
this has a minor influence on the wave damping.






Chapter 6

Spatial damping of MHD waves
in a flowing and partially ionised
prominence plasma*

As we have stated in Sect. [1.3.1.e, there are observational evidences about
the presence of flows and mass motions in prominences . These flows can be
observed in Ha, UV and EUV lines (Labrosse et al.|2010). The observed ve-
locities range from 5 to 20 km - s7! for Ha quiescent filaments (Zirker et al.
1998;; Lin et al. 2003, 2007; Arregui et al. 2012) and the flows seem to be
field-aligned. Flow speeds can be higher in the case of active region promi-
nences, and values up to 40-50 km - s! have been observed. Few observations
point out the simultaneous presence of oscillations and mass flows in promi-
nences. Probably, the best example was provided by Okamoto et al. (2007)
who observed an active region prominence with Hinode/SOT using Ca II H-
line images. In this observation, some prominence threads were flowing along
the magnetic field with an apparent velocity on the plane of sky of around
40 km - s7'. At the same time, the threads were oscillating in the transverse
direction. These observations, displaying oscillations and flows together, were
theoretically interpreted by Terradas et al.| (2008).

Carbonell et al.|(2009) already explored the time damping of non-adiabatic
slow and thermal waves in an unbounded and fully ionised prominence
medium with a background flow. Therefore, in this chapter we focus basi-
cally on the spatial damping of MHD waves in partially ionised plasmas in
which a background flow is present. The value of the plasma parameters and
propagation angle used in this study are the same as in the previous chapter.

*This chapter is based on: Carbonell, M., Forteza, P., Oliver, R. & Ballester, J. L. 2010,
“The spatial damping of magnetohydrodynamic waves in a flowing partially ionised plasma”,
Astronomy and Astrophysics, 515, A80.
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6.1 Spatial damping of MHD waves in a flowing
partially ionised prominence plasma

The governing dispersion relations for this case have been derived in Sect.
However, since we are interested in the spatial damping of MHD waves we
consider the frequency, w, to be real and seek for complex solutions of the
wavenumber k expressed as k = kg + ik;. Therefore, the wavelength of the
waves is given by 1 = i—l’:, the damping length by Ly = kll and the damping
length per wavelength is % Furthermore, a uniform field-aligned flow has
been considered, with a flow speed, vy, equal to 10 km - s7!.

On the other hand, depending on the value of i and both Spitzer’s (1) and
Cowling’s (nc) resistivities, we may consider different types of plasmas with
the following characteristics:

(1) A fully ionised ideal plasma (FIIP), where & = 0.5 and n = nc = 0;

(2) A fully ionised resistive plasma (FIRP), where & = 0.5 and n = nc;

(3) A partially ionised plasma (PIP), where 0.5 < i < 1 and 5 # 7c.

6.2 Spatial damping of Alfvén waves in a par-
tially ionised plasma

6.2.1 Spatial damping of Alfvén waves without
background flow

In this case, our governing dispersion relation is given by Eq. (4.2), and the

wavenumbers are,
2
k:i\/ (wsec ) 6.1)

V2 + iw(nc + ntan® )’

representing two Alfvén waves propagating in opposite directions. The real
part of these wavenumbers is,

\/vg + Vi + W (e + ntan® 6)

kr = wsecH (6.2)
V2 [V} + w(c + ntan® )]
while the imaginary part is,
—-w?secH " (nc + ntan®6) 6.3)

l =
V2 [vi + @ (nc + ntan’ 0)] \/vi + Vi + w(nc + ntan® 6)

Figure shows a plot of the damping length, wavelength and the ratio
of the damping length to wavelength versus the period for Alfvén waves. The
plots have been made for four different ionisation fractions and the shaded
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region corresponds to the interval of observed periods in prominence oscilla-
tions. When a period within the shaded region is considered, we observe that
the damping length decreases in a substantial way when the amount of neu-
trals in the plasma increases. Then, when ion-neutral collisions are present
the spatial damping of Alfvén waves is enhanced for periods greater than 1
s. Also, we can observe that for a FIRP the behaviour of the damping length,
wavelength and their ratio versus period is linear, except for periods below
10 s. However, when a PIP is considered a deviation from the linear be-
haviour appears for periods below 1 s. This is due to the joint effect of the
terms including frequency and resistivities in the real (kg) and imaginary (k)
parts of the wavenumber & since for shorter periods its role becomes more im-
portant. The spatial damping of Alfvén waves in prominence PIP with physi-
cal properties like those of quiescent prominences is very efficient for periods
below 1 s, although, within the interval of periods of interest for prominence
oscillations, it is only efficient (% ~ 1 - 10), when almost neutral plasmas are
considered.

6.2.2 Spatial damping of Alfvén waves with background
flow

Now, our dispersion relation is given by Eq. (3.85) which once expanded be-
comes a cubic polynomial in the wavenumber k,

ivo(nc cos® @ + n sin® O)k°
+ [(v% — 2 — incw) cos 6 — inw sin f tan 9] K

—2wvok + +w? secd = 0. (6.4)

The increase in the degree of the dispersion relation with respect to the case
without flow is produced by the joint presence of flow and resistivities and
implies that in the present case we obtain three propagating Alfvén waves.
Figure shows the numerical solutions of the dispersion relation for
the three Alfvén waves in a partially ionised plasma with a background flow.
For all the interval of periods considered, a strongly damped third Alfvén
wave appears, while on the contrary, and like in Sect. the other two
Alfvén waves are very efficiently damped for periods below 1 s. Furthermore,
the following approximations for the different wavenumbers corresponding to
two of the expected Alfvén waves can be calculated,

P \/ (wsec o) (6.5)

(vo £ vo)? + iw(nc + ntan? )’
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Figure 6.1: Damping length, wavelength and ratio of the damping length to the wavelength
versus the period for Alfvén waves in a FIRP (solid) and in PIP with i = 0.8 (dashed), i = 0.95

(dotted) and & = 0.99 (dash-dotted). In all figures, the shaded region corresponds to the
interval of observed periods in prominence oscillations.
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whose real part is given by,

\/(vo +,)2 + /(vo £ vo)* + w(1c + 17tan? 6)
ko =~
V2[(vo £ va)* + w?(c + ntan? )]

while the imaginary part is,

X wsecé, (6.6)

—w’sect
\/2 [(vo £ va)* + W?(5c + ntan® )]

k]2

2
y (nc + ntan” 6) 6.7)

