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Abstract 

Pyridoxal phosphate (PLP) is a cofactor of more than a hundred enzymes that 

catalyze amino acid reactions like racemizations, transaminations and decarboxylations 

amongst others. After the formation of a Schiff base between PLP and the amino acid 

substrate, the mentioned reactions are favored by stabilization of a common carbanion 

species in the transition state. All the PLP-catalyzed reactions entail, at least, one step in 

which the Ca carbon of the amino acid or the C4' carbon of the PLP is protonated or 

deprotonated. Furthermore, protonation of the carbanionic intermediate is the common 

crossroad to all possible reactions and it determines the final products. Since the 

experimental study of carbon acidities involves significant difficulties, several 

computational strategies were proposed in this work for the accurate prediction of pKa 

values. A methodology that provides pK a's with uncertainties equivalent to experiment 

for carbon acids was obtained. Such methodology was applied to the pKa prediction of 

other functionalities and adapted to the calculation of stability constants of metal 

complexes with successful results. The activation energies of protonation and 

deprotonation reactions of Ca by diverse enzymatic residues were calculated in order to 

obtain a general view of their kinetics in PLP-dependent enzymes. Finally, QM and 

QM/MM metadynamics simulations were carried out on the PLP-catalyzed 

decarboxylation of ornithine in Ornithine decarboxylase and in aqueous- and gas-

phases. The obtained results provide a picture of how PLP-dependent enzymes control 

the specificity of the desired reaction by favoring specific protonation states of the PLP 

cofactor. 





Resumen 

El piridoxal fosfato (PLP) es cofactor de más de un centenar de enzimas que 

catalizan reacciones sobre aminoácidos como racemizaciones, transaminaciones o 

descarboxilaciones entre otras. Después de la formación de una base de Schiff entre el 

PLP y el aminoácido sustrato, las reacciones mencionadas son catalizadas por la 

estabilización de un carbanión común en el estado de transición. Todas las reacciones 

catalizadas por PLP implican al menos una etapa de protonación o desprotonación del 

carbono Ca del aminoácido o del carbono C4' del PLP. Es más, la protonación del 

intermedio carbaniónico es la encrucijada que une todas las posibles reacciones y 

determina los productos finales. Puesto que el estudio experimental de la acidez de 

átomos de carbono presenta muchas dificultades, en este trabajo se han propuesto 

diversas estrategias computacionales para la determinación precisa de pKa, obteniendo 

una metodología que proporciona pK a ' s con incertidumbres equivalentes a l as 

experimentales para los ácidos de carbono. Dicha metodología se aplicó con éxito a la 

predicción de pKa's de otros grupos funcionales y también se adaptó al cálculo de 

constantes de estabilidad de complejos metálicos. Las energías de activación de las 

reacciones de protonación y desprotonación de Ca catalizadas por diversos residuos 

enzimáticos fueron calculadas con el fin de obtener una visión general de su cinética en 

enzimas PLP-dependientes. Por último, se realizaron simulaciones de metadinámica 

QM y QM/MM sobre la descarboxilación de ornitina catalizada por PLP en la enzima 

Ornitina descarboxilasa, en disolución y en fase gas. Los resultados obtenidos 

configuran una visión general de cómo las enzimas PLP-dependientes controlan la 

especificidad de la reacción deseada favoreciendo estados de protonación específicos 

del cofactor PLP. 





Agradecimientos 

Desde que empecé los primeros trabajos de esta tesis, mucho ha pasado... y sin 

embargo ha sido sólo un momento. Pero no he estado solo en esta aventura. Muchas 

personas se han visto envueltas directa o indirectamente en la realización de esta tesis y 

merecen mi a gradecimiento. Por lo que, para todos los que de algún modo os sentís 

partícipes: Muchas gracias. 

En primer lugar y de forma especial debo agradecer a mis directores de tesis, el 

Dr. Francisco Muñoz Izquierdo y el Dr. Juan Frau Munar, su dedicación durante todo 

este tiempo, su implicación en el trabajo, su paciencia y sobre todo la oportunidad de 

realizar este trabajo con la máxima libertad posible. 

También debo un gran agradecimiento al Prof. Michele Parrinello por acogerme 

de la mejor manera posible en su grupo de investigación cuando apenas sabía lo que era 

una simulación de dinámica molecular. Por su amabilidad, su buen humor y sus ¡Don 

Rodrigooo! También por su gran paciencia conmigo y sobre todo por la oportunidad de 

descubrir un mundo nuevo y fascinante. Grazie mille! 

Además debo agradecer a muchos miembros del grupo de investigación. En 

primer lugar, debo agradecer a la Dra. Josefa Donoso su amabilidad conmigo, su interés 

e implicación en esta tesis. Recuerdo el día que gracias a ella un día recogí un libro de la 

biblioteca y la partícula en una caja me llevó al efecto túnel, al átomo de hidrógeno. 

Estoy convencido de que esta tesis empezó gracias a esa partícula en una caja. 

A los Dres. Joaquín Ortega y Miquel Adrover por su colaboración y su 

participación en los trabajos aquí presentes. En particular, al Dr. Miquel Adrover porque 

tras apenas unos hablar unos minutos de unos resultados propuso y realizó él mismo 

unos experimentos que han resultado de gran importancia para esta tesis. También al 

Dr. Joaquín Ortega, mi compañero de despacho todo este tiempo, por las colaboraciones 

que han resultado tan importantes en esta tesis, por sus bromas y porque aguantarme en 

el mismo cuarto durante tantos años no habrá resultado fácil en muchas ocasiones. 

Al Dr. Antoni Salva, por tutelarme en mis primeras aventuras con las matrices 

zeta, los cálculos semiempíricos en Mopac, Bader y la piridoxamina. 

Al Dr. Bartolomé Vilanova por su amabilidad conmigo durante todo este tiempo 

y su atención e interés cuando le he planteado dudas sobre procedimientos 

experimentales que probablemente debería ya saber de la carrera. 

A los becarios del grupo de Química Física que han hecho o están haciendo sus 

Tesis de Máster o de Doctorado durante este tiempo y con quienes he compartido 

muchas horas divertidas en la universidad, especialmente en la hora más importante del 

día: la comida. Gracias David, Carlos, Cati. Dra. Catalina Caldés, Carlos Maya, 

Laura, Marta, Jazmín, Christian, Jessica y muchos otros que en algún momento habéis 

compartido conmigo lo que yo llamo la buena y la mala vida de becario. 

También debo agradecer a todos los compañeros del grupo del Prof. Michele 

Parrinello en Lugano. Muy especialmente a D aniela Wirz, quien me facilitó las dos 

estancias en Suiza hasta el infinito, por la forma de realizar su trabajo siempre de buen 

humor, con generosidad y amabilidad, y ante todo por hacernos sentir en casa. 



Debo expresar un especial agradecimiento al Dr. Sebastiano Caravati por 

introducirme en CP2K y porque tras muchos intentos, conseguí compilarlo sin errores y 

acabar las metadinámicas QM/MM. 

Además, hay muchas personas del grupo de Suiza a quienes debo agradecer: Dr. 

Gareth Tribello, Dr. Rustam Khaliullin, Dr. Michele Cerioti, Dr. Ali Hassanali, Dr. 

Vittorio Limongelli, Dr. Giacomo Miceli, Dr. Meher Prakash, Dr. Alessandro Barducci, 

Dr. Ivan Rivalta y muchos otros que fueron realmente buenos compañeros de los que 

aprendí mucho, compartí buenas vivencias y tengo los mejores recuerdos personales y 

científicos. 

Debo a gradecer mucho a m is amigos de siempre y los no tan de siempre 

simplemente por eso, por ser mis amigos. Quiero hacer especial mención a Juan 

"Barce" por ser entre todos quién más ha sufrido las consecuencias de mi falta de 

tiempo libre y por aparecer inesperadamente para obligarme a volver al mundo real, a 

dar un paseo y hablar de las cosas que realmente son importantes ¡y de las que no son 

en absoluto importantes también, por supuesto!. También a Alex, Javi, David y Cris por 

muchos motivos... ¡qué bien lo pasamos cuando me vinisteis a visitar a suiza! Gracias a 

los compañeros de los cursos de doctorado, Jose, Ana, Elisa, Juan, Manu... todos 

"Masters", algunos ya Doctores y todos amigos. 

Por supuesto, a mi familia, mis padres Eduardo y Cristina y mi hermana Susana: 

muchas gracias por todo durante todo este tiempo. Como ya dije una vez, ellos tienen 

gran responsabilidad en que yo esté aquí, en esta situación, en este momento y todo sin 

decirme nunca que me pusiera a estudiar. También a Charo, Ramón y Adrián, quienes 

siempre han sido generosos y excelentes conmigo y me hacen sentir parte de su familia. 

Finalmente, quiero agradecer todo a Marta: por ser mi amiga, por ser mi amor, 

por su amor, por su bondad y generosidad, porque su mente me mantiene joven, por 

compartir su vida conmigo, por compartir mi vida con la Química y por muchas 

pequeñas y grandes razones que necesitan una vida para contarse. 

A todos los nombrados y también a los innombrados, que sois igual de felices 

por no aparecer como los nombrados por hacerlo, gracias de nuevo a todos. 







Table of Contents 

1. Introduction 1 

1.1. Vitamin B6 3 

1.2. Pyridoxal 5 ' -phosphate as a cofactor 3 

1.3. Carbon acidity in the enzymatic reactions catalyzed by PLP 6 

1.4. Acidity of PLP Schiff bases in aqueous solution 11 

1.5. Reactions catalyzed by PLP in the presence of metal ions 16 

1.6. Computat ional studies on PLP-catalyzed reactions 18 

1.7. Vitamin B6 and the inhibition of glycation reactions 19 

2. Methodology 23 

2 .1 . The Schrodinger Equation 25 

2.2. The Born-Oppenheimer Approximat ion 25 

2.3. Pauli Exclusion Principle and Slater determinants 26 

2.4. The Hartree-Fock Approximat ion 28 

2.5. The Roothan-Hall equations 30 

2.6. Form of the exact wave function and Electron Correlation 32 

2.7. Foundations of Density Functional Theory, the Hohenberg-Kohn Theorems 34 

2.8. The Kohn-Sham method 35 

2.9. Exchange-correlat ion functionals 38 

2.10. Cont inuum solvent models 39 

2 .11 . Computat ional determination of pKa values 41 

2.12. The CBS-QB3 method 44 

2.13. Molecular Dynamics Simulations 45 

2.14. Metadynamics simulations: Free Energy calculations and study of rare events 46 

3. Objectives 49 



4. Results 55 

4 .1 . Evaluation of computational strategies for the calculation of pKa values and logp values 

of metal complexes 59 

4 .1 .1 . Simplification of the CBS-QB3 method for predicting gas-phase deprotonation free 

energies 61 

4.1.2. Absolute and relative pKa calculations of mono and diprotic pyridines by quantum 

methods 71 

4.1.3. Avoiding gas-phase calculations in theoretical pKa predictions 81 

4.1.4. Theoretical calculations of stability constants and pKa values of metal complexes in 

solution: application to pyr idoxamine-copper(I I ) complexes and their biological 

implications in A G E inhibition 97 

4.2. Studies on the carbon acidities of PLP and P M P Schiff bases 111 

4 .2 .1 . Theoretical study on the distribution of atomic charges in the Schiff bases of 3-

hydroxypyridine-4-aldehyde and alanine. The effect of the protonation state of the pyridine 

and imine nitrogen atoms 113 

4.2.2. C - H Activation in Pyridoxal-5 '-phosphate Schiff Bases: The Role of the Imine 

Nitrogen. A Combined Experimental and Computational Study 123 

4.2.3. C - H Activation in Pyridoxal-5 '-phosphate and Pyridoxamine-5 ' -phosphate Schiff 

Bases: Effect of Metal Chelation. A Computat ional Study 137 

4.3. Studies on the catalyzed C a - C bond breaking and formation of PLP Schiff bases 149 

4 .3 .1 . Non-enzymat ic Pyridoxal 5 ' -Phosphate-catalyzed aldol condensation between amino 

acids and sugars. An inhibition mechanism of Advanced Glycation End-Products (AGEs) 

formation 151 

4.3.2. Extraordinaire decarboxylation rates catalyzed by modest ly efficient enzymes. A 

Q M / M M metadynamics study on the enzymatic and nonenzymat ic pyridoxal 5 ' -phosphate-

catalyzed decarboxylation of amino acids 187 

5. Discussion 227 

5.1. Theoretical pKa calculations 229 

5.2. PLP-catalyzed reactions 237 

6. Conclusions 249 

7. Bibliography 253 











1. Introduction 

1.1. Vitamin B6 

Vitamin B6 exists in three different molecular species, also known as vitamers, 

namely the alcoholic form (pyridoxine, PN) 1, the aldehydic form (pyridoxal, PL) 2, 
and the amino form (pyridoxamine, PM) 3 (Scheme 1). These species can be 

interconverted under physiological conditions, but it is worth to note that the 

biologically active forms are the pyridoxal 5'-phosphate (PLP) 4 and pyridoxamine 5'-

phosphate 5, which correspond to the phosphorylated derivatives at position 5' of 

pyridoxal and pyridoxamine (Scheme 1). 

Scheme 1. Molecular forms of Vitamin B6. 

1.2. Pyridoxal 5'-phosphate as a cofactor 

The spontaneous reactions involving the Ca bonds of amino acids in aqueous 

solution are amongst the slowest biological processes, some of which exhibit half-lifes 

of as much as 1.1 billion years (Radzicka1996, Snider2000, Wolfenden2001). This may 

question the possibility of life formation when considering the age of the Earth (~4.5 

billion years). However, taking into account the number of residues of each protein and 

the average number of proteins in the cell, such chemical lifetimes are necessary to 

prevent spontaneous degradation of proteins under physiological conditions 

(Wolfenden2001). 

On the other hand, it is also required that all biological reactions proceed 

coordinatedly for the correct operation of the cell. Therefore, all reactions should take 

place in similar timescales, typically ps to ms, which shows the importance of catalysis 

for life. Many biological catalysts, also known as enzymes, are proteins which provide a 

most favorable environment for a s pecific reaction to take place between specific 

reactants. Some enzymes require the presence of a m etal ion or an organic molecule, 

known as cofactor, to facilitate the catalysis. 

In the case of nitrogen metabolism, especially for amino acid reactions, the 

aldehydic form of Vitamin B6 or pyridoxal 5'-phosphate, PLP, is an essential enzyme 

cofactor. More than a hundred enzymes use PLP to catalyze transaminations, 

racemizations, a-decarboxylations, a- P- and y- replacements and retro aldol cleavages 

of amino acids amongst other reactions (Evangelopoulos1984; Christen1985). In these 
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1. Introduction 

enzymes, the PLP reacts with the s-amino group of a conserved lysine residue to form 

an imine adduct or Schiff base (Scheme 2). This PLP-Lys imine adduct, or Schiff base, 

is also commonly known as internal aldimine. 

PLP + amine Carbinolamine Imine / Schiff Base + H 2 O 

Scheme 2. Reaction mechanism of Schiff base formation between PLP and amines. 

The first step in the PLP-catalyzed reactions of amino acids in enzymes is a 

transimination reaction, which consists in the substitution of the lysine linkage of the 

internal aldimine to form a new Schiff base with the a-amino group of an amino acid 

(Scheme 3). This species is also known as external aldimine since it is formed with the 

incoming amino acid substrate in contraposition with the internal aldimine. 

PLP-amine + amine' Gem diamine PLP-amine' + amine 

Scheme 3. Reaction mechanism of transimination of a PLP Schiff base and two amines. 

It is worth to mention that the 5'-phosphate group does not participate in the 

catalytic process in PLP-dependent enzymes (Evangelopoulos1984, Christen1985). This 

group forms hydrogen bonds and/or salt bridges with polar and cationic groups of 

enzymatic residues or with the amide N-H hydrogens of the protein backbone. These 

interactions with the phosphate group also contribute to maintain the PLP cofactor in 

the correct position and orientation in the active site, in addition to the imine formed 

with the conserved lysine residue. However, the PLP Glycogen phosphorylase enzymes 

are an exception because the phosphate group of PLP acts as an acid-base catalyst 

(Evangelopoulos 1984, Livanova2006). 

Once the PLP-amino acid external aldimine is formed, the next step is the 

heterolytic cleavage of one of the bonds of the alpha carbon of the amino acid, Ca, 

which generates a negative charge on such atom. The formation of a carbanion at the 

Ca position is favoured by the stabilization of the negative charge in the transition state 

4 



1. Introduction 

across the n system of the PLP-amino acid aldimine (Elliot2004, Jansonius1998, 

Toney2005) (Scheme 4). 

|_ Carbanionic resonance forms Quinonoid 
resonance form 

Scheme 4. Schiff base formed between PLP and an amino acid and resonant forms 

resulting from proton abstraction at Ca. 

Dunathan (Dunathan1966) proposed, in a very elegant hypothesis, that the Ca-

bond to be cleaved should be oriented perpendicular to the pyridine ring of the Schiff 

base. This arrangement maximizes the overlap between the p orbital of the nascent 

negative charge at Ca and the p orbitals of the n system in the transition state. As a 

result, the delocalization of such negative charge across the n system is also maximized, 

the energy barrier is lowered and the formation of the carbanion accelerated. It is 

important to note that this feature also provides a simple and efficient mechanism of 

controlling the reaction specificity. The hypothesis proposed by Dunathan is widely 

supported by crystallographic studies. The X-ray structures of PLP-dependent enzymes 

show that each active site favours a s pecific conformation of the Ca substituents in 

which, with no e xception, the bond t hat remains perpendicular to the plane of the 

external aldimine is cleaved (Eliot2004, Toney2011, Fogle2011). Studies of Toney and 

co-workers (Griswold2012, Spies2007) showed that hyperconjugation of the Ca-H 

bond with the n system also reduces the activation barrier of proton abstraction due to a 

decrease of ~20% in the bond order in the ground state. 

Apart from stereoelectronic effects, the protonation state of the heteroatoms of 

the external aldimine contributes to the stabilization of the negative charge in the 

transition state and in the formed carbanion intermediate (Evangelopoulos1984, 

Christen1985, Eliot2004, Toney2011). In many PLP-dependent enzymes, the pyridine 

nitrogen interacts with the acidic group of an aspartate or glutamate residues. The 

difference between in the acidities of the carboxylic group and pyridine nitrogen 

guarantees the protonation of the last group. The protonated pyridine nitrogen causes 

the complete delocalization of the negative charge formed at Ca by the so-called 

"electron sink" effect (Scheme 4). As a consequence of this particular electronic 

distribution, this carbanionic species is also known as quinonoid intermediate (Scheme 

4), and exhibits a ch aracteristic UV-Vis spectrum, which is employed to detect its 

formation and monitor the course of PLP reactions (Evangelopoulos1984, 
Christen1985, Eliot2004) 

5 



1. Introduction 

1.3. Carbon acidity in the enzymatic reactions catalyzed by PLP 

Some of the most common reactions catalyzed by PLP as a cofactor are 

introduced in this section to emphasize the importance of proton transfer reactions 

involving carbon atoms in PLP-dependent enzymes. Pyridoxal 5'-phosphate catalyzes a 

broad diversity of amino acid reactions, all of which include at least one proton transfer 

involving the Ca or C4' atoms. 

Transamination is one of the most studied enzymatic reactions catalyzed by PLP 

(Christen1985, Eliot2004). The accepted reaction mechanism is shown in Scheme 5. 

After the formation of the external aldimine, the first half reaction is initiated by proton 

abstraction at the Ca carbon, generating the quinonoid intermediate. Then, the reaction 

evolves via protonation at C4' to produce a new class of Schiff base named ketimine, 

which is hydrolyzed by a water molecule yielding an a-keto acid and the cofactor in the 

amine form, PMP. The second half of the reaction proceeds exactly oppositely. That is, 

a new ketimine is formed between PMP and a different a-keto acid and the C4' carbon 

is deprotonated. Eventually, reprotonation at Ca results in the aldimine form, which is 

hydrolyzed to regenerate the PLP cofactor and produce a new a-amino acid (Scheme 5). 

Note that such apparently complex mechanism is required to break the Ca-N 

bond, which cannot be cleaved in a single step by the same mechanism as the rest of the 

Ca bonds since the alpha nitrogen constitutes the imine linkage to the cofactor. 

External aldimine Quinonoid Ketimine 

Scheme 5. Reaction mechanism of PLP catalyzed transamination. 

Racemization reactions are similar to transaminations as both proceed via acid-

base reactions involving the carbon atoms. The proposed reaction mechanism for 

Alanine racemase (AlaR) from Bacillus stearothermophillus is shown in Scheme 6 

6 



1. Introduction 

(Sun1999). Once the external aldimine is formed with L-alanine, the phenoxide anion of 

a tyrosine residue abstracts the Ca proton from the si-face yielding the carbanion 

intermediate. In the next step, the protonated s-amine group of a lysine residue 

reprotonates the Ca carbon on the re-face yielding the D-alanine aldimine (Scheme 6). 

L-Ala aldimine Carbanionic intermediate D-Ala aldimine 

Scheme 6. Racemization mechanism of PLP-dependent Alanine racemase. 

Accoding to X-ray structures (Shaw1997, LeMagueres2005), the active site of 

AlaR exhibits a singularity amongst PLP-dependent enzymes because the pyridine 

nitrogen atom interacts with the positive guanidinium group of an arginine residue. 

Therefore, the pyridine nitrogen remains unprotonated, which avoids the electron sink 

effect and hinders the formation of the quinonoid intermediate in this reaction. In fact, 

spectroscopic analyses of alanine racemization by AlaR proved the absence of this 

resonant form during the course of the reaction (Spies2004). The most likely 

explanation for the prevention of the delocalization of the negative charge from the Ca 

carbon to the pyridine nitrogen is that by destabilizing the intermediate, its lifetime is 

reduced, which drastically reduces the possibility of side-reactions such as protonation 

at the C4' atom (Spies2004). 

The reaction mechanism of decarboxylation in Ornithine decarboxylase 

(Jackson2000, Jackson2003) is depicted in Scheme 7. As in other PLP-dependent 

enzymes, the first steps of the reaction consist in the formation of the external aldimine. 

During the Schiff base formation reaction, the carboxylate group of the ornithine 

substrate is isolated from the water solvent in a hydrophobic pocket, which promotes 

the decarboxylation step (Jackson2003). Diaminopimelate decarboxylase catalyzes the 

decarboxylation of D,L-diaminopimelate in a completely equivalent mechanism to that 

shown for Ornithine decarboxylase in Scheme 7. However, it is very interesting to note 

that the carboxylate group in the PLP-diaminopimelate aldimine is not buried in a 

hydrophobic environment inside the active site but, contrarily, it is oriented directly 

towards the solvent. Furthermore, what is really unpredictable is that both enzymes 

exhibit similar reaction turnover numbers (kcat) as well as similar catalytic efficiency 

(kcat/KM) (Fogle2011). The kinetic data of these enzymes, together with the 

conformation of the carboxylate groups in their respective active sties indicates that the 

catalytic origins cannot be exclusively attributed to destabilization of the negative 

charge in the ground state by an hydrophobic environment in the active site 

(Fogle2011). 

7 



1. Introduction 

Nevertheless, in both decarboxylase enzymes, the arrangement of the 

carboxylate group in the active site labilizes the Ca-COO - bond by being oriented 

perpendicularly to the n system (Jackson2000, Jackson2003, Fogle2011). Once the C O 2 

is eliminated, an acidic residue transfers a proton to the Ca atom to yield the aldimine 

product (Scheme 7). 

NH3+ NH3+ Enz NH3+ Enz 

H+ H H+ 
Ornithine aldimine Quinonoid Putrescine aldimine 

Scheme 7. Reaction mechanism of PLP-depdendent Ornithine decarboxylase. 

The last sort of PLP-catalyzed reactions at the a carbon of amino acids are a-

eliminations and replacements (Eliot2004, Toney2011). Serine hydroxymethyl 

transferase catalyzes a reversible retro-aldol reaction between serine and glycine. To 

date there is still controversy about the reaction mechanism of the catalyzed reaction 

(Szebenyi2004, Schirch2005). A simple retro-aldol mechanism is shown in Scheme 8, 

the retro aldol cleavage is initiated by deprotonation of the ß-hydroxyl group of serine 

in the aldimine adduct, which promotes the elimination of Cß in the form of 

formaldehyde and the formation of the quinonoid intermediate. In the next step, the 

quinonoid intermediate is protonated at the Ca atom, yielding a glycine aldimine which 

is eventually hydrolyzed. 

Serine aldimine Quinonoid Glycine aldimine 

Scheme 8. Proposed retro-aldol reaction or serine aldimine. 

Crystallographic structures support an alternative reaction mechanism that 

involves the participation of tetrahydrofolate as a carrier between serine and glycine 

(Szebenyi2004, Schirch2005) (Scheme 9). Instead of a retro-aldol cleavage, the reaction 

starts by a nucleophilic substitution on C P by the attack of the tetrahydrofolate co-

cofactor, which causes the cleavage of the Ca-CP bond and generates a quinonoid 

intermediate. Subsequently, the quinonoid intermediate is protonated at Ca to yield a 

glycine aldimine (Scheme 9). 

8 



1. Introduction 

Serine aldimine Quinonoid Quinonoid Glycine aldimine 

Scheme 9. Central steps in the mechanism of a-elimination and replacement catalyzed 

by Serine hydroxymethyltransferase. The BH and B2H labels stand for enzyme residues 

that act as acid catalysts in the course of the reaction, which are still unidentified. 

Additionally, PLP-dependent enzymes also catalyze reactions at P- and y-

carbons of amino acids. Tryptophan syntase catalyzes serine conversion to tryptophan 

via a P-elimination and replacement reaction (Miles2001). In the first step, the a-carbon 

is deprotonated by a lysine residue to generate a quinonoid intermediate (Scheme 10). 

Subsequently, the protonation of the P-hydroxyl group of serine favours its elimination, 

yielding an aminoacrylate aldimine. The Michael-type addition of an indol group to the 

CP carbon generates a new quinonoid intermediate which is reprotonated at Ca to yield 

the tryptophan aldimine (Scheme 10). 

Serine aldimine Quinonoid Aminoacrylate aldimine 

Tryptophan aldimine Quinonoid Quinonoid 

Scheme 10. Reaction mechanism of ß-elimination and replacement catalyzed by 
Tryptophan syntase. 
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1. Introduction 

The reaction mechanism of y-elimination and replacement in Cystathionine y-

syntase (Eliot2004, Brzovic1990) is shown in Scheme 11. After the formation of the 

external aldimine, a lysine residue deprotonates the Ca carbon. Then, as in the 

transamination reaction, a ketimine Schiff base results from protonation of the 

quinonoid intermediate at the C4' carbon. This species forms an a, P-unsaturated imine 

by proton abstraction at CP, in which the Cy substituent is simultaneously eliminated. 

The unsaturated ketimine undergoes Michael addition at Cy to complete the replacement 

reaction. Subsequent protonation at CP regenerates the ketimine, which later evolves to 

a quinonoid intermediate by deprotonation of the C4' carbon. Eventually, the aldimine 

product results from protonation at Ca atom. 

O-Succinylhomoserine aldimine Quinonoid Ketimine Ketimine 

41 

Lys Lys Lys Enz 

Cystathionine aldimine Qui no noid Ketimine Enamine 

Scheme 11. Reaction mechanism of y-elimination and replacement catalyzed by 

Cystathionine y-syntase. 
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1. Introduction 

1.4. Acidity of PLP Schiff bases in aqueous solution 

As illustrated in the previous section, the protonation state of the external 

aldimine Schiff bases strongly affects the stabilization of the carbanion intermediates 

and their evolution towards protonation at the Ca or C4' carbons. Therefore, knowledge 

of the acid-base chemistry of PLP and the Schiff bases formed with amino acids is 

essential to understand the catalysis in enzymes. Because of the fact that PLP-dependent 

enzymes exhibit active sites with numerous polar and charged residues, the reactivity of 

PLP Schiff bases in aqueous is significantly representative of the enzymatic chemistry. 

The acid-base chemistry in aqueous solution of pyridoxal, pyridoxamine and 

their phosphorylated counterparts has been extensively studied (Evangelopoulos1984, 

Christen1985,Vilanova2004, Chan-Huot2010). Since PL, PM, PLP and PMP have 

several protonable groups, each vitamer exhibits several tautomeric equilibria in a wide 

pH range. 

For example, the dissociation and tautomeric equilibria for PMP are depicted in 

Scheme 12. The first macroscopic pK a is assigned to the first deprotonation of the 

phosphoric acid group since at pH ~2 the phosphate group bears a negative charge. 

Therefore, its first pK a is estimated to be inferior to 2.5. Next, and considering the most 

abundant tautomers, the second acid dissociation corresponds to the phenol group with a 

pK a value of 3.40. This group is surprisingly acid in comparison with the 3-

hydroxypyridine phenol (pK a=8.75), which is due to the stabilization of the phenoxide 

anion by the protonated pyridine nitrogen and by hydrogen bond i nteraction with the 

protonated amino group. The third ionization of PMP is assigned to the second 

deprotonation of the phosphate group (pK a=5.76). The two groups that are deprotonated 

under basic pH conditions are the pyridine and amine groups, with pKa values of 8.53 

and 10.55 respectively (Scheme 12). It is worth noting that the tautomers which present 

ionized pyridinium and phenoxide groups are favoured in aqueous solution, while in 

non polar solvents the protonated phenol and deprotonated pyridine nitrogen tautomers 

are more stable (Chan-Huot2010). 

Except for the deprotonation of the amine group, the exchange of this 

functionality for an aldehyde group at C4' has little effect on the acid-base chemistry of 

PLP with respect to PMP (Christen1985,Vilanova2004,Vazquez1989). The first pKa 

value of the phosphate group is estimated to be less than 2.5 units. The phenol group 

shows a pKa value of 3.28, which is very similar to that found for PMP even 

considering that phenoxide anion cannot be stabilized by hydrogen bonding interactions 

with the aldehyde group. The second deprotonation of the phosphate group presents a 

pK a value of 6.1 units, and the last pK a corresponds to the pyridine nitrogen with a 

value of 8.33. Similarly to PMP, the zwitterionic and neutral tautomers are respectively 

more abundant in aqueous solution and in non polar solvents. Despite all similarities 

with PMP, the aldehyde PLP form exhibits hydrates at low pH in aqueous solution 

resulting from water addition to the C4' carbon (Chang-Huot2010). 
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Scheme 12. Acid base and tautomeric equilibria for PMP. 

Some dissociation constants vary several pKa units when the Schiff bases are 

formed (Christen1985, Vazquez1989, Vazquez1990, Vazquez1991, Vazquez1992, 

Chang-Huot2010). The acid-base behaviour of the 5'-phosphate group remain almost 

invariant in relation to PMP or PLP after Schiff base formation (Scheme 13). In fact, the 

first dissociation corresponds to the phosphate group with an acidity constant lower than 

pKa 2, while pKa of the second proton of the phosphate group is 5-6. On the other hand 

when Schiff bases are formed between PLP and amino acids, a new dissociation 

corresponding to the carboxylic acid is measured with pKa ~2. The phenol and pyridine 

groups show pKa values of 2.8 and 6.5 respectively, which shows an increase of acidity 

in relation to their PMP and PLP counterparts whereas the iminium group, with pKa 11¬ 

12 is more basic than its equivalent amine in PMP (Scheme 13). 
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Scheme 13. Acid-base and taumerization reactions for Schiff bases of PLP and amino 

acids. 

The main tautomeric equilibrium in pyridoxal and pyridoxamine is the proton 

exchange between phenolic oxygen and pyridine nitrogen. However, the PLP Schiff 

bases present an additional sort of tautomerism in which the proton of the O3' phenol 

oxygen is exchanged with the imine nitrogen (Scheme 13, Scheme 14). This 

equilibrium is sensitive to the polarity of the environment and to hydrogen bond 

microsolvation (Chang-Huot2010). The predominant tautomer in aqueous solution, and 

other polar solvents that form hydrogen bonds with the phenol oxygen, show an 

unprotonated phenoxyde anion and a protonated iminium cation groups (ketoenamine 

tautomers), while in non polar solvents the most abundant form has a protonated phenol 
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oxygen and an unprotonated imine nitrogen (enolimine tautomers) (Chang-Huot2010, 

Christen1985) (Scheme 14). 

R' R' 

N 

Enolimine Ketoenamine 

Scheme 14. Tautomeric forms of Schiff bases formed bewteen PLP and amines. 

N 

R R R 

A most interesting acid base behaviour of the PLP and PMP Schiff bases in 

relation to their catalysis, involves the Ca and C4' atoms. The experimental 

determination of carbon acidities is complicated because of the weak acidities of C-H 

hydrogens, which typically exhibit pK a values larger than 20 i n aqueous solution. 

