UNIVERSITAT DE LES ILLES BALEARS

Towards a gauge polyvalent numerical
relativity code: numerical methods,
boundary conditions and different

formulations

per

Carles Bona-Casas

Tesi presentada per a 'obtencio
del titol de doctor

ala
Facultat de Ciencies

Departament de Fisica

Dirigida per:
Prof. Carles Bona Garcia i Dr. Joan Massé Bennassar


http://www.uib.cat
file:carlesbona@gmail.com
http://www.uib.es/facultat/ciencies/
http://www.uib.es/depart/dfs/

”The fact that we live at the bottom of a deep gravity well, on the surface of a gas covered
planet going around a nuclear fireball 90 million miles away and think this to be normal

1s obviously some indication of how skewed our perspective tends to be.”

Douglas Adams.
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Preface

During the past years there have been intense research efforts on black holes and their
effect on the astrophysical environment, and specially for the last six years, one of the
systems which has drawn most attention is a binary system formed of two black holes.
Now we know that there are three phases in the coalescence of two black holes: the
inspiral phase, when the black holes are far from each other; the merger phase, when
they are significantly closer and the system becomes highly non-linear; and the ringdown
phase, after the two holes have merged leaving a single black hole in an excited state

emitting radiation.

Coalescences of two black holes are astrophysical events that release great amounts of
energy in the form of gravitational radiation and, given the case of supermassive black
holes, in the form of dual jets too [1]. In fact, the final merger of two black holes in
a binary system releases more power (in gravitational waves) than the combined light
from all the stars in the visible Universe (in photons) [2]. This energy that comes in the
form of gravitational waves travels across the Universe at the speed of light and carries

the waveform signature of the merger.

Events that release such an outstanding amount of energy are key sources for gravitational-
wave detectors. In fact, they are one of the most likely sources for the first detection.
But despite the energy released, as gravity is the weakest of the fundamental forces, the
output of ground-based detectors is dominated by different kind of noise sources: ther-
mal noise (heating of the antennae instruments), seismic noise (even though for example
mirrors are suspended in vacuum chambers) and shot noise (the statistical error that
comes from taking averages over a number of photons received at the photodetector).
As a consequence, sophisticated statistical algorithms must be used in order to extract
physical signals corresponding to the detection of gravitational waves from binary black
hole systems. These algorithms require accurate waveform templates that correspond

to the sources that are to be detected.
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Calculating these waveforms requires solving the full Einstein equations of general rela-
tivity on a computer in three spatial dimensions plus time. Numerical relativists have
attempted to solve this problem for many years, but they were faced with a number
of instabilities that made their numerical codes crash before they could compute any
sizable portion of a binary orbit. Remarkably, in the past few years a series of dramatic
breakthroughs has occurred in numerical relativity (NR), yielding robust and accurate
simulations of black-hole mergers for the first time. Numerical solutions of Einstein’s
equations for the last orbits and merger of a black-hole binary, the ringdown of the
single black hole that remains, and the GWs emitted in the process, became possible in
2005 [3-6]. Since that time many simulations have been performed, but they all share

some common grounds and techniques.

Astrophysical black holes ultimately form through gravitational collapse of matter, but
in a black-hole simulation one does not need describe this process at all. The black hole
can instead be represented purely through its effect on the spacetime geometry. The
spacetime singularity at the center of a black hole is difficult to describe numerically,
and there are different approaches to this problem. In the excision technique, which
was first proposed in the late 1980s [7], a portion of a spacetime inside of the event
horizon surrounding the singularity of a black hole is simply not evolved. In theory
this should not affect the solution to the equations outside of the event horizon because
of the principle of causality and properties of the horizon (i.e. nothing physical inside
the black hole can influence any of the physics outside the horizon). This is, of course,
if we don’t take into account quantum tunneling, which is at the origin of Hawking’s
radiation. Thus if one simply does not solve the equations inside the horizon one should
still be able to obtain valid solutions outside. One ”excises” the interior by imposing
ingoing boundary conditions on a boundary surrounding the singularity but inside the
horizon. While the implementation of excision has been very successful, the technique
has two problems. The first is that one has to be careful about the coordinate conditions.
Although physical information cannot escape the black-hole, non-physical numerical or
gauge information can in principle escape, and may lead to numerical instabilities. The
second problem is that as the black holes move, one must continually adjust the location
of the excision region to move with the black hole. Excision is used in the pioneering
Pretorius code [3, 8, 9], and in the SpEC code [10]. Pretorius’s original simulations began
with scalar-field initial data, chosen such that it would quickly collapse to form a black
hole. Once the black hole had formed, the interior (and the remaining scalar field) were

excised.

