
Ph. D. Thesis 

HB 





 



 



 

 

 

PhD Thesis 

 

 

Theoretical and Experimental Study of 
Cooperativity Effects in  

Noncovalent Interactions 
 

 

 

Carolina Estarellas Martín 

 

 

Supervised by Dr. Pere M. Deyà Serra  

and Dr. Antonio Frontera Beccaría 

 

 

Palma de Mallorca 

September 2012 

 

 

 

 

 

 

Universitat de les Illes Balears 

Departament de Química 

Programa de Doctorat en Ciència i Tecnologia Química 

 





 

 

 

El Dr. Pere M. Deyà Serra, Catedrático de Química Orgánica y el Dr. Antonio 

Frontera Beccaría, Profesor Titular de Química Orgánica del Departamento de 

Química de la Universitat de les Illes Balears, 

 

 

CERTIFICAN: 

 

 

 

 

 

 

 

 

 

 

Palma de Mallorca, 07 de Junio de 2012. 

 

 

 

 

 

 

 

 

Dr. Pere M. Deyà Serra                                                  Dr. Antonio Frontera Beccaría 

 

 

 

Que la Memoria que lleva por título Theoretical and Experimental 

Study of Cooperativity Effects in Noncovalent Interactions presentada 

por Carolina Estarellas Martín para obtener el grado de Doctor en 

Ciencia y Tecnología Química, ha sido realizado bajo nuestra dirección 

conjunta en el Departamento de Química (Área de Química Orgánica) 

de la Universitat de les Illes Balears durante los años 2008-2012, y 

cumple los requisitos para optar a Mención Europea. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mis padres y 

 mis abuelos, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

Aquesta tesi no seria possible sense tots vosaltres. Tinc tantes coses que agrair i a tanta 

gent!! Crec que no acabaria mai. 

A tothom que s’ha creuat pel meu camí aquests darrers quatre anys, a tots o en algun dels 

moments, pels vostres ensenyaments i la vostra companyia, moltes gràcies!! 

En primer lugar, mi más sincero agradecimiento para mis directores de tesis, el Prof. Pere 

M. Deyà y el Prof. Antonio Frontera. A en Pere vull agraïr-li la confiança dipositada en mi des 

del primer dia, per les oportunitats proporcionades i per deixar-me crèixer. A Toni le agradezco 

esta tesis. Sin su orientación y sus enseñanzas, esta tesis sería imposible. Por enseñarme el 

mundo de la ciencia, por iniciarme en la investigación y en sus diferentes versiones y por 

dirigirme en el largo trabajo realizado, muchas gracias! 

También quiero dedicarle un agradecimiento muy especial al Dr. David Quiñonero. 

Davichi, todos mis inicios calculísticos son gracias a ti!! Que sería de esta tesis sin el 

Turbomole, eh! Por tus socorros, y porque creo que eres culpable de enseñarme algo muy 

importante: buscar mis propias soluciones! Tus enseñanzas siempre me serán provechosas. Al 

resto de teóricos que han formado parte del grupo, Daniel Escudero, Xavi Lucas y Toni Bauzá; 

gracias por los momentos compartidos. 

No puedo olvidarme de los experimentales!!! A los Prof. Toni Costa y el Prof. Jeroni Morey, 

gracias por su apoyo. Al resto de grupo, Manolo, Elena, Ángel, Kenia, Neus, por estos cuatro 

años de coffe-breaks. Dentro de todos ellos, me gustaría agradecer muy especialmente a dos 

personas. A la Prof. Carme Rotger. Carme moltes gràcies per tot, pel teu suport, les teves 

converses i per ser la millor companya de congrés!! I ara sí, la meva debilitat, en Lluiset!!! Que 

hagués fet jo sense tu!!!!!!!!!!! Ni m’ho imagino! jajaja, amb tu si que tenim moments, des de 

la carrera junts!! Mare meva, quant de temps ha passat des de llavors, i quantes coses ens han 

passat…per tot el teu suport i la teva infinita paciència, moltes, moltes gràcies!!! 

I would like to especially thank to Prof. Christopher Hunter for accepting me in his group in 

the University of Sheffield, for his amiability and attention. I keep a special memory for my stay 

there, maybe because I learnt a lot of things, maybe because was my first stay and the first 

time that I went out of home, or maybe because all the people that I met there made me feel 

at home. Thanks to all the people of the lab for helping me John, Simon, Lisa, Fede, Valeria, 

Eleanor, and Cristina. Especial thanks to Valeria for our give it a go, Fede for all her help in the 

administrative matters, Eleanor for her help in the informatics and for our cups of tea!, and 

Cristina and Rafel. Gracias!!! No sé qué hubiera sido de mi sin vuestra gran ayuda! Por 

ayudarme a subsistir en una habitación vacía y que se llenó gracias a vuestra ayuda, por las 



 

 

 

 

excursiones, las cenas, y por vuestra compañía, i sobretot, qui m’ha anava a dir a mi que em 

trobaria un mallorquí a Sheffield!!! Moltes gràcies. Y como no, no me puedo olvidar de mis 

chicas. Ay que ver lo que son las cosas, nunca me olvidaré de como os conocí! Entrando una 

noche en la cocina de la residencia, “Hello; Hello; What’s your name?; Maria; Maria!!!Eres 

española?” Como si no hubiera Marias en el mundo!!! Jaja! Así conocí a esta pamplonica. 

Cuántas cosas juntas!! Gracias a la afición de Mary de ir a correr al parque conocimos a Lorena. 

Un día hablando entre nosotras mientras íbamos corriendo, una chica nos para y nos dice: 

“Españolas??” jajaja. Muchísimas gracias a los dos por los buenísimos momentos, las bistro-

burguer y los cócteles!!! All the memories that I have from Sheffield are very extraordinary for 

me! 

Al Prof. Javier Luque de la Universitat de Barcelona, que me dio la oportunidad de trabajar 

en su grupo a pesar de mi inexperiencia en las dinámicas y que me acogió como una 

componente más, por las enseñanzas y las conversaciones, por tu apoyo y estima; Muchas 

Gracias! Al resto del grupo que me acogieron como una más y me lo hicieron pasar genial, a 

Ramon Pouplana por amenizar las tardes con sus conversaciones, a Ana, Flavio, Carles “Curu” y 

Carles, por estar siempre dispuestos a ayudar, por los consejos y por los buenos momentos. 

Pero mi estancia en el grupo no hubiera sido lo mismo sin vosotros tres. Jordi, el meu mestre 

de les dinàmiques! Moltes gràcies per les teves ensenyances, la teva paciència i la teva 

dedicació. Sempre estaré infinitament agraïda per presentar-me la felicitat. Salo, ets una 

persona tan maca! sempre dolça, disposada a ajudar, pendent dels altres, gràcies. A Lula!!! Por 

ser una persona auténtica, por las charlas, por tu ayuda y porque es increíblemente fácil 

conectar contigo. Por todo vuestro apoyo, por todos los buenos momentos vividos, porque 

Barcelona ha significado y significa para mí una nueva etapa, muchas gracias a todos los que 

forman parte de ella. 

Al Prof. Pau Ballester de l’Institut Català d’Investigació Química (ICIQ), que em va acollir al 

seu grup de recerca a pesar de ser una principiant amb això de la química experimental. Per 

dedicar-me tant de temps, per ensenyar-me tantes petites-grans coses, per formar-me en les 

grans decepcions i alegries de l’experimental, per ajudar-me a aprofundir al plaer 

d’investigar…moltes gràcies! All people of PB4; Virginia, Inma, Louis, Sasa, Albano y Mónica, 

thank all of you for your support! Especialment li vull agrair a la Mònica, que va ser la que em 

va re-ensenyar a emprar totes les “cosetes” del laboratori. Moltes gràcies per la teva 

companyia, els teus consells, la teva paciència i per les xerrades amb infusions!! También 



 

 

quiero agradecer a los responsables de los equipos, Kerman, Israel, Fernando, por vuestro 

tiempo y dedicación. Perquè mai es deixa d’aprendre, l’etapa a l’ICIQ per mi significava un 

increïble repte i gràcies a tots els que van participar en ella recordaré la meva fase 

experimental amb un gran afecte. 

 

Por último quiero agradecer a mi familia. Siempre conmigo, esté donde esté y vaya donde 

vaya. A mis tíos por estar siempre ahí y tratarme como una hija más. A Alvarito!!! por estar 

siempre dispuesto a ayudarme, porque has tenido una paciencia infinita conmigo, pero sobre 

todo con mis ordenadores!!! jajaja, muchas gracias a los tres. A mis abues, a los dos. Abuelo 

gracias por sembrar esa semillita de la ciencia en mi. Te dedico muy especialmente todo este 

trabajo porque me siento muy orgullosa de ti. Abuela!!! Porque me has enseñado a ser una 

mujer luchadora, y que hay que salir adelante a pesar de todo. Por tus “ayy, hija mía!” que 

espero que me sigan acompañando, porque esto nunca se acaba, Gracias. 

Por los lloros, los nervios, los malos momentos, pero también por las alegrías, las buenas 

noticias y las pruebas superadas; por sufrirme siempre, siempre. Yo no sería posible sin 

vosotros. A Cristian, mi niño siempre tan dulce, tan mimoso, tan despistado y tan vivo a la 

vez!!! Me encanta! Porque eres un poco “chanflaineta!!”jaja y cinco minutos contigo bastan 

para alegrar el día a cualquiera. A mon pare, per tot el que m’has ensenyat, per contagiar-me 

fer la professió a la que ens dediquem amb passió i voluntat, per demostrar-me que en aquesta 

vida s’ha de treballar dur per aconseguir les coses, però que tot arriba, i perquè no podem ser 

més semblants …gràcies!! Mamá!!! Cuántas cosas, eh! Eres la persona que mejor me conoce, 

que más ha sufrido conmigo, que más me ha acompañado en toda mi vida, la más 

incondicional y fiel amiga que alguien puede tener, porque lo haces todo por nosotros... Es 

imposible plasmar aquí la gratitud que siento por vosotros, por darme fuerza y amor, gracis… 

Finalment vull agrair a la persona que està amb mi sempre, que m’ha ensenyat que la 

felicitat existeix, i que hem de lluitar pels nostres somnis. Per acompanyar-nos en aquest camí 

que és el principi del que ens espera, per ser el meu nucli... Gràcies Bernat! 

 

“Sólo aquellos que se arriesgan a ir muy lejos, pueden llegar a saber lo lejos que pueden ir” 

(T.S. Elliot) 



 

 

 

 

Por último quiero agradecer al Ministerio de Educación, Cultura y Deporte por la concesión de 

una beca de Formación de Profesorado Universitario (FPU), ofreciéndome la oportunidad de 

realizar esta Tesis Doctoral. 

 

 

 



 

 

 

 

PROLOGUE 

The present thesis is organized as a compendium of articles derived from the investigation 

carried out during the last four years. The objective of this prologue is to clarify the outline of 

this thesis. 

Chapter 1 collects a detailed introduction to focalize the main subject of this research, 

ranging from the wide field of Supramolecular Chemistry to the particular analysis of the 

anion–π interaction, which is the protagonist of this investigation. Additionally, an extensive 

description of different noncovalent interactions and physical forces that govern them can be 

found. 

In Chapter 2 the general objectives and motivation of this research are summarized. 

The thesis is organized around three main objectives that I desired to achieve in this 

research. Every objective occupies a chapter and it is treated in detail. For this reason, in 

Chapters 3, 4 and 5 the reader will find the same distribution for his/her comfort. It starts with 

a background about the main issue summarizing the motivation and previous results about the 

topic. The second part gathers the results and discussion section where I have tried to 

recapitulate the most important facts of the research during my training. In the same section 

the published articles with all the information about the investigation are included. Each 

chapter finalizes with the main conclusions. 

Chapter 3 is divided into two parts. Firstly, the theoretical part implies the design and the 

study of the most convenient moiety to establish π interactions and its possible competition 

with ζ interactions. Secondly, the transfer of theoretical knowledge previously obtained into 

the experimental field has been carried out. Four papers have been published from this 

research. 

In Chapter 4 all studies devoted to analyse different combinations of noncovalent forces are 

presented, where one of the most important parts imply the formula, concepts and 

parameters used for the assessment of the cooperativity effects. Due to the quantity of 

information included in this chapter the most important features have been highlighted to 

facilitate the reading. It is the chapter which we have studied more in-depth, clearly reflected 

by the publication of eight papers. 



 

 

 

 

Chapter 5 represents the culmination of this work, with the theoretical study of anion–π 

interactions in biological systems. This chapter is divided into two more differentiated sections. 

On the one hand, the examples of biological systems that present anion–π interaction, and on 

the other hand, one more extended concept of the anion–π, i.e., the radical anion–π 

interactions and the influence of transition-metal ions on anion–π interactions. From this 

stage, we have published four papers, two related to biological systems and two related to 

extended varieties of anion–π interaction. 

Finally, Chapter 6 assembles all main conclusions derived from this thesis. 

At the end, all bibliographic sources in reference to the subject are also included. Besides, a 

set of annexes that contain information about the computational methods and experimental 

section, as well as published works derived from this research or from the collaboration with 

different research groups carried out during this period, can be found. 
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ABSTRACT 

Ten years ago, the interaction between anions and hexafluorobenzene, where the anion is 

positioned over the ring along to the C6 axis, was named “Anion–π Interaction” by our research 

group. At the same time, two other research groups demonstrated, theoretically, that the 

interaction of anions with electron-deficient aromatic rings is favourable. Since then, many 

efforts have been made to study its physical nature until its actual understanding. 

In the last years, it has begun the evaluation of, on the one hand, the force of this 

interaction in combination with other noncovalent interactions and, on the other hand, the 

existence of this interaction experimentally. This thesis is based on these key topics, which are 

summarized as follows. 

In the early stages of this thesis the theoretical design of building blocks to obtain the more 

favourable anion–π interaction by means of computational calculations was developed. After 

that, this knowledge was transferred into the experimental field to, subsequently; assess the 

force of the interaction in solution by experimental techniques. 

Later, the research was mainly centred in the evaluation of the interplay between many 

combinations of noncovalent interactions and in the study of the existence of cooperativity 

effects. Herein, the definition of formulas to calculate the synergetic effects between the 

forces and new concepts as synergetic stability is described. This field is crucial for 

Supramolecular Chemistry and Molecular Recognition since it involves the intelligent 

utilization of noncovalent interactions between the molecules assembled. Additionally, the 

cooperativity effects have a key role in biological systems and crystal engineering. In the 

former area the importance is because these systems are based on impressively efficient and 

intricate combinations of noncovalent interactions. In the latter field, the crystal structure 

prediction needs a precise understanding and a complete control over the interplay of weak 

interactions responsible for crystal packing, since they are operating simultaneously. 

Finally, we have focused our attention in the impact of the anion–π interaction in biological 

systems, showing the first theoretical example where the presence of this interaction between 

an inhibitor and an enzymatic substrate is proposed to be crucial in the inhibition of an 

enzyme. In the last stage of this research, we have extended the study of the anion–π 

interaction to innovative and different versions of this force from a theoretical point of view, 

focusing mainly on the influence that new modifications cause in the physical nature of the 
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interaction. The results derived from this investigation are related to the radical anion–π and 

the study of this interaction when a transition-metal ion belongs to the anion. 
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RESUMEN 

Diez años atrás, nuestro grupo de investigación definió la interacción entre aniones y la 

molécula de hexafluorobenzeno como “Interacción Anión–π”, cuando el anión se localizaba 

sobre el eje de simetría C6 de la molécula. Al mismo tiempo, otros dos grupos de investigación 

se sumaron a la investigación de esta nueva interacción, demostrando teóricamente que la 

interacción entre aniones y anillos aromáticos electrodeficientes era favorable. Desde 

entonces se han realizado grandes esfuerzos para estudiar su naturaleza física hasta su actual 

comprensión. 

En los últimos años se ha empezado a evaluar; por un lado, la fuerza de esta interacción en 

combinación con otras interacciones no covalentes; y por otro lado, la existencia de la 

interacción experimentalmente. Esta tesis se basa en estos puntos clave, resumidos a 

continuación. 

En un principio, la investigación se dirigió hacia el diseño teórico de motivos estructurales 

para dar lugar a la interacción anión–π más favorable. Este proceso se llevó a cabo mediante 

herramientas computacionales. A continuación, se transfirieron los conocimientos adquiridos 

mediante los cálculos a un laboratorio experimental, donde se cuantificó la interacción anión–

π en disolución mediante espectroscopia de resonancia magnética nuclear de protón. 

Posteriormente, la investigación se centró principalmente en la evaluación de las 

interrelaciones entre un gran número de combinaciones de interacciones no covalentes y, en 

el estudio de la existencia de efectos cooperativos entre ellas. Aquí se definen nuevos 

conceptos como el de estabilidad sinérgica y se proponen diferentes fórmulas para calcular los 

efectos de cooperatividad, que son muy importantes en Química Supramolecular y 

Reconocimiento Molecular. Además, los efectos de cooperatividad tienen un impacto 

importante en sistemas biológicos o en ingeniería de cristales. En el primero, la importancia se 

debe a que estos sistemas están basados en una combinación muy complicada de 

interacciones no covalentes, que funcionan de manera altamente eficiente. En el caso de la 

ingeniería de cristales, la predicción de estructuras cristalinas necesita una comprensión 

precisa y un control completo sobre las relaciones de las interacciones débiles, responsables 

del empaquetamiento cristalino, que operan simultáneamente. 

Finalmente, en el último estadio de esta investigación, nos hemos centrado en el impacto 

de la interacción anión–π en sistemas biológicos, presentando el primer ejemplo teórico donde 
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la presencia de una interacción de esta naturaleza entre el inhibidor y el sustrato enzimático se 

propone como un paso vital en la inhibición del enzima. En esta última etapa, también se ha 

extendido el estudio de la interacción anión–π a diferentes e innovadoras versiones de esta 

fuerza. Se ha llevado a cabo un estudio teórico centrándonos principalmente en la influencia 

de las nuevas modificaciones sobre la naturaleza física de la interacción. Los trabajos derivados 

de esta investigación están relacionados por un lado, con la interacción anión–π radical, y por 

otro lado, con el estudio de la interacción anión–π cuando en el anión está presente un metal 

de transición. 
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CHAPTER 1. INTRODUCTION 

Chemistry is a multidisciplinary field that lets us generate new molecules and new materials 

with a multitude of applications in several fields. 

1.1. SUPRAMOLECULAR CHEMISTRY 

Molecular Chemistry studies molecules based on covalent bonding without considering the 

interactions that can be established between different molecules, as shown in Figure 1.1. 

Synthetic chemistry only based on covalent bonding cannot generate big complex 

structured molecules with capacity to respond to physics and/or chemical stimuli. Until recent 

years, this kind of chemistry centres its attention in the study of the covalent interactions with 

the idea to obtain new molecules. The capacity of biomolecules, as proteins or nucleic acids, to 

selectively recognize and link to other species forming larger complexes is a key element in 

Chemistry. Therefore a bigger interest arose in mimic processes involving the mutual 

recognition of two molecules by means of the formation of noncovalent unions between them. 

With the objective of carrying out the new purposes, a new discipline emerged: the 

Supramolecular Chemistry1,2 (supra, in Latin means above), dedicated to the study, design and 

synthesis of molecular structures linked between them by means of noncovalent interactions. 

This subject was initiated from the pioneer works of Jean-Marie Lehn in 1969 about the idea of 

molecular recognition and led him to obtain the Nobel Prize in 1987 together with Donald J. 

Cram and Charles J. Pedersen. 

J.-M. Lehn defined the Supramolecular Chemistry as “Chemistry of the union between 

molecules through the intermolecular bonds”,2 “Chemistry beyond the molecules” or 

“Chemistry of noncovalent bonding”. More recently, Lehn has added a more functional 

definition which includes previous definitions: “Supramolecular Chemistry directs to the 

development of big complexed chemical systems, from the components that interact between 

them by means of intermolecular noncovalent forces”3 and has opened a new field where the 

interests of various disciplines of Chemistry converge, including Biorganic and Bioinorganic 

Chemistry, Biochemistry, Materials Science and Nanotechnology. 

                                                           
1
 J. M. Lehn, Supramolecular Chemistry. Concepts and Perspectives, VCH: Weinheim ed., Germany, 1995. 

2
 J. W. Steed; J. L. Atwood, Supramolecular Chemistry, John Wiley & Sons: West Sussex ed., UK, 2000. 

3
 J. M. Lehn, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763-4768. 
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Figure 1.1. Molecular and Supramolecular Chemistry. 

Therefore, the Supramolecular term introduced by J.M. Lehn4 in the year 1978 refers to the 

ordered sets of molecules that maintain linked by a variety of interactions of noncovalent 

nature. 

One supramolecule is obtained from the formation process of one molecule that acts as 

receptor (host) and another that acts as substrate or guest, binding to the first one to obtain a 

receptor-substrate complex.5,6 Normally, the receptor is a big molecule or aggregate, as an 

enzyme or macrocycle, with an adequate cavity. The substrate can be an inorganic single ion or 

a more complex molecule, as for example a hormone or neurotransmitter. The associations 

between the receptor and substrate molecules are based on intermolecular interactions that 

are, in general, weaker than covalent bonds. For this reason, several simultaneous interactions 

are established between the complexation sites of both molecules which are the normal 

procedure in biological systems, ensuring the efficiency of the replication process, the enzyme-

substrate interactions or antigen-antibody, as in other important biological functions. In 

summary, the receptor would be the molecule formed by covalent bonds able to complex the 

substrate through intermolecular noncovalent interactions allowing the formation of a 

supramolecule. 

An important requirement for the multiarea combination is the complementarity between 

the complex places of the receptor and substrate molecules, the better they fit together the 

more efficient the complexation will be. This is the general concept of the key-lock proposed 

by E. Fisher,7 who explains the notable specificity of the enzyme catalysis one century ago, 

establishing the basis that today are known as Molecular Recognition. 

The first studies in the Supramolecular Chemistry field are centred in the selective 

gathering of alkaline cations by macrocyclic ligands and natural or synthetic 

macropolycyclics,8 , 9 , 10 , 11  as crown ethers12 , 13 , 14  and kriptands. 15  This new research field 

                                                           
4
 J. M. Lehn, Angew. Chem., Int. Ed. Engl. 1988, 27, 89-112. 

5
 D. J. Cram, Angew. Chem., Int. Ed. Engl. 1988, 27, 1009-1020. 

6
 D. J. Cram, J. M. Cram, Science 1974, 183, 803-809. 

7
 E. Fischer, Ber. Dtsch. Chem. Ges. 1894, 27, 2985-2993. 

8
 Y. A. Ovchinnikov;  V. T. Ivanov;  A. M. Scrob, Membrane Active Complexones, Elsevier ed., New York, USA, 1974. 
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experienced fast growth in the development of new synthetic receptor molecules. The new 

receptors are prepared to selectively capture cationic, anionic or neutrals substrates and can 

be of organic, inorganic and biological nature through electrostatic, van der Waals, metal 

coordination and/or hydrogen bonding intermolecular interactions. 

While the complexation of cations has been object of studies since one century ago, the 

anion complexation in Supramolecular Chemistry16,17,18 has received very little attention until 

recently. The appearance of synthetic molecules capable of complexing cations or anions was 

almost simultaneous. In 1967 C. J. Pedersen prepared the first organic synthetic ligand capable 

of complexing cations.13 One year after C. H. Park and H. E. Simmons synthesized the first one 

able to complex anions denominated katapinate (katapnosos, in Greek means swallow).19 Both 

receptors present in Figure 1.2. 

 
Figure 1.2. The 18-crown-6 ether compound, synthesized by Pedersen, is able to complex alkaline 
cations. The katapinate synthesized by Park and Simmons is able to complex halide anions. 

Despite this almost simultaneous discovery, the field of anions complexation remained 

relatively unexplored in contrast with the cations, maybe due to the intrinsic peculiarities 

associated with the anions (solubility, hydration energy, size and the big variety of geometrical 

forms). 

                                                           
9
 B. C. Pressman, Annu. Rev. Biochem. 1976, 45, 501-530. 

10
 M. M. Shemyakin, N. A. Aldanova, E. I. Vinogradova, M. Y. Feigina, Tetrahedron Lett. 1963, 1921-1925. 

11
 B. C. Pressman, Proc. Natl. Acad. Sci. U. S. A. 1965, 53, 1076-1083. 

12
C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 2495-2496. 

13
 C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017-7036. 

14
 C. J. Pedersen, Angew. Chem., Int. Ed. Engl. 1988, 27, 1021-1027. 

15
 J. M. Lehn, Science 1985, 227, 849-856. 

16
 A. Bianchi; K. Bowman-James; E. García-España, Supramolecular Chemistry of Anions, Wiley-VCH ed., New York, 

USA, 1997. 
17

 P. D. Beer, P. A. Gale, Angew. Chem., Int. Ed. 2001, 40, 486-516. 
18

 F. P. Schmidtchen, Anion Sensing 2005, 255, 1-29. 
19

 C. H. Park, H. E. Simmons, J. Am. Chem. Soc. 1968, 90, 2431-2432. 
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In the last years, the investigation of anions in Coordination Chemistry field has 

experienced a great growth,20 as a result of the importance of anions in the biological world as, 

for example: 

 The transport of genetic information through the DNA, which is a polianion, 

 The biocatalyzed processes through anionic cofactors and substrates. 

Moreover, the anions are the leads in environmental subjects as: 

 Phosphate anions in case of the eutrophication of rivers,21 

 Nitrate anions, whose carcinogenic metabolites 22  can be present in waters as 

consequence of a high use of fertilizers, 

 Pertecnate radioactive anion (99TcO4
–), subproduct of nuclear process, dumping at 

sea.23 

Other key concept in Supramolecular Chemistry is the self-assembly that can be defined as 

the process through the supramolecular species are spontaneously formed from their 

components. It is necessary to highlight, that this process is not only reserved for 

Supramolecular Chemistry, but is present in nature: the DNA structure, the formation of lipid 

bilayers, the secondary, tertiary and quaternary conformations of proteins, among other 

examples. The common factor to all these self-assembly processes is the requirement of 

chemical and structural complementarity of different components through the numerous 

noncovalent interactions, as mentioned above, the multiarea combination. 

Before completing this section, the difference between the supramolecule and 

supermolecule terms should be clarified. The supramolecular word is a term of ample 

meaning, concerning all the fields of Chemistry that presents more or less organized 

polimolecular associations. On the other hand, in Theoretical Chemistry, the computational 

procedure that treats the molecular associations just as if they were a unique entity described 

by a unique wave function is denominated supermolecular approach.24 

Therefore, the key and repetitive feature in all supramolecular compounds is the fact that 

the union between the various components is done through noncovalent interactions.  

                                                           
20

 F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609-1646. 
21

 B. Moss, Chemistry & Industry 1996, 407-411. 
22

 C. Glidewell, Chem. Br. 1990, 26, 137-140. 
23

 M. Kubota, Radiochim. Acta 1993, 63, 91-96. 
24

 M. Badertscher, M. Welti, P. Portmann, E. Pretsch, Top. Curr. Chem. 1986, 136, 17-80. 
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1.2. NONCOVALENT INTERACTIONS 

Noncovalent interactions have a constitutive role in the science of intermolecular 

relationships. Chemical and biological assembly processes orchestrated by noncovalent 

bonding are directed by elegant expressions of collective behaviour on the molecular scale.25 

In nature, these interactions are the foundation of the life process itself, the ultimate function 

articulation, both mechanical and cognitive. In synthetic chemistry, interactions between 

rationally designed molecular subunits drive the assembly of nanoscopic aggregates with 

targeted functions. Research in this area is inspired by everything from the basic mechanisms 

of function to structural feature of biological systems. 2,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 A clear 

understanding and accurate description of the full compass of interactions between molecules 

is essential for the development of Supramolecular Chemistry, particularly the elucidation of 

the mechanisms of biological functions and the development of new synthetic applications in 

Catalysis, Materials Science and Medicine. 

Noncovalent interactions involving aromatic rings play an essential role in chemistry and 

biology.33 This role becomes prominent in drug receptor interactions, crystal engineering and 

protein folding.42 It has been estimated that around 60% of aromatic amino acid side chains 

(histidine, phenylalanine, tyrosine, and tryptophan) participate in π–π stacking interactions in 

proteins.43 The role of stacking interactions in DNA and RNA is also of undisputed importance, 

wherein nucleobase intra- and interstrand stacking help to stabilize the structure of DNA 

duplexes.43,44 Moreover, biological processes involved in the control and regulation of gene 

expression are dependent on protein–DNA aromatic interactions, as the action of intercalating 

                                                           
25

 H. J. Schneider, Angew. Chem., Int. Ed. 2009, 48, 3924-3977. 
26

 F. Vögtle, Supramolecular Chemistry: An Introduction, Wiley ed., New York, 1993. 
27

 G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem., Int. Ed. 2007, 46, 2366-2393. 
28

 P. D. Beer;  P. A. Gale; D. K. Smith, Supramolecular Chemistry, Oxford University Press ed., Oxford, 1999. 
29

 H.-J. Schneider; A. Yatsimirski, Principles and Methods in Supramolecular Chemistry, Wiley ed., Chichester, 2000. 
30

 Y. Inoue;  G. Gokel;  M. Dekker, Cation Binding by Macrocycles New York, 1990. 
31

 M. Kruppa, B. Konig, Chem. Rev. 2006, 106, 3520-3560. 
32

 R. Paulini, K. Muller, F. Diederich, Angew. Chem., Int. Ed. 2005, 44, 1788-1805. 
33

 E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem., Int. Ed. 2003, 42, 1210-1250. 
34

 R. W. Saalfrank, H. Maid, A. Scheurer, Angew. Chem., Int. Ed. 2008, 47, 8794-8824. 
35

 L. R. Nassimbeni, Acc. Chem. Res. 2003, 36, 631-637. 
36

 C. A. Hunter, Angew. Chem., Int. Ed. 2004, 43, 5310-5324. 
37

 H. J. Schneider, Chem. Soc. Rev. 1994, 23, 227-234. 
38

 H. J. Schneider, A. K. Yatsimirsky, Chem. Soc. Rev. 2008, 37, 263-277. 
39

 H. Gohlke, G. Klebe, Angew. Chem., Int. Ed. 2002, 41, 2645-2676. 
40

 R. R. Arvizo, A. Verma, V. M. Rotello, Supramol. Chem. 2005, 17, 155-161. 
41

 D. H. Williams, E. Stephens, D. P. O'Brien, M. Zhou, Angew. Chem., Int. Ed. 2004, 43, 6596-6616. 
42

 K. Muller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143-167. 
43

 S. K. Burley, G. A. Petsko, Science 1985, 229, 23-28. 
44

 S. Li, V. R. Cooper, T. Thonhauser, B. I. Lundqvist, D. C. Langreth, J. Phys. Chem. B 2009, 113, 11166-11172. 
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drugs.45 Another related function occurs within the active sites of various DNA repair enzymes 

that excise alkylated purines via a recognition mechanism based on π–π interactions with 

aromatic amino acid residues.46 These interactions also play a key role in the repair process 

where aromatic amino acids are inserted into the DNA strand to maintain the stability when 

the damaged base is flipped out of the duplex and into the active site of the repair enzyme.46 

Noncovalent interactions include a wide range of attractive and repulsive forces of different 

nature, force and directionality. 

In this case, it is convenient first to describe the different features of the interactions, 

including their classification and focusing to the ones studied in this thesis. 

Covalent bonds determine the disposition of atoms inside the molecule, but the bonds 

responsible for the conformation of the molecules or the molecular aggregations are the 

molecular interactions. 

Intra- and intermolecular interactions play an important role in chemical reactions and 

Molecular Recognition, then the specificity and the efficiency of these chemical processes are 

obtained by means of combinations of weak molecular interactions. An interaction covers all 

the effects that can occur between two bodies, including the forces between them. Although 

not having the same meaning, the terms of interaction and force are usually used 

undistinguishably. Only, from the elucidation of the electronic structure of atoms and 

molecules and the development of the quantum theory in 1920, it was possible to start 

inderstanding the origin of intermolecular forces. Early, it was established that the origin of all 

molecular forces was essentially electromagnetic. This affirmation is implicit in the Hellman-

Feynman theorem,47 which postulates that the intermolecular forces can be calculated based 

on classic electrostatics, once the electronic distribution is known from the Schrödinger 

equation resolution. Although other magnetic or gravitational forces exist, not originally 

electrostatic, their magnitudes are negligible compared to electrostatic forces (even when the 

cooperativity nature of ferromagnetism plays a role, magnetic forces are weaker). 