However, the corresponding carbon acidities of several amino acids, peptides and other 

related compounds of biological relevance have been measured by NMR methods 

(Rios1997, Rios2000, Rios2001, Richard2002, Rios2002, Toth2007, Crugeiras2008, 

Crugeiras2009, Richard2009, Crugeiras2011). 

The C-H hydrogen of anionic glycine shows pK a 34 in aqueous solution, while 

protonation of the amino group to yield zwitterionic glycine increases the carbon acidity 

to pK a 29 because of the electrostatic stabilization of the carbanion by the ammonium 

cation (Rios2000, Rios2002) (Scheme 15). However, solvation of the protonated amine 

by water reduces the positive charge on the nitrogen atom and the electrostatic 

stabilization is not completely achieved. In fact, full methylation of the amine nitrogen 

increases the carbon acidity by a factor of 10 (pK a~27) with respect to the protonated 

amine (Rios2002) (Scheme 15) 

pKa~27 pK a~18 

Scheme 15. Substituent effects on the Ca acidity of glycine in aqueous solution. 

Once the proton is eliminated from Ca, the resulting negative charge is 

delocalized via n-n delocalization to the carboxylate neighbour yielding an enolate 

anion. Therefore, protonation state of this group has also a significant effect on the 

carbon acidity of Ca, which is exemplified by the reduction of 8-9 units in the pKa in 
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pK a ~17 pK a ~11 pK a ~6 

Scheme 16. Carbon acidities for different protonation states of 5'-deoxypyridoxal and 

glycine Schiff bases. 

Nevertheless, much less research has been carried out to report the carbon 

acidities of pyridoxal Schiff bases in enzymatic media. Toney and co-workers obtained 

the reaction free energy profile for the racemization process in Alanine racemase of 

Bacillus stearothermophilus (Spies2004). As explained, the pyridine nitrogen of the 

Schiff base remains deprotonated in this enzyme, dramatically decreasing its electron-

sink stabilizing properties. Accordingly, no qu inonoid resonance form is detected 

spectroscopically in this enzyme (Sun1999, Spies2004). The free energy of 

deprotonation of Ca in the active site was estimated with a wide uncertainty to be 

between 4 and 12 kcal/mol. In this reaction, the proton is removed from Ca by the 

phenoxide anion of Tyr265', whose estimated pK a is 7.2. From these values, the pK a 

value of Ca in the active site is 10-16 (Sun1999, Spies2004). 

15 

the methyl esters of glycine (Rios2002). The effects of Schiff base formation on the 

carbon acidity of Ca were reported by Richard and co-workers (Rios2001). Imine 

formation between glycine methyl ester and acetone increases the carbon acidity of Ca 

by a 10 factor (Scheme 15). A later study illustrated the power of 5'-deoxypyridoxal in 

enhancing the carbon acidity of glycine when forming Schiff bases (Toth2007). As 

shown in Scheme 16, the pKa of Ca were reported only for three protonation states in 

aqueous solution. With respect to glycine zwitterion (i.e. pK a ~29), Schiff base 

formation with 5'-deoxypyridoxal reduces the pK a of Ca by 12 uni ts in the 

ketoenamine pyridinium form. However, further protonation of the Schiff base 

heteroatoms leads to pK a values for the Ca atom which are typical of moderately strong 

acids. 
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1.5. Reactions catalyzed by PLP in the presence of metal ions 

Pyridoxal, pyridoxamine and their phosphorylated derivatives form stable 

coordination complexes with a number of divalent and trivalent metals like Cu(II), 

Zn(II), Ni(II), Mn(II) and Al(III) amongst others (Leussing1986) (Scheme 17). 

Similarly, the Schiff bases of PLP and PMP chelate metal ions but acting as tridentate 

ligands (Leussing1986, Christen1985). In these complexes, the metal ion replaces the 

proton that is shared by the imine and phenol groups in the uncomplexed Schiff bases 

(Scheme 17). 
O O 

Scheme 17. Pyridoxamine (A), Pyridoxal 5'-phosphate (B), Pyridoxal 5'-phosphate 

Schiff base (C) and Pyridoxamine 5'-phosphate Schiff base (D) metal complexes. 

Despite the absence of metal complexes in PLP-dependent enzymes, the 

complexed Schiff bases are of high interest as model systems due to the similar 

reactivity with the Schiff bases in the enzyme active sites (Christen1985, Leussing1986, 

Martell1989). From a practical perspective, the use of metal ions is convenient in the 

study of PLP-catalyzed reactions for various reasons. Firstly, the complexation of metal 

ions stabilizes the Schiff bases and displaces their equilibrium of formation. As a result, 

the concentration of Schiff base is increased in solution facilitating their detection and 

monitoring during the catalysis on amino acids (Martell1989). Secondly, the stability of 

the Schiff base complexes also increases in a broad range of pH, which allows the study 

of the catalysis for a richer variety of protonation states (Martell1989). Finally, the 

interaction of the metal ion modifies the spectroscopic properties of the Schiff base 

ligands, which facilitates or makes possible the monitoring of some reactions 

(Weng1983). 

The transimination reaction kinetics of the PLP-ethylamine Schiff base with 

alanine or aspartate in the presence of Zn(II) was studied by Weng and Leussing 

(Weng1983). Their results show that either the phosphate or the phenol groups are 

intramolecular catalysts of the proton transfer between the amino groups in the gem 

diamine intermediate as the presence of buffer catalysts in solution does not modify the 

kinetics of the reaction. However, the reported rate constants do not clarify whether the 

Zn(II) ion catalyzes the transimination reaction because the experiments were 

deliberately design to minimize the presence of PLP-ethylamine-Zn(II) complexes. 

(Weng1983). 

Concerning the Ca-H activation as a consequence of metal quelation, significant 

fraction of the PLP-alanine Schiff base complexed with Al(III) becomes deprotonated in 
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solution to the point that the carbanionic intermediates are measurable by NMR 

methods (Martell1989). This result shows a significant activation of the Ca by Al(III), 

as well as the stabilization of the carbanionic intermediates with respect to protonation 

by water. In addition, equal concentrations of PLP-alanine and PMP-pyruvate Schiff 

bases were measured at equilibrium when the PMP-pyruvate-Al(III) complexes were 

used as starting reactants, which shows that chelation of Al(III) also activates the C4'-H 

hydrogens (Martell1984). 

It is important to note that the degree of activation of the Schiff base ligand 

depends on the specific complexed metal ion. For example, the completely deprotonated 

Schiff bases of PMP and pyruvate complexed with Cu(II) undergo spontaneous 

transamination (Leussing1986). However, in the Zn(II) complexes, the reaction is only 

spontaneous on condition that the pyridine nitrogen becomes protonated 

(Leussing1986). Additionally, the monoprotonated PMP-pyruvate-Zn(II) complex is 

more reactive than the deprotonated free PMP-pyruvate Schiff base but less reactive 

than the monoprotonated free PMP-pyruvate Schiff base (Leussing1986). Therefore, 

apparently, complexation of Zn(II) does not catalyze transamination due to real ligand 

activation but due to an increase in the concentration of the Schiff base in solution. 

Nevertheless, the experiments of Zabinski and Toney (Zabinski2001) show that 

the rates of the Ca deprotonation step in the complexes of Al(III) are somewhat slower, 

approximately 0.8-fold, than those in the free Schiff bases. Accordingly, the apparent 

reactivity enhancement in the metal complexes should only be attributed to an increase 

in the concentration of the Schiff bases rather than to real ligand activation. 

As depicted in Secheme 17, the amino acid carboxyl group binds the metal ion 

together with the imine and phenol groups. As a result, the Ca-COO bond is fixed in the 

molecular plane of the imine and pyridine moieties. Therefore, decarboxylation 

reactions are prevented because in a hypothetical cleavage of the Ca-COO bond, the 

negative charge could not be stabilized by delocalization across the n system. 

Additionally, the negative charge of the carboxyl group is electrostatically stabilized on 

the metal ion by the coordinative interaction, which further prevents the loss of C O 2 

(Martell1989, Zabinski2001). On the other hand, the rotation of the carboxyl group in 

the Schiff base complexes disposes the amino acid CP of the sidechain perpendicularly 

to the molecular plane and favours retro-aldol reactions in the CP hydroxylated amino 

acids such as serine. 
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1.6. Computational studies on PLP-catalyzed reactions. 

The chemical reactivity PLP Schiff bases in aqueous solution and in enzymes 

has been studied from different computational approaches. The tautomerism between 

the phenol and pyridine groups in PLP and PLP-related species was studied in aqueous 

solution and non pol ar solvents (Kiruba2003). The combination of DFT/B3LYP and 

MP2 methods with discrete and continuum solvent approaches provided the correct 

tautomeric behaviour in polar and non pol ar solvents with respect to the experimental 

results. Accordingly, the neutral species resulted more stable in non pol ar solvents 

whereas the zwitterionic ones are predominant in aqueous solution. It is worth to note 

that the hybrid discrete-continuum solvation approach is required to obtain the correct 

tautomeric energies. 

The mechanisms of Schiff base formation between pyridoxal and amines and 

transimination between methylamine and the PLP-methylamine Schiff base were 

computationally studied in aqueous solution with Density Functional Theory methods 

(Salva2001, Salva2002, Salva2003, Salva2004). Firstly, these works highlight the 

importance of the protonation state of PLP in aqueous solution to promote the Schiff 

base formation. Secondly, a mechanistic implication, with importance in enzymatic 

reactivity, is that reactive water molecules are required during the transimination, Schiff 

base formation and hydrolysis to catalyze the proton transfer reactions between the 

attacking nucleophile and leaving groups. 

A QM/MM (ONIOM) study of the Schiff base formation in the active site of 

Ornithine decarboxylase showed that the reaction mechanism is analogous to the 

reaction in solution (Oliveira2011). In the active site, the thiol group of a cysteine 

residue, instead of a water molecule, acts as an acid/base catalyst transferring protons 

between the attacking amine nucleophile and the hydroxyl group of the carbinolamine 

intermediate (Oliveira2011). These results indicate that PLP-dependent enzymes also 

catalyze the Schiff base formation and hydrolysis in addition to transformations of the 

amino acid substrate. A cluster model of the active site of Ornithine decarboxylase was 

used for the study of the transimination reaction with Density Functional Theory 

calculations (Cerqueira2011). According to the obtained free energy profiles for 

different reaction pathways, the most favourable mechanism involves a proton exchange 

reaction between the incoming and leaving amino groups which is catalyzed by a water 

molecule. This study highlights the usefulness of investigating model reactions of PLP 

in aqueous solution. 

The decarboxylation of different Schiff bases formed between amino acids and 

glyoxal or pyridoxal were studied in gas phase by using DFT/B3LYP and MP2 methods 

(Bach1997, Bach1999). An important conclusion of these studies is that the transition 

state is stabilized by the iminium cation adjacent to the developing charge at Ca. Later, 

PM3 semiempirical studies were carried out on the decarboxylation reactions of the 

PLP-2-aminoisobutyrate in gas phase, in solution and in a model active site of 

Dialkylglycine decarboxylase (Toney2001). These computations also support that the 

stabilization of the transition state by the iminium cation is larger than that of the 

pyridine ring. 
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Lin and Gao (Lin2011, Lin2010) studied the decarboxylation of L-Dopa 

catalyzed by PLP in the active site of L-Dopa decarboxylase and in aqueous solution for 

the ketoamine and enolimine tautomers of the PLP-Dopa Schiff base. Their results 

suggest that in the active site, as well as in aqueous solution, the enolimine species is 

the most abundant tautomer (Lin2010). In addition, the enolimine tautomer reduces the 

free energy barrier of the deprotonation reaction in a l arger extent than the ketoamine 

tautomer. 

The racemization of alanine catalyzed by PLP in aqueous solution and in the 

active site of Alanine racemase was studied by QM/MM simulations. From umbrella 

sampling simulations and weighted histogram analysis techniques, a free energy barrier 

of 18.7 kcal/mol was obtained for the deprotonation of Ca by the phenoxyde group of 

Tyr265' (Major2006, Major2006/2). The calculated reaction free energy in the 

simulations was 6.6 kcal/mol. From this result, the pK a of the Ca carbon in the PLP-Ala 

Schiff base was estimated to be 12.2 (Major2006/2). In these studies, the carbon acidity 

enhancement in the non-protonated pyridine nitrogen aldimines is ascribed to 

stabilization of the carbanion intermediate by specific interactions between the imine 

moiety and water molecules in aqueous solution or specific groups in the enzymatic 

active site (Major2006, Major2006/2). 

1.7. Vitamin B6 and the inhibition of glycation reactions 

Some biomolecules, such as proteins and lipids amongst others, require the 

binding of glycans, which chemically are oligosaccharides or polysaccharides, to 

accomplish their function. The binding reactions, or glycosylations, are controlled and 

catalyzed by specific enzymes in the cellular environment to avoid the indiscriminate 

modification of biomolecules. However, abnormally elevated concentrations of 

reducing sugars or reactive carbonyl species (RCS) lead to the non enzymatic 

glycosylation, also known as glycation, of amino groups of proteins, 

aminophospholipids and nucleic acids (Rabbani2012, Li2008, Miyazawa2012). 

The resulting product from the condensation between amino groups and sugars 

is a Schiff base adduct which may undergo an isomerization reaction yielding an 

Amadori compound or 1-imine-1-ketose species (Maillard1912) (Scheme 18). The 

inconveniences of uncontrolled glycation reactions arise from the high susceptibility of 

Schiff bases and Amadori compounds to oxidation reactions, which entail the 

degradation of the biomolecules to which are linked (Thornalley1984, Rabbani2012, 

Li2008, Miyazawa2012). Ultimately, Schiff bases and Amadori compounds degrade to 

advanced glycation and lipoxidation end-products, AGEs and ALEs respectively 

(Scheme 18). 

Apart from the presence of sugars and reactive carbonyl compounds, some 

species such as hydroxyl, hydroxyperoxyl radicals (i.e OH- and HOO-), also known as 

reactive oxygen species (ROS), accelerate the degradation of glycated biomolecules due 

to their oxidizing potential. In addition, trace concentrations of free transition metals 

with high redox activity such as the pairs Fe(III)/Fe(II) and Cu(II)/Cu(I) catalyze the 
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formation of ROS in the Fenton reaction and, therefore, cause the degradation of 

glycated biomolecules as well (Kepp2012, Jomova2010) (Scheme 18). 

AGEs/ALEs 

ROS + RCS 

Inhibit ion mechanisms of AGEs/ALEs format ion by PLPand PMP: 

* PLP/PMPSchiff base protect ion 

ROS scavenging 

*k Metal chelation 

* RCS scavenging 

Scheme 18.Formation routes of advanced glycation and lipoxidation end-products 

(AGEs/ALEs). The labels mark the compounds that react with PMP or PLP inhibiting 

the formation of AGEs and ALEs. 

From the medical perspective, glycation of biomolecules and especially 

formation of AGEs and ALEs have been related to a number of medical conditions 

comprising ageing, diabetes, atherosclerosis, tissue degradation, inflammatory diseases 

(Brownlee1992, Kume1995, Bailey1998, Baynes1999, Grillo2008, Ramasamy2005) 

and neurodegenerative illnesses such as Alzheimer's and Parkinson's diseases 

(Hoyer2002, Miranda2010). 

Vitamin B6 exhibits high inhibitory activity of AGE and ALE formation as it 

reacts and neutralizes the activity of the compounds responsible of the different routes 

of glycation and degradation of biomolecules. On one hand, the pyridoxamine form 

(PM) is highly reactive towards condensation with carbonyl groups of reducing sugars 

and RCS, yielding stable Schiff bases and reducing the initial steps of glycation 

(Adrover2005, Adrover2007, Adrover2009, Ortega-Castro2010, Voziyan2002, 

Voziyan2005). The aldehyde form of vitamin B6, PLP, also forms stable Schiff bases 

but with the free amino groups of proteins and lipids, which contributes to prevent their 

glycation by reducing sugars and RCS (Caldes2011) (Scheme 18). 
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Pyridoxamine also protects the carbonyl groups of Amadori compounds by 

forming Schiff bases once the glycation reactions have been initiated, which impedes 

later oxidation reactions (Voziyan2002, Voziyan2005). On other hand, pyridoxamine 

also inhibits the oxidation of glycation products by scavenging free ROS, which 

neutralizes the reactive radicals and yields a less reactive PM- radical stabilized by 

resonance in the pyridine ring (Voziyan2005). The last inhibition route of AGE/ALE 

formation by PM consists in the reduction of reactive radical species by chelation of the 

active redox metal ions that catalyze their formation (Voziyan2005, Adrover2008, 

Ortega-Castro2009, Ortega-Castro2012) (Scheme 18). 

21 









2. Methodology 

2.1. The Schrödinger Equation 

In quantum mechanics, the state of a system is described by its associated wave 

function O. Given a molecular system of N electrons and M nuclei, its wave function 

and energy correspond to the solutions of the Schrödinger equation. According to the 

non-relativistic time-independent formulation, the Schrödinger equation adopts the form 

H 0 = EO [1] 

where H is the Hamiltonian operator associated to the energy, E, of the molecular 

system. In atomic units, where the charge and mass of the electron, m and e, the reduced 

Planck constant, h, and the Coulomb constant, 1/4rcs0, are unity, His 

N i M i N M 7 N N i M M 7 7 

h = -Z 2 v ? - Z ^ v
 2 < -ZZ f + Z Z - + Z Z [ 2 ] 

being riA the distance between the ith electron and the Ath nucleus, ry the distance 

between the ith andyth electrons, RAB the distance between the Ath and Bth nuclei, and 

ZA and MA the charge and mass of the Ath nucleus. The first two terms of [2] are the 

operators that take into account the kinetic energies of the electrons and the nuclei. The 

third operator corresponds to the Coulomb attraction between nuclei and electrons, 

while the fourth and fifth terms are the operators that correspond to the electron-electron 

and nuclei-nuclei Coulomb repulsions. 

2.2. The Born-Oppenheimer Approximation 

Since nuclei are significantly heavier than electrons, the latter move much faster 

than the nuclei. Thus a good approximation is to consider that electrons move around 

the fixed nuclei and that readapt instantaneously to their displacements. Accordingly, 

the kinetic energy of the nuclei, represented by the second term of [2], can be neglected. 

In addition, the last term of equation [2], which represents the nuclei-nuclei electrostatic 

repulsion, is constant since the nuclei are considered to be fixed. Therefore, the total 

molecular Hamiltonian operator is reduced to the electronic Hamiltonian, Hei, 

N 1 N M Z N N 1 M M Z Z 

i=1
 2

 i=1 A=1 'iA i=1 j >1 Uj A=1 B >1 t^AB 

Also, since the movement of nuclei and electrons are assumed to be decoupled, 

the total wave function of the system 0({r;-, RA}) can be expressed as a product of a 

wave function describing the motion and interaction of electrons in the field of the fixed 
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nuclei, O e l({r ;-},{ RA}), and a wave function describing the motion and interaction of 

the nuclei in the average field of the electrons, O n u c ({R A }) . 

O({r, R A } ) = Oel ({r } ,{RA})0 n u c ( { R A } ) [4] 

The electronic part of the total wave function, also known as electronic wave 

function, O e l , is the eigenfunction of the electronic Hamiltonian given by [3] and the 

solution of the electronic Schrödinger equation 

HHel Oel = Eel Oel [5] 

The eigenvalues of the electronic Hamiltonian, which are also the solutions of 

the electronic Schrödinger equation, are the electronic energies, Eei. Accordingly, the 

total energy for a given set of nuclear coordinates is the summation of the electronic 

energy and the nuclear repulsion for such configuration 

M M Z Z 

Etot = Eel

 ZfB [6] 
A=1 B>1 RAB 

Thus both the electronic energy and wave function depend explicitly on the 

electronic coordinates but parametrically on the nuclear coordinates. That is, the 

electronic Schrödinger equation has to be solved to obtain the specific O e l and Eel that 

adapt best to the given arrangement of the nuclei. 

2.3. Pauli Exclusion Principle and Slater determinants 

A complete description of the electrons in a molecular system requires that the 

electronic wave function fulfils the antisymmetry principle, which states that a m any 

electron wave function must be antisymmetric with respect to the interchange of the 

coordinates (both space and spin) of any two electrons 

0 ( x l v . . , x x x } x N ) = - 0 ( x l v . . , x } x x x N ) [7] 

where xi stands for the spatial plus the spin coordinates of the ith electron. Since the 

electronic Hamiltonian only depends on t he spatial electron coordinates, the wave 

function solutions of the electronic Schrodinger equation, O e l , only depend on the 

spatial electron coordinates [4]. The spin coordinates, w, are intrinsic forms of angular 

momentum of, amongst other particles, fundamental particles such as electrons, which 

arise in the context of relativistic quantum mechanics. Therefore, the spin functions 

a(w) and P(w) are introduced a posteriori in the non-relativistic formulation to describe 
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the correct behaviour of electrons. It should be noted that the a(w) and B(w) spin 

functions are orthonormal. 

J dwa*(w)a(w) =J dwB*(w)B(w) =1 [8] 

J dw a *(w) B(w) =J dw^ * (w)a(w) =0 [9] 

The electronic Schrodinger equation [5] cannot be solved analytically for 

systems constituted by more than one electron. In practice, many electron wave 

functions are expressed in terms of many single electron wave functions. Such functions 

have to describe the spatial distribution and the spin state of the electron, and are known 

as spin orbitals, Zi(xd, where xi is the set of spatial plus spin coordinates. An easy way 

to build spin orbitals is by multiplying spatial orbitals, y/i(ri), by one of the two spin 

functions a(a) or J3(a). 

When many electron wave functions are constructed, each electron is described 

by a spin orbital. However, not every combination of spin orbitals is valid due to the 

restriction given by [7]. A Slater determinant is a form of arranging the spin orbitals in 

such a way that all the electrons are described by all spin orbitals 

xi, X2,..., xN) = (N! ) - 1 / 2 = |Y) [10] 

1/2 

where (N!) - is a normalization constant. In [10] the row elements only contain the 

coordinates of a single electron and the column elements only contain a single spin 

orbital. The interchange of coordinates of two electrons, which involves the interchange 

of two rows, changes the sign of the determinant. In addition, a Slater determinant 

fulfils the Pauli Exclusion Principle since if two electrons are described by the same 

spin orbital, two columns will be equal and the wave function will be zero. Therefore, in 

a Slater determinant the motion of electrons with parallel spin is correlated, which is 

known as exchange correlation. However, a Slater determinant in which two columns 

only differ in the spin coordinate is different than zero, which involves that there is a 

probability greater than zero of finding two electrons simultaneously in the same region 

of space and that the motion of electrons with antiparallel spin is not correlated. 
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2.4. The Hartree-Fock Approximation 

The Hartree-Fock method provides an approximate solution to the molecular 

wave function by considering a single Slater determinant. 

O«|Y 0 ) [11] 

Given a set of K spin orbitals, the Hartree-Fock wave function of an N electron 

system is a determinant formed by the N spin orbitals with the lowest energies. In the 

following discussion, the lowest energy spin orbitals, also occupied spin orbitals, will be 

labelled by the indices a, b, c... and the labels r, s, t... will designate the remaining spin 

orbitals, known as virtual spin orbitals. Thus the Hartree-Fock method provides the best 

variational approximation to the ground state given by a single determinant. It should be 

noted that as any Slater determinant, the Hartree-Fock wave function fulfils the 

antisymmetry requirements but it does not describe the correlation in the motion of 

electrons with opposite spins. However, this approximation is central in quantum 

chemistry as it constitutes the starting point of more accurate approximations. 

The application of the electronic Schrödinger equation [5] provides the solution 

of the Hartree-Fock wave function Y0 and the expectation value of the ground state 

energy, E o , within the approximation. 

H/| ¥ „ ) = E o | ¥ „ ) [12] 

¥ o | H i ¥ „ } = Eo [13] 

Considering the form of the electronic Hamiltonian operator [3], equation [13] 

can be expressed as 

N i N N 

E0 =(4>0| H\%) = 2>|h |a) + - Z E H M [14] 
a

 2
 a b 

where h is an operator, h, formed by the one electron kinetic energy and the Coulomb 

electron-nuclei attraction operators of [3] 

N i N M Z 
h=-Z 2 v 2 - Z Z - r 

z=1
 2

 ¿=1 A=1 'iA 

</|hJ/> is the notation for one-electron integrals and (ij\\kl) designates the 

difference (ij\kl> - (j|lk>, where (ij\kl> is a two-electron integral 

(Щ
 j
) =

 x
 \

h
\ Xj) = j

 dxx
 * (

x
 )/>('•• )z- (

x
i ) 
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(ij\kl) = (ziZJ\XkXi) = jdxxdx2%l *{xl)x] *
( x

2 > u
X

k
( x ) / . ;

[ 1 7 ] 

The two-electron integrals of [14] can be separated in two types, namely (ab\ab) 

and (ab\ba). The (ab\ab) integrals are the Coulomb integrals, which correspond to the 

classical electrostatic repulsion between the charge densities of electron 1, 

Xa *(xi)Xa(xi), and electron 2, Xb *(x2)Xb(x2). 

(
ab

\
ab

) = j dx
i
dx

2
X
a *

( x
i

) x
b *

( x
2

) r
i

- 1 x
a

 ( X
1

) x ( [ 1 8 ] 

The <ab\ba> integrals are the exchange integrals, which have no classical 

equivalency and arise from the Slater antisymmetrized product. 

(
ab

\
ba

) = j dx
1
dx

2
X
a *

( x
1

) x
b *

( X
2

) r
1 ^

X
b
 ( X

1
) X

a
 ( X

2
) [ 19 ] 

When integrated over the spin coordinates, [18] and [19] are denoted by Jab and 

Kab respectively. The Coulomb operator jb represents the mean repulsion on electron 1 

caused by a second electron in the spin orbital Xb 

J
b
X
a
 ( X

1
) = [f dX

2
X
b *

( X
2

) r
1 ^

1 X
b
 (X

2 ) j
X

a ( X
1

) [ 20 ] 

And the Exchange operator Kb is defined by its effect when operating on a spin 

orbi ta l X
a 

K
b
X
a
 ( X

1
)
 = if

 dX
2
X
b *
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2

) Г
1

- 1 X
a

 (X
2
)
\
X
b
 ( X

1
) [ 2 1 ] 

According to [13], the energy E0 is a functional of the spin orbitals Xa. The 

Hartree-Fock equations arise from the minimization of E0 with respect to the set {Xa} 

under the restriction that the spin orbitals remain orthonormal 

(a|b) = jdXxXa *(
x
1)XbOO = ^ a b [22] 

Using the Lagrange method of undetermined multipliers and the constraint [22], 

the resulting functional of the spin orbitals is 

N N 

L[{Xa }] = Eo[{Xa }] " S I X ((a|b) - ) [23] 

where the functional of the energy £ o [ { x

a } ] is given by [14] and sab are the Lagrange 

multipliers. 
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Minimization of E0 is obtained by deriving L[{%a}] and equalization to zero 

N 

5L = 2 £ { dxldXa (1) f*X)Xa (1) + S (J - K (1))Xa (1) -S **aX* (1) [24] 

Since the variation of the spin orbitals, 8%a (1), is arbitrary and different than 

zero, the summation of the terms in brackets in [24] should be zero 

N 

¿0+S J (1) - Kb (1) Xa (1) = Ss

baXb (1) a = 1,2,..., N [25] 

resulting a system of N equations, which are the Hartree-Fock equations. The 

combination of operators in brackets of [25] is commonly known as the Fock operator, 

whose eigenfunctions are the spin orbitals and its eigenvalues are the orbital energies. 

N 

f = ¿(1) + S J (1) - K (1) [26] 

Eventually, the set of equations [25] can be expressed in the matrix form and 

after unitary transformations one obtains the canonical form of the Hartree-Fock 

equations 

f \ Xa) = Sa\
Xa) [ 2 7 ] 

The eigenfunctions of the canonical Hartree-Fock equations [27] are the 

canonical spin orbitals, which are delocalized over all the nuclei positions. For this 

reason are known as the canonical molecular spin orbitals. As shown in [26], the Fock 

operator depends on its eigenfunctions through the Coulomb [20] and Exchange 

operators [21]. As a result, the Hartree-Fock equations should be solved iteratively. 

Starting form a trial set of functions, the Fock operator is obtained and the eigenvalue 

problem is solved iteratively until convergence. For this reason, the Hartree-Fock 

method is also known as the Self-Consistent Field (SCF) method. 

0 

2.5. The Roothan-Hall equations 

The inconvenience of [27] is that there is no analytical expression for the spin 

orbitals and numerical solution is required. Although numerical techniques are common 

in atomic calculations, there are no practical procedures for the numerical resolution of 

[27]. Roothan and Hall showed that the Hartree-Fock integro-differential equations can 

be transformed into a set of linear equations and solved with algebraic techniques. 
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In this method, which is also known as the Linear Combination of Atomic 

Orbitals or LCAO, a set of K known spatial basis functions [<fiM] is introduced so that 

the molecular orbitals are expressed as linear combinations of the basis functions 

Vi =S i = V'-'K [28] 

Then, the problem of finding N molecular orbitals of unknown mathematical 

expression becomes a problem of optimizing the coefficients of the linear expansions 

[28]. In the following discussion, the Roothan-Hall equations will be obtained for the 

restricted closed-shell Hartree-Fock method. In a restricted approximation, the a and P 

spin orbitals are constructed from the same spatial orbitals. Additionally, the closed-

shell systems are formed by an even number of electrons. So, in a restricted closed-shell 

method, the a N/2 electrons are paired with the P N/2 electrons so that only N/2 spatial 

orbitals are occupied. Once the spin is integrated, the Hartree-Fock equation [27] 

becomes 

f Vt) = e |V> [29] 

Substituting the molecular orbitals by the linear expansions given by [28], 

multiplying on the left by (<fiM\ and integrating, equation [29] becomes the matrix 

expression of the Roothan-Hall equations 

FC = SCs [30] 

C is a matrix whose K columns contain the K expansion coefficients of each 

orbital V, s is a diagonal matrix of the orbital energies st, F is the matrix representation 

of the Fock operator in the basis S is the overlap matrix, The elements of the Fock 

and overlap matrixes, FMV and SMV, are respectively given by 

S,u=\ dr^ *(1M,C) = (M\o) [31] 

N/2 

F/m = (Jftv) + CAaCl [2(ци\аЛ) - (^Я\аи)] [32] 
а Лег 

where the notation (//|h|v) is equivalent for spatial orbitals to the one-electron integrals 

(/u\h\v) [16], while (////|h|vv) and (//v|h|//v) are respectively the two-electron Coulomb 

and Exchange integrals of the spatial orbitals analogous to {^\\^v) [18] and (jjv\vfj) 

[19]. 
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From the expression of the Fock operator elements, a new matrix P can be 

defined. Such matrix P is known as density matrix and its /JV element are given by the 

the product of the expansion coefficients of the / and V spatial orbitals, 

N/2 

P/U= 2Z [33] 

which shows that the Roothaan-Hall equations are nonlinear and its solution requires an 

iterative procedure. 

F(C)C = SCs [34] 

Since the functions of the basis [<fiM] are not orthogonal, the overlap matrix S is 

not diagonal, in which case the matrix equation [34] would be reduced to 

FC = Cs [35] 

and its eigenfunctions and eigenvalues would be obtained by diagonalization of the F 

matrix. The Lowdin transformation is one possible way of orthogonalizing the basis set 

{(fin), in which the F' and C' matrixes are defined as 

F' = S - 1 / 2 F S - 1 / 2 [36] 

C = S - 1 / 2 C ' [37] 

The resulting transformed Roothan-Hall equations that can be solved for C' by 

diagonalization of F' are 

F'C' = C's [38] 

The iterative solution of [38] provides the C' matrix from which C can be 

calculated by using [37] to define F according to [33]. Then, the matrix equation [34] 

can be solved to obtain the proper eigenvectors C and eigenvalues s. 

2.6. Form of the exact wave function and Electron Correlation 

In the Hartree-Fock theory, the wave function is approximated by a single Slater 

determinant that is the best variational solution of the ground state. The resulting 

Hartree-Fock wave function describes correctly the correlated motion of electrons with 

parallel spin because of the properties of Slater determinants. However, the motion of 

electrons with opposite spin is not correlated. Although the Hartree-Fock wave function 

is a good initial approximation, the inclusion of electron correlation becomes necessary 
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for an accurate calculation of most atomic and molecular physic and chemical 

properties. 

It can be easily demonstrated that the exact form of the wave function of an N 

electron system can be expressed as a l inear combination of all the N possible Slater 

determinants |Y;> formed from a complete set of spin orbitals {x}. Furthermore, not 

only this approximation provides the exact wave function of the ground, but also all the 

wave functions of all possible excited states. Taking the Slater determinant of the 

ground state as a reference, the exact wave function expansion is 

® = C0\ + S <\ V'a) + S °l\ ^Z) + S VaUc) +... [38] 
ra a<b a<b<c 

r<s r<s<t 

The summations involving inequalities such as a<b stand for summations over 

all the occupied spin orbitals a and over all the occupied spin orbitals b higher in energy 

than a, and analogously for the summations over r<s in the case of virtual spin orbitals. 

