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Resumen de la tesis

El  escalado  de  la  tecnología  CMOS  ofrece  grandes  ventajas  tales  como  el  aumento  de  la

densidad de integración o la frecuencia de operación a la par que proporciona una reducción del

consumo de energía y el coste por transistor. Esta carrera por la integración genera nuevos desafíos

relacionados con efectos adversos, algunos son de nueva aparición mientras que otros se agravan

respecto a nodos anteriores . Uno de tales efectos adversos de importancia creciente es el impacto

de los llamados Single Event Transient o SET . Dado que el escalado de la tecnología reduce la

capacidad parásita  de  los  nodos internos,  la  tensión  de alimentación  y el  retardo de  puerta,  la

importancia relativa del efecto de las partículas ionizantes aumenta debido a que la misma cantidad

de carga es capaz de inducir un transitorio de tensión con mayor probabilidad de propagarse dentro

del circuito.

Además de las técnicas basadas en redundancia, muchas soluciones de mitigación se basan en el

aumento de la robustez intrínseca del circuito frente a eventos transitorios. Aunque estas estrategias

no  pueden  evitar  el  problema  completamente,  reducen  su  impacto  hasta  límites  aceptables

dependiendo del ámbito de aplicación del circuito.

En base  a  estos  desafíos,  la  presente  tesis  desarrolla  y  analiza  un conjunto  de  herramientas

orientadas  a  la  evaluación  de  la  sensibilidad  a  la  propagación  de  eventos  SET  en  circuitos

microelectrónicos. Las herramientas de procesamiento son capaces de manejar circuitos con una

alta complejidad de forma eficiente.

Después de desarrollar un sistema compacto de lógica específica que mejora el rendimiento de

los algoritmos construidos para propagar las transiciones dentro del circuito y manejar de forma

eficiente  la  propagación  de  SETs,  se  presentan  diversas  técnicas  de  simplificación,  partición  y

encapsulación de bloques en circuitos. 

Se ha desarrollado un algoritmo eficiente de búsqueda de caminos sensibilizables cuya eficacia

se  ha  demostrado  sobre  circuitos  tipo  benchmark  de  tamaño  considerable.  Se  ha  demostrado

también que el tiempo de retardo de un camino dado depende de los vectores de sensibilización

aplicados a las puertas complejas que forman parte del mismo. En algunos casos, la variación de

retardo debida a los diferentes vectores de sensibilización es comparable a las variaciones de retardo
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atribuibles a las variaciones paramétricas del proceso. 

El motor del algoritmo de análisis de SET a nivel de circuito lo constituye un modelo analítico

de propagación de SET a nivel de puerta lógica (desarrollado en el marco de otra tesis doctoral en

desarrollo) implementado mediante un ajuste polinómico. Los coeficientes del modelo son extraídos

para  cada  tecnología  a  partir  del  tratamiento  automatizado  de  la  biblioteca  de  puertas  lógicas

correspondiente. El proceso de extracción determina el conjunto de parámetros óptimo para cada

puerta  de  la  biblioteca,  constituyendo  un  proceso  clave  para  una  estimación  precisa  de  la

propagación de SETs a nivel de circuito.

Después de verificar la descripción de la propagación de SET a través de un trabajo exhaustivo

de simulación a nivel eléctrico, utilizando circuitos de tipo benchmark sintetizados en tecnologías

CMOS comerciales,  se  han propuesto varias  métricas  de propagación de SETs considerando el

impacto de los enmascaramientos lógico,  eléctrico y combinado lógico-eléctrico.  Estas métricas

proporcionan una vía de análisis  para cuantificar tanto las regiones que son más susceptibles a

propagar eventos SET hacia las salidas como el conjunto de salidas más susceptibles de producir

eventos SET.

La aplicación de la herramienta a circuitos tipo benchmark grandes han demostrado la capacidad

del conjunto de herramientas en el ámbito de la estimación de la propagación de SETs. En base a

los indicadores desarrollados, la herramienta es capaz de identificar la lista de nodos internos que

son  más  susceptibles  a  propagar  un  SET, considerando  tanto  los  efectos  de  enmascaramiento

eléctrico como lógico. Los resultados pueden ser ponderados por la probabilidad lógica de que un

cierto camino se encuentre sensibilizado a partir de los vectores de entrada del circuito . Del mismo

modo, la herramienta también proporciona información acerca de los nodos de salida del circuito

con una mayor probabilidad de producir un SET en ambientes de radiación específicos.

Un  análisis adicional permite determinar exhaustivamente el efecto de ensanchamiento/filtrado

del pulso inyectado de forma exhaustiva en todos los nodos del circuito.

La aplicación exhaustiva de la herramienta al análisis de los circuitos tipo benchmark grandes

demuestra  la  viabilidad  de  las  mismas  para  el  tratamiento  de  grandes  circuitos  obteniendo  la

información de interés.

En  numerosos  casos,  el  conjunto  de  algoritmos  desarrollados  han  proporcionado  mejores

resultados que las herramientas comerciales consideradas estándar en ámbitos industriales.
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Abstract

CMOS IC technology scaling provides many advantages like integration density increase, higher

operating  frequency  while  providing  reduced power  consumption  and cost  per  transistor. Such

integration race generates new challenges related to adverse side effects some of them being new,

while  others  are  exacerbated  from previous  technology nodes.  One of  such adverse  effect  that

grows in importance is the impact of Single Event Transients (SETs). As technology scaling reduces

the parasitic capacitance,  supply voltage and the gate delay, the relative importance of ionizing

particles increases because the same amount of charge is capable of inducing a voltage transient that

may propagate within the circuit.

Apart of redundancy-based techniques, many mitigation solutions are based on increasing the

circuit intrinsic robustness to soft-error effects. Although these strategies cannot avoid the problem

completely, they reduce the soft-error impact to an acceptable limit  that depends on the circuit

application.

Based on these challenges, this thesis develops and evaluates a complete framework for SET

propagation sensitivity. The framework comprises a number of processing tools capable of handling

circuits with high complexity in an efficient way.

After developing a compact specific logic system to enhance the performance of the algorithms

constructed  to  propagate  transitions  within  the  circuit  and  handle  efficiently  SET propagation,

various simplification, partitioning and encapsulation techniques have been detailed and analyzed to

enhance the overall framework operation.

A quite efficient true path finding algorithm has been constructed and its efficacy demonstrated

on large benchmark circuits. It has been also shown that the delay of a given path depends on the

sensitization vectors applied to the complex library gates within the path. In some cases, the delay

variation due to different sensitization vectors is comparable to the path delay caused by process

parameters  variations.  Such an improvement  over the path delay computation,  links such delay

estimation to the specific sensitization vector and to the verification of the path being a true path,

representing a significant improvement over commercial tools.

The framework developed engine is an SET analytical propagation model (developed within
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another Ph.D. thesis under development) incorporated as a polynomial implementation. Polynomial

coefficients  are  extracted  for  each  technology  by  automatically  processing  the  associated  gate

library. An optimal parameter set is obtained for each library gate, being a key process for accurate

SET propagation estimation.

After verifying the SET propagation description through extensive electrical simulations over

benchmark  circuits  synthesized  on  commercial  CMOS  technologies,  various  SET  propagation

metrics  have  been  proposed  considering  the  impact  of  logic  masking,  electric  masking  and

combined logic-electric masking. Such metrics provide a valuable vehicle to grade either in-circuit

regions  being more susceptible of propagating SET events toward the circuit  outputs or circuit

outputs more susceptible to produce SET events.

The tool application to large benchmark circuits has shown the framework capabilities in the

SET  propagation  estimation  domain.  Based  on  the  developed  metrics,  the  tool  is  capable  of

identifying the list of circuit internal nodes most suitable to propagate an SET accounting for both

the electrical and logical masking effects. Results can be weighted by the logic probability of a node

being activated from the circuit input vectors. Similarly, the tool also provides information about the

circuit  output  nodes  with  a  higher  probability  of  producing  an  SET  under  specific  radiation

environments.  An  additional  tool  analysis  determines  exhaustively  the  effect  of  pulse

broadening/filtering once a specific SET event is induced at each circuit node.

Exhaustive application to large benchmark circuits demonstrates the framework feasibility to

treat huge circuits providing the parameters of interest. In many instances, the developed framework

has been shown to output better results than industry-standard commercial tools.
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Chapter 1: Introduction

With no doubt, the integrated electronic technology industry is advancing extremely fast. Even

with  the  CMOS  technology  dead  end  predictions  [1],  the  MOSFET transistor  dimensions  are

shrinking each year and the number of transistors integrated within a die increases constantly [2], as

was predicted by the Moore's law in 1965  [3]. This has lead to spectacular figures like some of

today's commercial circuits exceeding one billion transistors integrated together in the same piece

of silicon [4]. Such an evolution reduces the design margins, magnifies some side effects that were

negligible in previous technologies while new adverse physical phenomena come into the picture.

All  these  events  increase  the  relevance  of  design  improvement,  circuit  verification  at  multiple

design stages, and testing, to ensure that a given circuit meets all operation constraints required.

However,  this  task  becomes  more  and  more  challenging  due  to  the  ever-increasing  overall

complexity.

Design-for-testability (DFT) is a valuable vehicle in making test complexity manageable, but

even with the aid of such techniques some specific circuit verifications remain unaffordable. An

advanced test and verification plan is essential given its significant economic impact on the final

circuit cost. Other vital stages of the design flow are related to circuit optimization: an overall die

area reduction improves the manufacturing yield reducing the cost per circuit, while power emerged

as a key technology scaling restraining parameter due to thermal issues in high-end applications,

and a limiting parameter of portable devices that require a very low power circuits to maximize the

battery life.

One of the physical mechanisms that threaten current and future technology nodes reliability is
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the impact of Single Event Effects (SEEs)  [5]. As technology scaling reduces the circuit  nodes

parasitic  capacitance,  lowers  the  supply  voltage  and  shrinks  gate  delay, the  relative  impact  of

ionizing particles increases because the same amount of injected charge is capable of inducing a

voltage transient that may propagate within the circuit and/or induce a memory upset.

The impact of ionizing radiation on circuits behavior has been an issue deeply studied specially

for  circuits  operating  in  hostile  environments  with  high  radiation  levels,  specially  aerospace

applications lacking the protection against cosmic radiation provided by the atmosphere and the

earth magnetic field. Traditionally, radiation-hardening techniques were adopted almost exclusively

for  applications  running  in  hostile  environments.  The  high  sensitivity  to  radiation  of  today

technologies has shifted this view since commercial devices are susceptible of being affected by

ionizing radiation even at sea level due to the technology miniaturization. This trend is motivating

the adoption of procedures to consider the soft-error susceptibility caused by particle impacts within

the design flow of current consumer electronic circuits.

The main impact of soft-errors caused by ionizing particles affected traditionally circuit memory

subsystems.  The  adoption  of  circuit  redundancy  and  error  correction  codes  (ECC)  for  critical

memory systems has accomplished maintaining the soft-error  rate (SER) associated to memory

elements within tolerable limits despite the technology evolution. However, the SER associated to

the combinational logic has experimented a considerable increase with technology scaling, since

their impact is favored by such scaling.

Apart of redundancy-based techniques, many mitigation solutions are based on increasing the

circuit intrinsic robustness to SEEs. Although these strategies cannot avoid the problem completely,

they reduce the soft-error impact to an acceptable limit that depends on the final application.

1.1. Motivation and objectives
The growing impact of transient effects caused by radiation phenomena in combinational circuits

has motivated an increasing interest in the development of efficient Single Event Transients (SET)

description and mitigation techniques. Although the basic mechanisms governing SET propagation

within combinational blocs have been extensively studied and are well known, the development of

efficient propagation models suitable for nanometer technologies is of enormous interest nowadays.

SET modeling has an inherent difficulty related to the complexity of describing the propagation of a

non-purely  digital  perturbation  within  large  or  complex  digital  blocs  where  electrical-level

2
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descriptions are not suitable. SET propagation descriptions must accomplish various conditions for

them  to  be  efficiently  adopted  as  valid  descriptions  in  industrial  environments  [6] including

accuracy, compactness and simplicity.

However, although efficient compact models are available  [7], their adoption by the research

community is conditioned to their practical application within circuit-level analysis in an affordable

way. In this context, the development of efficient EDA tools capable of covering the gap between

the gate level model verification – typically accomplished through electrical-level simulations not

suitable for large blocks – and the realistic complex circuit domain is lacking. Such a framework is

capital to advance in the overall application and evaluation of SET mitigation techniques, as they

require quick and efficient ways of evaluating various circuit alternatives, as well as being capable

of determining the best option between different solutions.

Such achievement is complex since it is not a merely implementation of a given analytical model

within a tool given the complexity of today IC designs. A practical solution requires an efficient

implementation of a complete framework capable of tracing true paths within a circuit, accurately

accounting  for  the  propagation  delay,  efficiently  managing  complex  circuits  and  providing  a

powerful information about circuit SET sensitivity according to various design abstraction levels.

The creation of such a framework is the focus of the work developed in this thesis, exploiting the

benefits of compact modeling descriptions developed within the research group where this thesis

has  been  developed.  Although  the  main  objective  is  focused  on  developing  specific  SET

propagation analysis tools, when integrating such components within existing commercial  tools,

secondary objectives have been found as the work has been carried over. The low efficiency and

low  accuracy  of  some  commercial  tool  modules  have  motivated  the  development  of  specific

framework  elements  oriented  to  efficiently  computing  standard  tasks  like  efficient  true  path

enumeration, efficient gate and path delay computation and efficient handling of highly complex

circuits.

The final objective is to provide the circuit designer with a valuable tool to analyze the circuit

SET sensitivity in terms of SET propagation for various design abstraction levels. The framework

must be capable of being used either by gate-level design and/or synthesis applications as well as by

block-level integration designers and tools. In this way, the framework must be capable of providing

in-circuit  information  by  grading  internal  nodes  in  terms  of  their  SET sensitivity,  as  well  as

detailing block-level analysis when treating the circuit as a box.

3
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Following  the  established  tool  evaluation  methods,  the  framework is  aimed  to  be  validated

through electrical-level simulations applied through standardized benchmark circuits synthesized on

a wide set of commercial and open-source technologies. Application on large benchmark circuits

will allow evaluating the framework capabilities compared to “de facto” standardized commercial

tools.

1.2. Document organization
This work is divided in seven chapters organized as follows:

Chapter 2 provides a general view of the main topics covered in this thesis. It introduces basic

concepts about timing analysis and SET propagation through a combinational circuit,  and some

theoretical foundations relative to analytical modeling techniques and logic gates capacitances.

In chapters 3 and 4 are detailed the algorithms and techniques included in the framework for

combinational circuits processing.

Chapter  3 is  focused  on  identifying  paths  capable  to  propagate  a  transition  through  a

combinational logic block. It starts by defining the basic concepts about paths through a circuit and

then explains the new logic system developed for true path identification. The algorithms for path

identification are described step by step detailing each individual task.

Chapter 4 presents solutions for the limitations of the algorithms of chapter 3 when are applied to

very  large  circuits,  and explains  a  set  of  circuit  simplification  techniques  to  reduce  the  circuit

complexity allowing to process complex circuit design in a reasonable time.

In chapters 5 and 6 show the application of the framework developed to solve two key tasks for a

proper design flow of a reliable digital circuit.

Chapter 5 presents an analytical delay model based on the mathematical concepts introduced in

Chapter  2,  and its  application  in  combination  with  the  path  identification techniques  to  timing

analysis.

Chapter 6 presents how the framework components are applied in combination with an analytical

SET propagation  model  to  estimate  the  SET propagation  capability  of  a  combinational  circuit

providing  SET propagation  sensitivity  metrics.  This  metrics  may  help  to  improve  the  designs

tolerance to radiation induced effects.

Finally, chapter 7 exposes the conclusions drawn from this work and the future work.
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SET propagation

This chapter provides a global insight of basic concepts discussed in detail  in the following

chapters, with the objective of establishing the foundations of the work developed in this thesis. The

chapter starts presenting the essential concepts related to timing analysis being a key step in the

design  of  a  synchronous  digital  circuit.  It  follows  with  the  mathematical  theory  on  which  the

analytical modeling technique implementation used in this work is based. Finally the basics about

the SET propagation through a combination block are introduced.

2.1. Timing analysis
Timing analysis is a key step in the design flow of synchronous digital circuits, validating the

proper timing performance of a circuit design  [8]. Its significance and complexity increases with

technology scaling due to new physical phenomena appearing in nanometer technologies  [9][10]

and the increase in integration density.

A synchronous digital circuit is intended to operate at a given clock rate and timing analysis is

responsible to verify if the combinational blocks delays meet the timing constraints imposed by the

system clock frequency and the characteristics of sequential elements. Theoretically, such timing

constraints can be verified through a detailed circuit simulation, but such simulation are too slow

that  in  practice remain completely unaffordable for  large circuit  designs due to  their  excessive

computational resources requirements. Therefore the timing analysis is performed using simplified

delay models seeking a balance between accuracy and computation time.
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Circuit synthesis is performed according to multiple constraints set by the designer like area,

power and timing. Timing analysis is used to guide the synthesis selecting the proper logic gates to

implement  the  expected  logic  function  accomplishing  the  design  constraints.  However,  timing

constraints  remains among the most important design constraint since if  they are not meet,  the

circuit is unable to operate correctly at intended clock frequency.

The timing analysis objective during the design flow is to ensure that the correct logic value will

be present at the data input of each sequential element when the clock edge arrives, allowing that

the memory elements capture the correct logic values.

Fig.  2.1 shows a generic structure of a sequential circuit where a combinational logic block is

located  between  two  sets  of  latching  elements,  the  input  latches  and  the  output  latches,  both

controlled by a clock signal (Clk). Input latches apply a logic vector at the combinational block

inputs keeping these values stable during one clock cycle. Output latches capture the logic values

arriving at  the block outputs,  their  outputs  constitute  the inputs to the following combinational

block (not shown in the Figure). To guarantee correct circuit operation, the circuit response to an

input vector at  a given clock edge must provide valid stable values at  data input of the output

latches before the next clock edge arrives.

Figure 2.1: General circuit structure

Fig. 2.2 shows a timing diagram to illustrate the circuit operation. FFI is one of the input latches

and FFO is an output latch. TClk is the clock period, i.e. time interval between two consecutive clock

6
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edges, therefore the operating frequency is f =
1

T Clk

.

The sequence of events represented in Fig. 2 can be divided in three steps as follow:

(1) A clock edge arrival latches the data at the input D of the FFI (FFI/D) placing the captured

data at its output Q (FFI/Q). The time required by a latch to set the captured value at the

output  Q after the triggering clock edge is  denoted as tdff,  i.e.  the delay of the memory

element. The time instant at which the data is placed at the inputs of the combinational block

is referred as launch time.

(2) Once the logic values are stable at the inputs of the combinational block at launch time, the

change is propagated through the logic until the outputs of the combinational block. The

arrival time is the time instant at which the outputs of the combinational block take the

correct logic value. The difference between arrival time and the launch time is the delay of

the combinational logic block.

(3) The next clock edge triggers the capture of the output values, however the latches require

that the data to be captured be stable at input D before the clock edge arrival. The amount of

time the data must be stable before the clock edge arrival is called  setup time (tsetup) and

depends on the specific latch characteristics. Correct data must be stable at the data input of

the latches the setup time before the clock edge, this instant is referred as required time, i.e.

is the instant at which the correct logic must show up at the combinational block outputs for

proper operation. After the clock edge the data must remain stable at the inputs of the latches

an amount of time called hold time (thold) to be properly captured.

7
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Figure 2.2: Timing diagram

The time between the arrival time and the required time is called slack (2.1), this is the amount

of time by which the timing constraint is met.

slack=required time−arrival time (2.1)
If the slack is positive, as shows the example of Fig. 2.2, then the signal arrives earlier than the

required time,  and therefore timing constraint is met. However if the  slack is negative then the

signal arrives later than the  required time, producing a timing constraint violation. If the  slack is

exactly zero then the timing constraint is theoretically met, however in the practice the slack must

be greater than zero to ensure the proper operation, accounting for parameter variations and timing

inaccuracies.

This type of timing check is referred as setup time check, although it is not the unique timing

check performed by a timing analysis tool.  Timing checks usually performed during the timing

analysis are:

• Setup time check: Verifies that the data arrives soon enough before the clock edge to be

correctly captured, i.e. the signal is stable at the outputs before the required time. This is the

most common type of timing analysis, involving the longer paths though the combinational

block that determines the larger propagation delays.

• Hold time check: Verifies that the data remains valid enough time to satisfy the hold time of

the latches. This type of analysis involves the shortest paths through the logic ensuring that

8
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the data does not change too early.

Hold time violation verification is mandatory to ensure the correct circuit operation, since a hold

time violation may cause a circuit malfunction due to a corrupt data captured by an output latch.

This type of timing violations involves exclusively the shortest paths through a combinational block

and therefore do not impose any restriction on the circuit operating frequency. Therefore, hold time

violations are easy to identify and solve since they can be only caused by extremely short paths and

are easily solved by adding a buffer or increasing the delay of some path gate causing the violation.

For this reason, out attention will be concentrated on the setup time check.

Setup time checking is quite more complex than hold time checking since it requires identifying

the largest propagation delay through the combinational block, involving the concept of critical path

[11].  The  critical  path  is  defined  as  the  path  from  an  input  node  to  an  output  node  of  a

combinational logic block having the maximum delay [12]. The critical path delay determines the

circuit maximum operating frequency.

The simplest way to estimate the maximum delay through a combinational logic block is to take

the longest topological path computed by assigning a delay value to each gate in the circuit and

adding the delay of the gates traversed by a path. This is a quick way of identifying the largest delay

through  a  logic  block,  and  may be  useful  as  a  first  approximation  to  the  maximum operating

frequency permitted. However, in many cases the largest topological path is a false path being non-

sensitizable meaning that a transition can never be propagated through this path. Consequently a

maximum circuit delay overestimation may lead to a pessimistic timing analysis [13].

The path really determining the maximum block delay is the longest true path that in some cases

may be considerably shorter than the longest topological path, since all longest paths may be false.

Identification of the longest true path allows performing a more accurate timing analysis. This may

allow increasing the operating frequency or keeping the frequency and reducing the circuit area and

power consumption thanks to  the use of  weaker  gates,  i.e.  logic  gates  with lower conductance

having worst delay and consequently requiring less area and power consumption.

A pessimistic timing analysis occurs when the path considered to be critical is really a false path

slower than the longest  true path.  This  overestimates the maximum delay, although the correct

circuit operation is guaranteed. Otherwise, if the worst true path is not correctly identified, and the

path considered critical is not really the slowest true path an underestimation of the maximum delay

is obtained.  This  corresponds to  an optimistic  timing estimation and may give rise to  a circuit

9
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malfunction. Thus, the correct identification of the critical path through a combinational block is a

key step to perform a precise timing analysis.

A proper timing analysis must ensure that the circuit meets the timing constraints under different

conditions  and therefore must consider  delays variations.  Since the delay through a given path

depends on multiple factors, then the circuit critical path may change depending on these factors.

The elements that impact the delay through a path can be divided in two categories depending on its

nature:

• Internal:

◦ Parameter variations

◦ Aging

◦ In-circuit Noise

• External

◦ Temperature

◦ Supply voltage

◦ External perturbations

The internal factors are specific of each circuit sample and operation, while the external factors

depend on the operating environment conditions. Parameter variations occur between samples of

the same circuit design due ti imperfections of the manufacturing process, and are a static factor

since they do not change over time. There are two types of parameter variations:

• Die-to-die: The physical parameters of the devices, like dimensions or doping levels, vary

between two samples of the same circuit even when are manufactured by the same process.

• Intra-die:  Different  regions  of  a  single  circuit  suffer  different  parameter  deviations  in

addition to the die-to-die variations. Intra- or within-die variations are due to the statistical

nature of some manufacturing steps.

10
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Circuit  aging,  is  a degradation of  the circuit  components  that  in  general  worsens the circuit

performance unlike  the  parameter  variation  that  may produce  circuits  faster  than  the  mean.  In

general,  aging  affects  differently  each circuit  sample,  since  it  depends strongly  on  factors  like

operating temperature since many aging effects involves thermally activated physical mechanisms

[14][15]. However, despite its time dependent nature the aging in general affects the circuit slowly,

requiring  a  long  period  of  operation  to  experience  important  circuit  performance  degradation,

specially compared to the external factors that present a very dynamic behavior [16].

Noise mechanisms may couple internal circuit nodes or induce supply/ground fluctuations that

are  highly  operation  dependent.  Noise  mechanisms  like  capacitive  and  inductive  coupling  are

physically well understood and in theory could be accurately described and their influence on delay

is  highly  dependent  on  the  circuit  operation.  Circuit  complexity  and  the  dependence  of  such

mechanisms on circuit operation prevent a practical description of these mechanisms that in practice

are modeled as random in nature, adding to parameter variations [17].

The external delay variations factors are very dynamic as they can vary considerably during the

circuit operation in short periods of time. The supply voltage should be stable in general however in

addition to circuit activity there may be external effects that cause voltage drop effect. The voltage

drop can affect the entire circuit or be localized to specific regions. Beside the unwanted effects, in

modern circuits  the supply voltage is  intentionally lowered depending on the circuit  activity  to

reduce power consumption and heating. Temperature is also a highly dynamic factor that depends

on the environment temperature, the heat generated by the circuit itself and the cooling mechanisms

to dissipate this heat.

All factors together contribute to variations in the propagation delays through a circuit that are

different from one sample of the circuit to another and depending on the environment conditions

and the circuit activity.

In summary, timing analysis must verify that the circuit meets the timing constraints in the worst

case conditions, at least for the range of operating conditions imposed to the design. Depending on

the way to consider the variations there are two types of timing analysis:

• STA (Static Timing Analysis): Computes the delays in a deterministic way i.e. considering

static conditions. Possible variations on the static conditions are accounted by simulating

11



Chapter 2: Timing analysis and SET propagation

multiple  sets  of  conditions.  Usually  the  STA uses  a  strategy called  corner  analysis  that

provides  a  conservative  result  since  corners  settings  are  sets  of  extreme  conditions.

Therefore corner  analysis  guarantees the proper operation of the circuit  under  the worst

possible conditions although this  leads to a pessimistic analysis.  The situation where all

variables take the worst possible value for all components of the circuit is very unlikely.

• SSTA (Statistical  Static  Timing  Analysis):  Computes  the  delays  through  a  circuit  using

probability  distributions instead of deterministic values,  giving a  distribution of possible

circuit  outcomes rather than a single value.  In general SSTA provides a less pessimistic

prediction than the corner analysis at the cost of more complex process and larger runtime.

The increase of parameter variations has motivated a considerable growth of this research

field.

Independently of the strategy chosen and the variables considered, an accurate timing analysis

requires the ability of identifying the set of true paths suitable of becoming a critical depending on

the operating conditions. The importance of critical path identification relies on the fact that the

delay  difference  from  one  path  to  another  may  be  larger  than  the  variation  produced  by  the

operating  conditions  and  parameter  variations.  Thus  this  work  is  focused  on  precise  path

identification.

12



Chapter 2: Timing analysis and SET propagation

2.2. Delay modeling
The propagation delay through a combinational circuit determines the maximum frequency of

operation of this circuit since the output signals must be correct and stable when the output memory

element captures this value. If the propagation delay of a path is larger than the clock cycle, then the

memory element will most probably capture an incorrect value [18]. These kinds of errors are called

delay faults, and may be difficult to identify during the design stage [19].

To ensure  that  a  circuit  design  will  operate  at  a  designated  frequency,  or  to  estimate  the

maximum frequency at which it could operate, a timing analysis of the design is required. This

analysis must be performed during the design stage before manufacturing given the costs associated

to an incorrect timing operation. Electrical simulation of complete real circuits is unaffordable due

to the excessive computation resources required. This is solved through delay models that sacrifice

accuracy to gain in computational speed. Some published delay models work at the transistor-level

allowing their application to full custom designs and usually requires complex modeling techniques.

Since many designs are completed through a synthesis process based on standard cell libraries, the

delay model used in this Thesis works at the standard cell level.

Before  introducing  the  mathematical  details  of  the  model  and  the  algorithms  to  extract  the

required parameters, some well-known basic definitions about cell-level delays are detailed.

Definition: The propagation delay of a gate in a digital circuit is the time required by a signal to

pass through the gate from one input to its output. This delay is given as the time lapse between the

instant at which the input transition crosses the 50% of the supply voltage, and when the output

transition  crosses  the  same  point,  independently  of  the  transitions  direction.  Fig.  2.4 shows  a

representation of the propagation delay through an inverter.

Definition: The transition time or slew time, is time required to change the voltage of a signal

from its initial to its final value. The transition time is measured as the time between the instants

when the signal crosses the 10% and the 90% of the supply voltage, for a rising transition and the

opposite  for  a  falling  transition.  Fig.  2.3 depicts  a  rising  transition  and  its  transition  time.
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Figure 2.3: Transition delay

 

Figure 2.4: Propagation delay

2.2.1. Empirical modeling

Physically based delay models are derived more or less directly from the equations governing the

voltage and current expressions that describe logic gate transitions. Technology scaling increases

the transistor current expressions complexity as the device is miniaturized due to the side effects

impacting its behavior. Such a complexity increase has an impact on physically based delay models

whose growth makes them difficult to handle [20]. One alternative to overcome the high complexity

of models based on physical descriptions is the use of empirical models extracted directly from the

circuit  behavior  instead  of  its  physical  principles.  Various  alternatives  have  been  proposed  as

exposed next.

2.2.1.1. Lookup Table (LUT)

A widely used strategy is the Lookup table (LUT) that involves tabulating a set of values for the

magnitude of interest. Each value correspond to a combination of the considered variables, thus, the

dimensionality of the table depends on the number of variables considered. In this approach, the

data is discrete and the magnitude of interest  is known for a discrete set of the input variables

values. The result for any other value is obtained through interpolation algorithms that may range

from a simple lineal interpolation to more complex interpolations techniques. This is equivalent to

having piecewise model with a function that depends on the interpolation algorithm used. Despite

all the benefits of LUT techniques, an analytical model has some advantages over LUT. Depending

on the model  analytical  expression,  the computation time may be faster than the interpolations

required by LUT methods. The memory space required to store the model data is in general much

smaller for analytical models and depends on the LUT size compared to the number of parameters

of the analytical model. To accomplish the same accuracy through both methods, the LUT must

have a considerable size resulting in a larger memory requirement. However, the main advantage of
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an  analytical  model  is  the  capability  of  being  mathematically  manipulated  as  for  example

differentiated, providing a measure of the impact of a fluctuation on a given variable.

Various  analytical  methods  are  typically  used  to  model  any magnitude  with any number  of

variables. Some of them are detailed next.

2.2.1.2. Polynomial model

As was stated in 1712 by the Britannic mathematician Brook Taylor, any differentiable function

can be represented by an infinite sum of terms that are calculated from the values of the function's

derivatives at  a single point.  If  the infinite series is truncated in a finite order, the result  is  an

approximation  of  the  function  in  some neighborhood.  The  order  where  the  series  is  truncated

determines the approximation to the real function. The Taylor series may be compactly written as

(2.2)

f (x+x0)=∑
n=0

∞ f (n)
(x0)

n!
⋅xn (2.2)

A more practical representation of the polynomial function is given by (2.3).

y= f ( x)=∑
i=0

n

Pi⋅xi (2.3)

Equation (2.4) shows the equivalence between the polynomial parameters and the Taylor series

terms.

Pi=
f (i )

(0)
i !

:0≤i≤n (2.4)

To model  some  physical  magnitude  using  this  analytical  expression,  the  parameters  of  the

polynomial (Pi) must be extracted from the empirical data, or in the specific case of the digital

circuit  analysis,  from  electrical-level  simulations  results.  A great  advantage  of  the  polynomial

approach is that it does not require a numerical process to fit the data to the function. Instead, the

parameters can be computed analytically, using a linear systems solver for which very efficient

computation algorithms exists.
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2.2.2. Extraction process

Starting  with  a  set  of  empirical  data  (y)  regarding  to  one  variable  (x),  as  shows  (2.5),  a

polynomial regression of order  n, can be accomplished by solving a linear system represented by

the matrix equation (2.6).

y= f ( x) (2.5)

A(n+1) x(n+ 1)⋅P(n+1)=B(n+ 1) (2.6)

Below are the details about the matrix A and both vectors P and B of (2.6). As shown in (2.7),

matrix A is formed by sums of powers of the values of the independent variable x. The elements of

vector P are directly the polynomial coefficients we are searching for. Vector B contains sums of

products between the values of the dependent variable y, and powers of the independent variable x.

A(n+1) x(n+ 1)={aij} : aij=∑
k=0

m−1

xk
(i+ j)

P(n+1)={pi}

B(n+1)={bi} : bi=∑
k=0

m−1

xk
i⋅yk

∀0≤i , j≤n+1

(2.7)

Where  m is  the  number  of  samples  of  the  data  to  be  adjusted,  and  n is  the  order  of  the

polynomial. I.e., the maximum polynomial expression exponent since the first exponent is 0, and

the number of coefficients is n+1. An extended representation of matrix A, and vectors P and B are

shown below.