Another method of avoiding singularities is to choose coordinates that bypass them: the
black holes are initially described with topological wormholes, such that as the numerical

coordinates approach one of the black holes, they pass through a wormhole and instead
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of getting closer to the singularity end up further away, in a new asymptotically flat
region. A coordinate transformation is performed to compactify these wormholes, and
the extra asymptotically flat regions are reduced to single points, called punctures [11-
14]. Until 2005, all published usage of the puncture method required that the coordinate
position of all punctures remain fixed during the course of the simulation. Of course
black holes in proximity to each other will tend to move under the force of gravity,
so the fact that the coordinate position of the puncture remained fixed meant that
the coordinate systems themselves became ”stretched” or "twisted,” and this typically
lead to numerical instabilities at some stage of the simulation. In 2005 some research
groups demonstrated for the first time the ability to allow punctures to move through
the coordinate system, thus eliminating some of the earlier problems with the method.
This 'moving puncture’ approach represented also a breakthrough that allowed accurate

long-term evolutions of black holes in the puncture approach [4-6].

A third option could be a scalar field stuffing, which for some reason is not yet used
in binaries. We have mentioned that Pretorius was using it in his original simulations
but then the interior was excised after collapse. Here we refer to the possibility of
evolving a binary black hole without either puncture-like initial data or excision at all,
but apparently there is a tight bond between the type of initial data and the formalism
used. Punctures are unavoidably associated with the BSSN system whereas excision is

used solely in harmonic formulations.

We have just mentioned two different formulations of the Einstein equations. Given
black-hole-binary initial data, a stable evolution requires a numerically well-posed and
stable formulation of Einstein’s equations, as well as a specific choice of gauge condi-
tions. Finding a suitable set of evolution equations and gauge conditions was one of
the major problems in the field during the decade preceding the 2005 breakthroughs.
Although not all mathematical and numerical questions have been resolved, long-term
stable simulations can now be performed with either a variant of the generalized har-
monic formulation [8, 15-17] or the moving-puncture treatment [4-6] of the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) [18, 19] formulation.

Harmonic formalisms originated with consideration of “harmonic coordinates”, so called
because the coordinates satisfy the wave equation Ox* = 0, where the box stands for
the general-covariant wave operator acting on functions. In these coordinates, Einstein’s
equations can be written such that the principal part resembles a wave equation in terms

of the metric:

Ugap= -+ _167T(Tab_*gab)a (1)
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Where the dots stand for terms quadratic in the metric first derivatives. In this form,
Einstein’s equations are manifestly hyperbolic [20]. However, the harmonic coordinate
condition is too restrictive for numerical purposes, so generalized harmonic coordinates
were eventually developed by introducing a source term into the coordinate condition,
ie. Ozt = H# [15, 21], a suitable choice for which preserves strong hyperbolicity. The
subsequent introduction of constraint-damping terms, which tend to drive the constraints
towards zero, further ensured stability [22]. This formulation is manifestly second-order
in both time and space, and has been implemented numerically as such [9], but for more
efficient numerical integration a first-order-in-time formulation was also developed [17],

and is currently being used by some groups..

The BSSN decomposition starts instead with the (numerically ill-posed) ADM-York
equations for the spatial quantities (;;, ;) [23, 24]. The BSSN reformulation provides
evolution equations for conformally rescaled quantities, {9, K, %5, /L-j, fi}, where 7;; =
Y4%;; and K;; = ¢4(/~1ij + %i;K), and the extra variable, I = 9;7% is introduced. The
moving-puncture extension of the BSSN system deals with puncture data, and involves
introducing either ¢ = Invy [5], x = ¥~ [4] or W = 2 [25], and evolving that
quantity instead of the conformal factor ¢, and specifying gauge conditions that allow

the punctures to move across the numerical grid.

The choice of gauge or coordinate conditions, like the choice of formulation, has impor-
tant consequences on the numerics, especially the stability of the simulation. Important
considerations include how to deal with the extreme conditions of black holes such as
the physical singularities, the possible coordinate singularities, the strong-field gradients,
and the dynamical, surrounding spacetime. The coordinates must accommodate these

features in a way that is numerically tractable.