Therefore [38] accounts for all the possible double, triple and higher excitations. Given 

that the employed basis set {x} is complete, the exact wave function is formed by the 

infinite possible N-electron determinants. Since each Slater determinant determines an 

electron configuration, this procedure is called Configuration Interaction (CI). 

The eigenvalues of the Hamiltonian matrix associated to the exact wave function 

[38] expressed in the basis of the determinants |Y;> are the exact non-relativistic 

energies of the ground and excited states of the system. The correlation energy is 

defined as the difference between the exact ground state energy, E0, and the Hartree-

Fock-limit energy, EHF(I), which is obtained by using an infinite basis set 

Ecorr = E 0 EHF (I) [ 3 9 ] 

In practice [38] can only be solved for finite basis sets in the so-called full CI 

approach. However, given a set of 2K spin orbitals, possible determinants can be 
v N J 

formed, which still is excessively large to be handled computationally for most systems. 

The next logical approximation is to truncate [38] to a certain level of excitations. 

Alternatively, other theoretical methodologies improve the Hartree-Fock wave function 

to introduce the electron correlation effects by selecting a reduced number of elements 

of the full CI Hamiltonian matrix. 

The most used approximations for the calculation of electron correlation are the 

Coupled Cluster (CC) and the M0ller-Plesset (MP) methods, which use a Hartree-Fock 

Slater determinant as starting point. However, the Hartree-Fock wave function leads to 

incorrect results when the system is constituted by degenerate or quasi degenerate 

configurations. In these cases, several Slater determinants are required to describe the 

wave function, leading to multiconfigurational methods amongst which the most 

common are the Multiconfigurational Self Consistent Filed (MCSCF), the Complete 

Active Site Self Consistent Field (CASSCF) and its perturbative version CASPT2. 
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2.7. Foundations of Density Functional Theory, the Hohhenberg-Kohn Theorems 

The Density Functional Theory, DFT, is an alternative formulation of the 

electronic problem in which the electron density, instead of the wave function, is the 

fundamental physical entity. DFT methods are interesting as they allow the inclusion of 

electron correlation in the solution of the Schrodinger equation at a low computational 

cost. 

The rigorous fundaments of Density Functional Theory were set in two theorems 

proposed by Hohenberg and Kohn. The first one is known as the Existence Theorem 

and states that any observable of a s tationary non-degenerate ground state can be 

calculated exactly from the electron density of the ground state. That is to say, any 

observable can be written as a functional of the electron density of the ground state. 

This theorem is only valid for non-degenerate states and also requires that p(r) is 

a positive function defined in all the space and its integral over the entire space is equal 

to the number of electrons 

p(r) > 0 and J drp(r) = N [40] 

The proof of the first theorem leads to a fundamental conclusion by which the 

ground state density p(r) is univocally connected to the external potential v(r), i.e. the 

electron-nuclei potential. Furthermore, since both the number of electrons and their 

interaction potential with the nuclei are determined by p(r), so are the Hamiltonian and 

the ground state wave function. Therefore, the electron density contains all the 

necessary information to obtain the expectation value of any observable of the ground 

state. The functional expression of the energy E[p] is of especial interest 

E[p] = T[p] + VNe [p] + Vee[p] + (VNN ) [41] 

T[p] and Vee[p] are the functional of the electron kinetic energy and electron-

electron repulsion potential, and are said to be universal functional since they do not 

depend on t he external potential. VNe[p] is the functional of the electron-nuclei 

attraction potential and VNN is the internuclear repulsion term, which is added as a 

constant. 

The second theorem or the Variational Theorem states that the electron density 

of a non-degenerate ground state can be calculated exactly by determining the density 

that minimizes the energy of the ground state. This theorem implies 

Eo < Ev[p] [42] 

where E0 is the exact energy of the ground state and Ev is the energy given by the 

external potential v(r) determined by the trial density p( r ) . This theorem sets a 
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variational principle which allows the determination of the exact density of the ground 

state by calculating the density that minimizes the energy functional 

®ARl = 0 [43] 
Sp(r ) 

However, this minimization requires that the N-representability, i.e. equation 

[42], is preserved. Thus the Lagrange method of undetermined multipliers with the 

constraint [42] can be considered to obtain the functional L[p] 

L[p] = E0[p]-n^drp(r) - N) [44] 

where /J is a Lagrange multiplier and has the physical meaning of a chemical potential. 

The minima of the functionals L[p] and E 0 [p ] coincide since the second term of [44] is 

zero, which allows the miminization of E0 [p] by deriving L[p] and equalizing to zero 

\°^8p(r )dr - /i\Sp(r )dr = 0 [45] 
J op(r) J 

where the definition of a functional differential has been taken into account. The 

condition of minimum under the constrain is obtained when 

^ = 5 E ^ [46] 
0 p ( r ) 

Recovering the definition of E[p] given by [41], [46] converts to the 

Fundamental equation of Density Functional Theory 

p = * M = v , (r) +

S ( T [ p ] + V - [ p ] ) [47] 
Op(r) n Op(r) 

2.8. The Kohn-Sham method 

The Hohenberg-Kohn theorems demonstrate that the electron density determines 

the Hamiltonian and the wave function of an N-electron system. This approach leads to 

wave function quantum mechanics so, to this point the Density Functional Theory does 

not involve any practical improvement with the respect to wave function-based 

methods. If the exact expression of E[p] was known, equation [47] could be solved with 

much less complexity than the wave function approaches. 

Kohn and Sham proposed the use of a reference system of non-interacting 

electrons moving under a fictitious potential, v^(r), so that its electron density is the 
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same as that of the real system of interacting electrons. The advantage of this scheme is 

that, once the electron-electron interactions are neglected from the Hamiltonian, the 

Hartree-Fock method provides the exact solutions of non-interacting electron systems. 

In the reference system of non-interacting electrons, the energy can be expressed as 

E [p] = Ts [p] +f drp(r K (r ) [48] 

where Ts(p) is the kinetic energy of the electrons in the non interacting system. In the 

case of the real system, the energy can be partitioned in the following contributions 

Ev [p] = T[p] + j drp(r )v„ (r ) + Vee (p) [49] 

The term T(p) is the exact kinetic energy, which differs from Ts(p) of the 

reference system because in the real system the motion of each electron is affected 

(correlated) by the motion of the others. Adding and subtracting Ts(p) and J(p) to [49] 

Ev [p] = T [p] + j drp(r )v„ (r) + J [ p ] + (T[p] - Ts [p])+(Vee (p) - J [p] ) [50] 

The introduced term J(p) is the total classical electron-electron Coulomb 

repulsion between the electrons that define the electron density p(r). 

J [ p ] = 1 jdrxdr2

 p ^ p ^ [51] 
2 J r - r2\ 

It should be noted that according to [51] J(p) takes into account the repulsion of 

the all the electrons of p(r) with themselves so, there is an overestimation error of the 

repulsion energy caused by the self-interaction. 

The term T(p)-Ts(p) of [50] is the correlation kinetic energy as it measures the 

difference between the kinetic energies of the correlated electrons in the real system and 

the uncorrelated electrons in the reference system. The term Vee (p)-J(p) is the difference 

between the classical electron-electron interaction, including the self-interaction errors, 

and the exact quantum electron-electron interaction and it corresponds to the exchange-

correlation energy. These two last terms of [50] are grouped as the total exchange-

correlation energy 

EXC = (T[p] - T [p])+ (Vee ( P ) - J[p]) [52] 

which leads to the expression for the energy functional 

Ev[p] = T [p] + jdrp(r)v n (r) +1 jdr ldr 2 PtpBthl + Exc (p) [53] 
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Applying the Fundamental equation of DFT introduced in [49] to the energy 

functional [53] one obtains 

STS[p] , . r , p(r2) , , 8TS[p] 
M = + vn (r) + J dr- ' + v x c (r) = —^ + veff (r) [54] 

Derivation of the energy expression for the reference system given by [49] 

shows analogue to that of the real system [53] with the exception of the explicit form of 

the potential. Therefore, the solution of [54] for the real system is the same than for the 

reference system of non-interacting electrons, which means that such solution can be 

obtained by a procedure analogue to the Hartree-Fock method. The resultant Kohn-

Sham equations are the analogous to the Hartree-Fock equations 

4S Xt = s,X, [ 5 5 ] 

The orbitals of the set {x} are the Kohn-Sham orbitals and allow the calculation 

of the electron density from 

N 

P(r ) ) 2 [56] 
i 

The kohn-Sham Hamiltonian operator hKS is defined by the one-electron kinetic 

energy operator and the effective potential vffr) 

[57] 1 

Veff (r ) = vn (r ) +f dr2 + v x c (r ) 

'''' •< T* f \ 

[58] 
2 

Similarly to the Hartree-Fock procedure, starting from a set of approximate 

Kohn-Sham orbitals {x} the density is defined from [56], which in turn defines the 

potential veff(r) [58] and allows the resolution of [55] to obtain the new Kohn-Sham 

functions {x'}, which are used in a new iteration until the convergence is reached. In 

practice, the resolution of the Kohn-Sham equations is performed by using the 

respective Roothan-Hall equations (i.e. the Linear Combination of Atomic Orbitals 

approach), in which the Fock operator is substituted by the Kohn-Sham operator. 
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2.9. Exchange-correlation functional 

The Kohn-Sham method provides a procedure for the minimization of the 

energy but does not solve the fact that the exact electron-electron repulsion functional, 

Vee(p), and the exact electron kinetic energy, T(p), or alternatively the exchange-

correlation potential, v x c ( r ) , are not known. However, the potential of Density 

Functional Theory with respect to Hartree-Fock Theory is that it is possible to 

incorporate all the correlation energy providing that exchange-correlation potential, 

vxc (r), approaches the exact form. 

From the total exchange-correlation energy, Exc[p] [52], the exchange-

correlation energy per particle, sxc[p], can be defined and related to the exchange-

correlation potential vxc (r) 

E x c [ p ] = {
 d r p ( r ) s x c [ p ] [ 5 9 ] 

Vxc (r ) = S { p ( r

p

> S c [ P ] ) [60] 

p( ) 

where it is common to treat the exchange and correlation contributions of sXc[p] 

separately 

SXC
 [ p ] = s x

 [ p ] + s c
 [ p ] [ 6 1 ] 

In the Local Density Approximation, LDA, the exchange contribution sX[p] is 

calculated from the density considering that is constant as in a homogeneous gas of 

electrons and the correlation contribution sC [p] is neglected or treated as a constant. The 

Local Spin Density Approximation or LSDA is the unrestricted version of the LDA 

approximation. In this approximation the exchange contribution is calculated separately 

for the a and P electrons by taking into account only the densities generated by the a 

and P electrons respectively. These approximations consider that the exchange-

correlation effects are local and only depend on the density value at each point. Despite 

the simplicity of this approximation, LDA provides good results for solid-state 

calculations. However, the electron density of molecules is much more abrupt and 

irregular than in solids so, LDA does not describe correctly breaking and formation of 

chemical bonds. 

The step to improve the local approximation consists on making the exchange 

and correlation contributions dependent on the density, p(r), and also on the density 

gradients, Vp(r). Accordingly, the density variation around each point is taken into 

account in addition to the density value. This correction, known as the Generalized 

Gradient Approximation or GGA, is considered to be semi-local instead of completely 

non-local. DFT calculations with GGA functionals improve LDA geometries and 

frequencies and average errors of several kcal/mol are obtained for thermochemical 
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quantities. However, the description of van der Waals interactions is not accurate due to 

the semi-local instead of completely non-local character of GGA functionals. 

In the Meta-GGA approximation the exchange and correlation contributions 

depend on t he density and density gradient, as in the GGA approximation, but also 

depend on the kinetic energy density i(r) and on the Laplacian of the density, V p(r). 

Since the HF method provides the exact exchange energy, a solution to improve 

the exchange contribution is to include part of the exact HF exchange energy. The 

adiabatic connection approach is used to calculate the amount of HF exchange energy 

introduced in the exchange functional and leads to the so-called hybrid functionals. 

Eventually, there is also the possibility of introducing HF exchange energy in the meta-

GGA functionals, which constitutes the hybrid-meta-GGA approximation. The hybrid-

GGA and especially the hybrid-meta-GGA functionals provide improved results with 

respect to GGA and meta-GGA functionals regarding the calculation of thermochemical 

and kinetic data and non-covalent interactions. 

2.10. Continuum solvent models 

Continuum solvent models can be considered the simplest approach to a liquid 

condensed-phase. In these models all the solvent molecules that solvate a given solute 

are removed and substituted by a dielectric continuum medium that is able to respond to 

the charge distribution of the solute with the purpose of representing the average 

solvent effects at thermal equilibrium. The basic quantity used for the definition and 

design of continuum solvent models is the free energy of solvation, AG s o l v . 

The solvation energies available from experiment exhibit values varying from 

positive tens to negative hundreds of kcal/mol. The magnitude of solvation energies 

depends on t he solute-solvent interaction, which can be partitioned in several 

contributions. The most important components are electrostatic interactions, cavitation 

and dispersion energies. 

Unless the solute is apolar, electrostatic interaction energies are always 

attractive, i.e. stabilizing, and their existence involves that the solvent molecules show a 

response to the charge distribution of the solute, which is usually called reaction field. 

In turn, the response of the solvent also polarizes the solute until the stabilization by the 

mutual polarization balances the energy cost of polarization. In order to model the 

solvent-solute electrical response, an extra term should be included in the solute 

Hamiltonian operator. 

The cavitation contribution to the solvation energy is not a solute-solvent 

interaction. Instead, it is related to the energy cost of creating the cavity that contains 

the solute in the dielectric continuum. So, cavitation energies are always positive or 

unfavourable to the solvation process. Dispersion energies take into account the 

favourable solute-solvent van der Waals interactions, in which all the non-classical 

electrostatic interactions are included. 

There are various approximations to describe the cavities that contain the solute. 

The simplest cavity models are just a single sphere or an ellipsoid for the entire solute. 
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Such simple cavities show the advantage that the solute-solvent electrostatic interaction 

can be calculated analytically. A more realistic model is to use individual interlocking 

spheres on t he atoms of the solute, which provide a solute-shaped cavity. In this 

approximation is typical to choose for each sphere the van der Waals radius multiplied 

by a constant, usually ~1.2. The resultant van der Waals surface obtained in this fashion 

may be sharp so, a refinement is to use a probe solvent molecule to define the solvent 

accessible surface, SAS. In practice, rough van der Waals surfaces because of their 

computational simplicity in front of SAS cavities. Alternatively, the solute electron 

density may be used to define its own cavity. 

Cavities are important because of the cavitation energy term, but also because a 

common approximation is to consider that the solute-solvent dispersion interactions are 

proportional to the surface cavity. In addition, the electrostatic solute-solvent 

interactions are dependent on the definition of the cavities. There are several methods 

that provide solutions to the electrostatic problem such as the Poisson-Boltzmann 

methods or the Born/Onsager/Kirkwood models but in the case of quantum calculations, 

the Self-Consistent Reaction Field models are the most important. 

The Poisson equation is a second-order differential equation that relates the 

electrostatic potential <j>, the charge distribution p, and the dielectric constant s 

In the case of a molecular shaped-cavity the Poisson equation has to be solved 

numerically. In order to do s o, equation [62] is reformulated in terms of a s urface 

integral over surface charges, which is numerically solved by dividing the surface in 

smaller fractions called tesserae. After the fragmentation of the surface, the total surface 

charge is each is also divided between the tesserae in surface charge elements o(rs). 

These surface charge elements are related to perpendicular component to the surface of 

the electric field F generated by the solute on each surface element by 

4nso(rs) = ( s - 1)F(r,) [63] 

Once the surface charges o(rs) are determined, the electrostatic potential < o (r) is 

calculated as 

<o(r) = \°(r^drs [64] 

Finally, the introduction of the surface potential <o(r) into the solute 

Hamiltonian operator causes the polarization of the solute wave function. However, the 

surface potential is also determined by the electric field generated at the cavity surface 

by the solute charge distribution [63], which involves that < o(r) has to be solved 

iteratively in the so-called Self-Consistent Reaction Field, SCRF. 

[62] 
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2.11. Computational determination of pK a values 

Theoretical pK a values can be obtained by considering thermodynamic cycles, 

which can also require the use of experimental values. Three of the most used cycles 

will be introduced in the following section. In all the thermodynamic cycles, the free 

energy of a reaction that involves the deprotonation of a studied acid species AH is 

calculated in gas-phase, AGgas. Additionally, in all cases the free energies of solvation 

and desolvation of the involved species are calculated from gas-phase and liquid phase 

calculations, AAGsoiv. Eventually the aqueous deprotonation free energy is calculated as 

AGa, = AGgas + AAGsolv [65] 

These terms adopt different forms depending on each thermodynamic cycle. The 

first thermodynamic cycle is constituted by three thermodynamic processes, namely the 

desolvation of the acid AH, its deprotonation in gas-phase and, finally, the solvation of 

its conjugate base A and the proton H+ (Scheme 19) 

Cycle 1 

(gas) (gets) (gets) 

^ ~AGsolv(AH) ^ AGsolv(A) ^ AGsolv(H) 

(aq) (aq) (aq) 

Scheme 19. Thermodynamic cycle which considers the dissociation of the acid species 

in the conjugate base and an isolated proton. The total charge of the acid and the 

conjugate base are represented by q and q-1 respectively. 

According to Scheme 19, the free energy of the reaction in gas-phase, AGgas, is 

the deprotonation free energy of AH and is calculated as 

AGgaS = Ggas (H+) + Ggas (A q - 1 ) - Ggas (AHq) [66] 

Since the electronic energy of the proton is zero, its gas-phase enthalpy, 

H g a s(H+), is obtained by adding up the translational energy (E=3/2RT) and PV=RT, 

which at 298 K is 1.48 kcal/mol. The gas-phase entropy, £ g a s(H+), is calculated by 

considering the Sackur-Tetrode equation for gas phase monoatomic species 

(McQuarrie1970), which makes TSgas(H+)=-7.76 kcal/mol at 298 K and 1atm. 

Eventually, the sum of H g a s (H+) and T^ g a s(H+) makes G g a s(H+)=-6.28 kcal/mol. 

The pK a determination considers a 1 M concentration standard state for the 

deprotonation free energy in solution. Aqueous phase calculations also use a standard 

state of 1M but the gas-phase deprotonation free energies are calculated for a standard 

state of 1atm. Therefore, the gas-phase free energies, AGgas, must be referred to 1M by 

taking into account the factor RTln24.46 
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AGgas (1M ) = AGgas (latm) + RT ln 24.46 [67] 

The calculation of the solvation free energy increment, AAGsoiv, in Cycle 1 

requires the value of AG s o l v(H+). This magnitude is taken from experiment but there is 

not a unique value in the current literature. Two of the most used values are -264.0 

kcal/mol (Palascak2004) and -265.9 kcal/mol (Tissandier1998), both referred to a 

standard state of 1M in the gas phase and 1M in the aqueous phase. 

AAGSoh = AGSoh ( H+) + AGsoiv (Aq—1) — A G ^ ( AHq ) [68] 

Eventually, the pKa for this termodynamic cycle is obtained from 

AG 
pKa = — [69] 

a RT ln10 

Since the uncertainty in AGsolv (H+) can reach several kcal/mol (Palascak2004) 

and an error of 1.4 kcal/mol in AGaq yields an error of 1 pK a unit in the predictions, it is 

advisable to propose an alternative for the treatment of the isolated proton in pKa 

calculations. 

Accordingly, in the second thermodynamic cycle, the proton is substituted by the 

hydronium cation and a water molecule is added in the reactants side to balance the 

chemical equation (Scheme 20). 

Cycle 2 

AHq . + H2Og . AGgas > Aq-\ + HO . 

(gas) 2 (gas) (gas) 3 (gas) 

^ — AGsolv(AH) ^ ~~AGsolv(H2O) ^ AGsolv(A) ^ AGsolv(H3O) 

AHq + H2oa.
 AGaq > A (

q 1 + h 3 o ; ( 

(aq) 2 (aq) (aq) 3 (aq) 

Scheme 20. Thermodynamic Cycle 2 which considers an acid base reaction between an 

acidic species and water. The total charges of the acid and the conjugate base are 

represented by q and q-1 respectively. 

The values of Ggas(H2Û), AGsoiv(H2Û), Ggas(H3O+) and AGsoiv(H3O+) are 

available from experiment in the literature (Palascak2004, Pliego2000) or alternatively 

can be obtained from theoretical calculations. In this cycle, AG g a s(1atm) equals 

AG g a s (1M) because there is the same number of moles in both sides of the chemical 

equation. The pK a values according to this cycle are obtained as follows 

AGgas = Ggas № O
+
 ) + Ggas (A

q—1
) — Ggas ( AH

q
 ) — Ggas (H2O) [70] 
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AAGsoh _ AGsoh (H3O +) + AGsolv (A q - 1 ) - AGsoh (AH q ) - AGsoh (fl2O) [71] 

AG 
PKa _ RTrf\a - log[H 2O] [72] RT ln10 

According to [71], the experimental value reported for the free energy of 

solvation of the hydronium cation, AG s o / v(H 3O+)=-110.4 kcal/mol (Pliego2000), is used 

in combination with that reported for water, AGso/v (H 2O)=-6.32 kcal/mol 

(Palascak2004). Alternatively, theoretical calculations can be done to obtain these 

values with the purpose of reducing empiricism in the pK a determinations. 

The third thermodynamic cycle is based on an isodesmic reaction, in which the 

type of bonds broken in the reactants are the same as those formed in the products 

(Cramer2004) (Scheme 21). 

Cycle 3 

AHq

 ) + Ref(

q-\ AGgas > A(

q"1

) + RefH(

q

 ) 

^ -AGso/v(AH) ^ -AGso/v(Ref) ^ AGso/v(A) ^ AGso/v(RefH) 

AH(

q

 ) + Ref(

q^1

) G G a q

 > A(

q^1

) + RefH(

q

 ) 

(aq) (aq) (aq) (aq) 

Scheme 21. Thermodynamic Cycle 3 which considers an acid base reaction between an 

acidic species AH and a reference species RefH. The total charge of the acids and the 

conjugate bases are represented by q and q-1 respectively. 

The main advantage of this approximation in pKa calculations is the expected 

cancellation of errors between the solvation free energies of the charged species in the 

reactants and products sides. Moreover, the experimental free solvation free energies of 

the proton and the hydronium cation are not required in this cycle. However, this 

approximation can be subjective as long as a reference species, RefH, should be chosen, 

if possible, possessing similar geometry, electrostatic distribution and acidity than AH. 

In cycle 3, as in cycle 2, AG g a s(1atm) equals AG g a s (1M). In this case, the 

calculated AGaq cannot be directly related to the pK a of the studied acid AH as it is 

referred to the pKa difference with the reference species 

AGgas = Ggas (RefH q) + Ggas (A q - 1 ) - Ggas (AH q ) - Ggas (Ref q - 1 ) [73] 

AAGSoh = AGov (RefH q) + AGsolv (A q - 1 ) - AG^olv (AH q ) - AG^olv (Ref q - 1 ) [74] 

_ AG a q 

PKa(AH) _ R T l n 1 0 + p K a ( R e f H ) [ 7 5 ] 
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2.12 The CBS-QB3 method 

The CBS-QB3 method belongs to the so-called Complete Basis Set Model 

Chemistry methods originally developed by Peterson and co-workers (Nyden1981, 

Petersson1983, Petersson1988, Petersson1991, Montgomery1994, Ochterski1996, 

Montgomery1999, Montgomery2000). The accurate calculation of atomic and 

molecular energies requires the convergence of both the single particle (basis set) and 

the "-particle energies (order of perturbation or CI). Since most of the energy 

contributions arise from low perturbation levels, CBS models involve low-level (SCF 

and ZPE) calculations on large basis sets, mid-sized basis sets for second-order 

corrections and small basis sets for high-level corrections. They include an extrapolation 

in order to correct the M0ller-Plesset second-order energies to the complete basis set. 

Additionally, empirical and spin contamination corrections are included. Specifically, 

the CBS-QB3 method involves the following steps: 

(I) B3LYP/6-311G(2d,d,p) geometry optimization 

(II) B3LYP/6-311G(2d,d,p) frequencies with a 0.99 scale factor for the ZPE 

(III) UMP2/6-311+G(3d2f,2df,2p) energy and CBS extrapolation 

(IV) MP4SDQ/6-31+G(d(f),p) energy 

(V) CC SD(T)/6-31GT energy 

Eventually, the electronic CBS-QB3 energies are calculated as 

ECBSQB3 _ EMP2 + AEMP4 + AECCSD(T) + AECBS + AEemp + A E i n t [ 7 6 ] 

where AE C B S is the term correcting the basis set truncation error in the second-order 

energies, and the energy terms AE M P 4 , AEC C S D(T), AE e m p and AE i n t are calculated from 

the following equations 

AEMP4 _ EMP4(SDQ)/6-31+G(d(f ),p) - EMP4(SDQ)/6-31+G(d(f),p) [ 7 7 ] 

AECCSD(T) _ ECCSD(T)/6-31+Gt - EMP4(SDQ)/6-31+Gf [ 7 8 ] 

"p f Nvirt+1 V 

AEemp _ - 0 . 0 0 5 7 9 ^ ^ 
i_1 \ M_1 ) 

€ [ 7 9 ] 

AEint _ -0.00954[(S 2) - Sz{Sz -1)] [80] 
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2.13. Molecular Dynamics Simulations 

Temperature effects on the nuclear motion can be satisfactorily approximated in 

gas-phase by several approximations such as the rigid rotor and the harmonic oscillator. 

However, in the case of liquid phase and solutions, the elevated number of degrees of 

freedom and possible configurations involves that the partition functions which connect 

to the macroscopic observables should be estimated from a limited sampling of the 

phase space. The molecular dynamics simulation techniques generate series of time-

correlated points in the phase space which are known as trajectories. Given the initial 

coordinates and velocities of the particles that constitute the system, Newton's second 

law of motion, which in its differential form is 

dV d2r 
= m—2 

dr dt 
LAV H I 

— - = m ^ [ 8 1 ] 

where V is the potential energy at position r and the r is a vector of the coordinates of all 

particles. This equation can be used to predict the future positions and velocities of all 

the particles in the system. In practice, the integration of [81] has to be numerical for 

small time increments At, also called time steps, which in the case of atomic simulations 

are of the order of 10"1 6-10"1 5 s. 

There exist several integration algorithms for solving Newton's equations. In the 

Verlet algorithm, given a set of initial coordinates ri at time t the positions at time t + 

At, later than the initial time, can be approximated by a Taylor expansion 

r , = 1 + -dt, M+^ d t r ( A t ) + 6 - d ? ( A t ) + . . . [ 8 2 ] 

r,+i = r + v, (At)+ 2 a, (At)2 + 6 b, (At)' +... [83] 
2 6 

being v i, a ; and b ; vectors formed by the velocities, accelerations, hyperacceleration of 

each particle. The positions at a time step earlier than the initial time are also given by 

[83] if At is substituted by -At 

r,-i = r, - v,(At) + 2a,(At) 2 - 6 b , ( A t ) ' +... [84] 
2 6 

Adding [83] and [84] allows the determination of the positions r i + i and and r i - i 

at times t + At and t - At 

r,+i =(2r, - r,-i ) + a, (At)2 [85] 
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where the accelerations of each particle have to be calculated from Newton's second 

law of motion [81] providing the potential acting on each particle is known and the 

forces can be calculated. In order to generate the trajectories, the integration procedure 

and the forces have to be solved successively. 

Different types of molecular dynamics simulations are distinguished depending 

on the form of the potential V that governs the motion of the nuclei according to [81]. If 

V is chosen to be defined by a molecular mechanics force field, then the simulations are 

known as classical molecular dynamics simulations. However, the potential V can be 

determined from of a quantum operator as in the Born-Oppenheimer approximation [3]. 

In such case, the potential and its derived forces will be of quantum nature since they 

are solved from the time-independent Schrodinger equation. In fact, the nuclei will 

"move" on a Born-Oppenheimer potential energy surface, thus the simulation will be 

considered as ab initio despite of the fact that the nuclei follow the classical Newton's 

equations of motion. 

2.14. Metadynamics simulations: Free Energy calculations and study of rare events 

In practice, in a standard molecular dynamics simulation, only a limited subset 

of configurations is usually sampled due to computational limitations. Currently, the 

simulation length when using ab initio simulation techniques is typically in the range of 

tens to hundreds of picoseconds. However, the timescale of many relevant physical and 

chemical events such as chemical reactions or changes in the secondary structure of 

proteins is considerably larger. Therefore, as mentioned, it is not possible to sample 

such phenomena with standard molecular dynamics simulations. 

The metadynamics technique (Laio2002) allows the sampling of events whose 

timescales are longer than the typical simulation lengths by forcing the system to 

explore new configuration space. In order to keep track of the sampled configurations 

and to avoid that the system revisits them, a small number n of collective variables (CV) 

O (x) are chosen, which are defined as a function of the system coordinates x. 

a = (oi(x),...,On (x)) [86] 

Once the metadynamics simulation starts, a series of Gaussian-shaped potentials 

are dropped with period T, which builds a history-dependent bias potential V(O (x),t) 

that is associated to the selected collective variables. At a time t of the metadynamics 

simulation, the history potential is 

f 

28O, 
2 

[87] 
kr<t ^ i=1 

J 
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where W is the height of each Gaussian in the potential units, bat is the width of the 

Gaussian for the ith collective variable, at is the value of the ith collective variable at 

time t and the at values are the values of the ith collective variable recorded at times 

kx<t. 

The inclusion of the history-dependent potential [87] adds new forces to those 

given by the intrinsic classical or ab initio potential flj), whose magnitude depends on 

the values of the collective variables at each simulation time 

In the early stages of the metadynamics simulation, the evolution of the system 

will be mostly trapped in its intrinsic free energy surface. However, as the 

metadynamics progresses, the addition of Gaussian potentials compensates the forces of 

the free energy surface and the system is able to overcome the free energy barriers 

associated to the collective variables. Accordingly, it can be shown that if the Gaussian 

parameters W, ha and the deposition rate parameters are well chosen, the history-

dependent potential approaches the negative value of the free energy potential of the 

system 

Thus a correct metadynamics simulation provides an estimation of the Free 

energy surface associated to the chosen collective variables, allowing the study of rare 

events in affordable simulation lengths. 

It should be noted that the choice of the collective variables is crucial in a 

metadynamics simulation and some aspects are to be considered (Barducci2011), 

namely: the number of collective variables should be as low as possible to keep the 

convergence of the free energy surface within a r easonable simulation length; the 

chosen collective variable should provide a clear distinction of the different free energy 

wells; and finally, all the slow modes that are relevant to the studied event should be 

included as collective variables. 

[88] 

[89] 
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3. Objectives 

Pyridoxal, pyridoxamine and their Schiff bases formed with amino acids have 

been extensively studied concerning the acid base chemistry of the heteroatoms. 

However, the experimental studies of the carbon acidities in the Schiff bases are 

restricted to the most abundant protonation states and tautomers in aqueous solution. 

Proton transfer reactions involving Ca and C4' are ubiquitous in the PLP-

catalyzed reactions of amino acids in solution and in enzymes. Despite of this, there is 

only one experimental work concerning the carbon acidity of a PLP Schiff base in an 

enzymatic medium. In addition, this study is restricted to a single protonation state for 

the external aldimine due to the architecture of the active site, and the carbon acidity 

was roughly estimated with an uncertainty of 8 kcal/mol, which corresponds to an 

uncertainty of 5 pKa units. Additionally, there are no studies addressing the carbon 

acidity of C4' atom in the PMP Schiff bases, which is essential to understand how 

reaction specificity is achieved in each PLP-catalyzed reaction. 

Different computational strategies have been successfully used for accurate pKa 

determinations of a broad variety of compounds such as carboxylic acids, alcohols, 

amines, phosphoranes and phenols, amongst others. Several computational approaches 

previously reported in the literature together with new computational strategies will be 

tested to evaluate the accuracy on the predicted pKa values of carbon acids relevant to 

amino acid chemistry and PLP-catalyzed reactions. Additionally, the carbon acidity of 

C4' in the Schiff bases of PMP will also be calculated with the aim to shed light on the 

mechanisms by which reaction specificity achieved in PLP-dependent enzymes. 

The carbon acidities of Ca and C4' will also be calculated in the Schiff bases 

that chelate metal ions in aqueous solution. The pKa values calculated by computational 

methods correspond to the microscopic dissociation processes. Therefore, comparison 

between the calculated acidities of the complexed and free Schiff bases will help clarify 

whether the apparent Schiff base activation is due to real ligand activation or to an 

increase in the concentration of the Schiff bases by stabilization in the chelate form. 

Eventually, our computations also aim to provide a plausible explanation for the 

absence of metal ions in PLP-dependent enzymes. 