A(n+1) x(n+ 1)=[
m ∑ xi ∑ xi

2
⋯ ∑ xi

n

∑ xi ∑ xi
2 ∑ xi

3
⋯ ∑ xi

n+1

∑ xi
2 ∑ xi

3 ∑ xi
4

⋯ ∑ xi
n+2

⋮ ⋮ ⋮ ⋱ ⋮

∑ xi
n ∑ xi

n+1 ∑ xi
n+2

⋯ xi
2n

] Pn+1=[
p0

p1

⋮
pn
] Bn+1=[

∑ yi

∑ xi yi

∑ xi
2 yi

⋮

∑ xi
n yi

] (2.8)

The order of the polynomial that must be used depends on two factors, the specific form of the

data to adjust, and the accuracy desired.
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2.2.3. Multivariable polynomial model

So far  we have  only  considered  one  variable,  while  modeling  the  behavior  of  a  circuit,  in

general,  requires  multiple  variables.  To include  more  variables  into  the  model,  the  polynomial

regression can be used hierarchically, i.e., each parameter of the polynomial is a function of another

variable, which can also be adjusted to a polynomial form, and so on. As an example, (2.9) shows a

function of two variables (x and y) fitted to a polynomial expression regarding to variable x, where

each coefficient Pi is a function of y.

f (x , y )=∑
i=0

nx

Pi( y )⋅xi (2.9)

As shown in  (2.10),  each  Pi coefficient  is  also expressed as a polynomial.  The order of the

polynomials (nx , nyi
:0≤i≤nx) may  be  different  for  each  case  depending  of  the  specific

characteristics of each function. Finally (2.11) gives the general expression for 2-variable function

fitted to a polynomial expression. This expression for two variables can be easily generalized to any

number of variables.

Pi( y )=∑
j=0

n yi

Pij⋅y j
∀ Pi :0≤i≤nx (2.10)

f (x , y )=∑
i=0

nx

∑
j=0

nyi

Pij⋅xi⋅y j (2.11)

To extract  the  coefficients  for  a  multivariable  model,  the  process  is  the  same than  the  one

explained for a single variable, simply applying it with respect to the first variable for each value of

the second variable, resulting in a set of coefficients for each value of the second variable. In the

second step these coefficients  are  fitted with respect  to the second variable,  obtaining a  set  of

coefficients for each coefficient of the first step, and so on if there are more than two variables. The

final  result  is  a  matrix  of  coefficients,  with  a  number  of  dimensions  equal  to  the  number  of

variables. Depending on the order used for each regression some elements of this matrix can be

null.
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2.2.4. Computational advantages

The  multi-variable  polynomial  model  provides  some  computational  advantages.  The  model

coefficients can be represented using a matrix, with as much dimensions as variables considered.

Since the matrix algebra has a wide use in the data processing field, this method benefits from the

advances in the matrix computation. There are highly efficient matrix algorithms and even libraries

that offer parallel computing to exploit current multi-core processors capabilities.

This kind of model allows performing a partial pre-computation by assigning a constant value to

any of the considered variables. For instance, if the model depends on n variables, but in a specific

application some of them have a constant value, the model may be preprocessed to simplify it. This

preprocessing step reduces the matrix dimensions for each variable with a constant value assigned.

Equation (2.12) shows the analytical expressions for a function with 3 variables, where a constant

value is  assigned to  the variable  y,  resulting in a function with 2 variables.  The 3-dimensional

matrix P has been converted to a 2-dimensional matrix Q.

f (x , y , z)=∑
i
∑

j
∑

k

Pijk⋅xi yi z k
→ y=k → f (x , z)=∑

i
∑

k

Qik⋅xi z k

→ Qik=∑
j

Pijk⋅k j (2.12)

Another computational advantage is that the model can be easily differentiated respect to any of

its variables, to obtain the rate of change of the function. (2.13) shows an example of polynomial of

two variables (x, y), with an m by n parameter matrix (P). The function is differentiated respect to

variable y, getting a new polynomial function, where the parameter matrix (Q) was reduced to m by

n-1, and each new parameter (Qij) can be easily computed from the original ones (Pij).

f (x , y )=∑
i=0

m−1

∑
j=0

n−1

Pij⋅xi yi
→

∂ f (x , y )
∂ y

=∑
i=0

m−1

∑
j=1

n−1

Pij⋅xi
⋅ j⋅y j−1

=∑
i=0

m−1

∑
j=0

n−2

Qij⋅xi
⋅y j

→ Qij=(i+1)⋅Pi ( j+1) ∀0≤i<m ,0≤ j<n−1

(2.13)
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2.3. Effective capacitance
The capacitance of each circuit node is key when analyzing its dynamic behavior as it determines

the signal time evolution. Specifically, the capacitance has a direct relation to the voltage variation

in time and the amount of charge required to change the voltage level of a node. In this way, the

efficacy of a circuit behavior prediction is strongly conditioned to the accurate estimation of the

nodes  capacitance.  Some  of  the  most  relevant  digital  circuit  analysis  that  require  accurate

capacitance estimation are:

• Timing analysis

• Power consumption

• Crosstalk analysis

• SET propagation

When working with digital circuits synthesized using a standard cell library the most interesting

capacitance value is that of the input nodes of each cell, because these kinds of circuits are typically

analyzed  at  the  cell-level.  Even  in  some  cases,  the  designer  has  no  access  to  the  internal

implementation of the cell, becoming impossible to perform an analysis at transistor or physical-

level.

The main issue with the input capacitance of a CMOS cell is that it is a dynamic value depending

on the voltage at each node. Therefore the value of the input capacitance varies during a transition,

and even depend on the voltage transition speed. Accounting for this dependence -such as is done

by SPICE-like simulation- implies adopting highly complex models resulting in an extremely time

consuming simulation. Therefore, it is desirable to compute a capacitance steady that models as

accurate as possible the dynamic behavior of the real capacitor. From now on we will  refer as

effective capacitance to the equivalent steady value of the dynamic capacitance of a cell input. The

components that contribute to the input capacitance of a CMOS logic gate are detailed next.

2.3.1. Capacitance components

The input capacitance of a standard cell has two main contributions when describing an isolated

cell, i.e., without considering any capacitive effect of the surrounding cells and wires of the circuit.

The first  contribution,  at  the transistor-level,  is  due to  the MOSFET parasitic  capacitors of the

transistors  forming  the  cell.  A second  contribution  at  the  cell-level  comes  from the  capacitors
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formed by the layout  layers  (metals,  poly-silicon and diffusion  areas)  and the insulating oxide

between them. Besides these two contributions, in a real circuit,  there are more capacitances to

consider  for  a  precise analysis,  but  these depend on the  specific  circuit  topology and must  be

extracted at the circuit-level, falling outside the standard cell-modeling domain. In any case, the

gates capacitances provide the more relevant contribution, except for the interconnect dominated

sections such as clock trees and buses.

2.3.1.1. Transistor-level components

Regarding to the transistor-level contribution, basically a typical MOSFET transistor has five

parasitic capacitors, as depicted in Fig.  2.5. They can be divided into two groups depending on if

they are formed by an oxide between two conductors, or by a reverse polarized junction.

• Oxide capacitances: Cgd, Cgs, Cgb.

• Junction capacitances: Cdb, Csb.

Figure 2.5: MOSFET parasitic capacitances

The  oxide  capacitances  value  depend  on  the  transistor  operation  region,  except  for  the

component due to the gate and both diffusion regions (source and drain) overlap. This capacitance

component is constant independently of the operation region, depends only on the overlapped area

and the oxide coefficient, as shown in (2.14).
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Coverlap=Cox⋅W⋅LD (2.14)

where Cox is the capacitance coefficient of the oxide, W is the transistor width, and LD is the

overlapping length between the gate and the diffusion.

The components depending on the operation region are due to the capacitor created between the

gate and the channel being reason for its dependence on the operation region due to the channel

shape  variation.  Table  3.1 summarizes  the  value  of  each  oxide  capacitance  depending  on  the

operation region specifying both the overlapping and channel components.

Table 2.1: Capacitance components

Capacitance Cut-off Linear Saturation

CGB CoxWL 0 0

CGD 0 + CoxWLD 0.5CoxWL + CoxWLD CoxWLD

CGS 0 + CoxWLD 0.5CoxWL + CoxWLD (2/3)CoxWL + CoxWLD

The junction capacitances value is even more complex than the oxide capacitances. In addition to

the  junction  area,  their  value  depends  on  the  doping  coefficient  of  the  semiconductor  and the

voltage of each junction side. However, since these capacitances are created between the substrate

and the diffusion areas (drain and source), their contribution to the input capacitance of a cell is

small, since the input of a CMOS cell is always connected to the gate of the transistors.

During a rising or falling transition, the transistors that form a CMOS gate pass through the three

regions of operation. Some transistors transition from cut-off to saturation, and others do in the

opposite direction. The oxide capacitances change their value during the transition, together with

the  junction  capacitances  that  have  a  voltage  dependent  value,  giving  the  dynamic  equivalent

capacitance of  the CMOS cell.  Fig.  2.6 shows a schematic  of a  CMOS inverter, including the

parasitic  capacitors  affecting its  operation.  Some of  the  transistors  parasitic  capacitors  have no

impact because they have both terminals shorted, like the nMOS bulk-source capacitance.
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Figure 2.6: Inverter capacitances

As already stated, the electrical-level simulators, use extremely complex transistor models that

include  the  capacitive  parasitic  effects.  However,  this  level  of  accuracy  is  paid  with  a  huge

computation time, due to the complexity of the model equations. These kinds of simulations are

unaffordable for large circuits, and require to be simplified at the expense of a lower accuracy in the

estimation.
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2.4. SET Propagation
A soft-error in a digital circuit is a circuit behavior alteration that occurs only during the circuit

operation,  usually  caused by a  dynamic event  that  impact  circuit  operation.  Soft-errors  are  not

associated to any physical defect in the circuit structure due to manufacturing errors or to inherent

aging effects. Furthermore, soft-errors are usually not reproducible due to its dynamic nature and,

since there is no physical defect in the circuit structure, they cannot be detected through a periodic

circuit test, and its time occurrence cannot be predicted.

A source of soft-errors whose importance is growing due to technology scaling is alpha-particle

and neutron strikes. Main sources are either contaminants from the circuit encapsulation, or cosmic

radiation,  i.e.,  high-energy  particles  coming  from  the  space.  Circuits  operating  outside  the

atmosphere protection,  like  space  probes  and artificial  satellites,  are  specially  affected  by soft-

errors. However, IC miniaturization is making soft-errors a concern even for sea-level applications. 

When an ionizing particle strikes the diffusion areas of a semiconductor device it generates free

electron-hole pairs that are drained in opposite directions by internal electric fields, and may result

in an injected charge at a specific node. Such an injected charge, modeled through a current source,

may result in a short duration voltage pulse. If the particle strike impacts a memory circuit, or a

register latch, then the voltage pulse induced by the ionizing particle may flip the stored value,

generating a corruption of the stored data. This type of soft-error is referred to as a Single-Event-

Upset (SEU), and may be an important cause of errors in the memory circuits, especially those that

must operate on a hostile environment like space missions. On the other hand, if a particle impacts a

combinational logic block, it generates a transient voltage pulse at the combinational circuit node,

and in general is referred to as a Single-Event-Transient (SET). Typically SEU and SET effects are

categorized as Single Event Effects (SEEs).

The possibility of an SEE to induce an error depends on various factors. If the ionizing particle

impacts a memory element, the possibility of generating an error depends mainly on the relationship

between the amount  of charge injected and the electrical  strength of the latch logic gates.  The

injected charge must be enough to force a memory element flip, surpassing the current draining

capacity of the cell. In the case of an SET at an internal node of a combinational block, there are

additional masking factors that may prevent such a perturbation to trigger a circuit error [21]. An

SET may cause  an  error  only if  it  propagated  within  the  combinational  logic  until  reaching a

register that must capture the perturbation initiated by the SET.
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SET effects have been extensively studied and the conditions for an SET to propagate within a

circuit  are  well  understood  [22][23][24][25].  There are  three  masking mechanism,  that  may be

classified into two categories. The first category includes the masking mechanisms related to the

SET propagation within the circuit, i.e., the electrical masking and the logic masking. The second

category is related to SET capturing at a memory element, i.e., the  time masking. Then, multiple

conditions need to be concurrently satisfied for an SET to induce a SEU:

1. Electrical  masking:  The  voltage  perturbation  must  have  the  appropriated  electrical

characteristics to traverse the circuit logic gates, and be capable of switching the memory

element state. This masking mechanism depends on the relationship between the induced

pulse, the logic gates electrical characteristics and the nodes capacitance. Logic gates with

short delay values and small loads will pass narrow pulses, while slow gates or heavy loaded

ones will filter short pulses.

2. Logic masking: There must be a logic path sensitized for the perturbation to travel from its

originated node to a memory element. If the pulse is generated at an internal node, and none

of the logic gates that such node feeds, has the appropriate logic input values that propagate

the perturbation toward the output, then the pulse simply vanishes without any impact on the

circuit operation. This masking mechanism depends on the logic gate type and the logic

values applied at the combinational block inputs. An example of logic masking is shown in

Fig. 2.7.

3. Time masking:  The voltage perturbation generated within the circuit must arrive at some

circuit  output  within  a  time  window  during  which  the  connected  memory  element  is

transparent. A pulse just reaching a memory element input does not imply a logic error,

unless  it  reaches  the register  within the capture time window. The time window size is

related to the memory element setup and hold times. Fig. 2.8 shows an example of two SETs

at the input node of a register, the first one is captured, while the second is masked as it falls

outside the capture window.
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Figure 2.7: Logic masking

Figure 2.8: Time masking

The described masking mechanisms prevent that all SETs generated within a circuit ends up

causing an SEU. However technology evolution exacerbates the IC susceptibility to SEEs caused by

SETs.  In  the  case  of  memories,  the  soft-error-rate  (SER)  does  not  increase  as  much  as  in

combinational logic with technology scaling, because critical memory systems are usually protected

through  redundancy  techniques.  In  general  error-correcting-codes  (ECC)  are  quite  effective  to

protect memory elements against this type of errors without introducing an excessive overhead.

However, the combinational blocks SER increases at each technology node, just as predicted years

ago  [26], reaching and even  surpassing the error rate of unprotected memory elements in current

technologies for the reasons detailed next.
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When a high-energy particle strikes on a circuit node it produces an amount of charge at the node

parasitic capacitance that modifies the voltage level of the affected node. The amount of charge

injected depends on the particle energy while the charge impact on the circuit operation depends on

the parasitic capacitance value and the circuit supply voltage. The capacitance definition reveals

that the voltage variation is directly proportional to the charge and inversely proportional to the

capacitance (2.15).

C=
Q
V

→ {
V ∝Q

V ∝
1
C

(2.15)

In the past technologies, where the parasitic capacitances were relatively large because of the

device  and interconnect  sizes,  the  amount  of  charge  injected  by a  particle  represented  a  small

contribution to the node voltage perturbation. These technologies also had a relatively high supply

voltage  compared  to  the  voltage  spike  induced  by  the  particle  that  was  in  general  negligible.

However, technology scaling shrinks device dimensions - reducing the nodes parasitic capacitance –

and dictates also a circuit supply voltage reduction. The small node parasitic capacitances of today

nanometer  technologies  entail  that  the  charge  induced  by  an  ionizing  particle  results  in  a

considerable  voltage  variation  compared  to  the  actual  supply  voltage  values.  Therefore  SET

generation in current technology CMOS ICs is increasing [27]. Moreover, in addition to SET rate

generation increase, the masking mechanisms become less effective as technology scales down.

Electrical masking effectively reduces mainly for two reasons. First, supply voltage reduction and

node  capacitance  decrease,  contributes  to  the  SET propagation,  and  second,  faster  logic  gates

contribute less to filter short-duration glitches due to the propagation delay decrease. In addition,

the increase of circuit clock frequency makes time masking less severe since the memory elements

remain transparent more frequently, increasing the probability that a register captures an invalid

value  due  to  an SET.  Therefore  circuit  SER estimation  and improvement  of  circuit  hardiness

techniques becomes an important step during design phase.

Most existing works dealing with SET propagation probability are mainly based on computing

the circuit Soft-Error-Rate (SER) considering statistical techniques  [28][29][30][31]. Some use a

fixed amount of injected charge for the SET generation, while others consider the injected charge to

be a random value, or even take a range of charge values. Many different methods are used to
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model the injected charge for SER computation. There are many SER computation techniques that

provide statistical metrics of the probability that a circuit suffers an error due to an SET propagated

and captured by a memory element. However, none of them offers a deterministic metric about the

minimum electrical characteristics required to allow a pulse to propagate from a given node until a

circuit output.

A key issue in the development of circuit-hardening techniques with respect to SETs is related to

identifying the nodes having the highest sensitivity to SET (i.e. the weakest sites in the circuit),

together with the determination of the possible paths through which an SET can propagate toward a

memory element.

One of this work objectives, is to estimates the SET propagation through a circuit by computing,

for each circuit node, the minimum electrical characteristics (width and height) of a voltage pulse

capable of traveling toward a circuit output, independently of the pulse cause. The independence of

the pulse cause makes it suitable for describing any kind of induced voltage pulse propagation in a

circuit.

The minimum electrical characteristics required to allow a pulse to be propagated depends only on

static parameters, like the node capacitance and logic gates conductance. A specific mode developed

in [7] will be used in this work.
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This chapter presents the core elements of the EDA Framework developed. The chapter starts by

introducing some basic definitions related to paths within a combinational logic block that will be

used in  the next  sections.  The concept  of logic  system is  described,  detailing the logic system

specially  developed  to  perform  efficient  path  identification.  This  logic  system  has  the  special

feature of treat both transitions at each node at a time. Each basic operation associated to the path

identification  techniques  is  detailed  individually.  These  operations  conform  the  basics  of  the

customizable algorithms detailed in this chapter.

3.1. Definitions

For a combinational circuit C = {PI, PO, W}, let

PI = {Ii} be the set of primary inputs,

PO = {Oi} be the set of primary outputs

W = {wi} be the set of the wires, i.e. internal nodes.

Structural path: a structural path PS, is a sequence of nodes ξi (including Ii, Oi and wi) through a

combinational  block starting at  a  primary input  node and ending at  a  primary output  node,  by
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traversing the logic gates always from input to output (3.1). A structural path can be a true path or a

false path as defined next.

PS={ξ1, ξ2 , ... ,ξn−1 ,ξn} : ξ1∈PI , ξi∈W 2 ≤ i ≤ n−1, ξn∈PO (3.1)

False path: if a structural path cannot be sensitized, i.e., a transition applied at the input node

cannot be propagated through the path until reaching the output, then the structural path is a false

path. A path cannot be sensitized if some gate within the path cannot be sensitized due to a logic

incompatibility.

True path: a structural path is a true path if there exists an input vector capable of sensitizing a

structural path, i.e. it is possible to propagate a transition through it.

Functional path:  a functional path is a combination of a true path and a specific transitions

sequence through the path nodes. Note that, for each true path there are at least two functional

paths: one having a transitions sequence starting with a rising transition at the primary input node,

and the other starting with a falling transition. The transition direction (rising or falling) at each

circuit node depends on the gate type traversed, and specifically if it is an inverting or non-inverting

gate. Since an exclusive-or gate (XOR or XNOR) polarity depends on the logic value settled at he

inputs not being part of the functional path, then each exclusive-or in a true path may contribute

with up to four functional paths.

Therefore, if PS={ξ1, ξ2 , ... ,ξn−1 ,ξn}:∀ξi∈C is a structural path through the circuit  C, then

P f={ξ1
t 1 ,ξ2

t2 ,... ,ξn−1
t n−1 , ξn

tn} (where t i∈{r , f } with r indicating a rising transition,  and f a falling

transition.) is a functional path as long as the path can be sensitized, otherwise it is a false path.

Sensitization vector: a sensitization vector is each logic input pattern that sensitizes a functional

path. Each functional path may have multiple sensitization vectors since in general logic gates can

be sensitized by more  than  one  vector, and the  logic values  required  to  propagate a  transition

through a gate can be obtained in multiple ways within a circuit.
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On-path input: logic gate input through which a given path crosses the gate.

Off-path inputs: logic gate inputs that do not belong to the path. Gate sensitization depends on

the logic values applied to the off-path inputs.

For clarity, the previous definitions are illustrated on a real combinational circuit. Fig. 3.1 shows

the structure of a 2-bit carry-bypass adder.

Taking two structural paths PS1 and PS2 as example

PS1 = {Cin, n5, n6, n7, n9, Cout}

PS2 = {Cin, n5, n6, S1} 

It can be easily verified that PS1 is a false path. It passes through gates G6 and G9 that require a

logic 1 at nodes n1 and n3 respectively to be sensitized, since this is the non-controlling value for an

AND gate. Such assignments imply a logic 1 at node n8, that makes multiplexer (G12) to select the

input connected at node Cin, impairing a transition propagation from node n9 to the output Cout.

The structural path PS2 passes through an XOR gate (G8). Therefore, there are four transition

sequences of transitions through this path:

{C in
r , n5

r , n6
r , S1

r
} {C in

f , n5
f , n6

f , S 1
f
}

{C in
r , n5

r , n6
r , S1

f
} {C in

f , n5
f , n6

f , S 1
r
}

All  four  sequences  are  sensitizable,  meaning  that  there  are  four  functional  paths  for  this
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structural path. Moreover, each functional path has multiple sensitization vectors.

A transition  propagation  through  gate  G6  requires  a  logic  1  at  node  n1,  while  propagation

through gate G7 requires a logic 0 at node n2. These requirements can be accomplished in two

ways:

a0=0,b0=1
a0=1,b0=0} → n1=1,n2=0

3.2. Logic System

3.2.1. Theoretical concepts

Digital circuits operation is based on Boolean algebra formalism defined by three basic logic

operations (inversion, AND and OR) operating on a two-valued element set consisting on what is

referred to as logic values (0, 1). Most of today digital circuits implement such logic values through

voltage  levels.  However,  although  digital  circuits  work  internally  with  only  two  states,  circuit

analysis typically uses a more sophisticated logic system, called logic algebra, consisting of more

than two logic values and usually referred to as  Multiple-valued logic.  Some  examples of logic

system used in digital simulations, where some values can be unknown, are: a three-valued logic

system {0, 1, X}, or a 5-valued logic system {0, 1, D, D, X}. These multiple-values logic systems

are commonly used in algorithms that generate patterns for stuck-at faults test. The extra values

represent problem-specific states,  and provide an abstraction level that helps simplifying circuit

analysis. For example, the unknown value  X allows carrying out a digital simulation of a circuit

without the need of knowing all input nodes values. In general, the set of logic values used depends

on the conditions of the specific problem to solve.

An algorithm to derive a logic system for a given application was published in  [32]. Together

with the generation algorithm also provides a completeness theorem that is used to ensure that the

logic system is complete.

Relying on general terminology and notation used in the literature, a v-valued logic, where v is

the  total  number  of  values  in  the  algebra,  is  denoted  as  Lv.  The  logic  system values  can  be

partitioned into basic values (Bv), and composite values (Cv), then  Lv = {Bv,  Cv}. Each composite

value represents a set of basic values. The notation for a logic system is summarized in (3.2).
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Basic values :
Composite values :

Bv={bi}

Cv={ci} } → Lv={Bv ,Cv }

ci={bi1 , bi2 , ... , b in} : bij∈Bv , ci∈C v

(3.2)

The algorithm to derive a complete logic system for a specific application presented in [32] can

be summarized in the following steps:

• The first step consists in defining the requirements for the specific logic system application,

and, based on these application requirements an initial set of values is produced. These are

the basic values of the logic algebra.

• Second,  each of  the  initial  set  of  values  combination is  evaluated using the  basic  logic

functions  {Not,  Or,  And}.  Complex  logic  functions  are  not  required  as  they  can  be

decomposed in basic ones.

• The result of evaluating the logic functions using the initial values provides new values not

present in the initial set. These new values are composite values and complete the overall set

of values. The evaluation process of the previous step continues using the new values as

input values, until no more new values are obtained.

3.2.2. State of the art

As commented earlier, there is a high number of logic algebras for many kinds of applications

available in the literature. These range from logic systems with only 3 values [33], to complex logic

algebras with a large number of values, like 23-valued and 41-valued system presented in [32]. As

an example, Table 3.1 lists the values of a logic system published in the context of path delay test

generation [33][34]. Fig. 3.2 shows the Hasse diagram of this logic system. A Hasse diagram is a

common way to represent a logic system, and the relationships between the composite values and

the basic values covered by each composite value.
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3.2.3. Developed Logic System

The purpose of the logic system developed in this work is to determine if a given perturbation

can propagate through a logic path. Therefore, the focus of the logic system is to allow representing

a transition, and determine the likelihood that such transition passes through a logic gate. From the

simplest point of view, the main characteristic of a logic transition is a signal starting with one logic

value and ending ups with the opposite one. Then, an easy way to represent a transition is through

the start and end values. This representation can be extended to other values besides transitions, and

is the basis of the logic system developed in this work.

As  was  stated,  the  first  step  is  to  determine  the  initial  set  of  values  based  on the  specific

requirements. Starting from the two basic logic states "0" and "1", and the concept of initial and

final  value,  the  possible  combinations  are  constructed.  The  values  are  represented  using  two

characters, the first for the initial state and the second for the final one ignoring what happens in the

middle. The initial set of values is completed with a fully undetermined value, i.e., values where its

initial and final values are unknown. Table 3.2 shows the initial set of values, formed by four basic

values and a composite value that represents any of the basic ones.
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Figure 3.2: Hasse diagram of 10-valued logic system [33]

0s 0s 1s 1s

0x Xs1 Xs0 1x

X

Xs

Table 3.1: 10-valued logic system

Value Description

0s Stable 0

1s Stable 1

0s Final value 0 but unstable

1s Final value 1 but unstable

0x Final value 0, stable or unstable

1x Final value 1, stable or unstable

Xs Unknown value but unstable

Xs0 Unknown value but not stable 1

Xs1 Unknown value but not stable 0

X Unknown value
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Table 3.2: Initial set of values

Initial
state

Final
state

Value
Compacted

notation
Basic values Description

0 0 00 0 {00} Steady 0

1 1 11 1 {11} Steady 1

0 1 01 R {01} Rising transition

1 0 10 F {10} Falling transition

X X XX X {00, 11, 01, 10} Unknown

Once the initial set of values has been established. The next step is to evaluate the three basic

functions using each combination. Table 3.3 shows the propagation through a NOT gate, in this case

all the output values are members of the initial set.

Tables  3.4 and 3.5, present the result of propagating the initial set through OR and  AND gates

respectively. Due to the commutative property of both functions only half of the table is given for

each  gate.  As  shown,  there  are  four  new  values  called  semi-undetermined  values  since  they

represent a case where only the initial or the final value is known, but not both. Fig. 3.3 gives an

example of this kind of composite values. An OR gate with a rising transition at input A and an

unknown value at input B produces a determined final value even if there is an unknown at input B,

since a logic "1" is a controlling value for the OR gate. However, the initial value is undetermined

because  there  is  no  controlling  value  nor  all  values  determined.  Each  of  these  new  values,

represents a set of basic values, as shown in (3.3) and (3.4).
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Table 3.3: Not gate propagation

In Out

00 (0) 11 (1)

11 (1) 00 (1)

01 (R) 10 (F)

10 (F) 01 (R)

XX (X) XX (X)
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Table 3.4: Or Propagation

OR
Input B

00 (0) 11 (1) 01 (R) 10 (F) XX (X)
In

p
u

t 
A

00 (0) 00 11 01 10 XX

11 (1) 11 11 11 11

01 (R) 01 11 X1

10 (F) 10 1X

XX (X) XX

Table 3.5: And Propagation

AND
Input B

00 (0) 11 (1) 01 (R) 10 (F) XX (X)

In
p

u
t 

A

00 (0) 00 00 00 00 00

11 (1) 11 01 10 XX

01 (R) 01 00 0X

10 (F) 10 X0

XX (X) XX

{X1}={11,01}
{1X}={11,10}

(3.3)

{X0 }={00,10}
{0X}={00,01}

(3.4)

If the logic functions are evaluated again using the new values, no additional new values are

obtained. Then, the logic system generation process is finished, getting a 9-value logic system that

can be demonstrated to be a complete system using the completeness theorem published in  [32].

Next, the complete set of values is shown dividing the values in basic  (3.5) and composite  (3.6)

values, while the Hasse diagram for this logic system is depicted in Fig 3.4.

B = {00, 11, 01, 10} (3.5)

C = {0X, X0, 1X, X1, X} (3.6)
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Figure 3.4: Hasse diagram

Since this logic system represents the values exclusively as an initial and final state, there may be

an issue when there are opposite transitions at both gate inputs, because depending on the arrival

time of each transition a static-hazard can occur. An example is shown in Fig. 3.5 for the case when

two opposite  transitions  arrive  to  an  OR gate.  As  shown,  the  hazard  presence  depends  on the

relative  arrival  time between  the  two transitions.  Given that  this  logic  system primary  goal  is

simplicity  and efficiency, this  situation  is  not  considered.  Accounting  for  hazards  in  transition

propagation results in a huge complexity increase due to its time-dependent nature. A workaround

to detect such kind of situations would consist in applying post-processing only when the hazard

generation is possible.

Figure 3.5: Static-hazard
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3.2.4. Dual logic system

The logic system introduced can be expanded to consider both transitions at a time, instead of

using a traditional two-step process, consisting in applying first one transition and then the opposite

one. Both transitions are considered simultaneously by converting the logic system to dual values.

Joining two values of the previous logic system creates such dual values that are represented by

using four characters, the first value initial and final state, and the second value initial and final

state. Starting from the R and F values that represent a single transition, we define two dual values

RF and FR, that represent both transitions simultaneously. FR is the result of inverting RF value.

Thus, the initial set of values of the dual logic system are:

Table 3.6: Dual logic system initial values

4-value
representation

Compacted
representation

Description

00 00 0 Steady 0

11 11 1 Steady 1

01 10 RF Rise / Fall transitions

10 01 FR Fall / Rise transitions

XX XX X Undetermined

Applying the same techniques described in the previous section using the initial  set  of dual

values we obtain four composite values. Each value is a combination of two previous logic system

composite values.  Table  3.7 shows these new values using the 4-values representation,  and the

compacted representation.

Table 3.7: Composite dual values

4-value
representation

Compacted
representation

0X X0 0X0

X0 0X X0X

1X X1 1X1

X1 1X X1X

Similarly to the previous case, it can be demonstrated that this set of values applied to each logic

function does not generates new values. Finally, Fig. 3.6 shows the Hasse diagram of the dual logic

system that treats both transitions simultaneously, with the same number of values than the simple

logic system.
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Figure 3.6: Hasse diagram of dual value logic system

Fig. 3.7 illustrates the logic system application to finding true paths, and specially the ability of

detecting incompatibilities in advance, thanks to the semi-undetermined values.

(1) All nodes of the circuit are initialized to undetermined value (X).

(2) The RF value is assigned to a circuit input node and is forward propagated. Even although

only one value is fixed, the semi-undetermined values allow the propagation.

(3) Then, the value 1X1 at the NAND gate output makes impossible to propagate the transition

through the first input of the OR gate. The logic system allows detecting this incompatibility

when only one input values is fixed.
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Figure 3.7: Logic system example
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3.3. Basic operations
This section details each basic operation involved in the path sensitization algorithms.

3.3.1. Sensitization

Gate sensitization,  is  the process of applying adequate logic values to  the off-path inputs to

propagate a transition from the on-path input to the gate output. I.e., setting the gate in transparent

mode with respect to the input making a transition [35]. The logic values required at the off-path

inputs  depend  on  the  gate  type  and  in  some  cases  on  the  on-path  input.  Furthermore,  the

sensitization of a gate can be accomplished using different sensitization criteria that also determine

the values to apply at the off-inputs.

Regarding the sensitization conditions, logic gates can be classified in three categories (single

input logic gates are not considered, since sensitization makes no sense for these gates):

• Basic  logic  gates:  gates  implementing  a  primitive  logic  function:  OR,  AND,  NOR and

NAND gates. These gates are characterized by having a single sensitization vector for each

input. Independently of the number of inputs of the gate, all off-path inputs must always

have a determined logic value and, in general, the value required is the same for each off-

path input. The exception to the last rule are the logic gates implementing basic functions

with some inverted input, like AND2A, i.e., a 2-input AND gate with the input A inverted.

These gates are typically found in standard cell libraries.

• Complex gates: gates that combine primitive logic functions in a single CMOS structure that

reduce the number of transistors required to perform the logic function compared to the

interconnection of multiple basic gates. Typically, complex gates comprise a combination of

few primitive functions, although more complicated functions like full-adder or multiplexer

are  also  used.  Concerning  the  sensitization,  complex  gates  have  in  general  multiple

sensitization vectors for each input node. Some complex gates can be sensitized without

applying logic values to all the off-path inputs, unlike the basic gates.

• Exclusive  gates:  The  XOR and  XNOR gates  have  the  special  property  that  the  output

transition does not depends exclusively of the input transition, but also depends on the off-

path input values. In this way, a logic gate of this category can act as an inverting or non-

inverting gate depending on the logic values feeding the off-path inputs.
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The sensitization criterion can be established to fulfill the requirements of the specific analysis to

be carried out, and determine the off-path logic values required to sensitize a gate under specific

conditions.   Depending  on  the  requirements  imposed  the  sensitization  criterion  the  specific

conditions may be more or less restrictive. Some general sensitization criteria are provided next,

however the specific requirements can be configured to obtain application specific conditions.