                                                           
45

 D. Y. Kim, N. J. Singh, J. W. Lee, K. S. Kim, J. Chem. Theory Comput. 2008, 4, 1162-1169. 
46

 J. T. Stivers, Y. L. Jiang, Chem. Rev. 2003, 103, 2729-2759. 
47

 R. P. Feynman, Phys. Rev. 1939, 56, 340-343. 
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One of the first classifications of the components of the interaction energy was carried out 

by C. A. Coulson.48 In this, the electrostatic contribution, the delocalization and the repulsion 

are distinguished. Later, a fourth contribution was added due to the dispersion. 

Another very popular classification49,50,51 refers to two great groups of forces: “long range” 

and “short range”. The interaction energy of long range forces is a function of r–n, while short 

range forces depend on e–αr, consequently this division has a theoretical fundament. 

1.2.1.  LONG RANGE FORCES 

The energy associated to these forces is a function of the inverse power of the distance 

between interacting molecules. The attractive component of the long range forces is 

significant when the electronic cloud superposition is small. 

There are five contributions to the long range interaction energy, whose degree of 

participation depends on the nature of the molecules: 

 Electrostatic, 

 Induction, 

 Dispersion, 

 Resonance, 

 Magnetic. 

The last two effects occur when one of the molecules is in a degenerate state (usually an 

excited state) or when both molecules have unpaired spins, respectively, but it will not be 

explained because is not the case of this study. 

1.2.1.1. Electrostatic Forces 

The electrostatic effects emerge from the classic interaction between specific charges 

(monopoles) or from the distribution of static charges of two molecules (multipoles), not from 

charge distributions modified by interactions. For this reason the total charge distribution 

must be determined from the charge distribution of free molecules. In Figure 1.3 different 

charge distributions are shown as a result of a series of electric moments. 

                                                           
48

 C. A. Coulson, Research 1957, 10, 149. 
49

 A. D. Buckingham; P. Claverie; R. Rein; P. Schuster; B. Pullman, Intermolecular Interactions: From Diatomics to 
Biopolymers. Chapter 1 Basic Theory of Intermolecular Forces: Applications to Small Molecules., John Wiley & Sons: 
ed., Chichester, UK, 1978. 
50

 G. C. Maitland; M. Rigby; E. B. Smith; W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, 
Clarendon Press ed., Oxford, UK, 1987. 
51

 A. J. Stone, The Theory of Intermolecular Forces, Clarendon Press ed., Oxford, UK, 2000. 
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POINT CHARGE (q): As a result of the situation of a molecule having a different number of 

protons and electrons, resulting in a net charge supported by the molecule. The units are: e 

(ua) or Coulomb (SI); 1 e = 1.602·10–19 C. 

DIPOLE MOMENT (µZ): The interaction between two charges of equal magnitude but of 

opposite sign generates a dipole. The direction of the dipole is from the negative to positive 

charge centres. The permanent dipole moments result from the different electronegativities of 

the atoms in a molecule necessarily asymmetric. In general, to describe a molecule as being 

polar it is equivalent to say that it possesses a permanent dipole moment. The units are: ea0 

(ua), Cm (SI) or Debye; 1ea0 = 2.5418 D = 8.478·10–30 Cm. 

QUADRUPOLE MOMENT (QZZ): A molecule possesses a non-zero electric quadrupole moment 

when it presents symmetric non-spherical charge distribution. This can be achieved from four 

charges arranged in a two-dimensional space that sum zero without generating a net dipole. 

The units are: ea0
2 (ua), Cm2 (SI) or Buckingham; 1 ea0

2 = 1.3450 B = 4.4865·10–40 Cm2. 

The following higher order multipole moments are the octupole and hexadecapole, that 

can be expressed as eight and sixteen charges arranged in the space, although the series 

continues indefinitely. 

 
Figure 1.3. A) Point charge. B) Dipole moment. C) and D) Quadrupole moments generated by the 
disposition of point charges in the space. 

One electrostatic interaction can take place between two charges, between one charge and 

one multipolar moment, or between two multipole permanent moments. The forces that 

derive from purely electrostatic interactions are strictly additive and can be of attractive or 

repulsive character. 

When two molecules that possess net charge interact, the main force involved is derived 

from the interaction between both charges, although other interactions can also participate 

(i.e. between multipole moments), they will be weaker and for this reason, often neglected. 
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The central multipole expansion52 (Equation 1.1) shows the electrostatic potential at point P by 

means of the sum of a finite series of charge-charge, charge-dipole, dipole-dipole, charge-

quadrupole, dipole-quadrupole, quadrupole-quadrupole interactions. The electrostatic 

potential (V(r)) calculated a distance r from the centre of mass is represented in Figure 1.4 

 ( )   
 

      
(
 

 
 

       

  
 

   (        )

   
  ) 

Equation 1.1 

 
Figure 1.4. Electrostatic potential due to two point charges. 

Depending on the interacting systems, more terms of multipole expansion can be added as 

needed to properly define the interaction. For example, in ionic solids, the term charge-charge 

is the dominant (r–1); in polar fluids a sufficient approximation is to use the dipole-dipole 

energy (r–3) and in centre-symmetric molecules (as H2 or N2, in any state of the matter), the 

quadrupole-quadrupole interaction (r–5) is a good representation of the electrostatic energy. 

Through the central multipole expansion, it is possible to predict the more favourable 

orientations when a series of multipoles are facing as shown in Figure 1.5.53 

                                                           
52

 J. O. Hirschfelder; C. F. Curtiss; R. B. Bird, Molecular Theory of Gases and Liquids, Wiley ed., New York, USA, 1964. 
53

 A. D. Buckingham, Quarterly Reviews 1959, 13, 183-214. 
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Figure 1.5. More favoured orientations for interactions between several electric moments. 

1.2.1.2. Inductive Forces 

Inductive effects arise from the deformation of the charge distribution of a molecule 

caused by an external electric field generated by neighbouring molecules. In the interaction 

between a dipolar and an apolar molecule, the electric field of the former molecule distorts 

the electronic charge distribution of the latter molecule generating an induced dipolar 

moment. Then, this induced dipole moment interacts with the permanent dipole resulting in 

an attractive force. This concrete case is named interaction of Debye since it was described by 

him.54 

When some of the interacting molecules have permanent electric moment, induction 

interactions are present, although become less relevant if the electrostatic contribution is 

large. Since induction energy is the result of the deformation of the charge distribution in 

response to an external field, it is always negative for molecules in their fundamental 

electronic states. 

                                                           
54

 P. Debye, Polar Molecules, Chemical Catalog Company, New York, USA, 1929. 
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The molecular polarizability (α in Equation 1.2) is the trend of a molecule to be polarized, 

i.e., the facility of creating a dipole induced moment (μinduced) because of electric external fields 

produced by neighbouring molecules. The polarizability in the atoms and molecules is defined 

in agreement with the force that acquires the dipole induced moment in the electric field, 

being the constant of proportionality between the external field and the induced moment in 

the non-polar molecule. 

             

Equation 1.2 

The polarizabilities of all molecules, apart from those of spherical symmetry, are anisotropic 

and have different values in the different directions. In linear molecules, there are only two 

independent components of the polarizability. The dipole moment of a molecule varies 

according to the expression in Equation 1.3: 

               
 ⁄     

 ⁄       

Equation 1.3 

Where; 

 μ is the permanent dipole moment, 

 α is the molecular polarizability, 

 β is the molecular hiperpolarizability (non-linear polarizability). 

In fact all the electric moments are altered by the presence of external electric field; 

however, tending to focus the attention in the dipolar polarizability, as well as in permanent 

electric moments, an induced dipole has a bigger influence in the interaction energy than an 

induced quadrupole. 

1.2.1.3. Dispersive Forces 

The origin of attractive forces between non-polar molecules was a serious problem at the 

beginning of twentieth century, until 1930, when F. London55,56 described them using a second 

order perturbational theory, pointing to a relationship between these forces and the optic 

dispersion in gases, namely dispersion forces. Also they are named London forces and are the 

only long range forces present in all molecular interactions; in fact they are the only long range 

                                                           
55

 F. London, Z. Phys. Chem. 1930, 63, 245-279. 
56

 F. London, Z. Phys. Chem. 1930, 11, 222-251. 
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forces present in the case of interaction between neutral apolar molecules, representing the 

most important contribution to van der Waals forces, except in small polar molecules. 

The dispersion energy cannot be analysed in classic terms due to having its origin in 

quantum mechanics, and comes from the continuous fluctuation of charge distribution of 

molecules due to electron movement. These movements are correlated and the resultant 

effect is a diminution in the energy, consequently the dispersive forces are always attractive 

and practically additive. 

Due to electronic density of molecules varying continuously in time and space, generated 

instantaneous electric moments can induce an electric moment in a second molecule. 

Between the induced multipole of the second molecule and the inductor of the first one an 

attractive force emerges instantaneously named dispersion force. 

In general mode, the dispersion energy is attributed to the interaction of different 

instantaneous multipoles of the molecules, as described in the Drude model57 expanded in 

series (Equation 1.4). 

  
  

  
 

  

  
 

   

   
   

Equation 1.4 

The coefficients Cn are negative and correspond to the attractive interaction placed between 

the series of instantaneous multipoles: dipole-dipole (C6), dipole-quadrupole (C8), quadrupole-

quadrupole (C10), etc. 

Since polarizability is a measure of the charge fluctuation in a molecule, the instantaneous 

and induced multipoles can be related with their polarizabilities, so that the higher the 

polarizabilities of molecules, the stronger the dispersion interactions. 

1.2.2. SHORT RANGE FORCES 

The forces that participate in the interaction energy as a consequence of orbitalic overlap 

constitute the group of short range forces, they are only important at short distances. 

The most important contribution to the energy of short range normally is described as 

exchange-repulsion. This is a double effect combination. The interchange energy is a 

consequence of the Pauli principle that, due to the prohibition of putting two electrons in a 

system with the same set of quantum numbers, reduces the electrostatic repulsion between 

                                                           
57

 P. K. L. Drude, The Theory of Optics Longman ed., London, UK, 1933. 
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electron pairs resulting in attractive term. The repulsion energy between two molecules comes 

from, on the one hand, the electrostatic repulsion of electrons of the molecules and, on the 

other hand, from the nuclei that are not totally protected. When the electronic clouds of two 

molecules are close enough to overlap, Pauli’s principle of exclusion prohibits some electrons 

to occupy the same region of space, reducing the electronic density in this region; for this 

reason, the atomic nuclei are partially unprotected one from the other, generating repulsion 

between them. 

Moreover we can find two important effects in the short range forces: charge transfer and 

charge penetration. 

The charge transfer is an effect that considers part of the induction forces that act at short-

range. The charge transfer model was introduced by Mulliken58,59,60 in complexes that have an 

electron-rich (donor, D) and an electron-poor (acceptor, A) component. The acceptor 

component strongly attracts electrons and therefore these complexes are also known as 

electron donor-acceptor complexes (EDA).61,62 In terms of resonance, the EDA complexes are 

represented as a hybrid of two structures as shown in Figure 1.6. 

 
Figure 1.6. Representation of EDA complexes. 

The structure on the left presents both components in a neutral state, while the one on the 

right, known as charge transfer structure, has had a total transfer of one electron. The last one 

contributes slightly to the total electronic structure. As the quantity of charge transfer in a 

complex from one component to the other is not an observable quantity, the obtained values 

will depend on the applied models. It has been demonstrated63 that the charge transfer 

component in the interaction energy is generally small in comparison with other contributions, 

according to the experimental results.64 

The charge penetration is an attractive effect of purely electrostatic origin that takes place 

at electronic distances where the interacting molecules overlap. Conceptually, it can be 

understood as the attraction that experiments the atomic nuclei partially unprotected of one 

                                                           
58

 R. S. Mulliken, J. Am. Chem. Soc. 1950, 72, 600-608. 
59

 R. S. Mulliken, J. Am. Chem. Soc. 1952, 74, 811-824. 
60

 R. S. Mulliken, J. Phys. Chem. 1952, 56, 801-822. 
61

H. A. Bent, Chem. Rev. 1968, 68, 587-648. 
62

 Banthorp.Dv, Chem. Rev. 1970, 70, 295-322. 
63

 A. J. Stone, Chem. Phys. Lett. 1993, 211, 101-109. 
64

 F. Cozzi, M. Cinquini, R. Annuziata, J. S. Siegel, J. Am. Chem. Soc. 1993, 115, 5330-5331. 
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molecule to the electronic cloud associated to another molecule. As a consequence of this 

interaction, the multipolar expansion ceases to be valid at short distances. 

Below a brief description of some important noncovalent interactions is included, where 

the forces explained above have a significant contribution. Some of the interactions explained 

here, have been studied and analysed in this thesis. 

1.2.2.1. Ion-Ion Interaction 

They are attractive interactions of electrostatic nature that occur between ions of different 

charge sign. The strength of these interactions are comparable to covalent bond. (Bonding 

energy = 25-85 kcal·mol–1). 

An example of a supramolecular system characterized by this interaction is observed in 

Figure 1.7. The interaction between the ligand tris(diazabicycleoctane)3+ and the anion 

[Fe(CN)6]
3- is only observed in the solid state, since in solution solvation effects dominate and 

the complex is not formed.65 

 
Figure 1.7. Ion-ion interaction between tris(diazabicycleoctane)

2+
 and [Fe(CN)6]

2+
. 

1.2.2.2. Ion-Dipole Interaction 

This interaction takes place between an ion and a polar molecule. It exists in solid state and 

in solution and is weaker than the ion-ion interaction (bonding energy = 10-50 kcal·mol–1). A 

classic model is the solvation process of an ion, as for example, Na+ cation in water. The 

complexes formed by crown ethers and alkaline ions are other examples of ion-dipole 

interactions (see Figure 1.8). This complex has a marked ionic character due to the interaction 

between a small polarising cation and the lone pairs of the oxygen atoms.  
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Figure 1.8. Crown ether within Na

+
 cation in its interior. 

1.2.2.3. Dipole-Dipole Interaction 

They are attractive interactions of electrostatic nature between dipoles, due to the 

alignment of the opposite poles of both. They are weak interactions (Bonding energy = 1-10 

kcal·mol–1), especially in solution (see Figure 1.9). 

 
Figure 1.9. Dipole-dipole interactions in carbonylic compounds. 

1.2.2.4. Hydrogen Bond, HB 

It is a particular dipole-dipole interaction that takes place between an electronegative atom 

and a hydrogen atom linked to other electronegative atom or charge acceptor group. Usually, 

the HB is explained in function of the electron-donor or proton acceptor capability of involved 

groups. Based on this, it can be said that the hydrogen bond consists of a kind of dipole-dipole 

interaction between a functional group A (hydrogen acceptor) and an atom or atom groups D-

H (hydrogen donor), so that both A and D must have certain electronegative character. 

HB are directional and reversible interactions, whose force is variable (Bonding energy = 1-

30 kcal·mol–1) and very dependent of the electronegative character of the involved atoms and 

their environment (bond distances and angles with the hydrogen atom).66,67,68,69,70,71 
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The hydrogen bonding can be appearing in different conformations that can influence their 

strength. The most common can be observed in the Figure 1.10 and would be: 

 Simple, 

 Bifurcated, 

 Trifurcated, 

 Bridge Cyclic, 

 Cyclic dimer. 

The hydrogen bond has a very important electrostatic component, but there are numerous 

cases where the hydrogen bonding has a very significant covalent nature.72 Very strong 

interactions take place when the donor and acceptor groups are highly electronegative and 

both have the same electronegativity; therefore the hydrogen atom is practically located 

halfway. Strong hydrogen bonds character is mainly electrostatic in nature and occurs when 

both the donor and acceptor systems are hard bases of very electronegative character (N, O, 

F). The weak hydrogen bond takes place when the donor and acceptor groups are not so 

strong bases and have a marked van der Waals character, although the electrostatic 

component that follows is predominant. Two examples of weak hydrogen bond interactions 

with marked van der Waals character are the C-H···X and X-H··· contacts.73,74,75,76 

 
Figure 1.10. Most common conformations for Hydrogen-Bonding.  
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A classification of hydrogen bond in function of their strength in strong, moderate and 

weak can be done using as a reference the values of bond distances and bond angles that 

involve the three atoms D-H···A.77,78 Below, a classification table of hydrogen bond as a 

function of different parameters is shown. 

As can be observed in Table 1.1, the hydrogen bond can be relatively strong and shows a 

marked directionality. This type of interactions becomes a key part in Supramolecular 

Chemistry. Also the weak hydrogen bond is important, being a crucial part in the stabilization 

of structures when a large number of them participate.79 

Table 1.1. Classification of Hydrogen Bonds according to their strength and geometric parameters. 

 Strong Moderate Weak 

D-H···A Interaction 
Important Covalent 

component 
Electrostatic 

mainly 
van der Waals 

Bond length D-H  H···A D-H < H···A D-H << H···A 

H···A (Å)  1.2 – 1.5  1.5 – 2.0 2.0 – 3.0 

D···A (Å) 2.2 – 2.5 2.5 – 3.2 3.0 – 4.0 

Bond angles () 175 – 180 130 – 180 90 – 150 

Bond energy (kcal·mol-1)a 14 – 40 4 – 15 <4 

1H NMR Chemical shift (ppm) 14 – 22 < 14 --- 

a
 Proposed by Emsley (1980). 

A more detailed analysis and classification of different hydrogen bond interactions point 

out that there are three different kinds of HBs: typical hydrogen bonds, designated as D−H···A, 

with the positive charge of H-atom; inverse (or hydride) bonds where a negatively charged 

hydrogen atom is situated between electropositive atoms; and dihydrogen bonds (DHBs) 

D−H···H−A containing both protic and hydric H-atoms.80 Generally, it seems that the properties 

of DHBs do not differ much from typical H-bonds and its formation usually causes changes 

similar to those of conventional hydrogen bonds. The meaning and understanding of H···H 

contacts was changed and verified in the 1990s when this new type of interaction (DHB)81 was 
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detected in different organometallic crystal structures.82 This interaction was designated as 

D−H···H−A, where D−H denotes a typical proton donating bond such as O−H or N−H with the 

excess of positive charge on hydrogen atom. The second hydrogen atom possesses a negative 

charge and is connected with the acceptor center A (A could be a transition metal or a boron 

atom). Other systems were also analyzed and classified as DHBs, even some C−H···H−C 

interactions were described as possessing the characteristics of dihydrogen bonds. Numerous 

calculations on dihydrogen bonded systems were performed finding that their binding 

energies in some cases exceed 10 kcal/mol.83 

 
Figure 1.11. A) Double-helix of DNA structure. B) Chemical structure of DNA and hydrogen bonds 
between base pairs. C) The TriplatinNC coupling of DNA by means of hydrogen bond generates 
structural changes in double-helix.

85,86
 

The hydrogen bond has a great importance in biological systems. For example, it plays a 

fundamental role in the stabilization and formation of tridimensional structures of proteins 

and nucleic acids.84 In these biological macromolecules, the coupling between different parts 

of the same macromolecule origins a specific structure that determines the biological and 

physiological role. A characteristic example and of great importance is the structure of double 

helix of DNA that is mainly due to the formation of complementary hydrogen bonds between 

nucleotide base-pairs and π–π stacking interactions between them. Some anticancer drugs 

that are currently used are based on their intercalation in the DNA through hydrogen bond 
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generating structural changes resulting in an inhibition or slowdown of the transcription and 

replication processes in the DNA of cancer cells,85,86 i.e., are used as drugs acting as selective 

mutagens based on hydrogen bond (See Figure 1.11). 

Neurodegenerative diseases such as Alzheimer are due to, among others, errors in the 

complementarity of hydrogen bond involved in protein folding therefore preventing them to 

carry out their function. 

The importance of this interaction goes further. The formation of complementary hydrogen 

bonding has also found application in diverse fields, highly topical and with wide applications 

in the fields of catalysis, molecular machines, supramolecular systems, among others. Chan 

and collaborators87 have carried out theoretical calculations that corroborate the orto-F···H(β) 

contacts ligand-polymer proposed by Fujita.88 In the last years, molecular machines have been 

designed and synthesized (see Figure 1.12) based on the controlled formation/destruction of 

hydrogen bonds mediated by different extern stimuli such as changes in the potential or pH, 

light, presence of other reagents, etc.89,90,91 

 
Figure 1.12. Operating scheme of molecular motor based on hydrogen bond.

90
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1.2.2.5. C–H···π Interaction, C–H···π 

This interaction consists of the attraction between C–H group and the π electronic density 

of an aromatic ring. Normally the range of distance between the hydrogen atom and the 

centroid of the ring is 2.4–3.2 Å. 

Often, it has been considered a kind of weak hydrogen bond, due to the structural 

similitude between both kinds of interactions.92,93,94,95 Recently, theoretical studies and 

experimental results in gas phase96,97 propose that the nature of C-H···π interaction is totally 

different to the conventional hydrogen bonds. While the hydrogen bonds are due to 

electrostatic attractions, the electrostatic component in the C–H···π interactions is minimum, 

being the van der Waals interactions the main cause of formation. Only, in case of some 

activated C–H···π interactions with very acidic C–H bonds (acetylene, chloroform,…) the 

electrostatic interaction is the most important contribution. 

Other fundamental difference is the directionality that both interactions exhibit. While the 

fundamental hydrogen bond feature is its high directionality due to the electrostatic 

contribution, the C–H···π presents very small electrostatic contribution. This fact confirms the 

different nature of both interactions. 

1.2.2.6. Cation–π Interaction, Cπ 

This kind of interaction takes place between a cation and one of the faces of an electron-

rich aromatic system, as could be benzene and its derivatives or π systems as ethylene (see 

Figure 1.13). This interaction has basically an electrostatic origin, which implies the attraction 

of a cation to the electron density associated to a  system. 
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Figure 1.13. Cation– interaction for benzene aromatic ring. The colour code for potential surfaces is 
ranging from –5 (red colour, rich places in electronic density) to +5 (blue, electron-deficient regions) in 
kcal·mol

–1
 for benzene. 

This interaction is of great interest in biological systems98 (Bond energy = 1-20 kcal·mol–1). 

Most of neurotransmitters have a cationic group that permits them a selective anchorage to 

their receptors by cation–π interaction. In fact, cation–π bonding is an important and widely 

recognized noncovalent interaction that involves aromatic rings.99 The cation–π interaction has 

important applications in the field of Supramolecular Chemistry. Supramolecular aggregates 

like dendrimers,100 molecular tweezers, rotaxanes,89 catenanes,101 and foldamers,102 have been 

associated by cation–π interactions.103,104 Numerous studies have reported the occurrence of 

cation–π interactions in protein structures98, 105  and in protein–ligand33, 106  and protein–

DNA107,108 complexes. These analyses have revealed the preferential localization of amino 

groups in the area of aromatic rings.105,109 This interaction is calculated to be even more 

stabilizing than an analogous salt bridge, and it is not so strongly attenuated in water.110 The 

side–chains of the aromatic amino acid residues, Phe, Tyr, and Trp, provide a surface of 

negative electrostatic potential than can bind to a wide range of cations through a 

predominantly electrostatic interaction. 111 , 112  A remarkable case is the acetylcholine 
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nicotinamide receptor whose mechanism of molecular recognition to their substrate 

(acetylcholine, positively charged molecule) is based on only cation–π interactions, as can be 

observed in Figure 1.14.113 

 
Figure 1.14. Cationic acetylcholine bonded to a tryptophan fragment of acetylcholine nicotinamide 

receptor by cation– interaction. 

Furthermore, systems with molecular structure as crown ether with  systems strategically 

located have shown to be very effective binding places for alkaline cations.114 

Additionally, cation–π interactions have also been used to increase the π–face selectivity in 

catalysts in asymmetric catalysis.115 

1.2.2.7. π–π Stacking Interactions, π–π 

This type of interaction takes place between the π electron densities of stacked aromatic 

systems. Normally, one of the rings is electron-rich, while the other is electron-poor, although 

cases have been described where both rings have the same electron wealth, this would be 

weak interactions (Bonding energy = 0-10 kcal·mol–1) of great importance from a biological and 

supramolecular points of view. 

This kind of interaction plays an important role in the stabilization of DNA, together with 

hydrogen bond, resulting in pair-bases stacking and generating its characteristic helicoidal 

structure. Based on this, a number of intercalating drugs have been designed. On the other 

hand, π–π stacking interactions have a lot of applications in Supramolecular Chemistry, 

especially for host-guest systems. A remarkable case is the one described by Sygula and 
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collaborators116 who have synthesized a buckycatcher based on a multitude of conjugated 

aromatic rings that adopt a concave conformation matching perfectly with a fullerene C60 

molecule (see Figure 1.15), acting as receptor of this molecule through π–π stacking 

interactions. 

 

Figure 1.15. A) Buckycatcher structure. B) Crystalline structure of fullerene linked to buckycatcher by –

 stacking interaction.
116

 

This kind of interaction is also of great utility in liquid crystals for the formation of columnar 

structures supported by the stacking of aromatic rings (see Figure 1.16).117 

 
Figure 1.16. Disk detail in liquid crystal mesogen and various types of arrangement of liquid crystal 
mesogenic disks.

117  
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Three general kinds of π–π stacking interaction can be distinguished, as shown in Figure 

1.17: 

 Face to face (FF), 

 Offset face-to-face or parallel-displaced (OFF), 

 Edge-to-face or T-shaped (EF). 

 
Figure 1.17. Types of π–π stacking interactions between aromatic rings. 

The edge-to-face stacking is a particular case of C–H···π interaction, since it has the same 

nature and similar strength and takes place when the distance that separates the hydrogen 

atom and the ring centroid is 2.4–3.2 Å (C–π distance = 3.2–3.7 Å). 

There has been some controversy concerning the physical nature of this kind of interaction. 

In 1990, Hunter and Sanders proposed a simple model based on the competition between the 

electrostatic and the van der Waals forces to explain the variety of geometries observed for 

these interactions and to quantitatively predict their interaction energies.118 These authors 

postulate the existence of an attractive overlap by van der Waals interactions, which are 

proportional to the surface contact area between both π systems. This overlap is due to an 

attraction between the π electronic cloud negatively charged of one of the rings and the σ 

electronic cloud positively charged from the other. The relative orientation of both rings is 

determined by electronic repulsions between both π systems negatively charged. 

For this reason, when an aromatic system is stacked in a parallel way, it is normally 

observed that the rings are not totally aligned, with one slightly displaced with respect to the 

other, minimizing the π–πrepulsion and maximizing the σ–π attraction. In fact, few examples 

exist where the aromatic rings are arranged totally overlapping.119,120 The most common 
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arrangements are the offset and T-shaped disposition, because σ–π attractions predominate in 

both (see Figure 1.18). 

Figure 1.18. Scheme of existing forces between aromatic rings. 

In cases of stacking in offset disposition, a range of guide values for distances and angles 

can be established between layers of both rings within the existence of π–π stacking 

interactions are considered demonstrated.121,122 Fundamentally, the parameters to take into 

account are: 

 Centroid-centroid distance (3.3–4.1 Å), 

 Centroid-plane distance (3.3–4.1 Å), 

 Dihedral angle that forms both planes of both rings (α=0–19°). 

To measure the displacement of one ring over the other, γ and β angles are used, being the 

angles formed between the centroid-centroid vectors and centroid-layer for both rings. 

Normally, these angles have values between 16 and 40°. Above 40° the rings are considered to 

be too laterally displaced with respect of one to the other for the π–π stacking interaction 

being effective. When the rings are totally parallel (α = 0°), β and γ are equal. These features 

can be better observed in the Figure 1.19. 

 

Figure 1.19. Main parameters for – stacking interaction.  
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It is worth mentioning that the strength of these interactions is highly affected by different 

factors, such as the presence of electron-donor or electron-acceptor substituents in the rings, 

the existence of heteroatoms forming part of the ring and, even, the condensation grade of 

the involved rings in the stacking. Thereby, the higher the number of condensed rings, the 

more favourable the stacking.123 Regarding the substitution effect, it has been demonstrated 

that the presence of electron-attractor substituents in the ring increases the strength of this 

kind of interactions since the electronic density of π cloud of the ring decreases, minimizing the 

π–π repulsions between the rings.64,124 

When the stacking is produced between aromatic heterocycles the strength of these 

interactions increases, since the substitution of a carbon atom of the ring by a nitrogen atom in 

six-mebered ring like in pyridine for example, causes a decrease of the electronic π density in 

the carbon atoms of the ring, which leads to a stabilization of the system and decreases the π–

π repulsion forces as mentioned above.125 It is observed that a cooperativity effects exist 

between π–π stacking interactions and anion–π or cation–π interactions.126 

Regarding this, a stability order to the stacking of π systems can be established: π-

deficient··· π-deficient system > π-deficient··· π-excess > π-excess··· π-excess.64,118 

1.2.2.8. Anion–π Interactions, Aπ 

The anion–π interactions are attractive noncovalent interactions between electron-poor 

aromatic rings and an anion, although there is evidence that, even non-deficient aromatic rings 

can present these interactions, especially if these rings are involved in cation–π interactions on 

the other side.127 These interactions are more intense when the aromatic ring is more 

electron-deficient. Therefore, the presence of electron-withdrawing substituents (halogen, 

nitro or cyano groups) in the ring favours the formation of anion–π complexes, as well as the 

existence of nitrogen atoms in the ring (pyridine, triazine, tetrazine, among others). 

Theoretical studies have revealed that this kind of interaction is dominated by electrostatic 

forces, although the contribution of induced polarization by the anion128,129,130 is also important 
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and crucial in cases where the electrostatic is small or null.131 The molecular polarizability of 

the aromatic ring is one of the factors that affect the magnitude of the induced 

polarization.The bond energy is around 5-10 kcal·mol–1.  

To consider that the interaction exists, the distance between the anion and an atom of the 

aromatic ring must be inferior to the sum of van der Waals radii. However, Gámez and 

collaborators have carried out an analysis of structures retrieved from Cambridge Structural 

Database (CSD) presenting anion–π interactions. They have established parameters that allow 

determining the existence and strength of the anion–π interaction for six-membered rings.132 

They propose: 

 The distance between a given atom of the anion, in case of this being polyatomic, and 

any atom of the aromatic ring must be equal or less than 4 Å. This distance is named d. 

 The distance between one of the atoms of the anion (in case of polyatomic anion we 

must get the same referenced atom) and centroid of the ring must be equal or less to 

4 Å. This distance is represented as D. 

From these criteria, the conclusion that they reach from their search is that the number of 

anion– interactions are bigger when the distance d is 3.82 Å. 

 

Figure 1.20. Representation of used parameters to define the anion– contacts and average values for 
every one of them. 

Furthermore, the lateral displacement of the anion with respect to the ring is quantified 

with the following parameters (see Figure 1.20): 
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 r defined as the parallel displacement between the vectors anion-centroid, D. 

 β is defined as the angle between the vectors anion-ring layer, d’. It has been observed 

that the strong anion–π interactions present angles β = 0–15°. Interactions with lower 

angles represent a significant lateral displacement which leads to a decrease in the 

strength of them. 

The anion–π interaction can be established between an aromatic system and an anion 

either mono- or polyatomic. In the latter case, there can be more than one interaction 

between different atoms of the anion and the aromatic ring. Some examples are found with 

the following anions: ClO4
–, BF4

–, PF6
– or NO3

–. However, not only the possibility of multiple 

interactions with the same rings exists, but also occurs between the same anion and different 

aromatic rings. 

In the last years there has been a growing interest in this kind of interactions due to the 

great range of possible implications, as later shown. They are present in: 

 Process of environmental importance to the elimination of nitrate or phosphate ion of 

fresh water,133,134,135 

 Biological systems (ionic synthetic channels or membranes)64 and catalysts systems. 

This interaction is the main force for which this thesis is based on. Section 1.3 of Chapter 1 

explains in detail the great progress and impact of the anion–π interaction in recent years. 

1.2.2.9. Lone pair–π Interactions, l.p.–π 

It is the interaction between lone pair electrons of an atom belonging to a neutral electron-

rich molecule (H2O, R2CO, R2O, RCN, etc.) and an electron-poor aromatic ring. There are a lot of 

similitudes between this one and the anion–π interaction, explained above. In fact the 

parameters used to determine its existence and their strength are the same and have very 

similar values.136,137,138,139 
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In both cases this interaction is mainly electrostatic in nature. However, the electron-rich 

atom induces polarization in the ring, which can be important. In the following Figure 1.21 the 

characteristic parameters of these interactions are schematized. 

 

Figure 1.21. Representation of used parameters to define the l.p.– interactions and average values of 
every one of them. 