In order to make the most of the computational strategies used for the prediction 

of pKa values, analogous strategies will be adapted and evaluated for the prediction of 

stability constants (logß values) of metal complexes. This is one of the current 

challenges of computational chemistry as the most accurate logß values show 

uncertainties of 6-8 kcal/mol. 

Apart from thermodynamic calculations, kinetic information on the 

deprotonation and reprotonation of the Ca carbon in the Schiff bases is also important 

to completely understand the origins of catalysis by PLP. Accordingly, the activation 

barriers for the deprotonation and reprotonation reactions of the Ca in the PLP Schiff 

bases by several acid/base catalysts will be calculated computationally. This study will 

provide important information about the lifetimes of the carbanionic intermediates and 

their evolution in the active sites that present different acid catalyst residues. 
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The last section of this dissertation will focus on the carbon-carbon bond 

formation and cleavage of amino acids catalysed by PLP. In particular, the aldol 

formation/retro aldol cleavage will be studied in relation to the carbonyl scavenging 

properties of PLP Schiff bases in aqueous solution. On one hand, this study is aimed to 

understand the PLP and PMP inhibition mechanisms of glycation reactions of 

biomolecules in the cell. On other hand, the results of this study will be combined with 

the information obtained for the kinetic stability of the carbanions against reprotonation. 

This comparison aims to provide information of the partially understood retro aldol 

mechanism in Serine hidroxymethyltransferase and related PLP-dependent enzymes. 

Given the lack of consensus in relation with the PLP-catalyzed decarboxylation 

reactions, QM and QM/MM metadynamics simulations together with QM and ONIOM 

static calculations will be carried out to gain insight in the origins of catalysis by PLP 

and the role of the intramolecular proton transfer involving the imine and phenol 

groups. For this purpose, the decarboxylation of ornithine catalysed by PLP will be 

studied in gas phase, aqueous solution and in the active site of Ornithine decarboxylase. 
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4. Results 

The Results chapter is divided in three sections, namely assessment of computational 

protocols for the prediction of pKa values (Results 4.1.), studies on the C-H acidity of 

Ca and C4' carbons of PLP and PMP Schiff bases (Results 4.2.) and studies on Ca-C 

bond breaking and formation of PLP Schiff bases (Results 4.3.). 
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Abstract 

A non-enzymatic pyridoxal 5'-phosphate (PLP)-catalyzed aldol condensation 

reaction between amino acid carbanions and carbonyl compounds has been studied with 

Density Functional Theory calculations as an inhibition mechanism of Advanced 

Glycation End-products (AGEs) formation. Schiff base formation between pyridoxal 5'-

phosphate and amino acids enhances the acidity of the alpha carbons adjacent to the 

imine group to pK a values of 12-17 in water solution. The calculations show that, once 

the carbanion is formed in aqueous solution, the free energy activation barrier for the 

carbon-carbon bond f ormation is only 4.6 kc al/mol in the worst-case scenario. 

However, the water-catalyzed reprotonation of Ca requires a much larger activation free 

energy (i.e. 15.8 kcal/mol) whereas only the carboxylic acid-catalyzed neutralization of 

the carbanion shows a lower free energy activation barrier (i.e. 3.7 kcal/mol). Therefore, 

the carbonyl scavenging reaction takes place preferentially to the carbanion 

neutralization under physiological pH conditions. Additionally, the hydrolysis yields a 

thermodynamically stable reduced carbonyl adduct and recovers the PLP, which is able 

to act as catalyst in subsequent reactions. These computations, which are in agreement 

with reported experimental results on related PLP-catalyzed reactions, suggest that 

carbonyl scavenging by PLP Schiff bases is an efficient mechanism of inhibition of 

AGEs formation and of prevention of their related medical conditions. Concerning the 

catalysis of PLP-dependent enzymes, our results support that the role of Glu53 in Serine 

hydroxymethyltransferase is to protonate the Schiff base carbanion at Ca to avoid the 

protonation at C4' by other residues and, also, to avoid the reversion of the retro-aldol 

reaction. 
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4. Results 

1. Introduction 

Non-enzymatic glycation reactions occur in the physiological environment 

between reducing sugars or reactive carbonyl species (RCS) and amino groups of 

proteins, aminophospholipids and nucleic acids (1-4). The resulting product from the 

condensation between amino groups and sugars is an imine or Schiff base adduct. The 

Schiff base may then undergo an isomerization reaction yielding a 1-imine-1-ketose 

species known as Amadori compound. Schiff bases and Amadori compounds facilitate 

the degradation of those biomolecules on w hich are formed because of their 

susceptibility to oxidation reactions (1-4). 

Hydroxyl, hydroperoxyl species (i.e OH- and HOO-) and related compounds 

(i.e. RO- and ROO-) are powerful oxidizing species known as reactive oxygen species 

(ROS) which cause degradation of glycated biomolecules under physiological 

conditions. In addition, an excess of transition metals in the organism, such as Cu(II) 

and Fe(III), promotes these oxidation reactions. Furthermore, the resulting products of 

Schiff base and Amadori compound oxidations are new RCS and ROS species which 

further propagate uncontrolled glycation and degradation of biomolecules and tissues 

(5, 6) (Scheme 1). 

The final degradation products of Schiff bases and Amadori compounds, also 

known as advanced glycoxilation and lipoxidation end-products or commonly AGEs 

and ALEs, are compounds of diverse chemical nature. Glycation of biomolecules and 

especially formation of AGEs and ALEs have been related to ageing (7-12), diabetes (7¬ 

10), atherosclerosis (7-10), tissue degradation (7-12), inflammatory diseases (7, 8, 12) 

and neurodegenerative illnesses such as Alzheimer's and Parkinson's diseases (13, 14). 

Therefore, the proposal and study of inhibition mechanisms of AGEs and ALEs 

formation is of great interest. 

Vitamin B6, particularly in the form of pyridoxamine (PM), exhibits high 

inhibitory activity in several routes of AGE/ALE formation. Recent studies performed 

in our group (15-18) as well as by Voziyan et. al (19, 20) showed that PM is highly 

reactive towards carbonyl groups of sugars and RCS for the formation of stable Schiff 

bases, which avoids glycation reactions of free amino groups of biomolecules. 

Moreover, PM also forms stable Schiff bases with the carbonyl groups of Amadori 

compounds, hindering their subsequent oxidation reactions (15-17, 19, 20). Another 

inhibition route consists in the neutralization of ROS (radical scavenging), which 

protects glycation products from degradation (20). Additionally, piridoxamine forms 

stable chelates with transition metals, difficulting their catalytic effect on oxidation 

reactions of biomolecules (20-24) (Scheme 1). 

Pyridoxal-5'-phosphate (PLP) is another B6 vitamer that also inhibits glycation 

reactions by protecting the free amino groups of biomolecules in the form of Schiff base 

adducts (25). However, the most recognized biologic role of PLP is as electrophilic 

catalyst in the metabolism of amino acids (26, 27). Formation of Schiff bases between 

PLP and amino acids activates the Ca carbon for decarboxylation, racemization, 

transamination and retro-aldol reactions. Pyridoxamine, specifically pyridoxamine-5'-

phosphate (PMP), also participates in the second half of transamination reactions. 
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Recent experimental and theoretical works show that Schiff base formation between 

glycine and PLP reduces the pK a of the Ca atom from 29 for the zwitterionic species in 

solution at neutral pH to pK a ~17 (28-30) (Scheme 2A). Computational studies also 

showed that C4' atom of pyridoxamine Schiff bases exhibits pK a ~12-13 in aqueous 

solution (Scheme 2A) and that the acidity of both Ca and C4' in the Schiff bases of PLP 

and PMP can be highly increased at neutral pH by metal chelation (30, 31). These data 

point out that a small, although non negligible, fraction of Schiff base is present in the 

carbanionic form under physiological conditions. 

Interestingly, Richard and co-workers (28, 29, 32) reported that Schiff base 

carbanions of glycine and 5'-deoxypyridoxal (DPL) do not incorporate deuterium to any 

carbon atoms as a consequence of reprotonation by deuterated water. Instead, the 

products resulting from an aldol condensation between carbanionic Schiff bases and a 

carbonyl group of a second DPL molecule were characterized (Scheme 2B). Dalling et 

al. (33) reported that a mixture of PLP and alanine initially forms a Schiff base which 

yields pyruvate as the transamination product and a pyruvate dimer (-

O2CC(OH)(CH3)CH2COCO2 -) as by-product. These investigations highlight the 

nucleophilic power of the Schiff base carbanions and their affinity for carbonyl groups. 

Furthermore, it has been suggested that aldol addition reactions between PLP Schiff 

bases and carbonyl groups should occur in physiological conditions (32). 

In this work, we propose a new inhibition mechanism of AGEs and ALEs 

formation which consists in the reduction of sugars and reactive carbonyl species (RCS) 

by aldol addition of PLP/PMP Schiff base carbanions. Particularly, this study focuses 

on the condensation between the common carbanion of PLP-glycine and PMP-

glyoxylate with the simplest aldose, glyceraldehyde. Density Functional Theory 

calculations were carried out to calculate the free energy profiles of three possible 

reaction routes. It is worth noting that neutralization of the Schiff base carbanion species 

is a r eaction which competes with the aldol condensation and, therefore, affects the 

extension of carbonyl trapping. Therefore, protonation reactions by water and several 

representative species of acid catalysts in physiological conditions were also calculated. 

The activation free energies were confronted in order to determine whether carbonyl 

scavenging is a probable inhibition mechanism of AGEs/ALEs formation. 

2. Computational Details 

Density Functional Theory (DFT) calculations were performed with the 

Gaussian 09 s oftware (34). Solvent effects were introduced with the SMD solvent 

model (35) in all calculations. The geometries of all reactants, intermediates and 

products were optimized with the M06-2X (36) functional and the 6-31+G(d) basis set. 

The same functional and basis set were employed to characterize all the optimized 

structures either as energy minima by the absence of imaginary frequencies or as 

transition state structures by the presence of a unique imaginary frequency in which the 

displacement of the nuclei is concordant with the reaction. Thermodynamic information 

at 298.15 K (i.e. thermal and entropic contributions to free energies) was also extracted 
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from the vibrational calculations. The considered standard state is 1 atm and 1 mol/l. 

Intrinsic Reaction Coordinate (IRC) calculations were carried out on each transition 

state to confirm that they connect the desired energy minima through the minimum 

energy path. 

Refined energies of every structure were obtained by carrying out calculations at 

the M06-2X/6-311++G(2df,2pd) level of theory, also in the presence of the SMD 

solvent model. The refined free energies were obtained by adding up the M06-2X/6-

311++G(2df,2pd) potential energies (calculated at 0 K) with the thermal and entropic 

corrections obtained in the vibrational analyses. 

According to the standard Transition State Theory, equation 1 was used to obtain 

the microscopic kinetic constants k of each elementary step from the corresponding 

activation free energy (AG*). In eq 1, T, k B , h and R stand for the absolute temperature, 

Boltzmann, Planck and the gas constants, respectively. 

3. Results and Discussion 

3.1.Acid-base catalyzed protonation/deprotonation of Schiff bases 

Once the PLP and PMP Schiff bases are formed with amino acids and keto acids 

respectively, the acidity of Ca and C4' carbons are greatly enhanced (28-32). As a 

result, either carbon can be deprotonated generating small amounts of a carbanion 

species in water solution (28-30, 32). The rate of reprotonation of this carbanion limits 

the aldol condensation with carbonyl groups, so it is necessary to determine the 

activation free energy barriers of such protonation reactions. 

Deprotonation of Ca in the PLP-glycine Schiff bases and C4' in the PMP-

glyoxylate Schiff bases yield the same carbanion species. As reported in previous 

works, Ca is more basic than C4' (30, 31) so, the activation energy barrier of 

protonation at Ca should be lower than that of C4'. Therefore, the protonation barriers 

at Ca set the upper bound for the activation barriers of aldol addition. That is, for the 

carbonyl scavenging reaction to be significant, its activation free energy barrier has to 

be lower to those of carbanion protonation reactions. 

In addition to water as protonation agent, which corresponds to protonation by 

solvent, acetic acid-, methylammonium-, phenol-, methanol- and methanethiol-

catalyzed reactions have been studied. Such species represent the acidic groups of 

protein residue sidechains (i.e. aspartic and glutamic acids, lysine, tyrosine, serine and 

threonine and cysteine respectively). Dihydrogen phosphate-catalyzed protonation is 

also considered since this species is present as buffer agent together with hydrogen 

phosphate anion in the physiological medium. 

The calculated activation free energies and reaction free energies for the 

protonation of Ca at 298.15 K are reported in Table 1. The difference between the 
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activation free energies (AG*) and the activation potential energies at 0 K including 

zero-point energy corrections (AE*, Table 1) varies between 0.1 and 1.2 kcal/mol. 

Similarly, the reaction free energies and potential energies (i. e. AG r and AE r) differ by 

0.1-1.1 kcal/mol. These differences point out that the studied proton transfer reactions 

are essentially governed by stereoelectronic factors, whereas thermal and entropic 

contributions have minor influence. These results are in line with recent computational 

and experimental results of Griswold et al. (38), which point out that hyperconjugation 

has a significant contribution to the Ca-H bond destabilization in PLP Schiff bases. The 

torsion values of H-Ca-N i m -C4 ' dihedral in the transition state structures show that 

proton transfer reactions take place almost perpendicularly to the plane formed by the 

pyridine ring and imine moiety (Table 1), which supports the hypothesis formulated by 

Dunathan (39). In this way, the negative charge of the carbanion species remains 

delocalized across the n system until the formation of the Ca-H bond. Additionally, 

these proton transfers are shown to be strongly directional in the transition state 

structures as deduced from the fact that the sum of Ca-H and X-H nearly coincides with 

the Ca-X distance (Table 1), being X the heteratom of the acid catalyst that donates the 

proton to Ca in each case. 

The fastest proton transfer, i.e. the one which presents the lowest activation free 

energy (3.7 kcal/mol), corresponds to acetic acid-catalyzed reaction, which is the most 

acid species amongst the considered catalysts. Contrarily, methanol and water solvent 

are the least acid considered species and, accordingly, show the highest activation 

energies (AG* = 15.8 kcal/mol and AG* =15.7 kcal/mol) (Table 1, Figure 1). 

Inspection of the free energy values reported in Table 1 and Figure 1 for the 

reactions catalyzed by dihydrogen phosphate, phenol, methanethiol and 

methylammonium show that the acidity (i.e. pK a ) is not the only determining factor of 

the activation and reaction energies. It should be noted that the calculated reaction free 

energies, AGr, do not strictly correspond to the thermodynamic reaction free energies 

but to the free energy differences between the reactants and products complexes. 

Therefore, in addition to the pKa difference between the proton donor and acceptor, 

these free energies also depend on t he intermolecular interactions and solvent 

stabilization of the reactant and product complexes. 

Dihydrogen phosphate, phenol, methanethiol and methylammonium have 

intermediate pKa values with respect to acetic acid and water/methanol. Accordingly, 

their catalyzed protonation reactions exhibit intermediate activation free energies (Table 

1, Scheme 3). The lowest activation energy in this group corresponds to the reaction 

catalyzed by CH 3 NH 3 +, which is the most basic species (pK a=10.66, AG* = 5.9 

kcal/mol). However, methylammonium is the only cationic acid catalyst, so the 

interaction with the Schiff base carbanion is more effective, especially considering that 

the carboxylate group of the amino acid is next to the Ca carbon (Figure 2A). 

Oppositely, dihydrogen phosphate is the only anionic acid but the activation free 

energy associated to its catalyzed proton transfer is 8.5 kcal/mol, which is lower than 

those of the reactions catalyzed by neutral phenol and methanethiol (Table 1, Figure 1). 

However, H 2 P O 4

- is 2.8-3.1 pK a units more acidic than phenol and methanethiol. In 

addition, H 2 P O 4

- establishes a hydrogen bond with the Ca-carboxylate group which 
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decreases the electrostatic repulsion and places the other proton in a favorable position 

over the Ca carbon to favor the proton transfer reaction (Figure 2B). 

The importance of the global charge in the acid catalysis is also exemplified by 

comparing the methanethiol and methylammonium catalyzed reactions. The acidities of 

these species are very similar (i.e. pK a 10.66 and 10.33 for CH 3 SH and CH 3 NH 3 + 

respectively) but the activation free energy of the protonation catalyzed by methanethiol 

is 4 kc al/mol higher (Table 1, Figure 1). On the other hand, both phenol and 

methanethiol are neutral species, have similar acidities and the activation free energies 

of their catalyzed reactions only differ by 1.1 kcal/mol (Table 1). 

From the relative disposition of the aromatic rings of phenol and the Schiff base 

in the optimized structures, these species establish n-n interactions in the reactants, 

transition state and products complexes (Figure 2C). The average of least distances 

between the atoms in the two aromatic systems is 3.42 A, 3.37 A and 3.28 A 

respectively for the optimized reactants, transition state and products complexes. The 

free energy of the protonation reaction (AG r) with phenol is 4.7 k cal/mol more 

exergonic than that with methanethiol but similar to the reaction free energy of the 

reaction with dihydrogen phosphate (where an extra hydrogen bond i s formed), which 

highlights the contribution to the complex stability of the n-n interaction. 

The microscopic kinetic constants of each catalyzed protonation reaction were 

calculated by introducing the theoretical activation free energies in eq 1 (Table 1). As 

mentioned previously, the thermal and entropic contributions to the free energies are 

significantly lower than the stereoelectronic effects. Therefore, the standard Transition 

State Theory approach is appropriate for the calculation of the kinetic constants. It is 

worth noting that nuclear quantum effects were not considered despite being important 

for reactions involving light nuclei such as hydrogen. Consequently, the values in Table 

1 are a lower bound to the quantum-corrected kinetic constants. 

3.2.Carbonyl scavenging 

The proposed reaction can be divided in four steps, namely: A) Aldol 

condensation between the Schiff base carbanion and glyceraldehyde (structures 1-4); B) 

nucleophilic addition of H2O at C4' and formation of a carbinolamine species 

(structures 4-6); C) protonation of the amino group at C4' (structures 6-10); D) release 

of the final products and recovery of the PLP catalyst (structures 10-12). Different 

reaction routes starting from the same reactants that yield the same final products were 

investigated but equivalent structures in each route have been equally labeled (Scheme 

3, Scheme 4 and Scheme 5). Table 2 reports the free energies of each transition state 

and intermediate structures at 298.15 K, which have been referred to the initial reactant 

complex 1. These values are represented in Figure 3 as the free energy profiles of each 

reaction route. 

Previous computational works have studied the reaction mechanisms of 

transimination between PLP Schiff bases and amines (40, 41) and Schiff base formation 

between PLP and amino acids (42, 43) or PMP and carbonyl compounds (18). These 

reactions were studied in gas-phase, aqueous solution or in an enzyme active site, and 
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show common mechanistic features with the reaction studied in this work. 

Transimination starts with the displacement of the imine nitrogen due to the 

nucleophilic attack of a second amine group, which generates a gem-diamine 

intermediate. Subsequently, the gem-diamine is hydrolyzed yielding the Schiff base 

formed with the attacking amine group and releasing the amine species that formed the 

former Schiff base. On the other hand, during the Schiff base formation reaction, the 

nucleophile amine attacks a carbonyl group generating a carbinolamine species. The 

later dehydration of the hemiaminal carbon yields the Schiff base. Precisely, Schiff base 

formation is the opposite reaction to the hydrolysis studied in this work, which takes 

place after the aldol condensation. 

3.2.1. Nucleophile addition to the carbonyl group, aldol condensation 

The aldol condensation, which has also been called Claisen-type addition by 

previous authors (28, 29, 32), starts with the nucleophile attack of the Ca of the Schiff 

base carbanion to the carbonyl group of glyceraldehyde. The Schiff base carbanion 

exhibits all the atoms of the carboxylate, imine and pyridine moieties in the same plane. 

Such disposition stabilizes the carbanion because of the delocalization of the negative 

charge from the Ca carbon throughout the entire n-system. Furthermore, this 

conformation makes possible the formation of two intramolecular hydrogen bonds 

between the carboxylate and phenoxide groups with the protonated imine nitrogen. 

In the reactant complex 1, the carbonyl group of glyceraldehyde lies parallel to 

the molecular plane of the Schiff base carbanion. In this complex, there are two explicit 

water molecules which favor such arrangement by forming hydrogen bonds 

simultaneously between the carboxylate and phenoxide groups with the carbonyl 

oxygen. Additionally, an alcohol group of glyceraldehyde forms another hydrogen bond 

with the remaining carboxylic oxygen. These interactions place the carbonyl carbon of 

glyceraldehyde at a close distance of Ca (2.96 A) and in a favorable orientation for the 

condensation to take place (Scheme 3, Scheme 4, Scheme 5). 

The condensation reaction is identical for routes A and B, the Ca carbon is 

added to the carbonyl group of glyceraldehyde via a transition state 3-TS to yield a 

Schiff base 4 (Scheme 3, Scheme 4). The structural changes from reactants 1 to the 

transition state 3-TS are minor. All the hydrogen bond interactions in 1 are retained in 

3-TS with small distance variations, and the only significant change is the distance 

reduction between Ca and the carbonyl carbon (labeled as Cp) down to 2.27 A. The 

forming bond occurs almost perpendicularly to the n-system of the Schiff base (i.e. Cp-

Ca-N i m -C4 ' torsion is 81.2°) analogously to protonation/deprotonation reactions of Ca 

(Figure 4A). 

As a consequence of the preorganization of the reactants in complex 1, t he 

activation free energy for this reaction is only 4.6 kcal/mol (Table 2, Figure 3), which 

according to eq 1 corresponds to a microscopic kinetic constant of 2.4-10 9 M - 1 s - 1 for this 

step (Table 2). Considering only the condensation step, this value shows that carbonyl 

scavenging is kinetically favorable with respect to reprotonation of the carbanion by 

water solvent and by the rest acid catalysts with the exception of acetic acid. This result 
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is in agreement with the experiments of Richard and co-workers performed at neutral 

pH (28, 32), because acetic acid or carboxylic acids in general are completely 

deprotonated in such conditions. 

For routes A and B, the thermodynamics of this first step is also favorable since 

the free energy of the reaction is -7.1 kcal/mol (Table 2, Figure 3). The resulting product 

4 is a Schiff base of PLP and a modified glycine amino acid. The Cot-Cp bond distance 

is 1.56 A and the original intramolecular hydrogen bonds of the Schiff base carbanion 

reactant complex are maintained in 4. From the reactant complex 1 to product 4, the 

major changes in the n-system are observed in the C a - N i m bond distance, which 

increases from 1.33 A to 1.45 A, whereas the remaining bond distances (i.e. Nim-C4', 

C4'-C4 and those involving the pyridine ring atoms) oscillate between 0.01 and 0.05 A. 

The hydrogen bond between an explicit water and oxygen O3' is broken in product 4 so 

that the formed alkoxide oxygen in Cp is completely solvated by such water molecule. 

In route C (Scheme 5), the 5'-phosphate group indirectly participates in the 

condensation reaction. 

As mentioned, the Schiff base carbanion in solution exhibits a planar geometry in the 

carboxylate, imine and pyridine atoms. The phosphate group at carbon 5' also lies in the 

same plane to minimize the electrostatic repulsion between the negative oxygens and 

the n electrons. However, once the complex 1 is formed, the dihedrals C4-C5-C5'-O5' 

and C5-C5'-O5'-P can rotate so that the phosphate group moves close to the 

glyceraldehyde molecule forming the new complex 2. In this conformation, the water 

molecule that bridges the O3' and the carbonyl oxygen atoms substitutes the hydrogen 

bond formed with the O3' atom to establish a new hydrogen bond with an oxygen atom 

of the phosphate group, which stabilizes the reactant complex by 2.2 kcal/mol (Table 2, 

Figure 3). These changes do not modify the remaining hydrogen bonds of complex 1 

and the distance between Ca and carbonyl carbon atoms Cp is 2.89 A and the Cp-Ca-

Nim-C4' torsion is 82.4°. 

The condensation reaction in route C occurs via a transition state 3-TS that is 

analogous to that of routes A and B except for the hydrogen bond i nvolving the 

phosphate group. The Ca-Cp bond distance is 2.30 A in 3-TS and the approach 

direction of glyceraldehyde is also perpendicular to the n-system (i.e. Ca -Cp -N i m -C4 ' 

torsion is 81.2°) (Figure 4B). The activation free energy of this step is 6.1 kcal/mol from 

complex 2, therefore being 1.5 kcal/mol higher than the activation free energy in routes 

A and B. However, since complex 1 i s also the starting point of route C, the global 

activation barrier is 3.9 kcal/mol (Figure 3) and the overall microscopic kinetic constant 

is 6.7-109 M - 1 s - 1 (Table 2). 

Similarly to routes A and B, the condensation reaction in route C is 

thermodynamically favorable since the resulting product 4 is 7.6 kcal/mol more stable 

than complex 2 (9.8 kcal/mol with respect to the initial complex 1) (Table 2, Scheme 4). 

In fact, the resulting product 4 of route C is the same species as that of routes A and C 

but for the conformation of the phosphate group which allows the water molecule 

solvating the alkoxide oxygen at Cp to keep a second hydrogen bond with the phosphate 

group. 
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3.2.2. Formation of the carbinolamine compound 

The formed Schiff base 4 can be hydrolyzed yielding a modified amino acid and 

regenerating PLP. After the aldol condensation, the next step in the reaction is the first 

step of the hydrolysis and consists in the nucleophilic addition of a water molecule to 

carbon C4' to produce a hemiaminal species also known as carbinolamine. 

For routes A and B, the water molecule solvating the alkoxide anion is the 

closest to carbon C4' (i.e. 3.15 A measured from the water oxygen). The nucleophilic 

addition is simultaneous to a proton donation from the water molecule to the alkoxide 

oxygen via a concerted transition state 5-TS. The remaining water molecule in 5-TS 

establishes hydrogen bonds with the nucleophile water oxygen and the phenoxide 

oxygen O3' . From the Schiff base 4 to the transition state 5-TS, the water oxygen O w 1 

distance to C4' decreases to 2.14 A (Figure 5A). Simultaneously, the water O w 1 - H bond 

increases from 1.02 A to 1.55 A and the hydrogen bond with the alkoxide oxygen 

decreases from 1.60 A to 1.02 A. These bond changes point out that although the water 

addition and the proton transfer take place in a unique step, the reaction is not 

symmetric because the proton is almost entirely transferred to the alkoxide oxygen in 

the transition state structure (Figure 5A). As observed for the protonation/deprotonation 

and carbonyl condensation reactions at Ca, the direction of the nucleophile attack to 

C4' is perpendicular to the plane formed by the imine and pyridine moieties (i.e. O w 1 -

C4'-C4-C3 torsion is 95.8°) (Figure 3A). 

In reaction route C, the nucleophile water molecule that solvates the alkoxide 

group also forms a second hydrogen bond with one oxygen atom of the phosphate group 

(Figure 5B). Such water molecule is at 3.41 A of C4' in the Schiff base 4 of route C, 

somewhat farther than in routes A and B. However, this distance is reduced down to 

2.22 A in the transition state 5-TS of route C, resembling that of routes A and B (i.e. 

2.14 A). In fact, the water addition to C4' in route C is also accompanied by proton 

transfer from the water nucleophile to the alkoxide oxygen at Cp (Figure 5B). 

Moreover, the remaining water molecule forms hydrogen bonds with the attacking 

water and the phenoxide oxygen O3' as in routes A and B. From 4 to 5-TS, the water 

O w 1 - H distance lengthens from 1.00 A to 1.65 A while the distance between this 

hydrogen and the oxygen alkoxide decreases from 1.61 A to 1.00 A (Figure 5B). 

Therefore, the proton transfer is again completed before the transition state, as without 

the participation of the phosphate group. 

A study of the Intrinsic Reaction Coordinate (IRC), which corresponds to the 

minimum energy path that connects reactants and products with the transition state, 

reveals that the first half-reaction consists in the proton transfer to the oxygen alkoxide 

for all routes A, B and C. In this way, a hydroxide anion is generated in situ, enhancing 

the nucleophilic power of the water oxygen atom for the attack on C 4'. Once this 

species is formed, the O w 1 -C4 ' bond formation in the second half-reaction takes place 

downhill in the potential energy surface according to the IRC calculations. Therefore, 

the free energy barriers of this step (i.e. 7.7 kcal/mol and 9.8 kcal/mol for routes A/B 

and C respectively) can be associated to the energetic cost of forming the reactive 

hydroxide anion species. 
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A previous study on the Schiff base formation between PLP and methylamine in 

water solution, carried out in our group (42), shows that the oxygen carbon (O w 1 -C4 ' ) 

distance in the transition state is considerably shorter (i.e. 1.907 A). Furthermore, the 

activation free energy for the water addition to C4' is 18.7 kcal/mol, much larger than 

that of the present reaction. It should be noted that in the standard Schiff base formation 

reaction, the attacking water donates a proton to the phenoxide oxygen O3' (42) instead 

of to an alcoxide anion, as in the current case. Likewise, Oliveira et al. (43) reported 

similar results for the formation of the internal aldimine (i.e. the Schiff base formed 

between the PLP cofactor and the e-amino group of a lysine residue of an enzyme) in 

the active site of Ornithine decarboxylase. According to their results, the required free 

energy of activation is 15.9 kcal/mol for the water addition to C4', and the O w 1 - C 4 ' 

distance in the transition state is 1.89 A. Again, this is a standard Schiff base formation, 

so the nucleophile water donates a proton to the phenoxide oxygen O3' , which is much 

less basic than the alkoxide anion in the current reaction. A comparison of these data 

with our results clearly shows that the largest contribution to the activation energy cost 

is the deprotonation of the nucleophile water molecule and that such process is 

catalyzed by the presence of the alkoxide anion at Cp. 

The resulting intermediate 6 is a heminaminal or carbinolamine compound at 

C4' carbon. As for the Schiff base 4, the formed carbinolamine 6 is the same compound 

for all three reaction routes A, B and C, so the free energy differences shown in Table 2 

and Figure 3 result from different conformations and hydrogen bonding patterns of the 

carbinolamine 6. 

The free energy of reaction for route B is -6.6 kcal/mol and the resulting product 

6 shows the same hydrogen bond distribution than in the transition state 5-TS. The 

formed alcohol group at C4' establishes a hydrogen bond with the alcohol at Cp (1.96 

A) while the amine at C4' donates two hydrogen bonds to the phenoxide O3' (2.19 A) 

and carboxylate (2.22 A) oxygen atoms (the interactions are not shown in Scheme 4 for 

clarity purposes). Finally, the remaining water molecule bridges the alcohol at C4' (2.09 

A) and the phenoxide oxygen (1.73 A) (Scheme 4). 

In route A, the carbinolamine undergoes a conformational change, so the amine 

at C4' lies over the pyridine ring (i.e. 68.2° for the dihedral Nim-C4'-C4-C3). In the new 

conformation, the hydrogen bond with the phenoxide oxygen O3' remains at 2.20 A but 

the one formed with the carboxylate group is virtually broken. Additionally, in this 

conformation, the alcohol group of C4' is neither hydrogen bonded with the alcohol of 

Cp. The peculiar feature of this conformation is that the water molecule acts as 

hydrogen bond acceptor of the alcohol group at C4' (2.03 A) and as hydrogen bond 

donor with the amine group also at C4' (1.89 A). Overall, the reaction free energy of 

this step in route A is -3.6 kcal/mol, which is approximately 3.0 kcal/mol less than that 

of route B (Table 2, Figure 3). 

In route C, the conformation of carbinolamine 6 is almost identical to that of 

route A except for an additional hydrogen bond with one oxygen atom of the 5'-

phosphate group at 1.76 A. However, this additional hydrogen bond makes the resulting 

carbinolamine 6 more stable than those of routes A and B, and the reaction free energy 

for this step in route C is -4.4 kcal/mol (Table 2, Figure 3). 
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3.2.3. Formation of zwitterionic carbinolamine 

Once the carbinolamine 6 is formed, the next step in the hydrolysis process is the 

protonation of the amino group at C4', which favors its elimination. Different 

mechanisms for the proton transfer between the geminal groups of C4' have been 

examined in previous works, which include the participation of: solvent molecules (40, 

41), the phenoxide oxygen O3' (18, 42) or specific residues in the case of some 

enzymatic reactions (43). In the present work we have considered the solvent-mediated 

reaction in route A, the analogous solvent-mediated reaction with indirect participation 

of the 5'-phosphate group in route C and the intramolecular two-step proton transfer via 

oxygen O3' in route B. 

In the carbinolamine 6 of route A, the hydroxyl group at C4' donates a hydrogen 

bond to the water molecule which, in turn, donates a hydrogen bond to the amine at C4'. 

