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Resum
Durant el Pliocè, a l'illa de Gargano (costa sudest d'Itàlia) va evolucionar una fauna vertebrada altament endèmica.

Aquesta fauna comprenia, entre d'altres, el eriçó gegant Deinogalerix, l'òliba gegant Tyto gigantea; el hàmster gegant Hatto

mys, i el cèrvol Hoplitomeryx amb cinc banyes i canins superiors en forma de sabre (tipus mòsquid). Els materials esquelètics
d'HoplitomelYx formen un grup heterogeni, amb quatre classes de talla; dintre de les classes de talla poden estar presents
diferents morfotipus. Totes les classes de talla comparteixen els mateixos trets típics d'Hoplitomeryx. Aquests són: una banya
nasal central i un parell de banyes orbitals en punxa, canines sortints, fusió completa del navicocuboide amb el metatarsià,
acanaladura metatarsiana distalment tancada, astràgal sense costats paral-lels, i una ròtula allargada. Les dife-rents classes
de talla es troben repartides de forma igual a les fissures excavades, i a llavors no es poden considerar cronotipus. La hipòte
si d'un arxipèlag consistent en diferents illes on a cada una d'elles hi hagués un morfotipus no s'ha pogut confirmar,

La situació de diferents morfotipus coexistint a una illa té un paral-lel amb Candiaceruus (Pleistocè, Creta, Gràcia). Les

opinions sobre la seva taxonomia són diverses, i actualment prevaleixen dos models: un gènere per a vuit morfotipus o, alter
nativament, dos gèneres per a cinc espècies. El segon model només es basa en les proporcions dels membres, però aquestes
són característiques taxonòmiques invàlides per als endemismes insulars, ja que canvien sota la influència de factors ambien
tals diferents dels continentals. També a Hoplitomeryx els morfotipus difereixen en les proporcions dels membres, però en

aquest cas resulta improbable que provinguin de diferents ancestres, ja que en aquest cas els ancestres haurien d'haver com

partit els trets hoplitomeríciids tipics. La morfoesfera d'Hoplitomeryx és massa coherent com per suposar dos a més ances

tres, i indica un origen monofilètic de tots els morfotipus.
En lloc d'això, la gran variació s'explica com a un exemple de radiació adaptativa, que va començar quan l'ancestre

miocènic va colonitzar l'illa. Lespectre de ninxols buits degué promoure la seva radiació en diferents tipus tròfics, conduint
a una diferenciació d'Hoplitomeryx. La manca compartida de mamifers depredadors grans i l'oferta limitada d'aliment a tots

els ninxols degué promoure el desenvolupament de trets derivats secundaris a totes les classes de talla.
Paraules clau: Gargano, endemisme, Candiaceruus, Cervus astylodon, fauna de Microtia.

Summary
During the Pliocene a highly endemic vertebrate fauna evolved on Gargano Island (south-east coast of Italy), compri

sing amongst others the giant hedgehog Deinogalerix, the giant barn owl Tyto gigantea, the giant hamster Hattomys, and the

prongdeer Hoplitomeryx with five horns and sabrelike ('moschid' type) upper canines. The Hoplitomeryx skeletal material
forms a he-terogenous group, containing four size groups; within the size groups different morphotypes may be present. All
size groups share the same typical Hoplitomeryx features. These me: one central nasal horn and a pair of pronged orbital

horns, protruding canines, complete fusion of the navicocuboid with the metatarsal, distally closed metatarsal gully, a non

parallel-sided astragalus, and an elongated patella. The different size groups are equally distributed over the excavated fis
sures, and are therefore not to be considered chronotypes. The hypothesis of an archipelago consisting of different islands
each with its own morphotype cannot be confirmed.

The situation with several co-existing morpho types on an island is paralleled by Candiacervus (Pleistocene, Crete,
Greece). Opinions about its taxonomy differ, and at present two models prevail: one genus for eight morphotypes, or alter

natively, two genera for five species. The second model is based upon limb proportions only, but these are invalid taxonomic
features for island endemics, as they change under influence of environmental factors that differ from the mainland. Also in

Hoplitomeryx the morphotypes differ in limb proportions, but here different ancestors are unlikely, because in that case they
all ancestors must have shared the typical hoplitornerycid features. The morphosphere of Hoplitorneryx is too coherent to

assume two or more different ancestors, and indicates a monophyletic origin of all morphotypes.
The large variation is instead explained as an example of adaptive radiation, starting when the Miocene ancestor colo

nized the island. The range of empty niches promoted its radiation into several trophic types, yielding a differentiation in

Hoplitomeryx. The shared lack of large mammalian predators and the limited amount of food in all niches promoted the

development of secondary features in all size groups (apomorphies).
Keywords: Gargano, endemism, Candiaceruus, Cervus astylodon, Microtia fauna.
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INTRODUCTION

The Gargano fauna

Once upon a time, the five-horned deer Hoplito
meryx matthei Leinders, 1984 (Fig. 1) lived on the

Gargano Island, now part of the east coast of South Italy.
Its fossilized remains were retrieved in the late sixties and

subsequent years (Freudenthal, 1971) from reworked red

dish, massive or crudely stratified silty-sandy clays (terre
rosse), which partially fill the paleo-karstic fissures in the
Mesozoic limestone substrate and that are on their turn

overlain by Late-Pliocene-Early Pleistocene sediments of
a subsequently marine, shallow water and terrigenous
origin (Abbazzi et al., 1996). In this way a buried paleo
karst (sensu Bosak et al., 1989) originated. The fauna from
the paleokarst fillings is known as Microtia fauna after the
endemic rnurid of the region. Later, after the regression
and continentalization of the area, a second karstic cycle
started in de late Early Pleistocene, the neokarst, which
removed part of the paleokarst fill (Abazzi et al., 1996). In
this paper, I focus only on the Microtia fauna from the

Early Pliocene paleokarst fillings.
Hoplitomeryx was not the only inhabitant of the

Early Pliocene palaeoisland; many remains of other ver

tebrates have been found in the paleokarst fills as well.
The other mammals that have been identified and
described can be divided into genera and species that are

Fig. 1. The deer Hoplitomeryx matthei Leinders, 1984 is characterised by
its five horns (one nasal horn and two pronghorns on each orbit).
Its fossils are found in the terre rosse of the paleokarst fissures of
the Gargano (South Italy), associated with other faunal elements,
known as the Microtia fauna.