It has been observed that the lone pair–π interactions are of great importance in the 

stabilization of biological macromolecules and for the anchorage of the biochemical inhibitor 

receptors.140,141,142 Sankararamakrishnan and collaborators have carried out an investigation 

using the crystallographic database CSD for protein searching the l.p.–π interactions of 

carbonyl group and have found more than 250 proteins where this kind of interaction is 

present143 showing the biological importance of these interactions. Recently, their presence in 

small “host-guest”molecular systems have been confirmed,137,144 and have even demonstrated 

their contribution in electron transfer together with proton transfer.145 

 1.2.2.10. Halogen Bond, XB 

Halogen bond is a noncovalent interaction where a halogen atom is involved acting as 

electron-acceptor. The interaction can be schematized as: 

D···X-Y 
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X is a halogen with electronic deficiency and acts as a Lewis acid, 

D is any electron donor, and acts as a Lewis base, 

Y can be a carbon, nitrogen or halogen atom.146,147,148,149 

This interaction presents a lot of similarities with the hydrogen bond,150 both geometrically 

and in the arrangement of atoms involved energetically, although it is more affected by the 

steric constraints due to the bigger size of halogens regarding the hydrogen atom. Moreover 

halogen bond exhibits a wide range of energies similar to those of hydrogen bonding (Bond 

energy = 1–45 kcal·mol–1). The nature of this interaction is a sum of different attractive forces: 

charge transfer, electrostatic effects, polarizability, and London dispersion. For this reason, the 

nature of involved atoms determines the relevance of each contribution. 

The strength of the D···X interaction increases when the electron density in D is large and is 

small around X. For this reason, when electron-donor groups are bound to the halogen (X) and 

electron-acceptor groups are bound to D, the interaction is stronger. Analyses of structural 

data have concluded that the angle formed between the covalent bonding and noncovalent 

bonding around the halogen in D···X-Y is approximately 180°. This is consistent with the 

theoretical calculations that postulate that the electron density is distributed anisotropically 

around the halogen nuclei and the atomic radius along the X-Y bond being smaller than in the 

orthogonal direction of this axis. 

This interaction presents a huge potential because it can create supramolecular 

architectures with application in different fields such as liquid crystals or organic 

semiconductors,151,152,153,154 without forgetting the application in biological systems as their use 

to optimize the ligand anchorage to a specific receptor, molecular packing and drug 

design.155,156,157  
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 1.2.2.11. Hydrophobic Effect 

The hydrophobic effect is a property that presents molecules or non-polar molecular 

fragments that have a tendency to form intermolecular aggregates when is found in a polar 

media, generally aqueous, hence the name. The hydrophobic effects can produce effects 

resembling attraction between one organic molecule and another, although there are in 

addition van der Waals and π–π stacking attractions between the organic molecules 

themselves. The hydrophobic effect is very important in biological systems in the creation and 

maintenance of protein and polynucleotide structure, among other functions. They are of 

crucial importance in the binding of organic guests by cyclodextrins and cyclophane hosts in 

water and may be divided into two energetic components: enthalpic and entropic. 

 
Figure 1.22. Release of solvent molecules by association of two molecules of solute A and B. 

The enthalpic hydrophobic effect involves the stabilization of water molecules that are 

driven from a host cavity upon guest binding. Because host cavities are often hydrophobic, 

intracavity water does not interact strongly with the host walls and is therefore of high energy. 

Upon release into the bulk solvent, it is stabilized by interactions with other water molecules. 

The entropic hydrophobic effect arises from the fact that the presence of two (often organic) 

molecules in solution (host and guest) creates “two holes” in the structure of bulk water. 

Combining host and guest to form a complex results in less disruption to the solvent structure 

and hence an entropic gain (resulting in a lowering of overall free energy).2 The process is 

represented schematically in Figure 1.22, where the formation of these apolar aggregates 

results favorably from a thermodynamic point of view.158 

1.2.3. VAN DER WAALS FORCES 

The electrostatic and inductive forces are of great importance when some of the molecules 

possess a dipolar permanent moment. However, other forces act between the molecules of 

the system. The combination of other forces, known as van der Waals forces, is responsible for 

the deviation of the behaviour of gases regarding an ideal system. 
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In contrast to gravitational or coulombic forces, the van der Waals forces are generally not 

additive. Therefore, the force between two molecules is affected by the presence of other 

nearest molecules, and it is not possible to add all the potential pairs of one molecule to obtain 

its net interaction energy with other molecules. This absence of additivity is due to the field 

that emerges from any molecule, that reaches a second molecule in a direct and also indirect 

way, i.e., by reflection from other molecules that also are polarized by the field of the first 

one.159 

The van der Waals forces can be repulsive or attractive, and the empiric expression most 

used is the Lennard-Jones potential present in Equation 1.5.160 

 ( )     [(
 

 
)
  

 (
 

 
)
 

] 

Equation 1.5 

The parameter σ is the collision diameter, which is the distance where the energy is zero and is 

equal to 2–1/6rm (rm is the distance where the potential is minimum). The ε parameter is the 

depth of the potential well. 

As we can see in the Lennard-Jones equation (Equation 1.5 and Figure 1.23), the van der 

Waals forces are divided into two contributions. The attractive component comes from the 

dispersive effects and has the basis in the dominant term of Drude (r–6). However, the 

repulsive component emerges from the compliance of the exclusion principle of Pauli when 

the electronic clouds of two atoms interpenetrate, although theoretical arguments do not exist 

for r–12 term, since the quantum mechanics suggest an exponential law. 

Due to the previous discussion, it can be concluded that the van der Waals interactions are 

weak (bond energy < 1 kcal·mol–1) and not directional. These forces have been observed in 

supramolecular systems, especially in inclusion processes, where generally organic molecules 

(as solvents), are occluded in the crystalline packing or in the cavities of macrocycles. 
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Figure 1.23. Lennard-Jones Potential Energy. 

The noncovalent interactions above mentioned are summarized in Table 1.2, where bond 

energy and nature of all of them are collected. 

Table 1.2. Scheme-table of binding energies and nature of noncovalent interactions. 

Interactions Bonding Energy (kcal·mol–1) Nature of the Interaction 

Ion–Ion 25 – 85 Electrostatic 

Ion–Dipole 10 – 50 Electrostatic and Induction 

Dipole–Dipole 1 – 10 Electrostatic and Induction 

Hydrogen Bond 1 – 30 Electrostatic (dipole-dipole) 

C–H···π 1 Weak Hydrogen Bond 

Cation–π 1 – 20 Electrostatic and Induction 

π–π Stacking 1 – 10 
Weak Electrostatic and 

Dispersion 

Anion–π 5 – 10 Electrostatic and Induction 

Lone pair–π 1 – 5 Electrostatic 

Halogen Bond 1 – 45 Weak Electrostatic 

Hydrophobic Effect < 1 Thermodynamic 

van der Waals Forces < 1 Dispersion 
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1.3. TUNING THE ANION– INTERACTIONS 

Supramolecular Chemistry is a field of scientific exploration that probes into the 

relationship between molecular structure and function. It is the chemistry of the noncovalent 

bond, which forms the basis of highly specific recognition, transport, and regulation events 

that actuate biological processes as mentioned previously. The classic design principles of 

Supramolecular Chemistry include strong, directional interactions like hydrogen bonding, 

halogen bonding, and cation–π complexation, as well as less directional forces like ion pairing, 

π–π, solvophobic, and van der Waals potentials. In recent years, the anion–π interaction (an 

attractive force between an electron-deficient aromatic π system and an anion) has been 

recognized as a hitherto unexplored noncovalent bond, the nature of which has been 

interpreted through both experimental and theoretical investigations. The design of selective 

anion receptors and channels based on this interaction represent important advances in the 

field of Supramolecular Chemistry. 

Noncovalent interactions involving aromatic rings in particular play an essential role in 

chemistry and biology.33 This role becomes prominent in drug receptor interactions, crystal 

engineering and protein folding.42 Cation–π bonding is an important and widely recognized 

noncovalent interaction that involves aromatic rings as mentioned previously. In recent years, 

the inverse of the cation–π bonding, i.e. close contact between an anion and the region above 

the plane of an electron-poor aromatic ring, has been recognized as a noncovalent bonding 

interaction. The nature of this interaction, called an "anion–π bond,"128 has been described by 

numerous theoretical studies, which demonstrate that it is energetically favourable,45,128,161,162 

in addition to several experimental investigations.163,164,165,166,167 Anion–π interactions continue 

to gain attention as their role in chemical and biological processes is being increasingly 

recognized.168,169 Moreover, their application to the design of highly selective anion receptors 

and channels135, 170,171 , 172  is establishing their importance in the field of Supramolecular 
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Chemistry. The closely related lone pair–π interaction has been observed in biological systems. 

For instance, Egli et. al. have reported an interesting case of O–π interactions involving an RNA 

pseudoknot.136 

In this section more detailed forefront advances in the anion–π interaction will be 

described.173 This interaction has increased its popularity in the last years as demonstrated by 

the increase of published papers both experimental and theoretical. This section will be 

divided into three parts. Firstly, to discuss current thinking on the nature of this interaction, 

secondly, to survey key experimental work in which anion–π bonding is demonstrated. This 

part is subdivided into three sections, i.e. complexes in solution, the solid state, and the gas 

phase. Thirdly, to provide insights into the directional nature of anion–π contact in X-ray 

crystal structures.174 

1.3.1. PHYSICAL NATURE OF THE ANION– INTERACTION 

The general concept of anion–aromatic bonding is depicted graphically in Figure 1.24. Thus, 

while cation–π complexes are described by a single type of minimum energy structure, 

interactions between anions and aromatic rings can be manifested in any one of three modes 

of contact. First, when hydrogen atoms are present on the ring, hydrogen bonding can occur. 

Alternatively, a lone pair of the anion may interact with a * orbital in such a way as to give a 

nascent Meisenheimer–type complex, often called a ζ complex. Finally, the anion may position 

itself at or near the ring centroid to describe a structure analogous to the cation–π complex. 

 
Figure 1.24. Depiction of three modes of contact between an electron poor aromatic ring and an anion 

(1,3,5-triazine and F
–

 in this case). A) H-bonding. B) ζ-type interaction. C) anion– bonding. 

The physical nature of the anion–π interaction has been extensively analyzed.45,128,161,162 

From these studies, it has been concluded that electrostatic forces and ion–induced 

polarization are the main energetic contributors to the anion–π complex.129, 175  The 

electrostatic term is explained by means of the permanent quadrupole moment of the arene, 
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which is the first non-zero multipole moment in symmetric arenes. The negative quadrupole 

moment of benzene can be turned positive by attaching electron-withdrawing substituents to 

the ring (Figure 1.25). Consequently, the a priori electrostatically repulsive interaction between 

an anion and an aromatic ring can become attractive. The polarization of the π–electron 

system by the anion is significant, whereas the reverse effect (distortion of the electronic 

distribution of the anion) is generally negligible. Therefore, a polarization contribution to the 

total interaction energy is derived from the interaction of the anion with the induced dipole in 

the π–system. On the other hand, dispersion interactions, which are generally important in 

weak interactions involving aromatic rings, play only a modest role in anion–π bonding.45,176 

 
Figure 1.25. Schematic representation of the quadrupole moments of hexafluorobenzene and benzene 
(left) and the anion-induced dipole (right). The values of the quadrupole moments (Qzz) in Buckingham 
(B) and molecular polarizabilities parallel to the main symmetry axis (α||) in atomics units (a.u.) are 
given. 

This understanding of the physical nature of the interaction has been used in a predictive 

way. For example, a dual bonding mode exhibited by aromatic rings with negligible quadrupole 

moments has been identified. 177 , 178  Since both anion–π and cation–π interactions are 

dominated by electrostatic and polarization effects, molecules such as 1,3,5–trifluorobenzene 

(Qzz= 0.57 B) and s–triazine (Qzz= 0.90 B) must be able to interact with both anions and cations 

since the polarization term is always favourable. This is because the sign of the induced dipole 

is always opposite the sign of the ion. Thus, the modelled, gas-phase interaction energies for 

complexes of s–triazine with the chloride anion and lithium cation are –5.2 and –6.2 kcal·mol–1, 

respectively.177 Another example involves the interaction of anions with electron–rich aromatic 

rings such as benzene, which is expected to be strongly repulsive. However, this supposition 

turned out to be false due to the opposing effects of electrostatic (unfavourable) and ion–

induced polarization (favourable) forces, which largely cancel each other out. Thus, the 

interaction energies of both benzene with chloride or hexafluorobenzene with sodium are 
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negligible.127 An interesting example of this compensating effect is observed in complexes of 

anions with isocyanuric acid when the oxygen atoms are replaced by sulfur to give thiocyanuric 

acids (Figure 1.26).179 The binding energy of the complexes of chloride with the four possible 

(thio)cyanuric acids is essentially constant (~15 kcal·mol–1). This can be explained by the fact 

that while the quadrupole moment progressively decreases on going from isocyanuric acid to 

trithiocyanuric acid, the molecular polarizability increases. 

 
Figure 1.26. Top: Variation of the quadrupole moment (Qzz) and molecular polarizability (α||) in cyanuric 
acid derivatives with increasing substitution of sulfur for oxygen. Bottom: Interaction energies (E) and 

equilibrium distances (Re) of the chloride–(thio)cyanuric acid anion– complexes.
179

 

From the considerations described above, it is apparent that to engineer a strong anion–π 

interaction, the aromatic ring should have a large and positive quadrupole moment as well as a 

large molecular polarizability. Secondly, depending on the magnitudes of these two physical 

properties, the interaction can be dominated by either electrostatic or polarization forces. In 

some cases, induction effects can dominate the interaction. For example, the molecular 

polarizability of 1,4,5,8,9,12–hexaazatriphenylene is almost three times the value of benzene, 

while the quadrupole moment is about the same as that of benzene. As a result, its interaction 

energy with bromide is -5.2 kcal·mol-1, while that of bromide with benzene is +1.9 kcal·mol–1.133 

The properties of the anion are also an important consideration for applications of anion– 

bonding in Supramolecular Chemistry. Both the electrostatic and polarization contributions to 

the total interaction energy depend strongly upon the ion–arene distance. Small anions are 

more polarizing and present short equilibrium distances and, consequently, giving rise to more 
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negative interaction energies (Table 1.3). In addition, planar and linear anions such as NO3
– or 

N3
– can interact with the aromatic ring via π–π stacking. This theoretically predicted binding 

mode has been confirmed experimentally between nitrate ion and pyrimidinium rings.180 

Side-by-side comparison of analogous cation–π and anion–π complexes generally show the 

anion–π distance to be longer and the interaction to be energetically weaker.133 However, a 

different picture emerges when charged aromatic rings participate in anion–π complexes. 

Positive charges are easy to introduce onto azine rings by simply adjusting the pH of the 

medium, and this can be used to increment the anion binding ability of the ring (denoted as 

anion–π
+ interaction). There is no simple analogue of this effect in cation–π bonding. The 

geometric and energetic features of anion–π
+ complexes between several aromatic cations 

(tropylium, quinolizinylium, protonated 2–aminopyrimidine, protonated adenine) and various 

anions have been reported along with crystallographic structures that support the theoretical 

findings (Figure 1.27).180,181,182 As expected, in these complexes the binding energies are large 

(> 80 kcal·mol–1) and electrostatic effects dominate the anion–π
+ interaction. 

 

Figure 1.27. X-ray structures retrieved from the CSD in which anion–
+
 interactions are exhibited, with 

distances in Å.
180,181,182

 The CSD reference codes are indicated.  
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Another key aspect of the use of electron deficient rings as design principles in the 

construction anion receptors is the additivity of the anion–π interaction. Using s–triazine and 

trifluoro–s–triazine as examples, the additivity of the bonding interaction with halides has 

been studied183 showing that the interaction energies of the ternary complexes (X––π) are 

essentially twice the interaction energies of the corresponding binary complexes (X––π). For 

the quaternary complexes (X––π), secondary interactions enter the picture. 

The influence of ion–arene contact on the aromaticity of benzene rings has also been 

studied. It has been reported that when the ring participates in anion–π interactions, its 

aromaticity increases.178,184 Interestingly, the behaviour in cation–π complexes is the opposite. 

This effect is the result of a modulation of the C–C bond energy of the aromatic ring. Regarding 

charge transfer effects on anion–π interactions, the theoretically predicted values strongly 

depend on the method used to derive the atomic charges. In general, NPA and AIM charges 

predict negligible charge transfer effects, and Merz–Kollman and CHelpG charges predict 

values ranging from 0.1–0.25 e. A molecular orbital description of the anion–π interaction has 

also been developed178,185 and compared with the cation–π interaction, and again a totally 

different picture emerges, in that the atomic orbitals of the cation do not participate in the 

molecular orbitals of the cation–π complex, whereas the atomic orbitals of the anion have an 

active participation in the molecular orbitals of the anion–π complex. 

An alternative description of the nature of anion–π interactions involving benzene rings was 

recently offered by Wheeler and Houk,186 who examined substituent effects in Cl−···C6H6−nXn 

complexes using density functional theory (DFT) and robust ab initio methods paired with large 

basis sets. The predicted interaction energies for a large number of model Cl−···C6H6−nXn 

complexes span a ca. 40 kcal·mol−1 range and show an excellent correlation (r = 0.99) with 

computed electrostatic potentials. They proposed that substituent effects in these systems can 

be attributed mainly to direct interactions between the anion and local C–X dipoles. 

Specifically, interaction energies for Cl−···C6H6−nXn complexes could be matched using a model 

system in which the substituents are isolated from the aromatic ring and π–resonance effects 

are impossible. Additionally, they demonstrated that the interaction energy for Cl−···C6H6−nXn 

complexes follows a linear relationship with the electrostatic potential evaluated at the 

position of Cl–. The resulting equation has a scaling factor between the interaction energy and 

electrostatic energy close to 1 (E = 0.98Eele – 7.27). Therefore, the differences in the interaction 
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energies of the complexes reflect the differences in the electrostatic contributions to the total 

interaction energy. It is also worth noting that the y intercept of the equation reported by 

Wheeler and Houk is –7.3 kcal/mol. This value corresponds to the sum of all other energy 

components apart from the electrostatic term. 

Table 1.3. Interaction energies (E, kcal·mol
–1

) with basis set superposition error correction and zero-
point corrections and equilibrium distances (Re) measured from the anion to the centre of the ring at the 

MP2/6-31+ +G** level of theory for several anion– complexes.
127,128,177,177

 

Anion E Re 

Hexafluorobenzene 

H− –12.1 2.693 

F− –18.2 2.570 

Cl− –12.6 3.148 

Br− –11.6 3.201 

NO3
– –12.2 2.917 

CO3
2– –34.7 2.720 

Trifluorobenzene 

H− –4.4 3.021 

F− –7.8 2.748 

Cl− –4.8 3.323 

Br− –4.5 3.359 

NO3
– –5.6 3.471 

CO3
2– –17.3 2.814 

s–Triazine 

H− –4.8 2.982 

F− –9.7 2.592 

Cl− –5.2 3.223 

Br− –5.0 3.339 

NO3
– –5.3 3.003 

CO3
2– –16.9 2.751 

Trifluoro–s–triazine 

H− –16.9 2.504 

F− –24.2 2.390 

Cl− –15.0 3.009 

Br− –14.0 3.137 

s–tetrazine 

H− –60.9 1.520 

F− –19.3 2.243 

Cl− –10.9 2.858 

Br− –7.8 3.239 

isocyanuric acid 

H− –18.5 2.345 

F− –28.1 2.191 

Cl− –16.8 2.799 

Br− –15.5 3.001 
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1.3.2. INTERPLAY BETWEEN THE ANION– INTERACTION AND OTHER WEAK INTERACTIONS 

Manifestations of weak noncovalent interactions turn up in all areas of chemistry.1,33,36,39 

They determine material properties, orchestrate chemical reactions, drive molecular 

recognition, and are active in the regulation of biochemical processes.27,34 In these nanoscopic 

events, success relies on specificity and efficiency, which is accomplished by balancing intricate 

combinations of intermolecular attractive and repulsive forces. The organization of 

multicomponent supramolecular assemblies is often governed by multiple noncovalent 

interactions. In biological systems and particularly in the solid state, a lot of interactions may 

operate simultaneously giving rise to cooperativity effects. A recent review examined pairwise 

combinations of several weak interactions, including anion–π bonding, and described the 

synergy that operates between them.187,188 

1.3.2.1. Interplay between Anion– and Cation– Interactions 

A large and positive quadrupole moment guarantees that an aromatic ring can participate 

in strong anion–π bonding. The presence of charge on the aromatic ring (anion–π
+) can further 

increase the strength of the interaction. Conversely, it is also possible to establish a strong 

anion–π interaction between anions and arenes bearing no polarizing substituents. This can be 

achieved in the situation where the aromatic ring simultaneously interacts with both a cation 

and an anion on opposite sides of the ring.127,189,190,191 The aromatic system mediates the 

transfer of information between the charged systems. For these ternary complexes the 

interaction energies are large and negative (Table 1.4), and the equilibrium distances are 

shorter than the corresponding distances of either binary ion–π complex, indicating a 

reinforcement of both interactions. In addition, this behaviour does not depend upon the 

nature of the arene, since a negative interaction energy (E) and short equilibrium distances (Re) 

values were obtained for three aromatic rings spanning the range of quadrupole moments 

(C6H6, Qzz= –8.45 B; C6F3H3, Qzz = 0.19 B; C6F6, Qzz = 9.50 B). 

Experimental work that supports the above theoretical findings has been published by 

Atwood and co-workers.192,193 Using X–ray crystallography and 1H–NMR titration experiments, 
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they have shown that the host–guest behaviour of calixarenes and cyclotriveratrylenes can be 

inverted by complexation of the arene rings with transition metals (Ru, Ir, Rh), allowing anionic 

guest species (instead of cationic) to be included within the molecular cavity. One such 

example is shown in Figure 1.28 (left). Likewise, Fairchild and Holman194,195 have reported that 

the metalation of the exterior arene faces of the molecular capsule cryptophane–E with 

[Cp*Ru]+ moieties (Figure 1.28, right) results in a π–acidic cavity capable of encapsulating 

anions. The anion complexes have been crystallographically characterized and the 

encapsulation of anions by the metalated cryptophane has been established by 1H and 19F 

NMR spectroscopy. 

Table 1.4. Interaction energies of binary and ternary complexes (E, kcal·mol
–1

), and the total interaction 
energy minus the isolated Na

+
···X

–
 electrostatic bonding term with basis set superposition error 

correction (Eint, kcal·mol
–1

) and equilibrium distances (Re, Å) for several cation––anion complexes at the 
MP2/6-31+ +G** level of theory.

127
 

Anion––Cation E Eint Re (cation–) Re (anion–) 

Na+···C6H6 -21.0 - 2.429 - 

Na+···C6F3H3 -8.21 - 2.552 - 

Na+···C6F6 +3.5 - 2.652 - 

C6H6···F
– +2.8 - - 3.162 

C6H6···Cl– +2.4 - - 3.731 

C6H6···Br– +1.9 - - 3.840 

Na+···C6H6···F
– -93.10 -22.39 2.280 2.482 

Na+···C6H6···Cl– -85.11 -21.93 2.304 3.049 

Na+···C6H6···Br– -84.26 -22.12 2.313 3.157 

Na+···C6F3H3···F
– -90.94 -19.48 2.353 2.368 

Na+···C6F3H3···Cl– -80.35 -17.14 2.389 2.925 

Na+··· C6F3H3···Br– -78.89 -16.00 2.399 3.006 

Na+···C6F6···F
– -88.42 -17.09 2.437 2.286 

Na+···C6F6···Cl– -75.63 -12.05 2.488 2.835 

Na+···C6F6···Br– -74.04 -11.23 2.495 2.913 

Further experimental evidence of the interplay between anion–π and cation–π interactions 

in solution has published by Dougherty and co-workers.196 Using 1H–NMR spectroscopy, they 

have demonstrated that cyclophane receptors that present carboxylate groups in the annular 

periphery have higher cation binding affinities than those without the anionic groups. This 

effect was attributed to the induced dipole generated in the aromatic ring by the presence of 

the carboxylate anion. 
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Figure 1.28. X-ray crystal structures of transition-metal complexed macrocycles NAYRIO

193
 and 

RAYFED
194

 exhibiting anion––cation bonding. 

1.3.2.2. Interplay between Anion– and Hydrogen Bonding Interactions 

The interplay between the anion–π and H–bonding interaction has been also studied 

theoretically.197,198,199 It has been demonstrated that a reinforcement of both interactions is 

observed when the aromatic ring is also engaged as a hydrogen bond acceptor, for example in 

pyrazine or pyridazino[4,5-d]pyridazine. In contrast, a weakening of both interactions is 

observed in complexes where the aromatic ring is a hydrogen bond donor, for instance 

pyromellitic diimide. From the partitioning of the interaction energy, it has been shown that 

this synergy is basically due to electrostatic effects.197 These reciprocal effects were first 

reported for relatively small aromatic systems, where water molecules were used to generate 

the hydrogen bonding interactions with the arene at the normal H-boding distances. In a 

second report, the aromatic systems studied were larger and the distance from the anion to 

the water molecules was as long as 11 Å.199 Even in these cases, a remarkable interplay 

between both interactions was observed.  
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1.3.2.3. Interplay between Ion– and –Interactions 

Since ion–π and π–π interactions are very important and omnipresent in a great variety of 

biological systems, the study of the mutual influence of both interactions is crucial. It has been 

recently demonstrated the interplay between ion–π and π–π interactions, which can lead to 

strong cooperativity effects.126,130,200 The aromatic systems studied and some complexes are 

shown in Figure 1.29. The cooperativity effects can be favourable or unfavourable depending 

on the nature of the aromatic ring and the sign of the ion (see Table 1.5). 

 
Figure 1.29. Ion–π–π complexes studied theoretically. 

Table 1.5. Interaction (BSSE corrected) and cooperativity energies (E and Ecoop, respectively in kcal/mol) 
and equilibrium distances (Re, Å) of ion–π–π complexes at the MP2/6-31++G**. 

Complex E Ecoop Re (ion–π) Re (π–π) 

Li+···C6H6···C6F6
 –35.5 0.3 3.37 1.90 

Na+···C6H6···C6F6 –23.0 0.0 3.39 2.39 

K+···C6H6···C6F6 –17.6 –0.3 3.38 2.91 

F–···C6H6···C6F6
 –6.5 –2.6 3.35 3.00 

Cl–···C6H6···C6F6 –6.0 –2.6 3.36 3.59 

Br–···C6H6···C6F6 –6.2 –2.5 3.36 3.59 

Li+···C6F6···C6H6
 –12.2 –4.5 3.25 2.10 

Na+···C6F6···C6H6 –6.1 –3.9 3.27 2.57 

K+···C6F6···C6H6 –4.9 –2.9 3.31 3.16 

F–···C6F6···C6H6
 –21.8 0.5 3.48 2.59 

Cl–···C6F6···C6H6 –16.3 0.2 3.46 3.16 

Br–···C6F6···C6H6 –16.1 0.4 3.44 3.31 

F–···C6F6···C6F6
 –24.4 –0.8 3.40 2.53 

Cl–···C6F6···C6F6 –17.4 –1.5 3.38 3.08 

Br–···C6F6···C6F6 –17.1 –1.0 3.39 3.24 
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The theoretical results on ion–π–π complexes have been used to explain an unexpected 

experimental finding regarding the face-to-face stacking of pentafluorophenyl groups in 

substituted ferrocenes. In Figure 1.30 we show the three ferrocene derivatives studied by 

Blanchard et al.119 in the conformation observed in their crystal structures. The conformation 

adopted in the crystal of the substituted ferrocenes A and B can be explained intuitively, while 

the conformation of C is in principle counterintuitive, as stated by the authors, showing face-

to-face π–stacking of two pentafluorophenyl groups. This unexpected face-to-face stacking of 

the pentafluorophenyl groups can be explained considering the cooperativity energies of the 

anion–π–π complexes where both π–systems are hexafluorobenzene rings (see Table 1.5). 

They are negative and the equilibrium distances are shorter than in the related 1:1 complexes 

indicating that cooperativity effects are also found between anion–π and π–π interactions 

when both π–systems are HFB. These results are useful to explain the behaviour of structure C 

of Figure 1.30. The presence of the cyclopentadienyl anion interacting with a 

pentafluorophenyl group induces the face-to-face stacking interaction with the other 

pentafluorophenyl unit. Lastly, several recently reported works201,202 have given experimental 

evidence of the interplay between anion–π and π–π interactions in π–acidic rings, in particular 

between two s-tetrazine rings and anions. This interplay may influence self-assembly 

reactions. 

 
Figure 1.30. Ferrocene derivatives synthesized by Blanchard et al.

119
 and a fragment of the X-ray 

structure of C are shown.  
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1.3.2.4. Influence of Metal Coordination on the Anion– Interaction 

The influence of metal coordination to heteroaromatic rings on the energetics of anion–π 

interactions has been analysed in two recent papers.203,204 One of them204 combines theory and 

experiment to demonstrate that s–tetrazine is a powerful anion–π acceptor when it is 

coordinated to four AgI atoms. The calculated interaction energy of s–tetrazine with nitrate ion 

is –9.6 kcal·mol–1, and when tetracoordinated to AgI the interaction energy becomes –62.4 

kcal·mol–1. A significant shortening of the equilibrium distance is also predicted. 

Experimentally, very close contact is observed between the anion and the s–tetrazine ring in 

the X–ray structures (Figure 1.31) indicating strong anion–π interactions, in agreement with 

the theoretical predictions. 

 
Figure 1.31. Fragments of the X-ray crystal structures containing µ4-coordination of 1,2,4,5-tetrazine and 

the relevant anion– interactions, with distances in Å.
204

 The CSD reference codes are indicated. 

1.3.3. DIRECTIONALITY OF THE ANION– INTERACTION 

It is important to define rational criteria which can be used to classify a given anion–

aromatic contact as an anion–π interaction. In the same sense that the hydrogen bond should 

not be restricted to linear X-H···Y contacts at X–Y distances greater than the sum of the van der 

Waals radii (<vdW), it is clearly incorrect to limit the anion–π interaction to situations where 

the anion is exactly over the centre of the ring at anion-centroid distances <vdW radii. In fact, 

since aromatic rings are often electronically asymmetric, the most favourable location is 

generally not directly above the centre of the ring. Furthermore, anion–πcomplexes are 

generally observed in the solid state, and isotropy is almost never experienced in the local 
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environment of a crystal, where counterions, possibly solvent molecules and, of course, other 

rings are packed into a lattice. Thus, the equilibrium position of the anion with respect to the 

aromatic ring will vary with the particular circumstances. Since the π–system encompasses the 

entire ring, the broadest, but arguably most appropriate, criterion would be to invoke anion–π 

bonding when the anion is located anywhere within the ring boundary at distances ≤ ΣvdW 

radii + d, where "d" is an increment distance that has to be defined. In a high-level study of the 

energetics of anion–π bonding, our group recommended a value of 0.8 Å for d.205 In time, 

other values may be put forward. Looking again to the hydrogen bond as an example, it is 

described by a wide range of interaction distances and angles, and for this reason is classified 

as strong, moderate and weak. However, neither the name, nor the nature of the interaction 

changes. The occurrence of the hydrogen bonding is generally rationalized using the concept 

of lone pairs of electrons as the acceptor, and thus hydrogen bonds involving carbonyl groups 

commonly have C=O···H angles near 120°. However, this is not a strict condition, and a wide 

scatter found in C=O···H angle histograms in different hydrogen bonded systems.206 

The directionality of the anion–π interaction has been recently investigated and compared 

with that of the cation–π interaction. In previous report,207 the authors stated that “anion–π 

interactions involving close interactions of anions with the centre of neutral aryl ring are 

uncommon in the CSD”. Given the restrictive geometric search criteria used in that work, and 

the fact that the majority of X-ray crystal structures in which anions and aromatic rings appear 

together involve charged aromatics (usually N-heterocycles), this was an inevitable conclusion. 

However, as noted above, the equilibrium position of an anion is often displaced away from 

center of the ring. Conversely, in cation–π interactions, cations show a stronger preference for 

the centre of the ring. This behaviour can be explained by analysing how the interaction 

energy is affected by incrementally moving an anion from the centre to the periphery of the 

ring in an anion–π complex and comparing it to the same movement in a cation–π complex. 