So as to produce the zwitterionic carbinolamine 10, the water molecule donates the 

proton to the amine nitrogen and captures the proton from the alcohol in a concerted 

step. The transition state structure 7-TS together with the Intrinsic Reaction Coordinate 

study show that the two proton transfer reactions do not occur simultaneously. In the 

first half-reaction, the proton transfer to the amine nitrogen is almost complete (i.e. 

d O w 2 - H = 1.52 Á and d H - N C 4 ' = 1.11 Á in the transition state 7-TS) while the proton 

transfer from the hydroxyl group to the water oxygen has barely started (i.e. d O C 4 ' - H = 

1.01 Á and dH-ow2 = 1.67 Á) (Figure 6A). 

The carbinolamine 6 compounds of routes A and C only differ from each other 

in the presence of an extra hydrogen bond w ith the phosphate group in route C. 

Consequently, the formation of the zwitterionic carbinolamine 10 in route C takes place 

in a concerted step which is very similar to that of route A. In the transition state 7-TS 

of route C, the bond distances involving the proton transferred to the amine nitrogen 

from the water oxygen are d O w 2 - H = 1.52 Á and d H - N C 4 ' = 1.11 Á and the bond distances 

involving the proton transferred from the alcohol to the water molecule are d O C 4 - H = 

1.02 Á and dH-ow2 = 1.64 Á (Figure 6B). 

The free energies of activation for the water-mediated proton transfer in routes A 

and C are respectively 10.6 kcal/mol and 15.3 kcal/mol. Such energy difference is 

mostly due to the higher stabilization of the carbinolamine 6 in route C resulting from 

the hydrogen bonding between the phosphate group and the water molecule. In addition, 

the water molecule which participates in the proton transfer exhibits a formal charge of -

0.78 (according to a Mulliken's population analysis) in the transition state 7-TS as a 

result of the asymmetry in the double proton transfer. Therefore, the free energy of 

activation in route C is higher than that of route A also due to the electrostatic repulsion 

between the phosphate group and the formal negative charge of the water molecule. 

In route B, the proton transfer from the C4' hydroxyl group to the C4' amine 

takes place in two steps. The first step is similar to the proton transfer of routes A and 

C. Namely, the C4'-hydroxyl group donates a proton to the water oxygen, which 

simultaneously donates a second proton to the phenoxide oxygen O3' . In the transition 

state 7-TS of route B, the distances involving the proton transferred to the water 
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molecule, are d o c 4 ' - H = 1.27 Á and dH-ow2 = 1.52 Á while the distances involving the 

proton transferred to the phenoxide oxygen are d O w 2 - H = 1.53 Á and d H - O 3 ' = 1.03 Á 

(Figure 6C). This first step requires an activation free energy of 11.4 kcal/mol, which is 

lower than that of the proton transfer in route C and similar to that of route A. This step 

yields the intermediate 8, a different protonation state of carbinolamine 6 which is 8.0 

kcal/mol more energetic (Table 2, Figure 3) and exhibits a protonated O3' phenol and 

an alkoxide at C4' bridged by a water molecule. Additionally, the phenol group in 8 

donates a hydrogen bond to the amine nitrogen at C4', arranged for the next step of the 

reaction. 

The proton transfer between the phenol and the amine groups is direct and takes 

place without participation of any water molecule via a barrierless transition state 9-TS. 

In this reaction, the O3'-H distance increases from 1.05 Á in 8 to 1.14 Á in 9-TS as the 

H-N C 4 ' distance decreases from 1.54 Á to 1.37 Á (Figure 6D). The calculated activation 

free energy for this step is slightly negative (-0.7 kcal/mol, Table 2, Figure 3). Since the 

activation barrier in the potential energy surface at 0 K is only 0.7 kcal/mol, thermal and 

entropic contributions at 298.15 K are enough to make this reaction proceed without 

free energy barrier. Furthermore, it should be noted that if nuclear quantum effects were 

considered for the proton motion, the effective activation energy would be further 

reduced. 

The calculated activation free energies for the different mechanisms of routes A, 

B and C are in agreement with those calculated for the transimination (40, 41) and 

Schiff base formation with PLP (42, 43) and PMP (18). The direct proton transfer 

between the O3' phenol and the amine groups exhibits a free energy barrier between 0.0 

and 5.0 kcal/mol (18), while if a water molecule participates in the reaction by bridging 

the phenol and the amine groups, a slight increase of 0.5-2 kcal/mol (40, 42) in the 

activation free energy is observed. However, the proton shift between the C4' geminal 

groups requires a much larger activation energy. An activation barrier of 12.6/14.6 

kcal/mol was reported for the water-mediated proton transfer between the C4' amine 

groups in the transimination reaction in the active site of Ornithine decarboxylase (41). 

In fact, in the Lys69-PLP Schiff base hydrolysis in the active site of Ornithine 

decarboxylase, the proton transfer between the C4' hydroxyl and the C4' amine is 

catalyzed by the thiol group of Cys360 because the water-mediated reaction exhibits a 

very large barrier of 47 kcal/mol (43). 

In these previous reactions, the water molecule that starts the hydrolysis of the 

Schiff base transfers a proton to the phenoxide group O3' simultaneously to its attack 

on the imine carbon (18, 42, 43). So, the protonation of the C4' amine exhibits a low 

activation energy. In the present reaction, the proton is transferred to the alkoxide group 

at Cp during the water addition to C4'. Therefore, the O3' phenoxide group remains 

unprotonated and the protonation of the C4' amine requires a larger activation energy 

because it has to start with the deprotonation of the C4' hydroxyl group, which is much 

less acidic than the phenol O3' . 

In all three reaction routes, the formed compound 10 c orresponds to the 

zwitterionic counterpart of carbinolamine 6 where the hydroxyl at C4' is deprotonated 
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and the amine at C4' is protonated. Such zwitterionic state is 5.4, 6.2 and 9.3 kcal/mol 

more unstable than the neutral species 6 in the routes A, B and C respectively. 

3.2.4. Schiff base hydrolysis and release of the reduced carbonyl compound 

Formation of intermediate 10 in route A weakens the amino bond with the C4' 

carbon as deduced from the increase in the C4'-N distance between the carbinolamine 6 

(1.47 A) and the intermediate 10 (1.58 A). Additionally, the unprotonated alkoxide 

oxygen at C4' in 10 is located in the plane of the pyridine ring (C3-C4-C4'-O dihedral 

is 175°), so it remains as far as possible from the phenoxide oxygen O3' . As a result, the 

protonated nitrogen at C4' lies over the pyridine ring (C3-C4-C4'-N dihedral is 61°), 

forming a hydrogen bond with the oxygen O3' at 2.00 A. This conformation favors the 

release of the amino group because it involves the alignment of the C4'-N bond with the 

p orbitals of the n-system, analogously to the protonation/deprotonation reactions and 

the addition of carbonyl groups at Ca. In fact, in the transition state of the C4'-N bond 

cleavage (11-TS), the C3-C4-C4'-N dihedral is 78°. The distance in 11-TS between the 

C4' carbon and the nitrogen N is 2.25 A and the forming aldehyde group at C4' is 

almost coplanar with the pyridine ring (i.e. C3-C4-C4'-O is 172° and C3-C4-C4'-H is 

9°). All these conditions contribute to the final hydrolysis step, which exhibits a 

significantly low activation free energy barrier of 2.4 kcal/mol (Table 2, Figure 3). 

The release of the amino acid in route C is very similar to that of route A since 

the conformations of intermediate 10 are also similar. In the intermediate 10 of route C, 

the 5'-phosphate group accepts a hydrogen bond from the explicit water molecule which 

is also hydrogen bonded to the deprotonated oxygen atom of C4'. This oxygen atom 

lays in the same plane of the pyridine ring (i.e. C3-C4-C4'-O 176°) positioning the 

protonated amine group over the ring (i.e. C3-C4-C4'-N i m 61°) at a 1.58 A of the 

carbon C4' and forming a hydrogen bond with the oxygen O3' at 1.97 A. As in route A, 

this conformation places the leaving group in a most favorable position for its 

elimination. In fact, the nitrogen atom is at 2.23 A of C4' carbon and the torsion of C3-

C4-C4'-Nim is 64° in the transition state 11-TS, so the orientation of the amino group 

barely changes from the reactant 10. 

The calculated activation free energy for this last step is -0.1 kcal/mol whereas 

the potential energy of activation at 0 K including the ZPE corrections is 2.6 kcal/mol. 

Therefore, the thermal effects and the increase in entropy associated to additional 

degrees of freedom during the hydrolysis completely eliminate the activation energy at 

298 K. However, taking into account the accuracy of DFT calculations and the 

modeling of solvent effects, it is either possible for this step to involve a positive low 

activation barrier at 298 K. 

Similarly to the activation free energies calculated for routes A and C, the 

release of the amine compound has been reported to require a very low activation 

energy for the PLP Schiff bases with methylamine in aqueous solution (AG* = 0.3 

kcal/mol) (42) and the e-amino group of Lys69 in the active site of Ornithine 

decarboxylase (AG* = 1.4 kcal/mol) (43). 
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In route B, the intermediate 10 is in a rather different conformation because the 

alkoxide group of C4' is hydrogen bonded to the oxygen O3' through a bridging water 

molecule. Accordingly, this alkoxide remains perpendicular to the pyridine ring (i.e. 

C3-C4-C4'-O4 81°), so the C4'-N bond is not as favorably oriented for its cleavage (i.e. 

C3-C4-C4'-N 42°) as in routes A and C. 

For this step of route B, the activation free energy barrier is significantly larger 

than that of routes A and C (i.e. 6.8 kcal/mol) but it is still a modest barrier at 298 K for 

the reaction to take place at a considerable rate. In this case, the higher activation free 

energy has to be attributed to the higher stability of intermediate 10 with respect to 

those of routes A and C (Table 2, Scheme 4) due to the hydrogen bond formation 

involving the alcoxide and phenoxide groups. Additionally, the transition state 11-TS of 

route C is higher in energy to those of routes A and C because of the electrostatic 

repulsion between the phenoxide and the forming aldehyde groups which face each 

other in a cis- conformation. Furthermore, such repulsion hinders the forming aldehyde 

group to accommodate in the plane of the pyridine ring, impeding the delocalization of 

the p electrons. 

In all three routes, the final state 12 i s a non-covalent complex formed by 

reaction products. This state is common to all routes because the conformational 

barriers that lead to the most stable state are negligible at 298 K. In this complex the 

released amino acid is placed on top of the pyridine plane at an approximate distance of 

3.2 A measured from the amine nitrogen, Ca carbon and the carboxylate group. Both 

the amine and carboxylate groups of the amino acid are oriented towards the protonated 

pyridinium nitrogen in order to stabilize the complex by electrostatic interactions, 

although the directions in which these groups interact do not permit the formation of 

hydrogen bonds. However, the 5'-phosphate group does form hydrogen bonds with the 

explicit water molecule ( d O - H 1.71 A) and with the amine group of the amino acid ( d O - H 

2.1A). 

As a first approach, the steady state approximation can be applied to the final 

intermediate 10 of each route strictly as depicted in Scheme 3. The obtained apparent 

rate constants for the reaction are 1.9-109 s - 1, 1.7-108 s - 1 and 8.2-109 s - 1 for routes A, B 

and C respectively. In comparison with the rate constants of the reprotonation reactions 

(Table 1), these results support that carbonyl scavenging reactions occur preferentially, 

which is in agreement with the experiments of Richard and co-workers (28, 29, 32) and 

Dalling et al. (33). 

4. Implications on Enzyme Catalysis 

The crystallographic structures of PLP-dependent enzymes show that the PLP 

cofactor is surrounded by polar and charged residues in the active site which establish 

hydrogen bond and salt bridge interactions (26, 27, 44-46). These interactions maintain 

the Schiff base formed between the PLP cofactor and the substrate amino acid (also 

known as external aldimine) in the active site, favor the orientation of the appropriate 

Ca substituent for its heterolytic cleavage, but also play a reactive role in different 

catalytic stages. In fact, NMR studies corroborate that the enzymatic reactivity of PLP 
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Schiff bases resembles that of PLP Schiff bases in protic polar solvents (47). 

Furthermore, a number of particular aspects of PLP-enzymatic catalysis have been 

understood from the results of experiments and computations of PLP-catalyzed 

reactions carried out in aqueous solution (18, 28-33, 38, 40-44, 48, 49). 

The condensation reaction studied in this work is, in fact, the reverse mechanism 

of a PLP-catalyzed retro-aldol reaction. Serine hydroxymethyltransferase (SHMT) is an 

extensively studied PLP-dependent enzyme which catalyzes a reversible retro-

aldol/aldol reaction between serine and glycine (45, 50). The accepted mechanism for 

this reaction involves the participation of tetrahydrofolate as a holder of the formyl 

group between such amino acids (50). However, SHMT also catalyzes the analogue 

retro-aldol reactions on other 3-hydroxyamino acids without the participation of 

tetrahydrofolate (50). 

For serine, as well as for other 3-hydroxyamino acids, the cleavage of the Cp-Cot 

bond in the retro-aldol reaction generates a ca rbanion at Ca which is stabilized by 

delocalization of the negative charge across the п-system of the imine and pyridine 

moieties. Then, this intermediate may evolve by reprotonation at either the Ca or the 

C4' carbon atoms. Nevertheless, only the protonation at Ca occurs in the SHMT active 

site. 

As reported in previous works, the proton transfer from the phenol oxygen O3' 

to the imine nitrogen Nim makes the Ca position 5 pKa units more basic than the C4' 

(30). Additionally, if the phenol and imine groups remain ionized and the pyridine 

nitrogen is unprotonated, the basicity between Ca and C4' is further increased to 7 pKa 

units (30). Accordingly, and assuming a Bransted relationship with p=1, the 

reprotonation kinetics of the carbanion intermediate is highly favored at Ca over C4' for 

such protonation states. However, the interactions displayed by the external aldimine in 

the SHMT active site do not seem to favor the reprotonation of the carbanionic 

intermediate at Ca with respect to C4'. First of all, the residues interacting with the 

phenol oxygen O3' are neutral (Ser171 and His199) (Figure 7), which are not as 

effective as cationic residues to stabilize the phenoxide form of O3', as it is observed in 

the active site of Alanine racemase (46). Secondly, the Schiff base pyridine nitrogen is 

presumably protonated since its closest interacting residue is the sidechain carboxyl 

group of Asp197 (Figure 7). However, it should be noted that the protonated pyridine 

nitrogen contributes to stabilize the deprotonated phenoxide oxygen O3' and the 

protonated imine nitrogen Nim (47, 48). Lastly, the e-amino group of Lys226, a 

conserved residue which selectively reprotonates the carbanionic intermediate either at 

Ca or C4' respectively in PLP-dependent racemases and transaminases (44, 46), is 

closer to the C4' carbon than to the Ca one (Figure 5). Therefore, how is the selectivity 

for the reprotonation at Ca achieved in SHMT? 

The data on the pKa of PMP- and PLP-Schiff bases (28-31, 48), the protonation 

barriers calculated in the present work and the crystallographic structures of SHMT 

complexed with the PLP-Gly Schiff base (45), point out that the sidechain carboxyl 

group of Glu53 may be the acid catalyst responsible for the reprotonation at Ca. 

According to the crystal structures, the carboxyl group of Glu53 is in the acidic form 

(45, 50). In addition, it is properly positioned over the plane of the Schiff base to 
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transfer a proton to the Ca of the carbanionic intermediate, and it is closer to the Ca 

(approximately 4.3 A) than to the C4' carbon (approximately 5. 3 A ), which would 

ensure the selectivity for the former position (Figure 7). Finally, the results reported in 

this work show that the acid-catalyzed reprotonation of Ca by carboxylic acids is the 

only reaction faster than the aldol condensation (Figure 2, Figure 4, Table 1, Table 2), 

which would avoid the reversion of the generated carbanion intermediate back to the 3-

hydroxyamino acid form in the active site of SHMT. 

5. Conclusions 

The step involving the aldol condensation, in which the carbonyl species is 

reduced by formation of a covalent bond with the Ca carbon, exhibits a lower activation 

free energy barrier than those of the reprotonation reactions of the carbanion by water or 

most acid catalysts. However, the reprotonation catalyzed by acetic acid is the only 

faster reaction than the aldol condensation. Therefore, under physiological pH 

conditions, the formed carbanions of PLP- and PMP-Schiff bases are likely to act as 

carbonyl scavengers. Furthermore, the reduced carbonyl group is a thermodynamically 

stable product either as a PLP-Schiff base adduct or after the hydrolysis reaction. 

After the aldol condensation, some steps of the hydrolysis require higher 

activation energies due to the stabilization of the reaction intermediates. However, the 

free energy of the corresponding transition states is lower than the activation free energy 

of the condensation step 3-TS (Scheme 3). So, the apparent activation free energy of the 

overall process corresponds to the activation barrier of the initial step (i.e. ~4 kcal/mol). 

On the other hand, the activation energies of the reverse reactions for the intermediates 

are higher than those of the direct reactions, so the formation of the final end-products is 

also kinetically favored (Figure 4). 

The participation of the 5'-phosphate group favors the addition of the carbanion 

to the carbonyl group in the first step of the reaction and the release of the end-products 

in the final step of the hydrolysis. Oppositely, the formation of the carbinolamine 6 and 

its evolution to the zwitterionic state 10 are hindered by the 5'-phosphate group due to 

the stabilization of intermediates 4 and 6 respectively (Figure 4). Taking into account 

the high mobility of the 5'-phosphate group in solution at room temperature, it is 

reasonable that the actual reaction mechanism will not strictly follow one of the 

proposed routes A, B or C. Instead, the reaction will proceed through the lowest energy 

path according to the most favorable conformation in each step. Taking everything into 

consideration, these results support an inhibition mechanism of AGE formation thanks 

to PLP and PMP Schiff bases which has not been considered so far. 

Concerning the reactivity of PLP in enzymes, our results point out that after the 

cleavage of Ca-Cp bond in the active site of Serine hydroxymethyltransferase, the 

carbanion intermediate is reprotonated at Ca by a carboxylic acid (i.e. the sidechain of 

Glu53). In this way, a high selectivity for the reprotonation at Ca in front of C4' is 

ensured and, simultaneously, the reversion to the formation of the Ca-Cp bond is 

prevented. 
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Cartesian coordinates, energy and thermodynamic values of the optimized 

structures. 
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Table 1. Calculated activation and reaction free energies at 298.15 K (AG*, AG r) 

activation and reaction potential energies at 0 K (AE*, AE r) and calculated microscopic 

kinetic constants (k) for the reprotonation reactions of the PLP-Gly Schiff base 

carbanion by different acid catalysts. Experimental pK a values for the acid catalysts. 

Relevant distances and torsion angles between the atoms involved in the proton transfer 

reaction measured at the optimized transition state structures. 

Acid catalyst 
extpl. AG* (AE*b) 

(kcal/mol) 

AG r (AE r
 b ) 

(kcal/mol) 
k (s 1 ) dCa-H (A) dx-H (A) dCa-X (A) 

H-Ca-N i m-C4' 

Torsion (deg) 

CH3COOH 4.76 3.7 (2.6) -15.4 (-16.2) 1.2-10 1 0 1.47 1.17 2.64 85.9 

H 2 PO 4

- 7.21 8.5 (8.1) -4.3 (-4.4) 3.6-10 6 1.42 1.21 2.63 90.4 

C 6 H 5 OH 9.99 11.0 (10.5) -4.5 (-3.3) 5.1-10 4 1.41 1.21 2.59 75.7 

CH3SH 10.33 9.9 (9.2) 0.2 (0.6) 3.3-10 5 1.47 1.58 3.02 71.2 

CH 3NH 3+ 10.66 5.9 (5.6) -8.9 (-8.6) 2.8-10 8 1.44 1.27 2.71 81.7 

CH 3OH 15.5 15.8 (15.7) 11.9 (12.6) 1.7-101 1.29 1.33 2.61 69.3 

H 2 O 15.7 15.7 (15.6) 8.5 (9.6) 1.8-101 1.30 1.34 2.64 78.5 

Experimental pK a values taken from reference 37. bZero-point Energy Corrections at 0 K 

included in the potential energies. 

Table 2. Calculated relative free energies at 298.15 K (AG) and potential energies at 0 K 

(AE) of each transition state and intermediate structure with respect to the reactants 

complex 1, and calculated microscopic kinetic constants (k) for each reaction step of 

routes A, B and C. 

Structure 
A G A ( A E A a ) 

(kcal/mol) 

A G B ( A E e a ) 

(kcal/mol) 

AGC ( A E C a ) 

(kcal/mol) 
kA (s - 1) kB (s 1 ) kC (s - 1) 

1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

2 -2.2 (-2.4) 

3-TS 4.6 (4.4) 4.6 (4.4) 3.9 (2.2) 2.5-10 9 2.5-10 9 8.2-10 9 

4 -7.1 (-8.6) -7.1 (-8.6) -9.8 (-12.6) 

5-TS 0.6 (-1.5) 0.6 (-1.5) 0.0 (-3.3) 1.4-107 1.4-107 4.2-10 5 

6 -10.7 (-12.4) -13.7 (-14.4) -14.2 (-16.4) 

7-TS -0.1 (-3.3) -2.3 (-5.4) 1.1 (-2.7) 9.9-10 4 3.0-10 4 3.4-10 1 

8 -5.7 (-7.3) 

9-TS -6.4 (-8.3) 1.8-10 1 3 

10 -5.3 (-6.9) -7.5 (-9.3) -4.9 (-7.9) 

11-TS -2.9 (-3.9) -0.7 (-1.6) -5.0 (-7.1) 9.6-10 1 0 6.0-10 7 8.0-10 1 2 

12 -14.8 (-16.3) -14.8 (-16.3) -14.8 (-16.3) 

aZero-point Energy Corrections at 0 K included in the potential energies. 
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4. Results 

Scheme 1. F ormation pathways of advanced glycation and lipoxidation end-products 

(AGEs/ALEs). The star labels indicate the points of action of PLP and PMP which 

inhibit the formation of AGEs and ALEs. 
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Scheme 2. A) pK a values of Ca in the PLP-Glycine Schiff bases and pK a values of C4' 

in the PMP-glyoxylic acid Schiff bases. The depicted values were obtained with B3LYP 

calculations in reference (30). B) Mechanism of aldol addition of PLP to a PLP-Gly 

Schiff base reported by Richard and co-workers (28). The reaction starts with the 

formation of a Schiff base between PLP (red) and glycine, which is later deprotonated. 

The resulting carbanion reduces the carbonyl group of a second PLP molecule (blue) by 

acting as a n ucleophile. The final hydrolysis releases the catalytic PLP (red) and the 

glycine linked to the reduced PLP (blue). 
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H+ H+ H+ 

5-TS 6 7-TS 

10 11-TS 12 

Scheme 3. Reaction mechanism of aldol condensation and hydrolysis of the Schiff base 

as proposed in route A. 
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H 

11-TS 12 

Scheme 4. Reaction mechanism of aldol condensation and hydrolysis of the Schiff base 

as proposed in route B. 
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O - - H 

12 

Scheme 5. Reaction mechanism of aldol condensation and hydrolysis of the Schiff base 

as proposed in route C. 
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Figure 1. Free energy profiles for the acid-catalyzed reprotonation reactions of PLP-Gly 

Schiff base carbanions at Ca. 
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Figure 2. Transition state structures of the proton transfer reactions between the Ca 
carbon of PLP-Gly Schiff bases and methylammonium (A), dihydrogen hosphate (B) 

and phenol (C). All distances are measured in Angstrom. 
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Figure 3. Free energy profiles of the aldol condensation between PLP-Gly carbanion 

and glyceraldehydes and later hydrolysis of the formed adduct for routes A (orange, 

solid line), B (blue, dotted line) and C (green, dashed line). 
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Figure 4. Optimized transition state structures of the aldol condensation between the Ca 
carbon of the PLP-Gly carbanion and the carbonyl carbon (Cp) of glycheraldehyde (3-

TS) for routes A and B (A) and C (B). All distances are measured in Angstrom. 

Figure 5. Optimized transition state structures of the water addition to the C4' imine 

carbon of the aldol condensation adduct Schiff bases (5-TS) for routes A and B (A) and 

C (B). As observed, the proton transfer from O w 1 to O C p during the first half-reaction 

generates a hydroxyl anion in situ which is the actual nucleophile species. All distances 

are measured in Angstrom. 
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Figure 6. Optimized transition state structures for the proton transfer reaction between 

the geminal hydroxyl and amino groups of C4'. In routes A (A) and C (B), the proton 

transfer takes place in a concerted transition state 7-TS with the participation of a 

reactive water molecule. In (A) and (B), the proton transfer from the water molecule to 

N C 4 ' is already completed in the transition state while the proton transfer from O C 4 ' to 

the water molecule is barely initiated. In route B the reaction takes place in two 

consecutive transition states 7-TS (C) and 9-TS (D). The first step, 7-TS, consists in a 

proton transfer from O C 4 ' to O3' with the participation of a water molecule (C). In the 

second step, 9-TS, the proton is directly transferred from O3' to N C 4 ' (D). All distances 

are measured in Angstrom. 
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Figure 7. Interactions of the PLP-Gly Schiff base in the active site of Serine 

hydroxymethyltransferase from Geobacillus stearothermofillus (PDB code 1KL2, (45)). 

All distances are measured in Angstrom. 
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4.3.2. Extraordinaire decarboxylation rates catalyzed by modestly efficient enzymes. A 

QM/MM metadynamics study on the enzymatic and nonenzymatic pyridoxal 5'-
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Extraordinaire decarboxylation rates catalyzed by modestly efficient enzymes. A 
QM/MM metadynamics study on the enzymatic and nonenzymatic pyridoxal 5'-
phosphate-catalyzed decarboxylation of amino acids 

Rodrigo Casasnovas, Juan Frau, Sebastiano Caravati, Josefa Donoso, Francisco Muñoz, 

Michele Parrinello 

Abstract 

Amino acid decarboxylases are among the most efficient enzymes. Almost all of 

these enzymes require pyridoxal 5'-phosphate (PLP) as cofactor, which forms a Schiff 

base with the substrate amino acid. We provide insight into the reaction mechanism and 

catalytic origins of PLP-decarboxylases by studying the PLP-catalyzed decarboxylation 

of ornithine in the active site of Ornithine decarboxylase (ODC), aqueous solution and 

gas-phase. The activation and free energies of these reactions were obtained from 

Density Functional Theory QM/MM metadynamics simulations, supported by QM/QM 

ONIOM calculations. Our calculations indicate that ODC increases the decarboxylation 

rate by 101 9-fold. However, the PLP cofactor is responsible for 10 1 6 of the total 

catalysis, while the exclusive contribution of the enzyme only constitutes the remaining 

10 -fold acceleration. The active site environment resemblance with the solvent 

structure after the transition state designates the carboxylate desolvation as an important 

factor in the enzyme catalysis. In addition, the enzyme structure creates an electrostatic 

gradient which destabilizes the reactants by placing more anionic than cationic residues 

closer to the carboxylate group. The enzyme also promotes the protonation of the PLP 

pyridine nitrogen in the active site, which accounts for 10 6 of the cofactor catalysis but 

it is deprotonated at physiological pH in solution. The gas-phase simulations show that 

an extra 10 -fold acceleration is missed in the active site in favour of maintaining a high 

energy carbanionic intermediate, in which the proton in the intramolecular hydrogen 

exhibits high mobility between the imine and phenol groups. By hindering a full 

protonation of the phenol group, protonation of the intermediate at Ca is favoured in 

front of transamination side-reactions. 
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1. Introduction 

The rates of uncatalyzed biochemical reactions in aqueous solution differ immensely 

by a factor larger than 10 1 6 (1, 2). For instance, the half-time of C O 2 hydration is 

approximately 5 s (i.e. k~10~l s - 1) (3), whereas that of phosphodiester anion hydrolysis is 

approximately 31 million years, which corresponds to a rate constant of ~10 - 1 6 s - 1 (4). 

Typically, the bonds that link the monomers of proteins, nucleic acids and 

polysaccharides exhibit half-times for the spontaneous cleavage ranging 10 2-10 6 years. 

However, such chemical inertness is vital to guarantee the stability of biopolimers under 

physiological conditions (1). 

Amino acids are amongst the most stable biomolecules regarding the reactivity of 

the bonds formed at the alpha carbon (Ca) and, therefore, spontaneous transformations 

on this position are extremely infrequent events. Indeed, the reported activation free 

energies for the proton abstraction of Ca in alanine and for the decarboxylation of 

glycine are respectively ~33 (5) and ~40 kcal/mol (6), which correspond to half-times of 

5000 years and 1.1 billion years. 

In the cell, numerous reactions are linked by sharing common reactants and products 

in what is known as metabolic pathways. Therefore, in order to be coordinated, all such 

reactions have to proceed within similar timescales or, have similar reaction rates. Thus, 

the catalysis of each enzyme should be inversely related to the rate of the uncatalyzed 

reaction (1, 2). 

Since spontaneous amino acid decarboxylation constitutes one of the slowest 

biochemical reactions, amino acid decarboxylases are amongst the most efficient 

enzymes (1, 2, 6). It is interesting to note that the vast majority of such decarboxylase 

enzymes do not achieve their full catalytic power from an exclusively proteic active site, 

but coenzymes are required instead. Whereas pyruvate is used in Lactobacillus 

Histidine and E. coli S-adenosylmethionine decarboxylases, the vast majority of amino 

acid decarboxylases use a form of vitamin B6, pyridoxal 5'-phosphate (PLP) (7). 

In the active site, the PLP coenzyme is covalently bound to the s-amino group of a 

lysine residue forming a Schiff base or imine known as internal aldimine (Scheme 1). 

Prior to the decarboxylation step, the amino acid substrate replaces the PLP linkage 

with the lysine to form a new Schiff base named external aldimine (Scheme 1). Then, 

either the Ca-H bond or one of the Ca-C bonds undergoes a heterolytic cleavage 

yielding a carbanionic compound (Scheme 1). 

Several factors contribute to the activation of the Ca and to the evolution of the 

carbanionic intermediate (8). Dunathan (9) hypothesized that the cleaved bond should 

be aligned with the p orbitals of the n system so that the developing negative charge can 

be delocalized, lowering the energy of the transition state. Hyperconjugation of the Ca-

H bond with the n system has been also shown to reduce the activation barrier for 

deprotonation by destabilization of the ground state (10). 

In addition to stereoelectronic effects, the protonation state of the heteroatoms in the 

external aldimine strongly influences the activation of the Ca atom. Schiff base 

formation with PLP reduces the pKa of Ca in the zwitterionic glycine from ~29 to ~23 
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in solution (11), and sequential protonation of the heteroatoms also reduces the Ca pKa 

by ~6 units per proton down to pK a ~6 (12). With respect to the reaction kinetics, the 

rate of proton abstraction from Ca in Aspartate aminotransferase decreases dramatically 

by a factor larger than 10 9 when the external aldimine is formed with deaza-PLP (13), 

i.e. a PLP analogue in which the protonated pyridine nitrogen is substituted by a carbon 

atom. Apart from Ca-H activation, the protonation state of the carbanionic 

intermediates also plays a significant role in driving their evolution towards protonation 

at Ca or C4', that is, controlling the reaction specificity (8, 14, 15). 

Concerning the PLP-catalyzed decarboxylation of amino acids, Bach et al. (16) 

reported from correlated ab initio MP2 calculations that the zwitterionic ketoenamine 

tautomers, in which the pyridine and imine groups are protonated and the phenol and 

carboxyl groups are deprotonated (Scheme 2), reduce the activation energy by 

Coulombic destabilization of the ground state. The calculations carried out by Toney 

(17) point out that the activation enthalpies of decarboxylation of PLP aldimines are 

lower for the ketoenamine tautomers in aqueous solution as well. Additionally, it was 

noted that the contribution of the imine group to the resonance stabilization is larger 

than that of the pyridine ring (17). 

In aqueous solution, water solvation of the O3' oxygen stabilizes the phenoxide 

anion in the PLP aldimines formed with amino acids, making the ketoenamine 

tautomers predominant regardless of the protonation state of the pyridine nitrogen (18, 

19). Oppositely, the neutral enolimines are the most abundant tautomers in organic 

solvents with low dielectric constants (20). In such environment, protonation of the 

pyridine nitrogen is required to promote deprotonation of the O3 ' oxygen since its 

negative charge is stabilized by delocalization in the pyridine ring. That is, the 

intramolecular imine-phenol and intermolecular pyridine hydrogen bonds are coupled 

(20). It was also observed that in low polar conditions, microsolvation by proton donors 

help stabilize the ketoenamine tautomers (20). 

These studies are of great interest to understand the interactions of external 

aldimines with enzymatic residues, which is the third factor that influences enzyme 

catalysis and reaction specificity (8). A hydrogen bond interaction between the pyridine 

nitrogen and a carboxyl group of an acidic residue has been observed in the X-ray 

structures of many PLP-dependent enzymes (8, 21). 1 5N NMR experiments carried out 

by Toney, Limbach and co-workers (22) on Aspartate aminotransferase showed that the 

enzymatic environment is similar to polar organic media and that the pyridine nitrogen 

is protonated. Therefore, the intramolecular hydrogen bond should be zwitterionic in 

Aspartate aminotransferase as well as in other PLP-dependent enzymes which exhibit 

the pyridine-carboxyl interaction (22). Conversely, Lin and Gao (23) reported from 

hybrid QM/MM simulations that the enolimine tautomer is predominant in the active 

site of L-Dopa decarboxylase. Furthermore, the decarboxylation free energy barrier 

calculated in the active site is lower for the enolimine tautomers (24). 