Fig. 1. El cèrvol Hoplitomeryx matthei Leindets, 1984 es caracteritza per
tenir cinc banyes (una banya nasal i dues punxes sobre cada òrbi
ta). Els seusfòssils es troben a bretxes paleocàrstiques vermelloses de

Gargano (Sud d'Itàlia), associats amb altres elements faunístics,
coneguts com a Iafauna de Microtia.

truly endemic to the Gargano only, and species that are

more wide-spread. The true endemic genera are the sori
cid Deinogalerix Freudenthal, 1972 with five species,
amongst which the giant D. koeningswaldi with a skull

length of approximately 20 cm (Freudenthal, 1972; But

ler, 1980), the murid Microtia Freudenthal, 1976, which

appears to be the only burrowing murine genus known
till now (Parra et al., 1999), and which radiated into at

least three lineages of different size, and of which the

largest, M. magna, has a skull length of about 10 cm

(Freudenthal, 1976), the huge glirid Stertomys laticresta
tus Daams & Freudenthal, 1985, and the hamster Hatto

mys Freudenthal, 1985, with three species. True endemic

species, belonging to wider spread genera, are the otter

Paralutra garganensis (Willemsen, 1983) and the
ochotonids Prolagus imperialis (Mazza, 1987) and P.

apricenicus (Mazza, 1987), of which the largest, P. impe
rialis, is larger than any other known Prolagus species
(Mazza, 1987). The mammals that are also found in other

regions are the arvicolid Apodemus gorafensis (Ruiz Bus
tos et al., 1984), and the three hamsters Cricetulodon,
Megacricetodon, Cricetus (Freudenthal, 1985).

Also the sky above the Gargano was not empty, and
was filled with at least the following birds (Ballmann,
1973, 1976): the endemic eagle Garganoaetus Ballmann,
1973 with three species, the barn owl Tyto with three

species, of which the largest, the endemic T. gigantea
(Ballmann, 1973), was about twice as large as the living
Bubu bubo, a true owl possibly of the genus Strix, and the
Eurasian pigeon Columba omnisanctorum and gull Apus
uietmorei.

The age of the Gargano

The age of these fossiliferous sediments is still under
discussion (Abbazzi et al., 1996; Zafonte & Masini, 1992;
De Giuli et al., 1986). The first datation of the terrae rossae

was based upon a combination of stratigraphy and
microfauna. In these studies, the calcarenite overlying
the karst system is considered to have been deposited
during the Tortonian, or Vallesian - early Turolian Mam
mal Age (Freudenthal, 1971, 1976; D' Alessandro et al.,
1979), and therefore the fissure deposits were supposed
to range from late Vallesian (MN 10) to early Turolian
(MN 11), which was confirmed by the microfaunal evo

lutionary stage in the view of Freudenthal (1971, 1972,
1976). A younger age than in first instance is assumed by
De Giuli & Torre (1984a, 1984b) and De Giuli et al. (1985,
1986, 1987), who propose the Late Turolian (Messinian,
MN 13), or early Ruscinian (MN 14) as period during
which the endemic fauna evolved. Freudenthal (1985)
also adjusts his earlier estimation to the Messinian, on

the basis of the cricetids. Other studies are based exclu

sively on faunal elements, such as Ballmann (1973), who

gives a post-quem age of Late Aragonian, MN 7/8 on the
basis of avifauna. De Giuli et al. (1986) give a post-quem
date oflatestTurolian (MN 13) on the basis of the occur

rence of a true Apodemus (Jl.. gorafensis), a widely distri
buted taxon in the Early Pliocene onwards (Martín
Suarez & Mein, 1998); the first Apodemus occurs in the
Eastern Mediterranean at the beginning of the Late
Miocene (Koufos, 2001). De Guili et al. (1985) consider
Monte Gargano as part of a larger structural unit, the so-
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called Apulo Dalmatic Realm, which gradually got dis

rupted and submerged from the earliest Miocene to the

Early Pleistocene, with a temporary major regression in
the earliest Pliocene or Messinian, and a smaller, local

regression in the Middle Pliocene (Globorotalia gr. cras

saformis zone; Valleri, 1984), documented by field geo
logical data, which resulted in the almost complete sub
mersion of the foreland in the Late Pliocene - Early Pleis
tocene (De Giuli & Torre, 1984a; De Giuli et al., 1985; Val

lerí, 1984). During the Pleistocene, the regional uplift
caused the emergence and continentalization of the
foreland (Ricchetti et al., 1992). The Messinian-earliest
Pliocene regression is considered probably the time of
the last large fauna immigration (Torre, 1986). A detailed

biogeostratigraphic study is made by Abbazzi et al.

(1996), who define eight units, ranging from late
Miocene to Middle Pleistocene. The oldest unit (1) is a

facies of residual red silty clays, terre rosse, which are the

fillings of the paleokarst. The next five units are breccia
facies, with successive Globorotalia punticulata and G.

inflata, ofwhich the second is rich in mollusks, including
marine taxa. The next unit is terrigenous, and consists of
sands and pelites with marine mollusks. The last, eight
unit is again a filling, now of the neokarst, represented by
alternating finely stratified sands and pelites. Unit I, con

taining the Microtia fauna with endemic taxa, is assigned
a Late Miocene - Early Pliocene age, whereas Unit 7 coin
cides with the Plio-Pleistocene boundary; Unit 8 con

tains a late Villafranchian fauna, and is therefore

assigned a late Early Pleistocene age. During the neokarst

cycle, most of the fillings of the Paleokarst were washed
out and/ or reworked (Abbazzi et al., 1996), which makes

proper stratigraphic and evolutionary approaches
extremely risky. Unit 1 is found in many sites spread over

the region, whereas Unit 8 is constricted to Pirro Nord
and Cava Dell' Erba (community of Apricena), the area

where F16 and F17 are assigned to the Unit 1 finds. It is
not completely clear if the marine Tortonian sediments

effectively overlie the fossiliferous horizon, and further

more, the study is local (quarries between Apricena and

Poggio Imperiale), and Abbazzi et al. (1996) strongly
advise not to extrapolate the stratigraphic data to a lar

ger scale, for example the entire Gargano area, due to the

complexity of the stratigraphic relationships in the

Gargano, in which extremely dynamic paleogeographic
conditions were governed by structural activity. In other
words, the only observation that remains valid is that the
Unit 1 endemic Microtia fauna predates the Unit 8 latest
Villafranchian fauna, but the absolute age is still unclear.