The directionality observed for the chloride–hexafluorobenzene complex has been compared 

to that of the sodium–benzene complex. The results reported in the study205 are useful to 

explain the experimental (crystallographic) differences between these ion–π interactions. The 

analysis shows that the interaction energy of anion–π complexes shows only a very modest 

changes (less than 1 kcal·mol–1) when the anion moves along the x and y axes. The analogous 

results obtained for the cation–π complex show that the energy loss is substantially greater 

than that obtained for the anion–π interaction. This result offers an explanation for the 
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experimental findings207 that show more scatter in the location of the ion in anion–π versus 

cation–π complexes when analysing the crystal structures in the Cambridge Structural 

Database (CSD). 

1.3.4. SELECTED EXPERIMENTAL EXAMPLES OF THE ANION– INTERACTION 

While molecular modelling can provide valuable insights into the nature and energetics of 

previously unrecognized modes of bonding, the model remains a purely theoretical one in the 

absence of experimental validation and predictive ability. Crystal structures are the traditional 

proving ground for structural evidence of unconventional bonding relationships, and often 

reveal features that had not been noticed by the authors who published the data. Since the 

earliest papers which described the anion–π interaction,128,161,162 the Cambridge Structural 

Database (CSD)174 has been used to provide experimental evidence of its occurrence in the 

solid state. To date, a great deal of experimental work has provided strong evidence of this 

emerging noncovalent interaction. In the following sections, we describe some selected 

experimental examples where anion–π interactions are strongly evident. These examples are 

organized with respect to the experimental medium (solution, solid state, and gas phase) in 

which they occur. 

1.3.4.1. Evidence of Anion– Interactions in Solution 

In the last years the numbers of papers that experimentally demonstrate the anion–π in 

solution have increased. However one of the pioneering works was reported by Berryman and 

co-workers, which prepared a receptor incorporating two-point recognition motif involving a 

hydrogen bond donor and a perfluorophenyl ring (Figure 1.32).208 As a control, an analogue 

lacking the fluoro substituents was also studied. Any enhanced affinity for anions that the 

former receptor exhibits over the latter should be the result of a favourable anion–π 

interaction. This was the first neutral receptor molecule designed to make use of the anion–π 

interaction to bind anions in solution. 1H NMR spectroscopic titration experiments were 

performed for both receptors with n–tetrabutylammonium chloride, bromide and iodide salts 

in CDCl3. The reported Ka values are included in Figure 1.32, and show a significant difference 

between the association constants of the receptors with a given halide. The receptor 

incorporating the electron–deficient ring binds all the halides with a measurable, albeit modest 

association constant. However, in the case of the receptor where no electron–deficient ring is 

present, there is no measurable association with any of the halides. These data provide good 
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support for anion–π bonding in solution, highlighting the possibility of utilizing the interaction 

in receptor design. 

 
Figure 1.32. Anion receptors synthesized by Berryman et. al.

208
 and their association constants (Ka) with 

halides in CDCl3. 

Berryman and co-workers have also published an experimental and theoretical study on a 

series of neutral tripodal hosts that solely employ electron–deficient arenes to bind halides in 

solution (Figure 1.33).209 The authors prepared 2,4,6–trisubstituted 1,3,5–triethylbenzene 

derivatives differing only in the position of their nitro substituents, which provided access for 

anions to interact with the electron–deficient cavities either by the π–system or by C–H···X– 

hydrogen bonding (Figure 1.33, left and middle receptors). The structures incorporate "steric 

gearing" to preorganize the electron–deficient cavity, and represent the first receptors 

designed to quantitatively measure weak bonding interactions between anions and arenes. 

1H–NMR spectroscopy was used to measure the anion binding constants (Ka) and to determine 

the nature of the interaction. The key feature in the design strategy is that the middle receptor 

of Figure 1.33 cannot form hydrogen bonds to anions due to the bulky nitro groups being 

positioned ortho to the aryl hydrogens, thereby allowing the study of the interaction between 

the anion and the π–system. The receptor on the right was used as a control. The association 

constants determined for the hosts based on electron–deficient arenes was 11–53 M–1, while 

the control molecule exhibited no measurable binding. These results support the hypothesis 

that electron–deficient aromatic rings are required to bind anions in this neutral system. 

Significantly larger 1H chemical shift changes were observed for the left receptor over those of 

the middle receptor, consistent with the fact that the former can participate in aryl C–H···X– H–

bonds while the latter cannot. The highly electron-deficient middle receptor was determined 

to adopt a binding motif involving weak ζ-type anion–π contact. The receptors exhibited the 

strongest interactions with Cl– followed by Br– and I–, and the largest association constants 
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were observed when the halide was forced to interact solely through contacts to the π–system 

(Figure 1.33, middle receptor). 

 
Figure 1.33. Anion-receptor synthesized by Berryman et. al.

209
 and their association constants (Ka) with 

halides in C6D6. 

Yet another study devoted to measuring the binding energy of anion–π interactions within 

neutral receptors has been published by Ballester and collaborators (see Figure 1.34).210 In this 

work, a series of mesotetraaryl calix[4]pyrrole receptors were used as model systems to 

quantify chloride–π interactions in solution. By means of 1H–NMR spectroscopy and X–ray 

crystallography it was demonstrated that chloride–arene interactions observed in these 

complexes are established exclusively with the aromatic πsystem. The derived quantitative 

Hammett free–energy relationship was used to show that the observed chloride–π interactions 

were dominated by electrostatic effects. 

 
Figure 1.34. Meso-tetraaryl calix[4]pyrrole receptors synthesized by Ballester et. al.

210
 and their 

association constants (Ka) with chloride in CD3CN.  

                                                           
210

 G. Gil-Ramirez, E. C. Escudero-Adan, J. Benet-Buchholz, P. Ballester, Angew. Chem., Int. Ed. 2008, 47, 4114-4118. 



CHAPTER 1 

 

 

57 

Heteroatom–bridged heteroaromatic calixarenes are an emerging class of macrocycles that 

have been utilized recently as versatile host molecules in Supramolecular Chemistry.211,212 A 

representative example is tetraoxacalix[2]arene[2]triazine (Figure 1.35), which preferentially 

adopts a 1,3–alternate conformation, forming a cleft between the two π–electron deficient 

triazine rings. Recently, Wang et. al.213 reported halide recognition by tetraoxacalix[2]arene 

[2]triazines, in which significant substituent effects were observed. Thus, macrocycles with 

N,N–dimethylamino substituents showed no change in either the absorption or emission 

spectrum when titrated with fluoride, chloride, or bromide. The unsubstituted calixarene 

interacted weakly with fluoride but not with chloride or bromide. However, the chlorine–

substituted host formed 1:1 complexes with both fluoride and chloride, with binding constants 

of 4036 ± 36 M–1 and 4246 ± 83 M–1, respectively. This effect was attributed by the authors to 

the electron–withdrawing nature of the chloro substituent. 

 
Figure 1.35. Macrocyclic anion receptors synthesized by Wang et. al. and their association constants (Ka) 
with Bu4N

+
 halides in MeCN.

213 

The work of Matile's group on the application of anion–π interactions to selective anion 

transport across lipid bilayer membranes merits special mention here.135,170,171,172 In biology, 

the selectivity of ion transport is of vital importance, and in the case of cations is generally 

achieved by ion coordination to preorganized arrays of oxygen lone pairs, with cation–π 

interactions also playing a potential role.214,215 In biological anion channels, hydrogen bonding, 

ion pairing, and anion–dipole interactions contribute to selectivity. Up to now, no anion–π 
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bonding has been observed in natural anion channels. However, the challenge of bringing 

anion–π interactions to bear on transmembrane anion transport has been taken on by Matile 

group. To achieve this, anion recognition must be combined with anion translocation. The 

combination involves a delicate balance of effects, because tight binding tends to hinder ion 

movement. In biological ion channels, the placement of multiple binding sites in series 

combines selectivity with favourable kinetics.216,217 The cooperative transport of ions by this 

means is referred to as multi–ion hopping.170,171 To achieve significant transmembrane 

transport using anion–π interactions, it is therefore necessary to present multiple π–acidic 

aromatic binding sites along the channel. Anions could then be transported quickly and 

selectively along these anion–π “slides”. Inspired by an earlier, closely related approach to 

transmembrane potassium ion transport via cation–π interactions,218 Matile and co-workers 

prepared π–acidic, shape-persistent, rigid–rod oligonaphthalenediimides (O–NDIs) for 

chloride–selective multi–ion hopping across lipid bilayers (see Figure 1.36). Results from end–

group engineering and covalent capture as O–NDI hairpins have suggested that self–

organization into transmembrane O–NDI bundles is essential for activity. The reported halide 

topology implies strong anion binding along the anion–π slides with weaker contributions from 

size exclusion. Anomalous mole fraction effects supported the occurrence of multi–ion 

hopping along the O–NDI rods. 

 

Figure 1.36. Schematic representation of the anion– “slide” based on O-NDIs used by Matile and co-
workers.

219
 

Matile et. al. 220  have also introduced simple sulfur redox chemistry into the 

naphthalenediimide framework 221,222,223,224,225 in order to 1) generate enhanced π acidity, 2) 
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demonstrate the functional relevance of the system by anion transport 

experiments,135,170,171,172,225 and 3) to create switchable, chiral π–acidic surfaces that may be 

used for applications in asymmetric anion–π actuated catalysis. Thioether core–substituted 

naphtalenediimides (cNDIs)226,227 were oxidized to give chiral sulfoxide and then further to 

sulfone derivatives (Figure 1.37). Optoelectronic properties, anion transport activity and 

computational studies reveal that the tetrasulfone is the most π–acidic cNDI known, with a 

LUMO energy level 0.43 eV below that of NDI itself. 

 

 
Figure 1.37. Structures of thioether, sulfoxide, and sulfone core-substituted naphthalenediimides, the 
anion affinity of which is dependent on the oxidation state of sulfur.

220
 (mCPBA=meta-chloroperbenzoic 

acid). 

Chifotides and co-workers228 have carried out an insightful study of an extended π electron 

deficient molecule with multiple sites available for interactions with anions, namely HAT(CN)6 

(HAT = 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile). The high π–acidity, high molecular 

polarizability, and positive quadrupole moment of HAT(CN)6 render it an attractive, neutral 

heterocyclic system for exploring anion–π and lone pair–π bonding. Interactions between 

HAT(CN)6 and the halide salts [nBu4N][X] (X = Cl–, Br–, I–) were unequivocally confirmed in 

solution by UV/Vis, 13C–, and halogen NMR spectroscopy. Experimentally, by means of Job 

plots, the authors found evidence of a 2:3 stoichiometric ratio of [HAT(CN)6]:[X
–] suggesting 
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multicentre binding in an unprecedented 
2,2–fashion (Figure 1.38). The measured 

association constants in THF at 25 °C are 3780, 2200 and 940 M–1 for Cl–, Br–, and I– 

respectively. These large Ka values are attributed to the high stability of the charge transfer 

(CT) complexes of HAT(CN)6 and its exceptional acceptor strength, which render it a sensitive, 

selective molecular scaffold for the effective recognition of anions and a promising 

colorimetric anion sensor. 

 
Figure 1.38. Schematic representation of multisite anion contacts observed in [HAT(CN)6]2[X

–
]3 

complexes reported by Chifotides, et. al.
228

 

1.3.4.2. Evidence of Anion– Interactions in the Solid State 

The first experimental work devoted to the study of anion–π interactions to appear after 

the publication of the original theoretical manuscripts was reported by Demeshko et. al.163 The 

synthesis and X–ray characterization of a host molecule based on the electron–deficient s–

triazine ring was reported, where two triazine rings are arranged in an almost perfect face–to–

face arrangement (Figure 1.39). The most interesting feature of the crystal structure are the 

positions of the charge–compensating chloride and [CuCl4]
2– ions. The chloride anion resides 

above one of the triazine rings, where the distance between the ring centroid and the Cl– is 

3.17 Å. The angle of the Cl–···centroid axis to the plane of the ring (87°) shows that the chlorine 

is almost ideally located on the C3–axis above the ring. Both values are in agreement with 

those obtained from ab initio molecular orbital calculations for the parent 1,3,5–triazine–

chloride complex.161 In a likewise manner, the opposite triazine face of the host is capped by 

the [CuCl4]
2– ion at a distance of 3.11 Å between one chlorine of the complex ion and the ring 

centroid. Another interesting work was published by de Hoog et. al.,165 who described the 

synthesis and X–ray characterization of a tetranuclear copper complex of a single dendritic 
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ligand, where four s–triazinyl groups stack two by two in a parallel fashion and the copper ions 

are coordinated by two dipyridylamino substituents of the stacked s–triazine rings. 

 
Figure 1.39. Fragment of the X-ray structure EWOCEY showing the s–triazine-based host interacting with 

Cl
–
 and CuCl4

2–
 ions through anion– interactions.

163
 

An elegant piece of work by Dunbar and collaborators229 describes the comprehensive 

investigation of an anion–templated self–assembly reaction between first row transition metal 

ions M(II) (M = Ni, Zn, Mn, Fe, Cu) and the bis–bipyridine ligand 3,6–bis(2–pyridyl)–1,2,4,5–

tetrazine (bptz; Figure 1.40). The formation of polygonal complexes was observed in the 

presence of certain anions (BF4
–, ClO4

–, SbF6
–), which were found to selectively determine the 

aggregation state both in the solid and solution. The formation of molecular squares is 

dominant in the presence of the BF4
– and ClO4

– ions, while the SbF6
– ion templates a 

pentagonal oligomer (Figure 1.40). The competing influence of the anions in stabilizing the 

different cyclic entities was also studied by mass spectrometry and X–ray crystallography. For 

example, the [Ni5]
10+ pentagon was found to be less thermodynamically stable than [Ni4]

8+. Ion 

signals corresponding to the molecular square begin to appear in the ESI–MS spectrum after 

addition of n–Bu4N
+ BF4

– or n–Bu4N
+ ClO4

– to a solution of [(Ni5(bptz)5(CH3CN)10)SbF6]
9+, and 

complete conversion of the Ni(II) pentagon to the square is accomplished by adding an excess 

of either tetrahedral anion (Figure 1.40). It was concluded from this study that the nuclearity 

of the cyclic products is dictated by the identity of the anion present in solution during the 

self–assembly process. This can be attributed to a template effect that stabilizes one particular 
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cyclic structure over another due to favourable anion–π interactions between the anion inside 

the cavity and the bptz ligands. 

 

Figure 1.40. Representation of the cationic units [(Ni5(bptz)5-(CH3CN)10)SbF6]
9+

 (QEZVIA01), 

[(Ni4(bptz)4(CH3CN)8)ClO4]
7+

 (QEZVEW01), and [(Ni4(bptz)4(CH3CN)8)BF4]
7+

 (QEZTUK01) and their 
scheme of interconversion.

229
 

An additional example of the self–assembly of Ag(I) coordination networks directed by 

anion–π interactions has been published by Zhou et. al.230 In their study Ag(I) complexes with 

2,4,6–tri(2–pyridyl)–1,3,5–trazine (tpt). They found that polyatomic anions (ClO4
–, BF4

–, and 

PF6
–) direct the self–assembly of Ag–tpt coordination polymers through anion–π interactions. It 

has been proved that factors such as reaction temperature, ratio of reactants, counterions, 

and solvents influence the self-assembly of resulting supramolecular compounds. 
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Mascal and co-workers recently described an application of π–anion–π sandwich bonding in 

the design231 and synthesis161 of a selective fluoride host. A theoretical treatment of the 

receptor (Figure 1.41), described two key design principles that work together to establish 

selectivity. On the one hand, it is known that fluoride ion benefits from both π–X–π and 

+NH···X– hydrogen bonding interactions making them stronger than the next closest ion in size 

(chloride). Next, the tight steric fit of fluoride in the cavity suggested that the complexation of 

any other anion was simply not feasible. The molecular framework on which the receptor is 

based is the cylindrophane macrobicycle, in which two planar, six-membered rings are bridged 

in a three-fold symmetric manner by linking chains. In this case, the rings are π–acidic 

triazinetriones, and the linkers are trialkylamines. Protonation of the amine groups "arms" the 

receptor for inclusion via a combination of anion–π interactions and ion–pair–reinforced 

hydrogen bonding. Complexation studies were carried out by electrospray mass spectrometry, 

in which 1:1 binding of the receptor with fluoride was established, while no affinity for chloride 

was observed. An X–ray crystal structure of the complex shows fluoride occupying the centre 

of the cavity, in very close agreement with the theory. Although a number of halide 

complexing agents have been described,232 this receptor introduces a new genre of anion 

binding, wherein anion–π interactions operate alongside conventional ion pairing, hydrogen 

bonding, and the classic "preorganization" effect. 

 
Figure 1.41. Structure of the fluoride-binding cylindrophane macrocycle and the experimental X-ray 
structure of the F

–
 complex (KISDIA).

161,231
 

As described in the previous section, Wang and coworkers213 reported halide recognition by 

tetraoxacalix[2]arene[2]triazine host molecules in solution based on anion–π interactions. X–
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ray crystallography revealed the concurrent formation of noncovalent halide–π and lone pair–

π electron interactions between water, halide ion, and the dichlorosubstituted host (Figure 

1.42). Some interesting structural features are that in both complexes, the calixarene moiety 

adopts a 1,3–alternate conformation with the two benzene rings being nearly face–to–face 

while the two π–deficient triazine rings form a V–shaped cleft. Both chloride and bromide 

anions form classic anion–π interactions with the triazine rings. Furthermore, both host–halide 

complexes co–crystallize with water molecules, one of which forms a ternary complex 

between the halide and host (Figure 1.42). Finally, the hydrogen–bonded water molecule in 

both cases forms a lone pair–π interaction between the oxygen atom and the triazine ring, as 

evidenced by the location of the water molecule directly above the triazine centroid at a very 

short distance of 2.83–2.85 Å. Such a close contact excludes the possibility of an O–H···π 

interaction. 

 
Figure 1.42. X-ray crystal structures of the complexes between tetraoxacalix[2]arene[2]triazine hosts 
and chloride (left) and bromide (right), with distances in Å.

213
 The CSD reference codes are indicated. 

1.3.4.3. Evidence of Anion– Interactions in the Gas Phase 

Anion–π complexation in the gas phase has been investigated principally by electrospray 

ionization mass spectrometry (ESI–MS) experiments. Mass spectrometry offers the advantage 

that non–solvated complexes are observed, which can be more easily compared to quantum 

chemical calculations than the corresponding complexes in solution. Two important works that 

characterize anion–π complexes by this technique are described here. The first involves 

[HAT(CN)6]:[X
–] complexes, which also combines evidence for anion–π bonding from the 

solution and the solid state.228 Results obtained from the ESI–MS measurements provided 

additional strong evidence that anion–π interactions between halides and HAT(CN)6 persist in 

the gas phase by observation of ([HAT(CN)6]:[X])– complex ions for X = Cl, Br, and I. A second 

work employs electrospray ionization Fourier–transform ion cyclotron resonance tandem mass 
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spectrometry (ESI–FTICR–MS–MS),233 which can be used to determine anion affinity sequences 

quantitatively. Equimolar solutions of naphthalenediimides (NDIs) A–E (Figure 1.43) and salts 

of different anions were electrosprayed from acetonitrile under mild ionization conditions. 

NDI–anion complexes of A–D were confirmed for Cl–, Br– and NO3
–. For macrocycle E, the 

binding of an additional series of anions was reported. A preference for chloride among halides 

and nitrate among oxyanions was obtained from competition experiments, which also 

revealed a selectivity sequence for chloride of D > C > B > A, demonstrating an increasing anion 

affinity with increasing π–acidity and decrowding of the anion–π binding site. 

 
Figure 1.43. Representation of the structures of NDIs A–E used by Matile and coworkers

172
 to probe gas-

phase anion affinity. 

1.3.5. RECENT ADVANCES IN THE INVESTIGATION OF ANION– INTERACTION 

Over the past ten years, the anion–π interaction has been recognized as an important weak 

force that occur between anionic systems and electron-deficient aromatics. Lately, this 

supramolecular contact has experienced a rapidly growing interest, as reflected by numerous 

recent literature reports. The progress achieved in the field is examined in this section by 

emphasizing a few important studies involving anion–π interactions published in 2011 and 

early 2012. 

Ion transport systems that operate in lipid bilayer membranes172,220,234,235 are emerging as 

attractive tools to probe the functional relevance of weak interactions that are otherwise 

difficult to observe. This approach builds on the notion that transport and catalysis operate 
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best with weaker interactions than the ones that are required for detection in binding studies. 

Earlier important work has confirmed that transport efficiency is not proportional with the 

stronger binders.236 Based on this idea, very recently Matile and co-workers237 have studied a 

series of calix[4]arenes derivatives (I-VI) to dissect the individual contributions of halogen 

bonds, hydrogen bonds and anion–π interactions to anion transport (see Figure 1.44). They 

used these receptors as new ditopic ion transport systems to demonstrate the general 

functional relevance of anion–π interactions and to achieve, for the first time, anion transport 

based on halogen bonds. Calix[4]arenes cones receptors were selected because they offer a 

series of advantageous properties suitable for the construction of ditopic transporters. The 

modular anion-binding site can vary in nature and number of possible anion–π (I), halogen 

bond (II, IV, V) or hydrogen bonding (III, VI) interactions with anions systematically and 

without global structural changes. After the evaluation of their activity as membrane 

transporters by means of 19F NMR and Hill analysis, the activity for the best anion transporter 

(receptor I, Ka,exp = 55 M–1 for complex Cl–@I) was about as modest as expected from 

literature.234,235 This work represents a nice example of the functional relevance of anion–π 

interactions, independent of the motif in which they are involved and the thermodynamically 

weak complexes that they produce. 

 
Figure 1.44. Ditopic ion transport systems made to study anion–π interactions and halogen bonds. Red 
colours indicate electron-rich, blue color electron-poor regions. Red balls indicate anions, blue balls TMA 
cations and dotted red lines possible anion–π (I), halogen bonds (II, IV, V) or hydrogen-bonding (III, VI) 
interactions between anions and transporters.
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Chen and co-workers238 have reported the stable 1:2 host-guest complex in both solution 

and solid sate. The complex is performed between a triptycene-derived macrotricyclic host 

containing two dibenzo-[30]-crown-10 moieties and the guest, which includes paraquat 

derivatives and hexafluorophosphate anion (PF6
–). The anion–π interactions between the anion 

and the bipyridinium rings of paraquat play an important role. Stable ternary host-guest 

complexes in which a host includes two different guest organic molecules are usually formed 

by the effective charge transfer, electrostatic or hydrogen bonding interactions between the 

two guests. However the inclusion of two identical organic guests in the cavity of a host is 

relatively difficult due to the lack of effective interaction between the guests. In this work the 

authors describe the possibility of including two identical guests into the host thanks to the 

anion–π interaction between the bipyridinium rings of the π-electron deficient systems (guest) 

and hexafluorophosfate anions (see Figure 1.45). This is an important example of experimental 

anion–π interactions based on charged electron deficient aromatic rings and polyatomic anion 

different to the experimented halide anions. They demonstrated the formation of 1:2 

complexes in solution by 1H NMR, in gas phase by ESI-MS and in solid state by means of X-Ray 

structure determination, where the anion–π interactions between PF6
– and the bipyridinium 

rings played an important role in the formation of the stable complexes, among other 

noncovalent interactions. 

 

 
Figure 1.45. A) Structure of triptycene-derived macrotricyclic host and one of the paraquat derivatives 
guests. B) View of the crystal structure of host-guest complex of molecules represented in A. Solvent 
molecules, PF6

–
 ions, and hydrogen atoms not involved in the noncovalent interactions are omitted for 

clarity.
238  
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Other interesting work was described by Albrecht and co-workers239 where they report an 

analysis of anion–π interaction in solid state as a consequence of the last controversial 

discussions about this interaction. The early reports suggest that anion–π interactions are 

commonplace in the crystal but were overlooked for long time. However, structure based data 

mining with more restricted parameters indicate that η
6-type interactions with anions, 

specifically with halides and neutral aromatics are extremely rare. The authors have carried 

out a computational and experimental study where they analyse the position of the halide in 

C6F5 moieties in order to investigate if η
6-type anion–π interactions are based on attractive 

anion–π interactions or if it is only due to crystal packing. After the analysis in a several 

ammonium salts they conclude that the anion–π interaction exists in the crystal and is strongly 

dependent on the electron density at the aromatic moiety. This result is independently 

observed both by computational methods and detailed solid state structural studies. 

 
Figure 1.46. Top view of part of the crystal structures of ammonium bromides VII-X showing the ion pair 
with the bromide located above the plane of the π system.(C: black, H: light blue, N: blue, F:yellow).

239
 

Wang and collaborators240 have reported novel macrocyclic anion receptors based on the 

principle of anion–π interactions. The functionalized oxocalix[2]arene[2]triazines bearing two 

other electron-deficient heteroaromatic rings on the lower rim were efficiently synthesized 

(see Figure 1.47). The resulting macrocycle receptors adopt 1,3-alternate conformation, 

yielding an expanded electron-deficient cavity on the lower rim position of benzene rings 

consisting in two triazine and two appending aromatic rings. UV-Vis Spectroscopic titration 

study showed the selective interaction of the pentafluorophenyl-substituted oxocalix with 

azide and fluoride anions in solution with binding constants ranging from 1 to 3.5x103 M–1. In 

this way, they conclude that the perfluorophenyl-appending to oxacalix[2]arene[2]triazine host 

molecules formed 1:1 noncovalent anion–π complexes with azide and fluoride anions in 

diluted acetonitrile solution giving high association constants. 
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Figure 1.47. Construction of macrocycle hosts of an expanded π-electron deficient cavity.

240
 

Yong and co-workers241 report a new electron-deficient π system, namely carboxycarbonyl 

substituted imidazo[1,2-a]pyridinium which exhibits various noncovalent interactions with 

chloride and perchlorate anions. Crystallographic results demonstrate that the interaction 

types of chloride anion and π receptors systems can be tuned from anion–π interaction to η1-

type anion–π interactions. The new receptors exhibit different phosphorescent colors in the 

solid state influenced by anion–π interactions, which is still very unusual, and may be due to 

charge transfer to electron-deficient pyridinium. These new properties, where the solid 

phosphorescent color changes, are induced by relevant anion–π interactions. 

The work of Dutasta and Martinez242 reports the synthesis of hemicryptophane (host) and 

its binding properties toward selected zwitterionic neurotransmitters in a competitive aqueous 

medium. Biologically relevant zwitterions like GABA or taurine play an important role in the 

transfer of neuronal information, which is the subject of numerous studies involving chemical, 

biochemical and clinical approaches. These guests are strongly solvated species in aqueous 

media. Their biomimetic encapsulation through endohedral weak interactions in a 

hydrophobic neutral molecular pocket is still a challenge. The authors claim that they obtained 

a cavity able to bind the positive and negative charge of these zwitterionic neurotransmitters 

combining cation–π and anion–π interactions. 1H NMR experiments and quantum calculations 

are presented to emphasize the competing cation–π and anion–π interactions involved 

simultaneously in the recognition process. They demonstrated that hemocryptophane was 

able to encapsulate biologically relevant zwitterionic guests as taurine in a competitive 

aqueous medium only through endohedral weak interactions. High affinities have been 

obtained and 1H NMR experiments and DFT calculations emphasize the different interactions 

involved in these recognition processes. The combination of experimental and theoretical 

methods emphasizes the fact that cation–π and anion–π interactions can be associated to 

concomitantly stabilize a host-guest complex. 
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Figure 1.48. DFT optimized structure of taurine@hemicryptophane.

242
 

Matile and co-workers243 have also described the design, synthesis and the study of planar 

naphthalendiimides (NDIs) with one shielded and one free chiral π-surface to direct self-

assembly into dimers. The objective is the achievement of self-sorting into π-stacks or bundles 

in solution. The self-sorting at interfaces is one of the big challenges to prepare functional 

organic materials of the future. The stereoisomers are isolated by chiral, preparative HPLC and 

characterized by X-Ray crystallography. The NMR studies show that racemates with almost 

planar, nearly identical π-surfaces prefer uniform self-sorting into homodimers at large 

differences in π-acidity, and alternate self-sorting into heterodimers at small differences in π-

acidity. In contrast, enantiomers self-sort into heterodimers and diastereomers show 

moderate preference for homodimers. Whereas the lessons learned from dimerization are 

directly applicable to self-sorting of π-stacks on surfaces, anion transport in lipid bilayers is 

shown to require a more subtle, somewhat inverse interpretation, with diastereomeric 

transporters differing dramatically in activity but the least visible supramolecule being 

confirmed as the best performer.  
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 N. T. Lin, A. V. Jentzsch, L. Guenee, J. M. Neudorfl, S. Aziz, A. Berkessel, E. Orentas, N. Sakai, S. Matile, Chem. Sci. 
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Finally, I would like to emphasize that the purpose of this section entitled “Tuning the 

anion–π interaction” was to showcase the bonding relationship between anions and π systems 

by describing work at the experimental and theoretical forefront of this interaction and 

demonstrating its potential to impact the field of Supramolecular Chemistry. In this section we 

have given some overview of the importance and functional relevance of this interaction, which 

otherwise and despite the excellent results is difficult to detect. Then, with this background, in 

this thesis we would like to contribute in several aspects of this fascinating field.
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CHAPTER 2. MOTIVATION AND OBJECTIVES 

The motivation of this thesis has evolved during these four years due to the progression of 

the research and the high activity within the Supramolecular Chemistry field. 

This project is based on the study of the anion–π interaction and the interplay between 

noncovalent interactions. After the discovery of the anion–π interaction, a thorough 

examination of the physical nature of the interaction was performed. Thereafter, the scientific 

community echoed about the newer noncovalent interaction, appearing first evidences of the 

interaction in solution and solid state. Until now, experimental examples in solution where a 

receptor is able to interact with an anion only by means of single or multiple anion–π 

interactions are scarce in the literature and therefore, it is a challenge. 

Supramolecular Chemistry is based on the interplay between noncovalent interactions, i.e., 

the systems are not really isolated, but the molecules form part of a network with other 

interactions. Therefore, taking into account these statements and due to the growth of anion–

π interaction, the next step in the evolution of this interaction and one of our motivations was 

carried out; i.e., studying the weak interactions and the interplay between them. 

Understanding these interactions and their interrelation is of crucial importance in the 

development of Chemistry, Biology, Biochemistry or Engineering Sciences. The questions that 

we ask during this stage were: 

 Which is the reason that such complex systems work so efficiently? 

 Is it possible that a complex system can be held solely by noncovalent interactions? 

 Which is the contribution of the interactions involved? 

 Are they equal when isolated or interacting with other systems? Are their 

properties modified? 

Once understood what happens when more than one interaction is involved and if 

cooperativity effects exist between them, we could advance and answer more complicated 

issues. The examples of utmost and puzzling supramolecular systems are the enzymes. Herein 

the questions are endless, but some of them raised in this thesis are: 

 When an enzyme does its function, are there changes in noncovalent interactions of 

the active centre enabling or inhibiting the action of the system? 

 Are these changes due to cooperative effects between different noncovalent 

interactions that come into play? 
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 What forces are involved? Is there a predominant interaction? 

 If we substitute one molecule for another changing the interactions, will the reaction 

continue to proceed? 

 And otherwise, is the anion–π present in biological systems? Is the anion–π interaction 

involved in the function of the enzyme? 

Finally, it is not possible to finish this thesis without thinking in the following stage, which is 

related to future directions of the anion–π interactions research. 

 

All these questions have motivated us to develop this thesis and are orchestrated under 

three main objectives as consequence of our main motivations. All of them conducted under 

the same baton of the computational chemistry. 

The first objective is to study theoretically competitive interactions in order to design the 

most convenient building block to particularly favour the anion–π interaction, and ultimately, 

transfer our knowledge into the experimental field trying to quantify the anion–π interaction. 

The second objective is the theoretical study of different noncovalent interactions and the 

interplay between them to analyse: 

 Cooperativity effects emerged from different combinations, 

 What interactions are reinforced or weakened. 

The third objective is to extent the concept of anion–π interaction to new fields: 

 The searching of anion–π interactions in biological systems, analysing cooperativity 

effects with other noncovalent interactions in order to demonstrate the most likely 

function of this interaction in the enzyme. 

 The study of alternative anion–π interactions. Specifically, the influence of open-

shell systems and transition-metal ions in the strengthening of the interaction. 

To achieve these three objectives, it is necessary to address the following issues: 

1.- Analysis of Molecular Interaction Potential (MIP) of molecules candidates to form the 

different noncovalent interactions, ion–π and ζ bonds. 

2.- Optimization and characterization of complexes between the ions and aromatic systems 

with different substituents at different levels of theory. 
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3.- Analysis of electron density from the optimized geometry of complexes and assessment 

of the interactions between different components. 