The interactions between the carboxylate group of the external aldimines and the 

active site are also important for the catalysis. Phillips and co-workers (25, 26) 

suggested that in the active site of Ornithine decarboxylase (ODC), the carboxylate 
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group is buried in a hydrophobic pocket that promotes decarboxylation by favouring the 

more neutral transition state structure while destabilizing the ionic ground state. In fact, 

the structure of ODC with the aldimine of the native substrate L-ornithine could have 

not been crystallized. Instead, only the crystal structure with the aldimine of D-

ornithine, in which the carboxylate group is oriented towards the solvent, could be 

obtained (25). However, there should be another factor for in the enzymatic catalysis 

besides solvent exclusion of the carboxylate because in Diaminopimelate decarboxylase 

(DAPDC), whose active site structure is very similar to that of ODC, the carboxylate 

group of the diaminopimelate aldimine is exposed to the solvent (27). 

Ornithine decarboxylase catalyzes the decarboxylation of ornithine to yield 

putrescine (i.e. 1,4-butanediamine), which is the first step in the biosynthesis of 

poliamines (28). Poliamines are formed by condensation of two or more diamines, such 

as putrescine or cadaverine (i.e. 1,5-pentanediamine), and play an essential role in the 

synthesis of DNA and RNA (28). The inhibition of ODC by a-difluoromethylornithine 

has been proved useful in the treatment of cell proliferation-related diseases like the 

African sleeping sickness (29) or pneumonia in AIDS patients, as well as in 

combination with other drugs in cancer chemotherapy (30, 31). 

In this study, we present the results of Density Functional Theory (DFT) quantum 

mechanical (QM) and hybrid quantum mechanical/molecular mechanics (QM/MM) 

simulations on the decarboxylation of the PLP-ornithine aldimine in gas phase, aqueous 

solution and in the active site of Ornithine decarboxylase (ODC). We have carried out 

metadynamics simulations to obtain the corresponding decarboxylation free energy 

profiles to help understand the origins of catalysis in PLP-dependent enzymes. Ab initio 

metadynamics simulations are a most valuable technique as they also provide an atomic 

description of the dynamic behaviour of the intramolecular hydrogen bond during the 

decarboxylation reaction in each environment. 

DFT-based ab initio simulations are usually restricted to non-hybrid GGA 

exchange-correlation functionals because of computational cost reasons. While 

providing reaction energies with reasonable good precision, such GGA functionals 

usually underestimate activation barriers. On the other hand, geometry optimization 

techniques of energy minima and transition states on the potential energy surface can be 

carried out with more costly and accurate methods at the expense of simplification of 

the studied models. Therefore, traditional QM and QM/MM (ONIOM) static 

calculations were also carried out to complement the molecular dynamics simulations 

and to obtain a consistent energetic description of the decarboxylation reaction. 

2. Computational Details 

2.1.Preparation of the model systems 

The X-ray structure of human Ornithine decarboxylase (PDB code 2OO0) 

crystallized at 1.90A resolution (32) was chosen to study the enzymatic 

decarboxylation. Ornithine decarboxylase is a homodimer with two identical active sites 
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located at the interface formed by the N-terminal domain of one dimer and the C-

terminal domain of the other (Figure 1). The N-terminal domain adopts a p/a-barrel 

structure and the C-terminal domain a P-sheet structure, and the binding site of the PLP 

coenzyme is mostly located by residues of the N-terminal domain (25, 26, 32). 

The SWISS-MODEL Workspace server (33) was used to build the missing sections 

of the protein. The crystal structure of 2OO0 contains the free PLP coenzyme and the 3-

aminoxy-1-propane inhibitor in the active site besides crystallized acetate and 

cadaverine (i.e. 1,5-diaminopentane) out of the active site. Such compounds were 

removed and the PLP-Ornithine aldimine was modelled by superimposing the active 

site coordinates of 2OO0 with those of 1F3T Ornithine decarboxylase crystallized with 

the PLP-Putrescine aldimine (34), which corresponds to the products state of the studied 

decarboxylation reaction. Then, the carboxylate group was added to the re face of the 

Ca carbon, in the hydrophobic pocket formed by the aromatic sidechains of Phe397 and 

Tyr389 and the methylene groups of the sidechains of Cys360 and Lys69. In the 2OO0 

structure, the thiol group of Cys360 is oriented towards the PLP coenzyme as in the 

products state of the decarboxylation reaction (25). Therefore it was rotated out of the 

active site, in the proper conformation of the reactants state (25). 

The AmberTools1.2 package was employed in the preparation of the enzyme and 

solution systems for the molecular dynamics simulations. All histidine residues were 

protonated on the s2 nitrogen after inspection of the local hydrogen bond patterns with 

the neighbour residues. A total of 28 Na+ ions were added to neutralize the protein-

ligand, and the entire system was solvated with SPC-FW waters (35) in a box whose 

edges were at least 7A away from the protein (~24250 water molecules). For the study 

of decarboxylation in aqueous solution, the PLP-Ornithine was solvated with ~1180 

SPC-FW water molecules in a cubic box. The Amber99SB force field (36) was used in 

the description of the protein and ions. It is worth to note that the TIP3P force field (37) 

is the one recommended for water in combination with Amber force fields. However a 

massive colored-noise generalized Langevin equation thermostat (38) was used for the 

QM/MM simulations and, therefore, any of the degrees of freedom of any atom in the 

simulation could be constrained. 

The mechanical parameters for the PLP-Ornithine aldimine were obtained from the 

General Amber Force Field (39) by using the Antechamber module in AmberTools1.2 

(40). In order to obtain the atomic charges, the geometry of the PLP-Ornithine aldimine 

was optimized at the M06-2X/6-31+G(d,p) level in water modelled by the continuum 

solvent SMD (41) with Gaussian09 (42).Then, the HF/6-31G(d) wavefunction and 

electrostatic potential were calculated on the optimized geometry to fit the atomic 

charges according to the Merz-Singh-Kollman scheme (43). 

2.2.Classical Molecular Dynamics simulations 

Previous to the QM/MM molecular dynamics simulations, the enzyme and aqueous 

solution systems were equilibrated to 300K and 1.0bar by performing classical 

molecular dynamics simulations with the Sander module in the Amber10 package (44). 
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Periodic boundary conditions were used during the energy minimizations and molecular 

dynamics simulations. A cutoff of 10 A was applied to the calculation of the nonbonded 

interactions and the Particle Mesh Ewald method (45) was used to calculate the long-

range interactions. 

The water molecules in the enzyme system were minimized for 3000 steps by using 

the steepest descent algorithm followed by 7000 additional steps by using the conjugate 

gradients algorithm. A harmonic restraint with £=100 kcal/molA 2 was applied on the 

protein and ligands atoms to eliminate the solvent-protein clashes. Then, the constraints 

were removed and the whole system was minimized for another 3000 plus 7000 steps of 

steepest descent and conjugate gradients algorithms respectively. 

The temperature was equilibrated to 300 K by performing 50 ps of Langevin 

dynamics with a collision frequency of 5.0 ps -1 in the NVT ensemble. Harmonic 

restraints with k=20 kcal/molA 2 were imposed to the protein and ligands atoms during 

the heating. The SHAKE algorithm was used to constrain the hydrogen distances so that 

the time step could be set to 2 fs. Therefore, the water molecules were not flexible at 

this stage. 

The pressure was equilibrated to 1.0 bar in the NPT ensemble by using a Berendsen 

barostat (46) with a relaxation time of 2 ps. The NPT equilibration was carried out in 

successive steps in which the restraints on the protein and ligand atoms were gradually 

reduced to relax the initial crystal structure in solution. Specifically, 100 ps were run by 

applying harmonic restraints with k=20 kcal/molA2, 200 ps were run with k=0.5 

kcal/molA2, 100 ps with k=0.05 kcal/molA 2 and the last 100 ps were run with k=0.001 

kcal/molA2. Finally, all restraints on the protein and ligands were removed, together 

with all the constraints in the hydrogen-involving distances and the entire system was 

equilibrated for 2.5 ns with a time step of 0.5 fs in the NPT ensemble to an average 

density of 1.06 g/cm . The measured root mean square deviation (RMSD) of the 

backbone atoms during the NPT stage without constraints resulted 1.4±0.2 A with 

respect to the crystallographic structure. In addition, the RMSD of the residues within 

10 A of the external aldimine, including the sidechain atoms, was 0.83±0.06 A. The 

RMSD values remained stable during the last ~1.0 ns of the equilibration (Figure S1, 

Supporting Information), indicating the structural equilibration of the protein. In both 

cases, the obtained RMSD values fall within the resolution of the crystallographic 

experiments (i.e. 1.90 A) (32). 

In the case of the PLP-Ornithine aldimine in aqueous solution, the temperature and 

pressure were equilibrated to 300 K and 1.0 bar for 1 ns of Langevin dynamics with a 

collision frequency of 1.0 ps - 1 in the NPT ensemble with a Berendsen thermostat (46) 

with a relaxation time of 1.0 ps . As for the enzyme system, periodic boundary 

conditions and a cutoff of 10 A together with the Particle Mesh Ewald method for the 

long-range part of the nonbonded interactions were used. A time step of 0.5 fs was used 

and no constraints were imposed on the hydrogen distances to simulate the flexible 

behaviour of PSC-FW waters. The resulting average density in the NPT equilibration 

was 1.00 g/cm . However, since the QM/MM simulations will be performed in the NVT 

ensemble, the simulation box was resized to the average volume obtained during the 
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NPT equilibration and an additional NVT simulation was performed for 1 ns to relax 

the solvent. 

2.3.QM and QM/MM Molecular Dynamics simulations 

The CP2K package (47) was used in the QM simulations carried out in gas phase as 

well as in the QM/MM simulations of the enzyme and solution systems. All the atoms 

of the PLP-Ornithine aldimine were taken into account in the gas phase model and were 

all treated at the ab initio level according to the Density Functional Theory (DFT) in the 

Quickstep module (48, 49) of CP2K. The BLYP exchange correlation functional (50, 

51) was used in combination with a double zeta basis set with polarization functions 

(DZVP) and an auxiliary set of planewaves with a density cutoff of 300 Ry and the core 

electrons were described with the norm-conserving Goedecker-Teter-Hutter (52) 

pseudopotentials. A threshold of 1-10-6 Ha for the energies was used as a criterion of 

wavefunction convergence in each step of the simulations. 

To simulate the gas phase environment, the Blochl method (53) was used to 

decouple the electrostatic interactions with the periodic images. Since a condition of 

Blochl's decoupling scheme is that the periodic images only interact electrostatically, 

the convergence of the interaction energy with respect to the box size was evaluated. 

Eventually, a box larger than 16.0 x 16.0 x 16.0 A3 was required for a correct 

decoupling of the periodic replicas. 

During the decarboxylation reaction, all the atoms involved in the cleavage of the 

Ca-COO bond are part of the PLP-Ornithine aldimine, while the water molecules in 

aqueous solution and the residues in the enzyme active site establish non-bonding 

interactions with the carboxylate group. The solvent molecules and protein residues also 

interact with the rest of the aldimine acid/base groups, stabilizing the protonation state 

of the aldimine so, the protonation state of the aldimine is presumed to be stable along 

the reaction. Accordingly, in aqueous solution and in the enzyme systems, the QM 

region was restricted to the PLP hydroxypyridine ring and the reactive ornithine atoms 

(Scheme 3). On the other hand, since the phosphate and amino groups of the PLP-

Ornithine aldimine are simply electrostatically involved in the decarboxylation reaction, 

they were considered as part of the MM region (Scheme 3). Therefore, in the QM/MM 

calculations, the PLP C5' and the ornithine Cy were substituted by hydrogen link atoms 

according to the IMMOM scheme (54), and a scaling factor was used to project the 

forces of the capping hydrogens on the frontier link MM atoms. 

The QM/MM simulations in CP2K make use of the Quickstep and Fist modules for 

the calculation of the QM and MM regions, while the QM/MM interaction energy and 

forces are calculated with the QM/MM module according to the formulation of Laino et 

al. (55, 56). 

The protein and counterions were modelled with the Amber99SB force field and the 

water molecules with the SPC-FW force field as in the classical equilibrations. The 

smooth Particle Mesh Ewald method (57) and a cutoff of 10A for the calculation of the 

real part of the nonbonded interactions were used. All the parameters controlling the 

calculation of the wavefunction and electron density of the QM region are equal to those 

195 



4. Results 

described for the gas phase system with the exception of the box size. The Blochl's 

decoupling scheme was also used to decouple the periodic replicas, but a s maller 

minimum size box of 14.0 x 14.0 x 14.0 A3 was required for a correct decupling 

because the QM regions considered in solution and in the enzyme are smaller than that 

considered in gas phase. 

An integration time step of 0.5 fs was used in all the QM and QM/MM simulations, 

which were performed in the NVT ensemble at a temperature of 300 K controlled by a 

colored-noise generalized Langevin equation thermostat (38). The thermostat 

parameters were obtained from an online repository (GLE4MD, 58) and were chosen to 

minimize the correlation time of the potential energy of the vibrational modes with 

frequencies in the range 0.4-4000 cm - 1 , which involve the typical frequencies of 

proteins, water and organic molecules. The PLP-Ornithine aldimine was equilibrated in 

gas phase, in the ODC active site and in aqueous solution for 3.0 ps, 6.0 ps and 10.0 ps 

respectively until the average temperatures of the QM and MM systems were stabilized 

at 300 K. 

2.4. Metadynamics 

The well-tempered (59) version of metadynamics (60), together with the use of 

multiple walkers (61) was used with CP2K to obtain the free energy profiles of the 

decarboxylation reactions. The Ca-COO distance was chosen as the collective variable 

whose associated potential energy is modified along the metadynamics simulation by 

the addition of gaussian potentials, commonly known as hills. Such hills were deposited 

every 60 steps (i.e. every 30 fs) with a width of 0.10 Bohr and an initial height of 

0.0020 Hartree. An external potential acting on the collective variable was positioned at 

7.5 Bohr with a quadratic constant of 15.7 kcal/molA 2 to avoid an infinite elongation of 

the Ca-COO distance during the metadynamics simulations. The fictitious temperature 

at which the collective variable was sampled in the well-tempered metadynamics was 

set to 4500 K. 

Four walkers were used in the gas phase and aqueous solution metadynamics 

simulations, while six walkers were used for the enzyme reaction. The initial structures 

of each walker were randomly selected from their respective QM or QM/MM 

equilibration stages. Since the calculations of each walker run on independent machines 

and only the information of the hills is shared, the final simulation times of each walker 

are different. Nevertheless, in the case of the gas-phase reaction the metadynamics 

simulation was performed at least for 42 ps for each walker, while in the case of the 

aqueous solution and enzyme reactions, each walker was simulated at least for 62 ps 

and 30 ps respectively. Eventually, the total simulation time was 182 ps, 256 ps and 212 

ps for the gas phase, aqueous solution and enzyme metadynamics. 

In the transition state, the probability of evolving to reactants and products is equal. 

Therefore, if a large enough number of molecular dynamics simulations is initiated with 

random initial velocities, the more the initial structure resembles the transition state, the 

closer the distribution of trajectories reaching reactants and products would be to 50:50. 

This procedure, also known as committor analysis, allows the verification that the 
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maximum of the free energy profile corresponds to the transition state of the studied 

reaction. We carried out the committor analysis for the reactions in solution, enzyme 

and gas-phase, and the accepted structures resulted in a reactant/product distribution of 

49:51, 50:50 and 45:55, respectively, over a total number of 100 trajectories in each 

case (Figure S2). 

2.5.Geometry optimization of critical points on the potential energy surface 

Geometry optimizations were carried out to find the energy minima (i.e. reactants 

and products states) and the transition state structures of the decarboxylation reactions 

in the gas phase, aqueous solution and in the active site of Ornithine decarboxylase. 

The PLP-Ornithine models for the reactions in aqueous solution and in the ODC 

active site were obtained from the equilibrated systems by classical molecular dynamics 

simulations. In the case of the aqueous solution reaction, the entire PLP-Ornithine 

aldimine plus ten water molecules, which correspond to the first solvation shell of the 

pyridine, phenol and carboxylate groups, were taken into account. In addition to the 

explicit water molecules, the SMD continuum solvent model (41) was used for the 

calculations of the reaction in aqueous solution to model the bulk effects of water 

beyond the first solvation shell. 

For the enzyme reaction, an active site model of 297 atoms was built by taking into 

account the entire PLP-Ornithine aldimine and all the residues and water molecules 

with which establishes direct interactions (Figure 1). Specifically, the model contains 

the atoms in the residues Arg277-Glu274 from the first monomer and in the residues 

Cys360, Asp361, Phe397, Asn398 from the second monomer and the sidechains of 

Lys69, Asp88, Arg154, His197, Ser200, Asp332, Tyr331 and Tyr389 from the first 

monomer. Additionally, a total of 15 water molecules were included, most of which are 

found in the crystal structure of ODC, PDB entry 2OO0: two water molecules 

interacting with the guanidinium group of Arg154, four waters are shared between 

Arg154 and Glu274, another molecule that only interacts with Glu274, two more waters 

interacting simultaneously with Lys69 and Asp88, two water molecules interacting with 

the phosphate group of PLP, another molecule that interacts with the 5-amino group of 

the ornithine sidechain and three water molecules interacting with Asp361 (Figure 1). 

The frontier carbons resulting from the elimination of the rest of the protein were 

saturated with hydrogen atoms. 

All the calculations were carried out with the Gaussian 09 package (Gaussian 09). 

The geometry optimizations were carried out by using the BLYP (50, 51) and M06-2X 

(62) exchange correlation functionals with the 6-31+G(d) basis set. Vibrational analyses 

were carried out on the optimized structures to characterize them as energy minima or 

transition states respectively by the absence of imaginary frequencies or by the presence 

of a single imaginary frequency, which corresponds to the vibrational motion associated 

to the decarboxylation reaction. In a post-optimization step, the energies of the 

optimized structures were refined increasing the basis set to 6-311++G(d,p) with the 

BLYP and M06-2X functionals. The free energies were calculated as the summation of 
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the thermal corrections calculated in the vibrational analyses with the 6-31+G(d) basis 

set and the potential energies calculated with the 6-311++G(d,p) basis set. 

An ONIOM scheme (63, 64) was used for the study in the active site model. 

DensityFunctional Theory calculations with the BLYP and M06-2X functionals were 

used for the PLP-Ornithine aldimine, while the AM1 (65) semiempirical method was 

used for the protein and water molecules. All the alpha carbons of the complete residues 

and the frontier carbons in the fragmented residues were frozen to maintain the active 

site architecture. The geometry optimizations were carried out in two steps. First, the 

water molecules were optimized with loose convergence criteria. In the second step, the 

water molecules and the previously mentioned carbon atoms were frozen and the 

aldimine and rest of the active site atoms were fully optimized. During the calculation 

of the refined energies of the active site, the SMD solvent model was used to 

approximate the long range effects of the missing protein residues and solvent 

molecules. 

3. Results and Discussion 

3.1. Catalysis of decarboxylation in ODC 

The activation free energy of decarboxylation for the PLP-Ornithine aldimine in 

solution is approximately 17.5 kcal/mol according to the metadynamics simulations 

(Table 1, Figure 2). A very similar value is obtained via static geometry optimization 

calculations performed with the same exchange-correlation functional, BLYP (Table 1). 

As mentioned earlier, non-hybrid GGA functionals tend to underestimate activation 

energies of chemical reactions. In fact, equivalent calculations performed by using the 

M06-2X functional point out that the activation free energy in solution is 22.6 kcal/mol 

(Table 1). The uncatalyzed decarboxylation of glycine in solution requires an activation 

energy of ~40 kcal/mol (6) (Table 1). Considering that the decarboxylation activation 

energy of ornithine in solution is similar, the formation of the Schiff base with PLP 

reduces the barrier by 17.4-22.5 kcal/mol, which involves a 10 1 3 -10 1 6 fold acceleration 

of the reaction rate. 

The transition state structures obtained from to the committor analysis point out that 

the carboxylate group is eliminated perpendicularly to the plane formed by the pyridine 

and imine moieties (Figure 3). According to the analysis of electron density, this 

conformation allows the electron pair generated in the cleavage of the Ca-COO bond to 

be stabilized by delocalization across the n system (Figure 3). 

The experiments performed by Zabinski and Toney (66) indicate that the 

decarboxylation activation energy of a-aminoisobutyrate catalyzed by PLP in solution 

at pH 5 is 24.8 kcal/mol (Table 1), higher to that calculated in this work for the PLP-

Orn aldimine. Recent 1 5 N NMR experiments indicate that the pyridine nitrogen of PLP 

Schiff bases with amino acids is deprotonated above pH 4 (19). Since the protonation of 

this nitrogen atom favors the delocalization and stabilization of the negative charge 

generated in the transition state, the activation energy of decarboxylation at pH 5 i s 
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expected to be higher than the one calculated for the pyridine nitrogen-protonated 

aldimine in this work. 

It has been reported that the decarboxylation rate of 2-methyl-2-aminomalonate 

aldimine with PLP shows a 20-fold decrease upon pH increase from 5 to pH 8 (66). 

Considering that a similar decrease holds for the PLP-a-aminoisobutyrate aldimine, its 

decarboxylation free energy of activation at pH 8 would be ~26.6 kcal/mol (Table 1). 

The interest of this value is that the protonation state at pH 8 and the one considered in 

this work only differ in the pyridine nitrogen. Consequently, the contribution to the 

decarboxylation catalysis by protonation of this nitrogen atom can be estimated from 

the difference between the activation energy at pH 8 and the one calculated in this work. 

Consequently, the protonation of the pyridine nitrogen reduces the activation energy by 

9.1 kcal/mol and 4.0 kcal/mol respectively, according to the metadynamics simulations 

and the M06-2X calculations. Since these values only account for 40% or 20% of the 

total energy barrier reduction according to the metadynamics and M06-2X calculations, 

the protonation of the pyridine nitrogen is a relevant contribution but not the major one 

to the catalysis by PLP. Similar conclusions were reported from previous calculations 

carried out to study the protonation effect of PLP Schiff bases on the decarboxylation 

barriers (17). 

Instead of the major protonation state observed at physiological pH, the 

decarboxylation study in solution was carried out in this work by considering the 

protonation state corresponding to the ODC active site. This allows the total enzyme 

catalysis to be divided in a contribution resulting from Schiff base formation with the 

cofactor and another ascribed to the proteic environment. According to the 

metadynamics simulations, the decarboxylation in the ODC active site exhibits 13.8 

kcal/mol activation free energy (Table 1, Figure 2), which is in agreement with kinetic 

experiments carried out by Brooks and Phillips (67) who reported a value of 14.5 

kcal/mol. The static calculations carried out with the BLYP and M06-2X functionals in 

the active site model provide activation energies that follow the same trends observed 

for the decarboxylation in solution (Table 1). Again, considering the activation energy 

of the uncatalyzed decarboxylation in solution (i.e. ~40 kcal/mol (6), Table 1), ODC 

causes a remarkable 101 9-fold increase in the decarboxylation rate or, alternatively, a 

reduction of 26.2 kcal/mol in the activation energy or, alternatively. 

As in solution, the carboxylate group in the ODC active site is eliminated 

perpendicularly to the plane ring so that the developing negative charge generated in the 

transition state is delocalized across the n system (Figure 3). These results point out that 

the decarboxylation mechanism is mainly governed by stereoelectronic factors inherent 

to the PLP Schiff base rather than by the environment. Independently of the calculation 

method, the reduction in the activation energy due to the transfer of the PLP-Orn 

aldimine from solution to the ODC active site is approximately 3-4 kcal/mol. 

Although the carboxylate group of D-Ornithine is solvent-exposed once the external 

aldimine is formed in ODC, its decarboxylation has been experimentally observed (25. 

27). Indeed, the measured decarboxylation rate of the D isomer is approximately 104¬ 

fold slower than that of the L isomer (27), which corresponds to a ~4.5 kcal/mol higher 

activation energy, in excellent agreement with our results. Similarly, the enzyme 
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diaminopimelate decarboxylase carries out the elimination of a s olvent-oriented 

carboxylate group on its natural substrate (27). Our results show that the catalysis in 

these cases is still possible because the determining factor is the Schiff base formation 

with the pyridine-protonated PLP cofactor. Lin and Gao (24) have also reported 

analogue conclusions from QM/MM simulations for the PLP-catalyzed decarboxylation 

of L-Dopa in the enzyme L-Dopa decarboxylase and in solution. At this point, it should 

be reminded that the PLP-Schiff bases in solution at physiological pH are less 

protonated than in the ODC active site. So, altogether, the catalysis by ODC involves a 

~109-fold acceleration with respect to the nonenzymatic reaction catalyzed by PLP in 

solution, including both the contribution of the enzymatic environment and the pyridine 

nitrogen protonation in the active site. 

Based on kinetic studies of mutant ODCs and crystal structures of ODC complexed 

with diverse ligands, Phillips and co-workers (25, 26, 68) proposed that the 

decarboxylation is favored in the ODC active site as a result of desolvation of the 

carboxylate group. In agreement with this hypothesis, our simulations in ODC show 

that the carboxylate group of PLP-Orn is positioned in a hydrophobic pocket formed by 

the aromatic rings of Phe397, Tyr389 and the methylene groups of Lys69 sidechain. 

Additionally, the carboxylate group does not interact with any water molecules and the 

only hydrogen bond i nteraction is formed with the sidechain amide NH2 group of 

Asn398 at an average distance of 3.33 A (Table 2). An equivalent amide group that is 

present in the PLP-dependent Dialkylglycine decarboxylase active site has been 

reported to help the carboxylate group adopt the proper conformation for its elimination 

from Ca (8). 

In order to study both the intra- and intermolecular variations upon decarboxylation, 

the structures from the trajectories of the metadynamics simulations have been clustered 

in two categories that correspond to the reactants and products regions. The used 

criterion consists on evaluating whether the Ca-COO distance is shorter or longer than 

that obtained from the committor analysis for the reactions. Likewise, the radial 

distribution functions of the PLP-Orn aldimine with the water oxygen (O w ) and water 

hydrogen (H w ) atoms in solution have been obtained separately for the reactants and 

products regions (Figure 4, Figure S3). 

In the reactants state, the first solvation shell of each carboxylate oxygen consists of 

3 water molecules in average. The water oxygens (O w ) are localized in a region between 

2.42 and 3.26 A of the carboxylate oxygens and the most probable O-O w distance is 

2.77 A (Figure 4). These water molecules that constitute the first solvation shell situate 

an average of 2.9 hydrogen atoms (H w ) at a hydrogen bond distance (i.e. 1.86 A) of 

each carboxylate oxygen (Figure 4). In order to quantify the number of hydrogen bonds, 

two geometrical variables were evaluated. Firstly, the water oxygen atom Ow should be 

at 3.5 A or less of the carboxylate oxygen and, secondly, the angle formed by the O w -

Hw and O w -O bonds should be equal or less than 30°. According to these criteria, the 

number of hydrogen bonds oscillates between 1 and 3, reaching a maximum of 4 for 

some structures, and resulting an average of 2.2 (Table 2). 

In the products region, the negative charge is delocalized along the n system of the 

Schiff base and the eliminated C O 2 is neutral and nonpolar. A consequent decrease to 
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an average of 0.15 is observed for the hydrogen bonds formed in the first solvation shell 

between the solvent waters and each C O 2 oxygen. The oxygen atoms Ow of these water 

molecules in the first solvation shell occupy a significant larger region (i.e. 2.56-4.73 A) 

(Fgiure 4). In addition the most probable O-O w distance increases to 3.26 A, which is 

shorter than the most probable O-H w distance (i.e. 3.89 A, Figure 4), indicating that the 

Hw hydrogens reorient towards the bulk solvent and do not interact with the CO2 

molecule. 

The radial distribution function of the carboxylate and water oxygens in the ODC 

active site indicates that the carboxylate group is not stabilized by hydrogen bonding 

interactions (Figure 4). Indeed, comparing the solution and active site radial distribution 

functions, it is observed that the active site environment is closer to that of the free C O 2 

in solution (Figure 4). These results support the hypothesis that the decarboxylation is 

promoted in the ODC active site by destabilization of the reactants state in favor of the 

more nonpolar transition state. 

It is also worth noting that at physiological pH, ODC is exhibits more negatively 

charged than positively charged residues, resulting in a total negative charge of 28 au. 

Furthermore, the ODC architecture places the negatively-charged residues closer to the 

carboxylate group of the PLP-Orn aldimine than the positively-charged ones (Figure 4), 

creating an electrostatic gradient that destabilizes the reactant state. 

The activation barrier in gas-phase corresponds to the intrinsic reactivity of the PLP 

Schiff bases formed with amino acids and allows a quantification of the maximum 

catalysis by desolvation. In gas phase, both the transition state and the resulting 

products of decarboxylation are strongly stabilized with respect to the reactants state 

due to their lower polarity (Figure 2, T able 1). According to the metadynamics 

simulations and the static calculations, the activation barrier is 2.4 kcal/mol and 1.4 

kcal/mol respectively (Table 1), which is significantly lower than that of the 

decarboxylation in aqueous solution and also in ODC (Figure 2 Table 1). It is 

remarkable that the reduction of the activation barrier in ODC is only ~3 kcal/mol of a 

potential ~15 kcal/mol decrease because of desolvation. 

Besides desolvation, other factors, which are difficult to quantify but worth 

mentioning, contribute to the catalysis in ODC. The most stable conformation of the 

PLP-Orn aldimine in the ODC active site exhibits the carboxylate group almost 

perpendicular to the pyridine ring (i.e. the COO-Ca-Nim-C4' torsion equals 98°, Table 

2). This conformation involves the alignment of the COO-Ca bond with the orbitals of 

the n system. Contrarily, in aqueous solution and gas-phase, the most stable 

conformation places the carboxylate group slightly off the Schiff base plane (i.e. the 

COO-Ca-Nim-C4' torsions equal -138° and -123° respectively Table 2). In this 

conformation, the closest carboxylate oxygen to the imine hydrogen is at 2.49A in 

solution and at 2.55 A in gas-phase so that the iminium and carboxylate group stabilize 

each other by Coulomb interactions. During the metadynamics simulations, the energy 

addition to the COO-Ca bond causes the COO-Ca-Nim-C4' dihedral to rotate to 

average values of 101° in the ODC active site, -110° in solution and -86° in gas-phase 

prior to decarboxylation (Table 2). Therefore, part of the catalysis in ODC results from 
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the destabilization of the reactants state in the active site, which forces a more favorable 

conformation to the transition state. Previous calculations performed by Toney (17) 

estimated a ~13 kcal/mol conformational destabilization in gas-phase for the aldimines 

in the same protonation state than the one considered in the present study. 

The destabilization of the reactants in the ODC active site is also manifested in the 

equilibrium Ca-COO bond distance. In solution, where the negatively charged 

carboxylate group is stabilized by solvation, the average bond length is 1.58 A (Table 

2), whereas the equilibrium length increases to 1.69 A in gas-phase (Table 2). The 

average bond length in ODC is 1.65 A (Table 2), closer to the gas-phase and longer than 

in solution. As shown by Griswold et al. (10), the Ca-H bond order decreases by a 20% 

when oriented perpendicularly to the PLP ring due to hyperconjugation with the n 

system. Similarly, the labilization of the Ca-COO bond i n ODC may be caused by 

similar stereoelectronic effects. 

According to the committor analysis, the Ca-COO bond l engths in the transition 

state in solution, ODC and gas-phase are respectively 2.38 A, 2.81 A and 2.13 A, which 

match the maxima of the free energy profiles obtained from the metadynamics 

simulations (Figure 2). These values fulfill the Hammond postulate since the 

decarboxylation is less endergonic in solution than in ODC, while in gas-phase the 

reaction is exergonic (Figure 2). 

3.2. Destabilization of the carbanionic intermediate and reaction specificity of its 

evolution 

It is worth to note that whereas the transition state is stabilized with respect to the 

reactants state in ODC, the carbanionic intermediate is destabilized (Figure 2). Similar 

destabilization has also been reported for the carbanionic intermediate resulting from 

Ca deprotonation in Alanine racemase (69). The absence of protonation at the pyridine 

nitrogen in this enzyme hinders the delocalization of the negative charge from Ca 

across the n system. Consequently, the increase in energy of the intermediate favors its 

fast reprotonation at Ca and, simultaneously, transamination side reactions are 

kinetically avoided (69). Our results suggest that ODC may take advantage of the same 

strategy to drive the protonation of the intermediate to Ca. In fact, kinetic experiments 

of ODC show that the reprotonation of the intermediate is the fastest step in the reaction 

(67), which supports the presence of a high energy carbanionic intermediate. However, 

contrarily to Alanine racemase, the interaction between the Schiff base with Glu274 (25, 

26) and the detection of a quinonoid-type carbanion intermediate (67) suggest that the 

Schiff base is protonated at the pyridine nitrogen in ODC. Therefore, two questions 

arise; namely, 1) What causes the destabilization of the intermediate in ODC? and 2) 

Which mechanism ensures the reprotonation of the intermediate at Ca? 

