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Departament de F́ısica

Dirigida per:

Prof. Carles Bona Garcia i Dr. Joan Massó Bennàssar
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”The fact that we live at the bottom of a deep gravity well, on the surface of a gas covered

planet going around a nuclear fireball 90 million miles away and think this to be normal

is obviously some indication of how skewed our perspective tends to be.”

Douglas Adams.
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Preface

During the past years there have been intense research efforts on black holes and their

effect on the astrophysical environment, and specially for the last six years, one of the

systems which has drawn most attention is a binary system formed of two black holes.

Now we know that there are three phases in the coalescence of two black holes: the

inspiral phase, when the black holes are far from each other; the merger phase, when

they are significantly closer and the system becomes highly non-linear; and the ringdown

phase, after the two holes have merged leaving a single black hole in an excited state

emitting radiation.

Coalescences of two black holes are astrophysical events that release great amounts of

energy in the form of gravitational radiation and, given the case of supermassive black

holes, in the form of dual jets too [1]. In fact, the final merger of two black holes in

a binary system releases more power (in gravitational waves) than the combined light

from all the stars in the visible Universe (in photons) [2]. This energy that comes in the

form of gravitational waves travels across the Universe at the speed of light and carries

the waveform signature of the merger.

Events that release such an outstanding amount of energy are key sources for gravitational-

wave detectors. In fact, they are one of the most likely sources for the first detection.

But despite the energy released, as gravity is the weakest of the fundamental forces, the

output of ground-based detectors is dominated by different kind of noise sources: ther-

mal noise (heating of the antennae instruments), seismic noise (even though for example

mirrors are suspended in vacuum chambers) and shot noise (the statistical error that

comes from taking averages over a number of photons received at the photodetector).

As a consequence, sophisticated statistical algorithms must be used in order to extract

physical signals corresponding to the detection of gravitational waves from binary black

hole systems. These algorithms require accurate waveform templates that correspond

to the sources that are to be detected.
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Calculating these waveforms requires solving the full Einstein equations of general rela-

tivity on a computer in three spatial dimensions plus time. Numerical relativists have

attempted to solve this problem for many years, but they were faced with a number

of instabilities that made their numerical codes crash before they could compute any

sizable portion of a binary orbit. Remarkably, in the past few years a series of dramatic

breakthroughs has occurred in numerical relativity (NR), yielding robust and accurate

simulations of black-hole mergers for the first time. Numerical solutions of Einstein’s

equations for the last orbits and merger of a black-hole binary, the ringdown of the

single black hole that remains, and the GWs emitted in the process, became possible in

2005 [3–6]. Since that time many simulations have been performed, but they all share

some common grounds and techniques.

Astrophysical black holes ultimately form through gravitational collapse of matter, but

in a black-hole simulation one does not need describe this process at all. The black hole

can instead be represented purely through its effect on the spacetime geometry. The

spacetime singularity at the center of a black hole is difficult to describe numerically,

and there are different approaches to this problem. In the excision technique, which

was first proposed in the late 1980s [7], a portion of a spacetime inside of the event

horizon surrounding the singularity of a black hole is simply not evolved. In theory

this should not affect the solution to the equations outside of the event horizon because

of the principle of causality and properties of the horizon (i.e. nothing physical inside

the black hole can influence any of the physics outside the horizon). This is, of course,

if we don’t take into account quantum tunneling, which is at the origin of Hawking’s

radiation. Thus if one simply does not solve the equations inside the horizon one should

still be able to obtain valid solutions outside. One ”excises” the interior by imposing

ingoing boundary conditions on a boundary surrounding the singularity but inside the

horizon. While the implementation of excision has been very successful, the technique

has two problems. The first is that one has to be careful about the coordinate conditions.

Although physical information cannot escape the black-hole, non-physical numerical or

gauge information can in principle escape, and may lead to numerical instabilities. The

second problem is that as the black holes move, one must continually adjust the location

of the excision region to move with the black hole. Excision is used in the pioneering

Pretorius code [3, 8, 9], and in the SpEC code [10]. Pretorius’s original simulations began

with scalar-field initial data, chosen such that it would quickly collapse to form a black

hole. Once the black hole had formed, the interior (and the remaining scalar field) were

excised.

Another method of avoiding singularities is to choose coordinates that bypass them: the

black holes are initially described with topological wormholes, such that as the numerical

coordinates approach one of the black holes, they pass through a wormhole and instead
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of getting closer to the singularity end up further away, in a new asymptotically flat

region. A coordinate transformation is performed to compactify these wormholes, and

the extra asymptotically flat regions are reduced to single points, called punctures [11–

14]. Until 2005, all published usage of the puncture method required that the coordinate

position of all punctures remain fixed during the course of the simulation. Of course

black holes in proximity to each other will tend to move under the force of gravity,

so the fact that the coordinate position of the puncture remained fixed meant that

the coordinate systems themselves became ”stretched” or ”twisted,” and this typically

lead to numerical instabilities at some stage of the simulation. In 2005 some research

groups demonstrated for the first time the ability to allow punctures to move through

the coordinate system, thus eliminating some of the earlier problems with the method.

This ’moving puncture’ approach represented also a breakthrough that allowed accurate

long-term evolutions of black holes in the puncture approach [4–6].

A third option could be a scalar field stuffing, which for some reason is not yet used

in binaries. We have mentioned that Pretorius was using it in his original simulations

but then the interior was excised after collapse. Here we refer to the possibility of

evolving a binary black hole without either puncture-like initial data or excision at all,

but apparently there is a tight bond between the type of initial data and the formalism

used. Punctures are unavoidably associated with the BSSN system whereas excision is

used solely in harmonic formulations.

We have just mentioned two different formulations of the Einstein equations. Given

black-hole-binary initial data, a stable evolution requires a numerically well-posed and

stable formulation of Einstein’s equations, as well as a specific choice of gauge condi-

tions. Finding a suitable set of evolution equations and gauge conditions was one of

the major problems in the field during the decade preceding the 2005 breakthroughs.

Although not all mathematical and numerical questions have been resolved, long-term

stable simulations can now be performed with either a variant of the generalized har-

monic formulation [8, 15–17] or the moving-puncture treatment [4–6] of the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) [18, 19] formulation.

Harmonic formalisms originated with consideration of “harmonic coordinates”, so called

because the coordinates satisfy the wave equation 2xµ = 0, where the box stands for

the general-covariant wave operator acting on functions. In these coordinates, Einstein’s

equations can be written such that the principal part resembles a wave equation in terms

of the metric:

2 gab = · · · − 16 π (Tab −
T

2
gab) , (1)
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Where the dots stand for terms quadratic in the metric first derivatives. In this form,

Einstein’s equations are manifestly hyperbolic [20]. However, the harmonic coordinate

condition is too restrictive for numerical purposes, so generalized harmonic coordinates

were eventually developed by introducing a source term into the coordinate condition,

i.e. 2xµ = Hµ [15, 21], a suitable choice for which preserves strong hyperbolicity. The

subsequent introduction of constraint-damping terms, which tend to drive the constraints

towards zero, further ensured stability [22]. This formulation is manifestly second-order

in both time and space, and has been implemented numerically as such [9], but for more

efficient numerical integration a first-order-in-time formulation was also developed [17],

and is currently being used by some groups..

The BSSN decomposition starts instead with the (numerically ill-posed) ADM-York

equations for the spatial quantities (γij ,Kij) [23, 24]. The BSSN reformulation provides

evolution equations for conformally rescaled quantities, {ψ,K, γ̃ij , Ãij , Γ̃i}, where γij =

ψ4γ̃ij and Kij = ψ4(Ãij + γ̃ijK), and the extra variable, Γ̃i = ∂j γ̃
ij is introduced. The

moving-puncture extension of the BSSN system deals with puncture data, and involves

introducing either φ = lnψ [5], χ = ψ−4 [4] or W = ψ−2 [25], and evolving that

quantity instead of the conformal factor ψ, and specifying gauge conditions that allow

the punctures to move across the numerical grid.

The choice of gauge or coordinate conditions, like the choice of formulation, has impor-

tant consequences on the numerics, especially the stability of the simulation. Important

considerations include how to deal with the extreme conditions of black holes such as

the physical singularities, the possible coordinate singularities, the strong-field gradients,

and the dynamical, surrounding spacetime. The coordinates must accommodate these

features in a way that is numerically tractable.

In particular, BSSN deals with the 1+log slicing of the Bona-Massó family [26] together

with

∂tβ
i =

3
4

Γ̃i + βj∂jβ
i − ηββi. (2)

Where Γ̃i = −∂j γ̃ij depends on a conformal three-metric γ̃ij of the evolving spatial slice

and βi is the shift. ηβ is a damping parameter that fine-tunes the growth of the shift,

which affects the coordinate size of the black-hole horizons, which in turn has bearing

on the required numerical resolution [27, 28]. Use of this or similar gauge conditions has

become known as the “moving puncture” method, and proved to be very successful as

it has become increasingly widespread among the numerical-relativity community.
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Development of generalized harmonic coordinates initially proceeded independently of

the above 3+1-formulated conditions. As mentioned, in harmonic coordinates the

D’Alembertian of each coordinate vanishes. In generalized harmonic coordinates, the

wave equation for each coordinate is allowed a source term, i.e.

2xµ = Hµ. (3)

These “gauge driving” source terms Hµ can be either algebraically specified or evolved

such that hyperbolicity is preserved [9, 15, 17, 21].

The first successful numerical orbit of black holes involved a source term for the time

coordinate that effectively kept the lapse close to its Minkowski value of unity, while

the spatial coordinates remained harmonic [9]. This was accomplished by evolving the

source term itself, according to

2H0 =
[
−ξ1(α− 1) + ξ2(∂t − βi∂i)H0

]
α−1 (4)

where ξ1 and ξ2 are constants. More recently, to dampen extraneous gauge dynamics

during the inspiral and merger of generic binaries, [29] found the following gauge driver

to be successful:

H0 = µ0

[
log
(√

g

α

)]3

(5)

Hi = −µ0

[
log
(√

g

α

)]2 βi
α

(6)

where µ0 is a specified function of time that starts at zero and eventually increases

monotonically to unity.

The generalized-harmonic and moving-puncture methods have been found to work for

simulations of up to 15 orbits, for binaries with significant eccentricity, with mass ratios

up to 1:10, and spins up to the conformal-flatness limit of a/m ∼ 0.93. Despite this

wealth of evidence that these methods work, surprisingly little has been done to explain

why. The properties that are known to be necessary for a stable simulation (in particu-

lar, a strongly hyperbolic evolution system), are also known to not be sufficient. What

distinguishes these methods from others? Could it be that most other (well-posed) sys-

tems of equations can be stably evolved with appropriate gauge conditions and methods

to move the black holes through the grid? Why BSSN is so successful at simulating

black holes but fails tests such as the gauge waves test? These questions have been

largely neglected, and deserve more attention.



Preface 6

To accurately simulate a binary black hole spacetime, a computer code must adequately

resolve both the region near the black hole, and the spacetime far away, where grav-

itational waves are extracted. However, if one had to resolve the whole domain with

very high resolution with no exception, it would be faced with a lack of computational

memory to store all the information. Luckily enough, the resolution needed in the grav-

itational wave extraction area is fairly below the one needed near the black holes. To

deal with such large differences in resolution requirements on different parts of the com-

putational domain many codes use mesh refinement methods [30]. Another technique

is to use a coordinate transformation that changes the effective resolution in different

regions; such a “fisheye” transformation was used in early results from the LazEv code

[4, 31–34], and was also used in more recent simulations by the UIUC group, for example

[35]. A third option is to divide the computational domain into a number of different

domains or patches, and use a different numerical resolution and even different coordi-

nate systems in each domain; a multi-domain method is used in the SpEC code [10] and

in the Llama code [36, 37]

Both the numerical and physical accuracy of numerical waveforms has improved steadily

since 2005. The first simulations were performed with a code that resolved each time

slice with second-order-accurate finite differences [3]. The moving-puncture results that

followed six months later [4, 5] used second- and fourth-order-accurate finite differences.

An accurate comparison of numerical and post-Newtonian waveforms was performed

in 2007 using sixth-order finite-differencing , and the LazEv code now routinely uses

eighth-order methods . The SpEC code, which has produced the most accurate equal-

mass nonspinning binary waveform to date, uses pseudospectral methods to describe the

spatial slice.

Ideally the outer boundary of the computational domain is located at spatial or null

infinity. The only long-term binary evolution code where one of these techniques is

employed is that of Pretorius, where spatially compactified coordinates are used [3, 8].

The region near the outer boundary is by definition poorly resolved, but a filtered buffer

zone between the well- and poorly-resolved regions is used to reduce the build-up and

propagation of any resulting errors. In all other codes the outer boundary of the com-

putational domain is not at spatial infinity, and boundary conditions must be imposed.

The physically correct outer boundary conditions are not known for a black-hole-binary

spacetime, so one has to provide some alternative. Ideally, boundary conditions should

result in a solution which is indistinguishable from an evolution with an infinite spatial

domain. This can only be achieved approximately, but still the boundary conditions

should have certain properties in order to give a useful solution. Firstly, they should not

contaminate the solution with unphysical gravitational radiation, either due to reflec-

tions of the waves generated by the simulated system, or due to radiation generated by
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the boundary condition itself. Secondly, they should be constraint preserving to yield

a result which is a solution to the Einstein equations. Thirdly, they should result in a

well-posed initial boundary value problem. This is a mathematical property which is a

necessary condition for the numerical schemes used to be formally stable. These three

properties are often only approximately satisfied, as for example the BSSN codes gen-

erally use Sommerfeld-like outer boundary conditions (which are physically correct only

for a spherically symmetric wave pulse on a flat background), and the outer boundary

is placed as far from the binary system as computational resources allow. The Caltech-

Cornell SpEC code uses a set of constraint-preserving boundary conditions that provide a

far better approximation to the correct physics of outgoing waves on a dynamical space-

time than Sommerfeld conditions, and make it possible to place the outer boundary

closer and still achieve accurate results .

These simulations require large computational resources. Long black-hole-binary simu-

lations are typically run on multiple processors of a supercomputer, and we can get an

impression of the “size” of a simulation from the amount of memory it requires, and

the number of CPU hours it takes to run. As an example, a high-accuracy equal-mass

nonspinning waveform can take roughly 18 days running on 24 processors, for a total

of about 10,000 CPU hours.

With all these elements on the table, the simulation of binary black holes has been

possible and very fruitful. Even though, after the initial gold rush with research groups

competing for more orbits, higher mass ratios and spin of the black holes, the exploration

into new regions of parameter space has now slowed significantly and there are some

important points at the fundamental level that have been left behind. In this thesis, we

would like to present some works we have carried out in this direction, trying to answer

some questions or improving some aspects that at some point were neglected for the

sake of obtaining gravitational wave patterns at any cost.

As we have said before, many research groups use finite differencing with some sort

of artificial viscosity to overcome some junk radiation present in the initial data and

also created by numerical effects of steep slopes and mesh interpolation. On top of

that mesh refinement is used, and very specific gauge choices that freeze the growth

of the black hole horizon are needed so that the code does not have to deal with very

strong field gradients and complex dynamics. So, to start, we will present a new finite

volume method in the context of numerical relativity. Finite volume methods were

developed by the fluid dynamics community and they have been widely tested and have

developed a well-deserved reputation of robustness. A reputation that finite difference

methods certainly lack. On the contrary, finite volume methods are sometimes regarded

as inefficient because they need the full characteristic decomposition of the system. This
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is not true anymore, there are finite volume methods that only need the eigenvalues of

the system and they use a flux formula. This is why we will present a method that

does not need the full characteristic decomposition of the equations and we will use it

to successfully perform some numerical relativity simulations with the Z3 formalism,

developed at UIB, in Chapter 1.

Even though, one might still wonder why these finite difference methods are so successful

in numerical relativity. If in the first chapter we used the fluid dynamics language, in

the second chapter we will try to travel back to the finite difference context: we will

try to compare the obtained method with the ones used in numerical relativity. By

doing so we will find many similarities and incidentally a very efficient implementation

of the method presented in the first chapter. We will also find that, with a very small

modification, we can generalise our method to a whole family of methods and find some

experimental proof of their robustness by performing some fluid physics tests with results

being published in Journal of Computational Physics. We must say it is remarkable that

these methods have been developed in the numerical relativity context and are being

used in hydrodynamics calculations [38, 39] and not the other way round.

In Chapter 3 we will break an existing contradiction in the numerical relativity com-

munity. If general relativity possesses freedom of choice regarding gauge conditions as

an important feature of the theory, numerical relativity does not. Usually the argument

is used in reverse to defend the results: if we can run our simulations with a single

gauge condition, then the theory ensures we will not find anything new by changing it.

But still it is puzzling that the existent numerical relativity codes rely on very specific

gauge choices as we have mentioned earlier. With the Z4 formalism, developed at UIB,

we obtain some unprecedented flexibility in this regard: with the help of the numerical

methods presented in Chapter 2, we are able to evolve a 3-dimensional black hole in

normal coordinates (something which none of the preexistent formalisms could do) with

a cartesian grid, with regular initial data (scalar field stuffing), without mesh refinement

and, more importantly, without the gauge choice being a specific requisite as we are able

to perform simulations with different shift conditions and different slicing conditions too.

Both BSSN and the Generalised Harmonic formalisms are free evolution formalisms.

This means that both energy and momentum constraints are ensured with some com-

patible initial data. But this is only at the continuum level. In numerical simulations

one does need boundary conditions, and if they don’t preserve the constraints our solu-

tions can go to a solution space that includes Einstein but might not be Einstein. The

standard practice is to place the boundaries very far away, oping that this will not affect

our domain of interest. We develop instead in Chapter 4 a set of constraint preserving

boundary conditions and we show their effectiveness by implementing them even in the
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strong field regime (with unprecedented results) and in 3 dimensions in cartesian-like

grids including corners.

In Chapter 3 we perform a numerical test that shows that Z4 can be much more ac-

curate than BSSN. More recently this has been confirmed by the work of others [40].

Therefore, by the end of the thesis we have made an effort to use a second order system,

puncture initial data and mesh refinement (same as BSSN) and we show in Chapter 5

some preliminary results were it seems like it is plausible that Z4 can work under these

conditions.

And, finally, as a thesis is a long term project, one does find unexpected things in the

way. None of the nowadays used Einstein generalisations in numerical relativity had

ever been derived from an action principle. We see how this can be accomplished with

the Palatini approach in Chapter 5. This opens many ways both at the theoretical

level (with interest in quantum gravity theories) and at the numerical level with the

use of numerical (symplectic) methods that exactly preserve the constraints during the

evolution. This finding can be regarded as an unexpected theoretical landmark.
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Chapter 1

Centered FV Methods

1.1 Introduction

Let us consider now the well known 3+1 decomposition of Einstein’s field equations.

ds2 = −(α2 − βiβi)dt2 + 2βidxidt+ γijdx
idxj (1.1)

(∂t − Lβ) γij = −2αKij (1.2)

(∂t − Lβ) Kij = −∇iαj + α
[
Rij − 2K2

ij + trK Kij (1.3)

−Sij +
1
2

(trS − τ)γij
]

(1.4)

Where we have only written the line element and the evolution equations, omitting the

energy-momentum constraints. Rij are the components of the Ricci tensor, Sij are the

space components of the stress-energy tensor and τ is the energy density. The extrinsic

curvature Kij is considered as an independent dynamical field, so that the evolution

system is of first order in time but second order in space. Let us transform it into

a fully first order system by considering also the first space derivatives of the metric

as independent quantities. This requires additional evolution equations for these space

derivatives, that can be obtained in the standard way by permuting space and time

derivatives of the metric, that is

∂t (∂k gab) = ∂k (∂t gab) , (1.5)

so that the resulting first order system will describe the same dynamics than the original

second order one.

13
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In this first order form, Einstein’s field equations can always be expressed as a system

of balance laws [1]. The evolution system can be written in the form

∂t u + ∂k Fk(u) = S(u) , (1.6)

where both the Flux terms F and the Source terms S depend algebraically on the array

of dynamical fields u, which contains the metric and all its first derivatives. The terms

’Fluxes’ and ’Sources’ come from the hydrodynamical analogous of the system (1.6).

The balance law form is specially suited for the Method of Lines (MoL) discretization.

Many current BH simulations are performed with the MoL technique. The MoL is the

generic name of a family of discretzation methods in which time and space variables are

dealt with separately. This is in keeping with the 3+1 framework, where the natural way

of time discretization is by finite differences (FD) whereas one would like to keep all the

options open for space discretization: finite differences, finite volume or even spectral

methods.

To illustrate the idea, let us consider a ’semi-discrete’ system in which only the time

coordinate is discretized, whereas space derivatives are kept at the continuum level. The

evolution of the array u of dynamical fields is written as

∂t u = RHS , (1.7)

where the right-hand-side array RHS contains the remaining terms in the evolution

equations, including the space derivative ones. In this way, we are disguising in (1.7) the

original system of partial differential equations (PDE) as a system of ordinary differential

equations (ODE), assuming that we will manage to compute the right-hand-side term

RHS at every level, but ignoring for the moment the details.

This ’black box’ approach allows us to apply the well-known ODE discretization tech-

niques to get the required time resolution, using the Euler step (forward time difference)

u(n+1) = u(n) + ∆t RHS(tn,u(n)) , (1.8)

as the basic building block for advanced multi-step methods, like the modified-midpoint

or Runge-Kutta algorithms [2, 3]. For more details on the time discretization used,

please see Appendix B.
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Figure 1.1: Piecewise linear reconstruction of a given function. Numerical disconti-
nuities appear at every cell interface (dotted lines) between the left and right values
(arrows and dots, respectively). Note that the original function was monotonically de-
creasing: all the slopes are negative. However, both the left interface values (at i+3/2)
and the right interface ones (at i−3/2) show local extremes that break the monotonicity

of the original function.

As in MoL there is a clear-cut separation between space and time discretization, the

source terms contribute in a trivial way to the space discretization. The non-trivial

contribution comes just from the flux-conservative part.

The balance law form is also well suited for FV discretization methods. The idea is to

evolve the average of the dynamical fields u on some elementary cells, instead of evolving

just point values like in the FD approach. The space discretization can be obtained by

averaging (1.6) over an elementary cell and applying the divergence theorem to get:

∂t ū +
∮

Fk dSk = S̄ , (1.9)

where the overlines stand for space averages. The evaluation of partial space derivatives

has been replaced in this way by that of surface integrals of the flux terms.

The idea behind Finite Volume (FV) methods, as we have seen, is to evolve the average

of the dynamical fields over elementary cells instead of evolving only values at a single

point, as in the Finite Difference (FD) methods. These values are modified at each

timestep using the flux that goes through the interfaces of the cells of the grid; and

so finding suitable functions for numerical fluxes to approximate these fluxes correctly

becomes the primary problem. These numerical fluxes are, in general, functions of the
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state of the system at each side of the interface. And to find the state at each side of

the interface one usually needs to reconstruct the original function departing from the

only available data: the average of the field at the cell.

Let us consider for simplicity the one-dimensional case. We can start from a regular finite

difference grid. The elementary cell can then be chosen as the interval (xi−1/2 , xi+1/2),

centered on the generic grid point xi. The dynamical fields u can be modelled as

piecewise linear functions in every cell (linear reconstruction, see Fig. 1.1), so that the

average values ūi coincide with the point values ui. The corresponding FV discretization

of (1.9) is then given by

un+1
i = uni − ∆t

∆x
[ Fx

i+1/2 − Fx
i−1/2 ] + ∆t Si . (1.10)

We will restrict ourselves to these linear reconstruction methods in the following sections,

but a more basic solution would be to use only these averages for the reconstruction.

That is, the reconstruction process would be the simplest one possible: we approximate

our original function by a piecewise constant function. Then we try to find information

about the fluxes solving the Riemann problem. The Riemann problem consists in nothing

else but solving the hyperbolic PDE with some special initial data. The initial data,

given by the chosen reconstruction, are, in this case, piecewise constant with a step

discontinuity at some point, for example x=0,

q(x, 0) =

{
ql if x < 0

qr if x > 0
(1.11)

where ql and qr are the values from the left and from the right respectively. If we

have the averages of two neighbouring cells on a finite volume grid, we can interpret

the numerical discontinuity that they form as a physical Riemann problem that can be

solved to obtain information that allows us to calculate a numerical flux and therefore

updating the averages of the cells after a timestep.

This basic approach, called the Godunov [4] approach, gives us a first order approxi-

mation only. There have been many modifications to this approach with the goal of

obtaining a higher precision, for example using a linear or parabollic reconstruction in-

stead of a constant one. But the vast majority keep solving the Riemann problem at

every interface of every cell at each timestep, mainly because these methods are thought

to perform simulations that do have step discontinuities. This has given FV methods

a reputation of being computationally expensive, a price that is not worth to pay for

spacetime simulations, where the dynamical fields usually have smooth profiles. This

reputation comes from the fact that, in order to solve the Riemann problem, one needs a
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spectral decomposition of the Jacobian matrix of the system at each interface of each cell

at each timestep, with the important computational cost implied by these calculations.

In multidimensional simulations it is common to use a technique called dimensional sep-

aration, which requieres knowing eigenvalues and eigenvectors at each interface for each

of the dimensions. Computational cost skyrockets: with a modest bidimensional grid of

100x100 cells, for example, one has to solve a minimum of 20000 Riemann problems at

each timestep to implement the most simple generalization of the Godunov method in

2 dimensions.

From this point of view, centered FV methods can provide some improvement, because

they do not require the full characteristic decomposition of the set of dynamical fields:

only the values of the propagation speeds are needed [4].