\/(vo + )2 + (Vo £ v)* + (¢ + ntan? 6)

From the above expressions, if we consider a FIIP we recover the dispersion
relation for Alfvén waves with a background flow (Carbonell et al. 2009), and
if we remove the flow, the well-known dispersion relation for Alfvén waves is
recovered. Since the flow speed is much smaller than the Alfvén speed, the
effect of the flow on the real and imaginary parts of the wavenumber is very
small. Then, the wavelengths and damping lengths are similar to those in

Sect. [6.2.7
The third remaining wavenumber of Eq. (6.4) can be approximated by,

w . (E=v)cosh

k_

= i ——, (6.8)
voCosB  yy(nc cos? O + nsin® 0)

corresponding to the third Alfvén wave. All the above analytical approxi-
mations display an excellent agreement with the numerical results, and the
presence of the third Alfvén wave, given by Eq. (6.8), fully depends on the join
presence of flow and resistivities since, otherwise, the dispersion relation
would be quadratic. For an external observer to the flowing plasma, this ad-
ditional wave could be detectable, although its strong spatial damping would
make its detection very difficult. For an observer linked to the flow inertial
rest frame, only the two usual Alfvén waves, modified by resistivities, would
be detected.

6.3 Spatial damping of magnetoacoustic waves
in a partially ionised plasma

Our general dispersion relation for non-adiabatic magnetoacoustic waves in
presence of a background flow is given by Eq. (3.86). Because of the com-
plexity of this dispersion relation and to help to understand our results, we
have divided our study into a sequence of four different cases with disper-
sion relations of increasing complexity. In the first two cases, the properties
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of adiabatic magnetoacoustic waves in a non-flowing (Sect. and flowing
plasma (Sect. are considered; in the last two cases, the features of non-
adiabatic waves in a non-flowing (Sect. and flowing plasma (Sect.
are studied. Although our main aim is the study of spatial damping of MHD
waves in PIP, the case of a FIRP is also considered because it has received
almost no attention in the literature. The variation in the sound speed due
to the ionisation fraction (Sect. can be important since, depending on
the flow speed and ionisation fraction chosen, the flow speed could be greater
than, smaller than or equal to the sound speed, which affects the direction of
propagation of slow and thermal waves (Carbonell et al. 2009). In our case,
the flow speed is both subsonic and subalfvénic, which seems to be a typical
feature of flows observed in quiescent filaments.

6.3.1 Adiabatic magnetoacoustic waves without
background flow
Setting A = H = 0 in Eq. (3.87), vy = 0 in expression (3.72) and substituting

in Eq. (3.86), we obtain the dispersion relation for adiabatic magnetoacoustic
waves in a PIP without background flow, which is,

(W* = K (i ncw — w?) + KPvi(w® — ki) + ik k2 viciEpow = 0. (6.9)

which is equivalent to Eq. already found in Chapter[4] Since in this case
we do not consider the presence of flow, the main difference with respect to the
research reported in Chapter 4| is that in the following paragraphs we study
spatial damping instead of time damping, and that this study has also been
performed for a fully ionised resistive plasma.

6.3.1.a Fullyionised resistive plasma

Now, imposing FIRP conditions, the dispersion relation given by Eq. sim-
plifies to,

(W? = k)i nw — w?) + K*vi(w? - kc?) = 0, (6.10)

N

which once expanded gives a fourth degree polynomial in the wavenumber %,
K'c2(v2 cos? 0 + iwn) — K w* (2 + v + iwn) + w* = 0. (6.11)

Furthermore, when only longitudinal propagation is allowed (8 = 0), the dis-
persion relation (6.10) can be factorized as,

(@ = )| = P07 +iwn)| =0, (6.12)

giving place to two undamped slow waves with a dispersion relation given by,

2
w
K==

2
Cs
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In addition, since fast waves become Alfvén waves for longitudinal propaga-
tion, we also obtain two Alfvén waves damped by resistivity, whose dispersion
relation is,

2
2 w

v+ inw
For these Alfvén waves, the real and imaginary parts of the wavenumber k
can be obtained from expressions and setting 6 = 0.

Then, in the case of a FIRP and for parallel propagation, resistivity does
not affect slow waves, which propagate undamped, and only affects fast
waves.

Next, if we allow oblique propagation (0 < § < n/2) in the dispersion rela-
tion (6.11), the solutions for the wavenumbers squared are given by,

,  WO0E+cd+inw) | w02+ +inw)? — 4ick(nw — iv2 cos? 0) 6.13)

b 2ic2(qw — iv? cos? 6) 2icX(nw — iv? cos? 6) ’ '
and

,  0E+d+inw) w02+ +inw)? — 4ick(nw — iv2 cos? §) 6.14)

27 2ic2(nw — iv? cos? 0) 2ick(nw — iv? cos? 6) ’ '

where k; and k, are the wavenumbers corresponding to two coupled and
damped fast and slow waves propagating in opposite directions. Figure 6.3
displays the behaviour of the damping length, the wavelength and their ra-
tio versus the period for fast and slow waves. In these figures it is clearly
observed that the behaviour of the wavelength is the same for a FIRP and a
FIIP, and that the only difference occurs at periods below 10 s due to resis-
tivity. Moreover, the ratio of the damping length to the wavelength shows that
in a FIRP, and within the interval of periods of interest, the spatial damping
of both waves is negligible.

6.3.1.b Partially ionised plasma

The dispersion relation is given by Eq. (6.9), and considering only longitudinal
propagation we obtain,

(@ = ) [0 - (2 + iwne)| = 0. (6.15)

This expression is formally identical to Eq. (6.12), this could suggest that the
consideration of longitudinal propagation in a FIRP or in a PIP leads to the
same dispersion relation. However, there is an important difference between
a FIRP for which both resistivities have the same numerical value, and a PIP,
for which the numerical value of Cowling’s resistivity is much greater than
that of Spitzer’s resistivity. Furthermore, for longitudinal propagation slow
waves are not influenced by Cowling’s resistivity.
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Once expanded, Eq. gives the following fourth degree polynomial in
the wavenumber &,

ik'c? [nca) — iv cos® 0 + v2powE(cos® 6 — 1)] -
—Pw*(V + 2 + incw) + w* = 0. (6.16)
After solving this biquadratic dispersion relation, we obtain,