In particular, BSSN deals with the 1+log slicing of the Bona-Massé6 family [26] together
with

. 3. . .
08" = T 30,5 — 5 @

Where I = —@-’yij depends on a conformal three-metric 7;; of the evolving spatial slice
and (' is the shift. ng is a damping parameter that fine-tunes the growth of the shift,
which affects the coordinate size of the black-hole horizons, which in turn has bearing
on the required numerical resolution [27, 28]. Use of this or similar gauge conditions has
become known as the “moving puncture” method, and proved to be very successful as

it has become increasingly widespread among the numerical-relativity community.
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Development of generalized harmonic coordinates initially proceeded independently of
the above 3+1-formulated conditions. As mentioned, in harmonic coordinates the
D’Alembertian of each coordinate vanishes. In generalized harmonic coordinates, the

wave equation for each coordinate is allowed a source term, i.e.
Oz* = H*. (3)

These “gauge driving” source terms H* can be either algebraically specified or evolved

such that hyperbolicity is preserved [9, 15, 17, 21].

The first successful numerical orbit of black holes involved a source term for the time
coordinate that effectively kept the lapse close to its Minkowski value of unity, while
the spatial coordinates remained harmonic [9]. This was accomplished by evolving the

source term itself, according to
OHy = [~& (o — 1) + &(0 — 8'9;)Ho| o™ (4)

where & and & are constants. More recently, to dampen extraneous gauge dynamics
during the inspiral and merger of generic binaries, [29] found the following gauge driver

to be successful:

I ({jﬂ (5)
WL

« «

where g is a specified function of time that starts at zero and eventually increases

monotonically to unity.

The generalized-harmonic and moving-puncture methods have been found to work for
simulations of up to 15 orbits, for binaries with significant eccentricity, with mass ratios
up to 1:10, and spins up to the conformal-flatness limit of a/m ~ 0.93. Despite this
wealth of evidence that these methods work, surprisingly little has been done to explain
why. The properties that are known to be necessary for a stable simulation (in particu-
lar, a strongly hyperbolic evolution system), are also known to not be sufficient. What
distinguishes these methods from others? Could it be that most other (well-posed) sys-
tems of equations can be stably evolved with appropriate gauge conditions and methods
to move the black holes through the grid? Why BSSN is so successful at simulating
black holes but fails tests such as the gauge waves test? These questions have been

largely neglected, and deserve more attention.
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To accurately simulate a binary black hole spacetime, a computer code must adequately
resolve both the region near the black hole, and the spacetime far away, where grav-
itational waves are extracted. However, if one had to resolve the whole domain with
very high resolution with no exception, it would be faced with a lack of computational
memory to store all the information. Luckily enough, the resolution needed in the grav-
itational wave extraction area is fairly below the one needed near the black holes. To
deal with such large differences in resolution requirements on different parts of the com-
putational domain many codes use mesh refinement methods [30]. Another technique
is to use a coordinate transformation that changes the effective resolution in different
regions; such a “fisheye” transformation was used in early results from the LazEv code
[4, 31-34], and was also used in more recent simulations by the UTUC group, for example
[35]. A third option is to divide the computational domain into a number of different
domains or patches, and use a different numerical resolution and even different coordi-
nate systems in each domain; a multi-domain method is used in the SpEC code [10] and

in the Llama code [36, 37]

Both the numerical and physical accuracy of numerical waveforms has improved steadily
since 2005. The first simulations were performed with a code that resolved each time
slice with second-order-accurate finite differences [3]. The moving-puncture results that
followed six months later [4, 5] used second- and fourth-order-accurate finite differences.
An accurate comparison of numerical and post-Newtonian waveforms was performed
in 2007 using sixth-order finite-differencing , and the LazEv code now routinely uses
eighth-order methods . The SpEC code, which has produced the most accurate equal-
mass nonspinning binary waveform to date, uses pseudospectral methods to describe the

spatial slice.