Diagnosis of Hoplitomeryx

Leinders (1984) described the cranial and dental
material of the Gargano artiodactyls, and established a

new cervid family Hoplitomerycidae, a new genus
Hoplitomeryx, and a new species matthei. The most

striking characteristic of the Hoplitomerycidae is the

presence of five horns (Fig. 1), of which one projects
between the eyes on the caudal part of the nasals. The
other four arise in pairs above the orbit, and can be con

sidered pronged horns, hence the name prongdeer was

suggested (Van der Geer, in press). Other characters are a

large bulla tympanica, anon-pneumatized skull roof, the

large, flaring and sabre-like upper canines, lack of PI and
P2 inf., a non-molarized P4 inf., a variable degree of hyp
sodonty, and an M3 inf. with large, bicuspid third lobe.

Hoplitomeryxueà a short, massive snout, more anterior

ly positioned orbits, and a double lacrimal orifice on the
rim of the orbit. Some artiodactyl material (amongst
others, an orbital horncore, a fused rnetatarso-cubonavi

cular, and some molars) discovered in the Turolian (Late
Miocene) Scontrone fauna (Maiella, Abruzzo National

Park, Central Italy) has also been attributed to Hoplito
meryx (Mazza & Rustioni, 1996; Rustioni et al., 1992).

The postcranial elements of Hoplitomeryx have not

been described yet in full detail, but they are remarkably
hornógenuous in their morphology. They show many
typical endemic features, such as the fusion of the navi
co-cuboid with the metatarsus, described as a functio
nal adaptation by Leinders & Sondam: (1974), shortening
of some metapodials as described for Myotragus (Son
daar, 1977) and in one case the fusion of both malleoli
with the tibia, which has till now been reported only for
one other species: Myotragus (Bover, 2003; Bover et al.,
this volume). Other diagnostic features are the non-par
allel sided astragalus (Van der Geer, 1999) and the

extremely elongated patella (Van der Geer, in press);
these are explained as a return to a less derived condi

tion, favored by the absence of predators and the lack of
abundant food (Van der Geer, in press).

The size of the Hoplitomeryx postcranial material is
on the contrary less homogenuous, and seems to form a

heterogenous group, containing at least four size classes.
The sizes are not restricted to specific fissures, and an

equally distribution over the fissures instead seems to be
more the case. In most fissures, more than one size is

represented. Due to the often fragmentary character of
the material, and the relative scarcity of the material, it is
at the moment not possible to recognize all size classes
in each limb element, in particular the largest sizes.

Large specimens are always incomplete, and as a

remarkable detail, the largest size is represented by juve
niles only. The total number of size groups is therefore a

combination of the groups defined per limb element,
In this article only the metapodals are described in

more detail, as an illustration of the process of adaptive
radiation, which is supposed to be the underlying drive
behind the speciation of Hoplitomeryx. The other limb
bones follow the same pattern, and will be dealt with in a

future paper.

Explanation of increased size range

The increased size range with separate size groups
as observed in endemic insular taxa is usually explained
in terms of allopatric speciation, which implies the exis
tence of an archipelago, e.g. the famous Darwin's Finch
es on the Galapagos Islands. The Pliocene island Monte

Gargano (Italy) has been considered part of a larger
archipelago (Apulo-Dalmatic Realm) in relation to the
micromarnmals (De Giuli & Torre, 1984; De Giuli et al.,
1985, 1987) and the ochotonid Prolagus (Mazza, 1987) to

explain the presence of several sister taxa that evolved in
a relatively short time. Another explanation is the occur

rence of more than one invasions, e.g. as suggested for
the deer Candiacervuson Crete (Kuss, 1975; DeVos, 1984,
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however cf. De Vos, 1996, 2000; Capasso Barbato, 1992;
Caloi & Palombo, 1996) and the rodents on the Monte

Gargano (Freudenthal, 1976).
In the archipelago hypothesis, it does not explain

sufficiently why sister taxa are found together on one and
the same island. In the multiple invasion hypothesis, it is
no explanation as to where and why this new sister taxon

evolved. In both cases it is not clear why the sister taxa

wait with migration until! full speciation has taken place.
What we see is only the end result, consisting of a

range of taxa, closely related; when the variety is large
and the genetic distance small, the term flock is used (e.g.
Greenwood, 1974; Echelle & Kornfield, 1984, and refer
ences therein). The radiation into morphotypes can be

compared to the medium scale, medium term radiations

(e.g. the radiation of the antlered deer in Eurasia), and on

its turn with the large scale, long term radiations (e.g. the
radiation of the marsupials in South America and Aus

tralia; Woodburne & Case, 1996). The main driving force

in all cases is the urge to occupy free ecological niches.
The resulting speciation can be explained best in terms
of sympatric speciation (De Vos & Van der Geer, 2002).

MATERIAL

Hoplitomeryx

For the description are used: 47 adult metatarsals, 6

juvenile metatarsals, 55 adult metacarpals, all RGM
numbers; stored at Naturalis, Nationaal Natuurhis
torisch Museum, Leiden, The Netherlands; 3 unnum

berd metatarsals (field numbers P77 /4, F8 and 25.9.83
Fina F9), and 1 unnumbered metacarpal (field number
P77 /4), all four stored at Museum of Geology and Pa

leontology, University of Florence, Italy)

METACARPUS
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Fig. 2. The four different massivity diagrams of
adult metacarpals of Hoplitomeryx show
three (massivity proximal end) or two (mas
sivity distal end) size groups. DTp = proxí
mal width: DAPp = proximal depili; DTd =

distal width: DAPd = clistal depth.