, B+ C

1
Gh=—7% (6.17)
7 = B-VC (6.18)

D
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with
B = (+c+incw),
= (V2 +cl + incw)? - dic? [ncw — iv: cos® 6 — vippE(cos” 6 — 1)] ,
D = 2ic§ [nca) - ivﬁ cos? 6 — vi,oOE(cos2 6 — 1)] ,

and the wavenumbers are,

ki =+ w2q2 (6.19)

ky = £ \Jw?q? (6.20)

Figure displays the behaviour of the damping length, the wavelength
and the ratio of damping length to wavelength versus period for fast and slow
waves in a PIP. The damping length of both slow and fast waves is severely
influenced by ion-neutral collisions and shows a strong dependence on the
period for values greater than 1 s, while for shorter periods the dependence
becomes weaker. This figure also shows that compared with that of a FIIP,
the wavelength of fast waves is slightly affected by partial ionisation, deviat-
ing from the linear behaviour for periods below 1 s, while the wavelength of
slow waves is not affected at all. Within the interval of observed periods in
prominence oscillations, when the ionisation degree is decreased the ratio be-
tween the damping length and the wavelength also decreases for both waves
and the spatial damping becomes more efficient. The maximum efficiency of
the spatial damping for fast waves is attained for periods below 1 s while for
slow waves the maximum of efficiency is attained at a period which depends
on the ionisation fraction. The location of this maximum moves towards long
periods when the ionisation of the plasma decreases, but when almost neutral
plasmas are considered it is still located at a period slightly greater than 1 s,
ouside the region of interest. Finally, comparing Figs. and it becomes
obvious that the behaviour of Alfvén and fast waves is quite similar.

6.3.2 Adiabatic magnetoacoustic waves with background
flow

Setting A = H = 0 in Eq. (3.87) and substituting in Eq. (3.86), we obtain the
dispersion relation for adiabatic magnetoacoustic waves in a partially ionised
plasma with a background flow, which is

(@ - K2¢2) (ikPncQ — Q°) + IV (@7 - Kic?) + ik I2VcIEpoQ = 0. (6.21)

zZ a’s
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6.3.2.a Fullyionised resistive plasma

Considering fully ionised resistive plasma conditions, the dispersion rela-

tion (6.21) becomes,

(Q? — I*)(ik*nQ — Q) + K*vi(Q* — kich) = 0. (6.22)

The dispersion relation is a fifth degree polynomial of the wavenumber &, and
we therefore expect two slow waves and two fast waves that, for the consid-
ered flow speed, propagate in opposite directions, plus an additional wave.
When only longitudinal propagation is considered, the above dispersion rela-
tion becomes

Q- Kc) [P(inQ +v]) - @*| = 0, (6.23)

so that slow waves are decoupled from fast waves and propagate undamped,
while fast waves are damped by resistivity. The wavenumbers corresponding
to the undamped slow waves are given by

w

k = (6.24)

VoiCS.

For the fast waves, which become Alfvén waves because of longitudinal prop-
agation, the corresponding dispersion relation, given by the second factor in
Eq. (6.23), is equivalent to Eq. when 6 = 0. The solutions to this disper-
sion relation are given by Egs. and with 6 = 0, and we obtain three
Alfvén waves similar to those studied in Sect. The expected additional
wave mentioned above is then a fast wave that, for longitudinal propagation
and when a background flow is present, becomes the third Alfvén wave al-
ready found in Sect. As in Sect. the presence of this third fast
wave fully depends on the join presence of flow and resistivities since, oth-
erwise, the dispersion relation given by Eq. would be of fourth order.
Since its strong spatial damping would make its detection very difficult, its is
not shown in the figures displaying the behaviour of magnetoacoustic waves.

When oblique propagation is allowed, fast and slow waves become coupled
and the dispersion relation given by Eq. is solved numerically. Fig-
ure displays the behaviour of the damping length, wavelength and the
ratio of the damping length to the wavelength versus period for fast and slow
waves in a FIRP. Because of the strong difference between Alfvén and flow
speeds, in the case of fast waves the unfolding in wavelength and damping
length caused by the flow is not evident, while for slow waves it is clearly
seen. In both cases, the behaviour of the wavelength versus period is linear,
similar to what happens for a FIIP and the only difference is provided by the
unfolding produced by the flow. The damping length also behaves linearly
with the period and for slow waves the unfolding in wavelength and damp-
ing length produces two different curves for the ratio L;/A. In both curves,
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Figure 6.4: Damping length, wavelength and ratio of the damping length to the wavelength
versus period for the adiabatic fast (left) and slow (right) waves in a FIIP (solid) and in a PIP
with i = 0.8 (dashed). The background flow speed is 10 km - s7!.

the most efficient spatial damping appears for periods far away from those
of interest in prominence oscillations. For fast waves, the ratio L;/1 behaves
linearly with period and its value is very large within the region of periods of
interest. The behaviour of the third fast wave is quite different from the other
two fast waves and very similar to that of the third Alfvén wave shown in Sec-
tion being strongly damped within the interval of periods considered.

6.3.2.b Partially ionised plasma

Our dispersion relation is given by Eq. (6.21), which is a fifth degree poly-
nomial in &, and when longitudinal propagation is considered we recover the
results of Sect. with slight differences due to the different numerical
value of Cowling’s resistivity adopted. As shown in Fig. at periods longer
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than 0.1 s, the damping lengths of both slow and fast waves increase linearly
with the period. However, for periods below 0.1 s the damping length slowly
decreases in the case of fast waves and becomes constant for slow waves. Fur-
thermore, the wavelength of fast waves for periods below 0.1 s increases rel-
ative to the FIRP case, while the wavelengths corresponding to slow waves
are only slightly modified. For the ratio of the damping length to the wave-
length, the unfolding in wavelength caused by the flow and the change in the
damping length due to the partial ionisation produces fast waves that are
far more efficiently attenuated than in a FIRP, for any period, but especially
at periods below 0.1 s. In contrast, the peak of maximum efficiency for slow
waves is displaced towards long periods when the ionisation decreases, and
for almost neutral plasmas it would approach the region of periods usually
observed in prominence oscillations. The behaviour of the remaining third
fast wave is again very similar to that found for the third Alfvén wave dis-
cussed in Sect.

In absence of flow, the dispersion relation given by Eq. becomes a
fourth degree polynomial in k and the third fast wave disappears. Such as
happens for Alfvén waves with background flow, this third fast wave is pro-
duced by the joint action of flow and resistivity, since when a FIIP with a
background flow is considered, the dispersion relation also becomes a fourth
degree polynomial in k and the third fast wave is absent.