Ideally the outer boundary of the computational domain is located at spatial or null
infinity. The only long-term binary evolution code where one of these techniques is
employed is that of Pretorius, where spatially compactified coordinates are used [3, 8].
The region near the outer boundary is by definition poorly resolved, but a filtered buffer
zone between the well- and poorly-resolved regions is used to reduce the build-up and
propagation of any resulting errors. In all other codes the outer boundary of the com-
putational domain is not at spatial infinity, and boundary conditions must be imposed.
The physically correct outer boundary conditions are not known for a black-hole-binary
spacetime, so one has to provide some alternative. Ideally, boundary conditions should
result in a solution which is indistinguishable from an evolution with an infinite spatial
domain. This can only be achieved approximately, but still the boundary conditions
should have certain properties in order to give a useful solution. Firstly, they should not
contaminate the solution with unphysical gravitational radiation, either due to reflec-

tions of the waves generated by the simulated system, or due to radiation generated by
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the boundary condition itself. Secondly, they should be constraint preserving to yield
a result which is a solution to the Einstein equations. Thirdly, they should result in a
well-posed initial boundary value problem. This is a mathematical property which is a
necessary condition for the numerical schemes used to be formally stable. These three
properties are often only approximately satisfied, as for example the BSSN codes gen-
erally use Sommerfeld-like outer boundary conditions (which are physically correct only
for a spherically symmetric wave pulse on a flat background), and the outer boundary
is placed as far from the binary system as computational resources allow. The Caltech-
Cornell SpEC code uses a set of constraint-preserving boundary conditions that provide a
far better approximation to the correct physics of outgoing waves on a dynamical space-
time than Sommerfeld conditions, and make it possible to place the outer boundary

closer and still achieve accurate results .

These simulations require large computational resources. Long black-hole-binary simu-
lations are typically run on multiple processors of a supercomputer, and we can get an
impression of the “size” of a simulation from the amount of memory it requires, and
the number of CPU hours it takes to run. As an example, a high-accuracy equal-mass
nonspinning waveform can take roughly 18 days running on 24 processors, for a total
of about 10,000 CPU hours.

With all these elements on the table, the simulation of binary black holes has been
possible and very fruitful. Even though, after the initial gold rush with research groups
competing for more orbits, higher mass ratios and spin of the black holes, the exploration
into new regions of parameter space has now slowed significantly and there are some
important points at the fundamental level that have been left behind. In this thesis, we
would like to present some works we have carried out in this direction, trying to answer
some questions or improving some aspects that at some point were neglected for the

sake of obtaining gravitational wave patterns at any cost.

As we have said before, many research groups use finite differencing with some sort
of artificial viscosity to overcome some junk radiation present in the initial data and
also created by numerical effects of steep slopes and mesh interpolation. On top of
that mesh refinement is used, and very specific gauge choices that freeze the growth
of the black hole horizon are needed so that the code does not have to deal with very
strong field gradients and complex dynamics. So, to start, we will present a new finite
volume method in the context of numerical relativity. Finite volume methods were
developed by the fluid dynamics community and they have been widely tested and have
developed a well-deserved reputation of robustness. A reputation that finite difference
methods certainly lack. On the contrary, finite volume methods are sometimes regarded

as inefficient because they need the full characteristic decomposition of the system. This
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is not true anymore, there are finite volume methods that only need the eigenvalues of
the system and they use a flux formula. This is why we will present a method that
does not need the full characteristic decomposition of the equations and we will use it
to successfully perform some numerical relativity simulations with the Z3 formalism,

developed at UIB, in Chapter 1.

Even though, one might still wonder why these finite difference methods are so successful
in numerical relativity. If in the first chapter we used the fluid dynamics language, in
the second chapter we will try to travel back to the finite difference context: we will
try to compare the obtained method with the ones used in numerical relativity. By
doing so we will find many similarities and incidentally a very efficient implementation
of the method presented in the first chapter. We will also find that, with a very small
modification, we can generalise our method to a whole family of methods and find some
experimental proof of their robustness by performing some fluid physics tests with results
being published in Journal of Computational Physics. We must say it is remarkable that
these methods have been developed in the numerical relativity context and are being

used in hydrodynamics calculations [38, 39] and not the other way round.

In Chapter 3 we will break an existing contradiction in the numerical relativity com-
munity. If general relativity possesses freedom of choice regarding gauge conditions as
an important feature of the theory, numerical relativity does not. Usually the argument
is used in reverse to defend the results: if we can run our simulations with a single
gauge condition, then the theory ensures we will not find anything new by changing it.
But still it is puzzling that the existent numerical relativity codes rely on very specific
gauge choices as we have mentioned earlier. With the Z4 formalism, developed at UIB,
we obtain some unprecedented flexibility in this regard: with the help of the numerical
methods presented in Chapter 2, we are able to evolve a 3-dimensional black hole in
normal coordinates (something which none of the preexistent formalisms could do) with
a cartesian grid, with regular initial data (scalar field stuffing), without mesh refinement
and, more importantly, without the gauge choice being a specific requisite as we are able

to perform simulations with different shift conditions and different slicing conditions too.