Fig.2. Els quatre diagrames de massiuitat diferent
de metacarpians adults dHoplitomeryx
mostren. tres (extrem proximal de massiuitat)
o du.es (extrem distal de massiuitat) classes de
talla. DTp = amplària proximal; DAPp =

fondària proximal; DTcI = amplària distal;
DAPd = fondària distal.
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Comparison material

The following species have been used for compari
son, in alphabetical order:

Alces alces (Fairbanks, Alaska, Rancholabrean; F:AM
BX276 and 2 others, drawer with F:AM 8309-1933, n=6);
Antilocapra americana (North America, recent; FMNH

14239, FMNH 57217, FMNH 74239); Axis axis (Pleis
tocene, Java; Call. Dubois, nos. 5376, 5593, 6089, 6258,
9853, 9861); Blastomeryx (Trinity River; F:AM CRO 60-

1752); Candiacervus size 2 (Liko Cave, Crete, Pleistocene;
LiB n=20, LiC n=20, Li-C n.n. complete leg); Cervalces

(Rancholabrean, Alaska; F:AM 527); Cervus elaphus
(Rancholabrean, Alaska; drawer with F:AM 34672, n=5);
Cervus kendengis (Pleistocene, Java; Call. Dubois nos.

6459 and 6471); Cranioceras granti (Clarendonían,
Nebraska; F:AM 31716, n=7); Eumeryx culminis (Mongo
lia, Middle Rupelian; AMNH 19147, cast of type); Ovis
aries (n=5, own collection); Rangifer tarandus (Fair
banks, Alaska, Rancholabran; F:AM A 591 (complete
postcranial skeleton), drawer with A 473 (n-12). drawer
with F:AM 120-6244 (n=8), and F:AM 2204-1951).

THE HOPUTOMERYXMETACARPUS

Introduction

Metacarpals of Hoplitomeryx have been recovered
from the following fissures in the Gargano, in alphabeti
cal order: Chiro I, Chiro 2, Chiro 4, Chiro lOB, Chiro 12,
Chiro 14b, Chiro 27, Chiro 29, Chiro Dl, Chiro D3, Fal
cone 2A, Fina D, Fina H, Fina K, Fina N, Gervasio I,
Nazario 4, Pizzicolli 4, Pizzicolli 12, S. Giovannino, S. Gio
vannino Low, Trefossi 2A, Trefossi F26.

To determine full-grown stage, the pattern as

described for Dama dama (after Pohlmeyer, 1985) is fol
lowed. At birth the distal epiphysis is unfused, and con

sists of two separate condyles. At the end of the sixth
month the two condyles are fused. At 20 months the dis-

tal epiphysis starts to fuse with the diaphysis, and at the
end of the second year this fusion is complete. Megalo
ceros cazioti (="Megaceroides" cazioti, Dama caziotii fol
lows the same pattern (Klein-Hofmeijer, 1996), and the
same appears to be true for Candiacervus size 1 (= Can
diaceruus ropalophorus) (Bískop, 1978). It is therefore
reasonable to accept the same pattern for Hoplitomeryx,
but not necessarily with the same growth speed. Speci
mens without distal end cannot be determined on onto

genetic stage, and are therefore discarded from the size
estimations.

Metacarpal size

Measured are maximal length, proximal width and

depth, and distal width and depth. Length is measured
from the most proximal end of the proximal articulation
till the distalmost end of the trochlea. Proximal depth
(DAPp) and proximal width (DTp) are both the maxi
mum values as measured on the articulation area. Distal

depth (DAPd) and distal width (DTd) are both the maxi
mum values as measured on the distal epiphysial fusion
line. Measurements on the distal articulation itself, the

trochlea, are found to be too subjective, and in many
cases impossible due to fragmentation.

Length of the adult Hoplitomeryx metacarpals
appears to vary between about 74,4 mm and 259 mm

(average 118,7 mm). Proximal depth varies between 9
mm and 22 mm (average 13,8 mm); proximal width

(DTp) between 12 mm and 34 mm (average 22,3 mm).
Distal depth (DAPd) varies between 9,2 mm and 18,2
mm (average 11,8 mm); distal width (DTd) between 18
mm and 31,5 mm (average 21,8 mm).

In the massivity diagrams of the adult specimens,
three groups can be discerned (Fig. 2; Fig. 3). The low
number oflarger, complete specimens may lead to artifi
cial groups, which as a consequence would disappear if
more specimens could be measured. A fourth group is
not represented by an adult specimen, but by a juvenile
trochlea, which is significantly larger than any of the
adult specimens, with a DAPd 22,2 mm and a DTd 36,6
mm (for the adult range, see above).

Fig .. 3. Proximal massivity (transversal
diameter against length) clearly
shows three size groups. The
smallest specimens are laterally
compressed at rnidshaft, while the

larger specimens are straight.

Fig. 3. La massivitat proximal (diàmetre
transuers respecte la llargària)
mostra clarament tres classes de
ta.lla. Els espècimens més petits
estan clarament comprimits enmig
cie la canya, mentre que els espèci
mens més grans són rectes.
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The massivity indexes (DTIL) gradually increases
from large to small specimens, as is also observed in
Candiacervus (after De Vos, 1979), but run a bit ahead, in
other words, the smaller specimens are relatively more

massive. Another observation is that in the diagram with

DAPp/L plotted against DTpIL, two clouds can be dis

cerned, which shows that the smaller specimens are

more square than the larger specimens, which are clear

ly more broad (DT) than deep (DAP). The smallest spe
cimens are therefore not only shortened, but also more

square in cross-section.
Four sizes groups can be discerned within the avai

lable material, based upon the maximum length. These

groups are the following, from small to large:
Size 1. Length varies between 74,4 mm and 95 mm

with an average of 85,5 mm (N=14). Proximal depth
(DAPp) varies between 11 mm and 14,6 (average 12,1
mm), proximal width (DTp) between 17,6 mm and 23,2
mm (average 19,9 mm). Distal depth (DAPd) varies

between 10 mm and 12 mm (average 10,9 mm), distal
width (DTd) between 18,3 mm and 23,4 mm (average
20,2 mm). The average distal massivity DTdlL is 0,24.

The length of this size group corresponds to that of
Ceruus astylodon size G3 (range 80-89 mm) of Kume

(Ryukyu Islands, Japan; after Matsumoto & Otsuka,
2000), and to Candiaceruus size 1 (range 88,4-114,1 mm;
after De Vos, 1979). The distal massivity corresponds to

that of Candiaceruus sizes 1 and 2 (range 0,21-0,24).
Size 2. Length varies between 139 mm and 177 mm

with an average of 158,9 mm (N=8). Proximal depth
(DAPp) varies between 14,6 mm and 17,5 mm (average
16,0 mm), proximal width (DTp) between 23,5 mm and

30,1 mm (average 26,4 mm). Distal depth (DAPd) varies
between 10,3 mm and 14,4 mm (average 12,7 mm), dis
tal width (DTd) between 23,0 mm and 28,0 mm (average
25,0 mm). The average distal massivity DTdlL is 0,16.