In the metadynamics simulations, the Glu274 residue belongs to the classical region 

and no pr oton transfer is therefore possible from the Schiff base pyridine nitrogen. 

Consequently, the average N p y r - H and H-OGlu274 bond lengths show values of 1.04 A 

and 1.70 A that remain invariant during the reaction (Table 2). However, this is not only 
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a result of the artificial QM/MM division because proton transfers are neither observed 

in the ONIOM active site models, which are treated completely quantum mechanically. 

Therefore, the destabilization of the carbanionic intermediate is not likely to be caused 

by deprotonation of the pyridine nitrogen in the active site during the reaction. 

Neither the 5'-phosphate of the PLP nor the 8-amino of the ornithine sidechain 

interact with the carboxylate or any other groups of the aldimine during the 

decarboxylation. In solution, these groups remain away of the reaction region with 

solvation spheres that are also unaltered during the decarboxylation (Figure S3). In gas-

phase, the 5-amino group of the ornithine sidechain donates a proton to the 5'-phosphate 

group during the first picosecond of the equilibrium simulation. Afterwards, the 

ornithine sidechain extends so that the 5-amino group remains away from both the 5'-

phosphate and the carboxylate groups (Figure S3, Table S1). Similarly, the 5'-

phosphate and the 5-amino groups are anchored during the entire reaction in the ODC 

active site. The 5'-phosphate accepts hydrogen bonds from two water molecules, the 

sidechains of His197B, Ser200B, Tyr389B and with the backbone NH groups of 

Gly237B, Gly276B and Arg277B (Table S1). These results point out that neither the 

5'-phosphate nor the 5-amino group is responsible for the destabilization of the 

carbanionic intermediate in ODC. 

During the simulations in solution, as well as in ODC and gas-phase, the Schiff base 

adopts a planar conformation that allows the formation on an intramolecular hydrogen 

bond with the phenol oxygen, which is in agreement with recent NMR studies (19). As 

a result of this intramolecular interaction, the imine group is not solvated by water 

molecules in solution and does not establish hydrogen bonding interactions with any 

residue in the active site. 

In solution, the first solvation shell of the phenol oxygen O3' is formed by ~2.3 

water molecules at an average distance of 2.77 A. The number of hydrogen bonds 

accepted by the O3' oxygen oscillates between 1 and 2, and the average is 1.1 (Table 2). 

Once the decarboxylation takes place and the generated negative charge delocalizes 

across the n system to the pyridine ring, the negative charge of the O3' oxygen is also 

increased. In response, the number of water molecules in the first solvation shell rises to 

~2.6. More interestingly, the hydrogen atoms of these water molecules reorient towards 

O3' , the average O3 ' -H w distance decreases from 1.86 A to 1.79 A and the average 

number of hydrogen bonds increases to 1.8 (Table 2). 

The interactions at O3' have strong influence on the tautomerism between the 

phenol and imine groups (18, 20). Our simulations show that in solution and in gas¬ 

phase, respectively 97% and 99% of the structures exhibit a protonated imine nitrogen 

and a deprotonated phenol oxygen. That is, the major tautomer in the reactants state 

corresponds to the ketoenamine form (Scheme 2). As mentioned previously, the 

negative charge of O3' increases by delocalization after the transition state. The result in 

gas-phase is that the proton is mostly transferred from the imine group to O3' since only 

11% of the structures show a protonated imine nitrogen (Figure 5). Oppositely, in 

solution, 75% of the carbanionic intermediate structures remain protonated at the imine 
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nitrogen because the reorganization of solvent molecules stabilizes the increase of 

negative charge at O3' and hinders the proton transfer (Table 2, Figure 5). 

Similarly to solution and gas-phase, in the ODC active site, 96% of the reactants 

structures are protonated at the imine nitrogen. After decarboxylation, 40% of the 

carbanionic intermediate structures are protonated at the imine nitrogen (Figure 5). 

Therefore, the proton transfer to O3' increases with respect to solution but without 

reaching the extent observed in gas-phase (Figure 5). In the ODC active site, the O3' 

interacts with a single water molecule at 2.92 A, also observed in crystal structures of 

ODC (25, 26), which establishes an average of 0.8 hydrogen bonds in the reactants and 

products (Table 2). These results indicate that the carbanionic intermediate in ODC is 

not stabilized either by a full protonation of O3' , as in gas-phase, or by an increase of 

the hydrogen bonds interactions, as in solution. 

The simulations carried out by Lin and Gao (24) on the decarboxylation of PLP 

Schiff bases show a lower decarboxylation barrier for the O3'-protonated tautomers. 

Reasonably, part of the catalysis in PLP-dependent decarboxylases could be attributed 

to a coupling between the decarboxylation reaction and the imine-phenol proton transfer 

(24). The present metadynamics simulations support this hypothesis since such coupling 

is clearly observed in gas-phase and, in a lesser extent, in the ODC active site, whereas 

almost no coupling occurs in solution (Figure 5). 

Recent NMR studies indicate that the imine-phenol proton transfer exhibits a high-

barrier transition state in the PLP Schiff bases (18, 20). Our data point out that the 

mobility of the proton in the intramolecular hydrogen bond increases once the 

carbanionic intermediate is formed (Figure 5), which implies a decrease in the barrier of 

the proton transfer. In addition, the simulations suggest that the imine-phenol 

tautomerism of the carbanionic intermediates is easier to modify by specific interactions 

at O3' than in the Schiff bases. Even though more quantitative studies should be carried 

out on the tautomerism of the carbanionic intermediates, the results in the present work 

support previous studies that propose that the interactions of O3' are modulated in the 

active site of each PLP-dependent enzyme to promote either the enolimine (i.e. O3 ' -

protonated) tautomer or the ketoenamine (i.e. N i m-protonated) tautomer, which 

ultimately control the relative rates of protonation of the intermediate at Ca or at C4' (8, 

11, 13-15, 69-71). Overall, the degree of protonation and the hydrogen bonds 

interactions observed for O3' in the ODC active site suggest a compromise between the 

reduction of the transition state decarboxylation to favor the catalysis and the 

destabilization of the carbanionic intermediate to control the specificity of the 

protonation at Ca. 

Nevertheless, even the partial protonation of O3' increases the probability of 

transamination side-reactions. Therefore, the role of the acid catalyst residue is also 

important to achieve the correct reaction specificity. Once the PLP-Orn aldimine is 

formed, the s-amino group of Lys69 moves away from the Schiff base carboxylate 

group and forms hydrogen bonding interactions with Asp88. However, in this position, 

it is still closer to C4' than to Ca (Table 2) so, if Lys69 were the acid catalyst in the 

protonation of the carbanionic intermediate, the entropic factor would favor the 
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protonation at C4' over Ca. In fact, several crystal structures of ODC and kinetic 

experiments of mutant enzymes indicate that Cys360 is the actual acid catalyst in the 

protonation of the carbanionic intermediate (25, 26, 34). During the metadynamics, the 

elimination of the carboxylate group as CO2 involves the loss of the hydrogen bond 

with the amide-NH 2 group of Asn398 (Table 2). As a consequence, the mobility of the 

amide group of Asn398 increases and its hydrogen bond with the thiol group of Cys360 

is also broken (Table 2). Therefore, the decarboxylation reaction indirectly liberates the 

thiol group of Cys360 allowing its later rotation inwards the active site, close to Ca for 

its protonation. Contrarily, the interactions between Lys69 and Asp88 remain unaltered 

upon decarboxylation, indicating that it is probable that the release of the Lys69 

sidechain cannot occur until the protonation of Ca by Cys360. In such mechanism, the 

deprotonated Cys360 thiol group would be regenerated by neutralization with the Lys69 

s-amino group, activating this latter residue as nucleophile for the hydrolysis and 

release of the final products. 

As depicted in Figure 2, the free energy of the transition state in ODC is reduced 

almost to equalize the free energy of the carbanionic intermediate. Another reason to 

avoid greater desolvation is that a more hydrophobic active site would probably hinder 

the Schiff base formation with ornithine and the hydrolysis of the final products. These 

reactions involve the nucleophilic attack of the incoming amino group of the positively 

charged iminium group of the already formed PLP Schiff base, as well as a number of 

proton transfer reactions between ionic/polar groups (72-75). In fact, kinetic studies of 

ODC reveal that no greater desolvation is needed because the rate-limiting step is the 

hydrolysis of the final products instead of the decarboxylation step (26, 34, 67, 68). 

4. Conclusions 

Similarly to other PLP-dependent decarboxylases with their natural substrates, 

Ornithine decarboxylase accelerates the decarboxylation of L-Ornithine by 101 9-fold 

compared to the uncatalyzed reaction in solution, which corresponds to one of the 

largest catalytic efficiencies for biological reactions. The enzymatic environment 

reduces the direct interactions with the carboxylate group almost to the maximum and 

reduces the activation barrier by destabilization of the reactants with respect to the 

transition state. At physiological pH, ODC bears more negatively charged than 

positively charged residues. The negatively charged residues are also closer to the 

aldimine carboxylate, creating an electrostatic gradient which also destabilizes the 

reactants and favors the elimination of CO 2 . In addition, the conformation of the 

external aldimine in the ODC active site is ideal from the electronic standpoint for the 

stabilization of the negative charge generated by the Ca-COO bond cleavage. 

Eventually, the proton transfer from the imine nitrogen to the phenol oxygen O3' during 

or after the decarboxylation is more favorable than in solution, which helps stabilize the 

generated negative charge in the transition state. However, the catalytic contribution 
2 3 

exclusively due to ODC is only 3-4 kcal/mol, or a reaction rate acceleration of 10 -10 -

fold, which involves that the remaining 101 6-fold acceleration originates in the Schiff 
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base formation with the PLP cofactor. Nevertheless, the ODC active site makes possible 

the protonation of the PLP pyridine nitrogen with respect to solution, which constitutes 

a 10 7 factor of the total 101 6-fold acceleration by the cofactor. 

There are two reasons that explain the fact that only a small fraction of the potential 

catalysis due to desolvation is recovered in the ODC active site. Firstly, the decrease in 

the activation barrier is enough to make the hydrolysis of the products, and not the 

decarboxylation, the rate-limiting step in the global kinetics. Furthermore, the 

nucleophilic attack of Lys69 and the proton transfer reactions that constitute the 

hydrolysis would be further hindered in a more hydrophobic environment. Secondly, the 

proton of the intramolecular hydrogen bond i n the carbanionic intermediates of PLP 

aldimines shows great mobility in ODC. Larger desolvation of the aldimine in the active 

site would involve a large stabilization of the carbanionic intermediate by a higher 

degree of protonation of O3' , which ultimately would favor transamination-side 

reactions. That is, the reaction specificity is prioritized in front of the decarboxylation 

catalysis. Finally, in agreement with previous hypothesis, our results indicate that the 

C O 2 elimination liberates the Cys360 thiol group to act as the acid catalyst in the 

protonation of the carbanionic intermediate exclusively at Ca while retaining the s¬ 

amino group of Lys69. 
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Ca- ioca l ized C4'- local ized Q u i n o n o i d —I 
r e s o n a n c e f o r m r e s o n a n c e f o r m r e s o n a n c e f o r m 

Internal External 

aldimine aldimine Carbanionic intermediate 

Scheme 1. T ransimination reaction between the internal and external aldimines in a 

PLP-dependent enzyme and decarboxylation of Ca to produce a delocalized 

carbanionic intermediate. 

Ketoenamine Enolimine 
tautomer tautomer 

Scheme 2. Tautomeric equilibrium between the ketoenamine and enolimine forms of 

PLP Schiff bases. 

NH3+ 

I. 
Cy O 

O C4^ -и 

P с- C O. 

и 
Scheme 3. QM (blue) and MM (red) regions considered for the simulations in solution 

and in ODC. All the atoms were treated quantum mechanically in the gas-phase 

simulations. 
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Table 1. Calculated and experimental activation free energies and reaction free energies 

for the decarboxylation of amino acids in different conditions. 

Gly (aq.) 

PLP-Orn (aq.) 

PLP-AIB (aq.) 

PLP-AIB (aq.) 

PLP-Orn (ODC) 

AG* 

(kcal/mol) 
AGr 

(kcal/mol) 

PLP-Orn (gas) 

Expt l . a 40.0 

Metadynamics b 17 .5 10 .6 

B L Y P c 16.6 15.3 

M 0 6 - 2 X c 22.6 15.2 

Exptl . (pH 5 ) d 24.8 

Exptl . (pH 8) e 26.6 

Metadynamics 13 .8 11 .9 

B L Y P 14.2 7.9 

M06-2X 19.6 3.8 

Expt l . f 14.5 

Metadynamics 2. 4 -8.9 

B L Y P 1.4 -14.9 

M 0 6 2 X 1.4 -23.0 
aFree energy of activation of the uncatalyzed decarboxylation of glycine in solution 

(Wolfenden2000). Since the metadynamics simulations are performed in the NVT 

ensemble, the free energy differences correspond to Helmholtz free energies instead of 

Gibbs free energies. cThe BLYP and M06-2X labels stand for the static calculations 

performed by using such exchange-correlation functionals as explained in the Methods 

section. dFree energy of activation of the PLP-catalyzed decarboxylation of a-

aminoisobutyrate in solution at pH 5 (Toney2000). eFree energy of activation of the 

PLP-catalyzed decarboxylation of a-aminoisobutyrate in solution at pH 8. This value 

has been calculated by considering the same variation observed for the decarboxylation 

rate of PLP-2-methyl-2-aminomalonate upon p H increase from 5 to 8 (Toney2000). 
f 

Free energy of activation of the PLP-catalyzed decarboxylation of ornithine in the ODC 

active site (1999Phillips). 
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Table 2. Relevant average geometrical parameters for the decarboxylation of the PLP-

Orn aldimine in solution, ODC active site and gas-phase. a 

Aqueous Solution ODC active site Gas-phase 

Equil.b Reac.c Prod.d Equil. Reac. Prod. Equil. Reac. Prod. 

Carboxylate interactions 
d Ca-Cooe 1.58 1.75 3.41 1.65 1.90 3.53 1.69 1.79 3.41 

d cOO-N A s n 39 8 (Ow) f 2.77 2.77 3.26 3.33 3.53 4.20 

d cOO-H2NAsn398 (Hw) 1.86 1.79 3.89 2.47 2.66 3.66 

Imine-phenol interactions 

d Nim-H 1.05 1.07 1.21 1.05 1.08 1.39 1.05 1.06 1.59 

d O3'-H 1.95 1.78 1.51 1.82 1.71 1.27 1.93 1.76 1.10 

d O3'-Ow 2.77 2.77 2.77 2.85 2.92 2.92 

d O3'-Hw 1.86 1.86 1.79 1.91 1.97 2.11 

Pyridine nitrogen interactions 

d Np y r-H 1.04 1.04 1.03 1.05 1.05 1.04 1.03 1.03 1.02 

d Npy r -O G 1 U 274 (Ow) 2.77 2.84 2.84 2.69 2.69 2.72 

d H-OG1u274 (Ow) 1.79 1.79 1.79 1.69 1.69 1.71 

Ca and C4' interactions 
d C4'-N Ly s 69 5.21 5.41 5.51 

d Ca-NLy S69 6.34 6.54 6.72 
d C 4 ' - S C y S 3 6 0 6.66 6.07 6.28 

d Ca-SCys360 6.61 6.00 6.17 

Protein-Protein interactions 
d H S C y s 3 6 0 - O A s n 3 9 8 2.32 2.52 4.53 
d N L y s 6 9 - O A s p 8 8 2.71 2.70 2.68 

Hydrogen bonds 

cOO-Owg 2.2 1.7 0.2 

O3'-Ow 1.1 1.1 1.8 0.8 0.8 0.8 

PLP-Orn dihedrals 

6 Coo-Ca-Nim-C4'h -138 -109 -76 98 101 116 -123 -86 -63 

6 H-N im-C4'-C4 -1 1 0 1 2 3 -1 3 1 

6 Nim-C4'-C4-C3 -3 0 -2 0 2 0 1 0 0 
aThe corresponding standard deviation values are given as supporting information 

material. bAverages obtained from the QM or QM/MM equilibrium simulations of the 

PLP-Orn aldimines. cAverages obtained from the QM or QM/MM metadynamics 

simulations of the configurations corresponding to the reactants state region. dAverages 

obtained from the QM or QM/MM metadynamics simulations of the configurations 

corresponding to the products state region. eAll bond lengths and interatomic distances 

are given in Angstrom. Interatomic distances between the carboxylate oxygens of the 

PLP-Orn aldimine with the NH2- group of Asn398 in the ODC active site or with water 

molecules in solution. gAverage number of hydrogen bonds per oxygen atom of the 

PLP-Orn carboxylate group. The torsion values are given in degrees. 
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Figure 1. Relevant contacts for the decarboxylation reaction of the PLP-Ornithine 

aldimine in the ODC active site (A). Ornithine decarboxylase enzyme showing the two 

active sites formed at the dimer interface (Inset). Cluster model of the ODC active site 

used in the ONIOM static calculations (B). 

10 1 — 
1.5 2.0 2.5 3.0 3.5 4.0 

d(Ca-COO) (Ä) 

Figure 2. Free energy profiles obtained from the metadynamics simulations for the PLP-

catalyzed decarboxylation of ornithine in aqueous solution (red), ODC active site (blue) 

and gas-phase (black). 
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Figure 3. Wannier maximally localized functions corresponding to the HOMO-1 of the 

decarboxylation transition states obtained from the committor analysis in aqueous 

solution (A), ODC active site (B) and gas-phase (C). In all cases, the electron pair of 

the Ca-COO a bond is also delocalized across the imine-pyridine n system. 

0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 

r(A) r(A) 

Figure 4. Radial distribution functions of the carboxylate oxygens and water hydrogens 

(top left) or water oxygens (bottom left) for the reactants (solid lines) and products 

(dotted lines) in aqueous solution. The respective radial distribution functions for the 

reactants state in the ODC active site (dashed lines) show that the enzyme environment 

disfavors the reactants state. The bottom right plots correspond to the radial distribution 

functions of the carboxylate oxygens and the alpha carbons of the anionic residues (red 

line) or cationic residues (blue line) in the ODC enzyme. The top right plots depict the 

integrated number of anionic (red line) and cationic (blue line) residues as a function of 

the distance from the carboxylate group in the ODC enzyme. The inset depicts such 

integrated number of anionic and cationic residues in the ODC active site (i.e. the first 

14A away from the carboxylate group). 
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Figure 5. (Top) Evolution of the Ca -COO (red lines), O3'-H (blue) and N i m - H (green) 

interatomic distances during the metadynamics simulations in solution (left), ODC 

active site (center) and gas-phase (right). (Bottom) Distribution of the proton location in 

the N i m - O 3 ' intramolecular hydrogen bond fo r the products state (i.e carbanionic 

intermediates) in solution (left), ODc active site (center) and gas-phase (right). 
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Extraordinaire decarboxylation rates catalyzed by modestly efficient enzymes. A 
QM/MM metadynamics study on the enzymatic and nonenzymatic pyridoxal 5'-
phosphate-catalyzed decarboxylation of amino acids 

Rodrigo Casasnovas, Juan Frau, Sebastiano Caravati, Josefa Donoso, Francisco Muñoz, 

Michele Parrinello 

Supporting Information 

0 4 i—'—'—'—'—I—'—'—'—'—I—'—'—'—'—i—'—'—'—•—i—'—'—'—'—I—'—'—'—'—i 
"0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Time (ns) 

Figure S 1 . Root Mean Square Deviation (RMSD) values of the protein backbone (red) and of 

the active site residues (blue) during the classical molecular dynamics equilibration simulation. 

The grey fractions of the plots correspond to the initial stage of the protein equilibration in 

which harmonic constraints were applied. The R M S D values were calculated with respect to the 

crystallographic structure P D B 2OO0. The resolution of the X-ray experiment (i.e. 1.9 A) is 

indicated as a dotted horizontal line. 
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Figure S2. Evolution of the Ca-COO bond length in the commit tor analysis of the 

decarboxylat ion in aqueous solution (A), O D C active site (B) and gas-phase (C). The 

trajectories that lead to reactants and products are respectively represented by black and grey 

lines. 
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distribution functions of the MM (red solid lines) and the Q M / M M (blue solid lines) 

equilibration simulations. The plots in the right-hand side correspond to the radial distribution 

functions calculated from the metadynamics simulations independently for the reactants state 

(black solid lines) and the products state (black dotted lines). The label C O O stands for the 

carboxylate oxygens, O3 for the phenol oxygen, N i m for the imine nitrogen, Npyr for the 

pyridine nitrogen, H N p y r for the proton bound to the pyridine nitrogen, NE for the nitrogen 

atom of the e-amino group, and OPO3 for the phosphate oxygens. 
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Figure S4. Evolution of the C a - C O O (red lines), O3-H (green lines) and N i m - H (blue lines) 

bond lengths for each "walker" during the metadynamics simulations in solution (figure S4-1), 

in gas-phase (figure S4-2) and in the O D C active site (figure S4-3). 

Figure S4-1 

i i i 
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Figure S4-2 
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Table S1 . Standard deviation values of the averages reported in the article. 

Aqueous Solution O D C active site Gas-phase 

Equil . Reac. Prod. Equil . Reac. Prod. Equil . Reac. Prod. 

Carboxylate interactions 

d Ca-Coo 0.04 0.2 0.6 0.06 0.4 0.4 0.08 0.19 0.6 

d c O O - N A s n 3 9 8 ( O w ) a 0.14 0.14 0.14 0.4 0.4 0.4 

d c O O - H 2 N A s n 3 9 8 ( H w ) 0.14 0.14 0.14 0.5 0.5 0.4 

Imine-phenol interactions 
d N i m - H 0.03 0.10 0.2 0.03 0.11 0.3 0.03 0.08 0.2 

d O3'-H 0.2 0.2 0.3 0.14 0.19 0.3 0.18 0.18 0.19 

d O 3 ' - O w a 0.14 0.14 0.14 0.13 0.18 0.2 

d O 3 ' - H w a 0.14 0.14 0.14 0.2 0.3 0.5 

Pyridine nitrogen 
d N p y r - H 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

d N p y r - O G l u 2 7 4 ( O w ) a 0.14 0.14 0.14 0.07 0.07 0.08 

d H-OGlu274 ( O w ) a 0.14 0.14 0.14 0.08 0.08 0.09 

Ca and C4' interactions 
d C4 ' -NLys69 0.2 0.3 0.3 

d Ca-NLys69 0.2 0.3 0.3 

d C 4 ' - S C y s 3 6 0 0.3 0.5 0.8 

d C a - S C y s 3 6 0 0.3 0.5 0.9 

Protein-Protein interactions 
d H S C y s 3 6 0 - O A s n 3 9 8 0.6 1.0 0.9 

d N L y s 6 9 - O A s p 8 8 0.08 0.09 0.08 

Hydrogen bonds 
c O O - O w 0.8 0.9 0.5 

O 3 ' - O w 0.7 0.8 0.8 0.4 0.4 0.4 

PLP-Orn dihedrals 

9 Coo-Ca-Nim-C4 ' 15 25 29 98 10 12 16 25 35 

9 H-Nim-C4 ' -C4 9 9 10 9 8 9 10 8 9 

9 N i m - C 4 ' - C 4 - C 3 10 9 9 8 8 8 8 8 9 
a The bin used in the construction of the histograms of the radial distribution functions was 

0.07A. A standard deviation double of the bin size is reported for the values obtained from the 

radial distribution functions. 
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5. Discussion 

5.1. Theoretical pK a calculations 

The precision of the theoretical pKa determination via thermodynamic cycles 

depends on the errors in the gas-phase dissociation free energy of the studied acid and in 

the solvation free energies of the involved species. Since the best ab initio and DFT 

methods provide reaction energies with a precision of ~1 kcal/mol, if all errors were 

additive, the cumulative error throughout the cycle would be at least within 3-5 

kcal/mol (i.e. 2.2-3.7 pKa units). In fact, as shown in the results section 4.1.1., it is 

possible to obtain gas-phase deprotonation free energies with average errors of ~1 

kcal/mol at affordable computational costs for medium-sized molecules. However, the 

pKa calculations of pyridines by using thermodynamic cycle 1 (Scheme 19) show 

average absolute errors of 2.3 pKa units (Results 4.1.2). 

Addition of a single explicit solvent water molecule interacting with the pyridine 

nitrogen in the calculation of the solvation free energies significantly improves the pKa 

predictions (Results 4.1.2). Since the errors obtained when considering explicit water 

molecules are lower than the expected 2.2-3.7 pKa units, it should be concluded that the 

improvement of the predictions is due to better cancelation of errors. The combination 

of continuum models and methods/basis sets that provide the lowest errors coincide in 

all the three considered thermodynamic cycles (Results 4.1.2). It should be noted that 

the errors of the calculated free energies cancel out in different extent for each 

thermodynamic cycle because their associated equations for the pKa calculation differ. 

Therefore, the improvement in the pKa predictions is also due to the reduction of errors 

in the individual solvation energies by the inclusion of explicit solvent molecules. 

Ionic and zwitterionic species exhibit, in absolute values, larger solvation 

energies and larger associated errors than neutral species. An analysis of the solvation 

cavities reveals that a significant fraction of the total electrostatic solute-solvent 

interaction is calculated over the spheres of the more charged atoms (Results 4.1.2). 

Therefore, when the more charged atoms are less exposed to the solvent, slight 

variations in the area of their spheres entail significant variations in the total solvation 

energy. In these cases the introduction of explicit solvent molecules allows a more 

realistic description of the short-range solute solvent interactions. In addition, the 

explicit solvent molecules that interact with the more ionic/polar groups are polarized 

and since they are much more exposed to the continuum solvent, the area over which 

the main electrostatic terms are calculated is much larger, which reduces the errors in 

the solvation energies (Results 4.1.2). 

Given that the evaluation of thermodynamic cycles indicates that accurate pKa 

predictions require maximizing the cancelation of errors, which are mostly associated to 

the solvation energies, an isodesmic reaction in solution is proposed as an alternative 

strategy (Scheme 22). An isodesmic reaction is a chemical reaction in which the number 

and type of chemical bonds in the products and reactants sides are equal. 
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AHq + R e f
q - 1 AG°°ln > Aq - 1

 + R e fH q 

A H
 ( soln) + R e f ( s o l n ) > A ( s o l n ) +

 R e f H
 ( soln) 

Scheme 22. Isodesmic reaction consisting on a proton exchange reaction between an 

acid species AH of global charge q and a reference species RefH of global charge q'. 

Opposite to the thermodynamic cycles, the isodesmic reaction is constituted by a 

single chemical reaction, which entails that the expected error in the pKa prediction is 

reduced to that of a unique reaction energy value. Considering again that the best 

quantum chemistry methods provide errors of ~1 kcal/mol for reaction energies, the 

expected precision in the pK a predictions is ~0.7 units for the isodesmic reaction. 

However, it is not possible to neglect that the calculated free energies in solution may 

include part of the errors present in the solvation energies, which have their origin in the 

approximations of the continuum solvent model. This is the reason why the proposed 

reaction in solution is isodesmic, to maximize the cancelation of errors in the calculated 

reaction energy by choosing a reference species that is "similar" to the studied acid. 

The free energy of proton exchange is calculated according to equation [90] by 

considering the absolute free energies in solution of each species involved in the 

reaction. The calculated free energy of the reaction is nothing but the relative acidity of 

AH with respect to RefH (Scheme 22), which is directly related to their pK a difference. 

Accordingly, the pKa of the species AH is obtained from equation [91], in which the 

experimental pK a value of the reference species is considered. 

AG r a m = Gsom( AT1) + Gsom(RefHq') - G^( AHq) - G ^ R e f q ' - 1 ) [90] 

AG 
p K a A H = R T J ^ I Q + PKaRefH [ 9 1 ] 

Unlike gas-phase, the calculation of absolute free energies in solution is more 

problematic from a formal standpoint. The harmonic and rigid rotor approximations 

constitute an acceptable description of the physics of nuclear thermal motion in gas¬ 

phase but not in solution, especially when considering translation and rotation motions. 

Actually, a much more correct description of the nuclear motions would require 

simulation techniques like Monte-Carlo or Molecular Dynamics apart from the 

inclusion of nuclear quantum effects. Furthermore, in order to describe short and long 

range solute solvent interactions, the solvent molecules should be explicitly treated 

along with periodic boundary conditions. However, the computational cost of the 

simulation techniques is contrary to the philosophy of quick and simple pKa predictions 

subjacent to the isodesmic reaction approach. 

Several assumptions are made when calculating reaction free energies in 

aqueous solution according to the isodesmic reaction schema as a compromise between 

the methodological rigor and the computational cost and simplicity. Firstly, it is 

assumed that the contributions to the free energy resulting from translational and 

rotational motions of an acid AH will mostly cancel out with those of its conjugate base 
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A, since their structures only differ in a proton. Secondly, the harmonic approximation 

is considered valid to describe the vibrational motions of the solute nuclei. Finally, the 

possible errors due to the absence of explicit solvent interacting with the solute will 

cancel out between the species present in both sides of the chemical equation. 

The obtained results (4.1.3) point out that the pKa values predicted with the 

isodesmic reaction show an equivalent precision to those predicted with thermodynamic 

cycles in the most accurate cases. However, the presence of explicit water molecules is 

not necessary to obtain mean absolute deviation errors (MAD) of ~1 pKa unit, even 

though their addition reduces the MAD values by ~0.4 pKa units. More importantly, low 

MAD errors are obtained when the global charges of the studied acid AH and the 

reference acid species BH are different, while in the case of thermodynamic cycles the 

global charges strongly determine the magnitude of the errors of the calculated solvation 

energies and pKa values. In addition, the pKa predictions with Density Functional 

Theory methods yield results with equivalent precision than the much more 

computationally demanding post Hartee-Fock methods. Finally, the absence of gas¬ 

phase calculations avoids difficulties related with conformational changes associated to 

the solvation process and protonation states which are unstable in absence of solvent. 

The performance of the isodesmic reaction in the pKa calculations lies in a good 

cancellation of the errors originated mostly in the interactions between the solutes and 

the continuum solvent model. Taking into account that the total interaction solute-

continuum is partitioned over the solvation spheres of the heavy atoms, two forms of 

error cancellation are distinguished. Firstly, the errors in the interaction of the group that 

donates the proton of AH cancel out with those of the group of the reference species 

RefH that accepts it, and likewise for the deprotonated groups of the conjugate bases A 

and B. Secondly, the errors in the solute-continuum interactions of those heavy atoms 

that do not modify their protonation state in the reaction cancel out between the 

conjugate acid base pairs AH/A and RefH/Ref. Therefore, it follows that the chemical 

structures of the studied acid A and the reference species RefH should be similar to 

maximize the cancellation of errors. In the ideal case the reference species is identical to 

the studied acid species, which ensures a p erfect cancellation of errors in the solute-

continuum interaction. Considering the equations of the isodesmic reaction, the errors in 

the pKa predictions are expected to be lower when the free energy of proton exchange 

between the acid AH and the reference species RefH approaches to zero. 

The plot of the pKa values predicted for the carbon acids against the 

experimental pKa values shows that a co rrect linear trend is predicted in all the pKa 

range (Figure 1). However the errors of the predicted pKa values increase with the pKa 

difference between the acid AH and the reference species (Figure 1). Is interesting to 

note that although two species with similar pKa values usually exhibit similar chemical 

structure and global charge, the case of carbon acids exemplifies that satisfactory pKa 

predictions are made for structures of diverse chemical structures and global charges 

(Figure 1, Results 4.1.3, 4.2.2, 4.2.3). What is more, for some acids that are structurally 

similar or show identical global charge than the reference species, higher errors are 

obtained than for other acids that show a pKa value more similar to the reference species 

(Results 4.1.3, 4.2.2, 4.2.3). 

231 



5. Discussion 

Figure 1. (A) Plot of the predicted pKa values for carbon acids with the isodesmic 

reaction against the corresponding experimental pKa values. The dashed line marks the 

ideal behavior of the predicted pKa values. (B) Plot of the absolute errors of the 

predicted pKa values against the pKa difference with respect to the reference species. 

The alternative case is exemplified by the pyridines (Results 4.1.3), which show 

identical global charge and very similar chemical structure than the reference species. 

An analysis of the errors reveals that the largest errors correspond to those species 

whose pKa diverge most from that of the reference species (Results 4.1.3). Taking 

everything into account, it can be concluded that the isodesmic reaction approach 

provides the best results when the pKa values of the studied acid and the reference 

species are similar. 