6.3.3 Non-adiabatic magnetoacoustic waves without
background flow

Setting vy = 0 in Eq. (3.72) and substituting this into Eq. (3.86), we obtain the
dispersion relation for non-adiabatic magnetoacoustic waves in a PIP without
background flow, which is,

(W* = AN (i new — w*) + Vi (w? = I2A?) + ik kv AP Eppw = 0. (6.25)
which is the dispersion relation (Eq. [[5.1]]) obtained in Chapter[5| Again, since
in this case we do not consider the presence of flow, the main difference with
respect to the research reported in Chapter [5|is that in the following para-
graphs we study spatial damping instead of time damping, and that this study
has also been performed for a fully ionised resistive plasma.

6.3.3.a Fully ionised resistive plasma

After imposing the conditions corresponding to a FIRP, the following disper-
sion relation, a sixth degree polynomial in the wavenumber %, is obtained,

(W? = KA (i nw — w*) + v (w® — kK2A%) =0, (6.26)
which describes coupled fast, slow and thermal waves. When only longitudi-
nal propagation is allowed, the above dispersion relation becomes

(@ = A% [R(inw +v)) - | = 0. (6.27)
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Figure 6.5: Damping length, wavelength and ratio of the damping length to the wavelength
versus period for the non-adiabatic fast (left) and slow (right) waves. Solid lines correspond
to a FIIP; dashed lines to a FIRP; dotted lines to a PIP with i = 0.8; and dash-dotted lines to
a PIP with g = 0.95.

As in Sect. [6.2.1, we then obtain two decoupled Alfvén waves, damped by
resistivity, whose dispersion relation is given by

2

2= 2 (6.28)
Va +iwn
and another dispersion relation
2
2 w
k= = e (6.29)

Because of the dependence of A on k, this expression yields to a fourth de-
gree polynomial in k describing coupled propagating thermal and slow waves,
damped only by thermal effects. The dispersion relation given by Eq.
has been solved numerically and the results are presented in Figs. (for
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fast and slow waves) and (for thermal waves). Starting with Fig. we
have only considered an interval of periods between 1072 and 10’ s, since for
periods shorter than 1072 s, much shorter than those of interest, the curves
become very entangled. When an FIIP is considered, the spatial damping of
the fast wave is governed by radiative losses and thermal conduction (Car-
bonell et al. 2006) in the interval of periods from 1072 to 10’ s. However, in a
FIRP we observe a slight change in the damping length of fast waves around
a period of 1 s. This change tells us that the dominance of thermal conduction
appears for slightly shorter periods than for the ideal case. As for the ratio of
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the damping length to the wavelength, we observe that the efficiency of the
fast wave damping is higher for a FIRP than for a FIIP, for periods below 1
s. For slow waves, no differences appear between the behaviours of FIIP and
FIRP. The behaviour of thermal waves (Fig. is exactly the same in FIIP
and FIRP.

6.3.3.b Partially ionised plasma

In this case, our dispersion relation is given by Eq. and when only longi-
tudinal propagation is allowed the expression is similar to that of Sect.
although the numerical value of Cowling’s resistivity is different and the re-
sults for fast waves differ. When oblique propagation is considered, Eq.
is solved numerically and a strong distortion of the damping length and wave-
length curves corresponding to fast waves (Fig. left panels) appears. The
changes affect the radiative plateau, between periods 10° and 10~? s, and par-
tial ionisation decreases the damping length of fast waves in this region. For
slow waves (Fig. right panels), a similar behaviour is found in the same re-
gions, although the distortion is not so important since a very short radiative
plateau, between 10? and 10° s, remains, together with a region, between 1 and
10% s, where thermal conduction is dominant. Compared to a FIRP, the ratio
Lq/A for fast waves decreases substantially for periods below 10° s, although
for the periods of interest in prominences, this ratio remains very large. For
slow waves, partial ionisation causes the ratio Ly/1 to reach a maximum effi-
ciency of ~ 1 for periods similar to those involved in prominence oscillations,
and this maximum is displaced towards longer periods when ionisation is de-
creased. The changes in the wavelengths of slow and fast waves are similar
to those shown in the adiabatic case (Sect. [6.3.1.b). In the case of thermal
waves (Fig. [6.6), partial ionisation increases both the damping length and
wavelength of these waves, although the behaviour of the ratio Ly/1 is similar
to that of previous cases. Since a thermal wave is always strongly damped,
which makes its detection very difficult, in the following we avoid additional
comments on it.

To understand the effects of radiation and thermal conduction by neutrals
and electrons on fast and slow waves, in Fig. we represent the same quan-
tities but with optically thin radiation and heating removed, i.e., only thermal
conduction is at work. We can observe that the most efficient damping for both
waves occurs for partially ionised plasmas, which suggests that the inclusion
of isotropic thermal conduction due to neutrals plays a very important role
for all the periods considered. However, we must take into account that when
the ionisation fraction decreases, radiation also decreases and that, because
of neutrals, thermal conduction is favoured, which makes it difficult to es-
tablish meaningful comparisons between plasmas with different degrees of
ionisation.

In Fig. we plot the behaviour of fast and slow waves when thermal
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conduction has been removed, i.e. only radiation and heating remain. In this
case, and within the interval of periods of interest, the behaviour of fast waves
is similar when different types of plasma are considered. However, when
periods below 100 s are considered, FIIP and FIRP are strongly affected by
the lack of thermal conduction. For slow waves, a similar behaviour appears
and the most important conclusion after comparing Figs. and is that,
within the interval of periods of interest, a very efficient damping is caused
by optically thin radiation.