The length of this size group corresponds to that of
Candiaceruus size 3 (range 131,0-144,2 mm; after De Vos,
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Fig.4. The four different massivity diagrams
of adult metatarsals of Hoplitomeryx
show three (massivity proximal end)
or two (massivity distal end) size

groups. DTp = proximal width; DAPp
= proximal depth; DTd = distal width;
DAPd = distal depth.

Fig. 4. Els quatre diagrames de massiuitat

diferent de metatarsians adults d1-Io·

plitomeryx mostren tres (massivitat
de I' extrem proximal) a dues (massi
vitat de l'extrem distal) classes de talla.
DTp = amplària proximal; DAPp =

fondària proximal; DTd = amplària
distal; DAPd = fondària distal.
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1979), to that of Cervus astylodon size GI (140 mm; after
Matsumoto & Otsuka, 2000) from Ryukyu Islands, Japan,
and to that of the living Japanese deer Cervus nippon
keramae (range 140-155 mm; after Matsumoto & Otsuka,
2000). The distal massivity corresponds to that of Can
diacervus sizes 4 and 5 combined (range 0,14-0,17), to

Cervus elaphus (0,15-0,17), and Rusa unicolor (0,16).
Size 3. The length of specimens of this size group may

be about 259 mm (only one specimen), with a proximal
depth (DAPp) of 19,5-22 mm (two specimens), and a pro
ximal width (DTp) of about 33,4-34 mm (two specimens).
Distal depth is about 18,2 mm, and distal width about
DTd 31,5 mm, but there is only one specimen available.
The distal massivity DTd/L would then be about 0,12,
which corresponds to Capreolus capreo Ius (0,12-0,13).

The length of this size group seems to correspond to

the size of Candiacervus size 5 (range 262 mm-284 mm;
after Kotsakis et al., 1976), but the proximal and distal
diameters are lower, for example the proximal DT is
about 38 mm (after Capasso Barbato, 1988, table 7)

Size 4. This size group is not represented by measur

able adult specimens, but its existence is without doubt,
as the largest juvenile trochlea epiphysis is already clear

ly larger than any adult trochlea. The specimen in ques
tion has already at this stage (no fusion started yet) a dis
tal depth (DAPd) of 22,2 mm, and a distal width (DTd) of

36,6 mm. This size corresponds probably to that Candia
cervus size 6, but no metacarpals were found. However,
the increase in DTd of the metatarsal between size 5 and
6 is about 20% (calculated with data from Kotsakis et al.,
1976); it is logic to assume that the same takes place in the
DTd of the metacarpal, too. In Hoplitomeryx an increase
of 20% can be observed in the metacarpal DTd from size
3 to size 4. For the moment I therefore compare Hoplito
meryx metacarpals of size 4 to Candiacervus size 6.

Morphology of the metacarpal

The morphology of the metacarpus shows some

uniform features, shared by all Hoplitomeryx specimens,
but also some differences. The shared characters are the

following. The groove on the dorsal surface for the
interosseus muscle covers the proximal one third of the
shaft or the proximal two third. The trochlea of Hoplito
meryx is inclined as in deer, with the lateral trochlea

extending further than the medial one, or straight as in

bovids, with the lateral and medial trochlea extending
equally far.

The Hoplitomeryx specimens are, however, not

homogeneous in the configuration of the proximal arti

culation, and four morphotypes can be discerned if we

take the features into account with which cervids are dis

tinguished from bovids (sensu Heintz, 1970). These mor

photypes are irrespective of size, and are the following:
Morphotype 1. The crest ends in the central fossa,

and makes an angle of about 30 degrees with the dorso

palmar axis. The fossa lies more or less central, and makes
no contact with the palmar surface. This pattern is not

only typical for Cervus (Heintz, 1970), but is also found in
the other modem cervoids Antilocapra americana and

Rangifer tarandus, and even in the very distantly related
Cranioceras granti. The crest may be continued palmar of
the fossa, as in some Axis axis (Call. Dub. no. 5593).

Morphotype 2. The separating crest ends in central

fossa, and runs more or less dorsa-palmar following the

DAP-axis; the fossa lies central, and the contact area

between the lateral and medial articulation is minimal.
The difference with morphotype 1 is the angle of the
crest compared to the DAP-axis; it may be thus nothing
more than a variety of the typical cervoid pattern, in
which the lateral component increased in importance (=
weight bearing). This configuration is typical for the

Tokunoshima-type of Cervus astylodon from Ryukyu
Islands, Japan (Matsumoto & Otsuka, 2000), and is also
seen in Alces alces and Cervalces. The crest may be con

tinued palmar of the fossa, as in Cervalces. In some spe
cimens, the fossa borders the palmar surface.

Morphotype 3. The crest runs parallel to the border of
the fossa, and ends somewhere within the lateral facet.
The crest runs more or less dorso-palmar along the DAP

axis, and the fossa borders the palmar surface. This pat
tern is seen in the Kume-type of Cervus astylodon.

Morphotype 4. The crest runs parallel to the border of
the fossa, along the DAP-axis, and ends at the palmar
surface, as in bovids. In a way this morphotype is an ela
boration of the former type. This pattern is seen in the

Okinawa-type of Cervus astylodon, and is typical for

bovids, e.g. Gazellospira torticornis (Heintz 1970: 33,
fig.26), Ovis aries and Myotragus balearicus.

THE HOPllTOMERYXMETATARSUS

Introduction

Metatarsals of Hoplitomeryx have been recovered
from the following fissures in the Gargano, in alphabeti
cal order: Chiro IOc, Chiro 23, Chiro 28, Chiro 28a, Chiro

29, Chiro 30, Chiro Dl, Chiro D3, F8, Fina F9, Fina N,
Gervasio I, Nazario l, Nazario 3, Nazario 4, Pizzicoli I,
Pizzicoli 4, Pizzicoli 12, Posticchia IB, Posticchia 5, S.