This point can be illustrated by comparing the classical FV techniques implemented in a

previous work at the UIB [5] with the new FV methods presented in this chapter. In [5],

the general relativistic analogous of the Riemann problem must be solved at every single

interface. This implies transforming back and forth between the primitive variables (the

ones in which the equations are expressed) and the characteristic ones (the eigenvectors

of the characteristic matrix along the given axis). In the present chapter, as we will see

in next section, a simple flux formula is applied directly on the primitive variables, so

that switching to the characteristic ones is no longer required. The flux formula requires

just the knowledge of the characteristic speeds, not the full decomposition.

Another important difference is that in [5], the primitive quantities where reconstructed

from their average values in a piecewise linear way, using a unique slope at every com-

putational cell. Only (piecewise) second order accuracy can be achieved in this way,

so that going to (piecewise) third order would require the use of ’piecewise parabolic

methods’ (PPM), with the corresponding computational overload. Here instead we will

split every flux into two components before the piecewise-linear reconstruction (flux-

splitting approach [4]). This will allow using a different slope for every flux component:

this extra degree of freedom will allow us to get (piecewise) third order accuracy for a

specific choice of slopes, without using PPM.

It is true that third-order convergence is rarely seen in practice. In the context of

Computational Fluid Dynamics (CFD), this is due to the arising of physical solutions

(containing shocks or other discontinuities) which are just piecewise smooth. These

discontinuities can propagate across the computational domain and the convergence

rate is downgraded as a result in the regions swept away by the discontinuity front. A

similar situation is encountered in black hole evolutions. The use of singularity avoidant

slicing conditions produces a collapse in the lapse function. As it can be seen in Fig. 1.2,

a steep gradient surface is formed (the collapse front) that propagates out as the grid
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points keep falling into the black hole. We will see that this results into a downgrade of

accuracy in the regions close to the collapse front.

Stability problems can also arise from the lack of resolution of the collapse front, which

is typically located around the apparent horizon. The reconstruction procedure can lead

there to spurious oscillations, which introduce high-frequency noise in the simulation.

In [5], this problem was dealt with the use of standard slope limiters, which were cru-

cial for the algorithm stability. In the present chapter, although slope limiters are also

discussed for completeness, their use is not even required in any of the presented sim-

ulations. The new algorithm gets rid by itself of the high-frequency noise, even for the

steep (but smooth) profiles appearing around the black-hole horizon.

1.2 Flux formulae

The generic algorithm (1.10) requires some prescription for the interface fluxes Fx
i±1/2 .

A straightforward calculation shows that the simple average

Fi+1/2 =
1
2

(Fi + Fi+1) (1.12)

And therefore

Fi−1/2 = Fi−1+1/2 =
1
2

(Fi−1 + Fi) (1.13)

In combination with (1.10) gives

un+1
i = uni − ∆t

2∆x
[ Fx

i + Fx
i+1 − Fx

i−1 − Fx
i ] + ∆t Si . (1.14)

If we cancel out terms we obtain

un+1
i = uni − ∆t

2∆x
[ Fx

i+1 − Fx
i−1 ] + ∆t Si . (1.15)

So, as we have seen, the choice (1.12) makes (1.10) fully equivalent to the standard,

centered, second order accurate FD approach for first order derivatives. As it is well

known, this choice is prone to developing high-frequency noise in presence of steep
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gradients, like the ones appearing in black hole simulations. For this reason, artificial

viscosity terms are usually required in order to suppress the spurious high-frequency

modes [6].

We will consider here more general flux formulae, namely

Fi+1/2 = f(uL , uR) , (1.16)

where uL, uR stand for the left and right predictions for the dynamical field u at the

chosen interface (arrows and dots, respectively, in Fig. 1.1). In the (piecewise) linear

case, they are given by

uL = ui + 1/2 σi ∆x uR = ui+1 − 1/2 σi+1 ∆x , (1.17)

where σi stands for the slope of the chosen field in the corresponding cell.

A sophisticated choice is provided by the ’shock-capturing’ methods (see Ref. [4] for a

review). These are methods based in Godunov’s method. The idea, as we have seen, is

to consider the jump at the interface as a physical one (not just a numerical artifact).

The characteristic decomposition of (the principal part of) the system is then used in

order to compute some physically sound interface Flux. These advanced methods have

been common practice in Computational Fluid Dynamics since decades. They were

adapted to the Numerical Relativity context nineteen years ago [7], for dealing with the

spherically symmetric (1D) black-hole case. They are still currently used in Relativistic

Hydrodynamics codes, but their use in 3D black hole simulations has been limited by

the computational cost of performing the characteristic decomposition of the evolution

system at every single interface.

More recently, much simpler alternatives have been proposed, which require just the

knowledge of the characteristic speeds, not the full characteristic decomposition. Some

of them have yet been implemented in Relativistic Hydrodynamics codes [8]. Maybe the

simplest choice is the so called local Lax-Friedrichs (LLF) flux formula [9] or Rusanov

formula [10]

f(uL , uR) =
1
2

[ F (uL) + F (uR) + c (uL − uR) ] , (1.18)

where the coefficient c depends on the values of the characteristic speeds at the interface,

namely:

c = max( λL , λR ) , (1.19)

where λ is the spectral radius (the absolute value of the biggest characteristic speed).

We must point out that in this case, unlike most of non-centered finite volume methods,

we will only need the biggest eigenvalue of the Jacobian matrix of the system which, in
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our case, we can calculate analytically. We also want to stress out that we have have

used the notation F (uL) and F (uR) to emphasize that we first reconstruct the fields at

the interfaces and then we calculate the fluxes there.

If we take the LLF choice (1.18), combined with (1.17) and (1.15) we obtain a discretiza-

tion such as

un+1
i = uni − ∆t

2∆x
[ Fx(ui+1 − σi+1∆x/2)− Fx(ui−1 + σi−1∆x/2)

−c (ui+1 + ui−1 − 2ui − σi+1∆x/2 + +σi−1∆x/2) ]

+∆t Si (1.20)

And, if we forget about the reconstruction slopes for the sake of simplicity, we obtain

un+1
i = uni − ∆t

2∆x
[ Fx

i+1 − Fx
i−1 − c (ui+1 + ui−1 − 2ui) ] + ∆t Si (1.21)

When compared to the centered FD discretization (1.15), we can see how the additional

terms play the role of a numerical dissipation, because we can interpret that the equation

that we are now resolving is

∂u

∂t
+
∂F

∂x
− c ∆x

∂2u

∂x2
= S , (1.22)

And it is well known that the second derivative terms play a dissipative or explosive role.

In this case, because of the sign of the term, it is dissipative, therefore it improves the

stability of the method. In this sense, a much more dissipative choice for (1.21) would

be

c =
∆x
∆t

, (1.23)

Which is in fact the most dissipative choice possible, because the Courant criteria does

not allow to assign this dissipative term coefficient a higher value. This choice is equiv-

alent to the Lax-Friedrichs method that we can find in [4]

un+1
i =

1
2

(uni+1 + uni−1)− ∆t
2∆x

[ Fx
i+1 − Fx

i−1 ] + ∆t Si (1.24)
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1.3 Flux splitting approach

In the flux formulae approach (1.16), the information coming from both sides is processed

at every interface, where different components are selected from either side in order to

build up the flux there. We will consider here an alternative approach, in which the

information is processed instead at the grid nodes, by selecting there the components of

the flux that will propagate in either direction (flux splitting approach) [4].

The flux-splitting analogous of the original LLF formula (1.18, 1.19) can be obtained by

splitting the flux into two simple components

F±(ui) = F (u±i )± λi u±i , (1.25)

where λ will be again the spectral radius at the given grid point. Each component is then

reconstructed separately, leading to one-sided predictions at the neighbour interfaces.

The final interface flux will be computed then simply as

Fi+1/2 =
1
2

(F+
L + F−R ) . (1.26)

This method can also be expressed as a modified LLF flux formula, namely

f(uL , uR) =
1
2

[ F (u+
L ) + F (u−R) + λL u

+
L − λR u−R ] . (1.27)

The main difference between the original LLF flux formula (1.18) and the flux-splitting

variant (1.27) is that in the last case there is a clear-cut separation between the contri-

butions coming from either the left or the right side of the interface, as it can clearly

be seen in (1.26). In this way, one has a clear vision of the information flux in the

numerical algorithm. The information from F+ components propagates in the forward

direction, whereas the one from F− components propagates backwards. This simple

splitting provides in this way some insight that can be useful for setting up suitable

boundary conditions. Moreover, it opens the door to using different slopes for the re-

construction of each flux component. We will see below how to take advantage of this

fact in order to improve space accuracy.

Third order accuracy

As it is well known, the use of a consistent piecewise-linear reconstruction results gener-

ically into a second-order space accuracy. A convenient choice is given by the centered
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slope

σC =
1

2∆x
(ui+1 − ui−1). (1.28)

This is a good default choice (Fromm choice [4]), leading to reliable second-order accurate

algorithms .

More general second-order algorithms can be obtained by replacing the centered slope

σC by any convex average of the left and right slopes,

σL = (ui − ui−1)/∆x , σR = (ui+1 − ui)/∆x . (1.29)

In some applications, however, second order accuracy is not enough. The leading (third

order) error is of the dispersion type, affecting the numerical propagation speeds. In

the FD approach, this can be improved by using a fourth-order-accurate algorithm in

combination with a fourth-order artificial dissipation term (which constitutes itself the

leading error term). The resulting combination is third-order accurate.

In the standard FV approach, the current way of getting (piecewise) third-order accuracy

would be instead to replace the piecewise linear reconstruction by a piecewise parabolic

one. The prototypical example is provided by the well known piecewise parabolic meth-

ods (PPM). The main complication of this strategy is that node values would no longer

represent the cell averages of a given dynamical field. This would increase the complexity

of the reconstruction process and the computational cost of the resulting algorithm.

There is a much simpler alternative, which takes advantage of the Flux splitting (1.25).

The idea is to consider the resulting one-sided components F± as independent dynamical

fields, each one with its own slope. The surprising result is that the choice

σ+ =
1
3
σL +

2
3
σR , σ− =

2
3
σL +

1
3
σR (1.30)

leads, after the recombination (1.26), to a third-order accurate algorithm. The coeffi-

cients in (1.30) are unique: any other combination leads just to second-order accuracy.

Following the reasoning of Appendix A, we can prove the previous statements with a

simple equation such as the advection equation

∂u

∂t
+ v

∂u

∂x
=
∂u

∂t
+
∂F

∂x
= 0 (1.31)

Where we have assumed v is constant and therefore F = v u. The spatial part can be

discretized as
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∂ui
∂t

+
Fi+1/2 − Fi−1/2

∆x
= 0 (1.32)

If we use (1.27) and we keep in mind that now, with this flux splitting approach we can

use different slopes we can say that

u±L = ui + 1/2 σ±i ∆x u±R = ui+1 − 1/2 σ±i+1 ∆x , (1.33)

And we obtain

∂ui
∂t

+
(v + λi)(ui + σ+

i ∆x/2) + (v − λi+1)(ui+1 − σ−i+1∆x/2)
2∆x

−
(v + λi−1)(ui−1 + σ+

i−1∆x/2) + (v − λi)(ui − σ−i ∆x/2)
2∆x

= 0 (1.34)

If we now choose the plus and minus slopes as a linear combination of the left and right

slopes

σ+ = a σL + b σR , σ− = c σL + d σR (1.35)

And we use (1.29) in (1.34), we obtain

∂ui
∂t

+
v

2∆x

[
a

2
ui−2 +

(
−a+

b

2
− c

2
− 1
)
ui−1

]
+

v

2∆x

[(
a

2
− b+ c− d

2

)
ui +

(
b

2
+ 1− c

2
+ d

)
ui+1 −

d

2
ui+2

]
+

1
2∆x

[
a

2
λi−2ui−2 +

(
−a+

b

2
+
c

2
− 1
)
λi−1ui−1 +

(
2 +

a

2
− b− c+

d

2

)
λiui

]
+

1
2∆x

[(
b

2
− 1 +

c

2
− d
)
λi+1ui+1 +

d

2
λi+2ui+2

]
= 0 (1.36)

If we use now the Taylor series
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ui+1 = ui + ∆x
∂u

∂x
+

∆x2

2
∂2u

∂x2
+

∆x3

3!
∂3u

∂x3
+

∆x4

4!
∂4u

∂x4
+O(∆x5)

ui+2 = ui + 2∆x
∂u

∂x
+ 2∆x2∂

2u

∂x2
+

4∆x3

3
∂3u

∂x3
+

2∆x4

3
∂4u

∂x4
+O(∆x5)

ui−1 = ui −∆x
∂u

∂x
+

∆x2

2
∂2u

∂x2
− ∆x3

3!
∂3u

∂x3
+

∆x4

4!
∂4u

∂x4
+O(∆x5)

ui−2 = ui − 2∆x
∂u

∂x
+ 2∆x2∂

2u

∂x2
− 4∆x3

3
∂3u

∂x3
+

2∆x4

3
∂4u

∂x4
+O(∆x5) (1.37)

in combination with (1.36), we obtain

∂u

∂t
+ v

∂u

∂x
+ (a+ b− c− d)

v∆x
4

∂2u

∂x2
+ (−3a− 3d+ 2)

v∆x2

12
∂3u

∂x3

+ (7a+ b− c− 7d)
v∆x3

48
∂4u

∂x4
+ (a+ b+ c+ d− 2)

∆x
4
∂2λu

∂x2

+ (−a+ d)
∆x2

4
∂3λu

∂x3
+ (7a+ b+ c+ 7d− 2)

∆x3

48
∂4λu

∂x4
+O(∆x4∂

5u

∂x5
) (1.38)

We want to cancel the terms which are not originally in (1.31), except for the fourth

derivative term with λ, as it will be the leading error of our third order method. From

the second derivative terms we conclude that a + b = c + d = 1. This is something we

could have suspected from the very beginning, as this tells us that plus and minus slopes

have to be weighted averages of left and right slopes. Cancellation of third derivative

terms tell us that a = d = 1/3 and, in combination with our result from second order

derivatives, b = c = 2/3, which is precisely our choice in (1.30). These coefficients lead

us to

∂u

∂t
+ v

∂u

∂x
= −∆x3

12
∂4λu

∂x4
+O(∆x4∂

5u

∂x5
) (1.39)

We see how the dominant extra term which appears in our advection equation is a

dissipative one, because it involves a fourth derivative. To understand why the sign

of the coefficient makes it dissipative instead of explosive we can think of a sinusoidal

function. The fourth derivative of a sinusoidal function is the same function, therefore

we have a contribution which is exponentially decreasing with time. The fact that our

leading error term is a fourth derivaive means that our method is a third order one, as

we wanted to show.
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1.4 The 1D Black Hole

As a first test, let us consider the Schwarzschild Black Hole in spherical coordinates. We

will write the line element in the ’wormhole’ form:

ds2 = −( tanh η )2 dt2 + 4m2 ( cosh η/2 )4 ( dη2 + dΩ2 ) , (1.40)

which can be obtained from the isotropic form by the following coordinate transformation

r = m/2 exp ( η ) . (1.41)

The wormhole form (3.34) exploits the presence of a minimal surface (throat) at η = 0.

It is manifestly invariant by the reflection isometry

η ↔ −η , (1.42)

so that the numerical simulations can be restricted to positive values of η. The isometry

(1.42) provides a very convenient boundary condition at the throat. Moreover (1.41)

implies

dr = r dη (1.43)

so that an evenly spaced grid in η corresponds to a geometrically increasing spacing in

r. We can perform in this way long term simulations with a single grid of a limited size,

as we will see below. This also allows to apply the standard boundary conditions in FV

methods: two ’ghost’ points are added by just copying the nearest neighbor values (or

their time variation) for every dynamical field. The separation between incoming and

outgoing information is automatically performed by the flux-splitting algorithm, so that

boundary points are not special in this respect.

The simulations are performed with a spherically symmetric version of the Z3 formal-

ism [11], as detailed in Appendix C. The free parameter n, governing the coupling with

the energy constraint, is taken with unit value by default, but other similar values can

be taken without affecting significatively the results, like n = 4/3, which corresponds to

the CADM case [12]. Regarding gauge conditions, we are using the generalized harmonic

prescription for the lapse [13]

(∂t − Lβ)α = −f α2 trK (1.44)

with zero shift (normal coordinates). We take a constant (unit) value of the lapse as

initial data. We can see in Fig. 1.2 the evolution of the lapse in a long-term simulation

(up to 1000m). We have chosen in this case f = 2/α (corresponding to the 1+log
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Figure 1.2: Long-term FV simulation of a 1D black hole, with a single mesh of 120
gridpoints. The evolution of the lapse is shown up to 1000m, in intervals of 50m (solid
lines). The dotted lines correspond to 1m, 3m, 5m and 25m. Note that the plots tend
to cumulate at the end, due to the exponential character of the grid, as given by (1.41).

No slope limiters have been used in this simulation.

slicing), but similar results can be obtained with many other combinations of the form

f = a+ b/α , (1.45)

where a and b are constant parameters.

Note that no slope limiters have been used in the simulation shown in Fig. 1.2. This

can seem surprising at the first sight, but it can be better understood by having a look

at the next chapter

As an accuracy check, we monitor the mass function [14], which is to be constant in space

and time for the Schwarzschild case, independently of the coordinate system. In Fig. 1.3,

we compare (the L2 norm of) the errors in the mass function between a third-order FV

simulation (without slope limiters) and the corresponding FD simulation (including a

fourth order dissipation term like the one in ref. [15] with ε = 0.015). We see that the

FD method shows bigger errors at late times. One can argue that the leading error in

the FD simulation is given by the dissipation terms, so that one can modify the result by

lowering the numerical dissipation coefficient. However, lowering the viscosity coefficient

used in Fig. 1.3, would result into a premature code crashing, like the one shown in the

Figure for a strictly fourth order FD run, without the artificial dissipation term.
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Figure 1.3: Time evolution of the error in the mass function (logarithm of the L2

norm) for three different numerical algorithms. The strictly fourth-order FD method,
without extra dissipation terms, is the most accurate as expected, but crashes after a
short time (measured in units of m). The other two algorithms (third-order accurate)
get similar errors at early times, but the FV one performs much better in the long
term than the FD with standard Kreiss-Oliger dissipation. The dissipation coefficient
has been taken as low as allowed by code stability (see the text). All simulations were
obtained with a single mesh of 120 gridpoints and using the 1+log slicing prescription.

We can understand the need for dissipation by looking at the sharp collapse front in

Fig. 1.2. We know that this is not a shock: it could be perfectly resolved by increas-

ing the grid resolution as needed. In this way we can actually get long-term 1D black

hole simulations, with a lifetime depending on the allowed resolution. This ’brute force’

approach, however, can not be translated into the 3D case, where a more efficient man-

agement of the computational resources is required. This is where dissipation comes into

play, either the numerical dissipation built in FV methods or the artificial one which is

routinely added to fourth-order FD methods. Dissipation is very efficient in damping

sharp features, corresponding to high-frequency Fourier modes. As a result, the collapse

front gets smoothed out and can be resolved without allocating too many grid points.

However, the more dissipation the more error. In this sense, Fig. 1.3 shows that adap-

tive viscosity built in the proposed FV method provides a good compromise between

accuracy and computational efficiency.

Note that the error comparison is independent of the selected resolution. This is because

the two stable methods in Fig. 1.3 are of third order accuracy, as confirmed by the local

convergence test shown in Fig. 1.4 (solid line, corresponding to t = 10m). In the
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Figure 1.4: Local convergence evolution for the mass function in a 1D black hole
simulation. We can see the predicted third-order accuracy, when using the proposed
slopes (1.30), around t = 10m (solid line). At t = 100m (dashed line), we yet see the
downgrade in the regions around the collapse front (the apparent horizon position is
marked with a circle). As the collapse front propagates (dotted line, corresponding to
t = 400m), we can see the growth of the affected regions, specially the one behind the

front.

long term, however, large errors develop around the collapse front, downgrading the

local convergence rate in the neighbor regions (dashed and dotted lines in Fig. 1.4,

corresponding to t = 100m and t = 400m, respectively). This can not be seen as a

failure of the algorithm properties, but rather as consequence of large errors in a highly

non-linear context. This also shows that in simulations oriented to compute gravitational

wave patterns, the waveform extraction zone must be safely located, away both from

the outer boundary and from the collapse front.
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1.5 The 3D Black Hole

The 1D algorithm (1.10) can be easily adapted to the full three-dimensional (3D) case:

un+1
{ijk} = un{ijk} −

∆t
∆x

[ Fx
{i+1/2 jk} − Fx

{i−1/2 jk} ]

− ∆t
∆y

[ Fy
{i j+1/2 k} − Fy

{i j−1/2 k} ]

− ∆t
∆z

[ Fz
{ij k+1/2} − Fz

{ij k−1/2} ]

+ ∆t S{ijk} . (1.46)

The structure of (1.46) suggests dealing with the 3D problem as a simple superposition of

1D problems along every single space direction. The stability analysis in Appendix A can

then be extended in a straightforward way, showing that the strong stability requirement

leads to a more restrictive upper bound on the timestep (in our case, using a cubic grid,

this amounts to an extra 1/3 factor).

In cartesian-like coordinates, it is not so easy to take advantage of the reflection isometry

(1.42). For this reason, we will evolve both the black-hole exterior and the interior

domains. We can not use the η coordinate for this purpose, because the symmetry

center would correspond to η → ∞. We will take instead the initial space metric in

isotropic coordinates, namely

dl2 = (1 +
m

2r
)4 δij dx

idxj . (1.47)

We will replace then the vacuum black-hole interior by some singularity-free matter

solution. To be more specific, we will allow the initial mass to have a radial dependence:

m = m(r) in the interior region. This allows to match a scalar field interior metric to

(3.31) (’stuffed black-hole’ approach [16]). The price to pay for using a regular metric

inside the horizon is to evolve the matter content during the simulation: we have chosen

the scalar field just for simplicity.

Let us consider initial data taken from a Schwarzschild black hole

ds2 = −α2dt2 + (1 +
M

2r
)4 δij dx

idxj . (1.48)

(isotropic coordinates). We will use the ’stuffed black hole’ approach [16], by matching

a scalar field interior metric to (1.48) (the scalar field will also evolve, see Appendix E

for details). As gauge conditions we choose a singularity-avoidant slicing of the ’1+log’

type in normal coordinates (zero shift).
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Figure 1.5: Lapse evolution in a 3D black hole simulation (zero shift). The dotted
line profiles are plotted every 1M. The solid line ones are plotted every 5M, up to 35M,
before boundary-related features become too important (the boundary is just at 10M).

We present in (Fig. 1.5) a low-resolution simulation (∆x = 0.1M) which proves the

performance of our numerical method in 3D strong-field scenarios. Even in presence of

steep gradients, the lapse profiles evolve smoothly.
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[13] C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. Lett. 75 600 (1995).
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Chapter 2

FDOC discretization algorithms

2.1 Introduction

In the previous chapter we devised a centered finite volume numerical algorithm which

provides third order accuracy using a piecewise linear reconstruction. This space dis-

cretization scheme, together with a Runge-Kutta algorithm for the time discretization

in the context of the MoL technique, which allows a clear separation between space and

time discretizations, helped us to successfully perform the collapse of a single black hole

in spherical coordinates using the Z3 formalism of the Einstein equations and allowed us

to simulate a collapse of a 3D black hole further than ever before with the Z3 formalism.

We also showed a comparison between the accuracy of our method and the method

used in [1] in terms of the error in the mass function. This is because regarding space

accuracy, the most common approach in Numerical Relativity is to use a centered FD,

nth-order accurate method (being n even), combined with some artificial dissipation

term of the Kreiss-Oliger (KO) kind [2]. The dissipation applied has to be tuned with a

single parameter and this may be a difficulty in some cases, where dealing with the black

hole interior would require an amount of dissipation which can be instead too big for

the exterior region (see for instance Ref. [1]), not to mention the fact that the optimal

value of the parameter (i.e. the one that gets rid of the high frequency noise without

losing much accuracy) changes from one kind of simulation to another.

However, just as we argued the efficiency of centered FV methods compared to high

resolution shock capturing methods, we could argue here that a FD method with KO

dissipation is way more efficient than our method in terms of computational cost. This

is indeed true if we implement the method in a pedestrian way, that is, calculating

and storing all the slopes and intermediate quantities. If we, on top of that, double the

32
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number of points used in each direction to keep track of the values of the fields and fluxes

at the grid points and at the interfaces, we end up with an impractical implementation

of the method to perform 3D simulations of the Einstein equations. To avoid that, and

taking advantage of the fact that we are not using slope limiters, we can repeat a process

similar to the calculations that go from (1.18) to (1.21) and see what happens. In fact,

if we depart from (1.36) and we remember that we were using an advection equation,

where the fluxes are F = v u, and use our third order accurate result, with coefficients

a = d = 1/3 and b = c = 2/3 we end up with the following equation

∂ui
∂t

+
1

∆x

[
1
12
Fi−2 −

2
3
Fi−1 +

2
3
Fi+1 −

1
12
Fi+2

]
+

1
∆x

[
1
12
λi−2ui−2 −

1
3
λi−1ui−1 +

1
2
λiui −

1
3
λi+1ui+1 +

1
12
λi+2ui+2

]
= 0 (2.1)

With all these simplifications, the proposed centered FV method can be interpreted just

as a fourth order centered FD method combined with a dissipation term (as we saw

in the last chapter that these lambda terms have a dissipative role). In fact, this is

an ’adaptive viscosity’ generalization of the finite difference (FD) algorithms with KO

dissipation, which look like

∂ui
∂t

+
1

∆x

[
1
12
Fi−2 −

2
3
Fi−1 +

2
3
Fi+1 −

1
12
Fi+2

]
+
σ

∆x

[
1
12
ui−2 −

1
3
ui−1 +

1
2
ui −

1
3
ui+1 +

1
12
ui+2

]
= 0 (2.2)

In the case of a centered fourth order FD method with a fourth order dissipative term

of the KO kind, which results, as in our case, in a third order accurate method. In this

case σ represents the arbitrarily tuned dissipation parameter whereas in (2.1), the values

of the dissipation coefficients are entirely prescribed by the numerical algorithms: there

are no arbitrary parameters, unlike the KO case.