On the other hand, when non-adiabatic magnetoacoustic waves are consid-
ered, the importance of radiation and thermal conduction can also be quanti-
fied in terms of two dimensionless numbers (De Moortel and Hood 2004). The
first one is the thermal ratio, which in the case of partial ionisation becomes
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_ &= D& + k)Topo _ 17 (6.30)

d )
7217(2)75 Y Tcond

with 7, = /¢, the sound travel time and 7.onq = Ppo/ [(¥ — 1)(kej + ka)To] the ther-
mal conduction timescale. «, and «, are the thermal conduction coefficients
corresponding to anisotropic thermal conduction by electrons and to isotropic
thermal conduction by neutrals, respectively, / is a characteristic wavelength
while the meaning of the rest of parameters have been already defined in
previous sections. The second dimensionless number is the radiation ratio

oL 27 S T
YPo Tr

) (6.31)
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which is the ratio of the sound travel time to the radiation timescale, 7, =
YPo/ [(7 — Dépgx* Tg]. From the equilibrium parameters, we can compute the
value of [ at which the condition d = r is satisfied

Ke|| + Kp
l= | ————. 6.32
ety (©:52

Then, when the spatial length of the perturbation, the wavelength, is of the
order of / or shorter, thermal conduction becomes dominant. For the slow
wave, Fig. (right panels) shows that the transition from a regime domi-
nated by radiation to another dominated by conduction can be clearly seen
in the plot of the damping length versus period. For a FIIP, this transition
occurs at a period of 1 s, while for a PIP, with & = 0.8, it occurs at a period
between 10 and 100 s, and with g = 0.95, at a period close to 100 s. Using the
values assumed for prominence parameters, for a FIIP we obtain / ~ 4700 m,
for a PIP (i = 0.8), [ ~ 40000 m, and for a PIP (& = 0.95), [/ ~ 100000 m. Then,
putting these periods in the plot of the wavelength versus period in Fig.
(right panels), we can check that the numerical value of the wavelength is al-
most coincident with the above analytical determinations for /. The reason for
this increase in the numerical value of [ is that for a PIP, thermal conduction
is enhanced because of the contribution from neutrals, that increases when
the ionisation fraction decreases, while the denominator of / decreases when
the ionisation fraction decreases. To summarize, when ionisation decreases
the period at which the dominant damping mechanism changes from radia-
tion to thermal conduction increases and, consequently, the wavelength also
increases.

6.3.4 Non-adiabatic magnetoacoustic waves with
background flow

6.3.4.a Fullyionised ideal plasma
Setting in Eq. (3.86) conditions corresponding to FIIP, we obtain

(Q* — AP (-Q%) + VvA(Q? — K2A?) = 0, (6.33)

which is a sixth degree polynomial in the wavenumber k. When only longi-
tudinal propagation is allowed, we obtain two undamped Alfvén waves given
by

QZ
K= — (6.34)

whose solutions for the wavenumbers are
k=2 (6.35)

Vo £V,



106 Spatial damping of MHD waves in a PIP plasma

1016,
1013,
g 1010,
T 107
104,
1017“““““
1072 1 102 10  10°
P (s)
1011: 10107
109: 10°%¢ /
E E 10°
~ 107} =
L 104,
10°%¢ 102}
1031~ ‘
1072 1 102 10*  10° 1072 1 102 10*  10°
P (s) P (s)
10%| 10%+
i 105: N\ - 103t
3 104:/// 3 107
= 10t
103: 1l
w1 00 a0 w1 00 0
P (s) P (s)

Figure 6.9: Damping length, wavelength and ratio of the damping length to the wavelength
versus period for the non-adiabatic fast (left) and slow (right) waves in a FIIP (solid) and in a
FIRP (dashed). The flow speed is 10 km - s~'.

as in Carbonell et al. (2009). Moreover, the dispersion relation
Q* = I°A%, (6.36)

describes coupled slow and thermal waves modified by the flow and damped
by thermal effects. In the case of oblique propagation, Eq. is solved nu-
merically and the behaviour of fast and slow waves is shown in Fig. When
a flow is present the unfolding of wavelengths and damping lengths appears.
Since the considered flow speed is much lower than the Alfvén speed, the sep-
aration of the curves corresponding to the fast wave is very small, while the
curves corresponding to slow waves separate substantially because the flow
speed and sound speed are comparable. This effect strongly affects the be-
haviour of the damping length versus wavelength for slow waves, since one of
them has a very efficient spatial damping for periods observed in prominence
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oscillations. In the case considered in this section, the damping of fast and
slow waves is strictly due to thermal effects.

6.3.4.b Fully ionised resistive plasma

In this case, considering FIRP conditions, the dispersion relation becomes
(Q? — IEA*)(ik*nQ — Q) + K*vA(Q* — K2A%) = 0, (6.37)

which is a seventh degree polynomial in the wavenumber k. Considering only
longitudinal propagation, again we find coupled slow and thermal waves mod-
ified by the flow and damped by thermal effects, and three Alfvén waves given
by the dispersion relation (6.4), with 6 = 0, and its solutions. Therefore, when
we solve the dispersion relation given by Eq. (6.37), we expect three fast, two
slow, and two thermal propagating waves. In Fig. the wave features of
fast and slow waves have been plotted and compared with the previous case.
As shown, for fast and slow waves no important differences in the behaviour
with respect to the ideal case are seen. Thermal waves, as well as the third
fast wave, are strongly damped after a very short distance.

6.3.4.c Partially ionised plasma

The dispersion relation is now given by Eq. which, once expanded, be-
comes a seventh degree polynomial in the wavenumber k. Figure dis-
plays the behaviour of the damping length, wavelength and ratio of damping
length to wavelength for fast and slow waves. The most interesting results
are those related to the ratio Lj/A. For fast waves, this ratio decreases with
the period and becomes small for periods below 1072 s, while for one of the slow
waves, the ratio becomes very small for periods typically observed in promi-
nence oscillations. When the ionisation is decreased, slight changes in the
above described behaviour occur, the most important being the displacement
towards longer periods of the peak for the most efficient damping correspond-
ing to slow waves. As pointed out before, a third fast wave is, again, produced
by the joint action of flow and resistivity. In the absence of flow or resistivity,
the dispersion relation becomes a sixth order polynomial of the wavenumber
and this wave is absent.

6.4 Summary

We have analysed the spatial damping of Alfvén and non-adiabatic magne-
toacoustic waves in a flowing partially ionised prominence plasma. Several
different cases, with dispersion relations of increasing complexity, have been
considered, and our results are summarized below

As it is well known, Alfvén waves are difficult to damp because they are in-
sensitive to non-adiabatic effects. However, when Alfvén waves in a partially
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Figure 6.10: Damping length, wavelength and ratio of the damping length to the wavelength
versus period for the non-adiabatic fast (left) and slow (right) waves in a PIP with 7 = 0.8
(solid) and i = 0.95 (dashed). The flow speed is 10 knm - s~!.

ionised plasma are considered, they can be spatially damped and analytical
expressions describing their spatial damping can be obtained. When the ion-
isation decreases, the damping length of these waves also decreases and the
efficiency of their spatial damping in the range of periods of interest is im-
proved, although the most efficient damping is attained for periods below 1
s. A new feature is that when a flow is present a new third Alfvén wave,
strongly attenuated, appears. This wave depends on the joint action of flow
and resistivities, since in the absence of flow, or for a FIIP, the dispersion
relation becomes quadratic and only the two well-known Alfvén waves are
present. Furthermore, this third wave could only be detected by an observer
not moving with the flow.