1. Full-determined steady sensitization: All off-path inputs take fully determined steady logic

values, and cannot change. The paths sensitized by using this sensitization criterion are fully

independent of the off-path delays.

2. Relaxed steady sensitization: this criterion is a relaxed version of the previous one. In this

case, steady logic values are required only for a reduced set of off-path inputs to guarantee

the sensitization of the gate, allowing undetermined values in the rest of the off-path inputs.

This criterion makes only sense for complex gates, since basic gates require all their off-path

inputs to be determined for sensitization. Like in the previous criterion, the paths sensitized

by this way are sensitizable independently of the off-path delays. These paths are referred to

in the literature as Robust testable paths [36].

3. Minimum  condition  sensitization:  the  conditions  imposed  are  the  minimum  capable  of

sensitizing the  gate,  without  imposing steady logic  values  at  the  off-path  inputs  neither

determining  values  at  all  inputs.  Thus,  semi-undetermined  logic  values  can  be  used  to

always guarantee the proper transition propagation.

Minimum condition sensitization:

The minimum condition criterion exploits the advantages of the logic system semi-undetermined

values with the objective of applying the most flexible logic value capable of sensitizing the gate.

Each primitive logic function has a controlling logic value that uniquely defines the output value

independently of the other inputs values. Therefore, when a gate has a controlling value at the on-

path input, the off-path inputs can have undetermined values. Fig. 3.8 shows this characteristic for a

rising and a falling transition applied to AND and OR logic functions.

As shown in Fig. 3.8, the off-path input of a logic gate can be undetermined when the on-path

input takes a controlling value, either for the initial or the final value depending on the transition
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direction and the logic function. Table 3.8 gives the logic values required at the off-path inputs of

the primitive functions for both transitions.

Figure 3.8: Minimum sensitization conditions

Table 3.8: Minimum sensitization condition

AND OR

R X1 0X

F 1X X0

This kind of sensitization is conditioned to the off-path delays, since if the off-path input is a

transition (X1 can remain steady 1 or perform a rising transition) this would result in a transitions at

both gate inputs. When both inputs transition the instant of the output transition depends on the

input  transitions  direction  and  their  relative  arrival  time.  If  the  input  transition  goes  from  a

controlling  value  to  a  non-controlling  value,  then  the  last  input  transition  forces  the  output

transition. However, if the input transitions change from non-controlling value to a controlling one,

then the first input transition induces the output change.

To get a more detailed insight of these sensitization criteria, they are detailed for each logic gate

category using the 9-valued logic system developed in this work. Table 3.9 shows the three gates

chosen to illustrate the sensitization criteria for each category, including name, logic function and

symbol.
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Table 3.9: Example gates

Basic gates AND3 Z=A∗B∗C

Complex gates OA12 Z=(A+B)∗C

Exclusive gates XOR2 Z=A⊕B

Basic gates (AND3):

The non-controlling logic value of an AND gate is 1, therefore to sensitize an input with a steady

value this gate requires a logic 1 at all off-path inputs. Since a basic gate requires a determined

value at all inputs, there is no difference between the criterion 1 and 2. The sensitization table for

both criteria is given in Table 3.10.

Table 3.10: AND3 steady values sensitization

A B C Z

RF 1 1 RF

1 RF 1 RF

1 1 RF RF

Table 3.11 corresponds to the sensitization table for the minimum condition criterion applied to

an AND3 gate and shows the criteria relaxation with respect the previous table. Steady values have

been replaced by semi-undetermined values following the minimum conditions requirements. As in

the others criteria, the basic gates, requires the same logic values at all off-path inputs.

Table 3.11: AND3 Minimum condition sensitization

A B C Z

RF X1X X1X RF

X1X RF X1X RF

X1X X1X RF RF
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Complex gates (OA12):

As explained earlier, complex gates may have multiple sensitization vectors for each input. In the

example case, only one of the three inputs has more than one sensitization vector, as shown in the

tables. Depending on the complex gate specific structure, the number of sensitization vectors for

each input varies. For gate OA12 it is clear that any input combination forcing a logic 1 at the

internal OR gate output sensitizes input C. Then, in the case of the first criterion shown in Table

3.12, three input vectors sensitize input C.

Table 3.12: OA12 Steady values sensitization

A B C Z

RF 0 1 RF

0 RF 1 RF

1 0 RF RF

0 1 RF RF

1 1 RF RF

The  second  sensitization  criterion  simplifies  the  cases  with  multiple  sensitization  vectors,

because requires only the minimal set of values fully determined. Thus, the logic 1 required at the

OR gate output necessary to sensitize input C, can be accomplished with a 1 at any of the inputs,

independently of the value of the other input, as shown in Table 3.13.

Table 3.13: OA12 Relaxed steady value sensitization

A B C Z

RF 0 1 RF

0 RF 1 RF

1 X RF RF

X 1 RF RF

Table 3.14 gives the sensitization vectors for the minimum condition criterion, where the steady

values of the previous table have been replaced by their semi-undetermined equivalents.

Table 3.14: OA12 Minimum condition sensitization

A B C Z

RF 0X0 X1X RF

0X0 RF X1X RF

X1X X RF RF

X X1X RF RF

45



Chapter 3: Framework core elements

Exclusive gate (XOR2):
Exclusive gates do not have controlling and non-controlling values, thus any value sensitizes the

gate. As shown in Table 3.15 when a transition arrives at input A, it is propagated independently of

the input B value, but this value determines the output transition direction. For this type of gate

there is no difference between the sensitization criteria, since an exclusive gate requires that all

input values are fully determined to propagate a transition.

Table 3.15: XOR2 sensitization table

A B Z

RF 0 RF

RF 1 FR

0 RF RF

1 RF FR

3.3.2. Implication

Implication is the process of assigning as many logic values as possible to combinational block

nodes to determine logic values without the need of taking any decision. This is, setting all logic

values that are uniquely determined by the logic values already assigned [37]. This is a vital step for

an efficient path sensitization, because maximizing the number of nodes with a logic value assigned

helps identifying logic conflicts as early as possible, minimizing the number of options in the cases

where a decision must be taken [38].

The implication procedure may be separated in two components depending on the implication

direction.

• Forward implication: propagates the logic values assigned at internal nodes toward output

nodes of the gates fed by these nodes. The process continues until there are no more logic

values that can be uniquely determined. Fig. 3.9 shows an example of forward implication: a

0 has been set to node B to sensitize the topmost OR gate, implying a 0 at node E, since it is

the controlling value of the AND gate. The forward implication ends here because a logic 0

at node E does not uniquely imply any value at the OR gate output. The forward implication

is a quite simple process since it only requires evaluating the gate logic function.

• Backward implication: The backward implication, works in the opposite direction than the

forward implication by assigning values at the gate input nodes, whenever the input values

are uniquely determined by the current output value. This process is slightly more complex
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than  the  forward  implication,  since  in  this  case  there  are  in  general  many  justification

options compatible with the current values that must be determined. Fig. 3.10 is an example

of backward justification. To sensitize the OR gate, a 0 is assigned to node D. There is only

one way to justify the 0 at node D, assigning a logic 1 to nodes B and C.

Figure 3.9: Forward implication

Figure 3.10: Backward implication
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3.3.3. Justification

Justification is the process of corroborating the logic values assigned to internal nodes by logic

values assigned to the combinational block primary inputs. The sensitization process assigns logic

values to the off-path inputs of a gate to allow propagating of a transition through it. However, this

is not enough to ensure that the gate can be sensitized. A logic value assigned to an internal node

must be justified, guaranteeing that is possible to set this logic value at the internal node, from

values applied to primary inputs of the combinational block without any logic conflict.

The backward implication performs a justification limited to the nodes with a value that are

uniquely determined. The rest of the nodes with assigned logic values that are not uniquely fixed

must be justified by taking some decisions, backtrack if a logic conflict is encountered and trying

another option.

The justification process may be required even when a node has been already justified in a

previous step. As long as the current value is less restrictive and compatible with the required value,

then the value resulting from the intersection between them (the current value and the required

value) is the logic value that must be justified. Fig. 3.11 shows an example where an OR gate must

be sensitized to propagate a transition through input  A. The off-path input  B already has a logic

value assigned (X0X). According to the minimum condition criterion, the value required to sensitize

the OR gate is 0X0. Then, both values X0X and 0X0 are compatible, and the intersection value is 0,

as shows Fig.  3.11. Thus,  the value that must be justified in this case is  0, since the currently

justified value (X0X) does not ensure that a 0 will be assigned.

Figure 3.11: Mixing values

Similarly  to  sensitization,  a  justification  table  is  constructed  for  each circuit  logic  cell.  The

justification  tables  must  be  generated  for  each  possible  logic  value  at  the  gate  output  node.

Therefore, these tables will be generated by all the values of the logic system except for the fully-

undetermined value (X),  for  which the justification makes no sense.  We take a  NAND2 as  an

48



Chapter 3: Framework core elements

example to illustrate the justification tables.

Initially we show the fully-determined steady values (0 and 1) justification included in Table

3.16. As shown in the backward implication example, there is only one way of justifying a 0 at the

NAND gate output since this output values requires a non-controlling value (1) at all input nodes.

Instead, the justification of a 1 can be accomplished in multiple ways, as shows the Table 3.16. The

first two options assign a steady 0 to one of the inputs, but the last two options, shaded in the table,

assign semi-undetermined values to both gate inputs. The reason to mark these options is that they

can induce glitches.  The input  combination {X0X, 0X0} is  compatible  with {FR, RF}, and as

shown in Fig.  3.12, if  the falling transition arrives before the rising one, a static glitch will be

produced at the output. However, if transitions arrive in the reverse order the output takes a steady

value.  Thus,  the  real  output  value  is  delay  dependent.  Then,  to  avoid completely such type  of

behavior  and  derive  a  path  sensitization  fully  free  of  glitches,  the  justification  combinations

susceptible to produce glitches can be discarded. Therefore, similarly to the sensitization criterion,

the justification criteria is configurable and can be user defined.

Table 3.16: Justification table. Steady values

Z A B

0 1 1

1

0 X

X 0

X0X 0X0

0X0 X0X

If the sensitization criterion used applies exclusively steady values and the justification is also

configured to assign only steady logic values, then no more justification options are required for a

NAND2 gate.  However, for other  strategies  the justification algorithm requires  the justification

options for all the output logic values. Tables 3.17 and 3.18 include the justification combinations

for the semi-undetermined logic values and for the transitions respectively.
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Table 3.17: NAND2 justification options for semi-undetermined values

Z A B

X0X X1X X1X

0X0 1X1 1X1

X1X
X0X X

X X0X

1X1
0X0 X

X 0X0

Table 3.18: NAND2 justification options for transitions

Z A B

RF
FR 1X1

1X1 FR

FR
RF X1X

X1X RF
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3.4. Sensitization Algorithms
The  sensitization  algorithms  determine  which  paths  are  capable  of  propagating  a  transition

through a combinational block, and which input vectors must be applied to the primary inputs to

enable the propagation through each path  [39]. This objective can be accomplished using various

methods.

The framework developed provides two types of sensitization algorithms fully customizable to

adapt to each specific analysis or circuit structure. The first algorithm is a stepwise algorithm that

exhaustively identifies true paths through a combinational block, exploiting the fact that many paths

share common sections. The second sensitization algorithm is intended to be applied to a given

structural path previously identified exploiting the fact that all gates to be crossed are known in

advance.

3.4.1. Stepwise algorithm

The  stepwise  sensitization  algorithm follows  a  strategy  to  exploit  the  fact  that  many  paths

through a circuit share common subpaths. Therefore, each common subpath can be sensitized only

once for all paths passing through it, and if a subpath turns out to be non-sensitizable then all paths

sharing this subpath are non-sensitizable. In this way a large number of paths can be discarded at

once, resulting in an overall algorithm efficiency improvement. This strategy has been extensively

used in the delay faults testing domain  [36]. However, in this work, this strategy is the base to

implement a highly customizable generic algorithm that will allow it to be easily adapted to a wide

range of applications. The algorithm walks through the circuit structure following a Depth-First-

Search (DFS) strategy, since explores as far as possible along each branch before backtracking to

take another branch. Even so, the framework provides another version of the algorithm that uses the

breadth-first search (BFS) strategy, where neighbor nodes are processed first before going deeper in

the circuit [40]. This variant of the algorithm is less efficient, especially in memory usage, as is well

known in graph theory. Nevertheless, for certain special situations it may be the best choice.

The generic stepwise algorithm flowchart is depicted in Fig. 3.13. It starts at an initial node and

advances  node  by  node  until  a  final  node  is  reached,  or  the  main  routine  returns  false  when

processing the current node. If the node being analyzed is a branch point (i.e. various options can be

taken from this point), the process state is saved to allow returning to this point and take the next

option when the current option is completely explored. The states are saved in a stack structure:
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each time that the algorithm has to backtrack it jumps to the last saved branch point. When the

algorithm jumps back to a branch point, if the option taken is the last option for this branch point,

this point is removed from the stack of saved states.

After checking if the current node is a branch point and the state saved if necessary, the next step

is the main routine of the algorithm. This main routine can be totally customized to be adapted to

specific requirements. However, the main routine generally tries to sensitize the next gate, and then

performs the implication of the assigned values whenever the sensitization finishes successfully.

The  next  step  to  perform is  the  justification, although it  may be  interesting  to  carry  out  only

sensitization and implication steps, and letting justification at the end instead of at each step.

If the main routine returns false (i.e. a logic incompatibility is found) then the algorithm jumps to

the last saved point taking the next possible option, all the paths sharing the current subpath are

discarded at once.

If the main routine result  is true, then the next node becomes the new current node and the

process is repeated until all options have been explored.

Figure 3.13: Stepwise algorithm

Fig.  3.13 shows a graph representing an example circuit structure. Nodes B, C, G and E are

branch points, since the algorithm can take multiple paths. The red line alongside the graph shows

how the algorithm travels the structure, going as far as possible before backtrack to the last branch

point to take another route.
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Figure 3.14: Sensitization graph

The generic algorithm can be applied in different ways thanks to the ability of customizing each

task. Each flowchart box depicted in Fig. 3.13 can be designed to adapt the algorithm to each circuit

analysis requirements where the algorithm can be useful. One of the most relevant ways in which

the algorithm can be modified to a specific use, is the ability of working in both directions. I.e.,

starting at an input node and advancing forward through the circuit until reaching the output nodes,

or reversely, starting at an output node and moving backward until reaching the input nodes. Both

variants are capable of provide the same results. However, depending on the circuit structure and

mainly on the analysis carried out, one version may be more efficient or more suitable than the

other.

Table 3.19 gives the operation performed at each flowchart box of Fig. 3.13 for each direction.

Table 3.19: Specific functions for reversible algorithm

Forward Backward

Initial node Primary input node Primary output node

Is final node? Is an output? Is an input?

Is a branch point?
Is fan-out stem

or multi-output gate
or multi-sensitizable gate

Multi-input gate
or multi-sensitizable gate

Next node Output of the sensitized gate Input of the sensitized gate

There is not a definitive answer to which option is better (forward or backward) since it is highly

circuit structure dependent. Forward sensitization exploits the fact that many paths share their initial

section independently of the output at which they end. Backward sensitization presents a similar

characteristic, since many paths ending at a given output may share their final stretch, and even

more, the last gate to an output node is shared by all paths ending at this output.

53



Chapter 3: Framework core elements

In the backward version almost all nodes are branch points, except those that are the output of a

single input gate, resulting that there are more branch points where the state must be saved than in

the forward direction version. However, each time that the process state must be saved, the current

subpath is shared by all paths from this point. While this increases the number of operations to store

and restore the state, it also increases the amount of paths sharing sections. This fact can be either

an advantage or a disadvantage with a strong dependency on the circuit structure.

3.4.1.1. Branch point

As outlined, a branch point is a node from which the stepwise algorithm can follow different

routes or use different sensitization options. Therefore, exploring all possible paths requires the state

be stored to allow coming back to this point and take another option. The conditions to become a

branch  point  depend  mainly  on  the  algorithm  direction,  but  it  may  also  depend  on  another

configurable conditions.

We will refer to Fig. 3.15 to illustrate the branch point concept for different cases, taking node

NA as the current node.

In the forward algorithm case, node NA can be reached either from N1 or N2 after sensitizing

gate G1. There are three characteristics that make NA a branch point.

• Node NA is connected to three gates, it has fan-out is 3, therefore the path may continue

through the gates G2, G3 or G4.

• Gate G4 is a half-adder and thus has two outputs. Consequently the path can go from NA to

N5 or N6 when traversing gate G4.

• Gate G3 is a complex gate and has multiple sensitization vectors for the input connected to

NA, as described in section 3.3.1, adding more options to the paths emanating from the node

NA.

The options  given by the  two first  characteristics  lead  to  different  structural  paths,  and are

mandatory to explore all possible structural paths. However, the multiple sensitization characteristic

only contributes to considering the specific sensitization conditions of each gate traversed, it can be

removed as a branch point condition if this issue is not required.

The backward algorithm can arrive to node NA either from the output nodes of the gates G2, G3

and G4 (N3, N4, N5 or N6). Due to the reverse direction, there is only one case where a node is not

a branch point: when it is the output of a single input gate (an inverter or a buffer). In all other
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cases, there will be at least as many options as number of inputs of the next gate. Then in this case

there are two features to consider.

• The current node is the output of a multi-input gate -like G1 in the example- then the path

can continue through either of the gate inputs.

• The next gate in the path is a complex gate and there is an interest in getting all possible

sensitization conditions.

Following the same previous analysis, only the former characteristic leads to different structural

paths,  while  the  other  is  necessary  only  when  the  sensitization  conditions  are  relevant.  Thus,

depending on the  analysis  performed,  there  maybe  no interest  in  exhaustive  exploration  of  all

sensitization conditions, and it is only required to determine which paths are sensitizable. Is these

cases the branch point conditions can be limited to those that traverse different structural paths.

In the cases where the multiple sensitization vectors for complex gates were considered,  the

compatibility of each sensitization pattern with the current logic values is verified during the branch

point processing. Proceeding in this way prevents storing and restoring the process state in the case

that a gate has multiple sensitization vectors but only one is  compatible with the current state.

Therefore, since this verification must be performed anyway, it entails an algorithm performance

improvement and a memory usage reduction.

Figure 3.15: Branch point
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3.4.1.2. Main routine

The main algorithm routine, is also fully customizable like any other algorithm component. The

next gate sensitization in the path is the main task in this step, since the algorithm objective is to

identify  true  paths.  Furthermore,  apart  from  the  sensitization  step,  there  are  other  tasks  are

performed in the main routine, predominantly the implication, i.e., setting all logic values that are

uniquely determined by the current assignments, and the justification.

Implication is an important step since it maximizes the number of logic values without taking

decisions, helping in an early detection of logic incompatibilities and thus improving the algorithm

performance. Therefore, in general there is no reason for not performing the implication just after

the sensitization.

The  justification  is  also  required  to  guarantee  that  a  path  is  sensitizable,  but  unlike  the

implication,  that  improves  the  performance without  introducing decisions,  the  justification  is  a

considerably more complex task, and requires choosing between multiple options, and keep track of

the choices made to allow a backtrack if the current options leads to a logic conflict. Then, there are

two options regarding the justification process.

1. Including the justification in the main routine, and perform the justification at each step, or

2. Wait until the end of the path to justify all the unjustified values accumulated during the

process.

Both options have advantages and drawbacks. Option 1 has the main advantage that justifying

the values at each node can detect non-sensitizable paths in advance without tracing the entire path.

Its  main  disadvantage  is  that  some valid  choices  at  a  given point  of  the  process  may become

incompatible  in  the  next  algorithm step,  forcing  a  backtrack  and a  modification  of  the  option

chosen. This  is  the main advantage of Option 2 since all  logic values  uniquely determined are

already  assigned  to  their  nodes,  reducing  the  number  of  possible  justification  options,  and

consequently the number of backtracks required.

Furthermore, the justification at the end may be interesting even when it is less efficient than the

justification at each step. Using this algorithm variant, waiting at the end of the path to perform the

justification may be useful in some cases, such as determining the probability of activation of a

given  path,  i.e.,  computing  how  many  input  vectors  allow  sensitizing  the  path.  An  exact

computation of this metric, is usually an unaffordable task except for small circuits although it can

be approximated. Therefore, if all justification decisions are delayed until the algorithm reaches the
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path end, then all logic values assigned before the justification step are necessary to guarantee the

path sensitization, and none of the values that requires a choice has been already settled.

Figure 3.16: Setting values

3.4.1.3. Implication

The implication step is not performed immediately after each value assignment, instead the node

is marked and subsequently the implication applies to each marked node. This procedure reduces

the number of implications to be performed. Fig. 3.16 shows an example where a path through gate

G1, represented by an arrow, requires assigning values to nodes B and C. If  the implication is

performed immediately after each assignment, the forward implication procedure through gate G2

will be performed twice, first for node B assignment and then for node C.

Besides the forward implication, marked nodes are also candidates for the backward implication

and  justification.  While  the  forward  implication  is  a  direct  process  requiring  exclusively  the

evaluation of a gate logic function taking the current input values, the backward implication is a

quite more complex process that requires determining which justification options are compatible

with the current logic state. Therefore, the implication is performed in two stages, starting by the

forward implication followed by the backward implication.

Fig. 3.17 shows the implication procedure flowchart indicating the two stages of the process. The

algorithm  starts  selecting  the  gates  to  be  evaluated,  avoiding  repeated  propagation,  and  then

perform the propagation of these gates. If some logic conflict is detected then the process ends,

otherwise the algorithm continues with the backward propagation.

In the backward implication, for each marked node, the algorithm first determines how many of
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the justification combinations are compatible with the current state. There are only two possible

results for this process.

• There is only one justification option, or only one of them is compatible with the current

values. Then, this node will be justified immediately.

• There are more than one compatible justification options. In this case the node is added to a

list of unjustified nodes to be justified later during the justification step. It may happen that

some logic values are uniquely determined, if the compatible options share a value at  a

given node. Table 3.20 shows the justification table of a gate OA12 when the output value is

1. As highlighted in the table, all options share the value of input C. Therefore, this value is

uniquely determined and will be assigned although multiple justification options exists. In

the example, the value of input C is shared by all options, but even if there is no value

shared by all options, a shared value among the compatible options may exists.

Figure 3.17: Implication flowchart
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Table 3.20: Justification table for OA12

A B C Z

1 X 1

1
X 1 1

1X1 X1X 1

X1X 1X1 1

The case where none of the justification options is compatible will never occur, since the logic

system and the forward implication avoid assigning an unjustifiable value to a node. To illustrate

this situation assume that the algorithm must to assign a value at the output of an AND2 gate, Table

3.21 gives its justification values for the output values 0 and 1. Then if a 0 can be assigned at the

output this ensures that both inputs are not 1 simultaneously. If this would have happen, the forward

implication would have assigned a 1 to the output node, avoiding the initial assignment.

Table 3.21: Justification table for AND2 gate

A B Z

0 X

0
X 0

0X0 X0X

X0X 0X0

1 1 1

3.4.1.4. Justification

Justification is  the most  complex step,  it  involves taking decisions,  keeping the trace of the

options chosen to allow a backtrack if the current choices lead to a logic incompatibility, and giving

the opportunity of trying other combination of options.

The implication step determines which justification options are compatible with the current logic

values creating a list of unjustified nodes and their compatible options. This is the starting point of

the justification algorithm.

Fig.  3.18 Flowchart  shows  how justification  algorithm loops  until  all  unjustified  nodes  are

justified as long as there are no logic conflicts.  At each loop the algorithm tries to  justify one
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unjustified node, starting by the first compatible option. Early identification of compatible options

carried  out  by  the  implication  process,  simply  compares  the  current  logic  values  with  each

justification vector but does not perform the implication of these values. Therefore, the fact that an

option was identified as compatible does not guarantee its compatibility. However, it provides a first

estimation of which justification options must be attempted.

Figure 3.18: Justification algorithm flowchart

First, the unjustified nodes are sorted based on their number of compatible options starting the

justification by the nodes with less compatible options.  A node with many options offers more
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flexibility than a node with only two options, therefore in general the strategy of justifying first the

nodes with less options reduces the number of backtracks. If two unjustified nodes have the same

number of compatible options, then the node with higher deep goes before. The deep of a node is

the distance in number of gates from this node to any primary input. Therefore a node with a higher

deep usually requires more complex justification due to its higher distance to the inputs, improving

the performance if it is justified first. Since all unjustified nodes must be justified, the more efficient

way is to begin by the more difficult nodes.

During the framework development  various options  were tested using benchmark circuits  to

determine  which  strategy  provides  better  results  in  general.  The  experiments  performed

demonstrated that sorting the unjustified nodes is significant, since omitting this step decreased the

algorithm performance in all tested cases. The algorithm performance was also shown to depend on

the  criterion  used  to  sort  the  unjustified  nodes.  After  examination  of  various  unjustified  nodes

sorting options,  we found that the sorting criterion based on the number of compatible options

provides the better results in general. However, since the framework development was focused on

the ability of customizing each algorithm, the criterion used to sort the unjustified nodes can also be

user-defined.

Besides sorting the unjustified nodes, the compatible options for each one are also sorted. They

are sorted in function of the number of logic values to be set, beginning by the options with fewer

requirements. Since each logic value assigned represents a new unjustified node, except if the node

is a primary input, the best strategy is to minimize the number of assignments.

At each loop iteration the algorithm tries to justify the next node in the queue, beginning by the

first option. The current state is cloned to allow backtracking and take another option if necessary,

except if the current option is the last option for this node. In this case there is no reason to create a

copy of the state.

The following step is the main routine of the justification algorithm, i.e. setting the logic values

required to justify the current node. Furthermore to set the logic values, this process performs the

implication of the assigned values, adding to the queue the new unjustified nodes that result from

the current justification. If during implication there is no logic conflict, then the unjustified node

queue is updated. This process verifies again the compatible options for each unjustified node. Due

to the values assigned to justify the current node, the compatible options may change. The expected

results for the updating step of each unjustified node are as follows:
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• The compatible options remain unchanged.

• There are fewer compatible options.  Some of the options previously compatible became

incompatible.  If  the  compatible  options  are  reduced  to  only  one,  then  the  implication

procedure is applied to this node and it is erased from the queue of unjustified nodes.

• The node is already justified.  The values assignments performed to justify a given node can

implicitly justify another node. In this case the node is dropped from the queue.

The case where there are no compatible options will never occur because this situation would

create a logic conflict during the implication step of the values that avoid this justification.

Performing this process each time that a node is justified may appear very time consuming at

glance,  however  the  experiments  performed  with  benchmark  circuits  show  that  this  process

improves considerably the algorithm performance, specially when the unjustified nodes are sorted

again after the update.

Once the main routine has finished, if no logic conflict is detected, then the algorithm continues

with the next unjustified node, until all nodes in the queue have been processed. However, if some

task of the main routine detects a logic conflict, then the rest of the main routine is skipped and the

current state is erased. After that, if there are more options for the current node then the algorithm

repeats the main routine using the next option. Otherwise, if all options for the current node have

been explored then the algorithm discards the current state and backtracks to the last node that

offers an alternative option,  if  exists. In the case that there are no alternatives,  the justification

algorithm finishes with a false return value.

Although the justification is successfully completed, the stored states must be kept because a

justification  that  is  currently  compatible  might  become  incompatible  due  to  the  next  gate

sensitization, requiring discarding the current justification options and trying another one.

Since justification can be extremely time consuming due to the huge number of combinations

than can exist for large circuits, this process must be limited. Justification is limited by setting a

backtrack threshold. Each time that the algorithm discards the state and backtracks to a previous

node for another  option,  a  backtrack counter  is  increased.  If  the backtrack counter  reaches the

threshold, then the justification algorithm ends. The backtrack threshold is an adjustable parameter

of the justification algorithm.
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3.4.2. Full path algorithm

The  full-path  sensitization  algorithm  is  another  strategy  included  in  the  framework.  This

algorithm requires a structural path previously identified instead of performing an exhaustive path

identification  through  the  entire  combinational  block.  The  stepwise  algorithm  is  focused  on

identifying as much as possible true paths by processing a given circuit section, exploiting the fact

that many paths have sections in common. However, depending on the nature of the analysis carried

out,  the interest  does  not  rely on an exhaustive  path identification.  Moreover, the  exhaustively

exploration  of  all  true  paths  in  large  circuits  may be  very time consuming.  In these  cases  the

sensitization can be focused on a set of structural paths previously selected. Then, this algorithm

tries to sensitize a given structural path.

Additionally, this algorithm may be used to refine the results obtained by the stepwise algorithm.

For example, in a path with gates having multiple sensitization vectors, maybe not all combinations

can be justified due to the backtrack threshold. However, all sensitization combinations could be

true. In a case like this, if all sensitization combinations are of interest then the full path algorithm

can be applied to verify the sensitization combinations discarded by the stepwise algorithm due to

the backtrack limit, getting more precise results.

While  the  stepwise  algorithm  takes  advantage  of  the  fact  that  many  paths  share  common

subpaths, the full path algorithm exploits the fact that all gates that must be traversed are known in

advance. Therefore, to exploit this feature the algorithm starts by setting all logic values that are

common to all possible sensitization options to sensitize the entire path.

As shows the flowchart of Fig. 3.19, the first step of the algorithm is a loop that applies for each

gate in the path. In each loop iteration, if the processed gate has only one sensitization vector then

this sensitization vector is applied. Otherwise if the gate has multiple sensitization vectors only the

logic values that are common to all sensitization vectors are assigned, if any.

To illustrate this loop, Fig. 3.20 is an abstract representation of a path where each box represents

a gate and the number inside is the number of sensitization options for this gate. As shows the figure

the third gate has three sensitization vectors, but sharing a logic 1 at first off-path input. Therefore,

the first loop of the algorithm will set the sensitization vectors for the second and fifth gate, since

they have only one option, and the shared logic value of the third gate. There are two gates, first and

fourth, that have two sensitization vectors without shared values, hence no value will be assigned in

these cases. Even without implication or justification, there exists the possibility of logic conflicts
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during this process, since it may happen that two gates share some off-path input nodes. In this case

the algorithm ends, and the structural path is a false path.

Figure 3.19: Flowchart of full path sensitization algorithm

Figure 3.20: Full path example

If the first loop has ended successfully the next step is the implication of all logic values set in

the previous step. If a logic conflict is detected during the implication, then the process finishes with

a negative result.

Once the implication ends successfully, all logic values required to sensitize the path that do not

imply  decisions  have  been  set.  The  following  step  verifies  again  the  gates  with  multiple

sensitization options; this is done because the logic values assigned during the implication may

prevent some sensitization options due to logic conflicts.
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The flowchart for this algorithm section is depicted in Fig. 3.21. As shown in the figure, a loop

checks each multi-option gate, verifying which sensitization options are compatible with the current

logic values. Hence, three cases can occur:

• None of the sensitization options is compatible with the current values. Therefore, the path

cannot be sensitized.

• There  is  only  one  option  compatible.  Hence,  the  corresponding  values  are  set  and  the

implication is performed. If no logic conflict is detected the algorithm goes to the next gate,

otherwise the path is false.

• More than one option is compatible. However, if not all options are compatible, then some

values can be shared between the options. Otherwise the shared values would have been

detected in the first stage. Therefore if there are shared values, the algorithm performs the

assignment and the implication.

Figure 3.21: Flowchart of multi-option verification

Finally if logic conflict is detected during this second step then there is no way to sensitize this

path. On the other hand the algorithm passes to the final step.
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The final algorithm step completes the path sensitization trying the sensitization options that are

still compatible, justifying all values. However, similarly to the stepwise algorithm, the full path

algorithm is customizable. Thus, the final step can be performed in two ways, depending on if the

interest  is  simply determining if  the path is  sensitizable,  or if  an exhaustive examination of all

sensitization combinations is preferred.

Both methods are quite similar, except that in the former case the algorithm ends when one

combination proves that the path is true, rather than exploring all combinations.

Figure 3.22: Flowchart of multi-option assignment

The flowchart for the version that explores all combinations is shown in Fig. 3.22. The process

uses a stepwise strategy to avoid repeated work. At each loop iteration the algorithm saves the

current state, assigns the values for the current gate and option, and performs the implication.

If a logic incompatibility is detected, the current state is discarded, the last saved state is restored

and  the  algorithm tries  the  next  option  for  the  gate.  The  process  goes  on,  until  all  gates  are

sensitized or all  combinations result  incompatible.  When all  gates have been sensitized without

logic incompatibilities, then the final process, the justification of all unjustified nodes, starts.

Finally if the justification can be performed, then the path is saved. In all cases, the algorithm

jumps back to the last saved state to explore the remaining sensitization combinations.
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3.4.3. Path graph creation

Following with the modularity and flexibility philosophy of the framework a set of algorithms to

create  graphs  representing  the  paths  through  a  combinational  circuit  are  provided  [41].

Subsequently the graph may be used by other algorithms to accomplish multiple objectives. Various

path graph creation strategies are available; the graph can be created either from inputs or from

outputs, and can be divergent or convergent depending on the specific requirements.

Figs. 3.23 to 3.25 show three path graphs for the 2-bit carry-bypass adder of Fig. 3.1. Fig. 3.23

shows a convergent graph for the paths starting at input node a0 and ending at output node Cout. In

this structure each circuit node appears only once being a direct representation of circuit structure.

However an exhaustive path analysis is difficult to perform on this structure and can be solved with

a divergent graph.