4.- Examination of different contributions to the interaction energy (electrostatic, 

induction, dispersion, charge transfer) by means of different methods. 

5.- Analysis of the aromaticity and its variation depending on the molecules and the 

network of interactions studied. 

6.- Analysis of orbitalic and spin densities to examine open-shell complexes and systems 

containing heavy metals. 

7.- Exploration of more favourable energetic and geometric ternary, quaternary,… 

complexes combining different noncovalent interactions. 

8.- Study of synergy of complexes important in chemical and biological systems and the 

search of experimental evidences in biological (Protein Data Bank, PDB) and crystallographical 

(Cambridge Structure Database, CSD) databases. 

9.- Investigation, obtaining and studying new energetic terms (cooperativity, synergetic and 

non-additivity energies) that are useful to analyse cooperativity effects. 

10.- Synthesis and characterization of a potential receptor to assess the anion–π interaction 

in solution. 
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CHAPTER 3. ANION– INTERACTION: FROM THE 

THEORETICAL DESIGN TO THE EXPERIMENTAL 

ASSESSMENT 

Chapter 3 is an example of multidisciplinary research because it involves two areas of 

chemistry: computational and experimental. The aim of this work consists of the selection, by 

means of computational chemistry, of molecular building blocks capable of establishing 

favourable anion–π interaction, followed by the experimental assessment of its anion-binding 

properties in solution using tetraalkylammonium halides as anion precursors. The synthesis of 

macrocyclic receptors based on the selected binding units was also undertaken. The binding 

properties of the prepared receptors with several halides are described. 

3.1. BACKGROUND 

After the initial documentation of the existence of attractive anion–π interactions, a 

thorough analysis of the physical nature of this interaction was performed using computational 

methods for structure determination. The results obtained in these theoretical studies 

provoked interest in experimental research groups and induced them to design and synthesize 

several receptors (charged and uncharged systems) capable of interacting with anions by 

means of anion–π interactions. From the first experimental report quantifying an attractive 

anion–π interaction in 2004244,245 to the data available from the more recent studies, it can be 

concluded that the energy gain that can be associated with anion–π interactions in solution is 

relatively small compared to the computational estimates. For this reason, the search of new 

building blocks that can offer stronger anion–π interactions and that can be easily incorporated 

in the design of neutral receptors for anion binding is a daunting task. 

Several steps are required in the design of more effective anion binding receptors based on 

anion–π interactions. First, one needs to computationally explore a set of molecules satisfying 

the requirements of establishing strong anion–π interaction, as well as design synthetic 

methods to easily implement them in the synthesis of the receptors. 

Based on previous knowledge, appropriate candidates for aromatic binding sites for anions 

should exhibit the following properties: 

                                                           
244

 H. Maeda, H. Furuta, J. Porphyrins Phthalocyanines 2004, 8, 67-75. 
245

 H. Maeda, A. Osuka, H. Furuta, J. Inclusion Phenom. Macrocyclic Chem. 2004, 49, 33-36. 
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 Electron-deficient π systems, 

 Aromatic rings with strong electrostatic (Qzz>0) and high polarizability (α||) 

components. 

Once several aromatic units are selected based on the principles discussed above, a 

detailed computational study needs to be performed. At this stage, the selected aromatic 

binding blocks are interrogated, using computational methods, for the strength of their 

interactions with anions. Designed receptors derived from the more promising aromatic blocks 

are also investigated. After an in depth analysis of the energetic and geometrical properties 

obtained in the theoretical evaluations of the anion–π interactions discussed above, a decision 

must be taken with respect to the systems that are going to be investigated experimentally in 

solution. This decision ususally implies the consideration not only of effective anion–π 

interactions but also the existence of a reasonable synthetic route to access the desired 

molecular receptor. 

Second, the development of the experimental part of the study involves the following 

steps: 

 Synthesis, purification and characterization of the designed receptor. 

 Experimental assessment of the value of the interaction. 

The selection of appropriate experiments and spectroscopic techniques to perform this 

latter task will highly dependent on the chemical properties of the system under study 

(strength of the interaction, solubility properties in different polar and non polar solvents, etc). 

The strategy mentioned above is applied in the results presented in this Chapter and 

outcomes, in a multidisciplinary investigation of the anion–π interaction. In short, the main 

objective of the work undertaken in this chapter is the discovery of building blocks from which 

effective receptor for anions can be easily prepared. In our aim for the ideal anion–π 

experimental receptor we considered that only anion–π interactions must be involved in the 

complexation of the anion. Therefore, other electrostatic forces like hydrogen bonding or 

charge-charge interactions are premeditatedly not considered in our experimental 

assessment.  
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3.2. RESULTS AND DISCUSSION 

This section is divided in three parts. The first one is based on the theoretical study to 

evaluate several potential building blocks suitable to be incorporated in the design of anion 

receptors. The second part includes the theoretical assessment of anion–π interactions using 

the designed receptors. The aromatic units that are studied can also be easily installed in the 

scaffold of a molecular receptor using simple synthetic protocols. Moreover, this section 

describes the experimental attempts performed to evidence anion–π interaction in solution 

using the designed and synthesized receptors. The last part refers to experimental evidences 

of anion–π interaction in solution and solid state. 

3.2.1. ANION– INTERACTION: DUAL / ANION BINDING AFFINITY 

The relevance of the interactions involving aromatic rings as important binding forces, both 

in chemical and biological systems, has been emphasized throughout this thesis. The anion–π 

interaction is one of the forces implying aromatic rings. The fact that anion–π interactions are 

observed experimentally gives strong support to the effectiveness of theoretical predictions. In 

the same vein, it also provides a promising potential for the development of anion receptors 

based exclusively on this type of interaction. To achieve this goal, it is first necessary to study 

different kinds of aromatic rings capable of being involved in strong anion–π interactions. 

Until 2008 the number of studies involving aromatic rings, substituted with carboxyl 

electron-withdrawing groups (EWG), which are capable of establishing anion–π interactions 

was scarce. These substituted π systems were thought as possible building blocks for the 

design and synthesis of receptors for anions. One of the reasons for the selection of these 

aromatics units refers to the structural criteria based on electron-deficient arenes. The 

presence of electron-withdrawing groups increases the acidity of the arene allowing the 

interaction with the anion. Other possible aromatic systems suitable to form favourable anion–

π interactions include positively charged-rings. In fact, cationic aromatic rings can be 

considered as one extreme in the scale of increasing acidity of the arenes. Despite we have 

theoretically studied direct charge-charge interactions involving the complexation of anions 

with aromatic rings they were not considered in the experimental evaluation, as above 

mentioned. 

However, previous to the analysis of the ability of these molecules to act as binding sites for 

anions and building blocks of the corresponding receptors, another complementary theoretical 

study is needed: the evaluation of their dual ζ/π–anion binding properties. This study was 
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performed because electron-withdrawing groups (EWG) have a double effect in arene C–H 

donors. On the one hand, the decoration of an aromatic system with EWG favours the 

establishment of anion–π interaction. On the other hand, however, the presence of EWG 

increases the strength of hydrogen bonding interaction between the anion and the arene C-Hs. 

For this reason, it is important to study if these types of aromatic systems are suitable for the 

formation of strong anion–π interaction. The presence of hydrogen atoms in the aromatic ring 

could induce the formation of alternative hydrogen bonding interactions with the anion. 

As a consequence of this study two papers were published. 

3.2.1.1. C. Estarellas, D. Quiñonero, A. Frontera, P. Ballester, J. Morey, A. Costa, P.M. Deyà. 

MP2 Study of the Dual ζ/π Anion-Binding Affinity of Fluorinated Phthallic Acid Anhydrides. J. 

Phys. Chem. A, 2008, 112, 1622–1626. 

3.2.1.2. C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Theoretical and 

Crystallographic Study of the Dual ζ/π Anion Binding Affinity of Quinolizinylium Cation. J. 

Chem. Theory Comput., 2008, 4, 1981–1989. 

The first report (article 3.2.1.1) is based on uncharged phthallic anhydride and several 

fluorinated derivatives. In this study it is observed that as the number of fluorine atoms 

increases in the aromatic ring both anion–π and hydrogen bonding interactions increase their 

strength. From the results obtained we concluded that the most substituted derivative is the 

most favourable building block for anion–π interaction because in the partially substituted ring 

the ζ interaction, CH-anion hydrogen bond, is stronger. 

The second article (3.2.1.2) describes the theoretical analysis of quinolizinylium cation, a 

positively charged aromatic ring. In this case the study includes the assessment of different 

monoatomic and polyatomic anions, as well as the evaluation of the strength between ζ and π 

interactions. The outcomes show that polyatomic anions establish preferably π interactions 

while monoatomic anions arrange more favourable interactions with the system by means of 

hydrogen bonds. Moreover, the ability of quinolizinylium cation to establish anion–π 

interactions is corroborated from crystal structures found in Cambridge Structural Database 

(CSD).  
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3.2.2. ANION– INTERACTION: FROM THE THEORETICAL SELECTION OF BUILDING BLOCKS TO THE 

EXPERIMENTAL ASSESSMENT OF BINDING AFFINITIES 

In this section, I explain the complete procedure followed to reach the goals of the chapter. 

During the theoretical evaluation of aromatic building blocks (Section 3.2.1), we learnt their 

dual ζ/π ability. We selected the building blocks represented in Figure 3.1 to be included in the 

theoretical study and the subsequent experimental quantification of anion–π interaction. 

These building blocks comply with the requirements of being electron-deficient arenes with 

high quadrupole moments and molecular polarizabilities. 

3.2.2.1. Design of the Receptor 

The challenge in the design of a receptor for anions based exclusively on anion–π 

interactions relied on finding a building block that can establish these types of interactions in a 

very effective manner. Therefore, the binding units and the receptor itself have to be “neutral” 

systems, for instance: 

 Molecules containing uncharged aromatic rings, 

 Molecules lacking of transition metal centres or other additional binding sites for 

the anions that could act as handles for an “enforced proximity” strategy for anion 

binding. 

Generally, the “enforced proximity” methodology is used to force the anion–π interaction 

due to the presence of additional forces.246 However, our basic idea is trying to obtain a 

building block able to establish effective anion–π interactions without the help of additional 

reversible interactions. 

Furthermore and based on the considerations mentioned above, it is important to take into 

account that selected binding units will be used in the synthesis of a molecular receptor 

capable of establish multiple anion–π interactions in the host-guest complex. Considering 

these features, the design of receptors is based on pyromellitic (PMDA) and 1,4,5,8-

naphthalenetetracarboxylic (NTCDA) dianhydride building blocks (see Figure 3.1). 
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 J. Rebek, B. Askew, P. Ballester, C. Buhr, S. Jones, D. Nemeth, K. Williams, J. Am. Chem. Soc. 1987, 109, 5033-
5035. 
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Figure 3.1. Representation of neutral building blocks to be used in the synthesis of new anion–π 
receptor. Left: Pyromellitic dyanhidride. Right: 1,4,5,8-naphthalenetetracarboxylic dianhydride. 

 

 
Figure 3.2. A) Structures of the receptors studied in this work, cyclic trimeric pyromellitic diimide (1) and 
cyclic trimeric naphthalene diimide (2). B) Building blocks motifs present in the receptors. 
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Inspired by previous work of Gawronski and co-workers,247 which describes the reaction of 

PMDA with diamines to yield a triimide macrocycle represented in Figure 3.2.A left (receptor 

1), we designed the synthesis of the analogous macrocycle 3.2.A right using NTCDA instead 

(receptor 2). Both macrocyclic trimers are neutral and can be considered as potential receptors 

for establishing effective anion–π interactions. The reduced conformational flexibility of both 

receptors produces an intrinsic aromatic cavity in their structures (see Figure 3.2). The walls of 

this cavity are formed by three aromatic-rigid bis-imides covalently connected by 

diaminocyclohexane spacer molecules. The aromatic walls are oriented in such a way that the 

electron density of their π cloud is pointing both outwardly and inwardly to the cavity. 

However, the macrocyclic structure of the trimeric receptors provides a convergent disposion 

of the electron densities directed towards the interior of the cavity. 

In principle, the molecular scaffolds of both receptors fulfil the requirements mentioned 

above for an anion receptor based exclusively on anion–π interactions: 

 They provide a confined space within the macrocycle’s interior to include the anion, 

in which the three π clouds of the aromatic binding units converge. 

 The three binding units feature the characteristics required for aromatic rings 

capable of establishing strong anion–π interaction. 

Consequently, the structures of the cyclic trimers 1 and 2, which are depicted in Figure 3.2, 

were selected as synthetic targets. These compounds are appealing potential anion receptors 

suitable for the experimental assessment of anion–π interactions in solution. The binding of 

the anions by these receptors must take place exclusively through anion–π interactions and 

does not involve the intermediacy of other additional intermolecular forces. 

3.2.2.2. Theoretical Binding Studies 

A theoretical study was performed to analyze the anion binding affinities. This study can be 

divided in two parts: 

 The examination of binding affinities of pyromellitic and naphthalene 

tetracarboxylic diimides towards anions. 

 The geometrical and energetic features exhibited by the complexes of the 

macrocyclic receptors with monoatomic and polyatomic anions. 
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 J. Gawronski, M. Brzostowska, K. Gawronska, J. Koput, U. Rychlewska, P. Skowronek, B. Norden, Chem.--Eur. J. 
2002, 8, 2484-2494. 
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The analysis performed for the simple monomeric diimides (binding units) implies the 

evaluation of their anion-binding affinity properties. It is known that the anion–π interaction is 

dominated by electrostatics and anion-induced polarization terms.128,162 The strength of the 

electrostatic term depends on the value of the quadrupole moment (Qzz) and the polarization 

component correlates well with the molecular polarizability values of the aromatic units (α||). 

We carried out this study by computing two-dimensional MIPp (Molecular Interaction 

Potential with polarization) maps, as well as the values of the quadrupole moment and 

molecular polarizability of the two aromatic units (see Figure 3.3). In these aromatic units the 

value of the quadrupole moment is high; which is a clear indication that they are good 

candidates to establish favourable anion–π interaction. 

 
Figure 3.3. A) Up: MEP of the optimized geometry of pyromellitic diimide. Bottom: MEP of the optimized 
geometry of 1,4,5,8-naphthalenetetracarboxylic diimide. The colour code for potential surfaces of 
building blocks is ranging from –42 (red colour, rich places in electronic density) to +42 (blue, electron-
deficient regions) kcal·mol

–1
. Quadupole moments (Qzz, B) are calculated at RI-BP86/6-31++G** level of 

theory. Molecular polarizabilities (α||, a.u.) are calculated at MP2/6-31++G** level of theory. B) 2D-
MIPp(Cl

–
) energy maps computed for pyromellitic diimide (top) and naphthalenetetracarboxylic dimide 

(bottom) at 3 Å above the molecular plane. Isocontour lines are plotted every 2 kcal mol
–1

. Dashed lines 
correspond to negative values and solid lines to positive values of the potential energy. The minimum is 
represented by a red star. Axes units are Å and energies in kcal mol

–1
.  
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Moreover, Figure 3.3 depicts the two-dimensional MIPp (2D-MIPp) maps obtained for 

pyromellitic and naphthalenetetracarboxilic diimide. In order to study the anion-binding ability 

of these aromatic units via anion–π interactions, we computed the MIPp at 3.0 Å over the 

molecular plane and parallel to it. In both cases, the maps presented two minima (indicated by 

a red star) located approximately over the centre of C–C common bonds in the pyromellitic 

derivative (~ –24 kcal mol-1) and over the C atom shared by three rings in the naphthalene 

diimide derivative (~ –26 kcal mol-1). 

 

After having obtained positive results for favourable anion–π interaction between the 

binding units and anions, the following step consisted in the quantitative evaluation of the 

binding affinities of the receptors towards anions. Table 3.1 reports the interaction energies at 

RI-BP86/TZVP level of theory corresponding to the interaction for the optimized structures of 

the complexes between the receptor 1 and monoatomic (Cl–, Br–, I–) or polyatomic (BF4
–, PF6

–, 

NO3
–) anions (see Figure 3.4). For all complexes, the interaction energies are large and 

negative, indicating that the interaction between anions and the receptor 1 is favourable. 

From the inspection of the energetic results, we conclude that the most favourable interaction 

takes place with chloride as monoatomic anion, while nitrate is the best polyatomic anion in 

establishing attractive interactions. 

The results obtained for receptor 2 are very similar to those obtained for receptor 1 (see 

Table 3.1). Interestingly, the computed binding energy values are lower for receptor 2 than for 

receptor 1, even though the naphthalene diimide unit showed an improved potential for anion 

binding (MIPp, quadrupole and polarizability values) compared to the pyromellitic diimide 

counter part. A likely explanation has to do with the fact that receptor 2 presents a bigger 

cavity than receptor 1. Therefore the anion can interact more favorably with the three 

aromatic walls in receptor 1 than in receptor 2 (see Figure 3.5). 
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Figure 3.4. Optimized geometry of complexes between several anions and receptor 1 (cyclic trimer 
derived from pyromellitic diimide) represented in CPK. 

From the obtained theoretical results we concluded that these macrocycles constitute 

potential receptors for the study of anion–π interactions using host-guest chemistry. It is worth 

noting that based on previous experimental results of anion–π binding in solution we should 

expect to experimentally measure association binding constant values lower than the ones 

that can be directly derived from the computed binding energies. 

Table 3.1. Interaction energies at the RI-BP86/TZVP level of theory with basis set superposition error 
BSSE corrections (ΔE, kcal mol

–1
) for the anion–π complexes between receptor 1 and 2, respectively, and 

a series of monoatomic and polyatomic anions. 

Complex ΔE  Complex ΔE 

1 + Cl– –33.68  2 + Cl– –31.10 

1 + Br– –26.15  2 + Br– –26.39 

1 + I– –21.39  2 + I– –21.84 

1 + NO3
– –28.48  2 + NO3

– –26.83 

1 + BF4
– –21.99  2 + BF4

– –21.62 

1 + PF6
– –14.06  2 + PF6

– –14.76 
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Figure 3.5. Comparison between host-guest complex for A) receptor 1 and B) receptor 2 with bromide 
anion. The receptors are represented in stick and the bromide anion is represented in CPK. 

3.2.2.3. Synthesis of the Receptors 

The results described in sections 3.2.2.3 and 3.2.2.4 were obtained in the Institute of 

Chemical Research of Catalonia (ICIQ) under the supervision of Prof. Pau Ballester. 

The receptors 1 and 2 used in the binding studies were obtained using slightly modified 

reaction conditions to the ones reported for the preparation of 1.247 Receptor 2 was 

synthesized for the first time by us and was completely characterized using high resolution 

spectroscopic techniques and X-ray diffraction analysis. The general synthesis consists of the 

reaction of equimolar quantities of (1R,2R)-1,2-diaminocyclohexane and the corresponding 

dyanhidride for 4 hours at DMF reflux. After purification using column chromatography the 

overall yield of both receptors was close to 10%. 

The 1H-NMR spectra of receptors 1 and 2 at 400 MHz displayed a single signal for the 

aromatic protons (Ha). Three different signals (b, c and d) can be observed for the protons of 

the diaminocyclohexane spacer. The signal for proton Hb is diagnostic for both receptors (see 

Figure 3.6). 

For receptor 2, the detailed synthetic procedures together with the characterization data of 

the product such as 1H NMR, 13C NMR spectra, as well as X-Ray crystal structure can be found 

in Annex II. 
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Figure 3.6. Selected regions of the 

1
H-NMR spectra in CDCl3 at 298 K of: A) receptor 1; B) receptor 2. See 

Figure 3.2 for proton assignment. Impurities marked with x. 

3.2.2.4. Anion Binding Studies in Solution 

In this section we describe the results obtained in the binding studies performed with 

receptors 1 and 2 and several halides. Initially, the complexation was probed using proton 

nuclear magnetic resonance spectroscopy (1H-NMR). Before starting the complexation study 

we performed a solubility study. We wanted a solvent able to solubilize our receptor at 

concentrations high enough to be easily detected using 1H NMR spectroscopy (~ 1x 103 M). 

Our first option was to use acetonitrile. Acetonitrile is a polar solvent and induces ion-pair 

dissociation. However it does not solvate any of the ions (cation and anion) very well. 

Unfortunately, our receptor was not soluble in this solvent. It is known that large aromatic 

systems are difficult to solubilise in acetonitrile due to their tendency to stack forming 

aggregates and decreasing their solubility.248 Finally, chloroform was selected as the solvent to 

carry out the binding studies because it could dissolve our receptors. Chloroform is a polar 

non-protic solvent, and as such it does not promote a significant dissociation of ionic-pairs. All 

experiments were carried out using receptor concentration in the range of 0.5 to 1.0 mM. We 

decided to use the tetrabutylammonium salts of the anions as their precursors for the 

following reasons: 

 These salts are widely used in anion-binding studies, 

 They have an acceptable solubility in organic solvents allowing the use of 1H-NMR 

spectroscopy to study the binding process. 
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The complexation behaviour of receptors towards chloride and fluoride anions was studied 

by adding incremental amounts of a chloroform-d stock solution of its tetrabutylammonium 

salts (10 mM) to a NMR tube containing the receptor also dissolved in chloroform-d (0.6–1 

mM). After each addition of the anion salt the NMR spectrum of the mixture was recorded. In 

order to keep constant the concentration of the receptor all along the titration, the anion salt 

was dissolved using a chloroform-d solution containing the receptor in the same concentration 

than the NMR tube. 

 
Figure 3.7. Selected expansion of 

1
H-NMR spectra obtained during the titration of receptor 1 in CDCl3 

with TBACl at 298 K. A) 1. B) 1 + 3 eq. of TBACl. C) 1 + 50 eq. of TBACl. D) 1 + 160 eq. of TBACl. E) 1 + 300 
eq. of TBACl. See Figure 3.2 for proton assignment. [1] = 0.63 mM. 

During the titration experiment of receptor 1 we did not observe any change in the 

chemicals shifts of its proton signals (see Figure 3.7). Only after the addition of extremely high 

quantities of guest (100-300 equivalents) the proton signal Ha moved slightly upfield. We 

observed chemical shift changes in all signals of the protons of the receptors and also in the 

tetrabutylammonium salt signals when the solution contained high concentration of the salt 

(see Figure 3.7). A likely explanation is that the observed chemical shift changes are caused by 

the modification of dielectric constant of the solution due to the increase of the salt 

concentration. We concluded that the binding affinities of receptor 1 for chloride anion are too 

low to be measured under these conditions. The use of high concentrations of the salt induced 
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secondary effects on the chemical shift changes of the signals of the protons of the receptors 

that probably are not related with anion binding. 

Based on recent results described by Saha and co-workers,249 suggesting the existence of an 

electron-transfer process induced by the anion–π interaction of naphthalene diimide receptors 

with tetrabutylammonium fluoride salt (TBAF·3H2O), and our negative results in detecting 

anion–π interactions between receptor 1 and TBACl salt, we decided to perform a titration of 

receptor 2 with TBAF·3H2O salt. 

During the NMR titration experiment of receptor 2 with fluoride anion in chloroform-d, we 

did not observe chemical shift changes of the signals for the protons Ha2 and Hb2 (see Figure 

3.8). However, if one considers the signals of the 13C spinomers of the non-deuterated residual 

chloroform proton as a reference, it must be concluded that the signals of the protons of the 

receptors decreased in intensity during the incremental addition of the fluoride anion. That is, 

in order to plot the Ha2 signal of receptors with the same relative intensity in the sequential 

additions, the signals of the 13C spinomers of chloroform proton becomes significantly 

increased. 

Due to working with the fluoride anion we could, additionally, follow the titration by 19F-

NMR spectroscopy. This is shown in Figure 3.9. The A spectrum corresponds to the 19F NMR of 

a mixture containing the receptor and 1 equiv of tetrabutylammonium fluoride. Surprisingly, 

after the addition of 1 equivalent of fluoride anion in the host solution, we could no detect a 

signal for the fluoride anion. In fact, we needed to add up to 3 equivalents of 

tetrabutylammonium fluoride (Spectrum C, Figure 3.9) to observe a signal corresponding to 

the fluoride anion of tetrabutylammonium salts in chloroform solution. The addition of more 

than 3 equivalents of fluoride anion does not produce significant changes on the 19F NMR 

spectra. Therefore, the expected concentration of the fluoride anion in the solution does not 

correspond to our observations. The results obtained in 19F NMR and in 1H NMR titrations 

(shown in Figure 3.8) suggested that a chemical reaction is taking place between the fluoride 

and the receptor and both species are detected in solution at lower concentration than 

expected. 
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Figure 3.8. Selected expansion of 

1
H-NMR spectra obtained during the titration of receptor 2 in CDCl3 

with TBAF·3H2O at 298 K. A) 2. B) 2 + 0.9 eq. of TBAF·3H2O. C) 2 + 2.9 eq. of TBAF·3H2O. D) 2 + 5.8 eq. of 
TBAF·3H2O. See Figure 3.2 for proton assignment. [2] = 1 mM. 

 
Figure 3.9. Selected expansion of 

19
F-NMR spectra obtained during the titration of receptor 2 in CDCl3 

with TBAF·3H2O at 298 K. A) 2 + 0.9 eq. of TBAF·3H2O. B) 2 + 1.7 eq. of TBAF·3H2O. C) 2 + 2.9 eq. of 
TBAF·3H2O. [2] = 1 mM. 

As a consequence of this result, which we cannot explain and based on the report of Saha 

et. al.249 we decided to repeat the titration using the same conditions, but changing the solvent 

from chloroform (CDCl3-d) to dimethylsulfoxide (DMSO-d6). 

When using DMSO-d6 as solvent, the 1H-NMR spectrum of the mixture after the addition of 

1.8 equiv of tetrabutylammonium fluoride showed the dissapearence of the signal for the 

proton Ha2 in the free receptor resonating at δ = 8.4 ppm, and a significative broadening for the 

signal at δ = 6 ppm (Hb2). In addition, a change of colour in the solution of the mixture is also 

observed. This change in colour was already observed for the preparation of the stock solution 
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of the fluoride. As mentioned above, in order to keep constant the concentration of the 

receptor along the titration, the anion salt was dissolved using a solution containing the 

receptor at the same concentration that the NMR tube solution. When the TBA salt of fluoride 

was dissolved in a DMSO solution containing the receptor 2 the solution changed dramatically 

from colorless to blue. This colour was maintained during few minutes and then the solution 

turns yellowish. After the first addition of 1 equivalent of fluoride, the solution in the NMR 

tube acquires an orange colour. At the end of the titration, the solution had a dark green 

colour. Taking into account these observations and the results described by Saha and co-

workers,250 we speculate that the addition of the fluoride also promotes the formation of 

radical-anion or diradical dianion species of receptor 2. These molecular species are 

paramagnetic providing very fast relaxation times to their nuclear proton spins and avoiding 

their observation by 1H NMR spectroscopy. Probably, this is the reason why the aromatic 

protons of receptor 2 are not observed in the 1H NMR spectrum B. The incremental addition of 

the fluoride salt induces the appearance of new sets of signals that we were not able to assign. 

It is worth mentioning here that the 1H NMR spectra after 3 equivalents (spectrum C, Figure 

3.10) and after 8 equivalents (spectrum D, Figure 3.10) of fluoride salt were added showed 

practically the same signals but with different relative intensities. 

Figure 3.11 shows the 19F NMR spectra acquired during the titration of receptor 2 with 

tetrabutylammonium fluoride in DMSO. These spectra are very similar to the ones registered 

in the same titration using chloroform as solvent (see Figure 3.9 for comparison purposes). In 

this case at hand, the signal of the fluoride anion did not appear until 5 equivalents of the salt 

were added. Therefore, we surmise that a similar process is occurring in both solvents, 

chloroform and DMSO. In chloroform, the intensity of the unknown process is in some way 

reduced. 

                                                           
250

 S. Guha, F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, S. Saha, J. Am. Chem. Soc. 2011, 133, 15256-15259. 



CHAPTER 3 

 

 

97 

 
Figure 3.10. Selected expansion of 

1
H-NMR spectra obtained during the titration of receptor 2 in DMSO 

with TBAF·3H2O at 298 K. A) 2. B) 2 + 1.8 eq. of TBAF·3H2O. C) 2 + 3.1 eq. of TBAF·3H2O. D) 2 + 8.2 eq. of 
TBAF·3H2O. See Figure 3.2 for proton assignment. [2] = 1 mM. 

 
Figure 3.11. Selected expansion of 

19
F-NMR spectra obtained during the titration of receptor 2 in DMSO 

with TBAF·3H2O at 298 K. A) 2 + 1.8 eq. of TBAF·3H2O. B) 2 + 3.1 eq. of TBAF·3H2O. C) 2 + 4.03 eq. of 
TBAF·3H2O. D) 2 + 4.7 eq. of TBAF·3H2O. E) 2 + 5.3 eq. of TBAF·3H2O. F) 2 + 6.3 eq. of TBAF·3H2O. [2] = 1 
mM.  
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The results obtained in this study are not entirely surprising because the generation of 

experimental data in solution phase for the quantification of noncovalent interactions 

between anions and charge-neutral arenes is difficult. In addition, fluoride usually behaves 

quite differently from the other halides when interacting with aromatic systems. 

Computational and experimental studies support this statement. Most of the experimental 

studies dealing with anion–π interactions in solution are based on receptors that combine 

other noncovalent interaction with single or multiple anion–π interactions. In these cases, the 

strength of the anion–π interaction is detected indirectly as a modulation of the secondary 

interaction, known as “enforced proximity” approach. But this modulation not always reveals 

an attractive anion–π interaction and therefore great care must be taken selecting the 

appropriate model. 

The design and synthesis of receptors capable of binding anions efficiently in solution only 

with multiple anion–π interactions are challenging tasks. In fact, this work was undertaken to 

substantiate in solution our theoretical results obtained with receptors 1 and 2. Unfortunately, 

it has not been possible to detect the interaction between anions and these receptors in 

solution. Among the many factors that can contaminate and difficult the observation of anion–

π interactions in solution we want to highlight: 

 Solvation effects, 

 The use of salts (ion-pairs) as precursors of anion for the recognition, which 

complicates the analysis of the titration data and the assignment of the complex. 

Therefore, the solvent and the counter-ion must be considered as important variables 

impacting on the estimation of energy values of anion–π interactions in solution.251 Finally, 

despite that anion–π interactions have been widely demonstrated theoretically, the challenge 

to do so experimentally with systems that can only bound anions by means of single or 

multiple anion–π interactions is still in force. 

3.2.3. EXPERIMENTAL EVIDENCES OF ANION– INTERACTION 

In this section we describe the positive results obtained in two additional experimental 

investigations of anion–π interactions. 

The first example is related to the evaluation of anion–π interaction in solid state. In this 

case the experimental work was performed by the components of the experimental part of our 

Supramolecular Chemistry research group. The molecules we worked with are squaramide 
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molecules and derivatives. In this case, I have only carried out the computational study. As a 

consequence of this work we published an Organic Letters paper (3.2.3.1). 

The examples that state the importance of anion–π interaction in the solid state have 

increased during last years. Generally, many of these examples involve electron-deficient six- 

and five-membered aromatic rings. In this article we reported the first description of anion–π 

interaction in four-membered aromatic rings. The simplest four-membered ring, 

cyclobutadiene (see Figure 3.12, up), is not a good candidate to participate in the anion–π 

interaction since it is antiaromatic and is not electron-deficient. However, this interaction can 

be achieved taking advantadge of the aromatization of cyclobutadiene when it is η
4-

coordinated to a transition metal (Figure 3.12.A) or the substitution of cyclobutadiene in 

cyclobutene-1,2-diones due to partial contribution of a resonance structure (Figure 3.12.B). 

The manuscript is divided into three parts to illustrate the importance of anion–π interaction in 

four-membered rings. In first instance, the interaction is evidenced by the synthesis and X-Ray 

characterization of two new squaramide salts that exhibit anion–π interaction in solid state. 

Additionally, the search of additional examples in the CSD database and the theoretical study 

supports the experimental observations. It is worth mentioning that theoretical results have it 

greatest experimental accomplice in solid state, since the environment in two cases is more 

similar. 