When adiabatic magnetoacoustic waves are considered and the effect of
partial ionisation is taken into account, some new features appear. When a
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FIRP is considered and only longitudinal propagation is allowed, slow waves
are decoupled from fast waves, propagating undamped, while fast waves prop-
agate with a modified Alfvén speed and are damped by resistivity. When a PIP
plasma is studied and only longitudinal propagation is allowed, the same oc-
curs but then the numerical value of Cowling’s resistivity is greater than for
a FIRP, thus enhancing the damping. The behaviour of slow waves is then
only influenced by partial ionisation when oblique propagation is allowed.
Furthermore, when a PIP is considered the behaviour of fast waves is very
similar to that of Alfvén waves and the damping becomes very efficient for
periods below 1 s, while for slow waves the peak denoting the most efficient
damping moves towards higher periods as the plasma ionisation decreases.
When a flow is considered in the adiabatic case, the main difference is the un-
folding of the damping length, wavelength and damping length to wavelength
curves, and the apparition of a third fast wave, strongly damped, caused by
the join presence of flow and resistivities.

For non-adiabatic magnetoacoustic waves, when partial ionisation is pre-
sent the behaviour of fast, slow and thermal waves is strongly modified. Com-
paring with non-adiabatic fast waves in a FIIP, which are damped by elec-
tronic thermal conduction and radiation, the damping length of a fast wave
in a PIP is strongly diminished by neutrals thermal conduction for periods
between 0.01 and 100 s, and, at the same time, the radiative plateau present
in FIIP and FIRP disappears. The behaviour of slow waves is not so strongly
modified as for fast waves, although thermal conduction by neutrals also di-
minishes the damping length for periods below 10 s, and a short radiative
plateau remains for periods between 10 and 1000 s. Finally, thermal waves
are only slightly modified, although the effect of partial ionisation is to in-
crease the damping length of these waves, the converse of what happens for
the other waves. When a background flow is included, a new third fast wave
appears, which is again, due to the joint action of flow and resistivities. As
we already know, wavelengths and damping lengths are modified by the flow,
and since for slow waves the sound speed and observed flow speeds are com-
parable, the change in wavelength and damping length are important and
lead to an improvement in the efficiency of the damping. The maximum of ef-
ficiency is also displaced towards long periods when the ionisation decreases,
and for ionisation fractions from 0.8 to 0.95, it is clearly located within the
range of periods typically observed in prominence oscillations, with a value of
Lg/A smaller than 1. This means that for a typical period of 10° s, the damp-
ing length is between 10> and 10° km, the wavelength around 10° km and,
as a consequence, the slow wave would be strongly attenuated in a distance
smaller than a wavelength. On the other hand, during our calculations, we
have found that the different heating mechanisms usually considered (Sect.
do not affect the results.

In conclusion, the joint effect of non-adiabaticity, flows and partial ioni-
sation allows slow waves to damp in an efficient way within the interval of
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periods typically observed in prominences. Thermal waves are attenuated
very efficiently within the interval of interest but their observational detec-
tion is probably very difficult, and fast waves are very unefficiently attenuated
within the considered interval. We also note that the new fast and Alfvén
waves are only detectable in a reference system external to the flow, although
their short damping length should make their detection very difficult. As we
have seen, even in the most simple case of an unbounded medium threaded
by a uniform magnetic field, the inclusion of non-adiabatic effects, partial ion-
isation and flows complicates the study of the spatial damping of prominence
oscillations because of the apparition of new waves and the difficulty in distin-
guishing between the different effects. From observations, this implies that
because of the entanglement of the different effects, it is extremely difficult to
properly interpret the observed oscillations in terms of MHD waves.

On the other hand, and such as we stated in Chapter [4] Zagarashvili et al.
(2011) have studied MHD waves in partially ionised plasmas using a two-
fluid approach. In this study they have focused in the time damping of Alfvén
and magnetoacoustic waves and they have compared their results with those
obtained using the single-fluid approach. The comparison shows that while
for very low or low frequencies the behaviours of the period and damping time
are the same, for high frequencies these behaviours, in particular for fast and
Alfvén waves, are quite different. Zaqarashvili et al. (2011) did not make any
study about the spatial damping of MHD waves in the two-fluid approach,
therefore, it is adventurous to predict whether or not the results obtained
using both approaches are going to be very different.



Chapter 7

Summary and Conclusions

This last chapter is intended to provide a summary of the thesis and of the
most important conclusions obtained, and to highlight new problems which
could be addressed in future works.

7.1 Summary

1.

Single-fluid MHD equations for a partially ionised plasma with a non-
adiabatic energy equation have been derived.

From these MHD equations, and assuming a magnetostatic equilibrium
in which a background flow is present, the dispersion relations for linear
non-adiabatic magnetoacoustic and Alfvén waves have been derived.

. Amodified Alfvén speed which includes resistive effects has been defined

and its behavior has been studied.

. A non-adiabatic sound speed for the case of partially ionised plasmas

with a background flow has been defined and its behaviour has been
studied.

The time damping of adiabatic and non-adiabatic linear MHD waves in
a partially ionised prominence plasma has been studied.

The spatial damping of non-adiabatic linear MHD waves in different
types of prominence plasmas, having a background flow, has been stu-
died.
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7.2 Conclusions

7.2.1 Time damping of adiabatic partially ionised promi-
nence plasmas

1. The damping by ion-neutral interactions is much stronger for the fast
wave than for the slow wave, unlike what happens with other damping
mechanisms, such as radiative cooling and conduction, for which the
slow wave is strongly attenuated while the fast wave remains almost
undamped.

2. For almost neutral plasmas the fast and Alfvén waves are efficiently
damped, with values of /P compatible with those of observations.

3. Both fast and Alfvén waves present a critical wavenumber. For wavenum-
bers below these critical values, the fast and Alfvén modes only exist as
damped propagating waves. For wavenumbers greater than these val-
ues, we have damped disturbances instead of propagating waves.