Figure 3.23: Non-divergent In-Out graph

The graphs in Figs. 3.24 and 3.25 are divergent where each structural path has its own branch by

repeating the shared sections. In the first case the graph emanates from input node a0 and the graph

in Fig. 3.25 originates from the output node Cout.
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Figure 3.24: Path graph from input

Figure 3.25: Path graph from output

Divergent  graphs  require  considerably  more  resources  than  convergent  ones,  however  a

divergent graph provides advantages for algorithms traversing the graph to perform some task, like

computing the propagation delay through each path. A divergent graph keeps all path information

simplifying the task of estimating the propagation delay through each structural path. The same

reasoning can be applied to other analysis like SET propagation.

Actually the stepwise sensitization algorithms follow this structure without explicitly generating

the graph. Each time that a branch is proved non-sensitizable and the algorithm discards the branch

then this is equivalent to prune the branch from the graph, removing all ramifications hanging from

that branch. However, although the stepwise algorithms does not create explicitly the graph for the

circuit  under  test,  there  are  cases  where  the  graph  creation  is  a  useful  strategy  or  even  a

requirement. Once a path graph has been created the sensitization techniques can be applied to

prune some branches and simplify the graph.

In following chapters will show some path graph applications.
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Many  algorithms  have  been  developed  over  the  years  to  identify  the  paths  through  a

combinational circuit, each one improving the performance of its predecessors, while adopting its

own data structures to keep the path information and the current state of the process consistent [36]

[42][43]. However, the increase of algorithms efficiency together with the increase of processors

computational  power,  can  not  fight  against  the  fast  increase  of  circuit  complexity,  due  to  the

exponential nature of the problem.

An exhaustive identification of all functional paths is unaffordable for most of today circuits

since  the  number  of  paths  grows  exponentially  with  circuit  size,  making  this  a  problem

computationally prohibitive.  This task is  the typical NP-complete problem identified during the

early years of test pattern generation for digital circuits [44]. These issues are not exclusive of paths

identification problem and are extensible to other kinds of circuit analysis algorithms.

This work presents an alternative solution to circuit complexity analysis that instead of trying to

increase  the  algorithm  efficiency  it  reduces  the  circuit  complexity,  without  information  loss

regarding the circuit structure. The techniques presented in this work are general and can be applied

not only to the critical path problem, but also to other domains like circuit design improvement

through area or power reduction [45].
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4.1. Simplification techniques
The framework developed in this Thesis provides a set of tools intended to simplify the circuit

under  test  before  applying any posterior  analysis  algorithm.  Such preprocessing techniques  are

aimed at reducing the circuit complexity with the objective of increasing the algorithm speed when

applied to highly complex circuit designs. However, not only the speed is relevant, some circuit

designs  are  unaffordable  even  for  the  most  efficient  algorithms  if  applied  without  a  previous

simplification stages. Preprocessing techniques also allow identifying specific issues of a design

that might be improved by redesigning a portion of it. Moreover, preprocessing techniques might be

also used to isolate specific circuit regions, allowing to focus a specific analysis while discarding

unrelated elements.

The techniques exposed are classified into the following categories:

• Partitioning: These techniques are intended to separate regions of a combinational block to

be treated independently in a plain structure.

• Encapsulation: This procedure wraps certain circuit parts into sub-circuits and treats them as

a single block, hiding the internal structure. Encapsulation can be applied iteratively creating

a hierarchical structure.

4.2. Partitioning techniques

4.2.1. Auxiliary routines

4.2.1.1. Touch related nodes algorithm

The touching related nodes algorithm is  a simple strategy to determine which nodes can be

directly  affected  by  a  given  node,  or  which  nodes  can  directly  affect  such  node  value.  This

algorithm is just an auxiliary routine used internally by the partitioning techniques. Depending on

the direction in which the nodes are touched, we refer to forward touch when the nodes are touched

towards the outputs. Otherwise if the nodes are touched towards the inputs we refer to a backward

touch. Fig. 4.1 shows an example of both kinds of touch, from the node A.

Solid arrows represents the  forward touch: all the output nodes of the gates having node A as

input are touched. This includes all nodes that can be directly affected by a change in the logic value

of node A. The region of a circuit identified by this technique is referred as the output cone of node

A, i.e., all the nodes that can be reached from the current node.
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The backward touch is represented by dashed arrows in Fig. 4.1. In this case all the input nodes

of the gate from which node A emanates are touched. Thus, touching all nodes such that a change in

their value can directly affect to the node A. In this case the region of a circuit formed by all nodes

from which the current node can be reached, is referred to as the input cone of the node A.

DEFINITION 1: The  output cone of a node is the set of all nodes that can be reached from this

node.

DEFINITION 2: The input cone of a node is the set of all nodes from which the considered node

can be reached.

Figure 4.1: Touch nodes algorithm

In  both  cases,  the  touch  is  propagated  forward  or  backward  from each  node  that  has  been

touched. This process continues until reaching an end node. The end node is in general an output

node for the forward touch and an input node for the backward touch. However, any other node can

be defined as the end node of the algorithm if the specific process wants to be restricted to a limited

circuit  region.  Both  techniques  are  used  individually  or  in  combination  in  many of  the  circuit

preprocessing techniques available in the framework developed.

4.2.2. Separate independent sections

In general, not all inputs and outputs of a combinational block are related to each other, making it

possible to analyze and/or optimize unrelated circuit regions separately. This method consists in

finding combinational circuit sections that are fully independent from the rest of the circuit. I.e., any

logic value applied to any of a section inputs, will never impact the gates and node values outside

such section, under any condition. The success of this technique is very circuit dependent, because
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many circuits  have no independent sections. However, if  independent sections are present,  in a

given circuit, each section can be treated as an individual circuit, and processed concurrently. Fig.

4.2 shows an example of a very simple circuit with two independent sections. Input nodes N4 and

N5 have no relationship to the rest of the circuit except with the node N8 that is only affected by N4

and N5. Thus, the gate G3 and its nodes are totally independent of the rest of the circuit, and may be

treated independently.

Typically, circuits  with independent  sections have one large section that  includes almost  the

entire circuit,  plus some very small sections. For this reason, this technique usually has a small

impact on the circuit complexity reduction. The advantage is that the algorithm to separate these

sections is very simple and fast.

Although the  circuit  complexity  simplification  can  be  usually  slight,  its  simplicity  makes  it

worthwhile. Its impact on the algorithms efficiency is mainly a memory usage reduction to store the

circuit structure and the state information. Usually, the algorithms use an array to track each circuit

node state during analysis. Although the node number reduction achieved by this technique may be

small, its effect is magnified if a large number of state arrays must be stored, or if the algorithms

constantly make copies of these arrays during the circuit processing.

Figure 4.2: Independent sections

To determine the independent sections of a combinational block, the tool leans on the related

nodes touch algorithms. Starting at the first block input node, all nodes are touched in both forward

and  backward  direction.  Touch  is  propagated  until  there  are  no  more  pending  nodes  to  be

propagated. When this process ends, all the combinational block nodes that have not been touched

are  fully  independent  from the  circuit  region covered by all  touched nodes.  The same process

repeats iteratively, starting by the first input node that was not touched in the previous step, until

there are no remaining untouched nodes.
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Table  4.1 gives the results of this technique applied to some benchmark circuits, showing the

number of nodes in the main circuit section, the number of nodes of the secondary sections, and the

percentage of nodes outside the main section with respect to the total number of nodes.

Table 4.1: Independent sections

Circuit
# of nodes Percentage of node

outside the main
section

Main
section

Secondary
sections

c880 209 10 4.57%

c2670 389 167 30.04%

c5315 656 57 7.99%

c7552 860 20 2.27%

b12 656 19 2.81%

b17 11833 141 1.18%

As shown, in general the percentage of the circuit that can be separated is small,  with some

exception like the ISCAS c2670. Moreover, in all cases the runtime required to separate the sections

is absolutely negligible, reaching some tenths of a second in the worst case.

4.2.3. Partitioning by Output

In many instances, the interest of a specific circuit behavior is related to a specific output node,

or a subset of output nodes. For example, the soft-error-rate (SER) analysis is a candidate, since the

interest relies on estimate the probability that a soft-error will be produced at a given output node.

In these cases, the circuit structure can be pruned eliminating all the circuit regions that have no

impact on the output of interest behavior. Such a situation is equivalent to selecting the input cone

of the selected output node.

In general, sensitization algorithms propagate forward the logical values assigned to the nodes to

maximize identifying the logic values that can be uniquely determined to detect logical conflicts as

early as possible and improving the algorithm efficiency. This process is called forward implication

in the literature. Then, discarding the circuit regions outside the input cone, avoids propagating the

logic values through gates that are irrelevant for the analysis being carried out. In addition memory

requirements to store the circuit structure are reduced together with the state information used by

the  algorithm.  Since  the  output  cones  of  each  output  are  independent,  they  can  be  processed

concurrently.
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Figure 4.3: Partitioning by Output

Fig. 4.3 shows the schematics of a circuit portion with a showing line the input cone of one of its

outputs. As shown, the circuit the fan-out of the nodes A, B, C, D is two, however after selecting the

output  cone,  the fan-out  of all  these nodes reduces to  one.  The nodes fan-out reduction has in

general a significant impact over the computation time required to process the circuit, and reduces

the number of nodes where the algorithm must take a decision.

The input cone of a given output node is easily identified by using the backward touch technique

starting at the output node toward the input nodes. The result  is a set  of touched nodes. If the

interest  lies  of  more  than  one  output  node simultaneously, the  equivalent  circuit  can  be  easily

identified by performing the intersection between the set of each output touched nodes. Once after

this step, all non-touched nodes are discarded, as well as all the gates related to these nodes.

As explained above, the sensitization algorithms may work in both directions, therefore when the

sensitization is applied to an input cone of a given output node, is the kind of problem where the

backward sensitization may be more suitable than the forward version.

4.2.4. Partitioning by Input

The case of partitioning a circuit by an input is slightly different from that of an output, in the

sense that the previous technique involves uniquely the input cone of the considered output node.

However, selecting the circuit region related to a given input node involves not only its output cone,

but also all nodes required to justify the logic values of the off-path inputs of the gates belonging to

the output cone. I.e., the input cone of each node located within the output cone of the input node

selected.
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Fig.  4.4 shows the same circuit portion used to illustrate output selection technique, where the

input selection for the node E is represented. The dark shading area identifies the node output cone,

All the nodes required to identify the paths starting at this node must then be added as shown by  the

light shading area that involves the nodes required to justify the logic values imposed to sensitize

paths through the output cone.

Figure 4.4: Partitioning by input

In general, the input selection technique involves a larger region of the circuit than the output

selection technique. In some cases the entire circuit can be required.

By using this technique, the processing algorithms avoid propagating values through regions of

the  circuit  that  are  unrelated  to  the  area  of  interest.  However,  there  is  a  way  to  simplify  the

processing of the paths starting at this node, by considering both regions represented in the figure in

different manner: all the nodes that can be crossed by a path are located inside the output cone,

while the other region is involved only in the justification of the logic values required to sensitize

the paths. We refer this last area as Justification region. Then both regions, the output cone and the

justification region may be treated separately.

Furthermore, if this method is combined with the technique of separating independent sections,

then in some cases the justification area can be divided into various fully independent blocks, even

when the whole combinational block cannot be divided in independent sections. That is because

justification region encompasses only a portion of the circuit outside the output cone. Referring to

the example of the Fig. 4.4, it is easy to verify that the justification region can be separated in two
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independent sections. One section include one single gate, and the other with three gates.

DEFINITION 3: Justification  region,  is  a  combinational  block  region  that  during  the  current

objective is used only to justify the logic values assigned to nodes inside the region being analyzed

until the input nodes.

4.2.5. Partitioning by Input-Output

The previous techniques can be combined to get the highest efficiency. To determine the paths

that can cross a combinational block from a given input toward a given output, both cones can be

used to delimit the region through which any path of interest travels. This allows concentrating the

effort in the specific region of interest, discarding unrelated gates, while dividing each block part

that can be treated independently from the rest of the circuit.

Fig. 4.5 shows an abstract representation of a combinational block where the input and output of

interest have been highlighted. To identify the common paths, the combinational block is divided in

various regions.

Fig. 4.5 shows the output cone of the input considered, and the input cone of the output node of

interest. The output cone corresponds to the area with vertical stripes, and the input cone have been

marked with horizontal stripes. The area defined by the intersection of both cones delimits the path

region, i.e., all paths from the input to the output considered pass exclusively through this region.

DEFINITION 4: Path region, is the region of a combinational block that covers all nodes through

which a path can pass for a specific problem defined by an input and/or an output.
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Figure 4.5: Partitioning by Input-Output

The partitioning process of a combinational block may be described in an analytical way using

set theory:

• If ni is a node of a combinational block,

• then C={ni}:0≤i≤N nodes is the set of all nodes of the combinational bloc.

• CONEIn(ni) = set of all nodes inside the input cone of the node ni.

• CONEOut(ni)  = set of all nodes inside the output cone of the node ni.

Thus, the difference between the set of all nodes and the input cone of an output node Z (4.1),

determines the region that can be discarded.

C ∖CONE In (Z )=Ur (Z ) (4.1)

Then, Ur(ni) is the unrelated region, i.e., the set of all nodes non related with the node output ni.

As has been advanced, the intersection between the input cone and the output cone defines the

path region (4.2).

CONEOut(A) ∩ CONE In(Z ) = P (A ,Z ) (4.2)

Where P( A, Z ), is the Path region between the nodes A and Z.

All the nodes lying within the input cone of the output node, that do not belong to the path

region, define the justification region for these pair of input and output nodes (4.3).
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CONE In(Z ) ∖ P (A ,Z ) = J (A , Z ) (4.3)

Where J( A, Z ) is the Justification region of the nodes {A, Z}.

Finally the combinational block can be partitioned into three disjoint regions, the path region, the

justification region and the unrelated region. Once the combinational block has been partitioned, the

unrelated region can be discarded, since it  is irrelevant for the problem to be solved. The path

region and the justification region are both required to determine the sensitizable paths through the

circuit, however they are treated separately.

The justification region can be preprocessed using the algorithm to identify independent sections.

As already mentioned,  although the  combinational  block under  test  may not  have  independent

sections, the justification region represents only a part of the whole circuit and might have locally

independent  sections  connected  through  gates  that  are  located  outside  the  justification  region,

making the entire circuit to have no independent sections.

The fact that the justification region can be divided in independent sections helps to simplify the

justification process, since each section has its own justification structure. This, in turn, reduces the

memory required by the structures and allows processing each one concurrently. The justification

algorithm uses a tree to keep track the nodes that must be justified and the options available to

justify each node. Similar techniques are used generally in others path finding algorithms.

To illustrate the process, assume that during a sensitization of a path there are 3 nodes to be

justified (n1, n2, n3), and each one can be justified in two ways (a, b). Fig. 4.6 shows an abstract

representation of a justification tree for this situation. Before identify which justification options are

incompatible between them, the tree must keep all possible justification combinations. If some of

the tree nodes are unrelated, their justification options can never be incompatible between them.

This  situation  cannot  be  detected  during  the  tree  construction  without  including  an  additional

process. However, if the justification region consists of separated regions treated independently,

then unrelated justifications are located in different justification structures. Fig. 4.7 shows the same

case than Fig. 4.6 assuming that nodes n1 and n3 belong to one section and n2 to an independent

section. As shown in the figures, the resulting justification trees after separating the independent

sections are simpler than the original one, requiring less memory to store it, and even more, each
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tree can be computed simultaneously.

An additional advantage of circuit partitioning is that some sections can be pre-justified. This is:

before the sensitization step,  the justification sections  can be processed,  identifying in  advance

combinations  of  output  values  that  are  incompatible.  This  allows  discarding  directly  such

combinations in the sensitization step. The suitability of this technique depends on the block to pre-

justify size. Depending on the block size, the justification can be fully performed, determining the

validity  of each combination,  or partially  identifying only some combinations as compatible or

incompatible, those that are easily identified. However, if the block is too large this technique can

be unaffordable.

Figure 4.6: Justification tree 1

Figure 4.7: Justification tree 2

The pre-justification of a block may allow simplifying the path region before starting its analysis.

An example of this  case is depicted Fig  4.8.  P represents the path region, and J a justification

section.  If  J  can  be  pre-justified  demonstrating  that  both  output  nodes  can  be  set  to  1

simultaneously, then the gates G1 and G2 may always be sensitized. Thus, there is no reason to

check its sensitization during the path analysis, and the gates can be considered single input gates as

shown in Fig. 4.8b.
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(a) (b)

Figure 4.8: Pre-sensitization
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4.3. Encapsulation techniques
The encapsulation techniques are another approach to reduce the complexity of a combinational

block. These techniques are based on packaging certain parts of the circuits into sub-circuits, taking

such sub-circuits as single gates. Therefore, the problem of finding paths through the circuit reduces

to finding the paths through each sub-circuit, and the paths through the global compacted circuit.

This technique may reduce exponentially the number of paths to be computed, making the task of

identify the paths through a combinational circuit possible.

4.3.1. Principle of the technique

In  the  worst  circuit  scenario,  the  order  of  magnitude  of  the  number  of  paths  through  a

combinational  logic  block grows exponentially  with the circuit  size (i.e.  the number of nodes).

Therefore, a reduction of the node number may drastically reduce the number of paths. In addition,

to circuit node reduction, the technique developed identifies repeated circuit structures labeling their

encapsulation under the same block.

With this objective, has been developed a set of algorithms that package specific circuit parts

into sub-circuits. Each sub-circuit can be analyzed in a very short time, while contributing to an

exponential  reduction of the main circuit  complexity providing an exponential  reduction of the

paths number. For instance, Fig.  4.9 represents a large circuit divided into four sub-circuits. The

number of paths going from the input node In-1 to the output node Out-1, can be extremely large.

Assume that each sub-circuit (SC-X) has 100 paths, from one of its inputs to one of its outputs. This

means that potentially there could be 2,000,000 paths from  In-1 to  Out-1 if the entire circuit is

considered, as shows (4.4). However, if the circuit is partitioned into independent sub-circuits, and

the path-finding algorithm is applied individually to each sub-circuit and the sub-circuits are used as

if  they were simple gates to compute the overall  circuit  paths,  then the number of paths to be

computed reduces exponentially, and the task becomes affordable.
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Figure 4.9: Subcircuit encapsulation

The following expressions show the number of paths to compute for the original circuit  (4.4),

and for the case of using sub-circuits (4.5). As shows (4.4), the total number of paths of the plain

circuit from In-1 to Out-1 are the paths that pass trough {SC-1,SC-2,SC-4} plus the paths through

{SC-1,SC-3,SC-4} giving a large number of paths. In the second case  (4.5), each sub-circuit  is

processed independently, and then is processed the main circuit. In this case, the number of paths

that must be calculated is reduced to the sum of the paths of each sub-circuit, plus the paths of the

global circuit. In this very simple example, the number of paths that must be computed is reduced

by several  orders of  magnitude.  In a  real  circuit,  the situation usually  not  as  favorable,  but  as

demonstrate the results presented later the reduction are very significant.

nPathsSC−1⋅(nPathsSC−2+nPathsSC−3)⋅nPathsSC− 4=2,000,000 (4.4)

nPathsSC−1+nPathsSC−2+ nPathsSC−3+nPathsSC−4+nPathsglobal=402 (4.5)

In addition, if the original circuit has a number of repeated structures, then some of the identified

sub-circuits have identical structure, and the corresponding sub-circuit will be only processed once.

This helps in a further reduction of the circuit structure to be processed, and identifies repeated

structures that can be optimized independently of the main circuit, even at the full-custom level.

Depending on how many times each structure is repeated within the circuit, the effort of a full-

custom design of the sub-circuit may lead to a large improvement of the main circuit area, power

and delay.

The following sections describe in detail each circuit simplification technique adopted to reduce

the  circuit  complexity,  without  losing  information  required  to  compute  the  delays  and  other
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strategical parameters for design verification and optimization [46]. These techniques then can be

applied iteratively, since the circuit resulting from applying of one of these techniques may has an

appropriate structure to apply a technique that could not be applied before the first simplification.

4.3.2. Specific techniques

Following  will  be  explained  each  encapsulation  technique  that  identifies  specific  structures

inside a circuit, encapsulating these structures inside a sub-circuit, reducing the number of nodes

and logic gates of the circuit. Such techniques are independent and can be applied in any order and

even iteratively.

4.3.2.1. Gates with special input configuration

In certain cases, automatic synthesis tools generate a structure with standard cells that have some

of  its  inputs  connected  to  the  same  node  or  to  a  node  with  steady  logic  value.  These  cases

correspond to gates with special input configurations.

The first special case is composed by gates having various inputs connected to the same node,

and are called redundant-input-gates. Fig.  4.10 shows an example of this case where node N3 is

connected to two G1 gate inputs. This gate is converted into a new gate (MG1) without repeated

inputs. There are cases where a NAND2 gate, or a NOR2 gate, is used to implement an inverter, by

connecting both inputs to the same node. This is an example of case where this technique can be

applied.

Figure 4.10: Redundant inputs gate

As examples, there are two cases that appears considerably in the synthesized circuit used as test

bench. The example shown in the Fig. 4.11 corresponds to a multiplexer with the input D0 inverted,

where both data inputs have been shorted, that is a very simple way to select between the direct or

inverted value of a given signal. The function implemented by this configuration is equivalent to an
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XNOR2,  however,  this  is  an  efficient  way  to  implement  a  XNOR2  function.  Even,  some

technologies implement the XNOR2 gates by using this configuration internally.

Figure 4.11: XNOR2 implemented with a multiplexer

This technique does not reduce the number of circuit nodes or gates. However, the affected node

fan-out is reduced, and may become a non-stem-node, (i.e. a node with fan-out equal to 1), if the

involved gate is the only one being connected to that node. If this occurs, this node is ready to be

simplified using the non-stem-node simplification explained next.

In some cases, when a gate has inputs connected to the same node, the equivalent logic function

can be implemented using a smaller gate. In his case, the design can be optimized by replacing the

cell by another one that implements the equivalent logic function. In addition to the area reduction,

the capacitance of the node connected to two inputs of the same gate is reduced.

This technique improves the algorithm to identify functional paths because the sensitization table

for the new gate is simpler than the original due to the lower number of inputs. The fact that two or

more original gate inputs have always the same logical value, reduces the overall number of input

values combinations.

Another similar case occurs with gates having some input connected to a steady logic value

(VDD or GND). In this case, the gate with a fixed input is converted to a gate with an equivalent

logic  operation,  eliminating  the  fixed  value  node.  Typically, this  simplification  has  not  a  great

impact on the circuit complexity, and eliminates the nodes with steady logic values simplifying the

logic table.

Table 4.2 shows the number of redundant input gates for some benchmark circuits. As shows the

table  redundant  input  gates  are  not  abundant,  but  this  special  case  must  be  considered  by

algorithms. However encapsulating these gates allows to implement algorithms ignoring this special
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configuration that results in simpler algorithms. Thus, the performance improvement occurs in each

gate  of  the  circuit  and  not  only  in  the  encapsulated  gates.  All  algorithm  components  can  be

simplified: sensitization, implication, branch point process and justification.

Table 4.2: Redundant input gates

Circuit # of redundant input gates

c7552 14

b17 16

b18 22

b19 65

b22 13

4.3.2.2. Non-Stem nodes

Non-stem-nodes, i.e. the nodes with a fan-out equal to 1, do not imply any decision during the

process of finding paths since there are no branches to consider, nor states to be annotated for later

analysis. Therefore, these nodes may be eliminated, reducing the number of nodes and therefore the

amount of memory required to store the paths and the circuit state although they don’t reduce the

number  of  paths.  This  simplification  also  reduces  the  number  of  gates,  because  the  two gates

connected to that node are fused into one macro-gate. In this case the simplification impacts the tool

memory requirements,  the circuit  structure,  the nodes through which each path passes,  and the

tables that keep the logic value of each node of the circuit.

Fig. 4.12 shows an example of this situation, where node N5 is a non-stem node. Once after the

simplification, node N5 disappears and gates G1 and G2 are merged into a macro-gate MG1.

Figure 4.12: Non-stem nodes
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The main advantage of this simplification is  that,  due to the new macro-gate,  the two gates

sensitization  and justification  is  performed in  one step.  Also,  the  sensitization  and justification

tables  for  the  macro-gate  can  be  smaller  than  the  two  original  tables,  because  some  input

combinations may become incompatible when the two gates are treated together as one single gate.

In some cases, when the involved gates share an input node, the fan-out of that node is reduced,

increasing the impact of the simplification. For example, if nodes N3 and N4 in Fig.  4.12 are the

same node, then the new gate MG1 would have only four inputs instead of five, and the bifurcation

would be hidden inside the macro-gate. In this case, if the fan-out of the node was two, the new

node would have a fan-out equal to one and could be simplified using the same technique in the

next step.

The simplification ratio of this technique is: -1 node and -1 gate for each non-stem node, plus the

additional effects if some input nodes are shared between the gates merged.

4.3.2.3. Reconvergent fan-out

Reconvergent  fan-out  simplification  is  a  significant  technique  used  to  reduce  the  circuit

complexity given its  impact on the path finding algorithms  [47].  A reconvergent fan-out is  the

structure where all paths starting from a given node converge to a single node. Fig. 4.13 shows an

example of reconvergent fan-out. The node N2 has a fan-out equal to 3, and all paths starting from

that node pass through the node N10, this is a reconvergent fan-out. This simplification technique

converts all gates and nodes from the start node to the node where all paths converge to a single

macro-gate. The example of the Fig. 4.13 is quite simple, however even in this simple example six

gates and four nodes are converted to a single macro-gate. Additionally, the starting node N2 with

fan-out  equal  to  3  becomes  a  non-stem-node,  and  can  be  simplified  using  the  non-stem node

technique.

In some cases it is possible that reconvergences between two nodes too far away to be found

exists since the complexity of searching for reconvergences increases exponentially with the length

of the paths from start node to reconvergence node. This situation does not represent a limitation,

since the hierarchical nature of the simplification algorithms, allows identifying this situation in

subsequent  passages  of  the  algorithm  once  after  other  simplifications  that  reduce  the  circuit

complexity have been applied.
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This  technique  provides  a  large  reduction  on the  circuit  complexity, reduces  the  number  of

nodes, the number of gates, and the fan-out of the input nodes of the macro-gate.

A convergent block has only one output node regardless of the number of gates that form it.

Therefore all paths through the block share its final gate. The stepwise sensitization algorithm is

unaware of this fact having great impact on the algorithm performance, since if the shared gate is

sensitized in advance then some work could be avoided. I.e, many paths through the reconvergence

may be  false  paths  due to  the shared  gate,  and the  stepwise  algorithm must  trace all  paths  to

discover it.

Some existing algorithms are able to discover this fact and act in consequence, however this

requires algorithms specially designed to consider this cases and therefore,  this increases in the

algorithm complexity. Otherwise if the reconvergent structure is encapsulated inside a block and

treated as if it was a single gate, its complexity is hidden inside the block and the algorithms do not

require to consider these kind of special cases, allowing simpler algorithms.

This  structure  behavior  is  discussed  in  detail  in  the  SET propagation  section  (6)  given  its

inherent interest.
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4.3.2.4. Single input gates

The gates that have only one input, i.e. buffers and inverters, do not imply any decision during

the sensitization and justification process. They do not require sensitization, and the justification of

an output value is direct without any decision. From the logical point of view, the buffers could be

eliminated directly, however given its impact on the path delay they cannot be eliminated without

loss of information, although can be merged with other gates. 

Since non-stem nodes can be simplified with a technique previously explained, this technique

considers that the input and output nodes of the single input gate have a fan-out larger than 1.

Fig.  4.14 shows this simplification method explained in two steps. In the first step, the single

input gate is cloned at each output stem providing the output nodes of the created virtual gates with

a fan-out equal to 1. In the second step, these nodes are simplified by applying the non-stem node

simplification technique that merges the single input gates with the following gate.

By applying this technique, the number of nodes and gates of the circuit reduces by one for each

single input gate. However, as shown in Fig. 4.14 the node N2 fan-out increases because this node

was merged with the node N5 due to the withdrawal of the gate G2. Concentrating the fan-out at

one node improves the performance of some algorithms. Since, this reduces the number of times

that the algorithm must save the state, and increases the number of times that this saved state will be

reused, one time for each gate that follows the stem node. For this reason, the tables that keep the

current  state  of  the  algorithm can be  optimized before  being stored,  and due  to  the  increased

reutilization of the stored states, the computing time required for the optimization of the tables is

productive.  On the contrary, when the fan-out is small  the time required to optimize the tables

before storing is counterproductive.
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Figure 4.14: Single input gate

4.3.2.5. Gates sharing all inputs nodes

This encapsulation technique is less general than the previous ones, in the sense that only some

circuit  designs  have  the  structures  required  by  this  simplification  methods,  being  very  circuit

dependent.  This technique is focused to the case of various logic gates that share all their input

nodes, and in turn these nodes do not feed other gates. To illustrate this type of structure Fig. 4.15

shows an example where two logic gates (G2, G3) share the input nodes (N5 and N6) feeding their

both inputs. Depending on the circuit structure it's also possible to find out gates that share more

than two input nodes, or more than two gates sharing their input nodes. As shows the figure, this

method encapsulates into a block the gates sharing their input nodes, plus the gates driving the

shared nodes since this technique requires that the shared nodes do not feed other gates.

The number of gates that share all  their  input nodes and the number of input nodes shared,

determines the impact of this simplification technique over the circuit complexity. In general, if

there are nG gates sharing nN nodes, then the total number of gates wrapped is nG + nN, and number

of nodes wrapped are nN. Once applied this method, the circuit reduces the number of nodes by nN

and gates by nG + nN – 1.

The impact of this method over the circuit complexity, can be greater if some of input nodes of

the wrapped gates are the same. In the example shown in figure, the block has four input nodes,

however if the inputs N1 and N4 were the same node, then the resulting macro-gate would have
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only three inputs, and the fan-out branch of this node was hidden into the macro-gate.

Figure 4.15: Shared input gates

4.3.2.6. Gates partially sharing input nodes

This is a less restrictive version of the previous technique. In this case the technique is more

effective if applied to nodes with a large fan-out. Fig. 4.16 shows a simple example of this case,

since the cases observed in real circuits are considerably more complex. In the example of Fig. 4.16,

we can see that the node N7 have a fan-out equal to 4, and all the fan-out gates of the node N8 are

also fan-out gates of N7. This allows to wrap the gates G4-G7 into a block, together with their input

nodes and the gates that drives the nodes that all their fan-out gates are inside the block, i.e. G1 and

G2 in the example.

As already been said, the real cases are more complex. In real circuits, after apply some of the

other techniques, there are nodes with large fan-out, and that nodes shared their fan-out gates with a

high number of nodes, resulting blocks with a large number of gates, with a great impact over the

global circuit complexity.
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Figure 4.16: Partially shared input nodes

91



Chapter 4:  Preprocessing techniques and Framework structure

4.4. Application
The set of techniques presented in the previous sections are intended to improve circuit analysis

by  partitioning  the  circuit  in  different  sections  and/or  encapsulating  some  circuit  parts  into

subcircuits reducing its overall complexity. The specific techniques to apply and the sequence in

which must be applied depend on the circuit structure and the nature of the analysis to perform.

Circuit partitioning techniques are mainly useful to focus the analysis to specific regions of a

design avoiding to manage the entire circuit when the interest is in a specific circuit region. As a

practical example, to perform the SET propagation analysis presented in  chapter  6 was used the

technique of partitioning by output since to compute the SET sensitivity we are interested on the

paths ending at a given output node.

On  the  other  hand,  the  encapsulation  techniques  allows  to  analyze  each  circuit  block

individually, and then the results of this analysis are used to simplify the entire circuit analysis. For

very large size and complex circuits, the encapsulation techniques may yield a hierarchical structure

of blocks, i.e. a block may be internally constituted by other blocks and so on. These techniques

also  takes  advantage  of  repeated  structures  in  some circuits.  These  cases  are  identified  by  the

encapsulation  techniques,  and  the  repeated  structures  are  analyzed  only  once,  reducing  the

computation resources required to process the entire design.

Since the main objective is to reduce the circuit complexity in general, theses techniques can be

applied to many kinds of design analysis like synthesis optimization, timing analysis, test pattern

generation, SER analysis and SET propagation, and in general any other analysis that can benefit

from the circuit complexity reduction.

4.4.1. Identification of repeated structures

When the encapsulation techniques are applied to a given circuit, some of the subcircuits created

have an identical internal structure, thus they are instances of a same block [48][49][50]. One of the

most  relevant  applications  for  the  ability  to  identify  repeated  structures  is  circuit  synthesis

optimization.  I.e.  if  a  block is  repeated  many times  in  a  circuit,  this  block may  be  optimized

individually, even using full custom design of the layout. The full custom design of a block that

repeats many times within the design,  may improve considerably area,  power consumption and

delay of the whole circuit [51].

The experimental tests show that, the most complex circuits usually have structures that repeat
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many times. A good example is the ISCAS circuit c6288, a 16-bit multiplier representing a difficult

architecture for the path tracing and timing analysis algorithms  [43]. However, this circuit has a

very regular structure with a high number of repeated substructures, as will be shown in the results.