We see that the lack of slope limiters has allowed to implement the method presented

in the previous chapter as a FD method with some artificial viscosity term, therefore

matching the efficiency of the FD+KO methods.

Nowadays, current trend in the numerical relativity community is to use a FD algorithm

of nth order and to apply a KO dissipation of n+2th-order on top of that, so that the

leading error in the solution is a dispersive one, of order n+1. Choosing a dissipation

of order n+2 implies that the stencil, the number of points required to evaluate each
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derivative at every point, will be increased by two units (one at each side as the method

is centered) with respect to the stencil used by the FD method. In the end, the number

of points used is the same as if a centered FD n+2th-order method was used. So, if one

uses a FD difference algorithm of order n+2 and a dissipation term of the same order,

ends up with a n+1th-order accurate method for the same price. The leading error

is now precisely the dissipation applied, which one can tune with a single parameter.

Our point is that centered Finite Volume methods can provide alternative n+1th-order

accurate algorithms in which the built-in dissipation is automatically adapted to the

requirements of either the interior or exterior black hole regions.

Not only we have shown that this alternative can match the current trend in terms of

computational efficiency but, if we have to draw conclusions from the results presented

in last chapter, it seems like, when using this centered FV method high frequency noise

is absent even at accuracy levels that one cannot reach with FD+KO without having

such noise. Does this mean that it is impossible for our method to show this behaviour

or is it only well behaved under certain conditions? To answer this question we must

review some background theory in next sections.

2.2 Total Variation

The study of hyperbolic conservation laws, represented by

∂tu+ ∂xf(u) = 0 , (2.3)

is a classical topic in Computational Fluid Dynamics (CFD). We have noted here by u

a generic array of dynamical fields, and we will assume strong hyperbolicity, so that the

characteristic matrix

A(u) = ∂f/∂u (2.4)

has real eigenvalues and a full set of eigenvectors.

As it is well known, the system (2.3) admits weak solutions, so that the components

of u may show piecewise-smooth profiles. Standard finite-difference schemes, like the

Lax-Wendroff [3] or MacCormack [4] ones, produce spurious overshots and oscillations at

non-smooth points which can mask the physical solutions, even leading to code crashing.

These deviations do not diminish with resolution, in analogy with the Gibbs phenomenon

found in the Fourier series development of discontinuous functions.

This difficulty was overcome in the pioneering work of Godunov [5]. On a uniform

computational grid xj = j4x, equation (2.3) can be approximated by the semi-discrete
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equation

∂tuj = − 1
∆x

(hj+1/2 − hj−1/2) , (2.5)

where the interface flux hj+1/2 is computed by an upwind-biased formula from the

neighbor grid nodes. In the scalar case, one can define the total variation of a discrete

function as

TV (u) =
∑
j

|uj − uj−1| . (2.6)

In the case of systems, the total variation is defined as the sum of the total variation of

the components. Godunov scheme is total-variation-diminishing (TVD), meaning that

TV (u) does not increase during numerical evolution. It is obvious that TVD schemes

can not develop spurious oscillations: monotonic initial data preserve their monotonicity

during time evolution. Moreover, the TVD property can be seen as a strong form of

stability: any blow-up of the numerical solution is excluded, as far as it would increase

the total variation.

Godunov scheme is the prototype of the so-called upwind-biased schemes, which require

either the exact or some approximate form of spectral decomposition of the characteristic

matrix (2.4). This makes them both computationally expensive and difficult to extend

to the multidimensional case, as we have already argued. A much simpler alternative is

provided by the local Lax-Friedrichs (LLF) scheme or Rusanov scheme [6] which we can

recall from last chapter

hj+1/2 =
1
2

[fj+1 + fj − λj+1/2 (uj+1 − uj) ] , (2.7)

where λ is the spectral radius of the characteristic matrix and we have taken

λj+1/2 = max(λj , λj+1) . (2.8)

It is clear from (2.5, 2.7) that the LLF scheme, like the Godunov one, is only first-order

accurate in space (we are using piecewise constant reconstruction here). Second-order

accuracy can be obtained following the Harten modified-flux approach [7], which was

soon extended to very-high accuracy (up to 15th order) by Osher and Chakrabarthy [8].

The basic idea is to replace the lower order TVD flux hj+1/2 by a modified flux fj+1/2,

obtained by some interpolation procedure involving a higher number of nodes.

All these high-resolution schemes require some form of flux-correction limiters in order to

ensure the TVD property. As a consequence, accuracy is reduced to (at most) first order

at non-sonic critical points, where the limiters come into play. In order to circumvent this

problem, one can relax the TVD condition, demanding instead that the total variation
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is bounded, that is

TV (u) ≤ B , (2.9)

where the upper bound B is independent of the resolution, but could depend on the

elapsed time. Even if we are ready to relax the stronger TVD requirement, keeping the

bound (2.9) is important from the theoretical point of view.

An interesting example of such TVB schemes was given by Shu [9], by softening the

flux limiters proposed in Ref. [8]. Although the TVB property is proven for the schemes

presented in [9], based on a linear flux-modification procedure, a rigorous proof is still

unavailable for more complex cases. An important example is provided by the essentially-

non-oscillatory (ENO) methods [10] [11], where the TVD property is relaxed in a different

way. Numerical evidence shows that ENO schemes, as well as their weighted-ENO

variants [12]-[14], deserve their name: the TVB property is satisfied in practice, even

with time-independent bounds. An implementation of these high-resolution methods for

the LLF Flux is given in Refs. [15] [16].

2.3 The Osher-Chakravarthy β-schemes

Following Ref. [8], let us consider the centered 2m− 1 order schemes:

∂tuj = −C2mfj + (−1)m−1β(∆x)2m−2Dm
+D

m−1
− (df+

j−1/2 − df
−
j−1/2) , (2.10)

where C2m is the central 2mth-order-accurate difference operator with a stencil of 2m+1

grid points, and we have used the standard notation D± for the elementary difference

operators. The flux differences df± are defined as follows:

df+
j+1/2 = fj+1 − hj+1/2 df−j+1/2 = hj+1/2 − fj , (2.11)

where hj+1/2 is any (lowest-order) TVD flux. The β parameter in the dissipative term

in (2.10) is assumed to be positive: a necessary condition for stability.

The algorithms (2.10) can be put into an explicit flux-conservative form by replacing

the lowest order flux hj+1/2 in (2.5) by [8] [9]

fj+1/2 = hj+1/2 +
m−1∑

k=−m+1

(
cmk df

−
j+k+1/2 + dmk df

+
j+k+1/2

)
, (2.12)

where

dmk = νmk − (−1)kβ

(
2m− 2

k +m− 1

)
, cmk = −dm−k (2.13)
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(we use here a compact notation), and

νm0 = 1/2 , νmk = −νm−k (k 6= 0) (2.14)

νmm−1 = (−1)m−1

[
m

(
2m

m

)]−1

(m > 1) (2.15)

νm+1
k = νmk + (−1)k

k

m

(
2m

m− k

)[
(m+ 1)

(
2m+ 2

m+ 1

)]−1

. (2.16)

The TVD property is enforced by limiting the flux differences df± (see [8], [9] for the

details). As a generic example, df+
j+k+1/2 in (2.12) is replaced by

minmod( df+
j+k+1/2, bdf

+
j+1/2, bdf

+
j−1/2 ), (2.17)

where b is a compression factor. This replacement introduces a non-linear component in

the linear flux-correction formula (2.12). The resulting scheme will be TVD if and only

if:

Cj+1/2 ≡ 1 +
m−1∑

k=−m+1

c mk
df−j+k+1/2 − df

−
j+k−1/2

df−j+1/2

≥ 0 (2.18)

Dj−1/2 ≡ 1 +
m−1∑

k=−m+1

d m
k

df+
j+k+1/2 − df

+
j+k−1/2

df+
j−1/2

≥ 0 . (2.19)

λj
∆t
∆x

(Cj+1/2 +Dj+1/2) ≤ 1 , (2.20)

where we have assumed a time discretization based on the forward Euler step, so that

the last condition provides an upper bound on the time step ∆t.

2.4 Compression factor optimization

In the original paper [8], the ansatz

β ≤ [ m

(
2m

m

)
]−1 (2.21)

was used for getting a sufficient condition from (2.18, 2.19), amounting to a simple

constraint on the range of the compression parameter b

0 < b ≤ [ 1 + 2β

(
2m− 2

m− 1

)
] [

m∑
j=2

1
2j − 1

]−1 . (2.22)
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Allowing for (2.22), the upper bound bmax increases with β, which is in turn bounded

by (2.21). For the third-order scheme (m = 2), the optimal choice would then be

β = 1/12, so that the compression parameter may reach bmax = 4, still preserving the

TVD property. This means that, for monotonic profiles, the flux-correction limiters

would act only where the higher order corrections in neighboring computational cells

differ at least by a factor of four. This is not to be expected in practical, good resolution,

simulations of smooth profiles, even when large gradients appear, which is precisely the

case of numerical relativity simulations. This high-compression-factor property can be

at the origin of the robust behavior of these schemes, even in their unlimited form, as

we will see in the numerical applications presented below.

As far as we are proposing to use the unlimited version, it makes sense to find the

choices of β that maximize the compression factor, going beyond the ansatz (2.21).

Higher values of bmax can be actually obtained by a detailed case-by-case study of the

original TVD conditions (2.18, 2.19). For instance, by reordering the terms in (2.19) we

get

Dj−1/2 ≡ 1 +
m∑

k=−m+1

(d m
k−1 − d m

k )
df+
j+k−1/2

df+
j−1/2

≥ 0 , (2.23)

where we assume d m
k = 0 when |k| ≥ m. A sufficient condition for (2.23) to hold is

1 + d m
−1 − d m

0 + b
∑
k 6=0

min(d m
k−1 − d m

k , 0) ≥ 0 , (2.24)

which actually refines the former condition (2.22). The same reasoning shows that,

allowing for (2.13), a sufficient condition for (2.20) to hold is:

λj
∆t
∆x

[ d m
−1 − d m

0 + b
∑
k 6=0

max(d m
k−1 − d m

k , 0) ] ≤ 1/2 . (2.25)

For the simpler non-trivial cases we have (decreasing k order):

d 2
k = ( β − 1

12
, 1

2 − 2β, β +
1
12

) (2.26)

d 3
k = (

1
60
− β, 4β − 7

60
, 1

2 − 6β, 4β +
7
60
, − 1

60
− β ) . (2.27)

For m = 2, condition (2.29) leads then to:

1 + d 2
−1 − d 2

0 + b min(d 2
1 , 0) + b min(d 2

0 − d 2
1 , 0) + b min(−d 2

−1, 0) ≥ 0 , (2.28)
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Where we have assumed again that d m
k = 0 when |k| ≥ m. If we now use our calculations

for d 2
k we obtain:

7
12

+ 3β + b min(β − 1
12
, 0) + b min(

7
12
− 3β, 0) + b min(−β − 1

12
, 0) ≥ 0 , (2.29)

Which has the solutions:

b ≤ 7/2 + 18β (β ≤ 1
12

) (2.30)

b ≤ 7 + 36β
1 + 12β

(
1
12
≤ β ≤ 7

36
) . (2.31)

It follows that the optimal values for the third-order scheme are

β =
1
12

, bmax = 5 . (2.32)

Notice that the value of bmax is now 5 instead of 4, which was the one obtained from

the original ansatz (2.21). For the fifth-order scheme (m = 3), condition (2.29) leads

instead to:

b ≤ 37 + 600β
16

(β ≤ 1
60

) (2.33)

b ≤ 37 + 600β
15 + 60β

(
1
60
≤ β ≤ 2

75
) (2.34)

b ≤ 37 + 600β
7 + 360β

(
2
75
≤ β ≤ 37

600
) . (2.35)

It follows that the optimal values for the fifth-order scheme are

β =
2
75

, bmax =
265
83

. (2.36)

Note that the ansatz (2.21) gives a smaller compression factor bmax = 9/4 and, more

important, the optimal β value in this case is beyond the original bound 1/60. Note also

that the values of the compression parameter tend to diminish with the accuracy order

of the algorithm. This suggests that higher-order cases m > 3 may not be so useful in

the unlimited case.
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2.5 Finite difference version

The linear flux-modification scheme described in the preceding section can be applied to

any lower-order TVD flux. The case of the LLF flux (2.7) has actually been considered

in [9]. Our objective here is to obtain a scheme which can be cast as a simple finite-

difference algorithm, so that we will take advantage of the simplicity of the LLF flux

(2.7), which can be written in flux-vector-splitting (FVS) form as we did in the past

chapter:

hj+1/2 = f+
j + f−j+1 , f±j ≡

1
2

[fj ± λj±1/2 uj ] . (2.37)

The FVS form (2.37), like the original one (2.7), is just first-order accurate. We will

extend it to higher-order accuracy by means of the Osher-Chakrabarthy algorithm, as

described in the previous sections. The flux differences (2.11) in this case get the simple

form:

df±j+1/2 = 1/2 [ fj+1 − fj ± λj+1/2 (uj+1 − uj) ] . (2.38)

The linear character of this formula allows to get a compact finite-difference expression

for the whole scheme. Allowing for (2.38), the semi-discrete algorithm (2.10) can be

written as

∂tuj = −C2mfj + (−1)m−1β(∆x)2m−1Dm
+D

m−1
− (λj−1/2D−uj) , (2.39)

which amounts to assume a 2mth-order-accurate central difference operator acting on

the flux terms plus a dissipation operator of order 2m depending on the spectral radius λ.

As we will see below, the resulting finite-difference scheme (2.39) provides a cost-effective

alternative for CFD simulations.

Let us remark here that the choices (2.32, 2.36) derived in the previous section are

optimal for a generic choice of the lowest-order TVD Flux. In the LLF case (2.7),

however, it is clear that the spectral radius can be multiplied by a global magnifying

factor K > 1, while keeping the TVD properties. Allowing for the finite-difference form

(2.39) of the unlimited version, magnifying λ amounts to magnify β, that is:

(β, Kλ) ⇔ (Kβ, λ) . (2.40)

It follows that the values of the compression factor bmax obtained in the previous section

must be interpreted just as lower-bound estimates. In particular, the equivalence (2.40)

implies that any compression factor bound obtained for a particular value β0 applies as

well to all values β > β0. This agrees with the interpretation of the second term in (2.39)

as modelling numerical dissipation. On the other side, this dissipation term is actually
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introducing the main truncation error. We will use then in what follows the β values in

(2.32, 2.36), which are still optimal in the sense that they provide the lower numerical

error compatible with the highest lower-bound for the compression parameter.

In the m = 2 case we obtain the following third order method from (2.39)

∂ui
∂t

+
1

∆x

[
1
12
Fi−2 −

2
3
Fi−1 +

2
3
Fi+1 −

1
12
Fi+2

]
+

1
∆x

[
1
12
λi+3/2(ui+2 − ui+1)− 1

4
λi+1/2(ui+1 − ui)

]
+

1
∆x

[
1
4
λi−1/2(ui − ui−1)− 1

12
λi−3/2(ui−1 − ui−2)

]
= 0 (2.41)

which is very similar to the third order method we devised in (2.1). In fact, if we

take (1.27) instead of (2.38) we obtain precisely (2.1). This means that, with a slight

modification, we end up with a method with enough theoretical support to justify the

absence of slope limiters and which is also extendable to higher orders of accuracy. So

for example in the m=3 case we get

∂ui
∂t

+
1

∆x

[
− 1

60
Fi−3 +

3
20
Fi−2 −

3
4
Fi−1 +

3
4
Fi+1 −

3
20
Fi+2 +

1
60
Fi+3

]
+

1
∆x

[
2
75
λi+5/2(ui+2 − ui+3)− 2

15
λi+3/2(ui+1 − ui+2)

]
+

1
∆x

[
4
15
λi+1/2(ui − ui+1)− 4

15
λi−1/2(ui−1 − ui)

]
+

1
∆x

[
2
15
λi−3/2(ui−2 − ui−1)− 2

75
λi−5/2(ui−3 − ui−2)

]
= 0 (2.42)

which is a fifth order accurate method. We will call this family of methods Finite Differ-

ence Osher-Chakrabarthy (FDOC) from now on. Note that in the previous section we

have refined the compression factor bounds given in the original paper [8] assuming that

we will use these methods without slope limiters and with the efficient implementation

we have presented in this section. We will perform now a battery of standard tests in

one space dimension, covering advection, Burgers and Euler equations, in the following

sections in order to show that the TVB property is fulfilled in practice for the selected

values of the β parameter. We are not able, however, of getting the right result for com-

pound shocks, arising from non-convex fluxes; this is illustrated by the Buckley-Leverett

test simulations. This is beacuse the LLF flux formula (2.7) must be generalised for
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non-convex fluxes. We will also consider some multidimensional tests cases with the Eu-

ler and magneto-hydrodynamics (MHD) equations, including the double Mach reflection

and the Orszag-Tang 2D vortex problem. Total-variation-bounded behavior is evident

in all the proposed cases, even with time-independent upper bounds.

2.5.1 Advection equation

Let us start by the scalar advection equation. This is the simplest linear case, but it

allows to test the propagation of arbitrary initial profiles, containing jump discontinuities

and corner points, departing from smoothness in many different ways. This is the case

of the Balsara-Shu profile [12], which will be evolved with periodic boundary conditions.

We compare in Fig. 2.1 the numerical result with the exact solution after a single round

trip, for two different resolutions. The third-order five-points formula from the proposed

class (2.39) has been used with β = 1/12 in both cases or, in other words, FDOC3 (2.41)

has been used in both cases. The propagation speed in the simulation agrees with the

exact one, as expected for a third-order-accurate algorithm. The smooth regions are

described correctly: even the height of the two regular maxima is not reduced too much
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Figure 2.1: Advection of the Balsara-Shu profile in a numerical mesh of either 400
points (upper panel) or 800 points (lower panel). A third-order scheme (m = 2, β =
1/12) is used in both cases. The results are compared with the initial profile (dotted

line) after a single round-trip.
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Figure 2.2: Same as in Fig. 2.1, but using a fifth-order scheme (m = 3) with β = 2/75
(upper panel). In the lower panel we show the results after ten round-trips. The same

settings are used in both cases.

by dissipation, as expected for an unlimited algorithm with just fourth-order dissipation.

There is a slight smearing of the jump slopes, as usual for contact discontinuities, which

gets smaller with higher resolution.

Concerning monotonicity, it is clear that the total variation of the initial profile has

increased by the riddles besides the corner points and, more visibly, near the jump

discontinuities. By comparing the two resolutions, we see that the height of the overshots

does not change. This means that, as in the case of the Gibbs phenomenon, there is no

convergence by the maximum norm, although convergence by the L2 or similar norms

is apparent from the results. On the other hand, it is clear that the total variation is

bounded for this fixed time, independently of the space resolution or, equivalently, the

time step size. This is precisely the requirement for TVB.

We show in Fig. 2.2 the same simulation, in a 400 points mesh, for the fifth-order method

(m = 3, β = 2/75, FDOC5 (2.42)). In the upper panel, corresponding to a single round-

trip, we can see that one additional riddle appears at every side of the critical points,

due to the larger (seven point) stencil. We show also in the lower panel the results of the

same simulation after ten round-trips. The cumulative effect of numerical dissipation is

clearly visible: the extra riddles tend to diminish. The total variation is not higher than
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Figure 2.3: Advection equation. Time evolution of the total variation. The horizontal
axis corresponds to the exact solution: TV (u) = 8. From top to bottom: FDOC5
scheme with 400 points, FDOC3 scheme with 800 points, and FDOC3 scheme with 400
points. After the initial increase, which depends on the selected method, the TV tends

to diminish. Increasing resolution just reduces the TV diminishing rate.

the one after a single round trip. This statement can be verified by plotting, as we do in

Fig. 2.3, the time evolution of TV (u) for the different cases considered here. In all cases,

a sudden initial increase is followed by a clear diminishing pattern. These numerical

results indicate that the bound on the total variation is actually time-independent,

beyond the weaker TVB requirement.

2.5.2 Burgers equation

Burgers equation provides a simple example of a genuinely non-linear scalar equation. A

true shock develops from smooth initial data. We will compute here the evolution of an

initial sinus profile, with fixed boundary conditions. We plot in Fig. 2.4 the numerical

solution values versus (the principal branch of) the exact solution, at the time where

the shock has fully developed. We compare 100 points with 200 points resolution (left

and right panels, respectively), and also the 3rd-order and 5th-order schemes described

previously (upper and lower panels, respectively). Concerning the resolution effect,

we can see here again that the spurious oscillations affect mainly the points directly

connected with the shock, in a number depending on the stencil size but independent of

the resolution.
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Figure 2.4: Burgers equation: evolution of an initial sinus profile. The numerical
solution (point values) is plotted versus the exact solution (continuous line), for 100
points and 200 points resolution (left and right panels, respectively) and for the FDOC3

and the FDOC5 schemes (upper and lower panels, respectively).

These conclusions are fully confirmed by a second simulation, obtained by adding a

constant term to the previous initial profile, that is

u(x) =
1
2

+ sin(
xπ

5
) , (2.43)

with periodic boundary conditions. We can see in Fig. 2.5 that a shock again develops,

but it does no longer stand fixed: it propagates to the right. Note that the plot shown

corresponds to t = 7. We can confirm in this case that both the number of spurious

riddles and the magnitude of the overshots do not increase with resolution, although

it is larger in this case than in the static shock one. We can confirm also that these

effects increase with the order-of-accuracy of the scheme: the larger stencil adds one

more riddle at every side and slightly larger overshots.

These results clearly indicate convergence in the L1 or similar norms (but of course not

in the maximum norm). Let us actually perform a convergence test by considering the

initial profile [17]

u(x, 0) = 1 +
1
2
sin(π x) , (2.44)

which is smooth up to t = 2/π.
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Figure 2.5: Same as in the previous figure, but now for a moving sinus profile. The
numerical solution (point values) is plotted versus the exact solution (continuous line),
for 100 points and 200 points resolution (left and right panels, respectively) and for the

FDOC3 and the FDOC5 schemes (upper and lower panels, respectively).

We show in Table 2.1 the errors at time t = 0.3, where the shock has not yet appeared.

The first group of values corresponds to the third-order method, and this is confirmed

by the data both in the L1 and the L∞ norms. The second group of values corresponds

to the fifth-order method, but only third-order accuracy is obtained from the numerical

values. This is because we keep using the third-order Runge-Kutta algorithm (B.3) for

the time evolution. In order to properly check the space discretization accuracy, we

include a third group of values, obtained with the same algorithm, but with a much

smaller time step in order to lower the time discretization error: the leading error term

is then due to the space discretization and the expected fifth order accuracy is confirmed

by the numerical results, although the L∞ norm shows a slightly decreasing convergence

rate for the higher resolution results.

2.5.3 Buckley-Leverett problem

A more demanding test, still for the scalar case, is provided by the Buckley-Leverett

equation which models two-phase flows that arise in oil-recovery problems [18]. This
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Nx L1 error L1 order L∞ error L∞ order
160 7.22579 E-6 2.998 5.17334 E-5 2.981
320 9.04719 E-7 2.999 6.55306 E-6 2.994
640 1.13182 E-7 3.000 8.22735 E-7 2.998
1280 1.41486 E-8 1.03006 E-7
160 1.44981 E-6 3.017 9.57814 E-6 2.981
320 1.79043 E-7 3.005 1.21318 E-6 2.997
640 2.23035 E-8 3.003 1.51957 E-7 2.999
1280 2.78216 E-9 1.90041 E-8
160 7.09726 E-8 4.88 8.6567 E-7 4.97
320 2.41410 E-9 4.76 2.76804 E-8 3.98
640 8.92936 E-11 4.91 1.75192 E-9 3.48
1280 2.95859 E-12 1.36890 E-11

Table 2.1: Burgers problem. Norm of the errors and convergence rate at t = 0.3 for
the initial profile (2.44). The first group of values corresponds to the FDOC3 method
with ∆t = 0.6∆x. The second group corresponds to the FDOC5 method with the
same time step. The third group corresponds again to the FDOC5 method, but with

∆t = 0.06∆x.

equation contains a non-convex (s-shaped) flux of the form

f(u) =
4u2

4u2 + (1− u)2
. (2.45)

which means that the eigenvalues λ(u) are not monotonic. The spectral radius in an

interval is therefore not necessarily at one end of the interval. This is why our simple

LLF implementation fails as we will see. Non-convex fluxes can lead to compound shock

waves which are shocks adjacent to a rarefaction wave with wave speed equal to the

shock speed at the point of attachment.

We will perform first a simulation with the initial data

u(x) =

{
0 0 ≤ x < 1− 1/

√
2

1 1− 1/
√

2 ≤ x < 1
(2.46)

so that the inflexion point in the flux (2.45) lies inside the interval spanned by the data.

The exact solution in this case is well approximated by a very-high-resolution (10.000

points) simulation using the first-order LLF algorithm, as displayed in Fig. 2.6 (con-

tinuous line). We see a right-propagating compound shock wave, consisting of a shock

followed by a rarefaction wave, which propagates in the same direction. The results

for our third-order algorithm, represented by the crosses line in Fig. 2.6, fail to repro-

duce correctly the rarefaction wave, which is replaced by an spurious intermediate state,

resulting into a slower shock propagation speed.
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Figure 2.6: Buckley-Leverett’s problem. The continuous line corresponds to the
LLF first-order algorithm, with 10.000 points, as a replacement for the exact solution.
The crosses line corresponds to the third-order algorithm FDOC3 with 200 points,

converging towards a different solution.

In order to single out the problem, we have performed simulations for the same flux

(2.45) but with a dynamical range that avoids the inflexion point either from below

or from above. The results are plotted in Fig. 2.7, where we see either an ordinary

rarefaction wave (left panel) or a simple shock (right panel), but no compound shock.