7.2.2 Time damping of non-adiabatic partially ionised
prominence plasmas

1. The period of magnetoacoustic waves remains basically the same as in
the ideal case. The modification to these ideal values introduced by non-
adiabatic terms and ion-neutral collisions is practically negligible.

2. Fast and slow waves are more efficiently damped in the non-adiabatic
partially ionised case than in the adiabatic partially ionised case, and
the values of the ratio of the damping time to the period are similar to
those obtained in observations. On the contrary, Alfvén waves are not
affected by the non-adiabatic terms.

3. For slow waves, radiative losses are dominant at short wavenumbers
while the rest of the wavenumber interval is dominated by thermal con-
duction and ion-neutral collisions. For g > 0.8, ion-neutral collisions
dominate in the mid range interval while thermal conduction dominates
at long wavenumbers.

4. In the case of fast waves, radiation is the dominant damping mech-
anism for long wavelengths, while ion-neutral collisions dominate for
short wavelengths. The critical wavenumber for fast waves is not af-
fected by the non-adiabatic terms. In spite of this, the value of this crit-
ical wavenumber is large in comparison with the typical wavenumbers
derived from observations of prominence oscillations.
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5. For typical prominence temperature values, the contribution of electrons
to thermal conduction is negligible in front of the contribution of neu-
trals.

7.2.3 Spatial damping of partially ionised prominence
plasmas

1. Alfvén waves in a partially ionised plasma can be spatially damped.
When the ionisation decreases, the damping length of these waves also
decreases and the efficiency of their spatial damping in the range of pe-
riods of interest is improved, although the most efficient damping is at-
tained for periods below 1 s.

2. In presence of flow, a new third Alfvén wave, strongly attenuated, ap-
pears. This wave depends on the joint action of flow and resistivities.

3. For non-adiabatic magnetoacoustic waves, when partial ionisation is
present the behaviour of fast, slow and thermal waves is strongly mod-
ified. Comparing with non-adiabatic fast waves in a fully ionised ideal
plasma (FIIP), which are damped by electronic thermal conduction and
radiation, the damping length of a fast wave in a partially ionised
plasma is strongly diminished by neutrals thermal conduction for peri-
ods between 0.01 and 100 s, and, at the same time, the radiative plateau
present in fully ionised ideal plasma and fully ionised resistive plasma
disappears. The behaviour of slow waves is not so strongly modified as
for fast waves, although thermal conduction by neutrals also diminishes
the damping length for periods below 10 s, and a short radiative plateau
remains for periods between 10 and 1000 s. Finally, thermal waves are
only slightly modified, although the effect of partial ionisation is to in-
crease the damping length of these waves, the converse of what happens
for the other waves.

4. Wavelengths and damping lengths are modified by the flow, and since,
for slow waves the sound speed and the observed flow speeds are compa-
rable, the change in wavelength and damping length are important lead-
ing to an improvement in the efficiency of the damping. The maximum of
efficiency is also displaced towards long periods when the ionisation de-
creases, and for ionisation fractions from 0.8 to 0.95, it is clearly located
within the range of periods typically observed in prominence oscillations
with a value of L;/1 smaller than 1.

7.3 Final comments

The research and results reported in this thesis have been developed using the
single-fluid MHD approach. However, other approaches could be also consid-
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ered for this kind of studies. For instance,|Zagarashvili et al. (2011) have used
the two-fluid approach to study the time damping of MHD waves in partially
ionised plasmas and they have found some differences with respect to the re-
sults reported here. Using this approach, they have found the reason for the
discrepancy between our results for the damping rates of slow modes, when
parallel propagation is considered, and Braginskii’s results. This discrepancy
is caused by the neglect of the inertial terms in the equation of motion for the
relative velocity when the single-fluid MHD equations are derived.

On the other hand, we have found a cut-off wavenumber in fast and Alfvén
waves, when fully ionised resistive and partially ionised plasmas are con-
sidered. For wavenumbers below the cut-off, fast and Alfvén waves exist as
damped propagating waves, while for wavenumbers greater than this cut-off,
we have damped disturbances instead of propagating waves. |Zagarashvili
et al.| (2012) have made a thorough analysis of the process of derivation of
single-fluid MHD equations. Going from two-fluid to single fluid equations,
they have shown that the presence of a cut-off wavenumber in Alfvén waves
is due to the neglect of several terms during the derivation process. In particu-
lar, the cut-off wavenumber appears when, after neglecting the inertial term,
the Hall current term and electron-neutral collisions are also neglected in the
induction equation. This points out that the presence of a cut-off wavenumber
in Alfvén (and fast) waves in partially ionised plasmas considered under the
single-fluid approximation is not connected to any physical process. The cut-
off wavenumber is an artifact coming from the approximations made during
the derivation of the most commonly used single-fluid MHD equations.

Zaqarashvili et al. (2011) did not study the spatial damping of MHD waves
in partially ionised plasmas, and for this reason our results can not be com-
pared. However, it could be possible that if such approach is used the be-
haviour of the spatial damping of MHD waves would be different from our
results obtained with the single-fluid approach.

7.4 Future work

As always happens, science is a way to give an answer to a question while
two or three new questions arise in the process. This is why the work of the
scientific community will never stop.

This thesis provides with basic knowledge about the behaviour of linear
MHD waves in a partially ionised solar prominence and puts the basis for
future studies. In the following we would like to suggest several aspects in
which the research done in this thesis can be used as a starting basis for
more in-depth studies.

First of all, recent observations of quiescent prominences made by HIN-
ODE show a complicated plasma dynamics within the prominence body with
the presence of flows, ripples, plumes, etc. which could be easily related with
the development of instabilities. MHD instabilities in fully ionised plasmas
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have been already studied, although, the study of MHD instabilities in par-
tially ionised plasmas remains to be done. This topic is a natural extension of
this thesis and would have an immediate application to the understanding of
prominence dynamics.

Next, the inclusion of the additional terms needed to study partially
ionised plasmas in MHD numerical codes would allow the study of the time
evolution of linear and non-linear disturbances in partially ionised plasmas.
The study of non-linear MHD waves in partially ionised plasmas could be of
application to large amplitude oscillations in filaments (winking filaments).

On the other hand, to represent a prominence in terms of a static equilib-
rium background is very unrealistic since we know about the complex dynam-
ics of prominences.

Therefore, another topic of interest is the consideration of a dynamic equi-
librium background on which MHD waves are superimposed. These dynamic
equilibrium backgrounds could be modeled in different ways: spatial and time
dependent flows, time dependent equilibrium parameters, etc.