To illustrate the identification of repeated blocks Table 4.3 shows the number of instances of the

six  block  with  higher  repetition  for  a  selection  of  circuits  after  apply  the  non-stem-nodes

simplification.  Same  block  number  in  different  circuits  do  not  necessarily  refer  to  the  same

subcircuit.

Table 4.3: Block repetition after non-stem simplification

Circuit #1 #2 #3 #4 #5 #6

c5315 39 6 4

c6288 95 7 7 6 3

c7552 11 5 4 4 4 4

b14 58 48 33 31 24 15

b15 129 33 30 29 18 15

b17 400 130 104 80 64 59

b18 337 314 294 180 120 118

b20 55 26 24 23 21 18

b21 46 24 22 19 19 18

b22 66 63 49 33 30 28

As show the results in the table some circuits have a large number of instances of the same

block. Circuits b17 and b18 show a quantitative higher number of block repetition with 400 and 337

times respectively.

As example Table 4.4 gives the internal components, i.e. the standard cells, that form some of the

blocks with higher repetition from the results of Table  4.4. The results show that there is a block

consisting of two standard cells (AOI22 and OAI211) with higher repetition in various circuits, and

was proved that these blocks are identical in all cases. The reason for the huge repetition of this

configuration  falls  outside  of  the  topic  of  this  thesis,  however  could  be  a  consequence  of  the

strategies followed by the synthesis algorithms.
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Table 4.4: Block repetition examples

Circuit # Instances Block components

b17
400 AOI22 + OAI211

130 AOI12 + OAI21

b18
337 AOI22 + OAI211

314 AOI22 + MUXI21

b15 129 AOI22 + OAI211

c6288 95 FA1 + FA1

Due to the high number of instances, if this structure were optimized by a full-custom design

creating a new cell equivalent to this block the impact over the whole circuit could be considerable.

The  previous  results  about  the  block  repetition  were  obtained  after  one  simplification  step,

however the block repetition also occurs at higher levels. Therefore, applying iteratively the non-

stem simplification technique shows that there are larger blocks repeated. As an example Table 4.5

shows  the  number  of  instances  of  the  eight  blocks  exhibiting  higher  repetition  after  each

simplification step applied to the circuit b17. The results in the table shows that the number of

instances reduces at each step but the blocks generated are larger at each step. Concretely the block

2A consists of one instance of the block 1A plus one standard cell. Many of the blocks obtained in

the four step consist of two blocks created at previous steps.

Table 4.5: #Instances for iterative simplifications of b17

Step 1 Step 2 Step 3 Step 4

#
In

st
an

ce
s

400
(1A)

325
(2A)

51 29

130 68 40 22

104 61 36 12

80 56 20 11

64 48 6 6

59 46 5 6

47 21 4 5

40 21 4 4

94



Chapter 4:  Preprocessing techniques and Framework structure

4.4.2. Path enumeration

Many design  analysis  techniques,  mainly  algorithms  to  identify  functional  paths  for  timing

analysis or test pattern generation, require enumerating structural paths, or constructing a graph that

represents  the topological  paths  through the circuit  [41].  The framework provide  algorithms to

perform these tasks,  however  both methods are  unaffordable for many real  circuits,  due to the

exponential growth in the number of paths of a combinational block. However, as shown in Section

4.1,  when some circuit  parts  are  encapsulated  the  number  of  paths  through the  circuit  (or  the

number of nodes of a graph) is also reduced exponentially, and becomes affordable.

To illustrate how the encapsulation techniques can help to analyze a circuit Fig. 4.17 shows an a

portion of example circuit. The region inside the box is a reconvergent structure since all paths

starting from N1 pass through N4.

Figure 4.17: Example circuit

The path graph for this circuit from the node In generated as was explained in section is shown

in  figure  4.18.  The  region  delimited  by  the  box  corresponds  to  the  reconvergent  structure

highlighted in the circuit schematic of Fig. 4.17. As shows the graph there are two structural paths

from node N1 to N4, one through node N2 and the other through node N3.
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Figure 4.18: Path graph before simplification

If the circuit of the example is simplified by using the technique to encapsulate reconvergent

structures  then  both  paths  through  the  reconvergence  are  hidden  inside  the  block,  with  the

consequent simplification to path graph. Fig. 4.19 shows the path graph for the simplified circuit, as

shown the figure there is only one path from N1 to N4 simplifying all branches hanging from node

N4.

Figure 4.19: Simplified path graph

In  this  example  there  is  a  single  block  with  a  simple  internal  structure,  however  in  real

applications the blocks involved may be large subcircuits, even with a hierarchical structure with

other blocks inside it. In this cases number of paths through the block may be large, and some of

them could be identified as false analyzing the subcircuit isolatedly, and the path graph can be

pruned.
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4.5. Results

The techniques exposed were applied to the larger ISCAS'85 and ITC'99 benchmark. We first

analyzed  the  circuit  complexity,  and  its  evolution  when  applying  iteratively  the  encapsulation

techniques developed. Since a well-defined circuit complexity metric is not available, we took the

number of wires and gates, and the number of fan-out branches to quantify a measure of the circuit

size and complexity. This represents  a valid  metric to  evaluate the impact of the encapsulation

techniques because the number of input and output nodes remains constant; only the circuit internal

wires changes when applying the encapsulation methods. However the number of input and output

nodes may vary in the case of apply some of the partitioning techniques.

To give an insight  of  how the encapsulation techniques  allow to create  blocks  sharing their

internal structure is defined the reuse factor representing an average of the number of times that

each block is repeated in the circuit, weighted by the size of the block, expressed as the number of

standard cells that the block wraps. 

Tables  4.6-4.10 show the simplification results for the two largest ISCAS'85 and three ITC'99

circuits. Each column represents a simplification step. The first step applies the simplification of

redundant inputs gates, the impact of this technique is very small as shown by the results. The

second  step  is  the  reconvergence  identification.  Then,  the  non-stem  nodes  simplification  was

applied, being the step providing a larger impact on the overall number of gates. Finally the single-

input  gates  simplification  step  is  applied,  performed  in  two  stages.  The  main  values  used  to

represent the circuit size and complexity are: the number of wires, i.e. internal nodes, and gates. The

last row shows the reuse factor, representing the repetition of structures in the circuit. As shown, the

single-input gates expansion has a negative impact of the circuit size, but represents an intermediate

step.  Results  show  that  the  reuse  factor  has  an  inverted  tendency  with  respect  to  the  circuit

complexity, specially for the c6288 circuit due to its very regular structure with a large number of

repeated blocks.
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Table 4.6: ISCAS c6288

Original
circuit

Redundant
input gates

Reconvergent
structures

Non-stem
nodes

Expand
single in gates

Non-stem
nodes

#Inputs 32

#Outputs 32

#Wires 775 775 763 13 23 8

#Gates 602 602 509 17 27 12

#Stem nodes 150 150 138 21 16 16

#Branches 683 682 658 38 38 34

Reuse factor 1.00 1.00 1.02 35.41 22.67 51.00

Table 4.7: ISCAS c7552

Original
circuit

Redundant
input gates

Reconvergent
structures

Non-stem
nodes

Expand
single in gates

Non-stem
nodes

#Inputs 167

#Outputs 54

#Wires 576 576 518 293 459 215

#Gates 630 630 572 347 513 269

#Stem nodes 424 423 379 365 288 288

#Branches 862 847 784 696 696 602

Reuse factor 1.00 1.00 1.10 1.82 1.55 2.96

Table 4.8: ITC'99 b17

Original
circuit

Redundant
input gates

Reconvergent
structures

Non-stem
nodes

Expand
single in gates

Non-stem
nodes

#Inputs 1354

#Outputs 1485

#Wires 9213 9213 9013 4465 9978 3290

#Gates 10647 10647 10447 5919 11432 4744

#Stem nodes 5881 5877 5777 5758 4610 4610

#Branches 20628 20605 20419 19837 19837 19327

Reuse factor 1.00 1.00 1.02 1.80 1.41 3.41
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Table 4.9: ITC'99 b20

Original
circuit

Redundant
input gates

Reconvergent
structures

Non-stem
nodes

Expand
single in gates

Non-stem
nodes

#Inputs 522

#Outputs 513

#Wires 3412 3412 3317 1917 3845 1431

#Gates 3869 3869 3774 2392 4320 1906

#Stem nodes 2476 2476 2427 2390 1954 1954

#Branches 6520 6514 6425 6052 6052 5936

Reuse factor 1.00 1.00 1.03 1.62 1.34 3.04

Table 4.10: ITC'99 b21

Original
circuit

Redundant
input gates

Reconvergent
structures

Non-stem
nodes

Expand
single in gates

Non-stem
nodes

#Inputs 521

#Outputs 512

#Wires 3519 3519 3423 1912 3822 1424

#Gates 3936 3936 3840 2365 4275 1877

#Stem nodes 2480 2479 2432 2392 1946 1946

#Branches 6553 6546 6454 5996 5996 5847

Reuse factor 1.00 1.00 1.03 1.66 1.37 3.12

Tables 4.6-4.10 show the evolution in the circuit size, although the main interest is on its impact

over the circuit analysis techniques efficiency.

We illustrate this effect for two tasks: a path graph construction and structural path enumeration.

The two analysis were performed using first the original circuit without any simplification, and then

using the simplified circuit.

Table 4.11 presents the results for path graph creation, providing the memory used and CPU time

required for the simplification step and for the graph creation. As can be seen in some cases the

CPU time for simplification plus the processing is larger than processing the original circuit, but
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must be taken into account that the simplification step must only be performed once. As shown,

some circuits cannot be processed in its original configuration due to an excessive consumption of

memory and CPU. These cases are marked with the tag "killed". The circuit c6288 provides the

most impressive results due to its highly regular structure.

Table 4.11: Path graph creation

Circuit Memory (MiB)
CPU Time (s)

Simplification Processing

c6288
O 2742 ----- Killed

S 12 0 3

b14
O 2405 ----- 11

S 464 3 8

b15
O 456 ----- 3

S 221 7 8

b17
O 1708 ----- 6

S 756 24 2

b20
O 2475 ----- Killed

S 1312 10 17

b21
O 2631 ----- Killed

S 1201 11 17

The enumeration paths results  are given in Table  4.12, including the memory consumed, the

CPU time required and the number of paths identified, taken into account that in the simplified

version the number of paths is less than in the original case due to the hierarchical nature. The

second column shows the portion of the circuit analyzed until the process was killed due to memory

depletion. As occurs in the previous results, the circuit c6288 presents the largest difference for both

cases tested.
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Table 4.12: Structural paths enumeration

Circuit Killed at input Memory (MiB) CPU Time (s) Paths

c6288
O 15 / 32 2182 94 26,359,541

S Complete 12 4 2,026

b14
O Complete 1634 71 9,381,264

S Complete 645 22 4,283,940

b15
O Complete 289 21 2,365,298

S Complete 206 20 2,140,734

b17
O 10925 / 1357 2003 3641 18,499,297

S Complete 1357 1051 11,923,450

b20
O 497 / 523 2226 157 12,453,676

S Complete 1829 101 11,626,730

b21
O 389 / 523 2113 86 12,395,361

S Complete 1574 93 10,922,976
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4.6. Framework
The entire  EDA framework has been developed keeping special  attention to  modularity  and

customizability of each component, with the objective of providing a quite high flexible tool easily

adaptable to a vast set of applications. This framework is an evolution of a tool presented in [52].

The global framework structure is shown in Fig. 4.20, where each module is listed together with the

relationships between the modules, as well as the main fluxes of data for both input and output.

Figure 4.20: General Framework Structure

The high framework flexibility is of special interest in the research field, where the development

of  new  design  strategies  or  modeling  techniques  require  a  way  to  test  them  and  verify  its

effectiveness against existing tools or models.

The framework comprises the following modules:

• Cell manager

• Circuit analyzer

• Circuit preprocessor
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• Path searching engine

• Path analyzer

• External tool interface

4.6.1. Cell manager module

The cell manager is responsible for managing all the information related to the gates/cells used in

the circuits, and for performing task related to them. The module objective is to import a standard

cell library from a file or a database and create data structures representing the cells to provide the

information required by the circuit analyzer to link the circuit with the cell library. Besides, this

module is also the responsible of creating the logic tables required by sensitization algorithms, and

the models used to estimate the circuit operation.

To perform its work the module leans on two submodules:

• The logic engine provides all  the tools required to perform logic operations,  manipulate

boolean expressions and generate logic tables required by the algorithms.

• The model engine provides a set of mathematical algorithms intended to fit data to analytical

expressions. These algorithms are used to extract model parameters from simulation results.

Fig. 4.21 provides the cell manager detailed structure, including each submodule. Configuration

parameters are in green boxes, while input and output data are in yellow.

The logic engine creates the logic functions for each cell from the specifications provided by the

standard cell library file. Generally the cell library files provides the logic function of each cell in a

textual form, for example for an AND2 cell the library file gives the logic function as Z=A*B.

Therefore, the logic engine provides a Boolean algebra processor capable of interpreting a Boolean

expression,  simplifying  if  necessary,  and  generating  a  function  to  implement  such  Boolean

expression. Each required logic function is customized at compilation-time, i.e. the logic engine

creates and compiles the code to implement the function. Therefore, since the logic functions code

is compiled instead of using a runtime configuration, the execution of the algorithms involving the

cell logic functions is faster.
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Figure 4.21: Cell manager diagram

The logic engine Boolean algebra processor also computes the equivalent logic function for the

blocks created by the encapsulation techniques, since these blocks are treated as cells.

Besides the generation of the logic functions, the logic engine creates the logic tables required by

the sensitization and justification processes. The standard cells performing the same logic function,

(i.e.  same gate type with variations in gate strength), share the logic tables avoiding redundant

information.

The logic engine can be customized to accommodate the logic system and the criteria used to

generate  the  sensitization  and  justification  tables.  Predefined  configurations  exist  for  each

sensitization criteria detailed in section 3.3.1, however the system allows configuring other criteria.

The  cell  manager  module  also  provides  a  set  of  tools  intended  to  fit  analytical  models  to

simulation results.  To accomplish this  goal  the module is  capable of generating transistor-level

netlists  to  simulate  each  cell  of  a  library  using  a  circuit  structure  according  to  the  model

requirements. These netlists are created using a netlist template provided by the user specifying a

generic circuit structure independent of the standard cell to be simulated, allowing an automatic

netlists generation independently of the type of model being developed. Moreover, together with the

netlists, the cell manager creates a set of scripts to perform electrical simulations of such netlists.
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The parameters to be varied during simulations, like temperature or supply voltage, as well as the

interval of values to use are also configurable parameters.

Thereafter the module loads the result files generated by the electrical simulator, and extracts the

model parameters for each standard cell, assisted by the engine model and using the model function

provided as a parameter.

4.6.2. Circuit analyzer

The circuit  analyzer reads the circuit  netlist,  and using the information provided by the cell

manager module creates a data structure that represents the circuit. Such structure is then used by

other  framework algorithms.  This  module  is  capable  of  importing  a  circuit  netlist  in  the  most

common formats, mainly  Verilog (IEEE 1364)  [53], however has been developed in a way that

allows easily incorporate interpreters for different netlist formats.

4.6.3. Circuit preprocessor

This module can be used to preprocess the circuit structure before perform an analysis, with the

objective of focusing the analysis at a specific circuit region, or to simplify the circuit structure,

allowing to easily process large combinational blocks. The set of tools provided by this module

includes all the functions to perform partitioning and encapsulations, as detailed in section 4.1.

The partitioning techniques can be combined to select the circuit region of interest, and generate

a circuit structure for the selected region. Furthermore, the encapsulation techniques can be applied

iteratively in any order with only some exceptions, and generate a hierarchical structure. Thus, the

techniques to be applied depend on the circuit size and structure, and can be selected at each step in

depending on the previous steps result. This module is assisted by the cell manager module that is

capable of creating the equivalent logic functions, and the logic tables for the blocks as if they are

individual cells. This is possible except for large blocks, that require to be treated differently.

4.6.4. Path searching engine

This  module  includes  the  customizable  algorithms detailed  in  section  3.4,  together  with  the

individual components used to personalize each step of the algorithms. Allowing to use a wide

range of strategies to identify which structural paths are sensitizable paths (i.e. identify the true

paths through a combinational block), provide the sensitization input vectors for each true path, etc.

This  module  is  organized  as  if  were  a  building  kit,  with  individual  components  that  can
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assembled in almost any configurations. Therefore a set of processing components are combined

into a generic algorithm to obtain the desired functionality. Once all components required by the

algorithm chosen are established, the module allows to generate a compile-time customized version

of the algorithm to achieve a better performance respect to use a runtime customization.

The results  generated  by  the  algorithms of  this  module  are  transferred  to  the  path  analyzer

module, which is the responsible to manage the path information, providing different ways to store

the path information for further analysis.

4.6.5. Path analyzer

This module provides a wide set of tools to work with the path information generated by the path

searching engine or imported from an external source either generated by the tool itself or by third-

party tools.  The module includes data structures and functions to work with the information in

multiple ways, allowing to operate over:

• Structural paths.

• Functional paths with the corresponding sensitization vectors.

• Subpaths, i.e. portions of paths.

The path information can be used to compute a wide range of results, in some cases assisted by

cell manager that provides the model information. Some of the main results that can be computed

from the path information are:

• Gate and path delays.

• Critical path identification.

• SET propagation and SET sensitivity analysis.

• Path activation probability.

However, since the framework has been implemented with aim of high flexibility, it allows to

easily include any kind of model, and extend the path information processing, generating results

adapted to each specific application.
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4.6.6. External tool interpreter

These modules  add the  interoperability  feature  with third-party tools,  allowing an  automatic

generation of scripts to be used to by external tools and import the results generated by the third-

party tools. This feature allows incorporating additional processing steps in the workflow, and also

can be used to verify the results provided by the tool, or the estimation obtained by a model. This is

an  interesting  feature  for  the  research,  since  allows  verifying  the  behavior  of  a  new  model

technique, or a new processing strategy, compared with a reference tool.
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to Timing Analysis

Chapter 2 introduced the basic concepts regarding timing analysis and its importance during the

design flow. Chapter 2 also describes a general methodology for implementing analytical model

considering  multiple  variables.  This  chapter  explains  how such a  general  modeling  strategy  is

implemented to model the propagation delay through a logic gate, and how the model parameters

can be extracted from electrical-level simulations. Accurate delay modeling requires precise node

capacitance estimation, therefore this chapter presents a method to extract an effective capacitances.

Then  it  is  shown how the  delay  model  is  used  in  combination  with  the  path  identification

algorithms detailed in Chapter 3 is applied to perform timing analysis on benchmark circuits.

It is demonstrated the importance of considering the specific logic vector applied to sensitize

each path for efficient delay estimation.
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5.1. Polynomial Delay Model
The first version of delay model presented, is a deterministic version that does not considers the

parameter variations caused by the manufacturing process, assuming that each standard cell device

has its nominal values [54][55]. This model consists of two functions (5.1), one for the propagation

delay (td) and the other for the output transition time (tout), as have been defined previously. For a

CMOS cell both functions depend on multiple variables [56]. The variables taken into account for

this delay model are:

• Output capacitive load

• Input transition time

• Temperature

• Supply voltage

{
t d= f (C load , t in , T ,V DD)=∑

i
∑

j
∑

k
∑

l

Pijkl Cload
i
⋅t in

j
⋅T k

⋅V DD
l

tout= f (Cload , t in , T ,V DD)=∑
i
∑

j
∑

k
∑

l

Qijkl Cload
i
⋅t in

j
⋅T k

⋅V DD
l

(5.1)

Each variable considered by the model has a different impact over the delay. Figs.  5.1 and 5.2

show the dependency of the propagation delay and the output transition time respectively, around a

reference working point for an inverter of 65nm CMOS commercial  technology. The reference

working point was chosen with the following values:

• CLoad = 2.4 fF

• tin = 40 ps

• T = 25 ºC

• VDD = 1.2 V (Nominal supply voltage of the technology)
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Figure 5.1: Rising input propagation delay variation

Figure 5.2: Rising output transition time

Equations (5.2) gives the value of variables in function of the x-axis value.

C=0.8fF⋅(X +1)

t in=80ps⋅X +20ps

T=25ºC⋅X
V DD=0.1V⋅X +1V

(5.2)

It is shown that the input transition time is the parameter with a higher impact on the propagation
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delay. The temperature, that varies from 0 ºC to 125 ºC, has a small impact compared to the other

parameters. As expected, the supply voltage is the only parameter with an opposite tendency.

According to the specific application of the model, some of the variables can take a constant

value, like a timing analysis where temperature variations are not considered. In view of the gate

delays characteristics, the multivariable polynomial function presented previously fits perfectly to

model the propagation delay and the output transition time. Thus, both functions use a 4 variable

polynomial model, as shown in (5.1).

On a CMOS standard cell, the propagation delay from an input to an output varies depending on

the input-output pair used, and also depends on whether the transition is a rising edge or a falling

edge, resulting in a set of 4 coefficient matrices for each input-output pair, as outlined below.

• t d
r : Propagation delay for an input rising transition.

• t d
f : Propagation delay for an input falling transition.

• t out
r : Output transition time for a rising transition.

• t out
f : Output transition time for a falling transition.

For the standard cells that implement a primitive logic function, there is only one input vector

that sensitizes each input to propagate a transition to the output. However, in the case of complex

cells,  previously detailed in  the logic sensitization section,  where in  general  each input  can be

sensitized by more than one input vector, both propagation delay and output transition time depend

on the sensitization vector applied to the gate. This fact must be taken into account since knowing

the input vector used to sensitize the gate is required for accurate delay estimation. Therefore, the

complex gates require a set of 4 coefficient matrices for each sensitization vector of each input-

output pair. Summarizing, the number of coefficient matrices for a standard cell are:

• Primitive cells: 4⋅n in⋅nout

• Complex cells: 4⋅∑
in=1

nin

∑
out=1

nout

SensVec ( in , out)

Where SensVec(i, j) is the number of input vectors that sensitizes the path from the input i to the
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output j, and nin and nout are the numbers of inputs and outputs of the cell.

In this work we only consider the cases with steady values in all inputs except the input being

propagated toward the output.  Modeling multiple  transitions  at  the gate  inputs  requires  a  more

complex analysis not considered in this work. If the delay between the transitions is large enough,

the propagation delay of  the gate  may be computed considering exclusively the first  dominant

transition, since in this case the other inputs can be treated as having a constant value. On the other

hand, if the transitions are almost simultaneously the propagation delay is affected, and depends on

multiple factors that are very complex to model. Theses factors are: the difference of arrival time

between  the  dominant  transition  and  the  others  transitions,  the  slope  and  the  direction  of  the

secondary transitions.

In the next sections the impact of the sensitization vector on the propagation delay of the cells will

be analyzed at  different levels of abstraction,  to show the root causes of this  variation and the

importance of considering it for an accurate timing analysis [52][57].

5.1.1. Multidimensional extraction process

In a real application of the type of model presented before, should seek a compromise between

accuracy and the model coefficients matrices size. The number of coefficients, not only affects to

the memory requirement to store the model, but also to the computation complexity to evaluate the

model during circuit design analysis. Since any model is only an approximation a given inaccuracy

always exist. Therefore, the process developed to extract the coefficients for the multi-variable and

multipurpose polynomial model is conditioned by a set of parameters that controls the regression,

and ensure the best balance between accuracy and complexity.

The parameters that influence the extraction process are:

• Maximum polynomial order: Determines the maximum number of coefficients to be used

for each polynomial regression.

• Minimum  quadratic  correlation  coefficient:  It  is  the  minimum  quadratic  correlation

coefficient. It compares two data arrays, and provides insight about equality between the

two data sets  taking a value in the range [-1,1].  A quadratic correlation coefficient of 1

indicates that the two data sets match perfectly. This parameter is used to control model

accuracy, but depending on the specific type of function, a quadratic correlation coefficient
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near to 1 may require a large polynomial order. To control this, the maximum polynomial

order imposed, dominates over the quadratic correlation. Equation  (5.3) is the expression

used to compute the quadratic correlation coefficient.

r 2=

∑
i=0

n

( yi− y)⋅( y ' i− y ' )

∑
i=0

n

( yi− y)2⋅∑
i=0

n

( y ' i− y ' )2

(5.3)

where y is the original data being a function of variable x, and y' is the estimation made by

the model, i.e.,  y' = f(x) where  f is the model function. To have an ideally adjustment the

result must be y' = y.

• Maximum relative error:  This parameter fixes  the maximum error accepted between the

original  data  and  the  data  generated  by  the  model.  This  maximum error  cannot  be  an

absolute value, because it must have the same significance independently of the order of

magnitude of the data. The relative error is computed using (5.4).

Max. Relative Error=Max
0≤i≤n(∣

y ' i− yi

yi
∣) (5.4)

• Minimum relative range: As shown in (5.5), the relative range is computed as the maximum

value minus the minimum value divided by the mean value. If the relative range is less than

the minimum imposed, the variation with the current variable is considered negligible, and

the data may be approximated as a constant using the mean value.

Relative Range=∣Max ( y )−Min( y )
y ∣ (5.5)

Once the parameters that control the extraction process have been established, then the process

itself  will  be explained. To achieve the desired accuracy with a minimal  polynomial  order, the

approximation  process  increases  the  order  iteratively  until  the  maximum imposed  order  or  the

accuracy  requirements  are  reach.  The  same  process  is  repeated  iteratively  as  many  times  as

variables considered. The output data of each stage becomes the input data for the next stage.

Each process step starts by checking the relative range of the input data, and – as exposed earlier
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–  if  it's  lower  than  the  minimum imposed,  the  data  is  approximated  by the  mean  value.  This

checking minimizes the number of regressions performed, and therefore the number of coefficients

generated, if the dependence with the variable is negligible. This step can be considered an order 0

regression.  It  is  easy  to  demonstrate  that  a  polynomial  regression  of  order  0  is  equivalent  to

computing the mean value of the data, as shown in (5.6).

A=∑
k=0

m−1

xk
0
=m

P=p0

B=∑
k=0

m−1

xk
0 yk=∑

k=0

m−1

yk
}→A⋅P=B→ p0=

∑
k=0

m−1

yk

m (5.6)

If the relative range is beyond the threshold required, a linear regression is carried out (i.e. a

polynomial  regression  with  order  1).  After  the  regression,  the  algorithm  uses  the  coefficients

obtained to generate an estimation of the original sequence of values. This generated sequence, is

used to compute both the quadratic correlation coefficient and the maximum relative error between

the input data and the estimation. If these two parameters comply with the requirements imposed,

then the step is finished; if not, the regression is repeated increasing the polynomial order by 1, and

so  on  until  the  error  requirements  are  fulfilled,  or  the  maximum order  allowed  is  reach.  The

flowchart of the extraction process is depicted in Fig. 5.3.

The  whole  process  described  is  carried  out  using  multidimensional  matrices,  where  the

dimensions depends on the number of variables. At each step, for each input matrix, the process

generates m – the order of the polynomial regression – output matrices with a dimension lowered by

1 with respect to the input matrix. Expression (5.7) shows the general form of each step, where a

polynomial regression of order m with respect to variable x1 is applied to an n-dimensional matrix f

and the result are m+1 (n-1)-dimensional matrices fi.

f ( x1 , x2 , ... , xn)⏟
↓

1 n-dim Matrix

→∑
i=0

m

f i(x2 ,... , xn)⋅x1
i

⏟
↓

m+1 (n-1)-dim Matrices

(5.7)

Finally, with the objective of achieving the best results  with the smallest  possible order, the

process described is carried out using all possible cases for the sequence in which the variables are
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taken for regression, i.e. the quality of the result may be different if the process starts with the

variable x1 and ends up with xn instead of starting with xn and ending with x1. Although this could be

time consuming for a large number of variables this step is to be executed only once per technology

library, and ensures an optimal result. The way to determine which is the best sequence of variables,

consists in comparing the original data with the estimations generated using the model function and

the coefficients extracted. The case where the generated matrix is more similar to the original in

terms of relative error is selected as the best combination.

Figure 5.3: Flowchart of the model extraction algorithm

116



Chapter 5: Framework application to Timing Analysis

5.1.2. Gate simulation process

Delay model  parameters  are  extracted  from electrical  simulation  results  using the  algorithm

exposed in section 5.1.1. The electrical simulations from which the model parameters are obtained,

are done automatically and systematically for a given technology library, and consist of a set of

iterative  simulations.  Each  iteration  uses  a  different  combination  of  values  for  each  variable

considered, for which the propagation delay and output transition time for rising and falling input

transition are determined. Such an iterative simulations are repeated for each gate input and each

input vector that sensitizes that input. Fig. 5.4 shows the circuit structure used to simulate the delay

through a gate: the gate is simply loaded with a capacitance and while a pulse source is applied to

the active input and a sensitization input vector is applied to the side inputs.

Figure 5.4: Gate delay simulation

The  input  pulse  source  is  not  an  ideal  pulse  because  an  ideal  pulse  causes  an  excessive

overshooting  at  the  output  waveform,  due  to  its  discontinuities  at  the  derivative.  One  way  to

generate a real transition is using an ideal pulse source followed by a buffer and using the output of

the buffer as source. However, this method does not allow controlling the transition time. To avoid

the side effects of an ideal pulse, having a more realistic pulse resembling to a real transition that

allows to controlling the transition time, we use an input source that generates a pulse using a

sinusoidal  function.  The waveform generated is  fully  differentiable  and presents a  non-constant

slope, as a real transition caused by a CMOS gate.

The analytical expression for a rising transition is shown in (5.8).
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f (t)={
0 : t≤t 0

V DD

2 (sin( K
t r

( t−t0)−
π
2 )+1) : t 0≤t≤t 1

V DD : t 1≤t

(5.8)

Where K=2⋅arcsin (0.8)=1.85459 and tr is the transition time.

Fig.  5.5 depicts two transition waveforms, one corresponding to an ideal pulse source and the

other is the result of the sinusoidal-based function  (5.8). As shown the function provides a much

more  realistic  waveform  than  an  ideal  pulse,  avoiding  the  angular  points  that  cannot  be

differentiated,  and  that  induce  an  overshooting  effect  due  to  the  abrupt  derivative  change.

Comparing these waveforms with the one shown in the Fig. 5.6, that corresponds to a real transition

at the output of an inverter, it  may be concluded that the sinusoidal-based function generates a

waveform very similar to a real transition produced at the output of a gate.

Figure 5.5: Transition generation

118

Sinusoidal-based transition Ideal transition



Chapter 5: Framework application to Timing Analysis

Figure 5.6: Real transition

As already explained, the algorithm to extract the multivariable polynomial model parameters,

explores all  the sequences in which the variables can be considered to obtain the best possible

results. Fig.  5.7 represents the mean relative error and the number of model parameters for each

variable sequence, using a maximum order of 2, and Fig. 5.8 shows the same results for the case of

maximum order 3.

From the results represented in these graphs it is shown that the best case in terms of mean error

does not corresponds to the case with more parameters. As expected, using a greater value for the

maximum order, provides better values for the mean error, as shows Fig. 5.8 compared to Fig. 5.7.

Figure 5.7: Mean error and number of coefficients
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Figure 5.8: Mean error and number of coefficients

Previously, section 2.2.4 introduced the concept of matrix coefficients pre-computation for the

polynomial model when some variable takes a constant value. The delay model depends on four

variables, the output capacitance load,  the input transition time, the temperature and the supply

voltage. According to the application requirements some of the variables may take a constant value,

and create coefficient matrices for specific situations.

For  a  digital  circuit  a  structure  where  each gate  of  a  circuit  has  its  own coefficient  matrix

depending on the  cell  used  for  each  gate  can  be  created.  Each gate  coefficient  matrix  can  be

simplified using the technique of partial computing. Using the 4 variables model, results in each

gate having a 4D coefficient matrix  for each variable  that  takes a  constant value,  reducing the

number of dimensions by 1.

The first model variable is the output gate load that depends on the input gates connected to this

node and the contribution of the interconnect determined mainly by the circuit structure. Then the

node  capacitance  can  be  considered  constant,  and  the  coefficient  matrix  of  each  gate  can  be

simplified respect to the output load variable.

The supply voltage of each gate usually has a constant value although in some circuits the supply

voltage varies dynamically, and in some analysis the voltage drops caused by the circuit activity

must be taken into account. However, for most analysis the supply voltage is assumed constant. In

these situations the gates coefficient matrix can be reduced respect to the supply voltage variable,

even  for  circuits  with  regions  with  different  supply  voltages.  Each  gate  coefficient  matrix  is

simplified using its own supply voltage. To analyze the impact of the voltage drops on the delay, the
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coefficient matrices of the gates is simplified using a voltage map, where each gate may use a

different voltage value. The voltage map can be generated using an application that estimates the

voltage drops based on the circuit activity estimations.

Temperature  can  be  treated  similarly  to  the  supply voltage.  The coefficient  matrices  can  be

reduced using a constant temperature value for all the gates, or by applying a thermal map where

each gate operates at different temperate. Specific tools may perform an estimation of the heating of

each circuit zone.

The input transition time of a gate depends on the path considered, and all the variables that

impact the previous gates. For this reason this variable cannot be considered constant for a given

gate. A possible exception is the first gate of a path if the transition applied at the input of the circuit

is considered constant.

Based on the previous arguments, using a constant value for the capacitance of each node, and

applying thermal  and voltage maps,  the 4D matrix of each gate can be reduced to a  vector of

coefficients.  This  reduction  is  performed  once  for  each  gate,  and helps  to  improve  the  timing

analysis speed avoiding repeated computations. If a timing analysis must be performed at various

operating conditions, various sets of coefficient matrices can be precomputed using different values,

and used simultaneously.