At this point, several questions arise. Firstly, how similar should be the pKa of 

the studied acid and the reference species? Which leads to a more interesting point 

regarding the possibilities of making theoretical predictions: How does the error of the 

predictions depend on the pKa difference between the studied acid and the reference 

species? However, this is problematic from a practical point of view since the reference 

species should be chosen on the basis of the similitude between its pKa value and that of 

the studied acid, which is unknown. A possible solution to circumvent this paradox 

would be to choose several reference species whose pKa values span in a certain range, 

calculate the pKa of the studied acid by using all such reference species and decide 

which one is optimal a posteriori. Still, this is not the best solution when multiple 

predictions have to be made to determine the relative acidities of a set of molecules with 

unknown pKa values. 

Instead of employing multiple reference species, an alternative procedure 

consists on considering their experimental pKa values to obtain a unique correction of 

the free energies calculated with the isodesmic reaction in a large pKa range. In this 

procedure, only one molecule is chosen as the reference species and the free energies of 

proton exchange of the remaining molecules are calculated following the isodesmic 

reaction (Scheme 22). Then, considering the relationship between the pKa of AH and 

the calculated free energy given by equation [91], a linear regression is carried out to 
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obtain the parameters that fit such calculated free energies to the experimental pKa 

values. Finally, such equation is used to predict the acidities of acid species AH of 

unknown pKa by correcting their calculated free energies of proton exchange with 

respect to the reference species. 

The case of the carbon acids is used to exemplify this procedure. As shown in 

Figure 1, there is a direct proportionality between the predicted and the experimental 

pKa values of carbon acids. However, there is also a deviation from the ideal behavior 

and the calculated pK a ' s are overestimated in absolute value. The linear regression of 

the experimental pKa values with the calculated free energies divided by the RTln10 

factor results in a line of good coefficient of determination (R =0.988, Results 4.2.2, 

4.2.3) (Figure 2). The resulting slope and y-interception are 0.67 and 16.56, which 

according to equation [91] should be respectively 1 and 17 (i.e. the pK a of the reference 

species). These regression parameters confirm that the errors of the predicted pKa 

values with the isodesmic reaction are directly proportional to the magnitude of the 

calculated free energy of proton exchange, which also involves that the best predictions 

are obtained when the pK a of the acid AH is similar to that of the reference species. 

20 - 1 0 0 10 20 30 

AG/RTIn10 

Figure 2. Linear regression of the experimental pK a values of the carbon acids and their 

calculated free energies of proton exchange according to the isodesmic reaction. The 

result of the regression is shown as a solid line of slope 0.67 and y-intercept 16.56. The 

ideal behavior is shown as a reference by a dashed line of slope 1 and y-intercept 17. 

Slope values lower than 1 involve that the calculated free energies according to 

the isodesmic reaction scheme are overestimated in absolute value, which results in the 

overestimation of the pKa values shown in Figure 1. Large pKa differences of the same 

type of functional group in two molecules are usually related to differences in their 

global charge. Accordingly, the overestimation in the energies of proton exchange is a 

manifestation of the limitations of continuum solvent models when calculating the 

interaction with ionic solutes, which is also the main source of errors in the solvation 
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energies. However, our results show that correct predictions are made for acids that 

show different global charge than the reference but similar pK a values (4.1.3, 4.2.2, 

4.2.3). Therefore, the errors of the calculated free energies should be attributed to 

differences in the charge distribution and polarity close to the acidic groups of AH and 

RefH involved in the protonation and deprotonation reaction. 

The magnitude of the absolute errors of the pK a values calculated with the 

isodesmic reaction is directly proportional to the pK a difference between the acid AH 

and the reference species RefH by a factor of |(1-a)/a| (Figure 3B), being a the slope 

obtained in the regression. Accordingly, the closer the slope is to unity, the lower are 

the errors in the predictions. The inverse (i.e. |a/(1-a)|) indicates the maximum pK a 

difference between AH and RefH that provides predictions with errors below a certain 

limit. For example in the case of carbon acids a = 0.67 so, the errors in the predicted 

pK a values will remain below 1 unit on condition that the pK a of AH and RefH differ by 

a maximum of ±2 units. However, if the calculated free energies are corrected according 

to the linear regression, the standard error of the predicted pK a values remains constant 

at 0.8 units in the entire pK a range (Figure 3B). It is worth to note that errors of 0.8 pK a 

units are significant for common acid functionalities but are within the typical 

experimental uncertainties of carbon acids. 

0 10 20 30 40 50 - 1 5 - 1 0 - 5 0 5 10 15 20 

P^a(exptl) P^a -pKa (Re fH ) 

Figure 3. (A) Plot of the predicted pK a values with the isodesmic reaction for the carbon 

acids against their experimental values. The red and blue circles respectively correspond 

to the predictions made with the isodesmic reaction before and after the corrections to 

the calculated energies obtained in the linear regression with the experimental values. 

The ideal behavior is shown as a reference by the dashed line. (B) Plot of the absolute 

errors of the predicted pK a values against the pK a difference with respect to the 

reference species. The dotted lines correspond to the estimated errors of the uncorrected 

predictions, which depend on the pK a difference by a factor of |(1-a)/a|, and to the 

corrected predictions, which are constant. 

The application of the isodesmic reaction to other acid groups such as pyridines, 

phenols and benzylamines shows similar behavior than the carbon acids. In all the three 
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sets of molecules the errors are low if the pK a values of the acids AH are close to those 

of the respective reference species, but otherwise the predicted pK a ' s are overestimated 

(Figure 4). The linear regressions of the experimental pKa values with the calculated 

free energies for each set of molecules gives slope values of 0.56, 0 .52 and 0.32 

respectively for the pyridines, phenols and benzylamines. Therefore, the overestimation 

of the free energies of proton exchange is larger than in the case of carbon acids, which 

also suggests that the modeling of the solute solvent interaction by the continuum is 

worse, especially for the benzylamines. The pyridine, phenol and amine groups are 

"harder" than carbon acids, which entails that the polar and electrostatic contributions of 

the solvent interaction are more important and explains the poorer performance of the 

continuum solvent models. Nevertheless, when the calculated free energies of proton 

exchange are corrected by considering the regression parameters, in all three cases the 

standard errors of the predictions are only 0.3 units in the studied pK a range (Figure 4). 
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Figure 4. Plot of the predicted pKa values with the isodesmic reaction for the pyridine 

(AI), phenol (BI) and benzylamine (CI) sets against their experimental values. The red 

and blue circles respectively correspond to the predictions made with the isodesmic 

reaction before and after the corrections to the calculated energies obtained in the linear 

regression with the experimental values. The ideal behavior is shown as a reference by 

the dashed line. Plot of the absolute errors of the predicted pKa values against the pKa 

difference with respect to the reference species for pyridines (AII), phenols (BII) and 

benzylamines (CII). The estimated errors for the uncorrected and corrected predictions 

are shown as dotted lines. 

235 



5. Discussion 

Finally, the isodesmic reaction approach can be applied to reactions other than 

proton exchange for the calculation of different thermodynamic constants. Since a 

possible mechanism of inhibition of advanced glycation end-products by pyridoxamine 

involves chelation of transition Cu(II) amongst other metals in the organism, it became 

interesting to study the stability of pyridoxamine-Cu(II) complexes as a function of pH. 

However, the procedure that will be explained is of general application to complexes 

formed by any combination of ligand and metal ion. Analogously to the proton 

exchange schema, the adaptation of the isodesmic reaction to the calculation of stability 

constants of complexes (logP values) involves a ligand-exchange reaction with respect a 

reference metal complex species (Results 4.1.4). 

A set of Cu(II) complexes formed with ligands of diverse chemical structures 

was considered to evaluate the performance of the isodesmic reaction. The chosen 

complexes exhibit ligand-metal bonds through different oxygen, nitrogen and sulphur 

functionalities, act as monodentate or bidentate ligands, form different chelate ring sizes 

and exhibit different global charges. Contrarily to the pKa predictions, a linear 

regression of the calculated logP values versus the experimental values results in slope 

values close to the unit, y-interception close to zero and determination coefficients of 

0.96 without statistical corrections. Taking into account that the effects of the 

continuum solvent are calculated on the solvation spheres of the heavy atoms, it is 

reasonable that the errors associated to changes of coordination in the metal ion show 

lower errors than protonation/deprotonation reactions since the exposed area of the 

metal is much less exposed to the solvent by the presence of the ligands. Moreover, due 

to the coordination saturation of the metal center the solvent mostly interacts with the 

ligands, which makes the continuum solvent model a better representation of the real 

system than in the case of acids. The results indicate that the logP predictions show 

errors lower than 1.5 units with respect to the experimental values. These errors are 

larger than in the pKa predictions but it should be taken into account that while the 

experimental uncertainty in the pKa values is of 0.01-0.1 units, that of the experimental 

logP can be easily of 1-1.5 units or higher. Therefore, the errors of the predictions with 

the isodesmic reaction statistically fall within the experimental uncertainty. 
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5.2. PLP-catalyzed reactions 

Protonation and deprotonation events of the Ca carbon of the amino acid or of 

the C4' carbon of the cofactor, are ubiquitous in the PLP-catalyzed reactions of amino 

acids. However, only the pKa values of the Ca carbon of the major tautomers of the 

Schiff bases formed between deoxypyridoxal (DPL) and glycine have been 

experimentally determined. The pKa values of the hydrogens bound t o carbons are 

difficult to measure experimentally because their low acidity implies that usually the 

concentration of dissociated species in aqueous solution is negligible. Other 

complications may appear. For instance, in the case of PLP and PMP Schiff bases the 

imine group is unstable both at very basic and acid pH conditions. In addition, PLP and 

PMP Schiff bases exhibit different tautomeric forms, which may be in low 

concentrations, in a wide pH range. Finally, the phenol group in the PMP Schiff bases 

causes the formation of a very stable internal carbinolamine compound that prevents the 

experimental titration of the C4' carbon in solution. All these limitations make the 

previous computational strategies an appropriate alternative for the study of the carbon 

acidities of PLP and PMP Schiff bases. The isodesmic reaction calibrated in a wide pKa 

range will be used since the available pKa values of Ca of DPL-Glycine Schiff bases 

show significant variation in aqueous solution depending on the pH. 

PLP and PMP Schiff bases (Scheme 23) are in fact tautomers related by 

common carbanionic intermediates. It is worth mentioning this tautomeric relationship 

because the specificity of the reactions catalyzed by PLP-dependent enzymes depends 

on the protonation of the carbanionic intermediate either at Ca or at C4'. Our results 

show that PLP Schiff bases, whose Ca is quaternary, are more stable than the PMP 

tautomers because the conjugation of the imine and hydroxypyridine n-systems is not 

possible in the latter species due to the quaternary C4' carbon (Results 4.2.2. a nd 

4.2.3.). Considering that the carbanionic intermediates are the conjugate bases of PLP 

and PMP Schiff bases, a lower stability of the PMP tautomers involves that the C4' 

carbon is always more acidic than Ca for a particular protonation state (Scheme 23). 

The protonation state of the heteroatoms that are integrated in the n system of 

the imine group or the hydroxypiridine ring strongly modulate the acidity of both Ca 

and C4' carbons. The most influent heteroatom is the pyridine nitrogen as it stabilizes 

the carbanionic intermediate by delocalization of the negative charge, which can be 

formed at Ca or C4', on the n-system of the hydroxypiridine ring. However, the pKa 

reduction of Ca and C4' is significantly different after protonation of the pyridine 

nitrogen (Results 4.2.2.). For the enolimine tautomers, in which the phenol and imine 

groups are not ionized (i.e. species Cx-1, Scheme 23), protonation of the pyridine 

nitrogen reduces the pKa of Ca by ~7 units (Ca-1 vs Ca-1H) whereas the pKa of C4' is 

reduced by 5-6 units, as observed when comparing C4'-1 and C4'-1H. Protonation of 

the pyridine nitrogen in the ketoenamine tautomers, which exhibit an ionized phenol 

and imine groups (i.e. species Cx-2, Scheme 23), has lower effects on the pKa of both 

Ca and C4' than those observed for the enolimine tautomers (Results 4.2.2.). As shown 

in Scheme 23, the pKa difference between Ca-2 and Ca-2H is ~5 units, while that of 
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C4'-2 and C4'-2H is ~3 units. This is due to a destabilization of the carbanionic 

intermediates of Cx-2 species as a result of the n-backdonation from the phenoxide 

anion to the hydroxypyridine-imine conjugatge n system (Table 1). 

-2Q3PO-
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pK a (B3LYP) 21.1 
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Scheme 23. Calculated pKa values of the Ca and C4' carbons of the PLP and PMP 

Schiff bases. The acidic protons are depicted in bold. The labels " 1 " and "2" stand for 

the enolimine and ketoenamine tautomers respectively. The label "H" stands for the 

pyridine nitrogen-protonated Schiff bases. 

Regarding the imine-phenol tautomerism, proton transfer from the phenol 

oxygen to the imine nitrogen decreases the acidity of Ca carbon by 1.5-1.0 pKa units as 

deduced when comparing Ca-1 and Ca-2 (Scheme 23). Oppositely, the acidity of the 

C4' carbon increases by ~3 pKa units (C4'-1 vs C4'-2). This difference is indicative of 

the negative charge delocalization from the phenoxide anion to the cationic imine 

nitrogen via n-system in Ca-2 and Ca-2H species, which is absent in C4'-2 and C4'-

2H species due to the presence of the C4 'H 2 methylene group (Table 1). In the latter 

case, the acidity increase of C4' is caused by destabilization of the C4'-hydrogens due 

to the adjacent positively charged iminium nitrogen. 

The effects of the intramolecular hydrogen bond tautomerism are enhanced 

when the pyridine nitrogen is protonated since the n-backdonation of the phenoxide 

group increases. Indeed, the pKa of the Ca carbon increases approximately by 3 units 

from Ca-1H to Ca-2H instead of the 1.5-1.0 increase observed between Ca-1 and Ca-

2 (Scheme 23). However, such increase is not observed for the pKa of C4' when 

comparing C4'-1H and C4'-2H since the destabilization of the C4'-hydrogens by the 

adjacent iminium cation counteracts the destabilization of the carbanionic intermediate 

due to the n-backdonation of the phenoxide group. 
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Species 

Ca-1 

Ca-1H 

Ca-2 

Ca-2H 

C4'-1 

C4'-1H 

C4'-2 

C4'-2H 

anion-1 

anion-

ani on-2 

anion-

Delocalized 

charge 

0.06 

0.12 

-0.26 

-0.19 

0.09 

0.13 

-0.06 

-0.03 

0.36 

0.65 

0.03 

0.24 

-20зРО 

-20зРО 

H N* 

-20зР0-

II* 
H N* 

-20зР0-

H N 

First, the NBO atomic partial charges of the all atoms were summed up into two groups, namely imine 
moiety (blue atoms) and pyridine moiety (red atoms). The charge transferred from the imine moiety to the 
pyridine moiety was calculated as the difference between the summation of partial charges of the imine 
moiety and the global charge of a hypothetical state with no delocalization. Positive/negative values 
indicate charge delocalization towards/from the pyridine ring, respectively. The labels anion-x stand for 
the carbanionic intermediates of the "x" species. 

To summarize, protonation of the pyridine nitrogen causes the largest increase in 

the acidity of Ca and C4'. However, protonation of the imine nitrogen and 

deprotonation of the phenol oxygen reduce the acidity of Ca and increase that of C4', 

and its extent is modulated by the protonation state of the pyridine nitrogen. That is, the 

absolute pKa value of Ca and C4' is mainly set by the protonation state of the pyridine 

nitrogen and the relative pKa value between Ca and C4' is set by the protonation state 

of the imine nitrogen (Results 4.2.2.). 

It is well known from experiments that PLP and PMP Schiff bases form stable 

chelates with metal ions and catalyze a number of reactions on amino acids. However, 

there is no evidence of PLP-dependent enzymes which also use metals as cofactors. The 

study of the carbon acidities of Ca and C4' in the metal chelates attempts to shed some 

light on this apparent contradiction. 

As shown in Scheme 24, the carbon acidities of Ca and C4' in the Ca-M and 

C4'-M complexes of divalent metals, with the exception of Cu ' are very similar to 

those calculated for the uncomplexed Schiff bases (Scheme 23). In addition, protonation 

of the pyridine nitrogen in the metal complexes reduces the pKa of Ca and C4' by ~7 

units (Scheme 24), similarly than for the uncomplexed Schiff bases (Scheme 23). 
2+ 

Amongst the studied divalent metals, only chelation of Cu increases the acidity of Ca 

and especially the acidity of C4' with respect to the uncomplexed Schiff bases (Scheme 
24). 

0 0 
H H 

H H 0 0 

0 

N 

0 0 

H H 
0 0 

H 

0 

N 
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Table 1. Charge transferred from the imine moiety to the pyridine moiety in the PLP, 

PMP Schiff bases and their carbanionic intermediates. 
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M n + C a - M C4'-M C a H - M C4'H-M 

Mg 2+ 22.3 17.9 15.8 12.9 

Zn 2+ 21.9 17.4 14.8 11.6 

Ni 2+ 21.7 17.1 15.5 11.0 

Cu 2+ 20.3 12.5 13.1 6.9 

Al 3+ 16.0 9.3 9.4 4.8 

Fe 3+ 16.0 10.2 10.6 4.9 

Scheme 24. Calculated pKa values of the Ca and C4' carbons of the PLP and PMP 

Schiff base metal complexes. The acidic protons are depicted in bold. The M label 

stands for each specific metal ion in the complexes. The "H" stands for the pyridine 

nitrogen-protonated Schiff bases. 

Based on the calculated carbon acidities of Ca and C4', there is not an obvious 

reason that explains the absence of metal ions in the active site of PLP-dependent 

enzymes. However, it is important to note that none of the studied metal ions reduces 

the pKa of Ca or C4'as efficiently as the protonation of the imine moiety groups. 

Therefore, the apparent activation of the complexed Schiff bases in solution should be 

mostly attributed to the stabilization of the Schiff bases, which leads to higher reaction 

rates as a consequence of a concentration increase. A potential advantage of metal ions 

is that the complexed Schiff bases are highly stable in a large pH range, which enables 

unusual protonation states of the Schiff bases that, indirectly, may modify the carbon 

acidity. However, the protonation state of the Schiff base heteroatoms in the active site 

of PLP-dependent enzymes is easily modulated by close interactions with polar or 

charged residues. Taking everything into account, the pKa values of Ca and C4' would 

be adequate for the catalysis of different reactions in PLP-dependent enzymes, but an 

excessive stabilization of the Schiff bases could introduce a kinetic disadvantage for the 

transimination steps (Results 4.2.3.). 
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Chelation of trivalent metals Al and Fe has a much larger impact than 

chelation of divalent metals on the pKa values of Ca and C4' atoms. The Ca carbon in 
3 + 3 + 

the A l 3 + and Fe 3 + complexes is 4 to 7 units more acidic than in the uncomplexed Schiff 

bases and divalent metal complexes (Scheme 24). The C4' carbon also exhibits a pKa 

value that is 5 to 8 units lower than in the uncomplexed Schiff bases (Scheme 24). 
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The 1H NMR experiments studies carried out on the H/D exchange of 4-

(aminomethyl)pyridine Schiff bases revealed that the carbanions formed in aqueous 

solution are moderately stable and the acid-catalyzed reprotonation by dihydrogen 

phosphate exhibits a non-negligible activation barrier (Results 4.3.2.). It has been 

reported that the PLP Schiff base carbanions undergo aldol condensation reactions in 

solution in the presence of carbonyl species. These results promoted a more detailed 

study on the kinetic competence between protonation/deprotonation reactions at Ca and 

aldol condensation reactions with sugars as a possible route of carbonyl scavenging and 

inhibition of glycation reactions (Results 4.3.1.). 

The calculated activation free energies of acid-catalyzed reprotonation of Ca are 

higher than that of aldol condensation between the Ca carbanion and glyceraldehyde in 

all cases with the exception of the acetic acid-catalyzed reprotonation. However, this 

reaction is negligible at physiological pH due to the absence of protonated carboxylic 

acids. Additionally, the activation barrier for the reprotonation reaction involving water 

solvent is approximately ~7 kcal/mol, which supports that the formed carbanions have 

long enough half-life times to act as carbonyl scavengers. Furthermore, the reduced 

carbonyl group condensed with the amino acid is a thermodynamically stable product 

that can be hydrolyzed, regenerating the PLP catalyst (Results 4.3.1.). 

According to the free energy profiles obtained for the different proposed 

mechanisms, the evolution of the towards the final hydrolysis products through a stable 

carbinolamine is also kinetically favored. The 5'-phosphate group favors the addition of 

the carbanion to the carbonyl group in the aldol condensation step and in the release of 

the end-products in the final step of the hydrolysis. However, this group hinders the 

formation of the carbinolamine intermediate due to stabilization of its precursor state. 

Taking into account the high mobility of the 5'-phosphate group in solution at room 

temperature, it is reasonable that only participates in the most favored steps (Results 

4.3.1.). 

At last, the decarboxylation reaction of ornithine is the second studied type of 

Ca-C reaction catalyzed by PLP. According to the metadynamics simulations and 

ONIOM calculations, Ornithine decarboxylase accelerates the elimination rate of the 

carboxylate group by a 101 9-fold increase (Results 4.3.2.). However, the simulations in 

solution show that the PLP cofactor is responsible for 10 1 6 of the total catalysis and, 

therefore, the exclusive contribution of the enzyme only constitutes the remaining 10 -

fold acceleration (Results 4.3.2.). The enzymatic environment reduces the direct 

interactions with the carboxylate group almost to the maximum and reduces the 

activation barrier by destabilization of the reactants with respect to the transition state. 

In addition, the enzyme structure creates an electrostatic gradient which destabilizes the 

reactants by placing more anionic than cationic residues closer to the carboxylate group 

(Results 4.3.2.). It should be noted that the enzyme promotes the protonation of the PLP 

pyridine nitrogen in the active site, which accounts for 10 6 of the catalysis by the 

cofactor, but it is deprotonated at physiological pH in solution (Results 4.3.2.). 

Taking into account the data obtained for the acidities of Ca and C4', the acid-

catalyzed protonation/deprotonation activation barriers on C a, and the activation 
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barriers for the aldol condensation and decarboxylation reactions at Ca, interesting 

conclusions on the reaction specificity of PLP-dependent enzymes can be drawn. 

In the active site of Alanine racemase (AlaR), the pyridine nitrogen of the PLP-

Alanine Schiff base interacts with the guanidinium group of Arg219 (Figure 5). 

Considering that the pyridine is much more acidic than the guanidinium group, the 

pyridine nitrogen will be deprotonated in the active site. An additional guanidinium 

group of a second arginine, Arg136, establishes short hydrogen bonding interactions 

with the phenol and carboxyl oxygens (Figure 5), which stabilize these groups as 

anions. As shown in Figure 5, the s-amino group of Lys39 is almost equidistant to Ca 

and C4'. Therefore, once Ca is deprotonated by Tyr265' and the carbanionic 

intermediate is formed, the position of the Lys39 s-amino group does not particularly 

favor the reprotonation at Ca in front of at C4', which potentially increases the 

probability of transamination side-reactions by reprotonation at C4'. 

According to the calculated carbon acidities (Scheme 23), the protonation state 

of the PLP-Alanine Schiff base in the active site is the least favorable for the activation 

of the Ca-H hydrogen. However, the pKa difference between Ca and C4' is maximized 

since almost no negative charge is delocalized from Ca to the ring (Table 1). Therefore, 

our results indicate that high activation of Ca is deterred in favor of high reaction 

specificity towards racemization. 

Figure 5. Active site interactions of the PLP-Alanine Schiff base in the active site of 

Alanine racemase (PDB code 1L6F). All distances are measured in Angstrom. 
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In the case of Aspartate aminotransferase (AAT), the main reaction proceeds via 

deprotonation of Ca and reprotonation of the carbanionic intermediate at C4'. An 

inspection of the crystallographic active site reveals that, oppositely to Alanine 

racemase, the pyridine nitrogen of the PLP-Aspartate Schiff base interacts with an 

acidic residue (Asp222, Figure 6). This interaction points out that the pyridine nitrogen 

is protonated in this active site. The phenol oxygen forms hydrogen bonding 

interactions with neutral residues (Figure 6), which do not favor the proton transfer 

from the phenol oxygen to the imine nitrogen by electrostatic stabilization of the 

resultant phenoxide anion. However, it should be noted that the protonated pyridine 

nitrogen contributes to stabilize the deprotonated phenoxide group. 

The present pKa calculations indicate that the AAT active site promotes the 

protonation of the pyridine nitrogen to activate the most the Ca carbon for 

deprotonation. In addition, the lack of cationic residues and extensive hydrogen bonding 

interactions at the phenol oxygen suggest that it remains protonated or that the imine 

nitrogen transfers the proton to the phenoxide anion after the formation of the 

carbanionic intermediate. Accordingly, not only does the AAT active site promote the 

activation of Ca, but also reduces the pKa difference between Ca and C4' favoring the 

reprotonation at this last position as a result. 

Figure 6. Active site interactions of the deaza-PLP-Aspartate Schiff base in the active 

site of Aspartate aminotransferase (PDB code 3QPG). All distances are measured in 

Angstrom. 
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The aldol condensation reaction studied in section 4.3.1. is the reverse reaction 

of the retro-aldol reaction catalyzed by PLP for serine in the active site of Serine 

hydroxymethyltransferase (SHMT). The accepted mechanism for the reaction in this 

enzyme involves the participation of tetrahydrofolate as a holder of the formyl group 

between serine and glycine. However, SHMT also catalyzes the analogue retro-aldol 

reactions on other 3-hydroxyamino acids without the participation of tetrahydrofolate. 

For serine, as well as for other 3-hydroxyamino acids, the cleavage of the Cp-Ca bond 

in the retro-aldol reaction generates a carbanion at Ca which is stabilized by 

delocalization of the negative charge across the n-system of the imine and pyridine 

moieties. Then, this intermediate may evolve by reprotonation at either the Ca or the 

C4' carbon atoms. Nevertheless, only the protonation at Ca occurs in the SHMT active 

site. 

Figure 7. Interactions of the PLP-Glycine Schiff base in the active site of Serine 

hydroxymethyltransferase from Geobacillus stearothermofillus (PDB code 1KL2). All 

distances are measured in Angstrom. 

Similarly to the active site of Aspartate aminotransferase, the residues 

interacting with the phenol oxygen O3' are neutral (Ser171 and His199) (Figure 7), 

which are not as effective as cationic residues to stabilize the phenoxide anion. Besides, 

the Schiff base pyridine nitrogen is presumably protonated since its closest interacting 

residue is the sidechain carboxyl group of Asp197 (Figure 7). Finally, the e-amino 

group of Lys226 is closer to the C4' carbon than to the Ca one (Figure 7). 
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Analogously to the reaction in Aspartate aminotransferase, these interactions 

with the Schiff base suggest a more favorable reprotonation of the carbanionic 

intermediate at C4'. Therefore, Lys226 is unlikely to be the acid catalyst in the 

reprotonation reaction. As seen in Figure 7, there is a carboxylate group of a glutamic 

acid residue (Glu53) close to the Ca carbon. According to the calculated activation 

barriers of reprotonation and the activation barriers of aldol condensation, only the 

reprotonation of Ca catalyzed by carboxylic acids are faster than the Ca-C bond 

formation in the aldol condensation reaction (Results 4.3.1.). Thus the carboxyl 

sidechain of Glu53 is probably the actual catalytic acid acting in the reprotonation step 

of the carbanionic intermediate, ensuring the protonation at Ca. 

In the active site of Ornithine decarboxylase, the interactions displayed by the 

Schiff base are very similar to those observed for the Aspartate aminotransferase and 

Serine hydroxymethyltransferase active sites. 

Figure 8. Interactions of the PLP-Ornithine Schiff base in the active site of Ornithine 

decarboxylase (Molecular dynamics snapshot of one active site of ODC reconstructed 

from PDB code 2OO0). All distances are measured in Angstrom. 

As shown in Figure 8, the pyridine nitrogen is protonated by interactions with 

the sidechain of a glutamic residue (Glu274), and the phenol oxygen only interacts with 

a water molecule. In addition, the average distances calculated in the simulations show 

that the s-amino group of Lys69 is significantly closer to C4' than to Ca (Results 
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4.3.2.). Considering that such a protonation state of the PLP Schiff base will promote 

the charge delocalization of the carbanionic intermediate to the pyridine ring, 

reprotonation of such intermediate via acid catalysis by Lys69 would clearly favored at 

C4' instead of Ca, which in turn would lead to transimination-side reactions. However, 

only protonation at Ca is observed for the native enzyme. 

According to the performed metadynamics simulations, desolvation of the Schiff 

base is restricted in the active site to maintain a high energy carbanionic intermediate, 

which also hinders full proton transfer from the imine nitrogen to the phenol oxygen 

(Results 4.3.2.). This mechanism reduces transamination side-reactions by avoiding a 

maximum delocalization of the negative charge from Ca to the pyridine ring. In 

addition, elimination of C O 2 after decarboxylation liberates the amide group of 

Asn398B, which in turn releases the thiol group of Cys360B allowing its rotation 

towards the active site. As has been suggested from X-ray experiments, when the thiol 

group of Cys360B is rotated, it is at a correct distance from Ca for the reprotonation 

step (Figure 9). This hypothesis is supported by the activation energies of reprotonation 

at Ca calculated in 4.3.1, which indicate that thiol and amine groups are equally 

effective acid catalysts. Thus, Lys69 is not required for the reprotonation at Ca, which 

reduces the probability of accidental reprotonation events at C4' and the consequential 

transimination-side reactions. 

Figure 9. Interactions of the PLP-Putrescine Schiff base in the active site of Ornithine 

decarboxylase (PDB code 1F3T). All distances are measured in Angstrom. 
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6. Conclusions 

1- The precision of the pKa predictions when using thermodynamic cycles is 

strongly dependent on the cancellation of errors of the calculated solvation free 

energies. The introduction of explicit water molecules improves the pKa 

predictions by reducing the errors of the electrostatic interaction between the 

dielectric continuum with the more charged atoms of the solute. 

2- The isodesmic reaction scheme maximizes the cancellation of errors by 

calculating proton exchange free energies in solution and avoiding gas-phase 

calculations. A set of molecules and their pKa values can be used to correct the 

calculated proton exchange free energies and reduce the errors of the predictions 

in a large pKa range. 

3- Schiff base formation with PLP reduces the pKa of the Ca of amino acids to 

values that are typical of moderately strong acids in solution. The largest 

contribution to the pKa reduction is the protonation of the pyridine nitrogen of 

the PLP cofactor. However, the relative acidity between the Ca and the C4' 

carbons is mostly determined by the protonation state of the imine nitrogen and 

the phenol oxygen 

4- The protonation state of the pyridine, imine and phenol groups is crucial to 

determine the evolution of the carbanionic intermediates in all PLP-catalyzed 

reactions. X-ray structures support that each PLP-dependent enzyme modulates 

the protonation state of PLP Schiff bases to achieve high reaction specificity for 

the desired reaction. 

5- The extraordinaire decarboxylation rate catalyzed by Ornithine decarboxylase is 

mostly due to the PLP cofactor. The catalytic contribution exclusive to Ornithine 

decarboxylase is due to ground-state destabilization in the active site by 

desolvation of the carboxylate group and by an unfavourable electrostatic 

potential. 

6- Ornithine decarboxylase reduces the activation energy of the decarboxylation 

step so that it is not rate-limiting and simultaneously destabilizes the formed 

carbanionic intermediate to ensure its correct protonation at the Ca carbon. 
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Pyridoxal phosphate (PLP) is a cofactor of more than a hundred enzymes that 
catalyze amino acid reactions such as racemizations, transaminations, aldol 
condensations and decarboxylations amongst others. All the PLP-catalyzed reactions 
entail, at least, one step in which the Ca carbon of the amino acid or the C4' carbon of 
the PLP is deprotonated or protonated. Furthermore, protonation of the formed 
carbanion intermediates is the common crossroad to all possible reactions and 
determines the final products. However, the experimental determination of carbon 
acidities is difficult and involves large uncertainties. 

The present work proposes several computational strategies that combine ab initio 
calculations and solvent models for the accurate prediction of pKa values. Such 
methodology is used to study the thermodynamics of C-H activation in PLP Schiff 
bases, which is complemented from the kinetic standpoint with the calculation of 
carbon protonation/deprotonation activation free energies. The PLP-catalyzed aldol 
condensation of amino acids and sugars is studied in relation with its influence in the 
inhibition of glycation reactions of biomolecules. Finally, metadynamics simulations 
are performed to understand the origins of PLP-catalyzed decarboxylation reactions in 
enzymes and in aqueous- and gas-phases. Altogether, the present results explain how 
PLP-dependent enzymes control the specificity of the desired reaction by favoring 
specific protonation states of the PLP Schiff bases. 