Both BSSN and the Generalised Harmonic formalisms are free evolution formalisms.
This means that both energy and momentum constraints are ensured with some com-
patible initial data. But this is only at the continuum level. In numerical simulations
one does need boundary conditions, and if they don’t preserve the constraints our solu-
tions can go to a solution space that includes Einstein but might not be Einstein. The
standard practice is to place the boundaries very far away, oping that this will not affect
our domain of interest. We develop instead in Chapter 4 a set of constraint preserving

boundary conditions and we show their effectiveness by implementing them even in the
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strong field regime (with unprecedented results) and in 3 dimensions in cartesian-like

grids including corners.

In Chapter 3 we perform a numerical test that shows that Z4 can be much more ac-
curate than BSSN. More recently this has been confirmed by the work of others [40].
Therefore, by the end of the thesis we have made an effort to use a second order system,
puncture initial data and mesh refinement (same as BSSN) and we show in Chapter 5
some preliminary results were it seems like it is plausible that Z4 can work under these

conditions.

And, finally, as a thesis is a long term project, one does find unexpected things in the
way. None of the nowadays used Einstein generalisations in numerical relativity had
ever been derived from an action principle. We see how this can be accomplished with
the Palatini approach in Chapter 5. This opens many ways both at the theoretical
level (with interest in quantum gravity theories) and at the numerical level with the
use of numerical (symplectic) methods that exactly preserve the constraints during the

evolution. This finding can be regarded as an unexpected theoretical landmark.
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Chapter 1

Centered FV Methods

1.1 Introduction

Let us consider now the well known 341 decomposition of Einstein’s field equations.

ds? = —(a* — B'B)dt* + 2B;dx'dt + ~y;;dx'da? (1.1)
(Or—Lp) vij = 20Ky (1.2)
((915 — E@) Kij = —viOéj + « |: Rz'j — 2K22j +trK Kij (1.3)

1
—Sij + 5 (trS = 1)y ] (1.4)

Where we have only written the line element and the evolution equations, omitting the
energy-momentum constraints. R;; are the components of the Ricci tensor, S;; are the
space components of the stress-energy tensor and 7 is the energy density. The extrinsic
curvature Kj;; is considered as an independent dynamical field, so that the evolution
system is of first order in time but second order in space. Let us transform it into
a fully first order system by considering also the first space derivatives of the metric
as independent quantities. This requires additional evolution equations for these space
derivatives, that can be obtained in the standard way by permuting space and time

derivatives of the metric, that is

Ot (Ok 9ab) = Ok (Or Gab) » (1.5)

so that the resulting first order system will describe the same dynamics than the original

second order one.

13
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In this first order form, Einstein’s field equations can always be expressed as a system

of balance laws [1]. The evolution system can be written in the form
Oy u+ 9y F¥(u) = S(u) , (1.6)

where both the Flux terms F and the Source terms S depend algebraically on the array
of dynamical fields u, which contains the metric and all its first derivatives. The terms

'Fluxes’ and ’Sources’ come from the hydrodynamical analogous of the system (1.6).

The balance law form is specially suited for the Method of Lines (MoL) discretization.
Many current BH simulations are performed with the MoL technique. The MoL is the
generic name of a family of discretzation methods in which time and space variables are
dealt with separately. This is in keeping with the 3+1 framework, where the natural way
of time discretization is by finite differences (FD) whereas one would like to keep all the
options open for space discretization: finite differences, finite volume or even spectral

methods.

To illustrate the idea, let us consider a ’semi-discrete’ system in which only the time
coordinate is discretized, whereas space derivatives are kept at the continuum level. The

evolution of the array u of dynamical fields is written as

o u=RHS, (17)

where the right-hand-side array RHS contains the remaining terms in the evolution
equations, including the space derivative ones. In this way, we are disguising in (1.7) the
original system of partial differential equations (PDE) as a system of ordinary differential
equations (ODE), assuming that we will manage to compute the right-hand-side term

RHS at every level, but ignoring for the moment the details.

This ’black box’ approach allows us to apply the well-known ODE discretization tech-

niques to get the required time resolution, using the Euler step (forward time difference)

u™) — u 4 At RHS(t,, u™) (1.8)

as the basic building block for advanced multi-step methods, like the modified-midpoint
or Runge-Kutta algorithms [2, 3]. For more details on the time discretization used,

please see Appendix B.
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FIGURE 1.1: Piecewise linear reconstruction of a given function. Numerical disconti-

nuities appear at every cell interface (dotted lines) between the left and right values

(arrows and dots, respectively). Note that the original function was monotonically de-

creasing: all the slopes are negative. However, both the left interface values (at i43/2)

and the right interface ones (at i—3/2) show local extremes that break the monotonicity
of the original function.