 
Figure 3.12. A) η

4
 Coordination of Cyclobutadiene with a transition metal. B) Resonance forms of 

cyclobutene-1,2-dione derivatives. 
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The second example implies the evaluation of anion–π interaction in solution. In this case 

the experimental and theoretical work was performed by myself. The experimental issues 

were carried out at ICIQ under the supervision of Prof. Pau Ballester. After the previous 

experience acquired and briefly described in section 3.2.2 of this chapter, we continue with the 

determination to quantify the binding association constant between anion and receptors 

taking into account the previous learning. As mentioned above we were unable to quantify 

anion–π interactions in pure neutral receptors that only establish this interaction. For this 

reason, we have used the tuneable calix[4]pyrrole scaffold to quantify anion-binding affinity 

with an oxoanion. These receptors have been widely studied by Ballester’s research group, and 

have been used to the experimental measure of anion–π interaction between chloride anion 

and a series of meso-tetraaryl calix[4]pyrrole receptors.210 The conelike conformation of the 

receptor contains a deep aromatic cavity capable of including anions. The formation of four 

hydrogen bonds between a halide ion and the NH groups of the scaffold constitutes a reliable 

interaction which positions the anion above the planes of the π system (enforced proximity) 

shown in Figure 3.13.246 

In our case, we have studied experimentally the anion-binding affinity between nitrate 

anion and mixed series of meso-tetra and diaryl-extended calix[4]pyrrole receptors by means 

of 1H-NMR titrations. These receptors can achieve the electronic modification of the aromatic 

cavity by placing different substituents on the meso- phenyl rings of the calix[4]pyrrole 

skeleton. We have performed the study with electron-withdrawing substituents in the phenyl 

ring, however some electron-rich substituents have been taken into account for comparison 

purposes. For the sake of comparison, it is important to maintain the rest of the variables as 

similar as possible. We assume that the substitution at the phenyl rings (upper rim) has a 

negligible effect on the macrocyclic pyrrole unit (lower rim) of the receptor (see Figure 3.13). 

Consequently, the hydrogen bond binding properties of the receptor for the anion are 

assumed to be kept constant in the series. 

 
Figure 3.13. Schematic representation of the upper and lower rims of an aryl extended calix[4]pyrrole. 
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The theoretical study is related to the analysis of binding energy between the nitrate anion 

and calixpyrroles experimentally studied, taking into account solvation effects. Additionally, a 

comprehensive examination of possible binding modes of the nitrate anion has been 

performed with the aim to know the best orientation of the anion to establish the anion–π 

interaction. The results of this investigation are collected on a “submitted paper” (3.2.3.2). 

3.2.3.1.- C. Estarellas, M.C. Rotger, M. Capó, D. Quiñonero, A. Frontera, A. Costa, P. M. Deyà. 

Anion–π Interactions in Four-Membered Rings. Org. Lett., 2009, 11, 1987–1990. 

3.2.3.2.- C. Estarellas, D. Quiñonero, A. Frontera, P.M. Deyà, P. Ballester. Assessment of Anion–

π Interactions between aryl-extended calix[4]pyrrole and oxoanions. In preparation. 
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3.3. CONCLUSIONS 

In this chapter the main objective was to theoretically design and experimentally assess the 

capacity of a receptor to establish interactions with anions only by single or multiple anion–π 

interactions. Keeping in mind this idea, two more goals are underlined. Firstly, to perform a 

theoretical design of a receptor that gathers a series of requirements necessary to perform an 

attractive anion–π interaction, based on electron-deficient arenes with high quadrupole 

moment and molecular polarizability. Secondly, the experimental assessment by means of 

NMR spectroscopy of anion–π interaction is established using the synthesized receptor 

previously designed. The receptor can only establish interactions with the anion through the 

anion–π interaction. 

Regarding the experimental assessment of anion–π interaction shown in this chapter 

several points arise. Firstly, we have synthesized and characterized a new macrocycle receptor 

that can only interact with anions by means of multiple anion–π interactions. Regretably, with 

this receptor we could not experimentally assess the interaction in solution. However, we have 

quantified the anion–π interaction in solution using receptors that combine several 

noncovalent interaction (i.e. anion–π plus hydrogen bond), although the binding energies 

obtained are small. The detection is difficult because solvation effects can contaminate the 

measure, as well as the formation of ion-pairs difficults the analysis of titration data. 

Regarding the theoretical study, this chapter has shown the practical importance of 

electrostatic and polarization components, which have been taken into account to design the 

receptor. Additionally, we have performed a ζ/π binding ability analysis of the arenes to help 

us to decide the stability of the potential building block. 
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CHAPTER 4. INTERPLAY BETWEEN NONCOVALENT 

INTERACTIONS 

In Chapter 4 the research dedicated mainly to the study of the interplay between 

noncovalent interactions such as cation–π, hydrogen-bond, halogen bond, π–π stacking, lone-

pair–π and anion–π interactions is collected. This chapter is organized in three parts. Firstly, a 

brief background presenting the motivation and reasons of this research is exposed. Secondly, 

the list of published articles obtained is presented. To facilitate the reading and understanding 

of this part, the reader can find a summary of the most important items to consider. Finally, 

the conclusions of this chapter are presented. 

4.1. BACKGROUND 

The understanding of noncovalent interactions and the interplay among them are of pivotal 

importance to the development of fields such as Supramolecular Chemistry and Molecular 

Recognition. The interaction involving aromatic rings are crucial binding forces in both 

chemical and biological systems. They are important in deciding the conformation of many 

molecules. They are also relevant in chemical reactions and regulation of biochemical 

processes. These chemical processes are accomplished with specificity and efficiency by means 

of intricate combinations of weak intermolecular interactions of various sorts. Noncovalent 

interactions such as hydrogen bond, cation–π, anion–π, and other weak forces govern the 

organization of multicomponent supramolecular assemblies. It is for this reason that a deep 

understanding of these interactions is of outstanding importance in the rationalization of 

effects observed in several fields, such as biochemistry or material science. A quantitative 

description of these interactions can be performed by taking advantage of quantum chemical 

calculations on small model systems. In complex biological systems and in the solid state a 

multitude of these noncovalent interactions may operate simultaneously, giving rise to 

interesting cooperativity effects. For instance, it is well-known that the hydrogen-bonding 

shows highly cooperative behaviour. The cumulative strength of networks of hydrogen bonds 

is larger than the sum of the individual bond strengths when they work simultaneously.252 Our 

group has recently reported experimental181,202 and theoretical126,130 evidence of interesting 

synergetic effects between ion–π and π–π interactions, demonstrating that there is a 

remarkable interplay between these noncovalent interactions in complexes where both 
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coexist. We have also demonstrated interesting synergetic effects between ion–π and 

hydrogen-bonding interactions leading to strong cooperativity effects. 

For this reason, one of our main objectives was to carry out a complete study of 

cooperativity effects between different combinations of noncovalent interactions. In this 

manner, a useful set of computational tools for the evaluation of synergetic effects are 

proposed and a set of suggestions are established to predict the better combination of weak 

interactions to generate the strongest supramolecular complex. 

4.2. RESULTS AND DISCUSSION 

In this section I would like to emphasize the most important issues about this research and 

some concepts that we have learnt through several investigations. 

4.2.1. BEFORE STARTING THE STUDY… 

In this research we wanted to perform the most comprehensive analysis about the 

interplay of the noncovalent interactions. The forces studied throughout this work are: cation–

π (Cπ), anion–π (Aπ), lone-pair–π (lp–π), π–π stacking (π–π), hydrogen bond (HB), dihydrogen 

bond (dHB) and halogen bond (XB) interactions. We have used several combinations of these 

forces, some of them shown in Figure 4.1. 

The systems studied involve a wide range of electron-deficient and electron-rich aromatic 

rings (see Figure 4.2.A), used in order to evaluate different interactions and to investigate if 

the interaction depends on the nature of the aromatic ring. Some of the systems used are 

benzene; 1,3,5-trifluorobenzene; hexafluorobenzene; 1,4-diaminobenzene; 1,4-

dicyanobenzene; pyrazine; terephthaldehide, among others. The aromatic rings are chosen 

based on their electrostatic and polarizability features defined by a quadrupole moment and 

molecular polarizability, respectively. The extension of π system and the aromaticity 

characteristics are also crucial. Normally the molecules used for the study, both aromatic and 

ionic or neutral interacting particles (ions or neutral molecules, see Figure 4.2.B), are chosen 

with the aim to study different features that can modulate the strength of the interaction. For 

instance, we normally use a set of anions such as Cl–, Br– or I–, to study the size or polarization 

effects of the anions. In some studies, the strength of interaction between monotatomic or 

polyatomic anions is also compared. In other reports, cations with different charge such as Na+ 

and Mg2+ have been used to test the influence of the charge. To establish lone pair interactions 
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H2O and NH3 molecules are suitable to assess the directionality of the interaction. However, in 

halogen bonding interactions the molecules used are ClF and BrF. 

 
Figure 4.1. Representation of noncovalent interactions and combinations of them studied in this 
chapter. 
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Figure 4.2. Compounds used to generate the combination of complexes studied in this chapter. 

One of the most important interests of a theoretical researcher is that its investigation can 

be corroborated experimentally and that the results presented are realistic and relevant. With 

these purposes in most of our research we appeal to the experimental crystallography 

structures from Cambridge Structural Database (CSD), giving sense to the models of systems 

studied to analyse the interplay of noncovalent interaction. Other important parameter is the 

solvation effect that offers more realistic values of binding energies in comparison to the 

results obtained in the gas phase. For this reason, it is interesting to consider a solvation 

continuum model like, for instance, the Conductor-Like Screening Model (COSMO), which 

decreases interaction energies and are closer to the experimental association constants values. 

Moreover, the assessment of interplay between noncovalent interactions can give the 

confirmation of the existence of synergetic effects even in the presence of a solvent.  



CHAPTER 4 

 

 

137 

4.2.2. COOPERATIVITY STUDY I: FUNDAMENTAL CONCEPTS 

In this chapter the papers related to cooperativity are collected. All of them are based on 

the same idea, i.e., to study different combinations of noncovalent interaction and evaluate 

the existence of synergetic or cooperativity effects in those systems. From these studies, we 

have extracted a set of tools, formulas and concepts, which are summarized below. They are 

useful for analysing cooperativity effects when different weak forces are combined. 

4.2.2.1. How to calculate Cooperativity Effects? 

In general, to calculate the cooperativity and synergetic effects we have used the formulas 

explained below. In some articles, we have defined other complementary systems to calculate 

synergetic effects enabling us to learn what interaction is more reinforced additionally to know 

if exists cooperativity effects through equations. The use of these complementary systems 

depends on: 

 The combination of interactions studied, 

 The objectives of the study, and 

 The previous results obtained, 

For a comprehensive explanation of these systems two examples present in the articles of 

this chapter have been used. Throughout this research we have used three methods to 

calculate the cooperativity effects. For a better understanding, the situations studied are 

schematized in Figure 4.3. Let us consider a ternary complex formed by three components A, B 

and C that are establishing two noncovalent interactions. 

 
Figure 4.3. Schematic representation of ternary and binary complexes used to calculate cooperativity 
effects. 
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The first method is named synergetic energy, and is calculated as the total energy of the 

optimized system, i.e., the energy of the ternary complex (EBSSE(ABC)) minus the energy of each 

optimized binary complex derived from the ternary complex (EBSSE(AB) and EBSSE(BC)). 

Synergetic Energy 

Esyn = EBSSE(ABC) – EBSSE(AB) – EBSSE(BC) 

Equation 4.1 

Another method based on synergetic energy is the cooperativity energy, calculated by 

adding one term to the synergetic energy, which takes into account the interaction energy 

between the components A and C (EBSSE(AC)) from the geometry of the ternary complex. 

Cooperativity Energy 

Ecoop = EBSSE(ABC) – EBSSE(AB) – EBSSE(BC) – EBSSE(AC) 

Equation 4.2 

In addition to cooperativity energy, we have used a third method, the non-additivity 

energy. The terms of its equation are very similar to those found in the cooperativity energy. 

The difference is that, in cooperativity energy, the binary complexes have been previously 

optimized. However, in non-additivity formula, the energy of all binary combinations is 

obtained from single point calculations of the optimized ternary complex. 

Non-additivity energy 

E-EA = EBSSE(ABC) – EBSSE(AB) – EBSSE(BC) – EBSSE(AC) 

Equation 4.3 

The equation of non-additivity energy is also useful for systems with a lot of components 

because we take into account the complete system and the energy of all possible pairs. 

However, depending on the studied systems (quaternary or quinnary complexes) these 

equations can suffer modifications, as in Comput. Theor. Chem., 2011, 975, 106 article present 

in this chapter, where we have calculated Esyn’ for quinnary complexes with more than one 

aromatic ring. The synergetic energy can be calculated as shown in Figure 4.4. The Esyn’ 

provides us the effect of the substitution in the aromatic ring C through the space over the first 

π system A (see Figure 4.4). 

Below two different schemes to study cooperativity effects and which interaction is more 

reinforced are described. From the above mentioned equations, we can know what 
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combination of noncovalent interactions would be more favourable; but in this way we do not 

know which noncovalent interactions would be more reinforced. 

 
Figure 4.4. Scheme of different ways to calculate synergetic energy for quinnary complex. 

One alternative way to do this is calculating the binding energy of ternary complexes from 

binary complexes as shown in Figure 4.5. In case of EABC1 we consider that the cation–π 

interaction (complex AB) is previously formed. Here, we are evaluating the effect to create a 

π–π stacking interaction, which is formed by the addition of molecule C. However, the 

equation EABC2 is the contrary. Firstly the π–π stacking interaction (complex BC) is formed and 

then, we added the cation. Therefore, we are evaluating the effect generated from forming a 

cation–π over the π–π stacking. 

 
Figure 4.5. Schematic representation of ternary and binary complexes used to calculate which 
noncovalent interaction is more reinforced in the ternary complex. 
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An additional way to evaluate the mutual influence of noncovalent interactions in the same 

system (see Figure 4.6) is explained in the ChemPhysChem, 2011, 12, 2742 article present in 

this chapter, where anion–π and halogen bond interactions coexist in the same system: 

 ΔEXB2 reflects the binding energy of the halogen bond when the anion–π interaction 

is previously formed, and therefore we are evaluating the halogen bond interaction 

in the ternary complex. 

 ΔEAπ2 reflects the binding energy of the anion–π interaction when the halogen bond 

interaction is previously formed, and therefore we are evaluating the anion–π 

interaction in the ternary complex. 

 In all cases we are using the binding energies with the BSSE correction from the 

binary complexes. 

 
Figure 4.6. Schematic representation of the two routes to form the anion–π–XB complex that allows 
computation of the ΔEXB2/ΔEXB1 and ΔEAπ2/ΔEAπ1 ratios. 

From the comparison of the values of ΔEXB2 with ΔEXB1 using the relation ΔEXB2/ΔEXB1 to know 

what interaction is reinforced, we obtain that: 

 If ΔEXB2/ΔEXB1 > 1, the XB is strengthened by the anion–π interaction previously 

formed in binary complex. 

 If ΔEAπ2/ΔEAπ1 > 1, the Aπ is strengthened by the halogen bond interaction 

previously formed in binary complex. 

 If both relations are greater than one (>1), means that both interactions present 

synergy between them. If the value of the relations is the same, the interactions are 

unaltered. 

 If one ratio is greater than one (>1) and the second ratio is less than one (<1), one 

interaction is reinforced at the expense of the other, i.e., if ΔEAπ2/ΔEAπ1 > 

ΔEXB2/ΔEXB1, that means that anion–π is more reinforced than XB and vice versa. 

Therefore, following this scheme we can analyse whether there are cooperativity effects or not 

and what interaction is more reinforced.  
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4.2.2.2. Useful Parameters to confirm Cooperativity Effects 

In addition to energetics, there are other parameters that are very useful in the 

determination of cooperativity effects. 

One of these parameters is geometry related. For example, if the equilibrium distances of 

ternary complex are shorter than the distances in the binary complexes, it means that both 

interactions are reinforced in the ternary complex. However, if there is one distance that is 

shorter and the other is longer in ternary complex than in binary complexes, this fact means 

that the first interaction is reinforced at the expense of the second interaction. In this case the 

existence of cooperativity effects depends on the strength of the reinforced interaction. 

Finally, the lengthening of both distances in the ternary complex with respect to the two 

binary complexes implies a weakening of both interactions and no existence of cooperativity 

effects. 

The analysis of Bader’s theory of “Atoms-in-molecules” (AIM) is also a useful tool to 

determine the existence of cooperativity effects. In this case we discuss about critical points of 

AIM instead of equilibrium distances, but the idea is very similar. Normally, the noncovalent 

interactions studied can be classified into two groups. The first one is related to the 

interactions in ζ orientation such as HB, dHB or XB, mainly defined by a Bond Critical Point 

(BCP). The second group implies interactions with aromatic rings such as anion–π, cation–π or 

π–π stacking, defined by a Cage Critical Point (CCP). The value of the electron density at BCP 

and CCP is determined by rho (ρ). Therefore, the higher the electron density value (ρ), the 

stronger the noncovalent interaction. The additivity of interactions forming the ternary 

complexes is confirmed by the difference of electron density values between the noncovalent 

interactions in binary complex with respect to the same noncovalent interaction present in 

ternary complex (Δρ). The same reasoning can be applied for charge transfer properties. 

Finally, in most of the studies carried out in this chapter we have used the Molecular 

Interaction Potential with polarization tool (MIPp). It is very useful for us because it allows the 

separation of the total interaction energy into different contributions such as electrostatic, 

polarization and van der Waals allowing us to study the origin of cooperativity effects in terms 

of these contributions.  
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4.2.2.3. Synergetic Stability Concept 

We have also defined the concept of Synergetic Stability. A priori the stability of one 

complex is proportional to the complexation energy, which at the same time is proportional to 

the strength of noncovalent interactions. 

In cooperativity studies, normally we combine two noncovalent interactions and we expect 

that some of the following situations could occur: 

 Strengthening of both, 

 Weakening of both, 

 Strengthening of first one and weakening of the second interaction. 

The definition of synergetic stability has a special interest. Initially, the complex with both 

strongest interactions should be the most energetically favourable and the most stable 

synergetically. However, in our study reflected in J. Phys. Chem. A, 2009, 113, 3266, the most 

stable complex energetically implies a weakening of the two studied interactions. This fact led 

us to define the new concept of synergetic stability, where the strengthening of both 

interactions does not imply the combination of energetically more stable complex. 

4.2.3. COOPERATIVITY STUDY II: RESULTS OBTAINED 

Under these lines, the publications in Scientific Journals derived from this research are 

listed, in addition to a brief summary of the subject of matter. 

4.2.3.1.- C. Estarellas, A. Frontera, D. Quiñonero, I. Alkorta, P.M. Deyà, J. Elguero. Energetic 

vs. Synergetic Stability: A Theoretical Study. J. Phys. Chem. A, 2009, 113, 3266–3273. 

4.2.3.2.- C. Estarellas, D. Escudero, A. Frontera, D. Quiñonero, P.M. Deyà. Theoretical ab 

initio study of the interplay between hydrogen bonding, cation–π and π–π interactions. Theor. 

Chem. Acc., 2009, 122, 325–332. 

4.2.3.3.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Interplay between cation–π 

and hydrogen bonding interactions: Are non-additivity effects additive? Chem. Phys. Lett., 

2009, 479, 316–320. 

4.2.3.4.- D. Escudero, C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Cooperativity 

effects between non-covalent interactions: are they important for Z-DNA stability? Chem. 

Phys. Lett., 2009, 485, 221–225. 
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4.2.3.5.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Can lone pair–π and cation–π 

interactions coexist? A theoretical study. Cent. Eur. J. Chem., 2011, 9, 25–34. 

4.2.3.6.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Unexpected Nonadditivity 

Effects in Anion–π Complexes. J. Phys. Chem. A, 2011, 115, 7849–7857. 

4.2.3.7.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Theoretical ab initio study of 

substituted benzene trimer: Interplay between hydrogen bonding and π–π interactions. 

Comput. Theor. Chem., 2011, 975, 106–110. 

4.2.3.8.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Theoretical Study on 

Cooperativity Effects between Anion–π and Halogen-Bonding Interactions. ChemPhysChem, 

2011, 12, 2742–2750. 

The article numbered as 4.2.3.1 implies the definition of the new synergetic stability 

concept, which has been used in some of the subsequent articles. 

The articles 4.2.3.2, 4.2.3.5, 4.2.3.7 and 4.2.3.8 are referred to the study of cooperativity 

effects between different noncovalent interactions. In all of them, we have studied all the 

physical effects that can modify the interplay between the forces. For example in the article 

4.2.3.8., where we study the halogen bond and its influence on the anion–π interaction, we 

have taken into account the interaction with nitrogen and oxygen atoms, as well as the force 

of the interaction when the atom is in the ring (pyrazine) or outside the ring (terepthalonitrile, 

see Figure 4.2). 

The article 4.2.3.3 is a singular report, where the additivity between the cation–π and 

hydrogen-bonding is studied. It can be observed by means of non-additivity effects that, as the 

number of HB increases, the cation–π interaction is reinforced. 

The article 4.2.3.4 shows a clear example of the importance of cooperativity effects in a 

biological system as Z-DNA, where this interplay contributes to their stability. 

Finally, the article 4.2.3.6 is an unusual paper in this chapter, but at the same time very 

relevant. On the one hand, we have only analysed the anion–π interaction. But on the other 

hand, we have studied several important subjects. The additivity effects are studied varying 

the number of double bonds and the number of fluorine atoms substituted in the molecules 

examined, without varying the stoichiometry. 

In this way, we can study the first issue: the aromaticity and conjugation of π system. The 

second issue is to learn the behaviour of additivity effects in aromatic and in non-aromatic 
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systems. Finally, the analysis of the anion–π interactions in these complexes leads to a scheme 

of partition energy into different contributions. From this point, we observe that our study 

provides very similar results that the theory proposed by Houk and co-wokers.186 However 

going a step further, we conclude that additionally to the substituent effect and electrostatic 

contribution, it is important to take the polarization term into account. 
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4.3. CONCLUSIONS 

The results reported stress the importance of interplay between noncovalent interactions. 

From a general point of view, we have defined three different formulas to study the 

cooperativity effects and the new concept that is the synergetic stability. Apart from the 

equations described there are two more methodologies to know not only if there are 

cooperativity effects, but also what interaction is reinforced. In addition, there are geometric 

and electrostatic information that confirm the results obtained through the equations and 

MIPp tool. 

Moreover, from all the studies where the partition scheme for the interaction energy is 

analysed, we can conclude in general terms that electrostatic and polarization terms are 

crucial for the favourable interaction energy. The polarization term acquires more importance 

in systems where the electrostatics is small, invariant or when the aromatic system is highly 

extended and it is more polarizable. However in systems where the electrostatics is important 

(i.e., from quadrupole moment values of 9B), this is the most relevant contribution. 

If now, we focus on each of the articles discussed the conclusions are the following. 

Paper 4.2.3.1 shows how the most stable complex is at the same time the least 

synergetically favourable complex, leading to the concept of Synergetic Stability, ergo the least 

stable complex in terms of interactions involved becomes the most favourable in terms of 

cooperativity effects. The same study, performed with COSMO approximation, shows how 

some synergetic stable complexes are also the most energetically favourable. This is a key 

article because synergetic stability can be understood as the balance between cooperativity 

and anti-cooperativity effects. 

The set of articles (4.2.3.2-4.2.3.5 and 4.2.3.7-4.2.3.8) that treat physical aspects between 

the systems that form noncovalent interaction, are responsible for us being able to establish 

useful tools, parameters and formulas to evaluate the synergetic effects. Moreover, they 

provide important effects such as: 

 The additivity of non-additivity effects in article 4.2.3.3, 

 The corroboration of these effects are important in biological systems shown in 

paper 4.2.3.4, 



INTERPLAY BETWEEN NONCOVALENT INTERACTIONS 

 

 

210 

 The knowledge of that the synergy is transmitted through the extended π system 

even when two noncovalent interactions present in the system are at long 

distances (article 4.2.3.8). 

The article 4.2.3.6 shows the importance of the aromaticity in the π interactions, and it is 

another example of the importance of the polarization term in the π interactions. Our main 

conclusion in this study is to reflect our accordance with the model proposed by Houk and co-

workers186 but it is important to emphasize that the electrostatic model is not sufficient to 

provide an accurate description of anion–π interaction. Additional effects like aromaticity and 

polarizability effects are required for a good and total description of the interaction. 
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CHAPTER 5. ANION– INTERACTIONS: ONE STEP 

FURTHER 

Chapter 5 can be divided basically into two ideas. On the one hand, we emphasize the 

presence of anion–π interaction in biological systems and its possible function into 

sophisticated molecules as proteins or enzymes. On the other hand, we explain new concepts 

as radical anion–π interaction and its detection in a biological system or the study of the 

interaction when a transition-metal ion belongs to the anion. 

5.1. BACKGROUND 

Ten years after the publication of the first article devoted to the anion–π interaction, the 

study of this interaction has now taken a new direction. In the last years, the scientific 

community has dedicated his efforts to: 

 The study of its physical nature, 

 The interplay with other noncovalent interactions in complex systems, and 

 The demonstration of its vital importance in experimental field. 

However, now we need to go one step further. One way to achieve this objective is 

studying the interaction in biological systems. Another way is translating the concept of anion–

π interaction into different questions, as for example in the field of open-shell systems and 

transition-metal ions. 

The interest of the presence of anion–π interaction in biological systems was born because 

these systems are based on efficient connections between noncovalent interactions, leading 

complex functions in highly organized molecular systems. Anion–π interaction might be one of 

these interactions. Moreover, in last years the importance of anion–π interaction has been 

demonstrated by a great deal of theoretical and experimental investigations, gaining 

significant recognition and interest. However, a clear evidence of anion–π interaction that 

likely plays a key role in enzymes is lacking in the literature. For this reason, we have carried 

out a search with the objective to find this interaction in a biological system. The critical step 

to evidence the importance of this interaction is to demonstrate its relevant function in these 

scenarios. 
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Regarding an alternative way of anion–π interaction, here we have firstly considered open-

shell systems. We present the first study of radical anion–π interaction. This study emerges as 

a result of recent experimental works where several authors demonstrate the importance of 

anion–π interaction in reactions involving aromatic rings. For this reason, we wanted to study 

the chemical sense, the importance and the possible repercussion of the open-shell version of 

the anion–π, as well as, the cation–π interaction. During the last years the influence of 

transition-metal ion on the anion–π interaction when it is coordinated to the aromatic ring has 

been studied showing a strengthening of the binding.203,204 However, in this study we want to 

analyse the influence of transition-metal ion on the interaction when it belongs to the anion. 

5.2. RESULTS AND DISCUSSION 

In the last stage of the research that has been developed during this thesis, we realized that 

the anion–π interaction needs to expand its frontiers and needs to diversify. Based on this 

impression, the works commented below try to study the anion–π interaction from other 

perspectives. 

In this chapter the main objective is to demonstrate an original idea that has the anion–π 

interaction as a protagonist. The tools used to get this aim are the usual in computational 

chemistry that the reader can find fully described in the Annex I of the present thesis. For this 

reason, below, there is the list of the studied subjects carried out together with a brief 

summary of the most important facts of each published article. 

5.2.1. ANION– INTERACTION IN BIOLOGICAL SYSTEMS 

One of the ideas that we have pursued in the investigation was based on the question of 

whether anion–π interaction is present in biological systems and carries out important 

functions. With this objective, we started the search for anion–π interaction in biological 

systems through the Protein Data Bank (PDB) database. 

As a result of this research, we have found a fascinating example, where the anion is in the 

active centre of the Urate Oxidase enzyme (UOX) interacting with the aromatic substrate (uric 

acid) by means of an anion–π interaction. X-Ray analysis of several UOX complexed structures 

reveals the existence of anion–π interactions between both uric acid and 8-azaxantine with 

cyanide and chloride anions (PDB codes 3BJP and 3CKU, respectively). 
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The urate oxidase is a homotetrameric cofactorless enzyme, which in the presence of 

molecular oxygen catalyses the hydroxylation of uric acid to s-allantoin through 5-

hydroxyisourate intermediate. In the X-Ray structure (PDB code 3BJP) the cyanide anion 

(inhibitor) is establishing an anion–π interaction with the substrate (uric acid). The anion 

probably replaces the molecular oxygen involved in the reaction mechanism, and therefore, 

hinders any access to the peroxo site in the course of the reaction, inhibiting the enzyme. High 

level ab initio study on the anion–π complex shows negative interaction energy indicating that 

the binding of cyanide anion with the uric acid is favourable. The additional inhibitor complex 

(PDB ID: 3CKU) between chloride anion and 8-azaxantine inhibitor has been also calculated for 

comparison purposes. The theoretical study has been extended to the analysis of the anion-

binding ability of uric acid in its anionic form (observed in the active centre, see Figure 5.1.A) 

interacting with models of the amino acids of the enzyme active centre in order to know if the 

anion–π interaction is also favourable. The binding energy is smaller for this model than the 

one corresponding to the non-anionic form of uric acid; however it is still favourable, indicating 

that the anion–π interaction is stabilizing even in the anionic form. The theoretical study 

finalizes with the study of the anionic model interacting at the same time with the cyanide 

anion and with a phenylalanine (Phe159) at the opposite side of the anion (see Figure 5.1.B). 

The Phe159 establishes a π–π stacking interaction with the substrate. The interaction energy of 

this ternary complex is slightly more negative than the interaction without phenylalanine, 

indicating that the presence of Phe159 enhances the interaction energy of the anion with the 

urate π-system. 

 
Figure 5.1. A) Active site with indication of amino acids of one subunit of UOX (PDB code 3BJP) together 
with the URC-AA theoretical model used to evaluate the anion–π interaction with urate anion. B) 
Representation of the anion–π and π–π interactions observed in the active site of UOX (B, left) and in the 
theoretical model (B, right). 

In summary, we concluded that the cyanide anion could act as the inhibitor of the protein 

function, which is indeed the most relevant fact. This becomes the first reported example 

where the existence of the anion–π interaction in a biological system is demonstrated and 



ANION–π INTERACTIONS: ONE STEP FURTHER 

 

 

216 

moreover where this interaction is probably the responsible of the inhibition of the enzyme. As 

a result of this research we published one article (5.2.1.1). 

During the search of the existence of anion–π in biological systems, we have discovered a 

repeated pattern that involves the presence of cofactors as Flavin Adenine Dinucleotide (FAD) 

or Flavin Mononucleotide (FMN). Therefore, from this finding we performed an exhaustive 

study of the presence of anion–π interactions in flavoproteins. In this case, it is extremely 

important to distinguish between the results: 

 Where the anion is involved in an anion–π interaction, but the presence of the 

anion is only due to biological or crystallographical conditions to obtain the 

structure of the protein or, 

 Where the anion is located over the isoalloxidine aromatic ring of the cofactor 

because in this position it is making an important function. 

Taking into account these facts, we wanted to emphasize an interesting example where the 

anion–π interaction participates in the enzymatic process of the tryptophan-7-halogenase 

(PrnA) enzyme (PDB ID 2AR8, see Figure 5.2.A). The PrnA is a flavin-dependent halogenase that 

catalyzes the regioselective chlorination of tryptophan at seventh position (C7). The chloride 

anion is bound on one face of the isoalloxidine ring and is positioned to make a nucleophilic 

attack on the flavin peroxide resulting in the formation of hydroxilated FAD and hypochlorous 

acid (HClO) as shown in Figure 5.2.B. The HClO travels through a tunnel of 10Å that connects 

the FAD and tryptophan binding sites. In solution tryptophan is not chlorinated by 

hypochlorous acid because is less reactive than other aromatic rings. However, in the 

tryptophan binding site a lysine (Lys79) establishes a hydrogen bond with HClO activating the 

chlorine atom by increasing its electrophilicity and allowing to chlorinate tryptophan (Figure 

5.2.C). 

 
Figure 5.2. A) 3D X-Ray structure of PrnA (PDB code 2AR8) and the position of the FAD-Cl– complex. B) 
Mechanism of formation of HClO. C) Scheme of the enzymatic mechanism of formation of 7-
chlorotryptophane. 
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From this research we have published one article that collects several examples of anion–π 

interactions in flavoproteins and the PrnA is the outstanding example (5.2.1.2). 

5.2.1.1.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Relevant anion–π interactions 

in biological systems: the case of urate oxidase. Angew. Chem. Int. Ed., 2011, 50, 415–418. 

5.2.1.2.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Anion–π Interactions in 

Flavoproteins. Chem.- Asian J., 2011, 6, 2316–2318. 

5.2.2. ALTERNATIVE ANION– INTERACTION 

The alternative anion–π interaction refers to the analysis of this interaction and how it is 

affected when the anion is modified; in one case because the anion is an open-shell system 

(radical anion) and, in other case due to the introduction of a transition-metal ion in its 

structure. 

The first study implied open-shell systems. It is interesting to note that, this research was 

born from the knowledge that they have been experimentally observed in reaction pathways 

where radical ion and aromatic systems are involved. Is a radical anion–π interaction possible? 