In both cases, the third-order algorithm FDOC3 is able to model correctly the dynamics.

This results indicate that the problem with compound shocks can be triggered by the

presence of overshots at the connection point between the shock and the associated

rarefaction wave, which can break the compound structure. The TVD character of the

LLF flux prevents this problem to arise, as it is clearly shown in Fig. 2.6 (continuous

line).
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Figure 2.7: Same as in the previous figure, but now for two different dynamical
ranges, which avoid the flux inflexion point. In the left panel, an ordinary rarefaction
wave appears, which is correctly modelled by the third-order algorithm. In the right

panel, a simple shock appears, well captured by the third-order algorithm.
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Figure 2.8: Sod shock tube problem. Density and speed profiles (left and right panels,
respectively), for the (m = 2, β = 1/12) and the (m = 3, β = 2/75) schemes (upper

and lower panels, respectively).

2.5.4 Euler equations

Euler equations for fluid dynamics are a convenient arena for testing the proposed

schemes beyond the scalar case. In the ideal gas case, we can check the numerical re-

sults against well-known exact solutions containing shocks, contact discontinuities and

rarefaction waves. We will deal first with the classical Sod shock-tube test [19] with a

standard 200 points resolution.

We plot in Fig. 2.8 the gas density and speed profiles (left and right panels, respectively).

Looking at the 3rd-order scheme results (upper panels), we see that both the rarefaction

wave and the shock are perfectly resolved, whereas the contact discontinuity is smeared

out. As a consequence, the main overshots are just besides the shock, specially visible

in the speed profile, where the jump is much higher. Concerning the 5th-order scheme

(lower panels), the contact discontinuity is slightly better resolved. This is however at

the price of extra riddles and more visible overshots, so that the 3rd-order scheme seems

to be more convenient.

A more demanding test is obtained when assuming a discontinuity in the initial speed,

as in the Lax test [20]. As we see in Fig. 2.9, we get the same behavior than for the Sod
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Figure 2.9: Lax shock tube problem. Density and speed profiles (left and right
panels, respectively), for the FDOC3 and the FDOC5 schemes (upper and lower panels,

respectively).

test case. The main difference is that the density jump at the contact discontinuity is

much higher: the smearing of the density profile there is more visible, in contrast with

the sharp shock profile nearby. Note also that some speed overshots are greater than

the ones arising in the Sod test case (we have kept here the same 200 points resolution

for comparison). The third-order algorithm seems to be more convenient again in this

case.

2.6 Multidimensional tests

The results of this paper can be extended to a multidimensional case in a simple way.

The semi-discrete equation (2.5) can be written in a rectangular grid as follows:

∂tui,j = − 1
∆x

(fi+1/2,j − fi−1/2,j) −
1

∆y
(fi,j+1/2 − fi,j−1/2), (2.47)

and the numerical flux can be computed by applying (2.12) to every single direction.

Note however that the restriction (2.25) on the time step must be extended in this case



Chapter 2. FDOC discretization algorithms 51

to

λj ∆t (
1

∆x
+

1
∆y

) [ d m
−1 − d m

0 + b
∑
k 6=0

max(d m
k−1 − d m

k , 0) ] ≤ 1/2 . (2.48)

In the finite-difference version (2.39), the extension to the multidimensional case amounts

to replicate the right-hand-side difference operators for every single direction: no cross-

derivative terms are required. This multidimensional extension allows to deal with some

MHD tests, which add more complexity to the dynamics, clearly beyond the simple tests

considered in the previous section.

2.6.1 The Orszag-Tang 2D vortex problem

As a first multi-dimensional example, let us consider here the Orszag-Tang vortex prob-

lem [21]. This is a well-known model problem for testing the transition to supersonic

magnetohydrodynamical (MHD) turbulence and has become a common test of numerical

MHD codes in two dimensions.

A barotropic fluid (γ = 5/3) is considered in a doubly periodic domain [0, 2π]2, with uni-

form density ρ and pressure p. A velocity vortex given by v = (− sin y, sinx), correspond-

ing to a Mach 1 rotation cell, is superimposed with a magnetic field B = (− sin y, sin 2x),

describing magnetic islands with half the horizontal wavelength of the velocity roll. As

a result, the magnetic field and the flow velocity differ in their modal structures along

one spatial direction.

In Fig. 2.10 (upper panel) the temperature, T = p/ρ, is represented at a given time

instant (t = 3.14). The figure clearly shows how the dynamics is an intricate interplay

of shock formation and collision. The FDOC3 numerical scheme seems to handle the

Orszag-Tang problem quite well. In Fig. 2.10 (lower panel) we plot the results for

the same problem using a second order scheme built from the Roe-type solver and the

monotonized-central (MC) symmetric limiter [22]. The results with both methods are

qualitatively very similar.

2.6.2 Torrilhon MHD shock tube problem

We now consider the MHD shock tube problem described by Torrilhon [23] to investigate

dynamical situations close to critical solutions. We will assume again a barotropic fluid

with γ = 5/3. The initial conditions for the components of the magnetic field (B2, B3)

are (cos θ, sin θ), with θ = 0 for x ≤ 0. Depending on the angle θ between the left

and right transverse components of the magnetic field, different types of solutions are

found. Regular r-solutions consist only of shocks or contact discontinuities. Critical
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Figure 2.10: Temperature at t = 3.14 in the Orszag-Tang vortex test problem. In
this simulation the grid has 200 × 200 mesh points. In the left panel the third-order
scheme FDOC3 has been used while in the right panel the result is for a a second order

scheme built from the Roe-type solver and the MC limiter.
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Figure 2.11: Plot of the density ρ at t = 0.4 for the almost co-planar problem with
θ = 3. In this simulation 5000 mesh points have been used. The dashed line represents
the critical c-solution while the solid black line is the correct r-solution. Both solutions
differ clearly in the interval [−0.35,−0.1]. The numerical simulation lies between the

two.

c-solutions appear in the coplanar case, where the angle θ is an integer multiple of π.

These solutions can contain also non-regular waves, such as compound waves.

We consider the situation for an almost co-planar case, θ = 3. Analytically, this has

a regular r-solution, but the numerical solution is attracted towards the nearby critical

solution for θ = π. Fig. 2.11 shows the density profile plotted together with the correct

r-solution (solid black line) and the co-planar c-solution (dashed line). The r-solution

has, from left to right, a rarefaction, a rotation, a shock, a contact discontinuity, a shock,

a rotation and a rarefaction. The discrepancies among the different solutions are mainly

in the interval [−0.35,−0.1].

This interval is magnified in Fig. 2.12. The solid black line is the correct r-solution while

the dashed line represents the critical c-solution. We see that the solutions with FDOC3

and FDOC5 tend to the correct solution although they keep some remnant from the

c-solution. For comparison purposes we have also represented the numerical solution

obtained with other schemes. We have used a second order LLF scheme and a second

order Roe solver with either the minmod or the MC slope limiters.

The LLF scheme with the minmod limiter gets too close to the c-solution, even for this

high-resolution simulation. The situation improves by replacing the minmod limiter by

the MC one, but still gets farther from the right solution than the schemes proposed in
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Figure 2.12: Same as Fig. 2.11, but enlarging the interval where the discrepancies
show up. In addition to the exact regular and critical solutions, we plot, from top
to bottom, the simulations for schemes using LLF with minmod limiter, LLF with
MC limiter, the unlimited FDOC3 algorithm, a Roe solver with MC limiter and the

unlimited FDOC5 algorithm.

this paper. Only the combination of a Roe-type solver with the MC limiter improves

the results of the third-order scheme (FDOC3), but not those of the fifth-order scheme

(FDOC5). This problem provides one specific example in which the fifth-order scheme

seems to be more convenient than the third order one: the extra riddles are actually

compensated by a clear improvement in the solution accuracy.

2.6.3 Double Mach reflection problem

This problem is a standard test case for high-resolution schemes. It corresponds to an

experimental setting in which a shock is driven down a tube which contains a wedge.

We will adopt here the standard configuration proposed by Woodward and Colella [24],

involving a Mach 10 shock in air (γ = 1.4) at a 60o angle with a reflecting wall. The air

ahead of the shock is stationary with a density of 1.4 and a pressure of 1. The reflecting

wall lies at the bottom of the computational domain, starting at x = 1/6. Allowing for

this, the exact post-shock condition is imposed at the bottom boundary in the region

0 ≤ x ≤ 1/6 and a reflecting wall condition is imposed for the rest. Inflow (post-shock)

conditions are used at the left and top boundaries, whereas an outflow (no gradient)

condition is used for the right boundary.
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Figure 2.13: Double Mach reflection. Density plot at t = 0.2. The simulation is made
with the 3rd-order method FDOC3 with ∆x = ∆y = 1/240. 30 evenly spaced density

contours are shown.

This configuration leads to a complex flow structure, produced by a double Mach re-

flection of the shock at the wall. A self-similar flow (a fluid flow whose shape does not

change with time) develops as the fluid meets the reflecting wall. Two Mach stems

develop, with two contact discontinuities. We have plotted in Fig. 2.13 the density con-

tours at t = 0.2, when the main features have fully developed. The more challenging

ones are the jet propagating to the right near the reflecting wall and the weak shock

generated at the second Mach reflection, as seen in the enlarged area in Fig. 2.14.

Our third-order results agree with the original ones [24] for the corresponding resolution:

both the jet and the weak shock are clearly captured. Increasing both the resolution

and the order-of-accuracy of the numerical algorithm, as shown in the subsequent panels

in Fig. 2.14, we see more details of the jet rolling-up. Also, a vortex structure appears

near the bottom wall, which starts affecting the diagonal contact discontinuity arising

from the triple point. These high-resolution features, appearing in the last panel in

Fig. 2.14, agree with the ones obtained with a WENO method of the same order (but

double resolution, 1/960) in Ref. [25]. This also agrees with the results of recent spectral

(finite) volume simulations [26], in which those structures show up gradually, as one is

getting more accurate simulations. This is another example in which a higher-order

algorithm can be preferred, as it captures more detailed features of complex structures

for a given resolution.
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Figure 2.14: Same as Fig. 2.13, but enlarging the lower right corner. The panels on the
previous page correspond to the third-order method FDOC3, with resolution of either
1/240 (top) or 1/480 (bottom). The panels in this page show the same for the 5th-order
method FDOC5. Both the jet near the bottom wall and the weak shock, generated at
the kink in the main reflected shock, are well resolved. A vortex structure at the
bottom of the diagonal contact discontinuity shows up, with more details appearing

when increasing accuracy.
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2.7 Summary

The numerical experiments presented in this chapter provide clear evidence for a TVB

behavior of the proposed schemes. This means that the total variation growth is uni-

formly bounded, independently of the resolution, for a fixed evolution time. Moreover,

the experimental pattern is a sudden growth of the total variation, which provides a

time-independent bound for the rest of the evolution. This growth is confined to the

mesh points directly connected with non-sonic critical points, especially near discontinu-

ities. But the resulting riddles do not spread over smooth regions and the overall features

of the solution are preserved as a result. In the case of compound shocks, however, the

numerical simulations actually mystify the physical solution: the spurious riddles affect

the contact point between the shock and the adjacent rarefaction wave, breaking the

compound structure, even if the TVB behavior is still preserved.

The proposed schemes are obtained from the unlimited version of the Osher-Chakrabarthy [8]

linear flux-modification algorithms. The robustness of the unlimited version is related

with the high compression factor of this algorithms family. We have actually improved

the available estimates up to a remarkable value of b = 5, for the third-order case. This

suggests that these estimates could be even improved by using alternative bound-setting

procedures. Unfortunately, even in the scalar case, we are not able to prove rigorously

the TVB properties of these methods.

We have combined the unlimited Osher-Chakrabarthy algorithm with the simple LLF

flux formula. As a result, we have been able to derive the compact finite-difference

scheme (2.39), which is equivalent to the corresponding finite-volume implementation

in the unlimited case. This provides an extremely cost-efficient algorithm for dealing

with the most common problems, even in presence of interacting dynamical shocks, as

we have done in the Orszag-Tang 2D vortex and the double Mach reflection cases. Of

course, its use should be limited to convex-flux problems, where compound shocks do

not arise.

And, as we have already discussed, the resulting finite-difference formula (2.39) is similar

to the ones obtained by the ’artificial viscosity’ approach (see for instance ref. [27]). The

main difference is that the spectral radius plays a key role here in the dissipation term,

providing some sort of ’adaptive viscosity’. But the amount of viscosity is not arbitrary,

as our compression factor estimates provide specific prescriptions for the value of the

dissipation coefficient.
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Chapter 3

Towards a gauge polyvalent

numerical relativity code

3.1 Introduction

During these years, Kiuchi and Shinkai [1] have analyzed numerically the behavior of

many ’adjusted’ versions of the BSSN system. This is a follow-up of a former pro-

posal [2] for using the energy-momentum constraints to modify Numerical Relativity

evolution formalisms. An important point was to put the constraint propagation system

(subsidiary system) in a strongly hyperbolic form, so that constraint violations can prop-

agate out of the computational domain. As a further step, there is also the possibility

of introducing damping terms, which would attract the numerical solution towards the

constrained subspace.

At first sight, one could wonder why this idea is still deserving some interest today, when

the BSSN system is being successfully used in binary-black-hole simulations. Waveform

templates are currently being extracted for different mass and spin configurations, with

an accuracy level that depends just on the computational resources (including the use

of mesh-refinement and/or higher-order finite-difference algorithms). The same is true

for neutron stars simulations, where the BSSN formalism is currently used for evolving

the spacetime geometry [3]-[6]. But these success scenarios have a weak point: the

BSSN simulations are based on the combination of the ’1+log’ and ’Gamma-driver’

gauge conditions, as proposed in Ref. [7] for the first long-term dynamical simulation of

a single Black Hole (BH) without excision.

Concerning BH simulations, we can understand that dealing numerically with collapse

singularities requires the use of either excision, or time slicing prescriptions with strong

62
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singularity-avoidance properties. In the ’1+log’ case, there is actually a ’limit hyper-

surface’, so that the numerical evolution gets safely bounded away from collapse singu-

larities. But singularity-avoidance is a property of the time coordinate, which should

then be independent of the space coordinates prescription. In the spirit of General

Relativity, we should expect a gauge-polyvalent numerical code to work as well in nor-

mal coordinates (zero shift), even if some specific type of time slicing condition (lapse

choice) is required for BH simulations. Moreover, this requirement should be extended

to other dynamical choices of the space coordinates. This means that a gauge-polyvalent

numerical code should also work with alternative shift prescriptions, provided that the

proposed choices preserve the regularity of the congruence of time lines. And this should

be independent of the fact that a freezing of the dynamics is obtained or not as a result.

These considerations apply ’a fortriori’ to neutron star simulations without any BH in

the final stage, where no singularity is expected to form.

The above proposed gauge-polyvalence requirements, which are in keeping with the

spirit of General Relativity, may seem too ambitious, allowing for the fact that they

are not fulfilled by current BH codes (see Preface). But the need for improvement is

even more manifest by looking at the results of the gauge-waves test. This test consists

in evolving Minkowsky spacetime in non-trivial harmonic coordinates, and was devised

for cross-comparing the numerical codes performance [8]. In Ref. [1], the authors assay

different adjustments in order to correct the poor performance of ’plain’ BSSN codes,

which was previously reported in Ref. [9]. They manage to get long-term evolutions for

the small amplitude case (A = 0.01) with a standard second-order-accurate numerical

algorithm. The same result was previously achieved by using a fourth-order accurate

finite differences scheme [10]. Even in this case, however, the results for the medium

amplitude case (A = 0.1) are disappointing. More details can be found in a more

recent cross-comparison paper [11], where actually a higher benchmark (big amplitude,

A = 0.5, devised for testing the non-linear regime) is proposed.

One could argue that the gauge-waves test is not relevant for real simulations, because

periodic boundary conditions do not allow constraint violations to propagate out of the

computational domain [9]. In BH simulations, however, constraint violations arising

inside the horizon can not get out, unless all the characteristic speeds of the subsidiary

system are adjusted to be greater than light speed. As this extreme adjustment is not

implemented in the current evolution formalisms, the gauge-waves test results can be

indeed relevant, at least for non-excision BH codes. As a result, in keeping with the view

expressed in Ref. [1], we are convinced that either an improvement of the current BSSN

adjustments or any alternative formulation would be welcome, as it could contribute to

widen the gauge-polyvalence of numerical relativity codes.
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In this chapter we will consider an alternative numerical code consisting in two main

ingredients. The first one is the Z4 strongly-hyperbolic formulation of the field equa-

tions [9]. The original (second order) version needs no adjustment for the energy and

momentum constraints, as constraint deviations propagate with light speed, although

some convenient damping terms have been also proposed [14]. We will present a first-

order version, which has been adjusted for the ordering constraints which arise in the

passage from the second-order to the first-order formalism. Its flux-conservative imple-

mentation is described in Appendix D. The second ingredient is the FDOC algorithm [14]

presented in last chapter, which is a (unlimited) finite-difference version of the Osher-

Chakrabarthy finite-volume algorithm [15], along the lines sketched in Chapter 2, which

has been published in a previous paper [16]. Although this algorithm allows a much

higher accuracy, we will restrict ourselves here to the simple cases of third and fifth-

order accuracy, which have shown an outstanding robustness, confirmed by standard

tests from Computational Fluid Dynamics, including multidimensional shock interac-

tions [14].

The results for the gauge-waves test will be presented in this chapter, where just a small

amount of dissipation, without any visible dispersion error, shows up after 1000 crossing

times, even for the high amplitude (A = 0.5) case. Results from simulations of a 3D

BH in normal coordinates will also be presented, where we will consider many variants

of the ’Bona-Massó’ singularity-avoidant prescription [17]. As expected, the best results

for a given resolution are obtained for the choices with a limit hypersurface far away

from the singularity. For the f = 2/α choice, the BH evolves in normal coordinates at

least up to 1000M in a uniform grid with logarithmic space coordinates. This is one

order of magnitude greater than the normal-coordinates BSSN result, as reported in [7].

Concerning the shift conditions, we have tested many explicit first-order prescriptions in

single BH simulations. The idea is just to test the gauge-polyvalence of the code, so no

physically motivated condition has been imposed, apart from the three-covariance of the

shift under arbitrary time-independent coordinate transformations. Our results confirm

that the proposed code is not specially tuned for normal coordinates (zero shift).

No sophisticated numerical tools (mesh refinement, algorithm-switching for the advec-

tion terms, etc) have been incorporated to our code at this point, when we are facing

just test simulations. Concerning the boundary treatment, we simply choose at the

points next to the boundary the most accurate centered algorithm compatible with the

available stencil there. When it comes to the last point, we can either copy the neighbor

value or propagate it out with the maximum propagation speed (by means of a 1D ad-

vection equation). The idea is to keep the numerical code as simple as possible in order

to test here just the basic algorithm in a clean way.
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3.2 Adjusting the first-order Z4 formalism

The Z4 formalism is a covariant extension of the Einstein field Equations, defined as [9]

Rµν +∇µZν +∇νZµ = 8 π (Tµν −
1
2
T gµν). (3.1)

The four vector Zµ is an additional dynamical field, which evolution equations can be

obtained from (3.1). The solutions of the original Einstein´s equations can be recovered

when Zµ is a Killing vector. In the generic case, the Killing equation has only the trivial

solution Zµ = 0, so that true Einstein’s solutions can be easily recognized.

The manifestly covariant form (3.1) can be translated into the 3+1 language in the stan-

dard way. The covariant four-vector Zµ will be decomposed into its space components

Zi and the normal time component

Θ ≡ nµ Zµ = α Z0 (3.2)

where nµ is the unit normal to the t = constant slices. The 3+1 decomposition of (3.1)

is given then by [9]:

(∂t − Lβ) γij = −2 α Kij (3.3)

(∂t − Lβ) Kij = −∇iαj + α [Rij +∇iZj +∇jZi

− 2K2
ij + (tr K − 2 Θ) Kij − 8π{Sij −

1
2

(tr S − τ) γij} ] (3.4)

(∂t − Lβ) Θ =
α

2
[R+ 2 ∇kZk + (tr K − 2 Θ) tr K − tr (K2)− 2 Zkαk/α− 16πτ ]

(3.5)

(∂t − Lβ) Zi = α [∇j (Ki
j − δij tr K) + ∂iΘ− 2 Ki

j Zj −Θαi/α− 8πSi] . (3.6)

The evolution system can be completed by providing suitable evolution equations for

the lapse and shift components.

∂tα = −α2 Q , ∂tβ
i = − α Qi (3.7)

We will keep open at this point the choice of gauge conditions, so that the gauge-

derived quantities {Q, Qi} can be either a combination of the other dynamical fields or

independent quantities with their own evolution equation. We are assuming, however,

that both lapse and shift are dynamical quantities, so that terms involving derivatives

of {Q, Qi} actually belong to the principal part of the evolution system.
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First-order formulation: ordering constraints

In order to translate the evolution system (3.3-3.7) into a fully first-order form, the space

derivatives of the metric components (including lapse and shift) must be introduced as

new independent quantities:

Ai ≡ ∂i lnα, Bk
i ≡ ∂kβ

i, Dkij ≡
1
2
∂kγij . (3.8)

Note that, as far as the new quantities will be computed now through their own evolution

equations, the original definitions (3.8) must be considered rather as constraints (first-

order constraints), namely

Ak ≡ Ak − ∂k lnα = 0 (3.9)

Bki ≡ Bki − ∂k βi = 0 (3.10)

Dkij ≡ Dkij −
1
2
∂kγij = 0 . (3.11)

Note also that we can derive in this way the following set of constraints, related with

the ordering of second derivatives (ordering constraints):

Cij ≡ ∂iAj − ∂j Ai = ∂iAj − ∂j Ai = 0 , (3.12)

Crsi ≡ ∂r Bsi − ∂s Bri = ∂r Bs
i − ∂sBri = 0 , (3.13)

Crsij ≡ ∂r Dsij − ∂sDrij = ∂rDsij − ∂sDrij = 0 . (3.14)

The evolution of the lapse and shift space derivatives could be obtained easily, just

by taking the time derivative of the definitions (3.8) and exchanging the order of time

and space derivatives. But then the characteristic lines for the transverse-derivative

components in (3.8) would be the time lines (zero characteristic speed). This can lead

to a characteristic degeneracy problem, because the characteristic cones of the second-

order system (3.4-3.6) are basically the light cones [9], and the time lines can actually

cross the light cones, as it is the case in many black hole simulations. In order to avoid

this degeneracy problem, we can make use of the shift ordering constraint (3.13) for

obtaining the following evolution equations for the additional quantities (3.8):

∂tAk + ∂l[−βl Ak + δlk (α Q+ βrAr)] = Bk
l Al − trB Ak (3.15)

∂tBk
i + ∂l[−βl Bki + δlk (α Qi + βrBr

i)] = Bk
l Bl

i − trB Bk
i (3.16)

∂tDkij + ∂l[−βlDkij + δlk {α Kij − 1/2 (Bij +Bj i)} ] = Bk
l Dlij − trB Dkij . (3.17)
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Note that the characteristic lines for the transverse-derivative components are now the

normal lines (instead of the time lines), so that characteristic crossing is actually avoided.

This ordering adjustment is crucial for long-term evolution in the dynamical shift case,

as it has been yet realized in the first-order version of the generalized harmonic formu-

lation [18].

Damping terms adjustments

A further adjustment could be the introduction of some constraint-violation damping

terms. For the energy-momentum constraints, these terms can be added to the evolution

equations (3.4-3.6), as described in Ref. [14].

For the ordering constraints, we can also introduce simple constraint-violation damping

terms when required. For instance, equation (3.15) could be modified as follows:

∂tAi + ∂l[−βlAi + δli (α Q+ βrAr)] = Bi
l Al − trB Ai − η Ai , (3.18)

with the damping parameter in the range 0 ≤ η � 1/∆t. The same pattern could be

applied to equations (3.16, 3.17).

In order to justify this, let us analyze the resulting evolution equations for the first-order

constraints (3.9). Allowing for (3.15), we would get

∂tAk − βr (∂rAk − ∂kAr) = Bkr Ar − Brr Ak . (3.19)

The hyperbolicity of the subsidiary evolution equation (3.19) can be analyzed by looking

at the normal and transverse components of the principal part along any space direction

~n, namely

∂tAn − β⊥ (∂nA⊥) = 0 (3.20)

∂tA⊥ − βn (∂nA⊥) = 0 , (3.21)

with eigenvalues (0, −βn), which is just weakly hyperbolic in the fully degenerate case,

that is for any space direction orthogonal to the shift vector. Note that this is just the

subsidiary system governing constraint violations, not the evolution system itself. This

means that the main concern here is accuracy, rather than stability. But the resulting

(linear) secular growth of first-order constraint violations may become unacceptable in

long-term simulations.

These considerations explain the importance of adding constraint-damping terms, so

that (3.15) is replaced by (3.18). The damping term −ηAk will appear as a result in the
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subsidiary system also. The linearly growing constraint-violation modes arising from

the degenerate coupling in (3.20) will be kept then under control by these (exponential)

damping terms. The same argument applies mutatis mutandis to the remaining first-

order constraints Bki, Dkij .

Secondary ordering ambiguities

The shift ordering constraints (3.13) can also be used for modifying the first-order version

of the evolution equation (3.6) in the following way

(∂t−Lβ) Zi = α [∇j (Ki
j−δij tr K)+∂i Θ−2Ki

j Zj−ΘAi−8πSi ]−µ (∂j Bij−∂i trB) .