5.1.3. Delay model accuracy verification

To verify the proper delay estimation performed by the analytical model the delays computed by

the model are compared with the estimation provided by a commercial tool and delays measured

from electrical simulations. Delay estimations are compared at gate-level and path-level.

Tables 5.1, 5.2 and 5.3, provide the error in the delay estimation given by the tool developed and

the commercial tool, when compared to electrical simulations as a reference. These tables contain

the mean and maximum delay errors for the entire path and for an individual gate. Results show that

the delay model used to estimate the gate propagation delay provides more accurate results than the

commercial tool considered.

In all the cases investigated the polynomial model provides better delay estimations than the

look-up  table  model  used  by  the  commercial  tool,  even  considering  a  first  order  model.  The

analytical form of the model reduces considerably the computation time leading to faster delay

estimations.
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Table 5.1: Delay comparison vs electrical simulation (130nm)

Table 5.2: Delay comparison vs electrical simulations (90nm)

Table 5.3: Delay comparison vs electrical simulations (65nm)
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c17 1.92% 4.61% 1.91% 5.26% 9.94% 21.16% 8.63% 24.16%

c432 1.24% 2.59% 6.02% 11.42% 6.76% 7.53% 17.22% 44.11%

c499 3.31% 5.20% 6.44% 9.21% 4.11% 4.12% 11.70% 25.37%

c880a 2.11% 7.38% 4.63% 6.99% 3.31% 7.11% 13.78% 64.13%

c1355 2.67% 8.46% 3.41% 7.19% 3.79% 6.98% 14.25% 56.78%

c1908 1.66% 3.65% 4.13% 14.02% 7.39% 8.71% 17.99% 61.60%

c2670 0.59% 1.08% 4.10% 16.57% 8.95% 27.89% 15.31% 306.95%

c3540 3.04% 5.63% 5.33% 13.84% 5.10% 5.10% 19.45% 109.07%

c5315 6.31% 7.41% 6.32% 19.43% 10.60% 13.59% 17.75% 53.62%

c6288 2.39% 7.86% 3.50% 18.24% 10.59% 22.66% 15.38% 82.24%

c7552 5.38% 9.67% 7.24% 11.58% 11.59% 21.17% 16.23% 58.45%

Developed model Commercial tool

ISCAS 
Circuit

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error

Commercial tool

c17 2.93% 5.12% 3.21% 5.84% 19.92% 40.58% 18.42% 42.08%

c432 4.87% 8.87% 6.36% 20.41% 17.92% 20.23% 24.39% 73.58%

c499 6.73% 11.08% 7.96% 17.36% 16.15% 19.05% 24.77% 136.92%

c880a 6.21% 9.67% 6.74% 15.68% 18.31% 53.27% 19.71% 97.03%

c1355 4.31% 7.67% 6.39% 12.43% 17.83% 29.64% 36.47% 53.21%

c1908 2.88% 5.33% 6.59% 19.21% 17.67% 21.76% 28.55% 98.82%

c2670 2.32% 3.52% 5.17% 16.38% 16.26% 29.64% 21.71% 231.97%

c3540 4.11% 6.87% 6.21% 12.09% 15.89% 31.45% 26.87% 66.88%

c5315 5.64% 7.63% 5.16% 13.56% 18.52% 28.79% 20.36% 60.09%

c6288 3.55% 6.61% 4.94% 11.34% 13.25% 23.74% 18.56% 58.34%

c7552 6.31% 8.82% 5.61% 10.98% 16.23% 39.25% 23.34% 67.87%

Developed model

ISCAS 
Circuit

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error

Commercial tool

c17 4.30% 8.24% 4.13% 8.24% 29.91% 59.99% 28.20% 59.99%

c432 7.82% 9.75% 9.29% 10.53% 29.09% 32.94% 31.56% 103.06%

c499 2.94% 4.64% 4.69% 11.81% 28.20% 33.99% 37.84% 248.47%

c880a 1.19% 7.65% 3.68% 13.49% 33.32% 99.43% 25.64% 129.93%

c1355 0.75% 2.40% 4.04% 12.27% 27.95% 34.82% 39.11% 136.04%

c1908 4.05% 5.96% 6.24% 16.86% 23.57% 31.39% 28.11% 156.99%

c2670 2.35% 6.81% 5.67% 14.51% 19.87% 29.60% 21.01% 49.58%

c3540 3.98% 7.61% 9.33% 19.12% 25.67% 40.12% 32.11% 77.43%

c5315 5.87% 8.64% 8.81% 15.49% 31.01% 57.64% 26.28% 81.42%

c6288 3.29% 8.75% 7.81% 17.63% 23.47% 62.37% 34.69% 64.58%

c7552 5.42% 11.01% 8.43% 20.09% 26.33% 42.11% 33.84% 67.12%

Developed model

ISCAS 
Circuit

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error

Mean path 
error

Max path 
error

Mean gate 
error

Max gate 
error
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5.2. Effective capacitance extraction
In chapter 2 was introduced the theoretical concepts related to the input capacitance of a CMOS

logic gate.  Then,  after  introducing the main contributions  to  the input  capacitance of  a  CMOS

standard cell, the next step is to evaluate different approaches to easily model all of these effects

using a steady capacitance value.

An  effective  input  capacitance  value  for  a  standard  cell  input  can  be  obtained  by  multiple

methods, since this effective value is only an approximation to the real capacitive effect, there is not

an exact way to extract its value, and depending on the specific use of the effective capacitance, one

method may provide better results than other.

Various methods were analyzed, to evaluate the one working better when used to estimate circuit

delays. The term Characterized-Gate (CG) will be used to refer to the standard cell from which we

get the input capacitance. Various strategies are detailed:

• Charge integration: A method widely used in commercial tools for calculating the logic cells

capacitance is by integrating the input current into the gate during a transition. With this

method, the capacitance value can be computed using the basic definition of the capacitance,

given by (5.9), as the quotient between the charge stored and the voltage variation between

the capacitor terminals. The dynamic behavior of the real capacitive to be described may

provide a value that depends on the conductance used to charge (discharge) the node.

C=
Q
V

(5.9)

As already was shown by  [58] this  results  technique  provides  an overestimation  of  the

capacitance value up to 33%, depending of the specific technology when applied to timing

analysis

• RC time constant: This technique is based on the theoretical definition of the time constant

(τ) of an RC circuit,  being the product of the resistance value and the capacitance value

(5.10). The RC constant is the time required to charge or discharge the capacitor at 63.2

percent,  through  the  resistor.  This  method  works  applying  a  voltage  pulse  through  a

resistance to the input of the CG, where the cell acts as the capacitor of the RC circuit. By
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measuring the charging (discharging)  time of the input node,  the equivalent capacitance

value can be computed easily from the measured time and the resistance value. The main

issue of this technique is which value must been chosen for the resistance. The capacitance

value computed does not remain constant when the resistance value changes.

τ=R⋅C v (t )=V DD⋅(1−e−
1
τ t
) (5.10)

Test  experiments  carried over  exhibit  a  capacitance estimation variation reaching values

beyond 100% when considering different resistance values (Table  5.4 shows the relative

capacitance difference for various resistance values for two 65nm standard cells).  These

results make clear the invalidity of this technique to estimate the effective capacitance of a

CMOS gates. 

• Empirical adjustment of propagation delay: The previous methods are based on theoretical

concepts of a capacitance to get an effective value. However, the dynamic nature of the

transistor  capacitance  does  not  match  the  theoretical  concepts  derived  for  a  static

capacitance and do not provide accurate results. The fully empirical method adjusts the cell

capacitance value to the one providing the observed delay.

The empirical method finds the capacitive load for which a reference gate exhibits the same

propagation delay than when it is loaded with an instance of the CG. This way to extract the

capacitance value is specific to the timing analysis since its value is adjusted comparing the

propagation  delay  of  a  gate.  Such a  capacitance  estimation  can  be  unsuitable  for  other

applications aside from propagation time estimation.

Table 5.4: RC Constant capacitance extraction

HS65_LS_AND2X4 HS65_LS_NOR2X3

Input A Input B Input A Input B

10 Ω – – – –

50 Ω +40.03% +40.97% +46.86% +42.96%

100 Ω +88.87% +91.85% +107.93% +97.65%

200 Ω +196.38% +203.06% +239.02% +216.37%

Thanks  to  its  delay-based  nature,  the  empirical  method  provides  the  higher  accurate  delay
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estimation compared to electrical-level simulations, and is the method used from now on. Next, this

method is described in detail.

5.2.1. Delay-based effective capacitance extraction

The generic circuit scheme used to extract the effective capacitance of an input node of a given

standard cell is shown in Fig.  5.9. A voltage pulse is applied to the inputs of two instances of the

same cell type (Ref1 and Ref2). One of these references gates (Ref1) is loaded with one instance of

the CG, while Ref2 has a pure capacitive load. The goal is to adjust the value of the capacitor, until

the propagation delay of both reference gates matches. Evidently, if the reference gate has more

than one input, the logical values applied to the other inputs must allow propagating the transition

through the gate. To avoid this issue, the best solution is to choose a gate with a single input as a

reference gate, like an inverter or a buffer.

The effective capacitance is iteratively approximated, each process step simulates the circuit and

compares the propagation delay through the two reference gates. The capacitor value is increased or

decreased  depending  on  if  the  delay  through  Ref1 is  greater  or  lesser  than  the  Ref2, and  the

simulation repeats until the difference in the propagation delay through the two branches is below a

defined tolerance limit. To approach progressively to the capacitance value that equals the delay, the

differential applied to the capacitance value is smaller at each simulation step. When this iterative

process ends, the final capacitor value is taken as the effective capacitance of the gate under test.

Simulations carried out demonstrate that the effective capacitance value obtained for a given cell,

have a negligible dependence with the input transition time applied to the input of the reference

gates. Resulting in a mean variation under 0.5% for both extreme values tested. The type of cell

used as a reference gate has a larger impact on the capacitance estimation, than the input transition

time. The method was tested for all combinational cells in a commercial 65nm CMOS library, using

buffers of different size as reference gates. The variation on the estimated value was about a 5% for

the worst case tested, and a mean value of the variation below 2%. However, this is for the two

extreme cases, and can be reduced by taking an intermediate value.
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Figure 5.9: C extraction circuit
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5.3. Delay dependency with sensitization vector
When a  circuit  design  is  synthesized  using  standard  cells,  CAD algorithms are  designed  to

reduce circuit  area,  power consumption and propagation delays  in  addition to optimizing other

parameters. To accomplish this goal, synthesis tools use library complex gates, i.e. circuit structures

that combine primitive logic functions like NOT, AND, OR, NAND, NOR, in a single CMOS

structure  that  reduces  the  number  of  transistors  required  to  perform  a  given  logic  function.

Typically,  complex  gates  comprise  a  combination  of  few  primitive  functions  although  more

complex  functions  like  full-adders  or  multiplexers  are  also  common.  In  the  context  of  timing

analysis, a typical characteristic of complex gates vs. basic gates is that, in general, it is possible to

find more than one vector that sensitizes each gate input, while single gates have typically only one

sensitization vector  [59]. In this work we show that the gate delay when propagating a transition

through a given input of a complex gate may vary significantly depending on the input vector used

to sensitize such an input with the consequent impact on the circuit-level timing computation. This

delay variation is shown to be not negligible, being similar to the delay variation caused by process

parameter fluctuations. We also show that the sensitization vector impact on the delay is also of the

same order of magnitude than the delay due to the interconnect system.

In some works,  complex gates are converted to primitive gates prior to timing analysis thus

applying the delay model to basic gates  [60]. This methodology may be a source of inaccuracies

since the circuit used for simulation has a topology that differs from the actual circuit structure

being  finally  manufactured  [61].  Other  works  analyze  the  delay  of  complex  gates  through  a

transistor-level approach [62][63][64], or using a current source model (CSM) [65], providing good

accuracy at  the cost of very complex expressions that result in a slow computation time at the

circuit  level  [66].  Moreover,  some  works  use  alternative  gate  delay  models  based  on  neural

networks  [67]. However, the gate delay modeling techniques achieving a better tradeoff between

computation time, accuracy and flexibility are based on analytical models [68]. In addition, many

works related to timing analysis do not consider specifically the case of complex gates [69][70][71]

[72], although some of them could be easily extended to include complex gates while others could

have it more difficult to consider this effect.
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5.3.1. Gate-level analysis

Without lose of generality, we illustrate the delay dependence with the sensitization vector using

four  complex  gates  included  in  almost  all  standard  cell  libraries.  The  results  and  arguments

provided for these four gates may be extrapolated to any complex cell, even in cells with a more

complex structure than the cells used as examples the impact over the delay may be more relevant.

The four gates analyzed are:

• AO22 (referred to as AO2N in some technologies), being a four input gate that implements

the logic function in (5.13), whose logic symbol and the CMOS transistor topology is shown

in Fig.  5.10. Table 5.5 shows the sensitization vectors for each gate input. The logic value

"T", represents a transition either rising.

Out=A∗B+C∗D (5.11)

Figure 5.10: Gate  AO22

• OA12 (AO7N in some technologies), being a three input gate for which only one of its

inputs has multiple input vectors to sensitize the gate. The gate logic function is given by

(5.13),  its  symbol  and transistor  topology are  shown in  Fig.  5.11,  and  the  sensitization

vectors in Table 5.6.

Out=(A+B)∗C (5.12)

Figure 5.11: Gate OA12

• CB4I6 (also known as AO20N), a four input gate with an increasing number of sensitization

vectors  for  each  input.  Its  logic  function  is  given by  (5.14),  and symbol  and transistor

topology are shown in Fig. 5.12, and its sensitization vectors in the Table 5.7.
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Out=(A+B)∗C+D (5.13)

Figure 5.12: Gate CB4I6

• AOI212 (also known as AO10), a five input gate. This is an inverting gate, thus, do not has

an inverter at its output. Its logic expression is given by (5.14), Fig. 3.14 shows its symbol

and CMOS transistor topology, and its sensitization vectors in the Table 5.8.

Out=A∗B+C∗D+E (5.14)

Figure 5.13: Gate AOI212
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Table 5.5: AO22 Propagation Table

A B C D Out

Vector A1 T 1 0 0 T

Vector A2 T 1 1 0 T

Vector A3 T 1 0 1 T

Vector B1 1 T 0 0 T

Vector B2 1 T 1 0 T

Vector B3 1 T 0 1 T

Vector C1 0 0 T 1 T

Vector C2 1 0 T 1 T

Vector C3 0 1 T 1 T

Vector D1 0 0 1 T T

Vector D2 1 0 1 T T

Vector D3 0 1 1 T T

Table 5.6: OA12 Propagation Table

A B C Out

Vector A1 T 0 1 T

Vector B1 0 T 1 T

Vector C1 1 0 T T

Vector C2 0 1 T T

Vector C3 1 1 T T
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Table 5.7: CB4I6 Propagation Table

A B C D Out

Vector A1 T 0 1 0 T

Vector B1 0 T 1 0 T

Vector C1 1 0 T 0 T

Vector C2 0 1 T 0 T

Vector C3 1 1 T 0 T

Vector D1 0 0 0 T T

Vector D2 0 1 0 T T

Vector D3 1 0 0 T T

Vector D4 1 1 0 T T

Vector D5 0 0 1 T T

Table 5.8: AOI212 Propagation Table

A B C D E Out

Vector A1 T 1 0 0 0 T

Vector A2 T 1 0 1 0 T

Vector A3 T 1 1 0 0 T

Vector B1 1 T 0 0 0 T

Vector B2 1 T 0 1 0 T

Vector B3 1 T 1 0 0 T

Vector C1 0 0 T 1 0 T

Vector C2 0 1 T 1 0 T

Vector C3 1 0 T 1 0 T

Vector D1 0 0 1 T 0 T

Vector D2 0 1 1 T 0 T

Vector D3 1 0 1 T 0 T

Vector E1 0 0 0 0 T T

Vector E2 0 0 0 1 T T

Vector E3 0 0 1 0 T T

Vector E4 0 1 0 0 T T

Vector E5 0 1 0 1 T T

Vector E6 0 1 1 0 T T

Vector E7 1 0 0 0 T T

Vector E8 1 0 0 1 T T

Vector E9 1 0 1 0 T T

With the objective to illustrate to the variation of the propagation delay of the gates when change

the  sensitization  vector, we carried  extensive  electrical  simulations  to  compute  the  gate  delays

through  each  input  for  all  the  sensitization  vectors  for  three  commercial  CMOS  technologies

(130nm, 90nm and 65nm) at nominal supply voltage and 25 ºC. Each gate was loaded with 4 gates

equal to the one being analyzed.

Tables 5.9 to  5.12 show some of the delay results obtained when propagating both rising and

falling transition through each input of the four complex gates considered in this analysis, for a

sample of the sensitization vectors of each gate. For each gate, the Vector X1 (with X being A, B, C,

D or E) delay is taken as a reference to which of the other Vectors delay Xi, (i > 1) are referred.
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Table 5.9: Propagation delay variation for AO22

Table 5.10: Propagation delay variation for OA12

Table 5.11: Propagation delay variation for CB4I6

132

130nm 90nm 65nm

In Rise In Fall In Rise In Fall In Rise In Fall

Vector A1 118.23 117.90 58.93 64.18 82.58 82.66

Vector A2 122.68 146.28 61.96 78.11 85.68 99.18

Vector A3 118.49 137.80 58.95 71.87 82.67 94.81

A2 vs A1 3.76% 24.07% 5.14% 21.70% 3.75% 19.98%

A3 vs A1 0.22% 16.88% 0.03% 11.97% 0.11% 14.69%

Vector B1 121.32 125.90 57.97 65.95 84.74 87.69

Vector B2 125.88 157.00 60.82 80.58 87.88 105.53

Vector B3 121.59 148.44 58.06 74.33 84.85 101.14

B2 vs B1 3.76% 24.71% 4.90% 22.18% 3.71% 20.34%

B3 vs B1 0.23% 17.91% 0.15% 12.70% 0.13% 15.33%

Vector C1 146.16 139.68 74.20 75.89 100.80 101.86

Vector C2 143.54 166.78 74.31 88.55 101.25 118.66

Vector C3 139.05 158.27 71.32 84.03 98.37 112.74

C2 vs C1 -1.79% 19.41% 0.14% 16.69% 0.45% 16.49%

C3 vs C1 -4.86% 13.31% -3.89% 10.73% -2.41% 10.68%

Vector D1 146.43 144.41 71.81 79.55 96.19 98.42

Vector D2 143.96 173.14 71.67 93.38 96.54 115.65

Vector D3 139.38 164.76 68.76 88.75 93.72 109.96

D2 vs D1 -1.69% 19.90% -0.20% 17.38% 0.36% 17.50%

D3 vs D1 -4.82% 14.10% -4.24% 11.58% -2.57% 11.73%

130nm 90nm 65nm

In Rise In Fall In Rise In Fall In Rise In Fall

Vector C1 122.36 136.54 61.79 77.88 76.32 63.77

Vector C2 108.45 129.56 55.19 73.82 71.66 61.56

Vector C3 98.72 131.85 52.61 75.24 67.27 62.40

C2 vs C1 -11.37% -5.11% -10.68% -5.21% -6.10% -3.46%

C3 vs C1 -19.31% -3.43% -14.85% -3.38% -11.85% -2.15%

130nm 90nm 65nm

In Rise In Fall In Rise In Fall In Rise In Fall

Vector D1 156.84 139.84 67.63 78.33 81.98 82.75

Vector D2 159.12 169.82 70.84 97.39 79.73 85.45

Vector D3 153.89 169.41 68.91 96.95 80.73 86.44

Vector D4 146.45 163.44 67.19 93.33 76.82 81.97

Vector D5 147.93 182.45 64.24 96.51 84.78 116.65

D2 vs D1 1.45% 21.44% 4.74% 24.33% -2.74% 3.26%

D3 vs D1 -1.88% 21.15% 1.88% 23.78% -1.52% 4.45%

D4 vs D1 -6.62% 16.88% -0.65% 19.16% -6.30% -0.95%

D5 vs D1 -5.68% 30.48% -5.02% 23.21% 3.42% 40.97%
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Table 5.12: Propagation delay variation for AOI212

Results in Tables show propagation delay variations with the input sensitization vector that reach

up to 50% (49.85%) depending on the gate structure, input transition and technology. The delay

variation for the 65nm technology may get to up to 43% (Vector E5 vs. Vector E1 for gate AOI212

propagating a falling input transition) suggesting that this variation may induce a large variance at

the circuit level. The values of delay variation in function of the sensitization vector presented in

Tables  5.9-5.12,  demonstrates that  this  factor  must  be considered to  perform an accurate  delay

estimation.

The cell AOI212 presents the largest variations of all cases of the table, that is because this is an

inverting gate, while the others are non-inverting. The non-inverting cells are constructed using an

inverting cells followed by an inverter. The effects of the sensitization vector are manifested mainly

on the first stage, and the output inverter reduces the impact on the cell delay.

5.3.2. Transistor level analysis

We investigated the root cause of the delay variations with the sensitization vector to get insight

on this phenomenon through a transistor-level analysis. This analysis is carried on the two first

gates considered since it was observed that the delay variation root cause is common to all gates.
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130nm 90nm 65nm

In Rise In Fall In Rise In Fall In Rise In Fall

Vector E1 106.23 119.58 63.06 73.25 59.32 79.88

Vector E2 105.95 144.12 62.78 87.61 57.96 93.30

Vector E3 107.24 150.96 63.99 89.38 57.70 89.84

Vector E4 101.03 144.72 61.83 87.60 59.65 98.85

Vector E5 100.64 171.08 61.49 103.59 58.27 114.31

Vector E6 102.08 179.20 62.89 105.99 57.97 109.95

Vector E7 99.70 138.21 60.68 82.74 59.38 93.67

Vector E8 99.38 163.06 60.39 97.76 58.00 108.26

Vector E9 100.64 171.11 61.63 100.15 57.72 103.92

E2 vs E1 -0.26% 20.52% -0.45% 19.60% -2.29% 16.79%

E3 vs E1 0.95% 26.23% 1.47% 22.02% -2.74% 12.46%

E4 vs E1 -4.89% 21.02% -1.96% 19.59% 0.56% 23.74%

E5 vs E1 -5.27% 43.06% -2.50% 41.42% -1.77% 43.10%

E6 vs E1 -3.90% 49.85% -0.27% 44.69% -2.27% 37.64%

E7 vs E1 -6.15% 15.58% -3.78% 12.96% 0.11% 17.26%

E8 vs E1 -6.45% 36.36% -4.24% 33.46% -2.23% 35.51%

E9 vs E1 -5.27% 43.09% -2.28% 36.72% -2.70% 30.08%
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The complex gates considered implement non-inverting functions, and require an output inverter for

a CMOS implementation. Such inverter does not influence the delay variation with the sensitization

vector  and  therefore  it  is  not  considered  in  the  transistor-level  analysis.  Fig.  5.15 shows  the

transistor-level analysis for gate AO22 and represents the three input vectors that propagate a falling

transition through Input A. A solid cross on a transistor indicates that such device is OFF, while a

solid arrow close to a device indicates that such transistor is ON. A dashed cross or arrow represents

that such a transistor makes a transition and indicates the final state once the switching input is at its

final state (i.e. a dashed arrow indicates a transistor that switched from OFF to ON, while a dashed

cross indicates a transistor that changed from ON to OFF).

a) Vector A1                                   b) Vector A2                                       c) Vector A3

Figure 5.14: Gate AO22 transistor-level schematic and current paths for each sensitization vector.

(output inverter not shown)

a) Vector C1                          b) Vector C2                                        c) Vector C3

Figure 5.15: Gate OA12 transistor-level schematic and current paths for each sensitization vector.

(output inverter not shown)

Results in Table 5.18 show that the transition in Fig. 5.14a corresponds to the fastest case, while

Fig.  5.14b corresponds to the slowest one. As shown in Fig. 5.14, the current charging the output

node must pass always through transistor PA. In the fastest case, both parallel transistors PC and PD

are ON, allowing a higher current through PA, leading to a quicker charge of the output node. In the
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other two cases only one of the two top parallel transistors (either PC or PD) is ON resulting in less

current available to charge the output and hence resulting in a bigger delay. The relative delay

difference between Vector A2 and Vector A3, is due to the transistor NC being ON for Vector A2

and OFF for Vector A3. When this device is ON, it creates an additional current path that charges

internal parasitic capacitors.  Such an additional current is taken from the current driven by the

pMOS devices that therefore does not contribute to charge the output resulting in a comparatively

longer transition.

To better illustrate this effect, Fig.  136 shows the dynamic currents through the pMOS, nMOS

and output node in gate AO22 for the three input vectors discussed. The solid line represents the

current through the pMOS transistors charging the output node, while the dashed line represents the

current through the nMOS transistors drained from the output node. The dotted line is the difference

between previous currents, and corresponds to the net current charging the output node. Vector A1

(Fig. 5.14a) corresponds to the fastest transition and exhibits the larger output load component as it

drives the larger current through the pMOS transistor, and the smaller current through the nMOS

ones (this later component being equal to the one in Vector A3). The slowest transition (in Fig.

5.14b) has a current component through the nMOS transistors being almost twice than that of the

other two cases. This current reduces the effective current that charges the output node as shown in

Fig. 5.16b.
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Figure 5.16: Internal currents of AO22

The gate OA12 behavior is analogous to the AO22 case. Fig.  5.15 shows the transistor-level

diagram for each sensitization vectors that pass a rising transition at input C toward the gate output.

Fig. 5.15c corresponds to the fastest transition. For this input vector, transistors NA and NB are both

ON, increasing the current available through NC with respect to the other two cases where only NA

or NB are ON. The Vector C2 transition (Fig.  5.15b) shows a delay slightly larger than that for

Vector C1 (in both cases only one nMOS transistor is ON in the parallel structure) since transistor

PB is  ON increasing  the  amount  of  charge  that  must  be  drained  from the  output  node  when

discharging the internal parasitic capacitors.

The analysis carried over in this section, together with the results shown in Table 5.18, highlight

that if  a logic  gate  has more than one sensitization vector for a  given input,  it  is  important to

consider which input vector is actually applied to sensitize such input to the gate when performing

timing analysis.

5.3.3. Circuit-level relevancy

As an initial experiment to analyze the impact of the multiple vector sensitization at the circuit

level, we took the 1000 slowest paths of the ISCAS'85 benchmark circuits and computed how many
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of such paths contained multiple sensitization vectors. Results are given in Table 5.13 showing that,

for the large circuits (starting from the ISCAS c499) in almost all cases, the first 1000 slowest paths

contain multiple-input gates highlighting the relevancy that this phenomenon might have at  the

circuit level. This is due to fact that technology libraries include many complex gates, typically used

by the synthesis algorithms to reduce area, delay and power.

Table 5.13: Circuit-level multi-sensitization impact

Circuit
Slowest Path is

multi-input
# of Multi-Input into 1000

Slowest paths

c17 No 24

c432 Yes 774

c499 Yes 1000

c880 Yes 1000

c1355 Yes 1000

c1908 Yes 1000

c2670 Yes 1000

c3540 Yes 1000

c5315 Yes 1000

c6288 Yes 1000

c7552 Yes 990

5.3.4. Sensitization vector impact on timing analysis

To illustrate the significance of the sensitization vector for an accurate path delay estimation,

firstly is shown the behavior of a path identification algorithm not considering the specific vector on

a test circuit and then, the results for benchmark circuits are compared with a commercial tool,

showing the relevance of this consideration.

5.3.4.1. Test circuit

We first  report  initial  results  on  a  simple  circuit  shown  in  Fig.  5.17 to  illustrate  how  the

developed  algorithm works  compared  to  a  commercial  tool  in  the  case  of  path  with  multiple

sensitization vectors. The critical path of the sample circuit in Fig. 5.17 passes through input A of an

AO22 complex gate (shown in a dashed box).
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Figure 5.17: Test circuit

The easiest way to sensitize the complex gate leads to the smaller propagation delay for this path,

although it is also possible to sensitize the gate with an input vector that exhibits a larger delay. The

commercial tool correctly provides the critical path that propagates a falling edge through nodes

N1-n10-n11-N20, as expected. The input vector used to sensitize the critical path is:

N1=F   N2=1  N3=0  N4=1  N5=0  N6=X  N7=X

and corresponds to the easiest option that assigns a logic 0 to node N5 and therefore doesn't

require assigning n12 nor justifying its value to an input node. Setting N5 to 0 provides the shortest

way to sensitize the AO22 gate, but ignores another case having a larger propagation delay for such

path. This can be obtained sensitizing gate AO22 with a vector that results in a larger delay. This

second vector requires a more complex justification process to assign logic values until reaching an

input node.

The algorithm developed in the framework provides two paths passing through the same nodes

and starting  with  a  falling  transition,  each  with  different  input  vector. One is  the  same vector

provided by the commercial tool, while the second one is:

N1=F   N2=1  N3=0  N4=1  N5=1  N6=0  N7=0

Table 5.14 provides the delay obtained from electrical simulations of the critical path for the two

input vectors. It is shown that the additional path provided by the tool developed exhibits a delay

increase  of  8.6%  with  respect  to  the  one  given  by  the  commercial  tool.  Such  an  erroneous

estimation is due to not considering the multiple sensitization vectors of complex gates. The tool

proposed in this work identifies correctly the path with larger delay.
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Table 5.14: Delay vs Input vector for the simple circuit in Fig. 5.17

Input vector Delay (ps)

N1=F, N2=1, N3=0, N4=1, N5=1, N6=0, N7=0 106.16

N1=F, N2=1, N3=0, N4=1, N5=0, N6=X, N7=X 97.73

Once a simple illustrative example is given, we report the results obtained in benchmark circuits,

and then compare the delay variation due to different sensitization vectors with other effects like

process parameters or the impact of the interconnect capacitance.

5.3.4.2. Benchmark circuits

To prove the  importance  of  consider  the  specific  sensitization  vector  during  the  path  delay

estimation this section is focused on the delay variation with the input vector for complex gates, and

therefore  the  results  are  focused  on  analyzing  the  delay  of  the  paths  having  more  than  one

sensitization  input  vector  due  to  complex  gates.  We  tested  the  pat  identification  algorithms

developed using the ISCAS and ITC benchmarks circuits.

To generate the results we first determined the paths having more than one sensitization vector.

Then the tool generated a script for the commercial tool to explore a set of these paths, and import

the report generated  [73][74]. With this information, we compared the delay estimation and the

input values assigned to the complex gates within each path, to those generated by the developed

tool and the electrical  simulations.  Finally, we computed the percentage of paths for which the

commercial tool identified correctly the input vector providing the larger delay. Each path obtained

was electrically simulated to verify that it was really a true path and to determine the input vector

providing the larger delay.

Table  5.15 shows the results summarizing the ability to identify the input vector inducing the

worst-case  delay  for  each path,  for  both the  developed method that  considers  the  sensitization

vector  and  the  commercial  tool  used  as  an  example  of  algorithm that  uses  a  minimum effort

sensitization. The table is organized as follows: the first column identifies the circuit, while the

second  column  provides  the  CPU  time  required  by  the  tool  to  find  all  true  paths,  plus  the

corresponding  sensitization  vectors  and  extract  the  100  slowest  multi-vector  paths.  The  third
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column shows the total number of sensitization logic vectors reported by the tool, and the fourth

column the number of input vectors reported by the developed tool that sensitize the functional

paths considered, i.e. the 100 slowest paths that have more than one sensitization vector (except for

the small c17). We call a functional path to a sequence of nodes (i.e. a structural path), with a

specific  sequence  of  transitions  along  the  path.  Each  structural  path  may  have  more  than  one

functional path, and each functional path may have more than one sensitization vector. The CPU

time  used  by  the  commercial  tool  is  given  in  the  fifth  column  and  the  sixth  column  values

correspond to the number of sensitization vectors reported by the commercial tool for the true paths

considered.

Table 5.15: Sensitization vector impact on critical path identification

To give  a  metric  of  the  accuracy  to  identify  correctly  the  worst  sensitization  vector,  the

sensitization vectors are grouped in functional paths (i.e paths with same sequence of nodes and

transitions on each node, but with different sensitization vector and propagation delay), and for each

functional path considered the sensitization vectors are compared.

Finally, the last two columns of Table  5.15 show the number and percentage respectively of

functional paths for which the minimum effort algorithm provides the input vector that produces the

140

Developed framework Commercial tool

Circuit LogicVectors

IS
C

A
S'

85

c17 0.00 32 24 1.49 25 6 75.00%

c432 20.93 9864 226 263 498 23 37.10%

c499 90.50 278346 400 31029 796 0 0.00%

c880 8.14 215690 3098 1419 389 8 17.02%

c1355 317.07 45448 200 83477 0 0 0.00%

c1908 22.49 167988 398 2245 176 1 7.69%

c2670 67.93 280856 219036 2991 26 0 0.00%

c3540 413 1184190 2640 245762 0 0 0.00%

c5315 2563 1401378 6794 3773 0 0 0.00%

c6288 22566 5790748 231026 47569 0 0 0.00%

c7552 432 186994 238 2029 1204 43 87.76%

IT
C

'9
9 b14 32848 4268462 5894 52104 0 0 0.00%

b15 7980 3139370 8648 25002 247 23 56.10%

Mean 21.59%

CPU Time 
(s)

# of 
Sensitization 
Logic Vectors

# Logic Vectors 
for 100 slowest 

multi-vector 
paths

CPU Time 
(s)

Correctly identified
Sensitization vectors
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worst delay for that functional path.  These results show the inefficiency of not considering the

specific  sensitization  vector  during  the  delay  computation  highlighting  the  impact  of  the  delay

variation due to the sensitization vector  for complex gates.  In many cases the commercial  tool

simply finds the case for which the complex gate input assignations are easier to justify instead of

exploring all the possibilities.