What are the implications of this new concept of anion–π interaction? These are some of 

questions that we try to answer in this study by means of physical nature analysis. With this 

aim, and additionally to the geometric and energetic study, we have performed an orbital, spin 

density and AIM analysis. This investigation has been extended to the cation–π interaction, for 

comparison purposes. Moreover, the work published ends with the description of the 

presence of radical cation–π interaction in an enzyme, providing great significance to this study 

(5.2.2.1). 

The last report considered has implied the influence of transition-metal ion in the anion–π 

interaction. The origin of this investigation comes from the examples found in the literature, 

both experimental and theoretical, where transition-metal ions are present in systems 

experiencing anion–π interaction. Generally, in these studies the metal is coordinated to π 

systems producing stronger anion–π interactions. However, in this research we have studied 

the effect of transition metal ion when it belongs to the anion. To evaluate the effect we have 

performed a systematic study, where we have taken into account different metals with 

different coordination indices, and therefore different geometries. This point gives us the 

opportunity of studying anion–π for different orientations. An additional point is to consider 

electron-acceptor and electron-donor aromatic rings to study if the presence of transition-

metal ion can strengthen the less favoured anion–π interactions. 
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5.2.2.1.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. Radical cation (C·+–π) and 

radical anion (A·––π) interactions with aromatic rings: energetic, orbitalic and spin density 

considerations. Phys. Chem. Chem. Phys., 2011, 13, 16698–16705. 

5.2.2.2.- C. Estarellas, A. Frontera, D. Quiñonero, P.M. Deyà. The key role of Transition-

Metal Ions in Anion–π Interactions: Theoretical Study. Submitted. 
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5.3. CONCLUSIONS 

The investigation presented here emphasizes the new horizon of the anion–π interaction. 

We can divide the new way into two, one related to the study on biological systems, and 

the other in relation with a new perspective in its physical nature. 

Regarding the existence of anion–π interaction in biological systems (articles 5.2.1.1 and 

5.2.1.2), in this chapter we have exposed the first studies when the interaction is present in 

the active site of enzymes playing a relevant action in their function. 

Regarding article 5.2.1.1, two important statements can be found. On the one hand, we 

have proved that the anion–π interaction is present in the active site of the UOX enzyme and is 

energetically favourable. On the other hand, this is the first example where the presence of an 

anion–π interaction between an inhibitor and an enzymatic substrate is proposed to be crucial 

in the inhibition of an enzyme. 

The paper 5.2.1.2 shows a systematic search of anion–π interactions in flavin-dependent 

enzymes. As a consequence of this search a significant number of strutures exhibit this 

interaction between FAD or FMN and a series of monoatomic and polyatomic anions. 

However, the search goes one step further finding an enzyme where the anion binds the 

cofactor at the enzymatic centre by means of an anion–π interactions and it participates in the 

enzymatic process instead of inhibiting it. 

Concerning the new perspective of anion–π interaction (papers 5.2.2.1 and 5.2.2.2), this 

chapter shows two studies that involve the evaluation of the interaction when the anion is 

modified, firstly turning it into an open-shell system as radical anion and, secondly, adding into 

its structure the presence of a transition-metal cation. In both reports, the final aim is to assess 

the influence of different factors on the binding ability of the anion–π interaction. 

In paper 5.2.2.1 the radical anion–π interaction is less favourable than the anion–π 

interaction, while the contrary is observed for radical cation–π interaction that is more 

favoured than cation–π interaction. These energetic features are confirmed by both orbital 

and spin density analyses. Moreover, the significance of radical cation–π interaction can be 

corroborated by its presence and function of the tetrahydrobiopterin biological system. 

The article 5.2.2.2 shows that the anion–π interaction is more favoured thanks to the 

presence of transition-metal ions, independently of the type and coordination index of the 

metal or different orientations adopted. 
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CHAPTER 6. CONCLUSIONS 

This chapter gathers main conclusions and learning of this thesis grouped by main 

objectives raised. 

 

The first objective was to find a convenient binding site to be used for constructing a 

receptor that establishes single or multiple anion–π interactions without other noncovalent 

interactions. 

This objective was born as a result of first experimental evidences, where in general, the 

binding association constants were small and difficult to measure. Therefore, the following 

step would be to find a good candidate to build a receptor able to establish strong anion–π 

interactions mainly in solution, which is the limiting step. 

Bearing in mind this objective, it was necessary to carry out a complete work in both 

theoretical and experimental fields. 

Computationally the main work is the design of the building block; study its properties and 

finally assess the binding energy between several anions and the receptor. A building block has 

to gather several requirements to perform strong and favourable anion–π interactions. Firstly, 

we need an electron-deficient aromatic ring. We can get this kind of π systems with 

heteroaromatic rings or increasing the number of electron-withdrawing substituents. In this 

manner the π acidity of aromatic ring increases. Moreover, we know from previous theoretical 

studies that the anion–π interaction is regulated by electrostatic and anion-induced 

polarization terms,128,129,130 which at the same time are governed by quadrupole moment (Qzz) 

and molecular polarizability (α||), respectively. The larger Qzz and α|| values, the better the 

anion–π interaction in this moiety. 

In addition, the study of dual ζ/π ability of building blocks for the selection of the best 

moiety has also been important. From computational studies we conclude: 

 The increasing of electron-withdrawing groups (EWG) in aromatic rings that have –

CH groups provides two effects. On the one hand, it favours hydrogen bond (ζ 

interactions) interaction between the aromatic ring and the anion. On the other 

hand, the π acidity of aromatic ring increases, favouring the anion–π interaction. 

The best building block would be the aromatic ring that has more EWG enabling the 
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anion–π interaction and minimizing the possibility to perform other competitive 

interactions. 

 It is important to consider both mono- and polyatomic anions to perform anion–π 

interactions. Depending on the model system, the anion–π interaction can be 

favoured by monoatomic anion instead of polyatomic anion and vice versa. 

Once all candidates have been analysed computationally, the best candidate to obtain a 

receptor suitable for interacting with anions by means of anion–π interaction is decided. The 

experimental work starts with the synthesis and characterization of the receptors. The 

following step is the measurement of anion binding constant in solution. Unfortunately, with 

the designed receptors we were not able to detect the interaction by means of NMR 

spectroscopy. The measurement is difficult due to the solvent, the model system and the ion-

pairs present in the solution. 

For these reasons, the most appropriate way to measure anion–π interaction in solution is 

still depending on the presence of “enforced proximity”. Consequently, using a receptor that 

provides an additional help, as calix[4]pyrrole we were able to measure anion–π interactions in 

solution between tuneable four and two-wall calix[4]pyrrole receptors and nitrate anion. 

Favourable anion–π interactions can be observed in aryl-extended calix[4]pyrrole systems 

substituted with more electron-withdrawing groups. 

Additionally, an example of anion–π interaction in solid state is shown. Curiously, it is the 

first example of an anion–π interaction between an anion and a four-membered ring, 

concretely with squaramide and its derivative systems. 

Finally, regarding the first objective the general conclusions that we obtain are the 

following. Experimentally the detection of anion–π interaction in solution by means of a 

receptor able to do solely single or multiple anion–π interactions continues being a challenge. 

On the other hand, computational chemistry is a useful tool. However, hard working is still 

required to provide accurate results comparable to the experimental findings. It is necessary to 

join forces to perform multidisciplinary studies. 
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The second objective of this thesis was to evaluate the interplay between noncovalent 

interactions. 

This objective was born due to the importance of noncovalent interactions in 

Supramolecular Chemistry and Molecular Recognition. In fact, complex biological systems are 

also based on intricate combinations of several noncovalent interactions, which act very 

efficiently. Specifically, the interactions involving aromatic rings are crucial binding forces in 

both chemical and biological systems. For this reason, it is an exciting research trying to 

understand and control the interplay of weak interactions responsible of complicated 

functions in Nature. 

Taking into account this statement, to achieve this goal we have performed an extended 

theoretical study where we have combined several noncovalent forces resulting in ternary, 

quaternary and quinnary complexes. 

The study has two goals: 

 The evaluation of the existence of cooperativity effects in different combination of 

interactions. 

 And then, once demonstrated cooperativity effects, analyse if one interaction is 

more reinforced than the other. 

To perform this study we have used a series of equations and schemes that let us shed light 

to this topic understanding why this effect is produced, i.e., the physical nature. Regarding this 

subject, we can confirm that: 

 Synergy, Cooperativity and Non-Additivity Energy equations are useful to identify if 

a complex where two or more noncovalent interactions are present have 

cooperativity effects. Also, these formulas are also effective to know what are the 

best combinations of noncovalent interactions in case that more than one 

organisation could exist. 

 However, to identify if one interaction is more reinforced than others present in 

the complex, these formulas are not sufficient. For this, we have appealed to 

another startegy. It is based on the evaluation of the energetic cost of formation of 

the second interaction when the first interaction is previously formed, in case of 

complex being formed by two interactions. To complete the study it is necessary to 

invert the order. 
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 Finally, to complete the study it is important to know the physical nature of 

interactions that allows the existence of cooperativity effects. After several studies 

we conclude that obviously, the electrostatic term is essential for strong 

noncovalent interactions, mainly in those where one component is charged such as 

anion–π or cation–π interaction. In the same way, in cases where electrostatic is 

not crucial, there are two more factors to take into account: the polarizability term 

and the aromaticity. In some models studied in this thesis the extended π system is 

a beneficial to strengthen π interactions. 

Finally, the general conclusion of the second objective is that we have demonstrated the 

importance of studying the different combination of noncovalent interactions, the general 

trends are: 

 The strongest interaction present in a given complex usually dominates the 

interaction; however it is less reinforced by the presence of a weaker interaction. 

 Cooperativity effects can be explained using the electrostatic term, although 

depending on systems and interactions, this trend can change. 

Therefore, the equations and tools described in Chapter 4 are really valuable to know the 

best combination of forces. 
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The third objective was the evaluation of the influence of anion–π interactions in other 

Chemistry fields. 

This objective was born because of the need to evolve in the research of anion–π 

interaction. We need to go one step further. It was necessary to investigate if anion–π 

interaction is relevant in different fields of chemistry such as Biological Chemistry or Chemistry 

of Excited States. 

With these questions in mind, we performed two different studies to achieve our third 

objective. 

One of these studies was the search of anion–π interaction in a biological system where it 

has a relevant function, for instance in the inhibition or activation of the enzyme. This 

objective was achieved with the finding of anion–π interactions in the urate oxidase enzyme 

and in flavoproteins. Specifically, in the urate oxidase the anion participates in the inhibition of 

the enzyme, which is located at the active centre of the protein by means of anion–π 

interaction. This example is an illustration of the significance that anion–π could have in 

Enzymatic Chemistry, which is a basically unexplored field. 

The second study is related to the analysis of alternative modes of anion–π interactions that 

can be useful to definitely expand the anion–π interaction to other fields. Above all, in this case 

we have modified the nature of the anion. In one case the anion is an open-shell system 

instead of a habitual close-shell, and in the other case a transition-metal ion is incorporated to 

the anion. The results obtained show that the anion–π interactions are less favourable when 

the anion is an open-shell system. However, the interaction is stronger in anionic transition 

metal complexes than in standard anion–π interactions. This opens the possibility to introduce 

anion–π interactions in Catalysis. 
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ANNEX I. COMPUTATIONAL METHODS 

Computational chemistry has become a very important tool in modern chemistry to 

understand the structure, properties and reactivity of chemicals. Below is a brief description of 

computational methods used during the development of this thesis. For more extensive 

treatment general literature is available.i.1,i.2,i.3 

I.I. LEVELS OF THEORY 

I.I.1. QUANTUM MECHANICS 

Quantum mechanics (QM) is the correct mathematical description of the nuclei and 

electrons behaviour at an atomic level. QM was born at the beginning of the 20th centuryi.4 and 

as the application of new quantum concepts to study atomic and molecular systems has a fast 

and wide acceptance. In its early stages, some semi-empirical approximations were developed 

as Hückeli.5,i.6,i.7 and extended-Hückel methods.i.8 

The microscopic systems, which present corpuscular and wave behaviour, obey the 

quantum mechanics laws. These were discovered by Heisenberg, Born and Jordan in 1925 and 

by Schrödinger in 1926. Using the quantum mechanics the interpretation and prediction of the 

molecular structure and properties as well as chemical reactivity is possible. 

The molecular systems are defined by a wave function, which Schrödinger equation 

accomplishes: 

     (  ⁄ )(  
  ⁄ ) 

Equation I.1 

When the solution to this equation is found without using any empiric data, the methods 

used are named ab initio (from Latin, at the beginning). Equation I.1 can only solve one-

electron systems in their exact form, however, for multiple electron systems it is always 

necessary to make approximations to simplify the calculations, which lead to different 

theoretical methods useful in treating molecular systems, so solving the Schrödinger equation 

in its time-independent form,i.9 becomes a milestone equation, under the Born-Oppenheimer 

approximation. The wave function (Ψ) is related with ρ by definition. The electron density is 

defined as a multiple integral over the spin coordinates of all electrons and moreover one of 

the spatial variables (Equation I.2). 
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 ( ⃗)   ∫ ∫| (  ⃗⃗⃗⃗⃗   ⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗)|      ⃗    ⃗  

Equation I.2 

The electron density ρ determines the probability of finding one of the N electrons within 

an infinitesimal element of space with arbitrary spin while the other electrons have arbitrary 

positions and spin in the state represented by the wave function Ψ. 

I.I.1.1. Ab Initio Calculations 

As mentioned above, for many-body problems there is not a “correct” solution; we 

therefore require some means to decide whether one proposed wave function is “better” than 

another. The variation theorem provides us with a mechanism for answering this question. The 

theorem states that the energy calculated from an approximation to the true wave function 

will always be greater than the true energy. Consequently, the better the wave function, the 

lower the energy. The “best” wave function is obtained when the energy is a minimum. At the 

minimum, the first derivative of the energy, δE, will be zero. The Hartree-Fock (HF) equations 

(Equation I.4) are obtained by imposing this condition on the expression for the energy, 

subject to the constraint that the molecular orbitals remain orthonormal. The orthonormality 

condition is written in terms of the overlap integral,    , between two orbitals i and j (see 

Equation I.3). 

    ∫           

Equation I.3 

     ∑∑        

  

 

Equation I.4 

The solution of this equation is rather complicated. However, a qualitative picture is 

possible. The major difference between polyelectronic systems and systems with single 

electrons is the presence of interactions between the electrons, which are expressed as 

Coulumb and exchange integrals. Suppose we are given the task of finding the “best” (i. e. 

lowest energy) wave function for a polyelectronic system. We wish to retain the orbital picture 

of the system. The problem is to find a solution which simultaneously enables all the electronic 

motions to be taken into account. After the mathematical treatment, we arrive to an equation 

where each electron has been assumed to move in a “fixed” field comprising the nuclei and 
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the other electrons. This has important implications for the way in which we attempt to find a 

solution, for any solution that we might find by solving the equation for one electron will 

naturally affect the solutions for the other electrons in the system. The general strategy is 

called a self-consistent field (SCF) approach. The SCF method gradually refines the individual 

electronic solutions that correspond to lower and lower total energies until the point is 

reached at which the results for all the electrons are unchanged, when they are said to be self-

consistent. 

The most significant drawback of Hartree-Fock theory is that it fails to adequately represent 

electron correlation. In the self-consistent field method the electrons are assumed to be 

moving in an average potential of the other electrons, and so the instantaneous position of an 

electron is not influenced by the presence of a neighboring electron. In fact, the motions of 

electrons are correlated and they tend to “avoid” each other more than Hartree-Fock theory 

would suggest, giving rise to a lower energy. The correlation energy is defined as the 

difference between the Hartree-Fock energy and the exact energy. Neglecting electron 

correlation can lead to some clearly anomalous results, especially as the dissociation limit is 

approaching. The electron correlation is crucial in the study of dispersive effects, which play a 

major role in intermolecular interactions. 

Møller and Plesset proposed an alternative way to tackle the problem of electron 

correlation. Their method is based upon Rayleigh-Schrödinger perturbation theory, in which 

the “true” Hamiltonian operator (H) is expressed as the sum of “zeroth-order” Hamiltonian 

(H0) and a perturbation (H’). The parameter λ further indicates the smallness of the 

perturbation (see Equation I.5). In order to calculate higher-order wave functions we need to 

establish the form of the perturbation. This is the difference between the “real” Hamiltonian 

and the zeroth-order Hamiltonian. 

         

Equation I.5 

On the other hand, the sum of the zeroth-order and first-order energies thus corresponds 

to the Hartree-Fock energy. To obtain an improvement on the Hartree-Fock energy it is 

therefore necessary to use Møller-Plesset perturbation theory to at least second order. This 

level of theory is referred to as MP2. Third- and fourth-order Møller-Plesset calculations (MP3 

and MP4) are also available as standard options in many ab initio packages. The advantage of 

many-body perturbation theory is that it is size-independent. However, Møller-Plesset 
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perturbation theory is not variational and can sometimes give energies that are lower than the 

“true” energy. These calculations are computationally intensive; however, they are the most 

popular way to incorporate electron correlation into molecular quantum mechanical 

calculations. 

To carry out the geometry optimizations of the studied compounds in this thesis, as well as 

the single point calculations done, different levels of theory have been used. Initially, most of 

the molecular species have been optimized using the Hartree-Fock methodology (HF). The 

geometries obtained with this method are used as the initial point in high-level optimizations, 

e.g., electron correlation methods. 

As commented above, the MP2 methodi.10 is the most popular and simple method that 

includes electron correlation, by means of the perturbation theory application (in this case, of 

second order) to the HF determinant. In spite of the high computational cost of the Møller-

Plesset (MP2) methodology in comparison with HF theory, other post-HF methods such as 

Configuration Interactions (CI) or Coupled Cluster (CC) require more computational resources, 

intractable in medium-large system sizes. The RI-MP2 method (Resolution of the Identity 

MP2)i.11,i.12 also treats the electron correlation and, thanks to the use of auxiliary basis set to 

avoid dealing a complete set of two-electron repulsion integrals, is a calculistic methodology 

that consumes less time and resources than MP2. 

It is very normal to use the frozen core (FC) approximation that only estimates the electron 

correlation energy associated to the valence electrons, since the important chemical changes 

take place in the valence orbitals while the intern orbitals are practically constant. In general, 

the calculations performed in this thesis are done using the frozen core approximation. 

However, in the concrete cases where we have included all electrons of the system in the 

calculation of electron correlation energy, this is explicitly indicated as full electron (full). 

I.I.1.2. Density Functional Theory 

Density Functional Theory (DFT) represents an alternative methodology for evaluating the 

energy and other properties of a polyelectronic system.i.13 Rather than having to work with a 

complex and non-observable Ψ, DFT uses functional of the electron density (ρ), which is 

directly related with Ψ, physically observable and easy to handle, presenting the basis for DFT. 

This methodology introduces the electron correlation effects in the Schrödinger equation 

resolution by means of approximate alternative methods. 
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The two major theoretical pillars of the DFT were established by Hohenberg and Kohn 

theorem postulated in 1964.i.14 The first Hohenberg-Kohn theorem states that the external 

potential (e. g. due to the nuclei) is a unique function of the ground state electron density; 

since, in turn an external potential fixes the Hamiltonian and determines the energy of the 

system and all other ground state electronic properties. The second theorem states that in any 

system the ground state functional for energy delivers the lowest energy if and only if the 

input density is the true ground state density. This theorem is only the extension of variational 

principles to the density functional theory. In 1965 Prof. Kohn and Prof. Sham suggested an 

avenue for how the unknown universal functional in DFT can be approached.i.15 Their approach 

consists of reducing the intractable many-body problem of interacting electrons in a static 

external potential to a tractable problem of non-interacting electrons moving under an 

effective potential. The typical representation of Kohn-Sham equations is presented in 

Equation I.6. 

 [ ( ⃗)]  ( ⃗)      ( ⃗) 

Equation I.6 

 [ ( ⃗)] is the Kohn-Sham functional and εi is the orbital energy of the corresponding Khon-

Sham orbital   . The Kohn-Sham functional can be divided in different parts as presented in 

the following Equation I.7, 

 [ ( ⃗)]    [ ( ⃗)]   [ ( ⃗)]     [ ( ⃗)]    [ ( ⃗)]   [ ( ⃗)]  (  [ ( ⃗)]      [ ( ⃗)]) 

Equation I.7 

  [ ( ⃗)] is the kinetic energy in a non-interacting system,  [ ( ⃗)] is the classical coulomb 

interaction and    [ ( ⃗)] is the exchange-correlation energy. This term is defined as the sum 

of two terms: the residual part of the true kinetic energy,   [ ( ⃗)] and the non-classical 

electrostatic contributions     [ ( ⃗)] . In other words, the exchange-correlation energy 

   [ ( ⃗)] is the functional which contains everything that is unknown or we do not know 

exactly how to handle. The Kohn-Sham approach moves the search of an unknown universal 

functional to a search of an unknown universal exchange-correlation functional. 

The Kohn-Sham approach establishes the guidelines for the construction of the universal 

functional however the unknown exchange-correlation energy has to be approximated. The 

most relevant approximations are LDA, GGA, meta-GGA and hyper-GGA. These approximations 

are the first steps on the Jacob’s ladder of exchange-correlation functional. This is an imaginary 

ladder drawn by Perdewi.16 that connects the “Hartree world” where there is no exchange or 
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correlation energy with the “Heaven of Chemical Accuracy” where the error in bonding 

energies is less than one kcal·mol–1. 

The central idea of Local Density Approximation (LDA) is a hypothetical uniformed electron 

gas. In this system the electrons move around a distribution of positive background charges 

that make the system electrically neutral. The number of electrons N and the volume of the 

gas V are considered to approach infinity and the electron density attains a constant value 

anywhere in V. The LDA functional considered exchange-correlation has a local effect and only 

depends on the electron density value in each point in the space. The LDA exchange part is 

represented by the known exchange energy of one electron in a uniform electron gas at one 

particular density. There is no analytical expression for the correlation part; moreover there 

are very accurate Monte-Carlo simulations for a homogeneous electron gas.i.17 Even the 

relative simplicity of LDA functional, acceptable results are achieved, but their moderate 

accuracy is certainly insufficient for most chemical applications. 

In the 80’s, the Generalized Gradients Approximations (GGA) methods were developed. 

They introduced the density gradient ( ρ) as well as the electron density (ρ) at each point in 

space. The corrections from the gradient are added to the local definition of exchange-

correlation redefining    [ ( ⃗)] functional. Nowadays, there are many GGA functionals based 

on different formulations of the exchange and correlation parts as Becke-Perdew (BP86),i.18 

Perdew-Burke-Ernzerhof (PBE),i.19 Becke-Lee-Yang-Parr (BLYP),i.20 etc. 

The corrections introduced by GGA highly improved the results with respect to LDA, 

achieving an acceptable accuracy. The deviations on bond energies are partially corrected and 

accordingly the total and bonding energies too. This derives in molecular geometries that are 

in better agreement with the experimental ones. Although the GGA functionals have problems 

in the description of “weak” interactions as dispersion,i. 21  π–stacking,i. 22  etc., that are 

completely neglected in their formulation, these functionals are widely used in computational 

chemistry for systems without relevant “weak” interactions, e.g., many organometallic 

complexes. 

The main errors of the previous functionals are found in the exchange part description 

because it is usually known that the exchange contributions are significantly larger in absolute 

numbers than the corresponding correlation effects. The hybrids functionals are an approach 

to minimize this problem with a partial incorporation of the Hartree-Fock exact exchange-

energy in the previous functional. There are many hybrids functionals with different 

percentage of exact exchange (ee). Today, one of the most used hybrid functionals is the 
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B3LYP (20% of ee).i. 23  It has become a reference in computational chemistry showing 

remarkable results in a wide variety of properties and reactions. Its exchange part is made up 

of 80% of Becke, 3-parameters exchange functional and 20% Hartree-Fock exact exchange.i.24 

The Becke’s functionali.20,i.25,i.26 includes three semi-empirical parameters adjusted in order to 

minimize the atomization and ionization energies error as well as the proton affinities in the 

G2 set of molecules. The correlation part is constructed by Lee-Yang-Parr (LYP) correlation 

functional.i.27 

I.I.2. BASIS SET FUNCTION 

One of the inherent approximations for all ab initio methods is the introduction of a finite 

set of function basis. An exact representation of a molecular orbital can only be achieved using 

a complete basis set, i.e., infinite, which is practically impossible. Obviously, the bigger the 

basis set, the better the representation, but the computational cost is larger; therefore, the 

idea is to use the smallest basis set possible without compromising the efficiency of the 

calculation.i.28 

Due to computational efficiency, the Gaussian type orbitals or GTO are the most used basis 

set in electronic structure calculations. Moreover, it has previously been shown that cation–π 

and anion–π interactions can be correctly studied by means of this kind of function. For this 

reason, the 6-31++G** basis set of Pople has been widely used throughout this thesis, which 

includes polarization and diffuse functions for all atoms. The former functions are necessary to 

take into account the polarization component, which plays a transcendent role in the 

interactions studied. The latter functions are added to correctly represent the greater electron 

density in further areas of the atomic nuclei. These functions are necessary when the 

complexes studies present ionic species. However, to perform RI-MP2 calculations with 

TURBOMOLEi.29 programme, the auxiliary basis set 6-31++G** necessary to perform the 

calculation is not included, and therefore the VDZ auxiliary set of Alrichsi.30 is used instead. In 

addition to basis set of Pople, in some studies the double and triple-zeta basis sets of Dunning 

(aug-cc-pVXZ, X = D, T) has been used. 

I.I.3. BASIS SET SUPERPOSITION ERROR (BSSE) 

Suppose we wish to calculate the energy of formation of a bimolecular complex, such as the 

specific supramolecular system (AB) obtained from the following reaction between A and B: 
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One might expect that this energy value could be obtained by first calculating the energy of 

a single A and B molecules, then calculating the energy of the dimer (AB), and finally 

subtracting the energy of the two isolated molecules (the 'reactants') from that of the dimer 

(the 'products'). 

Its interaction energy can be obtained according to the approximation (Equation I.8): 

            (  )  
   ( )   ( )  

Equation I.8 

Where: 

 * indicates that the optimized geometry complex is used, 

 a, b and ab subscripts mean that the energy calculation have been done using the 

basis set of A, B and AB, respectively. 

The favourable complexation processes present negative energies, so the more negative 

the energies, the more favourable the formation of complex. It is worth mentioning that 

during the thesis, the terms “greater” and “smaller” have been used in their absolute value. 

Therefore, if we compare the favourable formation of two complexes and one possesses 

greater interaction energy then it is more favourable. 

However, the energy difference obtained by such an approach will invariably be an 

overestimate of the true value. Ideally, the best solution would be to use a complete basis set 

(CBS) to avoid this overestimation. Since this solution is not possible, the first condition is to 

use the same basis set to perform all the calculations and compare interaction energies. The 

discrepancy arises from a phenomenon known as basis set superposition error (BSSE). As the 

two A and B molecules approach each other, the energy of the system falls not only because of 

the favourable intermolecular interactions but also because the basis functions on each 

molecule provide a better description of the electronic structure around the other molecule. 

Hence, in a complex, the basis set of one molecule can help to compensate the incomplete 

basis set of another molecule and vice versa. In this way the energy is artificially greater (more 

negative) and the interaction energy is overestimated. 

It is clear that the BSSE would be expected to be particularly significant when small, 

inadequate basis sets are used (e.g. the minimal basis STO-nG basis sets) which do not provide 

for an adequate representation of the electron distribution far from the nuclei, particularly in 

the region where noncovalent interactions are strongest. 
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The most used method to correct this error is the Counterpoise technique (CP).i.31 By this 

method, the BSSE is estimated as the difference between the energies of the monomers with 

the regular basis set and the energies calculated with the complete basis set for the entire 

complex (Equation I.8). 

To estimate how much of this energy of complexation is due to the BSSE, it takes four 

additional energy calculations. Using the basis set a for A, and basis set b for B, are calculated 

each of the two fragments in the geometry of the complex with the complete basis set ab. For 

example, the energy of A is calculated in the presence of normal basis set functions a and with 

the basis set functions b of fragment B located in the corresponding nuclear positions, but 

without B nuclei present. These basis set functions located at fixed points of the space is often 

referred to as ghost orbitals. The energy of fragment A will be lowered due to ghost functions, 

since the basis set becomes more complete. The correction of Counterpoise (CP) is defined as 

shown the Equation I.9. 

      ( )  
   ( )  

   ( ) 
   ( ) 

  

Equation I.9 

The interaction energy corrected by means of Counterpoise technique is expressed as 

follows in Equation I.10. With the notation used before, the interaction energy can also be 

written as shown in Equation I.11. 

          
                     

Equation I.10 

          
      (  )  

  [ ( )  
   ( )   ( ) 

 ]  [ ( )  
   ( )   ( ) 

 ] 

Equation I.11 

When the complex is formed from three components, the interaction energy is calculated 

as: 

            (   )   
   ( ) 

   ( ) 
   ( ) 

  

Equation I.12 

In these cases, the BSSE estimation is much more complicated to calculate,i.32 although 

some approximationsi. 33  were proposed that result in a simple calculation without the 

introduction of big errors, as expressed in Equation I.13. 

      ( )   
   ( )   

   ( )   
   ( ) 

   ( ) 
   ( ) 
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Equation I.13 

Therefore, the corrected interaction energy is (Equation I.14): 

          
      (   )   

   ( )   ( )   
   ( ) 

   ( )   ( )   
   ( ) 

   

  ( )   ( )   
   ( ) 

  

Equation I.14 

Fortunately, the complexes that present monatomic ions, it holds that ( ) 
     ( ) and 

the corrected energy calculation is less arduous. 

I.I.4. MOLECULAR INTERACTION POTENTIAL 

The molecular electrostatic potential (MEP)i. 34  can be defined as the electrostatic 

component of the interaction energy between the charge distribution of one molecule and a 

positive point charge (and therefore QB = +1), and can be calculated from Equation I.15: 

     ∑∑
    

|     |
  

 ∑  

 

∑ ∑∑      ⟨  |
 

    
|  ⟩

  

        

 

 

Equation I.15 

Where: 

 ZA is the atomic number of atom A, 

 QB is the classical point charge, 

 r indicates the electron position, 

 RA indicates the nuclei location of atom A, 

 RB indicate the position of classical atom B, 

   is the basis set used for molecule A, 

 cµi is the orbital atomic coefficient µ in the molecular orbital i. 

The first term represents the nuclear electrostatic repulsion between the nuclei A and a 

classical particle; while the second corresponds to the electrostatic attraction originated 

between the electrons of A and the classical particle B. 

The MEP formalism enables the rigorous calculation of electrostatics interactions between 

any classical charge and a perturbed molecule, without considering the induction, dispersion 

or repulsion effects. This defect can be solved by means of the addition of the classic term of 

Lennard-Jones,i.35 which is mathematically simple but promotes a good description of van der 
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Waals forces. The addition of this term to the MEP expression defines what is called Molecular 

Interaction Potential known as MIP.i.36 

          ∑(
   

   
   

    

   
 )

 

 

Equation I.16 

The Lenard-Jones potential term is shown in Equation I.16, where εAB and γAB are calculated 

as the following classical formulas (see Equation I.17Equation I.18): 

    √     

Equation I.17 

    
   

     
 

   
 

Equation I.18 

 εA and Rvw
A are the hardness and the van der Waals radius of atom A, 

respectively. 

 εB and Rvw
B are the hardness and the van der Waals radius of atom B, 

respectively. 

In the programme used to do this calculations (MOPETE),i.37 these parameters have been 

taken from TRIPOS/5 force field.i.38 However, to do the present studies, some modifications 

over the classical atoms have been included with the aim to treat correctly anionic atoms. 

Thus, in house parameterization of fluoride anion has been done, assigning the values: Rvw = 

2.170 Å and εB = 0.061 kcal·mol–1. The van der Waals radii of the anions chloride and bromide 

(2.470 and 2.575 Å, respectively) was estimated following the methodology developed by G. 

Ujaque and collaborators,i.39 while their hardness were taken from the TRIPOS/5 force fieldi.38 

(0.314 and 0.287 kcal·mol–1, respectively). Finally, for the cations the van der Waals radii and 

hardness parameters values were taken from OPLSi. 40  and CHARMM27i. 41  force fields, 

respectively, being Rvw = 1.869 Å and εB = 0.048 kcal·mol–1 for Na+ and Rvw=2.467 Å and 

εB=0.087 kcal·mol-1 for K+ cation. 