(3.22)

Also, the ordering constraints (3.14) can be used for selecting a specific first-order form

for the three-dimensional Ricci tensor appearing in (3.4) [19]. This can be any combi-

nation of the standard Ricci decomposition

Rij = ∂k Γkij − ∂ i Γkkj + Γrrk Γkij − Γkri Γrkj (3.23)

with the De Donder decomposition

Rij = −∂kDk
ij + ∂(i Γj )k

k − 2Dr
rkDkij

+ 4Drs
iDrsj − ΓirsΓj rs − Γrij Γrkk (3.24)

which is most commonly used in Numerical Relativity codes. Following Ref. [19], we will

introduce an ordering parameter ξ, so that ξ = 1 corresponds to the Ricci decomposition

(C.6) and ξ = −1 to the De Donder one (3.24).

The choices of µ and ξ do not affect the characteristic speeds of the evolution system (see

Appendix D for details), nor the structure of the subsidiary system. In this sense, these

are rather secondary ordering ambiguities and we will keep these parameters free for the

moment, although there are some prescriptions that can be theoretically motivated:

• The choice µ = 1/2, ξ = −1 allows to recover at the first-order level the equivalence

between the generalized harmonic formulation and (the second-order version of)

the Z4 formalism, given by [14]

Zµ =
1
2

Γµρσ gρσ (3.25)

(see Appendix D for more details). This can be important, because the harmonic

system is known to be symmetric hyperbolic.
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• The choice µ = 1 is the only one that ensures the strong hyperbolicity of the

Z3 system, obtained from the Z4 one by setting θ = 0. This can be relevant if

we are trying to keep energy-constraint violations close to zero. Allowing for the

quasi-equivalence between the Z3 and the BSSN systems [19], this adjustment will

affect as well to the first-order version of the BSSN system (NOR system [20]) in

simulations using dynamical shift conditions. The same comment applies to the

old ’Bona-Massó’ system [21].

• The choice ξ = 0 ensures that the first-order version contains only symmetric

combinations of second derivatives of the space metric. This is a standard sym-

metrization procedure for obtaining a first-order version of a generic second-order

equation.

In the numerical simulations in this chapter, we have taken µ = 1, ξ = −1, although we

have also tested other combinations, which also lead to long-term stability.

3.3 Gauge waves test

We will begin with a test devised for harmonic coordinates. Let us consider the following

line element:

ds2 = H(x− t)(−dt2 + dx2) + dy2 + dz2 , (3.26)

where H is an arbitrary function of its argument. One could naively interpret this as

the propagation of an arbitrary wave profile with unit speed. But it is a pure gauge

effect, because (3.26) is nothing but the Minkowsky metric, written in some non-trivial

harmonic coordinates system.

As proposed in Refs. [8], [11], we will consider the ’gauge waves’ line element (3.26),

with the following profile:

H = 1−A Sin( 2π(x− t) ) , (3.27)

so that the resulting metric is periodic and we can identify for instance the points −0.5

and 0.5 on the x axis. This allows to set up periodic boundary conditions in numerical

simulations, so that the initial profile keeps turning around along the x direction. One

can in this way test the long term effect of these gauge perturbations. The results

show that the linear regime (small amplitude, A = 0.01) poses no serious challenge to

most Numerical Relativity codes (but see Ref. [1] for the BSSN case). Following the

recent suggestion in Ref. [11], we will then focus in the medium and big amplitude

cases (A = 0.1 and A = 0.5, respectively), in order to test the non-linear regime.
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Figure 3.1: Gauge waves simulation with periodic boundary conditions and sinusoidal
initial data for the γxx metric component. The resolution is ∆x = 0.005 in both cases.
The upper panel corresponds to the medium amplitude case A = 0.1. After 1000 round
trips, the evolved profile (cross marks) nearly overlaps the initial one (continuous line),
which corresponds also with the exact solution. The lower panel corresponds to the
same simulation for the big amplitude case A = 0.5. We see the combination of a slight

decrease in the mean value plus some amplitude damping.
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Concerning grid spacing, although ∆x = 0.01 would be enough for passing the test in

the medium amplitude case, the big amplitude one requires more resolution, so we have

taken ∆x = 0.005 in both cases.

The results of the numerical simulations are displayed in Fig. 3.1 for the H function

(the γxx metric component). The left panel shows the medium amplitude case A = 0.1.

Only a small amount of numerical dissipation is barely visible after 1000 round trips: the

third-order-accurate finite-difference method gets rid of the dominant dispersion error.

For comparison, let us recall that the corresponding BSSN simulation crashes before

100 round trips [10]. The right panel shows the same thing for the large amplitude case

A = 0.5, well inside the non-linear regime. We see some amplitude damping, together

with a slight decrease of the mean value of the lapse.

Our results are at the same quality level than the ones reported in Ref. [11] for the

Flux-Conservative generalized-harmonic code Abigail (see also the ’apples with apples’

webpage [22]), which is remarkable for a test running in strictly harmonic coordinates.

We can also compare with the simulations reported in Ref. [23] for (a specific variant

of) the KST evolution system [24]. Although the gauge wave parametrization is not

the standard one, both their ’big amplitude’ case and their finest resolution are similar

to ours. We see a clear phase shift, due to cumulative dispersion errors, after about

500 crossing times. We see also a growing amplitude mode, which can be moderated

with resolution (for the finest one, it just compensates numerical dissipation). This can

be related with the spurious linear mode that has been reported for harmonic systems

which are not written in Flux-Conservative form [8].

We can conclude that there are two specific ingredients in our code that contribute to the

gauge-wave results in an essential way: the Flux-Conservative form of the equations (see

Appendix D ), which gets rid of the spurious growing amplitude modes, and the third-

order accuracy of the numerical algorithm, which reduces the dispersion error below the

visual detection level in Fig. 3.1, even after 1000 crossing times.

3.4 Single Black hole test: normal coordinates

We will try next to test a Schwarzschild black-hole evolution in normal coordinates (zero

shift). Harmonic codes are not devised for this gauge choice, so we will compare with

BSSN results instead. Concerning the time coordinate condition, our choice will be

limited by the singularity-avoidance requirement, as far as we are not going to excise

the black-hole interior. Allowing for these considerations, we will determine the gauge
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evolution equations (3.7) as follows

Q = f (tr K −mΘ) , Qi = 0 (βi = 0) , (3.28)

where the second gauge parameter m is a feature of the Z4 formalism. We will choose

here by default m = 2, because the evolution equation for the combination trK − 2 Θ,

as derived from (3.4, 3.5), actually corresponds with the BSSN evolution equation for

tr K (see Ref. [19] for the relationship between BSSN and Z4 formalisms).

Concerning the first gauge parameter, we will consider first the ’1+log’ choice f =

2/α [25], which is the one used in current binary BH simulations in the BSSN formalism.

The name comes from the resulting form of the lapse, after integrating the evolution

equation (3.3, 3.7) with the prescription (3.28) for true Einstein’s solutions (Θ = 0):

α = α0 + ln (γ/γ0) , (3.29)

where
√
γ is the space volume element. It follows from (3.29) that the coordinate time

evolution stops at some limit hypersurface, before even getting close to the collapse

singularity. This happens when

√
γ/γ0 = exp (−α0/2) , (3.30)

that is well before the vanishing of the space volume element: the initial lapse value

is usually close to one, so that the final volume element is still about a 60% of the

initial one. This can explain the robustness of the 1+log choice in current black-hole

simulations.

We will consider as usual initial data on a time-symmetric time slice (Kij = 0) with the

intrinsic metric given in isotropic coordinates:

γij = (1 +
m

2r
)4 δij . (3.31)

This is the usual ’puncture’ metric, with the apparent horizon at r = m/2: the interior

region is isometric to the exterior one, so that the r = 0 singularity is actually the image

of space infinity. We prefer, however, to deal with non-singular initial data. We will

then replace the constant mass profile in interior region r < M/2 by a suitable profile

m(r), so that the interior metric corresponds to a scalar field matter content. Of course,

the scalar field itself must be evolved consistently there (see Appendix E for details). A

previous implementation of the same idea, with dust interior metrics, can be found in

Ref. [26].
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Figure 3.2: Plots of the lapse profiles at t = 20M and t = 40M . The results for
the third-order accurate algorithm (continuous lines) are compared with those for the
fifth-order algorithm (dotted lines) for the same resolution (h = 0.1M ). We have
also included for comparison one extra line, corresponding to the third-order results
with h = 0.05M , computed in a reduced mesh. Increasing resolution leads to a slope
steepening and a slower propagation of the collapse front. In this sense, as we can see
for t = 20M , switching to the fifth-order algorithm while keeping h = 0.1M amounts

to doubling the resolution for the third-order algorithm.

We have performed a numerical simulation for the f = 2/α case with a uniform grid with

resolution h = 0.1M , extending up to r = 20M (no mesh-refinement). We have used

the third and fifth-order FDOC algorithms, as described in previous chapter, with the

optimal dissipation parameters for each case. The results for the lapse profile are shown

in Fig. 3.2 at t = 20M an t = 40M . We see in both cases that the higher order algorithm

leads to steeper profiles and a slower propagation of the collapse front. Note that the

differences in the front propagation speed keep growing in time, although the third-order

plot at t = 40M is clearly affected by the vicinity of the outer boundary. This fact does

not affect the code stability, as far as we can proceed with the simulations beyond t =

50M , when the collapse front gets out of the computational domain (beyond t = 60M in

the higher-order simulations). Note that the corresponding BSSN simulations (f = 2/α

in normal coordinates) are reported to crash at about t = 40M [7].

We have added for comparison an extra plot in Fig. 3.2, with the results at t = 20M

of a third-order simulation with double resolution (h = 0.05M), obtained in a smaller

computational domain (extending up to 10M). Both the position and the slope of

the collapse front coincide with those of the fitfth-order algorithm with h = 0.1M . In
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this case, switching to the higher-order algorithm amounts to doubling accuracy. Note,

however, that higher-order algorithms are known to be less robust [14]. Moreover, as

the profiles steepen, the risk of under-resolution at the collapse front increases. We have

found that a fifth-order algorithm is a convenient trade-off for our h = 0.1M resolution

in isotropic coordinates.

We have also explored other slicing prescriptions with limit surfaces closer to the sin-

gularity, as described in Table 3.1. Note that in these cases the collapse front gets

steeper than the one shown in Fig. 3.2 for the standard f = 2/α case with the same

resolution. This poses an extra challenge to numerical algorithms, so we have switched

to the third-order-accurate one for the sake of robustness. In all cases, the simulations

reached t = 50M without problem, meaning that the collapse front has get out of the

computational domain. It follows that the standard prescription f = 2/α, although it

leads actually to smoother profiles, is not crucial for code stability.

f 2/α 1+1/α 1/2+1/α 1/α√
γ/γ0 61% 50% 44% 37%

Table 3.1: Different prescriptions for the gauge parameter f , with the correspond-
ing values of the residual volume element at the limit surface (normal coordinates),

assuming a unit value of the initial lapse.

The results shown in Fig. 3.2 compare with the ones in Ref. [27], obtained with (a

second-order version of) the old Bona-Massó formalism. We see the same kind of steep

profiles, produced by the well known slice-stretching mechanism [28]. This poses a

challenge to standard numerical methods: in Ref. [27] Finite-Volume methods where

used, including slope limiters. Our FDOC algorithm (see Ref. [14] or Chapter 2 for

details) can also be interpreted as an efficient Finite-Differences (unlimited) version of the

Osher-Chakrabarthy Finite-Volume algorithm [15]. Note however that in Ref. [27], like

in the BSSN case, a conformal decomposition of the space metric was considered, and an

spurious (numerical) trace mode arise in the trace-free part of the extrinsic curvature. An

additional mechanism for resetting this trace to zero was actually required for stability.

In our (first-order) Z4 simulations, both the plain space metric and extrinsic curvature

can be used directly instead, without requiring any such trace-cleaning mechanisms.

Let us take one further step. Note that the lifetime of our isotropic coordinates simula-

tions (with no shift) is clearly limited by the vicinity of the boundary (at r = 20M). At

this point, we can appeal to space coordinates freedom, switching to some logarithmic

coordinates, as defined by

r = L sinh(R/L) , (3.32)

where R is the new radial coordinate and L some length scale factor. This configuration

suggests using the third-order algorithm FDOC3 because of its higher robustness. We
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have performed a long-term numerical simulation for the f = 2/α case, with L = 1.5M ,

so that R = 20M in these logarithmic coordinates corresponds to about r = 463.000M

in the original isotropic coordinates. In this way, as shown in Fig. 3.3, the collapse front

is safely away from the boundary, even at very late times. We stopped our code at t =

1000M , without any sign of instability. This provides a new benchmark for Numerical

Relativity codes: a long-term simulation of a single black-hole, without excision, in

normal coordinates (zero shift). Moreover, it shows that a non-trivial shift prescription

is not a requisite for code stability in BH simulations.
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Figure 3.3: Plot of the lapse function for a single BH at t = 1000M in normal
coordinates. Only one of every ten points is shown along each direction. The third-order
accurate algorithm has been used with β = 1/12 and a space resolution h = 0.1M . The
profile is steep, but smooth: no sign of instability appears. Small riddles, barely visible
on the top of the collapse front, signal some lack of resolution because of the logarithmic

character of the grid. The dynamical zone is safely away from the boundaries.

3.5 Single Black hole test: first-order shift conditions

Looking at the results of the previous section, one can wonder wether our code is just

tuned for normal coordinates. This is why we will consider here again BH simulations,

but this time with some non-trivial shift prescriptions. The idea is just to test some

simple cases in order to show the gauge-polyvalence of the code. For the sake of sim-

plicity, we will consider here just first order shift prescriptions, meaning that the source
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terms (Q, Qi) in the gauge evolutions (3.7) are algebraic combinations of the remain-

ing dynamical fields. To be more specific, we shall keep considering slicing conditions

defined by

Q = −βk/αAk + f (tr K −mΘ) , (3.33)

together with dynamical shift prescriptions, defined by different choices of Qi.

First-order shift prescriptions have been yet considered at the theoretical level [29].

We will introduce here an additional requirement, which follows when realizing that,

allowing for the 3+1 decomposition of the line element

ds2 = −α2 dt2 + γij (dxi + βidt) (dxj + βjdt) , (3.34)

the shift behaves as a vector under (time independent) transformations of the space

coordinates. We will impose then that its evolution equation, and then Qi, is also

three-covariant.

This three-covariance requirement could seem a trivial one. But note that the harmonic

shift conditions, derived from

2 xi = 0, (3.35)

are not three-covariant (the box here stands for the wave operator acting on scalars). In

the 3+1 language, (3.35) can be translated as

∂t(
√
γ/α βi)− ∂k(

√
γ/α βkβi) + ∂k(α

√
γ γik) = 0 , (3.36)

where the non-covariance comes from the space-derivatives terms.

Concerning the advection term, a three-covariant alternative would be provided either

by the Lie-derivative term

Lβ (
√
γ βi/α ) = Lβ (

√
γ/α ) βi , (3.37)

or by the three-covariant derivative term

βk∇k(βi/α ) = 1/α [βk Bki − βiβkAk + Γij k β
jβk ] . (3.38)

We have tested both cases in our numerical simulations.

Concerning the last term in (3.36), we can take any combination of Ai, Zi and the

vectors obtained form the space metric derivatives after subtracting their initial values,

namely:

Di −Di |t=0 , Ei − Ei |t=0 . (3.39)
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This is because the additional terms arising in the transformation of the non-covariant

quantities (Di, Ei) depend only on the space coordinates transformation, which is as-

sumed to be time-independent. Note that, for the conformal contracted-Gamma combi-

nation

Γi = 2Ei −
2
3
Di , (3.40)

the subtracted terms actually vanish in simulations starting from the isotropic initial

metric (3.31). Of course, the same remark applies to the BSSN Gamma quantity,

namely [19]

Γ̃i = Γi + 2Zi . (3.41)

We have considered the following combinations:

S1 : ∂t β
i =

α2

2
Ai − αQβi (3.42)

S2 : ∂t β
i =

α2

2
Ai + βk Bk

i + Γij k β
jβk − αQβi (3.43)

S3 : ∂t β
i =

α2

4
Γ̃i + βk Bk

i + Γij k β
jβk − αQβi , (3.44)

where S1 corresponds to the Lie-derivative term (3.37) and the remaining two choices to

the covariant advection term (3.38), with different combinations of the first-order vector

fields.

We have obtained stable evolution in all cases, with the simulations lasting up to the

point when the collapse front crosses the outer boundary (about t = 50M). We can see

in Fig. 3.4 the lapse and shift profiles in the S1 and the S3 cases (S2 is very similar to

S1). The shift profiles are modulated by the lapse ones, so that the shift goes to zero in

the collapsed regions. This is a consequence of the term −αQβi in the shift evolution

equation, devised for getting finite values of the combination βi/α. In the non-collapsed

region, S1 leads to a higher shift profile, which spreads out with time, whereas S3 leads

to a lower profile, which starts diminishing after the initial growing. Allowing for (3.44),

this indicates that the conformal gamma quantity Γ̃i is driven to zero. The lapse slopes

are also slightly softened in the S3 case.

These results confirm that the code stability is not linked to any particular shift prescrip-

tion, as we can combine different source terms in the shift evolution equation, leading

to different lapse and shift profiles.
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Figure 3.4: Plot of the lapse and shift profiles at t = 20M (continuous lines) and t =
40M (dotted lines). The plots are shown along the main diagonal of the computational
domain, in order to keep the outer boundary out of the dynamical zone. In the S1 case
(up panel), after the initial growing, the maximum shift value keeps constant. In the

S3 case (down panel), it clearly diminishes with time.
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3.6 Summary

We have therefore shown in this chapter how a first-order flux-conservative version of

the Z4 formalism can be adjusted for dealing with the ordering constraints, and then

implemented in a numerical code by means of a robust, cost-efficient, finite-difference

formula. The resulting scheme has been tested in a demanding harmonic-coordinates

scenario: the gauge-waves testbed. The code performance compares well with the best

harmonic-code results for this test [11], even in the highly non-linear regime (50% am-

plitude case). This is in contrast with the well-known problems of BSSN-based codes

with the gauge-waves test [1] [8].

The code has also been tested in non-excision BH evolutions, where singularity-avoidance

is a requirement. Our results confirm the robustness of the code for many different

choices of dynamical lapse and shift prescriptions. In the normal coordinates case (zero

shift), our results set up a new benchmark, by evolving the BH up to 1000M without

any sign of instability. This improves the reported BSSN result by one order of mag-

nitude (Harmonic codes are not devised for normal coordinates). More important, this

shows that a specific shift choice is not crucial for code stability, even in non-excision

BH simulations. This is confirmed by our shift simulations, where different covariant

evolution equations for the shift lead also to stable numerical evolution.
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Chapter 4

Constraint-preserving boundary

conditions

4.1 Introduction

Constraint-preserving boundary conditions is an active research topic in Numerical Rela-

tivity. During the first half of this decade, many conditions have been proposed, adapted

in each case to some specific 3+1 evolution formalism: Fritelli-Reula [1], KST [2, 3],

BSSN-NOR [4], or Z4 [5]. The focus changed suddenly after 2005 by the impact of a

breakthrough: the first ’ long term’ binary-black-hole simulation, which was achieved

in a generalized-harmonic formalism [6]. A series of constraint-preserving boundary

conditions proposals in this framework started then [7, 8], and continues today [9–11].

We will retake in this chapter the 3+1 approach to constraint-preserving boundary con-

ditions, following the way opened very recently for the BSSN case [12]. More specifically,

we will revisit the Z4 case, not just because of its intrinsic relevance, but also for its re-

lationship with other 3+1 formulations (BSSN, KST, see refs. [12, 13] for details). Also,

the close relationship between the Z4 and the generalized-harmonic formulations suggest

that our results could provide a different perspective in this other context. This was

actually what happened with the current constraint-damping terms: first derived in the

Z4 context [14] and then applied successfully in generalized-harmonic simulations [6].

Our results are both at the theoretical and the numerical level. We will consider the

first-order Z4 formalism in normal coordinates (zero shift) for the harmonic slicing case.

This case was known to be symmetric-hyperbolic for a particular choice of the parameter

which controls the ordering of space derivatives [9, 15]. We will extend this result to

a range of this ordering parameter, by providing explicitly a positive-definite energy
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estimate. Then we will use this estimate for deriving algebraic constraint-preserving

boundary conditions both for the energy and the normal momentum components.

Afterwards we will consider the dynamical evolution of constraint violations (subsidiary

system). Following standard methods [2–4], we will transform algebraic boundary condi-

tions of the subsidiary system into derivative boundary conditions for the main system.

We will introduce a new basis of dynamical fields in order to revise the constraint-

preserving conditions proposed in refs. [5, 15] for the Z4 formalism, including also a new

coupling parameter which affects the propagation speeds of the (modified) incoming

modes. In the case of the energy constraint, we get a closed subsystem for the principal

part, allowing an analytical stability study at the continuum level which is presented in

Appendix G.

A simple numerical implementation of the proposed conditions will be given, where we

will test the stability in the linear regime, by considering small random-noise perturba-

tions around flat space (robust stability test). The results show the numerical stability of

the proposed boundary conditions in this regime for many different combinations of the

parameters. The space discretization scheme is the simplest one with the summation-by-

parts (SBP) property [16]. In this way we avoid masking the effect of our conditions (at

the continuum level) with the effect of more advanced space-discretization algorithms,

like FDOC (see Chapter 2 or [17] ) devised to reduce the high frequency noise level in

long-term simulations, which has recently been applied to the black-hole case [18] as

we have seen in the previous chapter. For a comparison, we will run also with periodic

boundary conditions, where the noise level keeps constant. The proposed boundary con-

ditions produce instead a very effective decreasing of (the cumulated effect of) energy

and momentum constraint violations. In the case of cartesian-like grids, we also compare

the standard ’ a la Olsson’ treatment [16], with a modified numerical implementation

which does not use the corner and vertex points, avoiding in this way some stability

issues and providing much cleaner evidence of constraint preservation.

Finally we will test the non-linear regime with the Gowdy waves [19] metric, one of

the standard numerical relativity code tests, as we have done recently for the energy

constraint case [20]. We endorse in this way some recent claims (by Winicour and

others) that the current code cross-comparison efforts [8, 11] should be extended to

the boundaries treatment. A convergence test will be performed against this exact

strong-field solution, showing the expected convergence rate (second order for our sim-

ple SBP method). Testing the proposed boundary conditions results into a stable and

constraint-preserving behavior, in the sense that energy and momentum constraint vio-

lations remain similar or even smaller than the corresponding effects with exact (periodic

or reflection) boundary conditions for the Gowdy metric.
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4.2 The Z4 case revisited

We will consider again the Z4 evolution system:

Rµν +∇µZν +∇νZµ = 8 π (Tµν −
1
2
T gµν). (4.1)

More specifically, we will consider the first-order version in normal coordinates, as de-

scribed in refs. [12, 15] and in previous chapter. For further convenience, we will recom-

bine the basic first-order fields (Kij , Dijk, Ai, Θ, Zi) in the following way:

Πij = Kij − ( trK −Θ) γij (4.2)

Vi = γrs(Dirs −Dris)− Zk (4.3)

µijk = Dijk − (γrsDirs − Vi) γjk (4.4)

Wi = Ai − γrsDirs + 2Vi (4.5)

so that the new basis is (Πij , µijk, Wi, Θ, Vi). Note that the vector Zi can be recovered

easily as

Zi = −µkik. (4.6)

With this new choice of basic dynamical fields, the principal part of the evolution system

gets a very simple form in the harmonic slicing case:

∂tWi = · · · (4.7)

∂t Θ + α ∂k V
k = · · · (4.8)

∂t Vi + α ∂i Θ = · · · (4.9)

∂t Πij + α ∂k λ
k
ij = · · · (4.10)

∂t µkij + α ∂k Πij = · · · (4.11)

where the dots stand for non-principal contributions, and we have noted for short

λkij = µkij + γk(iWj) −Wk γij − (1 + ζ) [µ(ij)k + γk(iZj) ] , (4.12)

where ζ is a space-derivatives ordering parameter and round brackets denote index

symmetrization.

The first-order version of the Z4 system is known to be symmetric-hyperbolic in normal

coordinates with harmonic slicing, at least for the usual ordering ζ = −1 [21]. It follows

from (4.7-4.11) that this result can be extended to the following range of the ordering
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parameter

− 1 ≤ ζ ≤ 0 , (4.13)

which covers the symmetric ordering case (ζ = 0). The corresponding ’symmetrizer’, or

’energy estimate’, can be written as:

S = Θ2 + VkV
k + Πij Πij + µ̃kijµ̃kij + (1 + ζ)(ZkZk − µ̃kijµ̃ijk) + 2 ζ ZkW k , (4.14)

where we have noted for short

µ̃kij = µkij −Wk γij . (4.15)

Allowing for (4.7-4.11), we get

−1
2α

∂t S = ∂k (ΘV k + Πij λ
kij) + · · · (4.16)

and the divergence theorem can be used in order to complete the proof. The positivity

proof for S for the interval (4.13) is given in Appendix F.

Characteristic decomposition

We can consider now some specific space surface, in order to identify the constraint

modes by looking at the evolution equations for Θ and Zi in the system (4.7-4.11). It

follows from (4.8, 4.9) that the energy-constraint modes are given by the pair

E± = Θ ± Vn (4.17)

with propagation speed ±α (the index n meaning the projection along the unit normal

ni). Also, allowing for (4.6,4.11), we can easily recover the evolution equation for Zi,

namely

∂t Zi − α ∂k Πk
i = · · · (4.18)

so that we can identify the momentum-constraint modes with the three pairs, with

propagation speed ±α,

M±i = Πni ± λnni . (4.19)

Note that, allowing for (4.2), the normal component Πnn does correspond with the

transverse-trace component of the extrinsic curvature Kij . We give for completeness the

remaining modes, the fully tangent ones, with propagation speed ±α,

T±AB = ΠAB ± λnAB (4.20)



Chapter 4. Constraint-preserving boundary conditions 86

(capital indices denote a projection tangent to the surface), and the standing modes

(zero propagation speed):

Wi , VA , µAij . (4.21)

Algebraic boundary conditions

We can take advantage of the positive-definite energy estimate (4.14) in order to de-

rive suitable algebraic boundary conditions. We can integrate (4.16) in space and, by

applying the divergence theorem, we get a positivity condition for the boundary terms,

namely

(Πij λnij + Θ Vn) |Σ ≥ 0 (4.22)

where Σ stands for the boundary surface (n being here its outward normal).