The algorithm developed in this  work explores all  possible input vectors for each path,  and

therefore it identifies correctly the worst delay for each path. The results in the last column of Table

5.15 show that if the delay variation with the input vector is not considered, the estimation of the

worst delay for each path is quite poor, obtaining only a mean value of 21.59% of paths correctly

estimated.

5.3.4.3. Relevance and comparison to other effects

The delay variation due to the sensitization vector are compared to the delay variations caused by

other effects like process parameter fluctuations or the interconnect system. Such analysis is key to

determine the relative significance of this phenomenon compared to other important delay variation

sources.  We carried  this  comparison  for  various  combinational  ISCAS circuits  to  estimate  the

relative impact at the circuit level. Table 5.16 shows the relative delay variations obtained for the

c432 ISCAS circuit as an example.  The first row shows the delay variation due to the sensitization

vector that gets up to 30%.

Table 5.16: Path delay variation

Delay variation

Sensitization vector 29.98%

Interconnect size (Oversized vs ideal) 19.84%

Parameter variations

Nominal vs Best Case 27.29%

Worst Case vs Nominal 32.70%

Worst Case vs Best Case 47.72%
To estimate the delay due to the interconnect system, we compared the nominal delay of the

ISCAS c432 using a timing simulator that neglected the impact of the interconnect load to another

simulation  of  the  same circuit  for  which  the  interconnect  was  estimated  assuming a  10X area

increase.  Such analysis  provides  and estimation about  the impact  of  the interconnect  delay for

circuits having long wires. The second row in Table 5.16 shows the relative delay variation between

both  circuit  versions  whose  difference  is  mainly  due  to  the  interconnect  system.  Such  delay

variation is 10% smaller than the delay variation due to the sensitization vector variation. We used
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the Synopsys® Design Vision tool to estimate the area of the synthesized circuit and the impact of

the additional wiring on delay [75][76].

The last three rows of the table show the process induced delay variation taking the 65nm CMOS

commercial  technology provided corner values.  In the worst-case variation scenario (worst-case

corner vs. best-case corner) the delay relative variation gets up to 47%. This represents the highest

variation value as it corresponds to the wider fluctuation range being a non-realistic overestimated

case. A worst-case vs. nominal-case variation analysis shows a 33% relative variation being of the

same order of magnitude that the variation due to the sensitization vector. 

The analysis  carried  in  the  previous  section  considered  the  delay  variation  impact  with  the

sensitization vector assuming the impact of a single complex gate on a given path. We have shown

that, for a path with only one gate that can be sensitized by multiple vectors, a relatively large gate

delay variation of about 35% may result in an overall path delay variation of about 10%. Obviously,

a  given  gate-level  delay  variation  will  translate  to  a  smaller  path-delay  variation  since  the

contribution  of  a  single  gate  is  softened  when  compared  to  the  overall  path.  This  effect  will

obviously depend on the relative path length, and possibly on the specific position of the complex

gate within the path.

We investigated  the  effect  of  having  more  than  one  complex  gate  in  a  given  path,  and  its

combined impact on the overall path. We saw that the variation effect of one complex gate can

amplify the effect of another complex gate, because variation affects not only the propagation delay,

but also the output slew time. As an example a path having two complex gates, the first one with a

small  variation of about  2.6% has an impact  on the next  complex gate,  whose delay variation

increases from 34% to 54%, resulting in an overall path delay variation of 16%. To get an idea of

the importance of this effect, we observed that this path exhibits a delay variation of about 2.6% due

to a temperature increase from 25 ºC to 60 ºC.

To evaluate the relative impact of this effect at the circuit level, we analyzed how often this

situation might occur within a given circuit  by analyzing how many of the 1000 slowest paths

contained two or more complex gates.  We also computed,  for the same set of paths,  the mean

number of complex gates per path. Results in Table 5.17 show that this is a common situation, and

that the mean number of complex gates per path is beyond 3 for the ISCAS circuits larger than the

c432.
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Table 5.17: Complex gates per path

Circuit >= 2 complex gates Mean complex gates / path

c432 488 1.49

c499 1000 5.04

c880 1000 4.35

c1355 1000 3.78

c1908 994 3.58

c2670 967 4.44

c3540 1000 7.01

c5315 1000 7.2

c7552 993 5.36

These results  demonstrate  that  the effect of sensitization vector  on the path delay cannot  be

ignored, and has an impact comparable to others side effects.
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5.4. Algorithms for Timing Analysis
The following sections show how the multiple sensitization algorithms can be combined with the

simplification techniques to perform true path identification on combinational circuits. These results

may  be  used  for  multiple  purposes,  since  there  are  many  cases  where  true  path  identification

through a combinational block and the input vectors required to sensitize these paths are required.

Some of them are:

• Timing analysis.

• Circuit synthesis optimization.

• Delay fault test pattern generation.

• SET propagation analysis.

5.4.1. Exhaustive path identification

Exhaustive path identification consists in identifying as many true paths as possible together with

the input vectors that sensitize these paths. This can be accomplished using any version of the

stepwise algorithm detailed in section 3.4.1.

As has been shown in section 5.3.1,  the different input vector used to sensitize complex gates

lead to significant variations on the propagation delay [52][57]. Therefore the input vector must be

considered for accurate path delay estimation, and the exhaustive path identification process tries to

identify all possible sensitization vectors for each true path.

It is obvious that an exhaustive path exploration cannot be achieved for very large circuit designs

due to the exponential nature of the number of paths through a circuit categorized as a NP-problem

[44].  However  the  high  efficiency  of  the  stepwise  algorithm developed  combined  with  circuit

simplification  techniques  makes this  objective affordable in  a  reasonable  time for  circuits  with

thousands of gates. In any case, a backtrack limit can be imposed as detailed in the description of

the algorithms (3.4.1.43.4.1), to avoid excessive runtime when the algorithm is applied to complex

circuits. In this case some true paths can be discarded as if they were false paths although they

might actually be true paths.

Experimental results show that, in general, the number of true paths discarded due to backtrack
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limit  represents a small  portion of the total  number of true paths through the circuit.  The total

number of true paths and all sensitization vectors for each true path can be found performing an

exhaustive  path  identification  without  backtrack  limit,  although  this  task  may  require  a  huge

computation time. Then, the results show that in general an increase of the backtrack limit leads to a

large increase in the runtime at a small increase in the number of true paths. This indicates that it is

possible  to  run  a  preliminary  analysis  limiting  the  backtrack  to  small  value  achieving  a  fast

execution without incurring in a great lost of identified paths.

Table 5.18: Backtrack limit influence for ISCAS c7752

Backtrack
limit

True paths
Sensitization

vectors
Total backtracks

Aborted due to
backtrack limit

CPU Time (s)

5 6,094 --- 67,117,888 --- 271,583,015 --- 51,381,250 --- 3,452 ---

10 6,174 +1.31% 67,157,686 +0.06% 480,834,854 +77.05% 33,385,701 -35.02% 6,269 +81.60%

1,000 6,200 +1.74% 67,272,336 +0.23% 2,215,316,187 +715.7% 1,519,598 -97% 12,042 +248.8%

Table 5.18 shows how the backtrack limit impacts the exhaustive path identification for ISCAS

c7552.  The table  includes  the results  for three values  of the backtrack limit  (5,  10 and 1000),

showing that the increase in the number of true paths and sensitization vectors are small while the

runtime suffers a large increase. As shown in Table 5.18 and as expected the number of abortions

due  to  the  backtrack  limit  decreases  considerably  when  the  limit  is  increased.  However,  this

reduction is not reflected on sensitization vectors identified. Therefore a large number of aborted

cases actually lead to a logic conflict.

Typically long paths traverse many logic gates and consequently may have a lot of sensitization

vectors some of which may be discarded due to the backtrack limit. Given the sensitization vector

impact over the path delay it is interesting to obtain all sensitization vectors for the longest paths

since  some  discarded  vectors  may  lead  to  the  largest  delay  through  the  circuit.  This  can  be

accomplished by marking the paths when the process is aborted due to the backtrack limit, and then

adding a post-processing step to complete the sensitization vectors for the paths with longest delays.

Tables  6.1-6.1 shows  the  results  of  the  exhaustive  path  identification  algorithm  for  some

benchmark circuits. Results are presented for different versions of the stepwise algorithm: forward,

backward and forward version with the justification at the end of the path. The results are also given

for the three sensitization criteria detailed in section 3.3.1.
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Table 5.19: Forward algorithm. Criterion 1

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 8 32 0 0 0 0

c432 1474 22798 4167397 3580 16 6252

c499 3284 216600 21530322 17876 121 30248

c880 2831 132438 151806 30 2 34680

c1355 3248 358386 20969048 20100 119 47140

c1908 4888 1142162 23638299 15082 140 146768

c2670 1459 70176 2871832 0 40 35112

c3540 8259 628622 18345841 13698 160 171108

c5315 5756 5550518 168642519 137176 617 1852775

Table 5.20: Forward algorithm criterion 2

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 9 26 0 0 0 0

c432 1598 15944 2682140 2365 11 5872

c499 6509 425400 21530322 17876 127 54984

c880 4809 170740 81928 9 1 34676

c1355 3900 425072 22754656 21636 131 54456

c1908 8762 1179648 14021949 7784 89 151088

c2670 4046 445700 417396 0 37 106732

c3540 36331 3074478 79748793 57669 719 810344

c5315 9674 3445656 5843788 4279 130 1157124

Table 5.21: Forward algorithm criterion 3

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 9 26 0 0 0 0

c432 22822 350204 2431014 1275 20 30996

c499 7040 3818340 47328070 29246 475 459920

c880 4939 679842 171140 16 6 80564

c1355 4463 3424658 56014844 39355 436 413076

c1908 18034 8515074 20118919 8398 410 1058456

c2670 4636 21027112 8747115 4342 289 4830208
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Table 5.22: Backward algorithm Criterion 1

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 8 32 2 0 0 0

c432 1324 21084 1294490 1084 6 6492

c499 3483 222638 10372717 10545 70 31460

c880 2782 126238 2449518 1696 16 34676

c1355 2021 168014 10077719 9952 65 24852

c1908 4176 377040 18146261 11343 93 51356

c2670 1459 69808 366452 22 7 35108

c3540 3308 59716 7605232 6112 87 38336

c5315 5467 2776434 227693100 195318 1659 961428

Table 5.23: Backward algorithm Criterion 2

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 9 26 1 0 0 0

c432 1430 14254 776283 664 3 5720

c499 6968 443840 21455792 21093 144 57932

c880 4732 160094 2169632 1206 16 34680

c1355 2235 178612 10966046 10836 70 26132

c1908 7726 484794 21967053 12753 114 64408

c2670 4046 439436 3780163 1828 46 106363

c3540 10976 221540 20640998 16427 230 67528

c5315 9464 3047378 45026080 19913 526 1044912

Table 5.24: Backward algorithm Criterion 2

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 9 32 0 0 0 0

c432 29928 521622 24378983 21847 140 4600

c499 8097 3570130 108930052 103995 996 424900

c880 5107 725346 4346727 2757 37 97732

c1355 4752 2836592 92755529 88809 818 340712

c1908 12748 5557564 152069262 107085 1086 688684
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Table 5.25: Forward algorithm with justification at end Criterion 1

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 8 32 0 0 0 0

c432 1469 22468 5897394 4849 25 6300

c499 3433 207632 20794752 20584 142 29060

c880 2831 132466 119721 16 2 34676

c1355 2984 251064 88988968 85880 526 34172

c1908 4744 1024352 131029781 80839 663 131544

c2670 1459 70176 3010 0 13 35108

c3540 8173 604858 51921889 42179 506 164976

Table 5.26: Forward algorithm with justification at end Criterion 2

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c17 1595 15746 3723826 3167 16 5932

c432 6866 415456 41589504 41168 297 53248

c499 4809 170672 163247 43 4 34696

c880 3546 286928 110217348 106924 665 38536

c1355 8585 1087636 106880356 60961 656 140264

c1908 4046 445226 2176617 237 31 105992

c2670 35932 2922426 257897648 212724 2465 772724

Table 5.27: Forward algorithm with justification at end Criterion 3

Paths
Input

vectors
Backtracks

Backtrack
limited

Time (s)
Memory

(kiB)

c432 22826 349880 2960434 1386 24 30788

c499 7040 3720912 112318736 98040 1030 445580

c880 4939 678674 984536 648 17 91028

c1355 4456 3336184 125640128 112296 908 400224

c1908 17963 8355352 125365092 89962 1242 1043408

c2670 4636 21018034 23487967 9634 881 4816500

As  outlined  in  the  introduction  to  timing  analysis,  ensuring  that  a  design  meets  the  timing

constraints imposed by the specifications requires to focus the timing analysis on the critical paths,

i.e.  the  true  paths  with  largest  propagation  delay.  Therefore  there  is  no  reason  to  identify  all
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sensitizable paths to verify that the timing constraints are meet. However, this information can be

used to perform circuit optimizations thanks to the detailed timing information.

In the next sections the exhaustive path identification combined to other techniques to perform

the path identification on large circuit designs is shown.

5.4.2. Timing estimation using path graph

This  technique  uses  the  path graph structure detailed in  section  3.4.3 that  represents  all  the

structural paths through a circuit and allows to easily identify the longest structural paths. Once a

path has been identified then the full path sensitization algorithm is applied to verify if it is actually

a true path. If the path is false, then it is discarded and the process continues with the next structural

path. This process repeats until the required number of true paths has been identified.

This strategy avoids performing an exhaustive path identification focusing the effort in the paths

with largest propagation delay, allowing to be used with circuits unaffordable for the exhaustive

path identification algorithm.

Figure 5.18 shows an example circuit used to illustrate how the critical paths can be found using

a path graph. The numbers shown inside the gates represent the propagation delay for each gate

input.  These  numbers  are  merely  for  illustration  and are  replaced  by  a  delay  model  in  a  real

application for more accurate results.

Figure 5.18: Example circuit
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Firstly the limitations of using a graph representing directly the circuit structure instead of a path

graph will be exposed, since a path graph requires much more memory than a circuit graph, then the

reasons to use the first strategy will be shown.

The structural path with the largest delay can be easily identified by simply propagating through

the circuit the delay required by a signal to reach each node in the worst case and then tracing the

path from the output node with the largest arrival time.

Figure 5.19 shows a graph representing the circuit of Fig. 5.18. The number pairs near to each

node are the minimum and the maximum delay to reach this node. For example the values for the

node n11 are (4, 10): 4 is the minimum delay to arrive to node n11 from node N1 through input A of

gate G1, and the maximum value (10) is the time required through the subpath {N3, n10, n11}

providing the largest delay to arrive at node n11.

Figure 5.19: Circuit graph

Applying this method it is easy to identify the output node where the largest structural path ends.

As shown in Fig.  5.19 the maximum delay for the output  nodes  N20 and N21 are 12 and 13

respectively, then the slowest path ends at node N21. Tracing back the maximum delays through the

graph it can be identified three structural paths having a delay equal to 13 (Since the example uses

integer values for gate delays there are multiple path with exactly the same propagation delay).

{N3, n10, n11, N21}

{N3, n10, n12, N21}

{N7, n14, n15, N21}

This method allows to easily identifying the paths with worst delay, however to identify the next
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slowest paths (as example the path {N2, n10, n12, N21} has a delay equal to 12) more information

than the one presented in the graph is required. Therefore if we are interested in a set of slowest

paths the delay information for each graph node must be more complex. Besides if a path results

non-sensitizable,  in  general,  the  graph  cannot  be  pruned  dropping  exclusively  the  false  path

identified.

The aforementioned problems can be solved using a path graph instead of a circuit graph. As was

detailed in section 3.4.3 a path graph is a graph representing each structural path through a circuit.

Although the generation of a path graph requires more computational resources than the previous

structure it has many advantages.

Figure  5.20 shows  the  path  graph  for  the  circuit  in  Fig.  5.18.  As  shown there  are  various

independent graphs for each input node allowing for an independent processing. The numbers in

parentheses represent the propagation delay to reach each node. In this case the graph contains the

delay for each specific path instead of uniquely the maximum and minimum values.

Figure 5.20: Path graph

Using this structure the task of identifying a set of paths with larger delay is immediate. As an

example, the graph shows that there are three paths with a delay equal to 13, four paths with a delay

of 12 and two paths with a delay equal to 11, and so on. In addition if a subpath is recognized as

non-sensitizable the graph can be pruned dropping all paths sharing the non-sensitizable subpath

without  affecting  other  paths.  Therefore,  full  path  sensitization  algorithm  can  be  applied  to

structural paths beginning with the one with largest delay until the specific number of true paths has

been found.
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5.4.3. Timing estimation using path graph and simplification techniques

The technique presented in the previous section can be used to identify the critical paths for a

circuits too large and complex to be processed using the exhaustive path identification. However,

the path graph for very large circuits may require an excessive amount of memory. This limitation

can be solved with the help of the simplification techniques detailed in section 4.1.

Figure 5.21 shows the flowchart of the algorithm used for very large circuits combining the path

graph, simplification techniques and exhaustive path identification.

Figure 5.21: Algorithm flowchart

The first algorithm step reduces the circuit by iteratively applying a selection of simplification

techniques depending on the specific circuit structure and analysis performed. If the interest relies

on a specific set of inputs and/or outputs the circuit can be partitioned before begin simplified by

the encapsulation techniques. The outcome of this step is a simplified circuit structure and a set of

blocks  created  by  encapsulating  portions  of  the  circuit.  For  huge  circuits  the  simplification

techniques creates a hierarchical structure where each block contains other blocks.

Each individual block is small enough to be processed using the exhaustive path identification

algorithm. The information about the true paths and sensitization vectors for each block will be used
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in next algorithm steps to compute the path delay through the global circuit. To avoid redundant

computations in the case of repeated structures the blocks with multiple instances are analyzed only

once.

Once the circuit  has  been simplified it  is  ready for path graph creation.  The simplifications

performed allow creating the graph even for very large and complex circuit designs. Once after the

graph creation, the information about the paths through each block is used to prune the path graph,

since if a block does not have any true paths from a given input to an output then the paths sharing

this subpath can be pruned simplifying the graph.

The path graph and the path information for each block are used to compute an estimation of the

path delays. The candidates to be critical paths are selected from the graph in the same way as in the

previous section. Then the algorithm tries to sensitize these paths using the full path sensitization

algorithm  combined  with  the  sensitization  information  generated  for  each  block.  This  process

repeats until a specified number of true paths has found.

Table 5.28 and 5.29 show the results of applying the algorithm depicted in Fig. 5.21 to identify

the  slowest  true  paths  for  large  circuit  designs.  Table  5.28 shows  the  time  required  for  each

preprocessing step, while Table 5.29 shows the time required to identify a given number of slowest

true paths.

Table 5.28: Critical path identification (preprocessing)

Circuit

Preprocessing time (s)

Simplification
Path graph

creation
Block processing Total

c6288 0 3 1435 1438

c7552 1 2 485 488

b14 3 8 931 942

b15 7 8 1046 1061

b17 24 2 1324 1350

b18 158 58 1832 2048

b19 101 37 1763 1901

b20 10 17 536 563

b21 11 17 729 757
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Table 5.29: Slowest true path identification

Circuit
Time required to identify true paths (s)

25 slowest paths 100 slowest paths 250 slowest paths

c6288 3146 7618 16325

c7552 221 1246 5218

b14 284 761 1222

b15 546 1846 4158

b17 991 3759 7021

b18 1864 4725 10047

b19 2146 7215 19745

b20 716 2413 7894

b21 512 1346 2548
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Chapter 6: Framework application
to SET propagation estimation 
(SENSET)

The general concepts about the propagation of SETs induced by ionizing particle impacts on a

combinational  logic  block were introduced in  Chapter  2.  A SET propagating  through a  circuit

reaching an output node may be the source of a soft-error. Therefore to guarantee the reliability of a

circuit  design the susceptibility to propagate an SET cannot be ignored during the design flow,

specially for circuits intended to work in a hostile environment with high level of radiation like

aerospace applications.

In this chapter the integration of the tools included in the framework with an analytical SET

propagation model  developed within our  research group will  be detailed.  The objective of this

integration is determining the circuit internal nodes and outputs with highest sensitivity to SET

propagation, providing a valuable information for circuit designers.
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6.1. SET Propagation model
The tool  to be developed requires estimating both logic and electrical  masking that  an SET

suffers through a path from the node where the SET is originated until an output node by describing

how the pulse traverses each logic gate. While logic filtering does not require any specific model,

electrical masking descriptions needs an accurate description. A simple and accurate propagation

model was published in [7], and will constitute the core of the tool presented in this work.

The electrical SET propagation model characterizes the SET pulse through two parameters: the

pulse width and the pulse height. The pulse height (Vmax) is the maximum voltage variation with

respect to the correct voltage (either GND or VDD), and the width (tw) is the pulse duration measured

at the pulse half height (Vmax / 2). Fig.  6.1 shows a voltage pulse with the two metrics used to

characterize it.  This  model  considers  height  and width parameters  when propagating the pulse,

while other models typically don't consider the pulse height assuming that all pulses span the entire

supply  voltage  range  [77].  This  model  is  fully  analytical  and  fully  continuous,  being  highly

effective for inclusion in CAD environments. 

Figure 6.1: SET pulse characteristics

The model behaves like a transfer function, providing the characteristics of the pulse at the logic

gate output (i.e. a pair Vout, twout) once the input pulse (Vin, twin) parameters are given. This transfer

function  is  related  to  the  gate  type,  and  the  specific  gate  input  through  which  the  pulse  is

propagated. For each logic gate input, the model consists of two analytic functions, one for each

output  parameter  (Vout,  twout).  Model  equations  are  reported  in  (6.1) and  (6.2).  A  detailed

explanation  of  the  analytical  expressions,  and  physics  details  about  the  SET propagation  was

presented in [7].
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V out (V in)=
V DD

1+e−k⋅(V in−V 0)
(6.1)

twout (tw in)=a⋅tw in+b+ t0⋅e
−

tw in

ti (6.2)

Both  transfer  functions  (output  height  and  output  width)  depend  on  the  two  input  SET

parameters through their coefficients -k and V0 in (6.1), and a and b in (6.2)- for input pulse width

and height respectively. These coefficients depend on the output load capacitance.

As shown in  (6.2), the width output pulse equation is a linear expression plus an exponential

term while coefficients a and b have a linear relationship with the input pulse height, and depend on

the output load capacitance. The exponential term is negligible except for very narrow pulses, and

as demonstrated experimentally [6] this term may be ignored with an acceptable loss of accuracy.

These characteristics make the multivariable polynomial model ideal to compute the output pulse

width simplifying the model integration into the software tool and the model parameters extraction

process. The expression used for SET propagation within the propagation tool is given in (6.3). The

polynomial model is also used to determine coefficients (k and V0) of the height transfer function

that depend on two variables (input pulse width and output load capacitance). Finally, the model

requires 3 coefficient matrices, one 3-dimensional matrix for  twout  (TW),  and two 2-dimensional

matrices for the coefficients k and V0.

twout (tw in , V in , CLoad )=∑
i
∑

j
∑

k

TW ijk⋅tw in
i
⋅V in

j
⋅C Load

k
(6.3)

k (tw in ,C Load)=∑
i
∑

j

Kij⋅tw in
i
⋅CLoad

j

V 0( tw in ,CLoad )=∑
i
∑

j

V 0ij⋅tw in
i
⋅C Load

j
(6.4)

6.1.1. Model parameters extraction

Three coefficient matrices parameters are extracted for each gate type in the technology library,

the input through which the pulse passes, and the pulse polarity (rising or falling).

All coefficients are extracted from electrical-level simulations, following a process similar to the

one developed for the delay model. An automatic process simulates the SET propagation through

each library gate input. Fig.  6.2 shows the circuit schematic used to determine each input model

coefficients for each logic gate. An iterative process varies the output capacitance and the input
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pulse height and width. Results consist of two 3-dimensional matrices, one for the output height and

one for the output width, with the values for each combination of the input pulse height, width and

output load.

Figure 6.2: SET model extraction circuit

The  specific  pulse  waveform  applied  to  the  logic  gate  input  influences  the  output  pulse,

becoming a source of inaccuracy for  the overall  estimation if  the input  pulse waveform is  not

realistic. The pulse induced by an ionizing particle impact is usually described through a double

exponential waveform, where the rising transition has a quick slope and the falling one is softer.

However, such a waveform appears only at the impact node; when it is propagated through logic

gates  the  waveform  generated  at  each  gate  output  presents,  in  general,  an  almost  symmetric

waveform. This is because standard cells are typically designed to have similar output slew time for

both rising and falling transitions. A realistic input pulse that prevents an excessive output voltage

waveform overshoot  as  induced by an ideal  pulse is  obtained by an input  source  generating a

waveform  based  on  sinusoidal  transitions  (6.5).  This  waveform  is  a  modification  of  the  one

presented in section  S'ha produït un error: No s'ha trobat la font de referència used to extract the

delay model parameters.

Although the waveform generated by this function has a shape different to the waveform induced

by a particle impact, its shape is very similar to the waveform of a SET after passing through a gate.

Therefore, the SET propagation estimation may suffer a larger inaccuracy in the first gate traversed,

due to the difference in the input pulse shape. However, as the SET traverses multiple gates, this

drawback only affects the first gate traversed, and may be solved by using two extracted model

coefficients sets using two different types of input waveforms. A first set would be used for the

pulse shape induced by a particle impact, and the second set for the pulse after crossing one gate.

However, the improvement in estimation accuracy does not compensate the complexity increase,

the simulation runtime required to extract the coefficients, and the memory increase required to

store an additional set of model coefficients. It must be also considered that the induced pulse shape

varies depending on the type of particle impacting the circuit. Then, problem solving may require
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using a variety of pulse shapes to describe various kind of particles,  increasing even more the

complexity. Thus, we consider a single pulse waveform for all cases.

V (t)={
0 : t≤t 0
A
2
⋅(sin (ω⋅(t−t 0)−

π
2 )+1 ) : t 0≤t≤t1

V DD : t 2≤t≤t 3
A
2
⋅(sin (ω⋅(t−t 2)+

π
2 )+1 ) : t 2≤t≤t3

0 : t 3≤t

(6.5)

Where A is the maximum pulse amplitude, t0 is the initial delay time before the pulse starts, and

t1, t2, t3 and ω determine the pulse width and the rising and falling slopes. This expression provides a

simple  control  of  the  transition  time,  pulse  width  and  height,  being  a  requisite  for  the  model

extraction process.
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6.2. SET Propagation Sensitivity
The SET propagation sensitivity (SPS) is a metric defined for a circuit subpath – a subpath being

a path starting at an internal node, and ending at a circuit output – that accounts for the combination

of the subpath logic and electrical masking effects. The SPS can be used to estimate the likelihood

that an SET induced at a given circuit node propagates within the circuit until reaching a memory

element that may result in a soft-error. The SPS does not consider the probability that an ionizing

particle impact generates or not an SET, only the likelihood that an SET will be propagated, once it

has been generated. This section describes how the SET propagation model outlined in Section 6.1

is integrated into the software tool, how the SPS is computed and how it is used to identify the

internal  nodes  and  circuit  outputs  with  higher  sensitivity  to  propagate  or  register  an  SET

respectively.

Since an SET that does not reach a circuit output will not cause an SEE, the sensitivity analysis

is performed starting at the output nodes and going backward inside the circuit. Given that SET

time masking is not related to the SET propagation within the circuit (it only affects its capture by a

memory element), then only logic and electrical masking are considered.

For logic masking, the number of gates in a subpath determines how many nodes must be set to a

specific logic value to allow the SET propagation. Therefore, the longer the path length, the higher

the logic requirements for the SET to be propagated, implying that the probability of a specific

subpath activation is inversely proportional to the number of logic conditions to be satisfied. It may

even happen that some subpaths are non-sensitizable (i.e. their logic probability is zero) due to logic

incompatibilities between the in-path gate sensitization requirements. Therefore, in general,  logic

masking increases with the length of the subpath that the SET must cross until reaching an output.

Electrical masking description is more complex. Typically a pulse whose duration is shorter than

the gate delay gets filtered, otherwise the pulse is propagated maintaining its width approximately

equal, as long as the height of the pulse is sufficiently large. If a logic gate has different rising and

falling transition times, then the pulse may experience a broadening effect. However, in general,

library standard cells have balanced transition times, and a significant number of gates must be

crossed by an SET to experience broadening. Broadening may also happen when an SET enters a

reconvergent  path  and  there  is  a  specific  relationship  between  the  reconvergent  path  delays.

Therefore,  with  some  exceptions,  it  can  be  considered  that  the  electrical  masking  mechanism
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increases with the path length, because a longer path implies a higher probability that some gate

filters the SET.

The combination of logic and electrical masking mechanisms provides the SPS that can be used

to determine the subpaths with higher probability to propagate an SET until an output node. In

general these higher-probability paths are short subpaths.

The quantification of each subpath sensitivity ending at an output node within a combinational

circuit to propagate an SET is performed in two steps. The first algorithm step determines the logic

sensitivity  by  computing  the  sensitization  probability  based  on  how  many  input  vectors  can

logically sensitize each subpath. The second algorithm step computes the electrical sensitivity of

each subpath, starting by the paths with higher logic probability. This second step uses the SET

propagation model to compute relevant electrical propagation information. This covers determining

the minimum characteristics of an SET at the internal node for it to arrive to an output node with a

specified width and/or height, or determining the electrical characteristics of an SET reaching an

output node for a given SET specified at an internal node.

6.2.1. Logic sensitivity

The  logic  sensitivity  determination  is  a  key  initial  step  since  if  a  given  subpath  cannot  be

logically sensitized it will never propagate an SET independently of the electrical characteristics of

the perturbation and the path logic gates. Logic masking acts as filter eliminating the paths that

cannot  be  sensitized,  and  thus  reducing  the  number  of  paths  to  be  included  in  the  electrical

sensitivity analysis.

As stated earlier, since an SET can only cause a soft-error if it reaches an output node, the most

relevant  subpaths  are  typically  short  subpaths,  and  therefore  logic  and  electrical  sensitivity

computation starts  at  the output nodes,  moving toward the internal nodes.  Furthermore when a

subpath is non-sensitizable, or its logic sensitization probability is very low, all longer paths passing

through this subpath may be discarded, making unnecessary moving deeper into the circuit, and

reducing the number of SET propagation computations to perform.

Thus,  the  logic  sensitivity  computation  algorithm  works  using  the  stepwise  sensitization

algorithm applied in reverse order (3.4.1), i.e.,  starting at  the output nodes and moving toward

inside the combinational block. In this case the stepwise sensitization algorithm applied uses the

breadth-first search (BFS) strategy since highest sensitivity subpaths are typically short subpaths.
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BFS is more efficient for this task as it processes first the current node neighbor nodes, instead of

going deeper until the end of the branch before backtracking, as does the depth-first search (DFS).

In this way the analysis concentrates on the best candidate subpaths, ensuring that in general the

subpaths with higher logic sensitivity are identified, even if a maximum of subpaths to be processed

is imposed to avoid excessive runtime.

For clarity, the algorithm will be detailed using the example circuit of Fig. 6.3 without loose of

generality. Assume that the circuit in Fig. 6.3 is a part of a larger circuit with multiple outputs. Since

the sensitivity analysis  is  focused on the outputs,  the tool  simplifies the circuit,  leaning on the

circuit  partitioning technique,  and takes  only  the  part  related  to  the  output  being  analyzed.  To

illustrate the method a graph representing of the circuit  structure starting at  the output node is

shown in Fig. 6.4. Thus, the algorithm traverses the circuit in the following manner:

1. Start at output node Z.

2. Node a. Compute sensitivity for the path {a, Z}.

3. Node b. Compute sensitivity for the path {b, Z}.

4. Node c. Compute sensitivity for the path {c, a, Z}.

5. Node g. Compute sensitivity for the path {g, a, Z}.

6. Node d. Compute sensitivity for the path {d, b, Z}.

7. And so on.

Figure 6.3: Example circuit  Figure 6.4: Graph of example circuit  
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At each step the logic sensitivity is computed incrementally, i.e., to compute the sensitivity of the

path {c, a, Z}, the algorithm uses the previously computed sensitivity for the path {a, Z}. This

approach improves the algorithm efficiency reusing information instead of sensitizing the entire

subpath each time.

To determine the subpath logic sensitivity the algorithm first sensitizes the gates that must be

crossed by applying non-controlling logic values to the side inputs. Then, the logic values assigned

are justified towards the input nodes. If a logic incompatibility is detected, then the subpath under

analysis and all subpaths passing through it are discarded. If the subpath can be sensitized, its logic

probability is determined based on the number of logic conditions that must be fulfilled to guarantee

its sensitization.

Even if the subpath can be sensitized, when the logic sensitivity of a path is below a given

threshold, the algorithm discards this branch considering that all paths hanging from the current

node have even worse sensitivity, and are negligible. This technique helps to avoid computing all

possible  subpaths  through  a  circuit,  focusing  the  analysis  on  those  subpaths  with  higher

probabilities to cause an error.