Additionally, if we include polarization effects calculated by means of second-order 

perturbation treatmenti.42 we obtain the Molecular Interaction Potential with polarization or 

MIPp definition (Equation I.19):i.43 
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Equation I.19 

Where ε is the energy of virtual (j) and occupied (i) molecular orbitals. 

Along these lines, the total interaction energy calculated with the MIPp is the sum of the 

three mentioned contributions: electrostatic, van der Waals and polarization, as shown in 

Equation I.20. 

  
    

             

Equation I.20 

I.I.5. AROMATICITY: NUCLEUS-INDEPENDENT CHEMICAL SHIFT 

The aromaticity plays an important role in Chemistry. In fact, the stability of some 

molecular structures, as well as the success or failure of some chemical reactions is due to the 

gain or loss of aromaticity. Despite the lack of clear and unambiguous definition of aromaticity, 

this chemical concept is deep-seated in the chemical community.i.44 The aromaticity is not an 

observable parameter, and cannot measure directly. For this reason there are several 

definitions of aromaticity based on structural (Harmonic Oscillator Model of Aromaticity), 

magnetic (Nucleus-Independent Chemical Shift) and/or energetic criteria (Aromatic 

Stabilization Energies, ASE). Below, the magnetic criterion is described in more detail because 

it is used in this thesis. 

I.I.5.1. Nucleus-Independent Chemical Shift (NICS) 

Most of the organic molecules do not possess permanent magnetic moments and, 

consequently, are weakly diamagnetic. In this case, in a magnetic field small magnetic fields 

are generated opposite to the first. Marked diamagnetic anisotropy is presented by aromatic 

molecules, which is known as diamagnetic ring flow. The ring flow induced by external 

magnetic fields is much bigger than small flows associated to ζ electrons. For this reason, the 

magnetic indexes of aromaticity are based on this ring flow due to the π electrons.i.45 The 

atypical chemical shift in Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) of 

aromatic molecules has been used as indicators of the ring flow effects.i.46 
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If a magnetic flow goes through the aromatic ring, a secondary and opposite magnetic field 

is induced inside and intensified outside of the ring. As can be observed in Figure I.1, in regions 

above, below and in the ring, the apparent field is weakened, increasing the shield, whereas 

the opposite occurs in the outer regions of the ring. 

 
Figure I.1. Model of ring flow in aromatic systems. 

Probably, the most widely used index based on magnetic criteria is the Nucleus-

Independent Chemical Shift (NICS) proposed by P. v. R. Schleyer et. al.i.47 The NICS criterion is 

the negative value of absolute magnetic shielding, which originally was evaluated in the ring 

centre. Negative values involve strong shielding produced by diatropic ring flow and are 

associated to aromaticity. However, positive values correspond to anti-aromaticity (paratropic 

ring flow). The values of NICS in the geometric centre of the ring are highly influenced by local 

paratropic effects that mainly emerge from ζ bonds, especially in small rings. For this reason, 

NICS values in this thesis have been estimated at 0.6 and 1 Å above the geometric centre with 

the aim to reflect essentially the π effects derived from ring flow.i.48,i.49 NICS index was 

calculated using the GIAO methodology (Gauge Invariant Atomic Orbitals)i.50 at the HF/6-

31++G** level of theory. 

I.I.6. ATOMS IN MOLECULES THEORY (AIM) 

The R.F.W. Bader’s theory of Atoms in Molecules (AIM)i.51,i.52 is an intent to rigorously 

define the atom and chemical bond from the polielectronic wave function. Principally being 

based on Hellman-Feynman theorem,i.53 it shows that all properties of one molecule are 

determined by the electron density distribution (ρ). Hence, the AIM theory is a formalism that 

permits defining the atom concepts in molecule, chemical bond, molecular structure and 
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stability, structural change and, moreover, give descriptions of different kinds of bonding and 

atomic interactions according to the ideas of descriptive chemistry. 

An important part of the AIM theory is the topological analysis of ρ, which can give a good 

description, depending on its gradient vector and stationary points. The ρ gradient (  ) or 

trajectory is a vector that is directed in the direction of the greater slope towards the 

maximum. In a molecule, all the trajectories start at the infinity and finish at a nuclei, without 

crossing each other. In this way every nucleus acts as an attractor of different trajectories, 

which is named attractive basin. It has been demonstratedi.54 that it can divide a system in 

regions or quantic subsystems in which all the total system magnitudes are well-defined 

through zero flux surfaces of   . In general, each and every one of the delimited volumes of 

these surfaces have single atomic nucleus, so are named atomic basin. 

The stationary points of the electron density function (   = 0) are called critical points (CP). 

Their nature is determined by means of the hessian matrix of ρ, whose eigenvalues are named 

curvatures and their signs determine the kind of CP. A negative curvature indicates that ρ is a 

maximum in the direction of the associated eigenvector, while being a minimum when it is 

positive. The rank of a CP, described as ω, is the number of curvatures different from zero. 

Their classification designed as ζ, is the sum of all their algebraic signs. CPs are labelled giving 

the pair value (ω, ζ). The CPs of ω=3 correspond to ρ distributions in molecules with stable 

nuclear configurations and are the interest of this study. There are four possible types of CP of 

ω=3. 

 (3,–3) is a local maximum of the electronic density and corresponds to nuclei. 

 (3,–1) is an inflexion point and it is located between both bonded nuclei 

(BCP). 

 (3,+1) is also an inflexion point and occurs as consequence of particular 

geometric distributions of bonds defining elements in molecular structure. 

When bonds are disposed in such a way that bonded atoms ring form, a ring 

CP (RCP) in its interior is generated. 

 (3,+3) is a local minimum that is associated to the structural element 

generated when several rings form a cage and is therefore named cage CP 

(CCP). 

Due to ρ(r) being a continuous function, the total number of CPs present in the system 

should satisfy the Poincaré-Hopf relation (Equation I.21):i.55 
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n − b + r − c =1 

Equation I.21 

Where n, b, r, and c are the total number of nuclei, bond, ring and cage CPs, respectively. 

I.I.7. ATOMIC CHARGES 

The charge assigned over the atoms has been a valuable tool for chemists, despite the idea 

that the atomic charge in a molecule is not really an observable chemical quantity. The atomic 

charges have been a key concept in the understanding of many types of chemical reactions, 

and are of great importance in the interpretation of numerous phenomena such as the dipolar 

moment or chemical shift in NMR; moreover they are important parameters in structure-

property and structure-activity relations. A lot of schemes have been proposed, both 

quantum-chemical and empirical, either to assign the electron density distribution between 

the atoms of a molecule or charges of these atoms. Traditionally, the Mulliken methodi.56,i.57 

and electrostatic potential have been the most useful in defining atomic charges. 

The methods based on the population analysis distribute the electronic density between 

nuclei, so that every atom has a specific number of electrons (not necessarily integer) 

associated to it. This partition provides a way to calculate the atomic charge over every 

nucleus. Nevertheless, no quantum-mechanics operator exists for the atomic charge and the 

partition scheme is arbitrary. 

The Mulliken’s population analysisi.56,i.57 is a trivial calculation once it has reached the 

consistency in the Self Consistent Field (SCF) that the electronic population needs in every 

orbital (Pµµ) and in the overlapping area (Sµv), as shown in Equation I.22 for the atomic charge 

over atom A: 

      ∑    

 

   

 ∑ ∑       

 

       

 

   

 

Equation I.22 

Thus, the atomic charge is estimated subtracting the electronic population in each of the 

orbitals of the atom from the nuclear charge and the overlapping population is divided equally 

between the two atoms, regardless differences in the type of atom (coefficient, 

electronegativity, etc). The Mulliken’s population analysis is widely used due to its simplicity; 

however it presents a great dependency upon the basis set used.i.58,i.59 
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The electrostatic potential methods determine atomic charges fitting the electrostatic 

potential to a series of points surrounding the molecule. These points can be chosen in 

multiple ways, but they should be in a region where it is more important to define the 

molecular interactions correctly, that is to say over the van der Waals radii of the atoms. Once 

the electrostatic potential has been calculated (Equation I.15) at these points, by means of 

mathematical adjustment, the partial atomic charges that best reproduced the potential are 

derived. This procedure is done through the least-squares fit, that is normally combined with 

Lagrange multiplier as described in the literature.i.60 

The CHelp (CHarges from Electrostatic Potential)i.60 method uses spherical layers, 1 Å apart, 

centred in every atom with points symmetrically distributed on its surface. The points lie 

outside of the van der Waals surface and up to 3 Å from it. On the other hand, in the CHelpG 

method,i.61 the points are regularly distributed in a cubic grid with a big density (are spaced 

0.3-0.8 Å) and located from the van the Waals surface up to 2.8 Å distance from it. 

The Merz-Kollman schemei.62 uses the Connolly algorithmi.63 to generate five spherical 

surfaces of points around every atom. These surfaces are found at distances of 1.4, 1.6, 1.8 

and 2.0 times the van der Waals atomic radius, all with a density of 1 point/Å2. The molecular 

surface is built taking into account the union of all these surfaces for every atom and 

eliminating the points that are within of multipole of van de Waals radius of any atom. Both 

CHelp and Merz-Kollman methods are derived from electrostatic potential. 

The AIM theoryi.51,i.52 gives an alternative way to assign electrons between the atoms of one 

molecule, based on the flux surfaces that determine the atomic basin. The assigned population 

of every atom is calculated by means of the numeric integration of ρ in its atomic basin. This 

approximation is very attractive, as it eliminates the arbitrary of atom division in the molecule. 

However, the procedure is computationally very complicated, and the resulting atomic charges 

do not reproduce well the electrostatic potential when they are used in a monopole 

approximation (as happens in a great number of simulation packages).i.64 

I.I.8. CRYSTALLOGRAPHIC DATABASE 

The Cambridge Structural Database or CSDi.65,i.66,i.67,i.68 is an adequate tool to carry out 

searches of crystallographic structures.i.69,i.70 

Throughout this thesis, the CSD tool has been used mainly to find molecular interactions 

between π systems and different electronegative, neutral or negatively charged atoms with 

the aim to complement the theoretical study. 
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These interactions must correspond to noncovalent bonds between the electronegative 

atoms and all the atoms that form the aromatic system to ensure a correct interaction. 

Therefore imposing the condition of contact between the interacting atom and all atoms of 

the π system, using the definition that includes the CSD in their leading searchers questv5, i.71 it 

is detailed that the distance must be equal or less to the sum of van der Waals radii in contact, 

plus 1 Å. For a recent discussion on this topic see references i.72 and i.73. 

I.I.9. COMPUTATION PROGRAMMES 

In this section a brief description is found regarding levels of theory and programmes used 

along this thesis to calculate the complexes and their properties. 

All the complexes studied are fully optimized. Most of the optimizations have been done 

with TUBOMOLE programme (versions 5.7 and 6.0)i.29 at the RI-MP2 level, except in two cases 

properly indicated where the optimizations have been performed with Gaussian 03i.74 and 

09i.75 at the MP2 level. The interaction energy with and without the Basis Set Superposition 

Error (BSSE) correction was calculated in all cases at the same level of theory than the 

geometric optimizations. In some specific cases, the interaction energy together with BSSE 

were calculated at a higher level of theory, explicitly indicated as for example RI-MP/aug-cc-

pVTZ//RI-MP2/aug-cc-pVDZ. This notation means that the system has been optimized at the 

RI-MP2/aug-cc-pVDZ level and the single point calculation at the RI-MP/aug-cc-pVTZ level. 

Most of jobs carried out in this thesis have been performed with the frozen core 

approximation and therefore, in these cases it is not specified along the text. Conversely, when 

the calculations were performed with full core approximation, it is specified in the text. All the 

optimizations were performed at C1 point group of symmetry, except in specific cases where 

other possible conformations of complexes have not been considered because the ultimate 

aim of that study is to verify the influence of several noncovalent interactions shown in the 

article. In these cases the highest possible abelian point group of symmetry is applied. 

Calculations in the presence of solvent have been carried out using the Conductor-Like 

Screening Model (COSMO)i.76 as implemented in TURBOMOLE programme.i.29 In some studies, 

we have also extrapolated the complete basis set (CBS) limit using two points method of 

Helgaker and co-workers.i.77 

The calculations of molecular interaction potential are done using the MOPETE 

programme,i.37 at HF/6-31++G** level of theory. In some studies the triple-zeta basis set of 

Pople (6-311++G**) has been used. 
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The AIM analysis is carried out using the AIMPACi.78 or AIM2000 programmesi.79 generally 

from wave function at same level of theory that the optimized structures obtained with 

Gaussian 03i.74 or 09i.75 programme. In all articles the level of theory used to calculate the wave 

function is indicated. 

The quadrupole moments were estimated with the CADPACi. 80  and MOLPROi. 81 

programmes. The charge transfer in complexes was evaluated by using the Merz-Kollman 

(QMK) scheme for deriving atomic charges at the same level of theory that optimized structures 

obtained with Gaussian 03i.74 or 09i.75 programmes. In most of the articles published Mulliken 

charges (QMull) are also included for comparison purposes. The molecular polarizabilities were 

computed using Gaussian 09i.75 programme at the MP2/6-31++G** level of theory. NICS values 

were computed at the GIAO-HF/6-31++G** level of theory,i.50 because previous studies have 

demonstrated that reliable results are obtained at this level of theory.i.49 The Molecular 

Electrostatic Potential Surfaces (MEP) calculated were performed with Spartan programme.i.82 

Other interesting theoretical studies were related to the molecular natural orbitals and spin 

density calculations computed at the RI-MP2/aug-cc-pVDZ level of theory with TURBOMOLE 

programme.i.29 To represent the molecular orbitals we have used the MOLDEN programme.i.83 

The crystallographic search has been done using the Cambridge Structural Databasei.65 and 

with the leading searcher questv5i.71 using the latest update available to extract the 

geometries: 5.29 version (February 2008) or 5.30 version (February 2009). The Mercury and 

Vista programmesi.84,i.85, i.71 have also been used to visualize the geometries and to analyse the 

geometric parameters, respectively. The search of biological molecules has been done in the 

Protein Data Bank (PDB).i.86 

All calculations have been carried out in our own workstation and the Centre de 

Tecnologies de la Informació of UIB. Some calculations have been also carried out at the 

Centre de Computació de Catalunya (CESCA).  
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ANNEX II. EXPERIMENTAL SECTION 

II.I. GENERAL INFORMATION AND INSTRUMENTATION 

Unless stated otherwise, all preparations were carried out under Argon inert atmosphere 

and using standard techniques. All reagents were obtained from commercial suppliers and 

used without further purification. Anhydrous solvents were obtained from a solvent 

purification system SPS-400-6 from Innovative Technologies, Inc. 

All solvents were of HPLC grade quality, obtained commercially and used without further 

purification. 

Routine 1H and 13C-NMR spectra were recorded on a Bruker Avance 300 (300.1 MHz for 1H-

NMR) and Bruker Avance 500 (500.1 MHz for 1H-NMR and 125.6 MHz for 13C) ultrashield 

spectrometer. The deuterated solvents (Aldrich) used are indicated in the experimental part; 

chemical shifts, δ, are given in ppm, relative to TMS (1H, 13C). Coupling constants, J, are given in 

Hz. 

Mass spectra were recorded on a Waters LCT Premier ESI-TOF spectrometer. 

Isothermal titration calorimetry experiments (ITC) were performed using a MicroCal VP-ITC 

Microcalorimeter. 

Crystal structure determination was carried out using a Bruker-Nonius diffractometer 

equipped with a APPEX 2 4K CCD are detector, a FR591 rotating anode with MoKα radiation, 

Montel mirrors as a monochromators and a Kryoflex low temperature device (T = 100K). Full 

sphere data collection omega and phi scans. Programs used: Data collection Apex2 V. 1.0-22 

(Bruker-Nonius 2004), data reduction Saint + Version 6.22 (Bruker-Nonius 2001) and 

absorption correction SADABS V. 2.10 (2003). Crystal structure solution was achieved using 

direct methods as implemented in SHELXTL Version 6.10 (Sheldrick, Universität Göttingen 

(Germany), 2000) and visualized using XP program. Missing atoms were subsequently located 

from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 

using all measured intensities was carried out using the program SHELXTL Version 6.10 

(Sheldrick, Universität Göttingen (Germany), 2000).  
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II.II. EXPERIMENTAL DETAILS OF SYNTHESIS AND CHARACTERIZATION OF MACROCYCLIC 

REPECEPTORS 1 AND 2 

The experimental details presented here are related to section 3.2.2 of Chapter 3 of this 

thesis. 

The cyclic trimeric pyromellitic diimide (receptor 1) was synthesized following the 

procedure described in the report of Gawronski and coworkersii.1 with a yield of 11 % and with 

the same physical characteristics obtained previously by them. 

Below the synthesis and characterization of cyclic trimeric 1,4,5,8-naphthalene 

tetracarboxylic diimide (receptor 2) is described as well as their X-Ray structure determination. 

II.II.1. SYNTHESIS AND CHARACTERIZATION OF THE CYCLIC TRIMERIC 1,4,5,8-NAPHTHALENE 

TETRACARBOXYLIC DIIMIDE, 2. 

114 mg (1 mmol) of (1R,2R)-trans-diaminocyclohexane and 268 mg (1 mmol) of 1,4,5,8-

naphthalenetetracaboxilic anhydride were refluxed in 10 mL of dimethylformamide anhydrous 

(DMF) for 4 hours. After the reaction the solvent was removed in vacuo. The residue was 

suspended in a dichloromethane (DCM) solution, and over this suspension, a column 

chromatography of the residue on silica gel eluting with CH2Cl2:3% AcOEt was done, afforded 

cyclic trimeric 1,4,5,8-naphthalenetetracarboxylic diimide 2 as a brownish solid; yield 10%. 

Additional attempts of the synthesis of the receptor 2 were not successful in good yields, 

probably because of impurity of the reagent (1,4,5,8-naphthalenetetracarboxylic dianhydride). 

m.p. >360°C; IR (KBr): ῦ = 2935.2, 2760.8 cm–1 (C=O); 1H NMR (CDCl3, 500.1 MHz δ = 1.70 (m, 

12H, H-4’, H-5’), 1.95 – 2.03 (m, 12H, H-3’, H-6’), 6.24 (m, 6H, H-1’, H-2’), 8.49 (s, 12H, H4, H5, 

H9, H10); 13C NMR (CDCl3, 125.6 MHz): δ = 25.7 (CH2, C-4’, C-5’(x3)); 29,9 and 29,7 (CH2, C-3’, C-

6’(x3)); 53,9 (CH, C-1’, C-2’(x3)); 125,8 and 126,1 (C, C-10b, C-10c(x3)); 126,5 (CH, C-4, C-5, C-9, 

C-10(x3)); 130,7 and 131,3 (C, C-3a, C-5a, C-8a, C-10a(x3)); 162,4 and 162,7 (C, CO (x12)).. ESI-

TOF negative mode detection, m/z: 1038.3 [M–H]–. 
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Figure II.1. 

1
H NMR spectra for receptor 2 in CDCl3. 

 

 

 
Figure II.2. 

13
C NMR spectra for receptor 2 in CDCl3. 
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Figure II.3. Room Temperature IR-spectra of receptor 2. 

II.II.1.1.Crystal data for Receptor 2 

Compound 2 crystallize in the triclinic cystal system. The ORTEP diagram of the compound 

is shown in Figure II.4. Crystallographic data collection and refinement parameters are listed in 

Table II.1. 

 
Figure II.4. ORTEP diagram of compound 2. Thermal ellipsoids are drawn at the 50% probability level.  
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Table II.1. Crystallographic data and structure refinement for compound 2. 

Compound 2 

Empirical formula C43H36.75N3O6  

Formula weight 691.50  

Temperature  100(2)K  

Wavelength 0.71073 Å  

Crystal system  Triclinic  

Space group P1  

Unit cell dimensions a = 14.761(2) Å a= 77.857(7)° 

 b = 15.706(2) Å b = 88.863(7)° 

 c = 15.867(2) Å g = 76.803(7)° 

Volume 3499.7(9) Å3  

Z 4  

Density (calculated) 1.312 Mg/m
3
  

Absorption coefficient μ 0.088 mm
–1

  

F(000) 1455  

Crystal size 0.08 x 0.05 x 0.03 mm3  

θ range for data collection 1.31 to 25.61°  

Index ranges -17 <=h<=17  

 -18 <=k<=18  

 -19 <=l<=19  

Reflections collected 31348  

Independent reflections  22763 [R(int) = 0.0798]  

Completeness to θ =25.61° 0.974 %  

Absorption correction Empirical  

Max. and min. transmission 0.9974 and 0.9930  

Refinement method Full-matrix least-squares on F2  

Data/restraints/parameters 22763/556/2054  

Goodness-of-fit on F2 0.960  

Final R indices [I>2σ(I)] R1 = 0.0899, wR2 = 0.1794  

R indices (all data) R1 = 0.2408, wR2 = 0.2666  

Flack parameter x = -2.1(19)  

Largest diff. peak and hole 0.441 and -0.401 e Å-3  
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II.III. EXPERIMENTAL DETAILS OF QUANTIFICATION OF ANION– INTERACTION BETWEEN 

CALIX[4]PYRROLE DERIVATIVES AND OXOXANIONS 

The experimental details presented here correspond to section 3.2.3 of Chapter 3. 

Specifically, the data is the supporting information of the article Assessment of Anion–π 

Interactions between aryl-extended calix[4]pyrrole and oxoanions shown there. 

II.III.1.1. Isothermal Titration Calorimetry Experiments 

 
Figure II. 5. Representative ITC profile for tetra-p-nitrophenyl calix[4]pyrrole, receptor 2 (left) and di-m-
dinitrophenyl calix[4]pyrrole, receptor 3d (right). Top: The figure shows the Heat (μcal/sec) vs. Time 
(min) graphic for the titration of TBANO3 in to each host, respectively, at 25°C. Bottom: Integrated Heat 
(kcal/mol) vs. Molar Ratio graphics are represented. The continuous line represents the least-square fit 
of the data to a single-site binding mode. The binding constant (K), number of binding site (N), enthalpy 
(ΔH) and entropy (ΔS) are provide in the box. 

Titrations between tetrabutylammonium nitrate TBANO3 (guest) and the hosts meso-tetra-

p-nitrophenylcalix[4]pyrrole (2) and meso-di-m-dinitrophenylcalix[4]pyrrole (3d) were carried 
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out by adding small aliquots (5 μL) of an acetonitrile solution of the guest into a solution of the 

host in the same solvent. The solution of the guest was approximately ten times more 

concentrated than that of the host ([2]= 5.5mM, [3d]= 0.99mM). The association constants and 

the thermodynamic parameters were obtained from the fit of the titration data to a simple 1:1 

binding mode using the Microcal ITC Data Analysis module. 

II.III.1.2.1H NMR Titrations 

All titration were carried out on a Bruker 500 MHz spectrometer, at 298 K, in acetonitrile-d3 

(CD3CN). The association constants were determined using 1-1.5 mM solutions of 2 and 3a-d in 

CD3CN at 298 K, and adding aliquots of a solution of the corresponding salt, approximately 20 

or 30 times more concentrated, in the same solvent. The concentration of the receptor was 

maintained constant throughout the titration. The association constants between the receptor 

1, 2 and 3a-d and the nitrate anion were determined fitting 1H NMR titration data using 

HypNMR software to a simple 1:1 binding model. For each titration, different protons were 

followed and fitted. Figure II.6 shows the adjustment of the experimental chemical shift fitted 

with respect to the calculated chemical shift for two different protons for receptor 2 and 3b. 

The chemical shift followed during the experimental titration for Hc fitted completely with the 

fitting of chemical shift calculated by HypNMR software. The behavior of proton Hc (from 

group –NH of the pyrrol) is repeated for all receptors. In addition, the chemical shift for proton 

Hd has been also represented. This proton is one of the β-pyrrolic protons. The fitting of this 

proton with respect the theoretical chemical shift calculated by the software is good although 

not as accurate as for Hc proton. These representations indicate us that the values of 

association constant (Ka) from HypNMR software are very reliable. It is worth to mention that 

the value of Ka is obtained from the average of all chemical shifts of all protons that we 

followed during the titration, and taking into account the good fitting observed between the 

experimental and calculated data (σ values present in Figure caption of each receptor), we 

conclude that the values of association constants obtained in this way are really consistent. 

It is also interesting the data obtained from speciation which informe us about the changes 

of the different initial species with respect to the concentration of the new specie formed. In 

Figure II.7 shows the speciation for each receptor. The green line indicates the change in the 

concentration of receptor free as the concentration of the complex increases (blue line). In 

Figure II.7 can be observed the total % of complex experimentally formed after the titration for 

each receptor. For receptor 1 and 3b, at the end of the titration we got ~ 70% of the complex 

NO3
–@1 and NO3

–@3b. For receptors 2, 3c and 3d receptors at the end of the titration we 
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reached ~ 90% of complexes NO3
–@2, NO3

–@3c and NO3
–@3d, respectively. Only for receptor 

3a after the titration, only we reached the 30% of complex NO3
–@3a. This fact can be 

explained because the receptor 3a is the less appropriate to establish strong anion–π 

interactions. 

 

 
Figure II.6. The graphic shows the experimental chemical shift of proton signals Hc (proton of pyrrolic –
NH) and Hd (proton β-pyrrolic) vs. the concentration of TBANO3 salt, for A) receptor 2 and B) receptor 
3b. 
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Figure II.7. Graphics of speciation that show the evolution of the titration. The graphics indicate at the 
end of the titration the percentage of receptor free (green line) and complex formed (blue line) for each 
receptor 1, 2 and 3a-d. 

The calix[4]pyrrole receptors are really versatile systems. In the study performed and 

presented in the article 3.2.3.2 (Assessment of Anion–π Interactions between aryl-extended 

calix[4]pyrrole and oxoanions) we have analysed the behaviour of two kinds of calix[4]pyrroles; 

the meso-tetraarylextended calix[4]pyrrole, from now four walls calix[4]pyrrole, and the meso-

diarylextended calix[4]pyrrole, from now two walls calix[4]pyrroles. The interaction between 

both kinds of calixpyrroles and halides (Cl–) has been previously studied by Ballester’s research 

group.ii.2 In these previous studies have been analysed: 

 The conformational changes of the receptor, 

 The behaviour in solution, 

 The aryl groups that more favourably interact with anions, and 

 The quantification of anion–π interaction. 
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The calix[4]pyrroles can present three conformations: 1,2-alternate; 1,3-alternate and cone 

conformation. The most favourable conformations are the conelike and 1,3-alternate. From X-

Ray structure determinationii.2 we know that the complex between the anion and the receptor 

is produced when the calix[4]pyrrole is in cone conformation. In solution, it is necessary the 

equilibrium between the cone and 1,3-alternate conformation to exchange the solvent 

molecule that occupies the cavity for the anion present in the solution after its first addition. 

This conformational exchange is necessary to maintain the system thermodynamically stable 

during the output of the solvent and the entry of the anion. Depending on the energetic cost 

of the conformational equilibrium between cone and 1,3-alternate conformations, 

experimentally we can observe slow or fast equilibrium exchange. Therefore: 

 More difficult change between cone and 1,3-alternate conformations, slower 

equilibrium exchange rate observed in NMR timescale. If this happens, the proton 

signals that characterized our receptor are splitted after the first addition of the 

guest, i.e, we can observe the proton signals for free receptor (before the 

complexation with the anion) and the same proton signals shifted for complexed 

receptor. As the titration progresses the intensity of signals splitted changes. 

 Conversely, smaller energetic barrier for the conformational equilibrium and 

therefore, lower energetically transition state, greater equilibrium exchange rate. 

In NMR timescale the shifted of proton signals that characterized our receptor, but 

without splitted, is observed. 

In the present study, we have chosen the arylextended calix[4]pyrroles that more 

favourably interact with halides, and we have quantified the anion–π interaction between 

these calix[4]pyrroles and nitrate anion. For comparison purposes we have worked with 

several receptors as octamethylcalix[4]pyrrole (receptor 1) used as model reference, tetra-p-

nitrophenyl calix[4]pyrrole (receptor 2), the only four wall receptor chosen and a series of 

diarylextended calix[4]pyrrole, i.e., phenyl- (receptor 3a), p-nitrophenyl- (receptor 3b), 

pentafluorophenyl- (receptor 3c) and m-dinitrophenyl- (receptor 3d) calix[4]pyrrole. 

Regarding four walls calix[4]pyrrole, from the titration data results between receptor 2 and 

nitrate anion, we can deduce that we worked with fast equilibrium exchange rate (see Figure 

II.10), i.e., for each typical proton only one signal is observed, and this signal is shifted during 

the titration. However, in previous study of Ballester and co-workersii.2 the titration between 

receptor 2 and chloride anion was characterized by slow equilibrium exchange rate in NMR 

timescale, and after the first addition of guest the proton signals of the receptor are splitted. 
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The difference observed for the same receptor under the same conditions, produced only 

by the change of chloride anion by nitrate anion is related to the geometry of cone 

conformation. As can be appreciated in Figure II.8, when the receptor 2 interacts with chloride 

anion, the calix[4]pyrrole adopts a more closed cone conformation (A). However, when the 

receptor 2 interacts with nitrate anion, the host adopts a more opened cone conformation 

(see B in Figure II.8). Therefore, in the latter case the cone conformation is more prepared to 

easily change at 1,3-alternate conformation, being the transition state in this case energetically 

lower than for chloride anion. For this reason, in the titration between receptor 2 and nitrate 

anion no splitted signals are observed (Figure II.10). 

 
Figure II.8. Schematic representation of tetrarylextended calix[4]pyrrole (top) and diarylextended 
calix[4]pyrrole (bottom). A) Cone conformation of complexes Cl

–
@2 and Cl

–
@3b. B) Cone conformation 

of complexes NO3
–
@2 and NO3

–
@3b. 

Regarding two walls calix[4]pyrrole systems, all of them present a fast exchange equilibrium 

rate during the titration with nitrate, showing the shifted of proton signals and without splitted 

(Figure II.11 –Figure II.14). This fact is easily explained because cone conformation for two 

walls receptors generates like a tunnel that facilitates the change between the solvent and the 

anion (see Figure II.8). 



EXPERIMENTAL SECTION 

 

 

324 

 
Figure II.9. 

1
H NMR titration of 1 ([1] = 1 mM) with TBANO3 in CD3CN at 298 K. a) 1. b) 1 + 15.73 eq. 

TBANO3. 

 
Figure II.10. 

1
H NMR titration of 2 ([2] = 1.09 mM) with TBANO3 in CD3CN at 298 K. a) 2. b) 2 + 43.13 eq. 

TBANO3. 

 
Figure II.11. 

1
H NMR titration of 3a ([3a] = 1.21 mM) with TBANO3 in CD3CN at 298 K. a) 3a. b) 3a + 7.47 

eq. TBANO3. 
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Figure II. 12. 

1
H NMR titration of 3b ([3b] = 0.95 mM) with TBANO3 in CD3CN at 298 K. a) 3b. b) 3b + 

17.75 eq. TBANO3. 

 
Figure II.13. 

1
H NMR titration of 3c ([3c] = 1.06 mM) with TBANO3 in CD3CN at 298 K. a) 3c. b) 3c + 11.82 

eq. TBANO3. 

 
Figure II.14. 

1
H NMR titration of 3d ([3d] = 0.74 mM) with TBANO3 in CD3CN at 298 K. a) 3d. b) 3d + 

15.46 eq. TBANO3.  
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Table II.2. 
1
H NMR chemical shifts Δδ (ppm, δcomplex-δhost) of calixpyrrole hosts 1, 2 and 3a-d; chemical 

shifts for the complex were obtained from the addition of an excess of TBANO3 to a host solution in 
CD3CN at 298 K. 

 2 3a 3b 3c 3d 1 

R NO2 H NO2 F5 (NO2)2 - 

NH 1.69 1.18 1.95 2.11 1.73 1.53 

Ha -0.18 -0.05 -0.08 -- 0.59 -- 

Hb -0.18 -0.08 -0.12 -- 0.86 -- 

Hd1 0.13 -0.09 -0.14 -0.16 -0.15 -0.12 

Hd2 -- 0.11 0.23 -0.03 0.24 -- 

 
(ii.1) J. Gawronski, M. Brzostowska, K. Gawronska, J. Koput, U. Rychlewska, P. Skowronek, B. 
Norden, Chem.--Eur. J. 2002, 8, 2484-2494. 
(ii.2) G. Gil-Ramirez, E. C. Escudero-Adan, J. Benet-Buchholz, P. Ballester, Angew. Chem., Int. Ed. 
2008, 47, 4114-4118. 
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