The contribution of the fully tangent modes (4.20), independent of the energy and

momentum sectors, is given by

ΠAB λnAB =
1
4
tr [(T+)2 − (T−)2] , (4.23)

so that the contribution of these modes to the boundary term in (4.22) will be non-

negative if we impose the standard algebraic boundary-conditions:

T−AB = σ T+
AB |σ| ≤ 1 , (4.24)

the case σ = 0 corresponding to maximal dissipation. A less strict condition is obtained

by adding an inhomogeneous term, namely

T−AB = σ T+
AB +GAB . (4.25)

This can cause some growth of the energy estimate but, provided that the array G

consists of prescribed spacetime functions, the growth rate can be bounded in a suitable

way so that a well-posed system can still be obtained (see for instance refs. [4, 12]).

This simple strategy, when applied to the energy and momentum modes (4.17, 4.19) is

not compatible with constraint preservation in the generic case (see also ref. [3]). For

the energy sector, constraint preservation is obtained only for the extreme case:

E− = E+ ⇔ Θ = 0 , (4.26)

which will reflect energy-constraint violations back into the evolution domain. These

conditions would be then of a limited practical use in realistic simulations.
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A different approach can be obtained by realizing that the contribution to the boundary

term in (4.22) would have the right sign if one uses the following ’ logical gate’ condition:

Θ |Σ = 0 if (Θ Vn) |Σ < 0 (4.27)

(Θ-gate in ref. [20]). It is clear that the boundary condition (4.27) preserves the energy

constraint, as it modifies just the Θ values, by setting them to zero when the condition

is fulfilled, without affecting any other dynamical field.

The same strategy can work for normal components of the momentum modes (4.19), at

least for the symmetric choice of the ordering parameter. Allowing for (4.12), one has

M±n = Πnn ∓ Zn (ζ = 0) , (4.28)

so that a constraint-preserving (reflection) condition can be obtained in the extreme

case as well. In the logical gate approach, the contribution of the modes (4.28) to the

boundary term in (4.22) will have the right sign if one uses the condition (case ζ = 0

only):

Zn |Σ = 0 if (Zn Πnn) |Σ > 0 , (4.29)

which clearly preserves the normal component of the momentum constraint.

For the tangent momentum modes M±A (tangent to the boundary surface), however, the

contribution in (4.22) will be

2 ΠnA λnnA , (4.30)

where λnnA is inhomogeneous in ZA for any value of the ordering parameter. Moreover,

the inhomogeneous terms are not prescribed functions, but rather some combinations of

dynamical fields. A different strategy must then be devised in this case, as we will see

below.

4.3 Constraints evolution and derivative boundary condi-

tions

The time evolution of the energy-momentum constraints can be easily derived by taking

the divergence of the Z4 field equations (5.4), that is

2 Zµ +RµνZ
ν = 0 . (4.31)

We can write down the second order equation (4.31) as a first order system and im-

pose then maximally dissipative boundary conditions on (the first derivatives of) the
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Zµ components. In this way, the boundaries will behave as one-way membranes for

constraint-violating modes, at least for the ones propagating along the normal direction

ni.

The procedure can be illustrated with the energy-constraint, that is the time component

of (4.31):

∂2
tt Θ− α24 Θ = · · · (4.32)

A first-order version can be obtained as usual by considering first-order derivatives as

independent quantities, namely

Θ̇ ≡ 1/α ∂t Θ , Θk ≡ ∂k Θ . (4.33)

We can write then (4.32) as the following first-order symmetric-hyperbolic system

∂t Θ̇− α ∂k Θk = · · · (4.34)

∂t Θk − α ∂k Θ̇ = · · · (4.35)

Boundary conditions for (the incoming modes of) the subsidiary system can be enforced

then in the standard way. We will consider here for simplicity the ’maximal dissipation’

condition, that is (we assume that the boundary is on the right):

Θ̇ + nkΘk = 0 . (4.36)

Now we can use it as a tool for setting up boundary conditions for the energy modes of

the main evolution system. One can for instance enforce directly (4.36), as in ref. [20].

We will rather use (4.36) as a tool for getting (derivative) boundary conditions for the

incoming energy mode of the evolution system (4.7 - 4.11). To do this, we can use the

evolution equation (4.8) for transforming (4.36) into a convenient version of the energy

constraint, namely:

E = ∂k V
k − ∂n Θ + · · · (4.37)

We can now use (4.37) in order to modify the evolution equation of the incoming energy

mode E−, that is:

1/α ∂t E− + ∂k V
k − ∂n Θ = a E + · · · (4.38)

The whole process is equivalent to the simple replacement:

E− → E− + a (Θ(adv) −Θ) (4.39)
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where Θ(adv) is the solution of the advection equation (4.36).

The choice a = 1 corresponds to the standard recipe [2–4] of ’ trading’ space normal

derivatives by time derivatives, in the incoming modes. This implies that the modified

mode gets zero propagation speed along the given direction n . In this case, allowing for

(4.38), the time derivative of E− would actually vanish, modulo non-principal terms;

this amounts to freezing the incoming modes to their initial values (maximal dissipation

’ on the right-hand-side’), which is a current practice in some Numerical Relativity codes.

Note however that constraint preservation requires using the right non-principal terms,

that can be deduced from the full expression (4.39).

The choice a = 2 would imply instead that the modified mode gets the same positive

speed (+α) than the outgoing one E+. We show in Appendix G that this choice will

lead to a weakly-hyperbolic (ill-posed) boundary system. Our results confirm that a = 1

is actually a safe choice [2–4], although other values in the interval 1 ≤ a < 2 lead

also to a strongly hyperbolic system with non-negative speeds for all energy modes (see

Appendix G for details).

Momentum constraint conditions

The same method can be applied to the momentum constraint modes, although in a less

straightforward way. Let us start from the evolution equation (4.18) for Zi, and take

one extra time derivative. We get in this way

∂2
tt Zi + α2 ∂2

rs λ
rs
i = · · · (4.40)

which, after some cross-derivatives cancellations, leads to the space components of (the

principal part of) the covariant equation (4.31).

A first-order version of (4.40) can be obtained again by considering first-order derivatives

as independent quantities. For the time derivative we will take the obvious choice

Żi ≡ 1/α ∂t Zi . (4.41)

The treatment of space derivatives, however, is complicated by the fact that we are

dealing with a first-order formulation, so that there are additional ordering constraints

to be allowed for. Following refs. [5, 15], we will define for further convenience

Zki ≡ ∂k Zi − ∂[ k Ai] − ∂[ kDi] − (1− ζ) γrs ∂[ rDk] is + (1 + ζ) γrs ∂[ rDi] ks , (4.42)
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where we have noted for short Di = γrsDirs . A closer look to (4.42) shows that Zki
is just the space derivative of Zi, modulo ordering constraints. In the notation of this

chapter:

Zki = −∂r µkir + ∂[iWk] + (1 + ζ) [ ∂r µ(ki)
r + ∂(k Zi) ] + · · · (4.43)

We can write now (4.40) in the first-order form

∂t Żi − α ∂k Zki = · · · (4.44)

∂t Zki − α ∂k Żi = · · · (4.45)

which is a symmetric-hyperbolic first-order version of the momentum-constraint evolu-

tion system (other versions could be obtained by playing with the ordering constraints

in a different way). The vanishing of the incoming modes of this subsidiary system can

be enforced now in the same way as for the energy constraint, namely:

Żi + nkZki = 0 . (4.46)

This is obviously a ’maximal dissipation’ constraint-preserving condition for the sub-

sidiary system, which can be used for to get a derivative boundary condition for the

main evolution system, as we did for the energy modes in the preceding subsection. To

be more specific, we can use the evolution equation (4.18) for transforming (4.46) into

a convenient version of the momentum constraint, that is

Mi = ∂k Πk
i + nkZki + · · · (4.47)

and use it for modifying the evolution equation of the incoming momentum modes M−i ,

namely:

1/α ∂t M−i + ∂k λ
k
ni − ∂n Πni = −aMi + · · · (4.48)

which amounts to the following replacement:

M−i → M−i + a (Z(adv)
i − Zi) , (4.49)

where Z(adv)
i is the solution of the advection-like equation (4.46).

The choice a = 1 would imply again that the modified modes get zero propagation

speeds along the normal direction, whereas the choice a = 2 would imply instead that

the modified modes get the same positive speed (+α) than the outgoing ones M+
i .

This result requires the extra ordering terms in (4.42): this was actually the reason for

including them. Note that we can consider different values of the coupling parameter
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for the energy modes ( a = aE ), and even for the normal and tangent momentum modes

( a = aN , aT , respectively).

For any value a ≥ 1, the modified modes can be computed consistently from inside. The

momentum system however is too complicated for a full hyperbolicity analysis, like the

one we provide in Appendix G for the energy sector. Part of the complication comes

from the coupling with the non-constraint modes, which require their own boundary

conditions. Let us remember at this point that the boundary conditions presented

in this section are derivative, not algebraic. This means that, even in the symmetric

hyperbolic cases, proving well-posedness is by no means trivial.

For that reason, we will rather follow the approach of ref. [3], focusing in the stability

of small perturbations around smooth solutions, which can be tested numerically. We

start in the following section, by performing a ’ robust stability’ test in order to check the

numerical stability of high-frequency perturbations around the Minkowsky metric. As

a full set of boundary conditions is required, even in this weak-field test, we supplement

our conditions for the constraint-related modes with the freezing of the initial values of

the incoming non-constraint modes (maximal dissipation ’on the right-hand-side’).

4.4 Numerical implementation

Let us test now the stability and performance of the proposed conditions in the linear

weak-field regime, by considering a small perturbation of Minkowski space-time, which is

generated by taking random data both in the extrinsic curvature and in the constraint-

violation quantities (Θ, Zi). In this way the initial data violate the energy-momentum

constraints, but preserve all ordering constraints. The level of the random noise will

be of the order 10−6, small enough to make sure that we will keep in the linear regime

during the whole simulation (Robust Stability test, see ref. [23] for details).

We will use the standard method of lines [24] as a finite difference algorithm, so that

space and time discretization will be treated separately. The time evolution will be dealt

with a third-order Runge-Kutta algorithm. The time step dt is kept small enough to

avoid an excess of numerical dissipation that could distort our results in long runs.

For space discretization, we will consider a three-dimensional rectangular grid, evenly-

spaced along every space direction, with a space resolution h = 1/80. We will use

there the simplest centered, second-order-accurate, discretization scheme. At the points

next to the boundary, where we can not use the required three-points stencil, we will

switch to the standard first-order upwind (outgoing) scheme. This combination is the

simplest one with the summation-by-parts (SBP) property [16]. In this way we expect
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that the theoretical properties derived from symmetric-hyperbolicity will show up in

the simulations in a more transparent way. For the same reason, we avoid adding extra

viscosity terms that could mask the effect of our conditions (at the continuum level) with

the dissipative effects of the discretization algorithm. Just to make sure, we run also

with periodic boundary conditions, where the noise level keeps constant: any decrease

of the constraint-violation level will then be due to the proposed conditions, not to the

discretization scheme.

Let us be more specific about the boundary treatment. At boundary points, we use

the first-order upwind algorithm in order to get a prediction for every dynamical field.

Once we have got this prediction, we perform the characteristic decomposition along

the direction normal to the boundary. The predicted values for the outgoing modes,

for which the upwind algorithm is known to be stable, will be kept (this includes the

’standing’ modes, with zero characteristic speed). The (unstable) incoming modes will

be replaced instead by the values arising from our boundary conditions, as described in

the preceding section.

We start with simulations in which the proposed conditions are applied just to the z face,

whereas we keep periodic boundary conditions along the x and y directions. In this way
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Figure 4.1: Robust stability test. Time evolution of the maximum norm of Θ, with
just one face open (periodic boundaries are implemented along the transverse direc-
tions). The fully periodic boundaries result (dashed lines) is also included for compar-
ison. We see some growing mode onset in the aE = 2 case, whereas the constraint-
preserving aE = 1 case (continuous line) is very efficient at reducing the initial noise

level.
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we can detect instabilities which are inherent to the proposed boundary conditions on

smooth boundaries (no corners), allowing at the same time for some non-trivial dynamics

along at least one tangent direction (because of the rectangular nature of the grid).

We plot in fig. 4.1 the maximum norm of the energy-constraint-violating quantity Θ for

two different choices of the coupling parameter of the energy mode: aE = 1 , 2 . We

can see that, after 100 crossing times, the case aE = 2 starts showing the effect of the

linear modes predicted by our hyperbolicity analysis in Appendix G, by departing from

the maximal dissipation pattern of decay. We plot for comparison the results obtained

by applying periodic boundary conditions, so we can see how, for the choice aE = 1,

the proposed constraint-preserving conditions are extremely effective at ’draining out’

energy constraint violations. The rate of decay is actually the same as the one obtained

by applying maximal dissipation conditions ’ on the right-hand-side’ also to the energy

modes, as expected from the analysis given in the previous section. In what follows, we

will fix aE = 1 for this coupling parameter.

We plot in fig. 4.2 both the maximum norm of the longitudinal (upper panel) and

transverse components (lower panel) of the momentum-constraint-violating vector Zi
for the choice aN = aT = 1 of the coupling parameter of the momentum modes.

We include again for comparison the results obtained by applying periodic boundary

conditions, so we can see how the proposed constraint-preserving conditions are very

effective at ’draining out’ energy constraint violations. The Zy plots are slightly, sensitive

to the ordering parameter ζ = 0, −1. In the ζ = −1 case, the rate of decay is actually

the same as the one obtained by applying instead maximal dissipation conditions ’ on

the right-hand.-side’ for the momentum modes. The results are qualitatively the same

for other components of Zi and for other parameter combinations aN , aT = 1, 2 .

In order to perform a full test for cartesian-like grids, including corner and vertex points,

we will repeat the same simulations, but this time with the proposed boundary conditions

applied to all faces, not just to the z ones. A standard treatment of corner points ’ a

la Olsson’ [16], like the one presented in previous works [5, 15], results into numerical

instability issues. A simple cure is to add some extra dissipation at the interior points, at

the price of masking the theoretical results, at the continuum level, with the numerical

viscosity effects, as shown in fig. 4.3. We can see there that opening all faces makes

the effects to appear much faster. The expected instability of the aE = 2 choice of the

energy coupling parameter, which was just an onset in fig. 4.1, shows up manifestly here

(upper panel). Also, a growing mode onset is clearly visible for the choice ζ = −1 of the

momentum-constraint coupling parameter (lower panel). The case ζ = 0 looks stable,

although no strong conclusion can be drawn because of the added numerical dissipation.
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Figure 4.2: Robust stability test. Time evolution of the maximum norm of the
longitudinal and transverse Zi components (up and down panels, respectively). In
both cases, the periodic boundaries results (dashed lines) are included for comparison.
The initial noise in the momentum constraint gets reduced very efficiently in both the
ζ = −1 and the ζ = 0 cases, although there is a slight difference, more visible in the

longitudinal case (upper panel).
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Figure 4.3: Robust stability test. Time evolution of the maximum norm of the
constraint-violating quantities Θ (up panel), and Zy (down panel). The proposed
boundary conditions are applied here to all faces, including corners and vertices. Some
amount of numerical dissipation has been added, so that the periodic boundaries plots
(dashed lines) get a visible negative slope. The choice aE = 1 for the energy modes
is still clearly stable (upper panel). The choice ζ = −1 for the momentum modes
(lower panel) shows a growing mode onset. For comparison, a plot with the maximal

dissipation results is also included in the lower panel (bottom line).
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Maximal dissipation results are also shown for comparison in the lower panel (bottom

line).

Figure 4.4: Stencil for first-order prediction at boundary points (black dots). Interior
points belong to the shaded zone. The stencil for two boundary points is represented
by thick lines (one space direction has been suppressed for clarity). Note that no corner
points are required, as the tangent derivatives are not computed at the boundary, but

at the neighbor layer.

We will present here an alternative numerical treatment. At boundary points, tangent

derivatives are computed at the next-to-last layer. The corresponding stencil is shown

in fig. 4.4. In this way the corner points are not required. This avoids the reported code

stability issues, even without adding extra numerical dissipation terms. Note that trans-

verse derivatives are still computed using the standard three-point SBP algorithm, like

in the smooth boundaries case. As every space derivative can be considered separately

(we are dealing with a first-order system) the SBP property should still follow for our

modified scheme. The price for the shift of the transverse derivatives to the next-to-last

layer is getting just first-order accuracy at the boundary, but the longitudinal derivatives

there were yet only first-order accurate anyway.

This discretization variant allows getting stable results, at least for the value ζ = 0 of the

ordering parameter. We plot in fig. 4.5 the maximum norm of the constraint-violation

quantities (Θ, Zi). We can see there that removing the extra numerical dissipation

makes the features more transparent. The instability of the aE = 2 choice of the energy

coupling parameter, appears now instantly. The downfall rate in the stable case aE = 1,

increased as the constraint violations are drained out in all three directions now, can

be seen in a more unambiguous way. Concerning the momentum constraint (upper

panel), the standard ζ = −1 ordering shows now clearly its unstable behavior, which

was masked by the added dissipation in the standard treatment (see fig. 4.3). The

centered ordering choice ζ = 0 recovers instead the manifest stable behavior shown in

single-face simulations (see fig. 4.2), close to the maximal dissipation case (upper panel,

bottom line).
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Figure 4.5: Robust stability test. Time evolution of the maximum norm of the
constraint-violating quantities Θ (upper panel), and Zy (lower panel). The proposed
boundary conditions are applied to all faces. Corner points are avoided in the way
shown in fig. 4.4. No extra numerical dissipation has been added, so that the periodic
boundaries plots (dashed lines) keep flat. The absence of extra dissipation clarifies the

features shown in the previous figure.
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Our results show the numerical stability of the proposed boundary conditions in the

linear regime for suitable combinations of the coupling and/or ordering parameters.

The proposed boundary conditions produce instead a very effective decreasing of (the

cumulated effect of) energy and momentum constraint violations which compares with

the one obtained by applying maximal dissipation boundary conditions to (the right-

hand-side of) the constraint related modes.

4.5 Gowdy waves as a strong field test

Although the results of the preceding are encouraging, let us remark that we were just

testing the linear regime around Minkowsky spacetime. This is not enough, as high-

frequency instabilities can appear in generic, strong field, situations (see for instance

ref. [3]). In order to test the strong field regime, we will consider the Gowdy solution [19],

which describes a space-time containing plane polarized gravitational waves. This is

one of the test cases that is used in numerical code cross-comparison with periodic

boundary conditions [8, 11]. One of the advantages is that it allows for periodic and/or

reflecting boundary conditions, which can be applied to the modes which are not in the

energy-momentum constraint sector. A first proposal for this selective testing of the

constraint-related modes has been presented recently [20].

The Gowdy line element can be written as

ds2 = t−1/2 eQ/2 (−dt2 + dz2) + t (eP dx2 + e−P dy2) (4.50)

where the quantities Q and P are functions of t and z only and periodic in z, that is [23],

P = J0(2πt) cos(2πz) (4.51)

Q = πJ0(2π)J1(2π)− 2πtJ0(2πt)J1(2πt) cos2(2πz)

+ 2π2t2[J0
2(2πt) + J1

2(2πt)− J0
2(2π)− J1

2(2π)] (4.52)

so that the lapse function α = t−1/4 eQ/4 is constant in space at any time t0 at which

J0(2πt0) vanishes.

Let us now perform the following time coordinate transformation

t = t0 e
−τ/τ0 , (4.53)

so that the expanding line element (4.50) is seen in the new time coordinate τ as

collapsing towards the t = 0 singularity, which is approached only in the limit τ → ∞.

This ’singularity avoidance’ property of the τ coordinate follows from the fact that the
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resulting slicing by τ = const surfaces is harmonic [25]. We will launch our simulations

in normal coordinates, starting with a constant lapse α0 = 1 at τ = 0 (t = t0).

The discretization is performed like in the preceding section, but with a space resolution

h = 1/100. Allowing for the fact that the only non-trivial space dependence in the

metric is through cos(2πz), the numerical grid is fitted to the range 0 ≤ z ≤ 1. In this

way, the exact solution admits either periodic or reflection boundary conditions. We

can use these exact boundary conditions as a comparison with the constraint-preserving

ones that we are going to test. As the Gowdy metric components depend on just one

coordinate, we will apply here the proposed constraint-preserving conditions only to

the z faces, keeping periodic boundary conditions along the transverse directions. Also,

like in the preceding section, we show the results for the aE = aN = aT = 1 coupling

parameters combination, although other choices of aN , aT = 1, 2 lead to similar results.

We start with a simple convergence test. As we know the exact solution (4.50), we

can directly compute the relative error of every simulation. Then, only two different

resolutions are required for checking convergence. We will take h = 1/50 and h = 1/100

for our Gowdy wave simulations. We plot in fig. 4.6 the energy-constraint-violation

quantity Θ at some early time t = 10 (upper panel). We see the expected second-order

accuracy at the interior points which are yet causally disconnected with the boundaries.

We see just first-order accuracy at the boundary, plus a smooth transition zone. This

accuracy reduction at boundaries is inherent to simple SBP algorithms, which require a

lower-order discretization at boundary points [16]. One could keep instead the accuracy

level of the interior points by using more accurate predictions for boundary values, but

at the price of loosing the SBP property. In our test case, however, this issue is not

affecting the metric components, even at a much later time t = 250, as we can see in

the upper panel of fig. 4.6.

We show in fig. 4.7 the results of the h = 1/100 resolution simulation for the boundary

profiles of Θ and Zi, indicating the accumulated amount of energy and momentum

constraint violations (up and down panels, respectively). We apply in both cases the

proposed boundary conditions at the z faces to the constraint-related modes, while

keeping exact (reflection) boundary conditions for the other modes. We can see that

the constraint-preserving conditions result, in this strong-field test, into an accumulated

amount of constraint violations (dotted lines) that is similar or even slightly better than

the one produced by the interior points treatment, which can be seen in simulations with

(exact) reflection boundaries for all faces (continuous lines). Note that the reflection

conditions anchor Zz to zero at the boundary points, which is always more accurate in

this test, although not very useful in more realistic cases.
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Figure 4.6: Convergence test. The constraint-violating quantity Θ is plotted at t = 10
for two different resolutions (upper panel). We see second-order convergence in the
interior region, decreasing up to first-order at points causally connected to the boundary,
as expected from our SBP algorithm. We plot in the lower panel the relative error of
the gzz metric component, evolved up to t = 250. The boundary-induced accuracy

reduction is not even visible yet.
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Figure 4.7: Gowdy waves test. The Θ and Zz profiles are plotted as indicators of the
accumulated error due to energy-momentum constraint violations. Reflection bound-
aries results are also plot for comparison (continuous lines). Dotted lines correspond
to the proposed boundary conditions, whereas dashed lines correspond to the same
conditions with the extra damping terms discussed in this section, with η = 0.1. All

results are shown at t=250
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These results confirm that the proposed boundary conditions are indeed constraint-

preserving, in the sense that their contribution to energy and momentum constraint

violations keeps within the limits of the truncation error of the discretization algo-

rithms, even in this strong field scenario. This good behavior can be further improved

by introducing constraint-damping terms in the evolution equations for the boundary

quantities (4.36, 4.46) that is

Θ̇ + nkΘk = −η Θ (4.54)

Żi + nkZki = −η Zi . (4.55)

The resulting values can then be used in the replacements (4.39) and (4.49), respectively.

We have included the corresponding results in fig. 4.7 (dashed lines). The amount of

both energy and constraint violations becomes even lower than the one for the (ex-

act) reflection boundaries simulations even for a small value η = 0.1 of the damping

parameter. The effect is specially visible in the energy constraint case (upper panel).

4.6 Summary

The work presented in this chapter revises and improves the previous results for the Z4

case [5, 15] in many different ways.

On the theoretical side, we have proposed a new symmetrizer, which extends the para-

metric domain for symmetric hyperbolicity from the single value ζ = −1 to the interval

−1 ≤ ζ ≤ 0. We have identified in the process a new basis for the dynamical field space

(4.2-4.5) which allows a clear-cut separation between the constraint-related modes and

the remaining ones. Regarding the boundary treatment, we have also generalized the

way in which boundary conditions can by used for modifying the incoming modes, by

introducing a new parameter a which, at least for the momentum constraint modes, can

depart from the standard value a = 1 without affecting the stability of the results.

On the numerical side, the use of the new basis definitely improves the stability of the

previous Z4 results. In the single face case, where we use periodic boundary conditions

along transverse directions, we see that the linear modes previously reported in the

robust stability test [5, 15] for the symmetric ordering case (ζ = 0) no longer show up.

Moreover, we have devised a simple finite-differences stencil for the prediction step at

the boundaries which avoids the corner and vertex points even in cartesian-like grids,

providing an interesting alternative to the standard (Olsson) corners treatment.

The proposed boundary conditions have been also tested in a strong field scenario, the

Gowdy waves metric [19], so that the effect of non-trivial metric coefficients can be seen
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in the simulation results. The convergence test in this non-linear regime provides strong

evidence of numerical stability for some suitable parameter combinations. Our simula-

tions actually confirm that the proposed boundary conditions are constraint-preserving:

the accumulated amount of energy-momentum constraint violations is similar or even

better than the one generated by either periodic or reflection conditions, which are exact

in the Gowdy waves case.