Giovannino, S. Giovannino Low, Trefossi 1.

To determine the ontogenetic stage of the

metatarsals, the fusion pattern as described for Dama
dama (after Póhlmeyer, 1985) are followed. At time of
birth the distal epiphysis is unfused, and consists of two

separated condyles. At the beginning of the fourth
month they become fused, and at month 22 the distal

epiphysis fuses with the diaphysis. The pattern of fusion
is confirmed by the data for Megaloceros cazioti (Klein
Hofrneijer, 1996), and by Candiacervus cretensis from
Gerani layer 4: there are specimens with two separated
condyles, larger specimens with a single distal epiphysis,
and again larger specimens with a visible fusion line.

For the time of fusion of the navicocuboid with the

metatarsal, no data for other insular species are avai
lable. It appears that in Hoplitomeryx this fusion takes

place already before the fusion of the distal epiphysis
with the shaft. This is evidenced by RGM 178.258 (Chiro
3) and RGM 178.534 (Nazario 3), where the distal epi
physis is still unfused, and the fusion line between navíc
ocuboid and metatarsal already hardly visible, to the

degree as seen in adult specimens. The earliest develop
mental stage is represented by RGM 178.261 (Chiro 3)
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and RGM 178.659 (Fina K), where the condyles are sepa
rated and no fusion has yet taken place with the
cubonavicoid. At this stage the proximal articulation is

developed as in Dama dama, which means that the la
teral and medial facet are developed,whereas the other
two facets are not.

Metatarsal size

Measured are maximal length, proximal width and

depth, and distal width and depth. Length is measured
from the top of the internal point of the cubonavicular
element (which is in all cases firmly fused to the cannon

bone, with no trace of a fusion line in adults), till the dis
talmost end of the trochlea. Proximal depth (DAPp) and

proximal width (DTp) are both the maximum values as

measured on the cubonavicular part. Distal depth
(DAPd) and distal width (DTd) are both the maximum
values as measured on the distal epiphysial fusion line.
Measurements on the distal articulation itself, the

trochlea, are found to be too subjective, and in many
cases impossible due to fragmentation.

The length of the Hoplitomeryx metatarsal varies
between about 420 and 102 mm (average 174 mm). Pro
ximal depth varies between 13,1 mm and 29,1 mm (ave
rage 16,4 mm); proximal width (DTp) between 16,5 mm

and 32,3 mm (average 20,6 mm). Distal depth (DAPd)
varies between 9,9 mm and 17,1 mm (average 12,2 mm);
distal width (DTd) between 16,9 mm and 26,0 mm (ave
rage 20,2 mm).

All measurements fall within a large range, espe
cially those of the smaller half of the collection, but with
some discontinuities; three or two groups can be dis
cerned in the scatter diagrams (Fig. 4). The low number
of complete specimens may lead to artificial groups,
which as a consequence would disappear if more speci
mens could be measured.

The massivity indexes (DTIL) gradually increase
from large to small specimens, as is also observed in
Candiaceruus (after De Vas, 1979).

The shapes (DAPIDT) of the distal and proximal
ends show a gradual change along the size scale. The
smaller the specimens, the more square they become; in
other words, the ends remain more or less the same

while the length decreases. If we divide the shape by
maximal length, it appears that this allometric ratio runs

a bit behind along the length scale: the smallest speci
mens have a relatively slightly larger DAPp than the

largest specimens, and at the same time a relatively
smaller DAPd.

The size groups are the following, from small to

large:
Size 1. Length varies between 102 mm and 125 mm,

with an average of 112,2 mm (N=8). The massivity proxi
mal varies between 0,16 and 0,18 (average 0,17), and dis
tal between 0,16 and 0,19 (average 0,17). The length of
this group corresponds to thar of Candiaceruus size 1

(range 110 mm-131 mm, without the cubonavicular
bone; after De Vas, 1979), but also includes smaller spe
cimens than ever found in Candiaceruus. Such small

specimens, and even smaller ones, occur in Ceruus asty
lodon from Ryukyu Islands, Japan, where the smallest

length is 76 mm (after Matsumoto & Otsuka, 2000). A dis-

tal massivity of 0,16-0,19 is also found in Rangifer taran

dus and Candiaceruus sizes 1 to 3 (after De Vas, 1979).
Size 2. Length varies between 180 mm and 210 mm,

with an average of 199,6 (N=5). The massivity proximal
varies between 0,12 and 0,13 (average 0,13), and distal
between 0,11 and 0,12 (average 0,12). This size class is

comparable to Candiaceruus size 3 of De Vas (1979),
which has a metatarsal length (without cubonavicular)
of 180 mm. It is also comparable to Megaloeeros cazioti,
which has a metatarsal length between 185 mm and 217

mm, without the cubonavicular (after Klein Hofrneijer,
1996). A distal massivity of 0,11-0,12 is also found in

Capreolus capreolus, Moschus and Candiaceruus size 6

(after De Vas, 1979).
Size 3. This size class is not represented by a com

plete specimen, but is likely to be present, seen tl1e pre
sence of a large proximal part of about one and a half
times that of the former size (rgm 178.553). The estima
ted length would than be about 300 mm., but this is only
true in case this proximal part belongs to a full grown
individual. The massivity proximal is 0,11, distal it is
unknown. This size is, tentatively, comparable to that of
Candiaceruus size 5 of De Vas (1979), which has a

metatarsal length (excl. cubonavicular) of about 304 mm

(after Kotsakis et al., 1976).
Size 4. This size class is not represented by an adult

specimen, but the juvenile shaft rgm 425.055 exceeds the

largest available specimen, and is already its unfused stage
twice as large. The estimated full grown length therefore is
at least 420 mm. The massivity proximal is unknown, dis
tal it is about 0,08. This size is comparable to that of Can
diaceruus size 6, which has a length (excl. cubonavicular)
of about 406 mm (after Kotsakis et al., 1976).