As in MoL there is a clear-cut separation between space and time discretization, the
source terms contribute in a trivial way to the space discretization. The non-trivial

contribution comes just from the flux-conservative part.

The balance law form is also well suited for FV discretization methods. The idea is to
evolve the average of the dynamical fields u on some elementary cells, instead of evolving
just point values like in the FD approach. The space discretization can be obtained by

averaging (1.6) over an elementary cell and applying the divergence theorem to get:
8tﬁ+]{Fk ds, =8, (1.9)

where the overlines stand for space averages. The evaluation of partial space derivatives

has been replaced in this way by that of surface integrals of the flux terms.

The idea behind Finite Volume (FV) methods, as we have seen, is to evolve the average
of the dynamical fields over elementary cells instead of evolving only values at a single
point, as in the Finite Difference (FD) methods. These values are modified at each
timestep using the flux that goes through the interfaces of the cells of the grid; and
so finding suitable functions for numerical fluxes to approximate these fluxes correctly

becomes the primary problem. These numerical fluxes are, in general, functions of the
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state of the system at each side of the interface. And to find the state at each side of
the interface one usually needs to reconstruct the original function departing from the

only available data: the average of the field at the cell.

Let us consider for simplicity the one-dimensional case. We can start from a regular finite
difference grid. The elementary cell can then be chosen as the interval (z;_; /25 Tiv1/2),
centered on the generic grid point z;. The dynamical fields u can be modelled as
piecewise linear functions in every cell (linear reconstruction, see Fig. 1.1), so that the
average values 1i; coincide with the point values u;. The corresponding FV discretization

of (1.9) is then given by

At

1 1 E [ i+1/2
We will restrict ourselves to these linear reconstruction methods in the following sections,
but a more basic solution would be to use only these averages for the reconstruction.
That is, the reconstruction process would be the simplest one possible: we approximate
our original function by a piecewise constant function. Then we try to find information
about the fluxes solving the Riemann problem. The Riemann problem consists in nothing
else but solving the hyperbolic PDE with some special initial data. The initial data,
given by the chosen reconstruction, are, in this case, piecewise constant with a step

discontinuity at some point, for example x=0,

if v <0
gz, 0)=¢ " T (1.11)
g ifx>0

where ¢; and ¢, are the values from the left and from the right respectively. If we
have the averages of two neighbouring cells on a finite volume grid, we can interpret
the numerical discontinuity that they form as a physical Riemann problem that can be
solved to obtain information that allows us to calculate a numerical flux and therefore

updating the averages of the cells after a timestep.

This basic approach, called the Godunov [4] approach, gives us a first order approxi-
mation only. There have been many modifications to this approach with the goal of
obtaining a higher precision, for example using a linear or parabollic reconstruction in-
stead of a constant one. But the vast majority keep solving the Riemann problem at
every interface of every cell at each timestep, mainly because these methods are thought
to perform simulations that do have step discontinuities. This has given FV methods
a reputation of being computationally expensive, a price that is not worth to pay for
spacetime simulations, where the dynamical fields usually have smooth profiles. This

reputation comes from the fact that, in order to solve the Riemann problem, one needs a
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spectral decomposition of the Jacobian matrix of the system at each interface of each cell
at each timestep, with the important computational cost implied by these calculations.
In multidimensional simulations it is common to use a technique called dimensional sep-
aration, which requieres knowing eigenvalues and eigenvectors at each interface for each
of the dimensions. Computational cost skyrockets: with a modest bidimensional grid of
100x100 cells, for example, one has to solve a minimum of 20000 Riemann problems at
each timestep to implement the most simple generalization of the Godunov method in

2 dimensions.

From this point of view, centered FV methods can provide some improvement, because
they do not require the full characteristic decomposition of the set of dynamical fields:

only the values of the propagation speeds are needed [4].

This point can be illustrated by comparing the classical F'V techniques implemented in a
previous work at the UIB [5] with the new F'V methods presented in this chapter. In [5],
the general relativistic analogous of the Riemann problem must be solved at every single
interface. This implies transforming back and forth between the primitive variables (the
ones in which the equations are expressed) and the characteristic ones (the eigenvectors
of th