Now it remains the question of how these interesting results can be extended to other 3+1

evolution formalisms and/or gauge conditions. Let us remember that all our symmetric

hyperbolicity results apply as usual just to the harmonic slicing, not to the ’1+log’ class

of slicing conditions which are customary in BSSN black-hole simulations. There is

no problem, however, in extending the proposed boundary conditions to this case: in

our new basis the gauge sector is clearly separated from the constraint-related one, so

that one can keep using the replacements (4.39, 4.49) even in this non-harmonic case.

The shift, however, introduces new couplings and would require a detailed case-by-case

investigation: even the strong hyperbolicity of the system can depend on the specific

choice of shift condition.

Concerning the extension from the Z4 to the BSSN formalism, the momentum constraint

treatment can be derived from the simple condition [15]

Γ̃i = −γ̃ ik γ̃ jk,j + 2Zi (4.56)

which relates the additional BSSN quantity Γ̃i with the space vector Zi. The replacement

(4.49) can then be used for getting a suitable boundary condition in this context. The

case of the energy constraint is more challenging, as the BSSN formalism does not contain

any supplementary quantity analogous to Θ. One could follow, however, the line recently

proposed in [13]: a slight modification of the original BSSN equations allows to include

the new quantity Θ, so that the correspondence with the Z4 formalism is complete. The

replacement (4.39) can then be used directly in such context.

A major challenge is posed by the fact that most BSSN implementations are of second

order in space. This has some advantages in this context, as the ordering constraints

do not show up and this removes the main source of ambiguities in the constraint-

violations evolution system. As a result, the boundary conditions (4.36, 4.46) become

simply advection equations so that we can expect a more effective constraint-violation

’draining’ rate. The problem, however, is that second-order implementations do not

have the algebraic characteristic decomposition which is crucial in the first-order ones.

The boundaries treatment takes quite different approaches in second-order formalisms,

although the evolution equations for the constraint-related quantities Θ , Zi are still of
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first order in the Z4 case, even at the continuum level, and this suggests that the results

presented here can be still helpful in this case.
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Chapter 5

Further Developments

We might also find interesting things if we take a completely different approach. There

is a growing interest in incorporating the new hyperbolic formulations into the La-

grangian/Hamiltonian framework. An example is the usage of the ’ densitized lapse’ [1]

as a canonical variable, leading to a modification in the standard form of the canonical

evolution equations [2]. Reciprocally, there are very recent attempts of modifying the

ADM action [3] in order to incorporate coordinate conditions of the type used in numer-

ical relativity [4, 5], with a view on using symplectic integrators for the time evolution,

which could ensure constraint preservation in numerical simulations [6]. On a differ-

ent context, a well posed evolution formalism developed from a Lagrangian formulation

could be a good starting point for Quantum Gravity applications.

In this chapter we derive the Z4 formalism from an action principle by introducing a

Lagrangian density which generalizes the Hilbert action for Einstein’s equations. This

is a crucial step towards the Lagrangian formulation of other numerical-relativity for-

malisms. We actually consider here also the BSSN case, following the symmetry-breaking

mechanism described in refs. [7, 8]. At this point we must say there is a lot of litera-

ture discussing the mutual equivalence between the Hilbert action, which is in the 4D

framework, and the ADM one, which is in the 3+1 framework. The point is that ADM

excludes lapse and shift from the dynamical quantities, whereas Hilbert takes all gab
components. All calculations that are action-related in this chapter will be in 4D.

In the last section, we provide a conformal decomposition of the Z4 system, mimicking

the BSSN one. We see that this allows us to perform simulations with ’puncture data’,

at least for the single BH case.

107
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5.1 Generalizing the Einstein-Hilbert action principle

Let us consider the generic action

S =
∫
d4x L (5.1)

with a Lagrangian density which generalizes the Einstein-Hilbert one by including an

extra four-vector Zµ, namely

L =
√
g gµν [Rµν + 2∇µZν ] (5.2)

(we restrict ourselves to the vacuum case), with the Ricci tensor written in terms of the

connection coefficients

Rµν = ∂ρΓρµν − ∂(µΓρν)ρ + Γρρσ Γσµν − Γρσµ Γσρν , (5.3)

(round brackets denote symmetrization). The standard definition is without symmetriza-

tion, but only the symmetric part contributes to the Lagrangian (assuming gµν symmet-

ric).

Now let us follow the well-known Palatini approach, by considering independent varia-

tions of the metric density hµν =
√
g gµν , the connection coefficients Γρµν and the vector

Zµ. This way we are taking into account that connection coefficients do not have to nec-

essarily be metric connection coefficients. From the hµν variations we get directly the

Z4 field equations [9] (strictly speaking, they will be not Z4 equations until connection

coefficients will be imposed to be metric connection coefficients)

Rµν + ∇µZν + ∇νZµ = 0 , (5.4)

which are currently used in many numerical-relativity developments as one can see in

this thesis and in [8]. We will use the abbreviation

Ωρ
µν = Γρµν − Γ̄ρµν (5.5)

for the difference between the generic connection Γρµν and the metric one: the Christoffel

symbols Γ̂ρµν . Variation with respect to Zµ and Γρµν yield the following equations
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0 =
1
√
g

δL
δZµ

= −2Ωµσ
σ (5.6)

0 =
1
√
g

δL
δΓρµν

= Ωρ
ρσg

µν − 2Ω(µν)
σ + δ(µ)

σ Ων)ρ
ρ − 2Zσgµν (5.7)

We can now solve for Ωρ
µν . Let us take the trace over the indices µ and ν in (5.7) to

yield

Ωρ
ρµ =

10
3
Zµ (5.8)

Putting the results (5.7-5.8) together gives

Ωµνσ + Ωνµσ =
4
3

(Zσgµν + Z(µgν)σ) (5.9)

Now we write down two more copies of this equation with index replacements µ → ν,

ν → σ, σ → µ in the first copy and µ → σ, ν → µ, σ → ν in the second. We add the

second copy to (5.9) and then we substract the first copy. With this we obtain

Ωσ
µν =

4
3
δσ(µZν) (5.10)

as a solution for (5.7). With this result we see that equations (5.6, 5.7) put together

have the solution

Ωρ
µν = 0↔ ∇ρ gµν = 0 , (5.11)

which fixes the connection coefficients in terms of the metric, and the vector condition

Zµ = 0. (5.12)

Let us note here the different role of the conditions (5.11) and (5.12). As there are

much more independent connection coefficients than evolution equations in (5.4), we will

consider condition (5.11) as a constraint enforcing the metric connection ’ a posteriori’,

that is after the variation process. In this way, we will ensure that equations (5.4) are

identical to the original Z4 equations, rather than some affine generalization. For this

reason, we will assume a metric connection everywhere in what follows.
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The case of condition (5.12) is different, as the Z4 equations (5.4) actually provide

evolution equations for every component of Zµ. Then, (5.12) is a standard primary

constraint and we have a choice among different strategies for dealing with it. If we

enforce (5.12) into the Z4 field equations (5.4), we get nothing but Einstein’s equations.

This is not surprising because our Lagrangian obviously reduces to the Einstein-Hilbert

one when Zµ vanishes. The problem is that the plain Einstein field equations do not

lead directly to a well-posed initial data problem. This is why the original harmonic

formulation [10–12] was used instead in the context of the Cauchy problem [13]. For the

same reason, other formulations (BSSN [14, 15], generalized harmonic [16–18], Z4 [7, 9])

are currently considered in numerical relativity.

5.2 Recovering the Z4 formulation

We can alternatively follow a different strategy. Instead of enforcing (5.12), we can deal

with this condition as an algebraic restriction to be imposed just on the initial data,

that is

Zµ |t=0 = 0 (5.13)

In this way, we can keep the Z4 field equations system, which is known to be strongly hy-

perbolic when supplemented by gauge conditions, like ’1+log’ or ’freezing shift’, suitable

for numerical evolution [7, 8]. The consistency of this ’relaxed’ approach requires that

the constraint (5.12) should be actually preserved by the Z4 field equations (5.4). In

this way, the solutions obtained from initial data verifying (5.12) will actually minimize

the proposed action (5.1).

Allowing for the conservation of the Einstein tensor, which is granted after the met-

ric connection enforcement, we derive from (5.4) the second-order equation, linear-

homogeneous in Z

∇ν [∇µZν +∇νZµ − (∇ρZρ) gµν ] = 0 . (5.14)

It follows that the necessary and sufficient condition for the preservation of the constraint

(5.12) is to impose also its first time-derivative conditions in the initial data, that is

(∂0 Zµ) |t=0 = 0 . (5.15)

Note that, allowing for (5.13) and the Z4 field equations, the secondary constraints

(5.15) amount to the standard energy and momentum constraints, which are then to be

imposed on the initial data in addition to (5.13).
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This ’ relaxed’ treatment of the constraints (5.12) may look unnatural. But it is just the

reflection of a common practice numerical relativity (’ free evolution’ approach), where

four of the ten field equations (the energy-momentum constraints) are not enforced

during the evolution, being imposed just in the initial data instead. The introduction

of the extra four-vector in the Z4 formalism actually provides a simpler implementation

of the same idea.

5.3 Recovering the Z3-BSSN formulation

Note that in all our developments we have preserved general covariance. Our action

integral (5.1) is a true scalar and, in spite of other alternatives, we have avoided the

addition of total divergences which could have simplified our developments to some

extent, at the price of adding boundary terms. This means that we keep at this point

the full coordinate-gauge freedom.

However, as it is well known, the BSSN formulation is not general covariant. It con-

tains just three additional ’contracted-gamma’ quantities, associated to the momentum

constraint. But the 3+1 splitting between energy and momentum requires a specific

choice for the time coordinate, which breaks general covariance. In refs. [7, 8] a sym-

metry breaking mechanism is proposed, which allows to recover BSSN from the ’Z3

system’ [19], which is obtained in turn from the Z4 one by enforcing the energy con-

straint in the form

Z0 = 0 . (5.16)

We can proceed now like in the preceding section, by the following steps:

• Enforcing both the metric connection condition (5.11) and (5.16) in the Z4 field

equations.

• Splitting the ten resulting equations into the (energy-related) secondary constraint

E ≡ ∂tZ0 = 0 (5.17)

plus nine evolution equations for the six space metric components and the space

vector Zi.

Note that this splitting is not unique, as any multiple of E (times the metric) can be

added to the evolution equations, resulting into a modified evolution system, with a

different principal part. In this way we obtain the one-parameter family of (generalized)
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Z3 evolution systems [7, 8]. For a specific value of the parameter, one can recover a

flavor of the BSSN formalism (Z3-BSSN) by means of a conformal decomposition of

the spatial tensors and the redefinition of space vector Zi in terms of the equivalent

’ contracted-Gamma’ quantities, namely

Γ̃i = −γ̃ik γ̃jk,j + 2 Zi (5.18)

where γ̃ij is the conformal space metric. The space vector Zi can be interpreted in

this context as the difference between the (contracted) conformal metric connection and

the BSSN contracted-Gamma quantities. This provides actually time a three-covariant

reformulation of the original BSSN formalism.

5.4 Generalized Harmonic systems

There is still another possibility, which allows a more direct specification of a coordinate

gauge at the price of breaking the covariance of the evolution equations. which are

currently used in many numerical-relativity developments [8]. We can enforce in the Z4

equations (5.4) the following assignment for Zµ

Zµ = −1
2

Γµρσ g
ρσ ≡ −1

2
Γµ . (5.19)

The vanishing of Zµ will amount in this way to the ’harmonic coordinates’ condition,

which can be considered then as a constraint to be imposed just in the initial data, that

is

(Γµρσ gρσ) |t=0 = 0 (5.20)

(note that the extra field Zµ has disappeared in the process). The resulting field equa-

tions

Rµν − ∂(µΓν) + Γρµν Γρ = 0 (5.21)

lead, after imposing the metric connection condition (5.11), to the manifestly hyperbolic

second-order system

gρσ∂2
ρσ gµν = 2 gρσgαβ [∂αgρµ ∂βgσν − Γµρα Γνσβ ] . (5.22)

This corresponds to the classical harmonic formulation of General Relativity [10–12],

which is known to have a well-posed Cauchy problem [13].

We have derived in this way the harmonic formalism through the non-covariant prescrip-

tion (5.19). The harmonic constraint (5.20) is automatically preserved by the resulting
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(harmonic) evolution system, provided that we also enforce the energy-momentum con-

straints on the initial data. This can be seen in a transparent way by replacing directly

(5.19) into the covariant constraint-evolution equation (5.14) and then into the resulting

conditions (5.15).

The prescription (5.19) can be generalized in order to enforce other coordinate gauges

that are also currently used in numerical relativity. The simpler formulations [16, 18]

correspond to the replacement

Zµ = −1
2

( Γµ +Hµ ) , (5.23)

where the ’ gauge sources’ Hµ are explicit functions of the metric and/or the spacetime

coordinates. If we follow the same process the resulting field equations are

Rµν − ∂(µΓν) − ∂(µHν) + Γρµν Γρ + Γρµν Hρ = 0 (5.24)

And, again, imposing the metric connection condition (5.11), we obtain

gρσ∂2
ρσ gµν + ∂(µHν) − Γρµν Hρ = 2 gρσgαβ [∂αgρµ ∂βgσν − Γµρα Γνσβ ] . (5.25)

More general choices of Hµ, like that of ref. [20], would require a more elaborate treat-

ment.

The same mechanism can be applied to coordinate conditions derived in the 3+1 frame-

work, where the spacetime line element is decomposed as

ds2 = −α2 dt2 + γij (dxi + βi dt) (dxj + βj dt) . (5.26)

The spacetime slicing is given by the choice of the time coordinate. In this context, the

harmonic slicing condition can be generalized to [7]

(∂t − βk∂k) α = −f α2 trK , (5.27)

where Kij = −αΓ0
ij stands for the extrinsic curvature of the time slices. The case

f = 1 corresponds to the harmonic time-coordinate choice, whereas the choice f = 2/α

corresponds to the popular ’ 1+log’ time slicing.

In order to get the replacement, of the form (5.23), which connects this condition with

our formulation, we must rewrite (5.27) in a four-dimensional form with the help of the
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Γnnn = 1/α2 (∂t − βr∂r)α Γnnk = −∂kln α
Γknn = 1/α2 γkj(∂t − βr∂r)βj + ∂kln α Γnij = −Kij

Γijn = Kij − 1/α γik ∂j βk Γkij = (3)Γkij

Table 5.1: The 3+1 decomposition of the four-dimensional connection coefficients.
The index n is a shorthand for the contraction with the unit normal nµ.

unit normal nµ to the constant time hypersurfaces, that is

nµ = α δ0
µ nµ = (−δµ0 + δµi β

i)/α . (5.28)

We can now decompose the four-dimensional Christoffel symbols in terms of the standard

3+1 quantities (see Table 5.1). This provides a convenient way of translating 3+1

conditions like (5.27) in terms of four-dimensional objects.

We can obtain in this way, after an straightforward calculation, the gauge sources cor-

responding to the class of slicing conditions (5.27), namely

H0 = (1− 1/f) Γ0
ρσn

ρnσ . (5.29)

We will use now (5.23) for replacing the quantity Z0 in the Z4 equations. Its evolution

equation gets transformed in this way into a second order evolution equation for the

lapse function α, which governs the spacetime slicing. As the first-order slicing condition

(5.27) has been translated into a specification of Z0, and allowing for (5.14), (5.27) will

become a first integral of the second order evolution system: we can impose it just in

the initial data together with the energy-momentum constraints. This approach is new

in 3+1 formalisms, but a common practice in the harmonic-like ones.

The same technique can be used for ’ gamma-driver’ shift prescriptions. A first-order

reduction of the original ’ gamma-freezing’ condition [21] is given by [22]

(∂t − βk∂k) βi = µ Γ̃i − η βi , (5.30)

where Γ̃i stands here for the contraction of the three-dimensional conformal connection,

that is

Γ̃i ≡ γij γrs ( Γj rs +
1
3

Γrsj ) . (5.31)

The corresponding ’ gamma-driver’ gauge sources are given by

Hi = (1− α2

µ
) Γiρσnρnσ +

1
3

Γρσi gρσ (5.32)

+ (
1
3
− α2

µ
) Γρσinρnσ − η/µ g0i .



Chapter 5. Further Developments 115

We can use again (5.23), this time for replacing the space vector Zi in the Z4 equations.

Its evolution equation get transformed in this way into a second order evolution equation

for the shift components βi, which determine the time lines. Again, the first-order

gamma-driver condition (5.30) becomes a first integral of the resulting (second order)

shift evolution equation. At the same time, one gets rid of the additional variables Zi (as

we did for Z0 with the analogous replacement, leading to the lapse evolution equation).

5.5 Conformal Z4

By the end of the past century, some hyperbolic extensions of Einstein’s equations were

developed with a view on numerical relativity applications [1, 23–25]. This emergent

field is now more mature: there are two main formalisms currently used in numerical

simulations. One is BSSN [14, 15], working at the 3+1 level, and the other is the class

of generalized harmonic formalisms [16–18], working at the four-dimensional level. A

unifying framework is provided by the Z4 formalism [9], which is precisely the one we

have been using in the last two chapters and it allows to recover the generalized harmonic

one by relating the additional vector field Zµ with the harmonic ’ gauge sources’ [16]. It

also allows to recover (a specific version of) BSSN by a symmetry-breaking process in

the transition from the four-dimensional to the three-dimensional formulations [7, 8].

The development of these formalisms has been very useful for the field, which achieved

a major breakthrough by successfully simulating binary black hole scenarios after many

years of research. Many research groups have therefore since then focused their efforts

in exploring the possibilities of their working codes: different mass ratios, spinning

and non-spinning black holes... These results are now being gathered (see for example

the recent NRAR, Numerical Relativity-Analytical Relativity collaboration) in order to

obtain different gravitational waves signal patterns for the data analysis community to

use and some standards are being set.

But after this fruitful period of carrying out simulations and exploring the limits of

the available tools for numerical codes (mesh refinement and parameter tweaking in

general) numerical relativity is facing new walls which prevent the field from evolving.

Extreme mass ratio simulations, precision of the results, higher spins, higher number of

orbits... they are all limited by computational power and efficiency. In this thesis we

have presented different tools that might be useful to overcome these limitations, like

adopting a new numerical method (FDOC), constraint preserving boundary conditions

that might allow to put the boundaries of the domain closer and we have also shown

the numerical robustness of the Z4 formalism (besides its nice mathematical properties,
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that were already known), which has now become a good candidate to perform binary

black hole simulations.

In fact, after Z4 has shown that is able to successfully perform single black hole simula-

tions with scalar field initial data (see Chapter 3 and [26]), there is a renewed interest in

the formalism and some work has been done in order to get Z4 to perform single black

holes in spherical symmetry with puncture initial data and also deal with matter space-

times [27]. In that paper, a conformal decomposition of the second order Z4 system was

presented, but many source terms (non principal part terms) were dropped. Therefore

the resulting system, though it is called Z4c, lacks 4-covariance. The authors justify

it with the intention of obtaining a system very similar to BSSN (and therefore very

easy to implement in the existing BSSN codes) and they claim to obtain a much better

keeping of the Hamiltonian constraint with matter spacetimes when they compare the

Z4c results with the BSSN results.

With all these evidence put together, there are many reasons to think that a 4-covariant

conformal decomposition of the Z4 system will be able to perform 3D black holes with

puncture initial data and a freezing shift condition (therefore extending the polyvalence

of the system regarding the gauge choice and initial data) and will also be able to

simulate binary black hole systems.

Let us start from the second order Z4 system (3.3-3.6). For the sake of simplicity, we

will exclude the shift terms from the forthcoming calculations. If we use (3.3) and that:

γis ∂t (γrjγij) = γis ∂t (δri ) = 0

= γis γrj ∂t (γij) + γis γij ∂t (γrj)

= γis γrj (−2 α Kij) + δsj ∂t (γrj) (5.33)

We can obtain the following:

∂t γ
ij = 2 α Kij (5.34)

So with (5.34) and (3.4) we can obtain an evolution equation for the trace of the extrinsic

curvature:
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∂t K = ∂t (γijKij) = γij ∂t Kij +Kij ∂t γ
ij =

= −∇iαi + α [R+ 2 ∇iZi +K2 − 2 θK] (5.35)

Where K = Ki
i and R = Rii. Now we need to obtain an evolution equation for the

trace-free part of the extrinsic curvature, which is defined as follows

Aij = Kij −
1
3
γij K (5.36)

And if we take a time derivative in (5.36) and we use (3.3, 3.4) and (5.35):

∂t Aij = ∂t Kij −
1
3
γij ∂t K −

1
3
K ∂t γij =

= [−∇iαj + α (Rij +∇iZj +∇jZi)]TF

+α(K − 2θ)(Aij +
1
3
γijK)− 2α(Ail +

1
3
γilK)(Alj +

1
3
δjlK) (5.37)

+
2
3
Kα(Aij +

1
3
γijK) =

= [−∇iαj + α(Rij +∇iZj +∇jZi)]TF + α(
1
3
KAij − 2θAij − 2AilAlj)

Where TF denotes that only the trace-free part of the terms is involved in the calcula-

tions.

To proceed, we need a splitting for the spatial metric γ compatible with the splitting

of Kij into K and Aij . In the BSSN formulation, the desired splitting is achieved by

introducing the conformal factor and the conformal metric

φ =
1
12
lnγ γ̃ij = e−4φγij (5.38)

Where γ is the determinant of the metric. However, a variable of the form

χ = γ−1/κ γ̃ij = γ−1/3γij = χκ/3γij (5.39)

Has been suggested [28, 29]. In [28], it is noted that certain singular terms in the

evolution equations for Bowen-York initial data can be corrected taking κ = 3. Alter-

natively, [29] notes that κ = 6 has the additional benefit of ensuring that γ remains
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positive, a property which needs to be explicitly enforced with κ = 3. We can follow the

same approach with Z4 and if we make use of the Leibnitz formula to differentiate the

determinant of a matrix

∂ γ = γ γlm ∂ γml (5.40)

Using (5.40) and (3.3) we find that the evolution equation for the conformal factor is

∂t χ = ∂t (γ−1/κ) = −1
κ
γ−1/κγlm∂t γml =

2
κ
αχK (5.41)

Now using (5.41, 3.3, 3.4 and 5.36) we can obtain the evolution equation for the conformal

metric

∂t γ̃ij = ∂t (χκ/3γij) = χκ/3∂t γij +
κ

3
γijχ

κ/3−1∂t (χ) =

= χκ/3(−2αKij +
2
3
αγijK) = −2αÃij (5.42)

Where Ãij = χκ/3Aij is the conformal analog of the variable Aij . The evolution equation

for Ãij is then:

∂t Ãij = ∂t (χκ/3Aij) = χκ/3[∂t Aij +
2
3
αKAij ] =

= χκ/3[−∇iαj + α(Rij +∇iZj +∇jZi)]TF

+αÃij(K − 2θ)− 2αÃilÃlj (5.43)

The gauge quantities, α and βi, will be evolved using the prescriptions that have been

commonly applied to BSSN black hole, and particularly puncture, evolutions. For the

lapse, we will evolve according to the ”1+log” condition [30],

∂t α = −2α(K −mθ) + βi∂i α (5.44)

while the shift will be evolved using the hyperbolic ”Γ̃-driver” equation [21],
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∂t β
i =

3
4
Bi + βj∂jβ

i (5.45)

∂t B
i = ∂t Γ̃i − βj∂j Γ̃i + βj∂jB

i − ηBi (5.46)

Where η is a parameter which acts as a damping coefficient, and it is typically set to

values of the order of unity for the simulations that we will carry out.

Now we still need to find the conformal equivalents of (3.5) and (3.6). The first one can

be easily transformed into:

∂t θ =
α

2
[R+ 2∇kZk + ÃijÃ

ij +
2
3
K2 − 2Kθ]− Zk∂kα (5.47)

And the conformal equivalent of (3.6) is

∂t Zi = α∇j Ãji −
2
3
α∂i K + α∂i θ − 2αZjÃ

j
i −

2
3
αZiK − θ∂i α (5.48)

Given our choice for the shift evolution equation, which involves the time derivative

of Γ̃i, we will also calculate the evolution equation for that quantity. If we use the

definition of Γ̃i, its evolution equation, and the evolution equation for Zi in terms of the

momentum constraint:

Γ̃i = γ̃irγ̃jkγ̃ij,k (5.49)

∂t Γ̃i = −2(α∂j Ãij + Ãij∂j α) (5.50)

∂t Zi = αMi + α∂i θ − 2αZjÃ
j
i −

2
3
αKZi − θ∂i α (5.51)

M̃ i = γ̃ijMj = ∂j Ã
ij + Γ̃ijkÃ

jk − 2
3
γ̃ij∂j K −

κ

2
Ãij∂j (logχ) (5.52)

Where M stands for the momentum constraint and Γ̃ijk is the Christoffel symbol calcu-

lated with the conformal metric. We can substitute both (5.52 and 5.51) in (5.50) and

we obtain:
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∂t (Γ̃i + 2γ̃kiZk) = 2Zk∂t γ̃ki + 2αΓ̃ijkÃ
jk − 4

3
αγ̃ij∂j K − καÃij∂j (logχ)

−2Ãij∂j α+ 2γ̃ki(α∂k θ − 2αZjA
j
k −

2
3
αKZk − θ∂k α)

∂t Γ̂i = 2αΓ̃ijkÃ
jk − 4

3
αγ̃ij∂j K − καÃij∂j (logχ)

−2Ãij∂j α+ 2γ̃ki(α∂k θ −
2
3
αKZk − θ∂k α) (5.53)

Where we have defined Γ̂i = Γ̃i + 2γ̃kiZk. This is more or less (without some of the

terms we used here) what BSSN is doing, substituting the momentum constraint in the

evolution equation of Γ̃i and then setting the constraint to zero. BSSN is devised this

way in order to ensure strong hyperbolicity. As we have just shown, this is equivalent

(or partially equivalent if you drop terms) to evolve a different variable, Γ̂i. This is

the reason why in most BSSN codes there is an explicit difference between what they

call local Γ̃i, which is calculated exclusively from the evolved conformal metric and

the evolved variable, which is simply called Γ̃i. We can then take advantage of the

relationship between the two to calculate Zi

2Zi = γ̃ijΓ̂j − γ̃jkγ̃ij,k (5.54)

So, to sum up, the evolution equations for the conformal version of the Z4, including

gauge choices, are:
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∂t α = −2α(K −mθ) + βk∂k α (5.55)

∂t β
i =

3
4
Bi + βk∂kβ

i (5.56)

∂t B
i = ∂t Γ̂i − βk∂k Γ̂i + βk∂kB

i − ηBi (5.57)

∂t χ =
2
κ
αχK + βk∂k χ−

2
κ
χ∂k β

k (5.58)

∂t γ̃ij = −2αÃij + βk∂k γ̃ij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k β

k (5.59)

∂t K = −∇iαj + α [R+ 2 ∇iZi +K2 − 2 θK] + βk∂k K (5.60)

∂t Ãij = χκ/3[−∇iαj + α(Rij +∇iZj +∇jZi)]TF + αÃij(K − 2θ)

− 2αÃilÃlj + βk∂k Ãij + 2Ãk(i∂j) β
k − 2

3
Ãij∂k β

k (5.61)

+ ∂k Ziβ
k + Zk∂i β

k (5.62)

∂t θ =
α

2
[R+ 2∇kZk + ÃijÃ

ij +
2
3
K2 − 2Kθ]− Zk∂k α+ βk∂k θ (5.63)

∂t Γ̂i = 2αΓ̃ijkÃ
jk − 4

3
αγ̃ij∂j K − καÃij∂j (logχ)

− 2Ãij∂j α+ 2γ̃ki(α∂k θ −
2
3
αKZk − θ∂k α)

+ γ̃kl∂k βlβ
i +

1
3
γ̃ik∂k∂l β

l − Γ̂k∂k βi +
2
3

Γ̂i∂k βk + βk∂k Γ̂i (5.64)

Where we have included the shift terms that were omitted previously for the sake of

clarity. For a justification of how we can add the shift terms after the calculation see for

instance [8]. Differences with [27] are in the covariance of the Z-derivatives included in

the evolution equations for the trace and trace-free parts of the extrinsic curvature, and

also in the θ terms in those equations. The Z and θ ∂kα terms in the evolution equation

for Γ̂ are also missing in the reference [27]. Any arbitrariness regarding the use of Γ̂ or

Γ̃ in different parts of the code is also resolved here. During evolution there is also no

need to enforce that trA = 0 whatsoever.