Morphology of the cannon bone

All Hoplitomeryx full-grown metatarsals, without

exception, show a complete fusion with the navicocubo
cuneiform, elongated specimens as well as shortened

specimens. As such, complete fusion can be considered
a synapomorphic character of all morphotypes of

Hoplitomeryx. This is unique, as in other described
island artiodactyls this is not the case. The percentage of
total fusion is 0% in Megaloeeros cazioti from Sardegna,
Italy (after Klein-Hofmeijer, 1996), 0% in Ceruus asty
lodon from the Ryukyu Islands, Japan (after Matsumoto

& Otsuka, 2000), both species Late Pleistocene, 6% in
Candiaceruus ropalophorus (= C. size 1) from Gerani 4

Cave, Crete (De Vas, 1979). In Myotragus balearicus this

percentage differs according to locality and age: 40% in
Cava de Son Maiol, 50% in Cava de Llenaire, which are

both late Late Pleistocene, 60% in Cava des Moro and
80% in Cava de Moleta, which are both Holocene (Moya
Sola, 1979:89).

In proximal view, there is a difference between the

Hoplitomeryx specimens as regards the configuration of
the fossae. Three configurations seem to be present. Two
fossae can be present, where the fossae are located in the

non-articulatory surface, interno-dorsal of both facets.
One single fossa can be present, located within the late
ral facet. No fossae can be present. The first configuration
is seen in some bovids, e.g. Ovis; the third configuration is
observed in deer (e.g. Candiaceruus size 2 from Liko,
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Crete; Rangifer tarandus), dromomerycids tCranioceras
grantiï, but also in Myotragus balearicus. The second con

figuration is new, and maybe a variation of the first type.
In general, the morphology of the distal articulation

is strikingly similar in all Hoplitomeryx specimens, irres

pective of size. In all specimens the trochlea is complete,
whereby the condyls extend slightly further on plantar
side than on dorsal side. In almost all specimens the la
teral condyl extends clearly further distal than medial

condyl; as an exception they extend equally far. In almost
all specimens the condyls are parallel to each other; in

exceptional cases they diverge or converge. The lateral
surface of the distal epiphysis is always diverging.

The same distal articulation is seen in Axis axis. In

Rangifer the extension varies from clearly further to not

at all. In Alces alces there is hardly an extension or not at

all. In Ceruus kendengis (Pleistocene, Java) the lateral

condyl extends further than the medial condyl (Call.
Dubois nos. 5406, 6501, 6502), or they extend both equa
lly far (Call. Dubois no. 6982). Hoplitomeryx follows a

Cervus pattern, including the rare exceptions.
All Hoplitomeryx specimens have a square cross

section, laterally compressed, and most specimens miss
a clear volar sulcus. The smallest specimens have a con

vex plantar surface. The same shape can be observed ill
Ceruus kendengis, Axis axis, Candiaceruus.

As to the development of the muscular groove at the

plantar surface, there is a gradual range from moderate
robust with a weak or even indistinct muscular groove till
robust with a pronounced muscular groove. The majori
ty of specimens is moderate robust, and only about one

third of the specimens shows the pronounced groove.
There is no relation between development of the groove
and length.

In all Hoplitomeryx specimens the medial ridge
along the sulcus interosseus is higher than the lateral

border, ranging from only slightly higher to clearly higher.
In rare cases the development is so strong that the medi
al border is even convex at about one third from the

proximal end.
In Axis axis from Java and Candiaceruus size 2 from

Liko Cave, Crete, the medial border is only slightly higher
than the lateral border. In Rangifer tarandus the medial
border is clearly higher than the lateral border.

The gully on the dorsal surface of the shaft of the
metatarsal bone is distally closed in all Hoplitorneryx
specimens, as typical for deer (Heintz, 1963). This is not

only true for the genus Ceruus, but already for the very
early relative Eumeryx, which otherwise differs a great
deal from eucervoids. The closed gully is also found in

Antilocapra; and in the telemetacarpal cervoids (Blas
tomeryx, Rangifer, Alces).

In all Hoplitomeryx specimens the dorsal gully is

pronounced, and extends proximally till somewhere in
the cubanavicular, in any case at a point proximally of
the fusion between metatarsal and the cuba-navicular
bone. In cervids as a rule, the gully ends in the fossa just
proximal of the distal epiphysis in cervids, whereas the

gully continues till the end in bovids (Heintz, 1963). This
is confirmed by Rangifer tarandus, but not by Candia
cervus size 2 from Liko Cave, Crete; in the latter the gully
also extends till the proximal articulation. In Antiiocapra
americana the gully also extends till the proximal end.

Size groups

To summarize, in both the metacarpals and the
metatarsals of Hoplitomeryx four size groups are dis
cerned, which are comparable in size, from small to

large, to the Cretan deer Candiaceruus size l, size 3, size
5 and size 6, as we saw above.

Remarks on the chronology

The four size groups and the different morphotypes
are equally distributed over the excavated fissures, and
are therefore not considered chronotypes. The hypothe
sis of an archipelago consisting of different islands each
with its own morpho type, cannot be confirmed on the
basis of Hoplitomeryx. For example, shortened
metatarsals are found in Posticchia 5 and Nazario 4,
whereas normal sized metatarsals are found in S. Gio
vannino (both upper and low) and Fina N. The former
two fissures are supposed to be of an older age than the
latter (Freudenthal, 1976; De Giuli, 1986; Abbazzi et al.,
1993). Metacarpals, too, cannot consolidate the idea of

chronology, as the shortened specimens are from Gerva
sio, and the normal specimens from S. Giovannino (both
upper and lower) and Nazario 4. Gervasio is supposed to

be older than the latter two fissures. Normal-sized

metacarpals and shortened metatarsals are found

together ill Nazario 4. Also the astragalus contradicts the

given chronology (Van der Geer, 1999). Ifwe take the fit

ting bones into consideration, we see that a Chiro Dl

tibia fits a Gervasio astragalus, a Gervasio tibia fits a Fina
N astragalus, and finally that a Gervasio astragalus, a

Chiro Dl tibia, a S. Giovannino metatarsal but also a

Chiro 28 metatarsal fit perfectly well. Their time distance
cannot have been very large. The only way to accept the
rodent-based chronology is a fully developed radiation
in Hoplitomeryx already in an early stage.

Other examples

The situation with several co-existing morpho types
on an island finds already a perfect parallel in the

Gargano itself: all mammalian and avian taxa appear to

be represented by three to five species, different in size
and/or morpology. If all fissures would have contained

only one species at the time, a morphological change
during the ages would be the most parsimonous solu
tion. That is, however, not the case, as the majority of fis
sures yields more than one species of each genus.