The logic sensitivity of a subpath is determined accounting for the number of logic conditions

that must be fulfilled to allow the subpath to be sensitized. For this quantification, it is assumed that

each possible input logic vector has exactly the same probability to occur, i.e., each primary input

may have a logic value 0 or 1 with a 50% probability. This assumption is an approximation, since

for a specific task when in field operation not all input vectors have the same probability, and even

some input values combinations may never appear during a real circuit operation. To allow a more

realistic  estimation  of  the  activation  probability, the  information  generated  by  the  sensitization

algorithm  can  be  combined  with  the  information  about  the  probabilities  of  the  input  vectors

supplied by another tool.

All  logically rated subpaths are sorted according to their  sensitization probability. Given the

random nature of an ionizing particle impact on a circuit, the subpaths with higher probability of

being activated are considered first in the electrical sensitivity computation.
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6.2.2. Electrical sensitivity

Once the logic sensitivity is used to get a graded path list, the electrical sensitivity is computed

for each subpath in the list. In this phase the tool determines the SET electrical characteristics to

allow a proper propagation under different conditions. The electrical sensitivity is computed in two

directions: the forward direction determines the SET characteristics (Vin, twin) at the subpath initial

node  required  to  meet  a  specific  output  SET  characteristics  (Vout,  twout),  while  the  backward

direction computes the output SET characteristics for a given initial SET.

In  the  forward  case  the  tool  computes  the  minimum  width  and  height  pulse  capable  of

propagating  from  the  subpath  initial  node  reaching  the  output  node  with  a  width  and  height

surpassing the minimums required to be captured.

Figure 6.5: Electrical propagation

The process to determine the minimum initial SET starts by applying a pulse with maximum

height  (VDD)  with  a  sufficiently  large width to  be propagated by any library gate.  The SET is

circulated through each subpath using the SET propagation model until an output is reached. Then,

the pulse is iteratively narrowed until the SET perturbation does not reach the output or the width

and height at the output node are below the thresholds imposed. The value obtained corresponds to

twmin,  and  is  used  as  a  measure  of  the  subpath  electrical  sensitivity  to  an  SET. The minimum

electrical characteristics required at an output node is a configurable parameter that, in general,

depends on the memory element characteristics.

Subsequently,  a  VDD pulse  having  wide-enough  duration  is  propagated,  and  its  height  is

iteratively reduced until it doesn’t propagate toward the output. The minimum pulse height arriving

to an output is called Vmin.

The  twmin and  Vmin values  provide  a  quantification  of  each  subpath  electrical  sensitivity  to

propagate an SET once the output SET characteristics are determined (mainly fixed by the latch
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element connected at the circuit output). This metric gives an insight about the minimum induced

SET required at the initial node to produce an output SET capable of being captured by the memory

element.  Such  a  minimum  can  be  compared  with  the  typical  SET  pulses  expected  for  that

technology once the final application environment is known and the variety of expected ionizing

radiation is estimated. The tool information is key to determine the intrinsic SET filtering circuit

capabilities.

As explained earlier  determining the minimum characteristics  of  the  initial  SET requires  an

iterative process until the output threshold is not fulfilled. On the other hand, computing the output

SET width and height for given initial SET requires only a single computation that propagates the

SET along the subpath. However, the output SET characteristics can be further detailed by injecting

multiple initial SETs. This metric allows determining the output SET characteristics for a given

induced SET.

6.2.3. Circuit level SET sensitivity metrics

Depending on the design stage, the SPS can be used as a metric to rank the circuit internal nodes,

or a metric to categorize circuit output nodes. Nodes with the smallest minimum SET pulses will be

more prone to propagate any perturbation toward the circuit output and should be the designer focus

when hardening the circuit block. SPS can be also used to determine the circuit output being more

susceptible to produce an SET, this information is valuable when using a given circuit as a design

element that cannot be internally modified. The SPS metric is therefore used to compute either the

SET Node Sensitivity (SNS), or the SET Output Sensitivity (SOS).

Node SET Sensitivity (NSS)

The NSS of each internal node to propagate an SET is computed by setting the same SET width

threshold  for  all  circuit  outputs,  or  Output  Width  Threshold,  and  determining  for  each  circuit

subpath the minimum SET pulse at the subpath input producing such an output width threshold at

the subpath end (note that all subpaths considered end at a circuit output). For each circuit node, the

minimum SET pulse for all subpaths starting at such node leading to the output with threshold are

averaged considering exclusively the electrical sensitivity. To include the logic probability in the

metric the minimum SET values are first weighted by their logic sensitivity, and then averaged.

NSS is a useful metric for block-level design as it provides a relative metric of SET propagation for

all the nodes within the circuit.
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We refer to the specific node sensitivity metrics as  Node SET Sensitivity–Electrical (NSS-E)

when is considered exclusively the electrical sensitivity, and  Node SET Sensitivity–Electrical &

Logical (NSS-EL) if the electrical sensitivity is combined with the logic activation probability.

Note that the NSS metrics for a given node are computed using the sensitivity information of all

subpaths starting at the considered node independently of the output node where the subpaths ends.

The NSS-E is computed as the mean of the minimum SET characteristics of each subpath (6.6)

and (6.7). This metric considers only the sensitizable subpaths but grants the same weight to each

subpath independently of its logic activation probability.

NS−Ewidth(node)=
∑

∀ pi∈Paths(node)

twmin
( pi)

n paths(node )
(6.6)

NS−Eheight (node )=
∑

∀ pi∈Paths(node )

V min( pi)

n paths(node )
(6.7)

Where Paths(node) is the set of paths starting at node and npaths(node) is the number of subpaths

emanating from node.

This metric gives an insight of the ability of a node to propagate an SET until an output, since if

a node NSS-E is high this indicates that, in average, such node requires a wide pulse for proper

propagation. Otherwise a node with a small NSS-E implies that almost any SET induced at this

node will be capable of reaching an output.

To combine the electric and logic sensitivities, the NSS-EL is computed as the sum of the logic

probability  of  all  subpaths  capable  of  propagating  a  given  SET normalized  to  the  sum of  all

subpaths  logic  probability  even  if  they  unable  to  electrically  propagate  the  SET  (6.8).  Such

normalization is required to avoid values beyond 100% as it is possible to sensitize more than one

subpath with each input vector.

NS−EL(node )=
∑

∀ p i∈E (node)

P Logic( pi)

∑
∀ pi∈Paths (node )

P Logic( pi)
(6.8)

Where, E(node) is the set of all paths from node capable of electrically propagating a given SET

until an output node, and Paths(node) is the set of paths starting at node.
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Output SET sensitivity (OSS)

The output SET sensitivity is obtained by injecting the same SET pulse width at each circuit

node and determining how many of such SETs arrive at each circuit output with a pulse width larger

than the output width threshold. These values are weighted by the logic probability of each path.

The OSS provides a metric indicating which circuit outputs are more likely to produce an SET.

The  OSS  is  computed  by  accounting  for  the  SPS  of  the  subpaths  ending  at  each  output

independently of the initial node. The OSS can be computed either considering only the electrical

sensitivity  or  including  the  logic  probability  of  each  subpath  obtaining  two  OSS  metrics:  the

Electrical Sensitivity (OSS-E) and the Electrical and Logical Sensitivity (OSS-EL).

The  Electrical Sensitivity (OSS-E) is computed as the ratio between the number of subpaths

capable of propagating the injected SET pulse until the corresponding output node, and the total

number of subpaths reaching such output (6.9).

OS−E (Z )=
∣PathsElectric (Z )∣

∣Paths(Z )∣
(6.9)

Where PathsElectric(Z) is the set of paths capable to electrically propagate an SET until the output

Z, and Paths(Z) is the set of all paths ending at the output Z.

The  OSS-E does  not  consider  the  logic  probability  except  for  the  fact  that  non-sensitizable

subpaths  are  discarded;  the  sensitizable  subpaths  are  weighted  independently  of  their  logic

probability. Therefore, the OSS-E metric provides an insight about the number of subpaths through

which an SET may reach a circuit  output,  independently of their  probability of being logically

activated. 

The Electrical and Logic Sensitivity (OSS-EL), considers the logic probability of a subpath to be

activated by weighting each subpath by its logic probability and normalizing the result to avoid

OSS-EL values beyond 100%  (6.10). This possibility is specially potential for subpaths being a

portion of longer subpaths, for example: each input vector sensitizing a subpath of three gates {G1,

G2, G3} also sensitizes the two gates subpath {G2, G3} and the single gate subpath {G3}.
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OS−ELS (out)=
∑

∀ pi∈PathsElec(out)

P Logic( pi)

∑
∀ pi∈Paths (out )

PLogic ( pi)
(6.10)

Where  pi is a subpath,  PathsElec(out) is the set of paths ending at  out through which an SET is

electrically propagated, and Paths(out) is the set of all paths ending up at output out independently

of their electrical propagation.

SET Output width distribution

The SET output width distribution provides the probability of each pulse width at the output

node for the same SET injected at each circuit internal node. The distribution is constructed creating

a histogram of each subpath output width ending at a given output node, weighted by the logic

probabilities.

The information provided by this metric is of interest when some kind of SET filtering technique

is  applied  at  the  circuit  outputs.  The  metric  value  provides  an  indication  of  the  SET  width

probability expected at each circuit output node for a given induced SET.

Depending on the specific design flow task of a circuit the metric that results more interesting

may be different. During the design of the combinational block the interest may lie on identify

which nodes have the greater sensitivity to propagate an SET with the objective to redesign some

areas of the block to reduce its sensitivity. On the other hand, if the block is already designed and

must be included in a larger design, the more interesting metric is the output sensitivity, due to the

fact that maybe the block cannot be redesigned, and the design of the system must be focused on the

behavior of the output nodes of each block included.
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6.3. SET through reconvergence
Fig. 6.6 shows an example of a real reconvergent structure extracted from an ISCAS benchmark

circuit. There are two reconvergences in this block, all paths starting at inputs B and D converge to

the output node Z.

Figure 6.6: Reconvergence

If an SET is induced at one of the reconvergent inputs and the other inputs have the appropriate

logic values, then the SET can be propagated through two different paths arriving at both inputs of

the output logic gate. The relative difference between pulse arrival time at these inputs depends on

the propagation delay of each path.

Fig. 6.7 shows a timing diagram for an induced positive SET at the input B, assuming that the

logic values at the inputs are: A = 1, B = 0, C = 0, D = 0, E = 1, F = X. Under this conditions the

induced pulse is propagated through both paths {B, g, h} and {B, i} reaching the output gate.
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Figure 6.7: SET propagation through reconvergence

As shown in the timing representation the Path {B, g, h} has a larger delay than {B, I}, and

therefore the pulse arrives at node i earlier than at node h. Both pulses overlap generating a wider

SET at the output Z. In this case both SETs arrive at the last gate with the same polarity, however if

one pulse is inverted then the effect is a narrowing of the SET. The pulse may even be completely

filtered, since a reconvergent structures is one of the techniques used as filters for SET tolerant

circuits.

Considering these situations increases considerably the complexity of the algorithms for SET

propagation.  The  framework  developed  identifies  reconvergent  structures  and  uses  the

encapsulation technique to hide the reconvergence to the higher-level algorithm. In this way, the

main algorithm does not handle such complexity.

The  reconvergent  block  is  analyzed  as  a  smaller  circuit.  If  the  number  of  gates  within  the

reconvergent  block  is  small,  the  SET propagation  is  analyzed  automatically  through  electrical

simulations. In this case, the electrical-level extractor is responsible to describe the possible pulse

broadening or filtering. However, if the recovergent block is large, electrical-level characterization

is not feasible, and the SET is propagated through the reconvergent paths separately determining the

parameters  of  each  reconvergent  SET. Then the  delay  through each path  is  estimated,  and the

resulting SET is constructed according to the relative delay between the reconvergent paths.
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In this way the impact of path reconvergence on the SET broadening or filtering is described in

detail either through electrical-level characterization (very short reconvergent paths), or through the

delay model. In any of the cases, the recovergent structure is hidden within a block for the main

algorithm.

6.4. Results
We verified  SENSET operation  on  various  combinational  benchmark  circuits  including  six

ISCAS-85  benchmark  circuits  (c432,  c499,  c880a,  c1355,  c1908  and  c2670)  and  four  ITC'99

circuits  (b14,  b15,  b17,  b18)  synthesized  using  a  65nm CMOS commercial  technology. Three

additional  ISCAS-85  circuits  (c3540g,  c5315g  and  c7552g)  were  synthesized  using  the  45nm

Nangate Open Cell Library from Si2 [78].

6.4.1. Tool Accuracy

For each benchmark circuit we initially verified the correct tool operation by comparing their

results to electric-level simulations. The tool automatically generated scripts to simulate a set of

subpaths  with  the  electrical  simulator  and  compare  the  analytical  model  behavior  against  the

electrical simulation for each subpath. The simulation injected a pulse at the subpath start node and

measured the height and width at each node until an output node was found or the pulse disappeared

(was filtered out). Recursively electrical simulations were performed to determine the values of Vmin

and  twmin as detailed previously. Then, the tool imported the simulation results and compared the

minimum SET values  with  those  obtained from the  analytical  model  to  determine  the  method

accuracy.  To guarantee  that  the  comparison  between  the  model  estimation  and  the  electrical

simulation result took into account all kind of paths, the subpaths tested were divided into two sets.

The first set was composed by paths with higher logic sensitivity, while the second set included

randomly selected paths, excluding those paths already included in the first set.

Tables  3.3 and  4.9 compare the results  between the electrical  simulations  and the analytical

model. Table I includes the results from the set of the most sensitizable subpaths, while Table 4.9

shows the results for the set of randomly selected subpaths. The first column shows the circuit

name. The mean error in the estimation for both voltage and timing parameters appears in columns

2  and  3,  while  columns  4  and  5  contain  the  maximum  error.  The  column  tagged  "Correct

prediction" gives  the percentage of  subpaths  for  which the model  and the simulation match to

predict if an SET reaches the output or not.
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Table 6.1: Most sensitizable paths

Circuit
Mean error Max. error

Correct prediction
Vmin(V) twmin(ps) Vmin(V) twmin(ps)

c432 0.022 12.46 0.300 85.00 95.6%

c499 0.019 7.20 0.200 15.00 98.4%

c880 0.026 7.34 0.200 43.00 94.8%

c1355 0.034 10.30 0.100 26.00 96.0%

c1908 0.020 7.99 0.200 16.00 99.0%

c2670 0.017 11.03 0.100 25.00 98.0%

c3540g 0.008 3.00 0.100 28.00 93.2%

c5315g 0.018 6.10 0.100 21.00 95.6%

c7552g 0.005 2.80 0.100 12.00 99.2%

b14 0.023 9.55 0.100 31.00 93.0%

b15 0.012 14.74 0.200 25.00 89.0%

b17 0.018 10.91 0.100 38.00 90.0%

b18 0.022 16.85 0.100 28.00 87.0%

Table 6.2: Random selected paths

Circuit
Mean error Max. error

Correct prediction
Vmin(V) twmin(ps) Vmin(V) twmin(ps)

c432 0.033 6.36 0.200 68.00 95.6%

c499 0.021 2.02 0.200 28.00 94.0%

c880 0.015 4.56 0.100 45.00 95.6%

c1355 0.013 3.91 0.100 25.00 89.0%

c1908 0.019 5.08 0.100 39.00 91.0%

c2670 0.012 13.16 0.100 37.00 99.0%

c3540g 0.007 2.70 0.100 20.00 93.6%

c5315g 0.013 3.90 0.100 27.00 90.4%

c7552g 0.008 2.80 0.100 27.00 88.4%

b14 0.022 14.16 0.100 44.00 94.0%

b15 0.020 15.96 0.100 43.00 92.0%

b17 0.025 14.32 0.200 31.00 97.0%

b18 0.015 18.36 0.100 48.00 86.0%
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As shown in the Tables, the model correctly predicts if an SET can reach the output in more than

90% in the vast majority of the cases studied. Mean error results show that the estimation of the

minimum  pulse  capable  of  reaching  an  output  are  quite  accurate,  both  in  height  and  width.

Therefore Tables  6.1 and  4.9, provide an insight about the accuracy of the propagation model to

estimate  the  minimum  electrical  characteristics  of  an  SET to  reach  an  output  node.  Such  an

accuracy is key to validate the results of metric estimations performed in the remaining sections of

this chapter.

6.4.2. SENSET Analysis

Once the tool accuracy has been verified for a wide set of benchmark circuits, we show the SET

sensitivity analysis carried over various benchmark circuits to illustrate the variety of analysis that

can be performed using such tool.

6.4.2.1. Output sensitivity

Figs. 6.8-6.13 report the OSS for three ISCAS circuits (c3540, c5315 and c7552) when injecting

a 100ps (Figs. 6.8, 6.10 and 6.12 respectively) and a 150ps (Figs. 6.9, 6.11 and 6.13) SET pulse at

each internal circuit node. The graph  x-axis lists the circuits outputs node numbers, showing two

values  per  output  corresponding  to  the  Electrical (OSS-E)  and  Electrical  &  Logic (OSS-EL)

sensitivity.

Figure 6.8: Output sensitivity c3540 (100ps)
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Figure 6.9: Output sensitivity c3540 (150ps)

Both  OSS-E  and  OSS-EL  output  sensitivity  metrics  provide  important  SET  propagation

information. As an example, output #9 of the c3540 circuit (Fig.  6.8) has a quite large electrical

sensitivity to propagate a 100ps pulse, but there is a quite small set of logic vectors that sensitize

such path, therefore its although OSS-E is high, the OSS-EL is one of the lowest. This indicates that

output #9 has a large number of subpaths capable of propagating a 100ps SET from electrical point

of view, but these subpaths have very low probability of being logically activated. An example of

the opposite behavior is output #2, whose OSS-E value lies within the mean of all OSS-E values,

but its OSS-EL takes the second highest value.

Comparing the results for an injected 100ps (Fig. 6.8) and 150ps (Fig. 6.9) pulse, it is observed

that  the OSS-E is  clearly higher  for  wider  pulse in  all  cases  (as  would be expected)  since the

electrical masking is reduced with the pulse width. As example outputs #15, #16 and #17 have a

very low OSS-E for a 100ps injected SET; however for a 150ps their OSS-E is quite larger. The

OSS-EL  also  increases  with  a  wider  SET  since  larger  number  of  subpaths  are  capable  of

propagating the injected SET.

Outputs #12 and #13 show similar results for both pulse width because all subpaths ending at

these outputs are capable of propagate a 100ps pulse and hence a wider one.

There are cases where the OSS-EL shows a larger increase than the OSS-E like output #11,

because some subpaths with higher logic probability are unable to propagate a 100ps pulse but

propagates a 150ps SET.
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Results for circuit c5315 (Figs. 6.10 and 6.11) shows a similar behavior than the previous circuit.

However for this circuit there are a set of output nodes for which the pulse injected are unable of

being propagated.

Figure 6.10: Output sensitivity c5315 (100ps)

Figure 6.11: Output sensitivity c5315 (150ps)

The behavior  obtained for  circuit  c3540 is  also observed in  circuit  c7552 that  has  a  higher

number of circuit outputs. Note that some c7552 outputs (from #47 to #50 in Fig.  6.12) have an

OSS-E beyond 70%, but their OSS-EL is almost 0%. On the other hand, output #32 has an OSS-E
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slightly beyond 50%, while its OSS-EL is beyond 60% indicating its high probability of producing

an SET when considering both electrical and logic filtering.

Figure 6.12: Output sensitivity c7552 (100ps)

Figure 6.13: Output sensitivity c7552 (150ps)

Comparison of Figs. 6.12 and 6.13 shows that 100ps pulses are not propagated to output nodes

#51 to #54, however 150ps pulses are propagated through all subpaths ending at these outputs, as

shows Fig.  6.13. This behavior is due to the subpath last logic gate (whose output constitutes the

output node) that filters a 100ps pulse but not the 150ps one.
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6.4.2.2. Node SET sensitivity

To report the internal node sensitivity we set a threshold for the SET electrical characteristics at

the output nodes, considered the minimum SET that would be captured by memory elements. We

chose an approximated value for illustration purposes of the method developed. A specific analysis

would require a detailed analysis of the memory elements in the technology library. This section

results  have  been  obtained  by  setting  a  voltage  threshold  of  V =  0.9V and  tw =  80ps,  for  a

technology with a supply voltage of VDD = 1.1 V. The threshold width is approximately twice the

delay of a library inverter.

The results are reported for three benchmark circuits (c3540, c5315 and c7552) and since the

number of internal nodes is very large the graphs only shows the fifty internal nodes with a larger

number of subpaths reaching an output node.

With these conditions Figs. 6.14 to 6.16 show the mean minimum width computed according to

(5.7) for the each benchmark circuit respectively. As shown in the graphs, the mean minimum pulse

widths are located approximately around the output width threshold value, because in general the

subpaths propagate the SET keeping its width. However, when the mean value is below 80ps it

means that the subpaths for this node in general broaden the SET pulses. On the other hand, the

nodes with large mean value are dominated by subpaths that narrow the pulses.

Figure 6.14: c3540 Minimum pulse width
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Figure 6.15: c5315 Minimum width

Figure 6.16: c7552 Minimum width

Figs.  6.17 to  6.19 show the average value of the minimum height required to reach an output

surpassing the output threshold for an injected SET having a 150ps width. These values have a

maximum at the supply voltage, since the case of an injected SET surpassing this value has not been

considered.

This case is quite different than the previous one since if the pulse is sufficiently wide and the

height is above the next logic gate threshold voltage, then logic gate propagating the pulse raises the

outputs to the supply voltage.
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Figure 6.17: c3540 Minimum pulse height

Figure 6.18: c5315 Minimum height

Figure 6.19: c7552 Minimum Height
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All previous results have been obtained considering only electrical parameters. Fig. 6.20 to 6.22

show the results considering the logic sensitivity by using the expression (6.8). The internal nodes

included in these results are the same for the electrical sensitivity metrics.

These results show that some internal nodes exhibit a high NES that gets weighted down when

considering both electrical and logic SET filtering. This information is valuable when designing or

synthesizing a specific logic block.

For instance, nodes #47 - #49 of circuit c3540 have a small minimum width value as shown in

Fig. 6.14, however when the logic sensitivity in also considered its combined sensitivity falls to low

values as shows Fig. 6.20. Similar situations are observed for the other circuits.

Figure 6.20: c3540 Internal node Electrical & Logic sensitivity

Figure 6.21: c5315 Internal node Electrical & Logic sensitivity
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Figure 6.22: c7552 Internal node Electrical & Logic Sensitivity

6.4.2.3. Output width distribution

Figs. 6.23 and 6.24 shows the output width distribution for the benchmark circuit c3540 when a

pulse of 100ps (Fig.  6.23) and 150ps (Fig.  6.24) is exhaustively injected at each circuit internal

node. Each color represents an output node, the x axis is the SET width reaching the output node

and the y axis is the probability computed as the sum of the logic probabilities of each subpath

propagating the injected SET until output node arriving with a width inside a given range.

As shown in the Figs, in general the pulse output width with higher probability is located around

the width value of the injected pulse. As shown for this circuit only few cases reach an output with a

pulse width lower than injected pulse width for the 100ps case. However when the injected pulse is

of 150ps, the probability that a narrow pulse reaches an output is higher. This is because 100ps SET

pulse is completely filtered before arrives to the output node for many subpaths, while a 150ps

pulse is capable of traversing much more subpaths.
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Figure 6.23: c3540 Output width distribution (100ps)

Figure 6.24: c3540 Output width distribution (150ps)
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Figs.  6.25 to  6.28 show the output width distribution for the benchmark circuits c5315 (Figs.

6.25 and  6.26) and c7552 (Figs.  6.27 and  6.28) when injecting a pulse of 100ps and 150ps. The

Figs. show a similar behavior than the ones of the circuit c3540.

Figure 6.25: c5315 output width distribution (100ps)

Figure 6.26: c5315 Output width distribution (150ps)
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Figure 6.27: c7552 Output width distribution (100ps)

Figure 6.28: c7552 Output width distribution (150ps)
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To get a wider information about the output width distribution we performed an injected pulse

width sweep, obtaining a relationship between this width and the output pulse width. Figs. 6.29 to

6.34 show a 3D representation of these results for a various output nodes of the c3540 and c7552

benchmark circuits. These graphs plots the probability of each output pulse width related to the

injected width.

Generalizing  the  previous  results  both  graphs  show  that  the  higher  output  SET  width

probabilities are located on the line defined by twin = twout, i.e. the case where the SET traverses the

path keeping its width.

The  graph  in  Fig.  6.29 shows  that  for  this  output  there  is  no  pulse  broadening,  since  the

probability to get an output pulse wider than the injected pulse is practically zero. However, there

are various pulses that suffers a narrowing.

Fig. 6.30 shows the results for another output node that presents a different behavior, since in this

case pulse broadening is observed.

Figure 6.29: c3540 Injected-Output width
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Figure 6.30: c3540 Injected-Output width

Figure 6.31: c3540 Injected-Output width
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Figure 6.32: c3540 Injected-Output width

Figure 6.33: c7552 Injected-Output width
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Figure 6.34: c7552 Injected-Output width
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Chapter 7: Conclusions and future 
work

A complete framework for SET propagation sensitivity has been presented and evaluated. The

framework  comprises  a  number  of  processing  tools  capable  of  handling  circuits  with  high

complexity in an efficient way. This goal has been achieved through the application of appropriated

circuit pre-processing, partitioning and collapsing techniques suited for each particular situation.

Basic  circuit  analysis  tasks  have  been  developed  in  light  of  the  low  efficiency  exhibited  by

commercial tools. 

In this way, a quite efficient true path finding algorithm has been constructed and its efficacy

demonstrated on large benchmark circuits. Results show that this module is capable of determining

the  required  number  of  true  paths  for  circuits  where  commercial  tools  fail  to  provide  a  list.

Moreover we have found that the delay value of a given path depends on the sensitization vectors

applied to the complex library gates. We have shown that in some cases delay variation due to

different sensitization vectors may get up to 43% at the path level, being comparable to the path

delay  caused  by  process  parameters  variation.  Such  an  improvement  over  the  path  delay

computation, links such delay estimation to the specific sensitization vector and to the verification

of the path being a true path, representing a significant improvement over commercial tools.

A  compact  specific  logic  system  has  been  developed  to  enhance  the  performance  of  the

algorithms  constructed  to  propagate  transitions  within  the  circuit  and  handle  efficiently  SET

propagation. Various simplification, partitioning and encapsulation techniques have been detailed
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and analyzed to enhance the overall framework operation.

A  polynomial  implementation  of  an  analytical  delay  model  has  been  incorporated  in  the

framework. After an automated gate technology library processing the required model parameters

are extracted obtaining the optimal configuration for each gate. Such an extraction process is key

for accurate SET propagation analysis.

SET propagation results have been thoroughly verified through extensive electrical simulations

over benchmark circuits synthesized on commercial CMOS technologies. Results demonstrate an

excellent SET propagation prediction.

Various SET propagation metrics have been proposed considering the impact of logic masking,

electric  masking and combined logic-electric  masking.  Such metrics  provide a  valuable tool  to

grade either in-circuit regions being more susceptible of propagating SET events toward the circuit

outputs or circuit outputs more susceptible to produce SET events.

The SENSET tool application to large benchmark circuits has shown the framework capabilities

in the SET propagation estimation domain. Based on the developed metrics, the tool is capable of

identifying the list of circuit internal nodes most suitable to propagate an SET accounting for both

the electrical and logical masking effects. Results can be weighted by the logic probability of a node

being activated from the circuit input vectors. Similarly, the tool also provides information about the

circuit  output  nodes  with  a  higher  probability  of  producing  an  SET  under  specific  radiation

environments. An additional tool analysis is capable of exhaustively determining the effect of pulse

broadening/filtering once a specific SET event is induced at each circuit node.

The work presented here establishes the foundations for a future circuit analysis tool oriented not

only to evaluate the weakest regions of a circuit in terms of SET propagation susceptibility, but also

to automatically suggest circuit design modifications oriented to enhance circuit robustness against

SET propagation. 
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A. Benchmark circuits

Qualification of circuit processing algorithms requires a test bench to grade their operation and

the efficiency of the techniques used. Various benchmark circuits sets have been proposed in the

field  of  the  electronic  design  automation  (EDA)  tools  development  to  provide  a  common

framework where to check the algorithms behavior using circuit structures similar to real circuits.

One of the most widely used benchmark circuits suite in the literature since their introduction in

1985  are  the  ISCAS'85  circuits  [79][80],  a  set  of  combinational  circuits  published  at  the

International Symposium of Circuits and Systems (ISCAS). They were based on industrial designs

and  provided  in  gate-level  netlist  format.  Their  high-level  function  was  kept  secret  for

confidentiality, and to provide a set of combinational blocks to be viewed as a bunch of logic gates

without a specific high-level function. However multiple reverse engineering works have unveiled

its high-level details [81]. 

The ISCAS'85 were followed by a second set of benchmark circuit published in 1989, referred to

as  the  ISCAS'89.  They  are  sequential  circuits,  instead  of  purely  combinational  blocks  as  the

ISCAS'85.  However,  due  to  the  quick  evolution  of  the  integration  technology, ISCAS circuits

became too simple for testing modern design tools,  and a  new set  of benchmark circuits  were

introduced during the 1999 Int.  Test  Conference  [82].  The ITC'99 benchmark circuits  included

designs from industry and universities, and have been extensively studied in the literature [80].

The techniques and algorithms presented in this work will be illustrated using circuits from the

ISCAS'85 and ITC'99 benchmarks.

Benchmark circuits are provided in netlist form using generic logic gates. In this work, to get a

realistic  environment  where  to  test  our  tools,  the  circuits  have  been  synthesized  on  various

technologies using the commercial tool Design Compiler from Synopsys® [75][76]. The synthesis

tool  was  configured  to  make  a  high-effort  synthesis  with  the  objective  of  getting  a  realistic

synthesis, since in real applications any achievable reduction in area, delay or power consumption

usually will be exploited. The details of the circuits synthesized on a 65nm CMOS commercial

technology are provided in Tables  A.1 and  A.2. Table  A.1 includes details about the ISCAS'85

circuits, while Table  A.2 details the ITC'99 ones. Both Tables provide the circuit name, its high-

level function (in general obtained by reverse engineering), and the number of elements, nodes and

gates, of each circuit.



A. Benchmark circuits

The number of nodes is detailed in categories:

• Input nodes: primary inputs.

• Output nodes: primary outputs.

• Wire nodes, circuit internal nodes (i.e. not Input nor Output nodes).

The number of input and output nodes of each circuit is determined by its high-level design,

however, the number of wires and gates depends on the technology and parameters used to perform

the circuit synthesis. For example if the synthesis is performed using only basic gates (NOT, OR,

AND, NOR, NAND), the number of gates of the circuit will be higher than if the synthesis uses

complex gates.

To get a wide test bench, in addition to commercial 130nm, 90nm and 65nm CMOS technologies

we have also included a 45nm Nangate Open Cell Library from Si2 [78].

Table A.1: ISCAS'85 Benchmark circuits

Circuit Function Input Output Wire Nodes Gates

c17 Handy-level simple circuit 5 2 1 8 3

c432
27-channel interrupt controller (Priority

decoder)
36 7 74 117 81

c499 32-bit SEC (ECAT) 41 32 105 178 137

c880 8-bit ALU 60 26 133 219 159

c1355 32-bit SEC (ECAT) 41 32 107 180 139

c1908 16-bit SEC/DED (ECAT) 33 25 139 197 164

c2670 12-bit ALU and controller 233 130 187 550 316

c3540 8-bit ALU and controller 50 22 409 481 431

c5315 9-bit ALU and selector 171 102 420 700 522

c6288 16-bit Multiplier 32 32 775 839 602

c7552 32-bit Adder/Comparator 207 94 576 877 670
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A. Benchmark circuits

Table A.2: ITC'99 Benchmark circuits

Circuit Function Input Output Wire Nodes Gates

b01 FSM (compare serial flows) 6 6 15 27 21

b02 FSM (recognizes BCD numbers) 5 5 11 21 16

b03 Resource arbiter 36 32 43 111 75

b04 Compute min and max 79 73 118 270 180

b05 Elaborate the contents of a memory 37 61 218 316 279

b06 Interrupt handler 6 9 19 34 28

b07 Count points on a straight line 47 49 165 261 212

b08 Find inclusions in sequences of numbers 32 24 45 101 69

b09 Serial to serial converter 31 31 38 100 69

b10 Voting system 29 18 76 123 94

b11 Scramble string with variable cipher 39 33 257 329 289

b12 1-player game 129 132 415 675 547

b13 Interface to meteorologic sensors 59 54 82 195 135

b14 Viper processor (subset) 247 238 1694 2179 1921

b15 80386 processor (subset) 454 460 3020 3934 3465

b17 Three copies of b15 1354 1485 9136 11975 10573

b18 Two copies of b14 and two of b17 3333 3321 24010 30664 26718

b19 Two copies of b14 and two of b17 6616 6621 46421 56658 52133

b20 A copy of b14 and a modified version of
b14

523 514 3420 4457 3882

b21 Two copies of b14 523 514 3307 4344 3753

b22 A copy of b14 and two modified
versions of b14

733 726 4724 6186 5310
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