We can show here the results for a single black hole in 3D with puncture initial data.

Evolution of the (precollapsed) lapse is shown and the freezing can be appreciated in

Fig. 5.1.

5.6 Summary

We are proposing the action (5.1), which generalizes the Einstein-Hilbert one. Starting

from this action one gets directly the Z4 field equations, plus the metric connection

condition (which is to be enforced ’ a posteriori’ in our Palatini approach), plus the
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Figure 5.1: Plot of the lapse profile from t = 0M to t = 100M every 25M . Simulation
has been carried out with the Llama code. Freezing of the lapse profile can be clearly

seen

constraints (5.12) stating the vanishing of Zµ. We have shown how a suitable treatment

of these constraints allows working with the Z4 covariant evolution in the way one usually

does in numerical relativity. The price to pay for this general-covariant approach is that

closing the evolution system requires a separate coordinate gauge specification. The

challenge is then to incorporate the evolution equations for the gauge-related quantities

(lapse and shift) into the canonical formalism, either via Lagrange multipliers [4, 5] or

by any other means.

We have also presented an alternative strategy, based in the ’ gauge sources’ approach,

which characterizes the generalized harmonic formalisms. This allows to dispose of

the additional Zµ vector field by enforcing at the same time the required coordinate

conditions by means of some generalized gauge sources. The advantage of this second

approach, at the price of getting a non-covariant evolution system, is that it can allow

a direct use of symplectic integrators, devised to ensure constraint preservation during

numerical evolution (see for instance ref. [6]). We have actually identified the gauge

sources corresponding to some standard 3+1 gauge conditions, like the ’puncture gauge’

consisting of the ’ 1+log’ lapse plus the gamma-driver shift prescriptions. The fact that

these popular gauge conditions can fit into a Lagrangian/Hamiltonian approach, in the

way we have shown, opens the door to new numerical relativity developments.
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Finally we have devised a conformal decomposition for the Z4 system with all terms

working for a puncture BH. There is now plenty of room to try other gauge choices

(evolve Z and use gamma tilde, not gamma hat, in shift condition, etc.).
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[23] C. Bona and J. Massó, Phys. Rev. Lett. 68 1097 (1992)
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Appendix A

Stability and Monotonicity

Let us assume that (the principal part of) the evolution system is strongly hyperbolic.

This means that, for any chosen direction, we can express the system as a set of simple

advection equations for the characteristic variables (eigenfields). In order to verify the

stability properties of the proposed algorithms, it will be enough to consider a single

advection equation with a generic speed v. The corresponding Flux will be given then

by

F (u) = v u . (A.1)

We will consider in the first place the first-order accurate approximation, obtained by

a piecewise constant reconstruction (zero slope). The corresponding discretization can

be obtained by replacing the prescription (1.26) into the general expression (1.10). The

result is the linear three-point algorithm:

un+1
i = uni +

∆t
∆x

[
1
2

(λi+1 − vi+1) uni+1

+
1
2

(λi−1 + vi−1) uni−1 − λi uni ] . (A.2)

Allowing for the fact that λ is chosen at every point as the absolute value of the maximum

speed, we can see that all the un coefficients are positive provided that the Courant

stability condition

λ
∆t
∆x
≤ 1 (A.3)

is satisfied. Note however that a more restrictive condition is obtained in the three-

dimensional case, where we must add up in (A.2) the contributions from every space

direction.

As it is well known, the positivity of all the coefficients ensures that the algorithm is

monotonicity-preserving, so that spurious numerical oscillations can not appear. This

126
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implies stability, but the converse is not true, as it is well known. Let us remember at

this point that the centered FD discretization could be recovered from (A.2) simply by

setting λ to zero, although we would lose the monotonicity property in this way.

The monotonicity properties of the piecewise constant reconstruction are not ensured

in the piecewise linear case. We can clearly see in Fig. 1.1 that monotonicity problems

can arise in steep gradient regions. The reason is that either the series of left {uL} or

right {uR} interface predictions can show spurious peaks which where not present in the

original function. In the case of the centered slope (1.12), a detailed analysis shows that

this will happen at a given interface only if the left and right slopes differ by a factor

of three or more. This gives a more precise sense to the ’steep gradient’ notion in the

centered slopes case.

The natural way to remedy this is to enforce that both (left and right) interface pre-

dictions are in the interval limited by the corresponding left and right point values

(interwinding requirement). This amounts to using the ’limited’ slopes

σlim = minmod( 2σL , σ , 2σR ) , (A.4)

where σ is the default slope at the given cell. This interwinding requirement is not

enough, however, to ensure the positivity of all the coefficients in the resulting algorithm.

A detailed analysis shows that an extra factor in the Courant condition would be required

for monotonicity in this case:

λ
∆t
∆x
≤ 1/2 . (A.5)

Note however that we are analyzing here the elementary step (1.10). This is just the

building block of the time evolution algorithm. The exact stability and monotonicity

limits for the time step would depend on the specific choice of the full time evolution

algorithm (see [6] from Chapter 1), which will be described in Appendix B.

A word of caution must be given at this point. It is well known that the monotonicity

results hold only for strictly Flux-conservative algorithms. This is not our case: the

Source terms play an important physical role. Of course, these terms do not belong

to the principal part, so that positivity of the Flux terms ensures some strong form

of stability. Nevertheless, one must be very careful with the physical interpretation,

because the first-order constraints (1.5) preclude any clear-cut isolation of the Source

terms. This makes the analogy with Fluid Dynamics only approximative and the use of

the slope limiters a risky matter: we could be removing in the Flux part some features

that are required to compensate something in the Source part. Our experience is that,

at least for smooth profiles, more robust numerical simulations are obtained when the
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slope limiters are switched off. The high frequency modes are kept under control by the

numerical dissipation built in the proposed FV methods.



Appendix B

Time accuracy

The simple step (1.10) is only first-order accurate in time, and this fact is not changed by

any of the space accuracy improvements we have considered up to now. The standard

way of improving time accuracy is by the method of lines (MoL, see refs. [17] [6] in

Chapter 1). The idea is to consider (1.10) as a basic evolution step

E( un , ∆t ) (B.1)

in order to build higher order algorithms. A convenient choice for these time evolu-

tion algorithms is provided the standard Runge-Kutta methods [3] (see also [6]). For

instance, second order accuracy can be obtained in two steps:

u∗ = E( un, ∆t ) un+1 =
1
2

[ un + E( u∗, ∆t ) ], (B.2)

and third-order time accuracy with one more intermediate step:

u∗∗ =
3
4
un +

1
4
E( u∗ , ∆t )

un+1 =
1
3
un +

2
3
E( u∗∗ , ∆t ) . (B.3)

Note that the positivity of all the coefficients in (B.2, B.3) ensures that the monotonic-

ity property of the basic step (B.1) will be preserved by the resulting strong-stability-

preserving (SSP) algorithm. This interesting property comes at the price of keeping the

upper limit on ∆t that is required for the monotonicity of the basic step. This is a clear

disadvantage with respect to the case in which the standard FD approach is being used

for space discretization, in which one is only limited by plain stability, not monotonicity.

Then, there are Runge-Kutta algorithms (with non-positive coefficients) that alow to
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take ∆t larger than the one required by the standard Courant condition (see [6] from

Chapter 1).

Conversely, second order Runge-Kutta algorithms like (B.2) are unstable when used in

combination with FD space discretization, unless artificial dissipation is added in order

to recover stability, not just monotonicity (see [6] from Chapter 1). This is why FD

simulations currently use at least a third-order time evolution algorithm.



Appendix C

Z3 evolution equations

The Z3 evolution system [11, 12] is given by:

(∂t − Lβ) γij = −2αKij (C.1)

(∂t − Lβ)Kij = −∇i αj + α [Rij +∇iZj +∇jZi

− 2K2
ij + trK Kij − Sij +

1
2

( trS + (n− 1) τ ) γij ]

− n

4
α [ tr R+ 2 ∇kZk

+4 tr2K − tr(K2)− 2Zkαk/α ] γij (C.2)

(∂t − Lβ)Zi = α [∇j (Ki
j − δij trK)− 2Ki

jZj − Si] ,

(C.3)

where n is an arbitrary parameter governing the coupling of the energy constraint.

The fully first-order version can be obtained in the standard way, by introducing the

additional fields

Dkij ≡
1
2
∂k γij . (C.4)

Note that the ordering constraint (1.5) reads

∂r Dkij = ∂k Drij , (C.5)

which is no longer an identity for the first order system. As a consequence of this ordering

ambiguity of second derivatives, the Ricci tensor term in (the first order version of) the

evolution equation (C.2) can be written in many different ways. Then, an ordering

parameter ζ can be introduced [12], so that the parameter choice ζ = +1 corresponds

to the standard Ricci decomposition

(3)Rij = ∂k Γkij − ∂i Γkkj + ΓrrkΓkij − ΓkriΓrkj (C.6)
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whereas the opposite choice ζ = −1 corresponds instead to the decomposition

(3)Rij = −∂k Dk
ij + ∂(i Γj)k

k − 2Dr
rkDkij

+ 4Drs
iDrsj − ΓirsΓjrs − ΓrijΓrkk , (C.7)

which is most commonly used in Numerical Relativity codes. We can then consider the

generic case as a linear combination of (C.6) and (C.7).

In the spherically symmetric vacuum case, the first order version of the system (C.1-C.2)

is free of any ordering ambiguity. It can be written as

∂t γrr = −2αγrrK r
r , ∂t γθθ = −2αγθθK θ

θ (C.8)

∂tK
r
r + ∂r[αγrr (Ar + (2− n)D θ

θ − (2− n/2)Zr)] =

α [(K r
r )2 + (2− n)K r

r K θ
θ − (n/2) (K θ

θ )2

−γrrD r
r (Ar + (2− n)D θ

θ + (n/2− 2)Zr)

+γrrD θ
θ ((2− n)Ar − (2− 3n/2)D θ

θ − nZr)

− γrr (2− n)Ar Zr − (n/2) γθθ] (C.9)

∂tK
θ
θ + ∂r[αγrr ((1− n)D θ

θ + (n/2)Zr)] =

α [(1− n)K r
r K

θ
θ + (2− n/2) (K θ

θ )2

−γrrD r
r ((1− n)D θ

θ + (n/2)Zr)

+γrrD θ
θ ((2− n)Zr − (2− 3n/2)D θ

θ )

−nγrr Ar (D θ
θ − Zr) + (1− n/2) γθθ] (C.10)

∂t Zr + ∂r[2αK θ
θ ] =

2α [D θ
θ (K r

r −K θ
θ ) +ArK

θ
θ −K r

r Zr] (C.11)

∂tD
r
r + ∂r[αK r

r ] = 0, ∂tD
θ
θ + ∂r[αK θ

θ ] = 0, (C.12)

where we are using normal coordinates (zero shift). The slicing condition (1.44) can be

written as

∂t α = −α2 f trK , ∂tAr + ∂r[α f trK] = 0 . (C.13)

The mass function can be defined for spherically symmetric spacetimes as [14]

2M = Y [ 1− gab∂a Y ∂b Y ] , (C.14)

where Y stands for the area radius. In spherical coordinates we get

2M(t, r) =
√
γθθ { 1 + γθθ [(K θ

θ )2 − γrr(D θ
θ )2] } . (C.15)
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The mass function has a clear physical interpretation: it provides the mass inside a

sphere of radius r at the given time t. It follows that M(t, r) must be constant for the

Schwarzschild spacetime, no matter which coordinates are being used. This provides a

convenient accuracy check for numerical simulations.



Appendix D

Hyperbolicity of the adjusted

first-order Z4 system

We will write the first-order evolution system in a balance-law form. For a generic

quantity u, this leads to

∂t u+ ∂k F
k(u) = S(u) , (D.1)

where the Flux F k(u) and Source terms S(u) can depend on the full set of dynamical

fields in an algebraic way. In the case of the space-derivatives fields, their evolution

equations (3.15-3.17) are yet in the balance-law form (D.1). Note however that any

damping terms of the form described in (3.18) will contribute both to the Flux and the

Source terms in a simple way.

The metric evolution equation (3.3) will be written in the form

∂t γij = 2βkDkij +Bij +Bj i − 2 α Kij , (D.2)

so that it is free of any Flux terms. The remaining (non-trivial) evolution equations

(3.4- 3.6) require a more detailed development. We will expand first the Flux terms in

the following way:

∂tKij + ∂k[−βk Kij + α λkij ] = S(Kij) (D.3)

∂tZi + ∂k[−βk Zi + α {−Kk
i + δki(trK −Θ)} (D.4)

+µ (Bik − δiktrB) ] = S(Zi)

∂tΘ + ∂k[−βk Θ + α (Dk − Ek − Zk) ] = S(Θ) (D.5)
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where we have used the shortcuts Di ≡ Dik
k and Ei ≡ Dk

ki , and

λkij = Dk
ij −

1
2

(1 + ξ) (Dij
k +Dj i

k)

+
1
2
δki [Aj +Dj − (1− ξ) Ej − 2 Zj ]

+
1
2
δkj [Ai +Di − (1− ξ) Ei − 2 Zi ] . (D.6)

The Source terms S(u) do not belong to the principal part and will be displayed later.

Let us focus for the moment in the hyperbolicity analysis, by selecting a specific space

direction ~n, so that the corresponding characteristic matrix is

An =
∂ Fn

∂ u
, (D.7)

where the symbol n replacing an index stands for the projection along the selected direc-

tion ~n. We can get by inspection the following (partial) set of eigenfields, independently

of the gauge choice:

• Transverse derivatives:

A⊥ , B⊥
i , D⊥ij , (D.8)

propagating along the normal lines (characteristic speed −βn ). The symbol ⊥
replacing an index means the projection orthogonal to ~n.

• Light-cone eigenfields, given by the pairs

Fn[Dn⊥⊥ ] ± Fn[K⊥⊥ ] (D.9)

−Fn[Z⊥ ] ± Fn[Kn⊥ ] (D.10)

Fn[Dn − En − Zn ] ± Fn[ Θ ] (D.11)

with characteristic speed −βn ± α , respectively.

Note that the eigenvector expressions given above, in terms of the Fluxes, are valid for

any choice of the ordering parameters µ and ξ. Only the detailed expression of the

eigenvectors, obtained from the Flux definitions, is affected by these parameter choices.

For instance

Fn[Dn − En − Zn ] = −βn [Dn − En − Zn ] + α θ + (µ− 1) tr(B⊥⊥) . (D.12)

Any value µ 6= 1 implies that the characteristic matrix of the Z3 system (see Appendix C

and Chapter 1), obtained by removing the variable θ from our Z4 evolution system
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(see [19] from Chapter 3), can not be fully diagonalized in the dynamical shift case. Of

course, the hyperbolicity analysis can not be completed until we get suitable coordinate

conditions, amounting to some prescription for the lapse and shift sources Q and Qi,

respectively. But the subset of eigenvectors given here is gauge independent: non-

diagonal blocs can not be fixed a posteriori by the coordinates choice.

The detailed expressions for the eigenvectors can be relevant when trying to compare

with related formulations. For instance, a straightforward calculation shows that the

eigenvectors (D.9-D.11) can be matched to the corresponding ones in the harmonic

formalism if and only if

ξ = −1 , µ = 1/2 . (D.13)

This shows that different requirements can point to different choices of these ordering

parameters. We prefer then to leave this choice open for future applications. Concerning

the simulations in this paper, we have taken ξ = −1 , µ = 1 .

Finally, we give for completeness the Source terms, namely:

S(Kij) = −Kij trB +Kik Bj
k +Kjk Bi

k + α {1
2

(1 + ξ) [−Ak Γkij +
1
2

(Ai Dj +Aj Di)]

+
1
2

(1− ξ) [Ak Dk
ij −

1
2
{Aj (2 Ei −Di) +Ai (2 Ej −Dj)}

+ 2 (Dir
m Dr

mj +Djr
m Dr

mi)− 2 Ek (Dij
k +Dji

k)]

+ (Dk +Ak − 2 Zk) Γkij − Γkmj Γmki − (Ai Zj +Aj Zi)− 2 Kk
i Kkj

+ (trK − 2 Θ) Kij} − 8 π α [Sij −
1
2

(trS − τ) γij ] (D.14)

S(Zi) = −Zi trB + Zk Bi
k + α [Ai (trK − 2 Θ)−Ak Kk

i −Kk
r Γrki +Kk

i (Dk − 2 Zk)]

−8 π α Si (D.15)

S(Θ) = −Θ trB +
α

2
[2 Ak (Dk − Ek − 2 Zk) +Dk

rs Γkrs −Dk(Dk − 2 Zk)−Kk
r K

r
k

+ trK (trK − 2 Θ)]− 8 π α τ . (D.16)



Appendix E

Scalar field stuffing

Let us consider the stress-energy tensor

Tab = Φa Φb − 1/2 (gcdΦc Φd) gab , (E.1)

where we have noted Φa = ∂a Φ, corresponding to a scalar field matter content. The

3+1 decomposition of (E.1) is given by

τ = 1/2 (Φn
2 + γklΦk Φl) , Si = Φn Φi , Sij = Φi Φj + 1/2 (Φn

2 − γklΦk Φl) γij ,

(E.2)

where Φn stands for the normal time derivative:

(∂t − βk ∂k) Φ = −α Φn . (E.3)

The quantities (E.2) appear as source terms in the field equations (C.2-C.3 in the Z3

case,3.4-3.6 in the Z4 case).

The stress-energy conservation amounts to the evolution equation for the scalar field,

which is just the scalar wave equation. In the 3+1 language, it translates into the

Flux-conservative form:

∂t [
√
γ Φn ] + ∂k [

√
γ (−βkΦn + αγkjΦj) ] = 0 . (E.4)

A fully first-order system may be obtained by considering the space derivatives Φi as

independent dynamical fields, as we did for the metric space derivatives.

Concerning the initial data, we must solve the energy-momentum constraints. They can

be obtained by setting both Θ and Zi to zero in (3.5, 3.6 in the Z4 case, C.3 in the Z3
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case). In the time-symmetric case (Kij = 0), this amounts to

R = 16π τ , Si = Φn Φi = 0 . (E.5)

The momentum constraint will be satisfied by taking Φ (and then Φi) to be zero every-

where on the initial time slice. Concerning the energy constraint, we will consider the

line element (3.31) with m = m(r). We assume a constant mass value m = M for the

black-hole exterior, so that the energy constraint in (E.5) will be satisfied with τ = 0

there.

In the interior region, the energy constraint will translate instead into the equation

m′′ = −2πr (Φn)2 (1 +
m

2r
)5 , (E.6)

which can be interpreted as providing the initial Φn value for any convex (m′′ ≤ 0) mass

profile. Of course, some regularity conditions both at the center and at the matching

point r0 must be assumed. Allowing for (E.6), we have taken

m = m′′ = 0 (r = 0)

m = M, m′ = m′′ = 0 (r = r0) .

Note that, allowing for (E.6), these matching conditions ensure just the continuity of Φn ,

not its smoothness. This can cause some numerical error, as we are currently evolving

Φn through the differential equation (E.4). If this is a problem, we can demand the

vanishing of additional derivatives of the mass function m(r), both at the origin and

at the matching point (this is actually the case in our shift simulations). This is not

required in the standard case (f = 2/α, normal coordinates), where we have used a

simple profile, with the matching point at the apparent horizon (r0 = M/2), given by

m(r) = 4r − 4/M [ r2 + (M/2π)2 sin2(2πr/M) ] . (E.7)



Appendix F

Symmetric hyperbolicity of the

Z4 system

We have derived in section II a generalized ’ energy estimate’ for the Z4 system, namely:

S = Θ2 + VkV
k + ΠijΠij + µ̃kijµ̃kij + (1 + ζ)(ZkZk − µ̃kijµ̃ijk) + 2 ζ ZkW k , (F.1)

where we noted

µ̃kij = µkij −Wk γij . (F.2)

In order to check the positivity of (F.1), let us consider the decomposition of the three-

index tensor µ̃kij into its symmetric and antisymmetric parts, that is

µ̃kij = µ̃(kij) + µ̃
(a)
kij . (F.3)

Allowing for the identities,

µ̃
(a)
(kij) = 0 , µ̃

(a)
(ij)k = −1

2
µ̃

(a)
kij , (F.4)

the rank-three terms contribution to S can the be written as

S = − ζ µ̃(kij) µ̃
(kij) +

3 + ζ

2
µ̃

(a)
kij µ̃

(a) kij + · · · (F.5)

(the dots stand for lower-rank components). It follows that a necessary condition for

positivity is 0 ≥ ζ ≥ −3.
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We can now rewrite (F.1) as

S = Θ2 +VkV
k +Πij Πij− ζ µ̃kij µ̃kij +

3
2

(1+ ζ) µ̃(a)
kij µ̃

(a) kij +(1+ ζ) ZkZk +2 ζ ZkW k.

(F.6)

Allowing for (F.2), which implies in turn

µ̃kki = −Zi −Wi , (F.7)

we see that we can rewrite again (F.6) as

S = Θ2 + VkV
k + ΠijΠij − ζ λ̃kij λ̃kij +

3
2

(1 + ζ) µ̃(a)
kij µ̃

(a) kij + (1 + ζ) ZkZk , (F.8)

where

λ̃kij = λkij |ζ=−1 = µ̃kij + γk(iWj) . (F.9)

It follows from the final expression (F.8) that the energy estimate is positive definite in

the whole interval

0 ≥ ζ ≥ − 1 . (F.10)

Note that for ζ = −1, that is λ = λ̃, we recover the estimate given in ref. [9]. This

confirms that Z4 in normal coordinates with harmonic slicing is symmetric hyperbolic

for the range (F.10) of the ordering parameter.



Appendix G

Hyperbolicity of the energy

modes

We can analyze the hyperbolicity of the boundary evolution system, by considering the

characteristic matrix along a generic oblique direction r, which is related to the normal

direction n by

r = n cosϕ+ s sinϕ , (G.1)

where we have taken

n2 = s2 = 1 n · s = 0 . (G.2)

The strong hyperbolicity requirement amounts to demand that the characteristic matrix

is fully diagonalizable and has real eigenvalues (propagation speeds) for any value of the

angle ϕ.

In order to compute the characteristic matrix, we will consider the standard form of (the

principal part of) the evolution system as follows

∂t u + α∂r Fr(u) = · · · , (G.3)

where u stands for the array of dynamical fields and Fr is the array of fluxes along

the direction r. We will restrict ourselves here to the Energy-modes subsystem, which

consists in the fields

u = (E+ , E− , Vs , Vp ) (G.4)

the index p meaning here a projection along the direction orthogonal both to n and s.
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It is clear that the two components Vp are eigenvectors of the characteristic matrix with

zero propagation speed. The non-trivial fluxes are then:

F r(E+) = cosϕ E+ + sinϕ Vs (G.5)

F r(E−) = (a− 1) cosϕ E− + (1− a) sinϕ Vs (G.6)

F r(Vs) =
1
2
sinϕ (E+ + E−) , (G.7)

where we have allowed for the modified evolution equation (4.38). We can see that the

one of the characteristic speeds is zero and the other two are be given by the solutions

of

(v − α cosϕ) (v − (a− 1)α cosϕ) = (1− a

2
) α2 sin2ϕ , (G.8)

which has real distinct solutions for a < 2 . The degenerate case a = 2 is not

diagonalizable. It follows that the boundary evolution subsystem given by the above

fluxes is strongly hyperbolic for a < 2 and weakly hyperbolic for a = 2 .
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