Is the situation with co-existing size groups unique
for the Gargano? No, it is not unique at all, but appears to

be just another example of what happens on islands of
all times. Where the mainlands host a range of genera
and species, the islands host a range of species and mor

photypes. A good example is provided by the Pleistocene
deer Candiacervus of Crete. A huge amount of fossils
have been recovered, so that statistics are useful. It

appears that Candiaceruus bones show a statistically sig
nificant large variation, so that six size groups can be re

liably distinguished (De Vas, 1979). The taxonomical

phramework (for a complete overview, see Dermitzakis &

De Vas, 1987 and De Vas, 2000), is still under discussion,
and two theories prevail concerning its phylogenetic sta-
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tus: one monophyletic genus Candiacervus (De Vos,
2000), or two paraphyletic genera Megaloceros and
Cervus (Capasso Barbato, 1988; 1992) or Megaceroides
and ?Pseudodama (Caloi & Palombo, 1996). Irrespective
of the taxonomical problems, the eight Cretan deer types
in any case differ clearly too much to assume a similar

ecological niche; more likely is the hypothesis of different
niches. On the ground of body proportions, molar mor

phology and wear pattern, the specialist trophic niches

occupied by the eight taxa might, tentatively, be summa

rized as follows: grassy food or prickly bushes on a rocky
hill (Candiacervus sizes 1 and 2), grasses on a steppe-like
plain tCandiaceruus size 3), leaves and branches in a fo
rest, like red deer (Candiacervus size 4), leaf-like food and
soft bushes in a forested terrain with many obstacles
(Candiacervus sizes 5 and 6) (De Vos &Van der Geer, 2002).

It is strange that theories based on radiation instead
of on linear evolution are only reluctantly accepted for
mammals. A factor may be the absence of a good testing
facility. For fishes for example this is much easier: experi
ments not only in vitro but also in vivo can be done, and
the process behind changes can be followed step by step.
A lot of research has been done on the haplochromine
cichlid fishes of the East African Great Lakes. These fishes
can be compared to colonizers of a new island, as they
entered a new and still unoccupied lake. Lake Victoria
was filled about 14,000 years ago, due to the creation of
the RifValley, which started to arise from 750,000 years
ago. Immediately after the formation of the lake, a host of

adaptive zones became available. The entering of a zone

with free niches gave the cichlids the possibility to radiate

beyond the degree seen in related cichlids. The ha

plochromine species flock of Lake Victoria is a good
example of recent speciation, which took place in less
than 200.000 years (Meyer et al., 1990). The rapid adaptive
radiation resulted in a wide range oftrophotypes (Fryer &

lles, 1972; Greenwood, 1974; Barel et al., 1977; Witte, 1981;
Keenleyside, 1991). Initially they differed little from their
immediate reverine ancestors, and there is no evidence of

significant new morphological changes that facilitated
their differentiation into many trophic levels; rather they
capitalised on a biological versatility already present
(Liem & Osse, 1975). The cichlids were obviously capable
of a much higher rate ofspeciation than were other fish in
the East African Great Lakes, and were able to differen
tiate into many different trophic levels with a minimum
of morphological change (Carroll, 1997). It resulted main

ly in differences in the mouth, which gradually became

adapted to different types of food: detritus, fishes, shells,
crabs, insects, phytoplankton, zooplankton.

For taxonomy, such radiations as seen in the cichlids
are a disaster, as taxonomy deals with fixed, clearly
defined subunits of the observable world, whereas in

reality such a species flock approaches a continuum. The
taxonomical problems become evident through the

many revisions and reconsiderations of the classification
of the haplochromine cichlids (e.g. Greenwood, 1981;
Witte & Witte-Maas, 1981; Hoogerhoud, 1984; Van Oijen,
1991). This reminds us of the taxonomical problems with

Candiacervus, with Darwin's finches, and maybe soon

with Hoplitomeryx, as soon as more material has been
described in full and scholars start to fit it into a phyloge
netic scheme.

DISCUSSION AND CONCLUSION

In Hoplitomeryx the four size groups differ in limb

proportions, as is the case in Candiacervus from Crete
and Cervus astylodon from Ryukyu Islands, Japan. In the
case of Hoplitomeryx the assumption of different ances

tral genera is unlikely, because in that case the separate
ancestors must have shared the typical hoplitomerycid
features. The morposphere of Hoplitomeryx is too cohe
rent to assume two or more different ancestors.

The large variation could be explained through adap
tive radiation (as in Darwin's finches on the Galapagos),
that gradually evolved after the Miocene pre-antler stage
cervoid entered the island. The range ofempty niches pro
moted the radiation into several trophic types, and caused

the differentiation in Hoplitomeryx. The lack of large
mammalian predators and the limited amount of food in
all niches promoted the fast development into morpho
types. This is demonstrated by Darwin's finches, which are

limited in numbers primarily by their food supply in the
absence of predators; in such a case, adaptations in fee

ding methods are likely to be of special importance in

determining the survival of the species, and the absence
of predators may well have accelerated their adaptive
radiation (Lack, 1947: 114). An alternative hypothesis
explaining the occurrence of several sympatric species is
that of multiple speciation on an archipelago of relatively
close islands, with a later island merging. This can be
excluded on geological grounds (Abbazzi et al., 1996).

Interspecific competition for food and area is there
fore at the present stage of knowledge the only reaso

nable hypothesis to explain the different size groups
observed for the Hoplitomeryx groups. This appears also
to be true for some mainland rodent communities

(Dayan & Simberloff, 1994; Parra et al., 1999), so why not

for larger mammals, such as cervoids. As a matter of fact,
different species of Cervidae occurring in the same

mainland habitat under natural conditions are, as a rule,
of considerable different size. In the case of exception to

this rule, for instance Rucervus duvauceli and Rusa uni
color in some parts of India, the species occupy different

ecological niches or in some cases a slightly different
habitat (Van Bemmel, 1973: 295).

Ifwe explain the different size groups of Hoplitomeryx
and Candiacervus as the outcome of an adaptive radiation
in an area with originally empty ecological niches, we

automatically assume a narrow genetic base for the whole

genus, in contrast to a mainland genus like Cervus.
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