Finally, we cannot resist to point out that since prominences are made of
partially ionised plasmas, an explanation about how are they supported by
magnetic fields is needed.

In summary, and related with prominences, partially ionised plasmas will
become in the next future one of the most interesting research areas.






Appendix A

Derivation of the momentum
equation

In Sect.

3.3/ the main steps to obtain the momentum equation for the whole

partially ionised plasma have been described. This appendix is a more de-
tailed derivation in which the algebraic manipulations are shown.

We start from Eq. (3.24),

d;v; d,v 1
i iL-i- n iﬂ:—V +—.XB, A1l
i dt Mttt dt P CJ (A1)

and we concentrate only in the left-hand side of the equation

d;v; d,v, ov; ov,
il —— nMi—— = Pi— n" o, ii'Vi nV¥n ° n. .
nimi— +n 1 P +p 5 + pivi - Vv; + p,v, - Vv (A.2)
Considering
0V,  0puVy 00,
—_ = ey, 2 A.
P T T o (A.3)
and taking into account the continuity equation,
Opa
% +V - (0aVa) = 0, (A.4)
one obtains the following expression
0V,  0puVa
e CL/V *WPaVal)s A
Pa=g, o TV (PaVa) (A.5)

that allows us to write the right-hand side of Eq. in the following form

0
8Ltv +v;V - (0;v;) + VoV - (0o Vo) + pi - VV; + pp - V. (A.6)

We use the relative ion-neutral velocity (Eq. [[3.19]]) and introduce the cen-
tre of mass velocity
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V= fivi + fnvna (A7)

in order to obtain expressions for the ion and neutral velocities

Vi =&W Y, (A.8)
Vo = —EW 4 V. (A.9)
Inserting these formulaes in Eq.(A.6) it can be expressed as

opv
—r T EW VT (o) + v VEW +Y) (A.10)

+H(=&EW + V)V - (0nVn) + paVa - V(=EW + V).
Next we consider the following identity
V.- (@AB) =aA - VB +BV . (aA) = A -V(aB) + aBV - A, (A.11)

to write Eq.(A.10) in the form

opv
— + WV - (&,0,V;) + &0,V - VW + VV - (0;V; + oV,
5 (&npiVi) + &np (PiVi + PnVn) (A.12)

+(PiVi + PaVn) - VV = WV - (£;pnVn) = €ipnVn - VW,
and considering p;v; + p,V, ~ pv one can write the previous expression as

(')g;tv + vV .- (V) + pv- Vv + WV . (&&,0W) + E&pW - VW, (A.13)

After some algebraic manipulations, splitting the first term and combining
the last two terms, we end up with the following expression for the left-hand

side of Eq. (A.1)

p% + pv - Vv + V-(&&,0WW). (A.14)

So, the momentum equation for the whole partially ionised plasma is

p‘fl—: =-Vp+ %j X B =V (&&,pwWwW). (A.15)



Appendix B

Derivation of the energy
equation

In Sect.

3.4

the main steps to obtain the energy equation for the whole par-

tially ionised plasma have been given. This appendix is a more detailed
derivation in which the algebraic manipulations are shown.

To derive the energy equation the starting point are the individual energy
equations as given by Braginskii (1965) or in the more convenient form of
Eq. (2.63) of \Goedbloed & Poedts| (2004), where viscosity and conduction are
neglected. These equations are added and we get

dp
E+;(VQ~VPQ+7paV-VQ) =(y- 1)2‘ Q- (B.1)

From Eqgs. (3.3), (3.19) and (3.20) one can write the velocities of each
species as

Ve = V+EW-— l, (B.2)
ene

Vi =&W Y, (B.3)

vp=—(1=-&)w+v. (B.4)

Considering the former equations, the first term of the sum in Eq. (B.1)
can be written as

Z Vo Vpa = V- Vp +EW-V(pe + p) — EW- Vp, - - Vp, (B.5)
en

a

(&

and taking into account the expression for the pressure function (Eq. [[3.51]]),
we end up with
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> Ve Vpa=v-Vp+w G =V, (B.6)
en;

To obtain the second term of the sum in Eq. (B.1) we follow the same
procedure. Thus, first of all we use Eqgs. (B.2)—(B.4),

Z PaV Vo = peV - (V +&nW — :7) + piV - (&awW + V) + ppV - (Vv = §Ew), (B.7)

(<

and now one can write this term as follows
2PV Ve = PV V2PV (EW) = LV - V- (W), (B.8)

Once we have obtained this equation, we need the following vectorial iden-
tity

V-(fA)=Vf-A+fV-A, (B.9)
that allows us to write Eq. (B.8) as

Z PaV Vo = pV -V +2V - (£apiW) = 26,W - Vi

(B.10)

V- (EpaW) + EW - Vpa— V- (p—*‘) J

+—-Vp;,
en; eny

so the second term of the sum in Eq. (B.1) can be cast in the form,

ZPQV-VQ=pV-V—W-G+i-Vpi+2V-(§npiW)—V-(§ian)—V-(f—;J). (B.11)

1

Now, the left-hand side of Eq. (B.1) can be written as

0 0
6—IZ+Z(VQ-VpQ+ypaV-V(,): a—];+V-Vp+ypV~V
¢ ) ) (B.12)
-(y-1D (W G-L. Vpi) +yV- (2§npiw — & paW — ipi .
en; en;

1

For the right-hand side we take Q, = 35 Q.s, where Q. is the heat gen-
erated in a gas of particles of species @ as a consequence of collisions with
particles of species 8. Considering

Qafﬁ + Qﬁa = _Raﬁ (Vg — Vﬁ)’ (B.13)
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and Eqgs. (B.2)—(B.4), we obtain

Qu = —= > +agw* — 2%y j. (B.14)
2 2

en;

So, upon considermg Egs. (B.12) and (B.14), the energy equation can be
written in the following form

dp ip:
o ypV - v +yV - 2&piw — Epaw) — YV - (Jﬁ)
t en;

(B.15)

=@y-1 2] + ayw? 22
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en; en;

Now, considering the expressions for w (Eq. [3.50]]), with the inertial term
J

neglected)
wa-Z b gy B (B.16)

a, ca, a, en;

and for the Joule heating term (Eq. [3.57]]), the energy equation for the whole
partially ionised plasma is

d .
L ypV vV Qepw = EpW) =Y Vpi = (7= Dagouee (BAD)
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