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Resum
Les òlibes i els mussols (Aves, Strigiformes) constitueixen un dels millors elements per fer estudis sobre la mida corporal i diferents ca

racterístiques al-lornètriques, que contemplin espècies vivents i fòssils d'ocells insulars, incloses algunes espècies recentment extingides. Al

present estudi s'inclou, com a registre d'espècies vivents, devers 150 taxa insulars, distribuïts sobre 230 illes a arxipèlags. S'inclouen devers
350 taxa continentals com a comparació. El registre de taxa extingits està constituït per 35 òlibes a mussols endèmics, un terç dels quals s'in
clouen dintre del gènere Tyto. A l'anàlisi del registre actual es consideren diferents variables, incloent-hi característiques físiques i

biològiques insulars. Per als taxa vivents i extingits s'han registrat variables amb característiques intrínseques de qualsevol taxon insular.

Aquestes són l'evolució de la talla corporal, la classe de talla corporal, l'evolució d'al.lornetries, el rang taxonòmic i l'hàbitat. Els resultats
revelen alguns patrons d'evolució insular. Aquests patrons difereixen considerablement quan es considera només el registre actual a el re

gistre fòssil, Entre d'altres, el registre actual tendeix a estar empobrit en taxa insulars grans, degut a impactes antropogènics selectius. A més,
la via més freqüent d'evolució insular deduïda a partir de l'anàlisi del registre actual sembla ser una suau tendència a la minva de mida,
mentre que la tendència oposada es pot deduir a partir del registre fòssil, amb alguns casos extrems únics. Una altra volta aquestes dife
rències es deuen a extincions selectives. Quan s'integren conjuntament, els dos registres no indiquen cap tendència a l'evolució de la talla

corporal d' òlibes i mussols a les illes,
No hi ha cap "llei insular" per a aquest grup. Aquestes dues observacions es poden estendre a ocells en general, però fa falta un estudi

integrat de gran abast. S'observen tendències al-lornètriques a les cames i a les ales, que són les mateixes que es poden observar al conjunt
dels ocells. També s'observa una tendència cap a peus i urpes més grans al les òlibes insulars. Els mecanismes que afecten els exemples típi
cament insulars d'evolució de la talla corporal i d'evolució al-lomètrica constitueixen un altre tòpic complex i difícil. No obstant,
s'assenyalen alguns factors i algunes perspectives per a investígar. Es mostra en quina via l'evolució de les òlibes/mussols a Còrsega és ori

ginaL Els impactes antròpics són els factors principals per explicar les diferències entre el registre vivent i el fòssil. S'han extingit preferent
ment els taxa més grans, i els taxa endèmics que són resultat d'una evolució extrema. Te poc sentit considerar només el registre fòssil, tal
ment com considerar només les faunes actuals. Com se sap pel que fa la diversitat taxonòmica i la riquesa específica, les faunes insulars
vivents estan molt esbiaixades considerant la talla corporal a una comunitat. Les dades sobre els registres vivents i fòssils es complementen
en molts d'aspectes. Es recomana una integració dels dos registres, quan sigui possible, abans d'emetre interpretacions, S'indiquen alguns
suggeriments per al reconeixement de tipus biològics d'illes, els quals també requereixen tenir en compte l'extens registre fòssil.
Paraules clau: alIometria, extincions antròpiques, ocells, mida corporal, illes, Strigiforrnes.

Abstract
Owls (Aves, Strigiformes) constitute one of the best samples for studies including both living and fossi! insular bird taxa, including

recently extinct, focusing on body size and some allometrical characteristics. For the extant record, around 150 endemic insular taxa, dis
tributed on 230 islands or archipelagoes, were included in the present analysis. Around 350 continental taxa were included for comparisons.
The record of extinct taxa is constituted of 35 insular endemic owls, with one third in the genus Tyto. Several variables were considered for
the extant record, including physical and biological insular characteristics. Variables for characteristics intrinsic to every insular taxon were

recorded for extant and extinct records. These are the evolution of body size, body size class, evolution of allometries, taxonomic rank, and
habitat. The results provide some patterns of insular evolution. These patterns differ considerably when one considers only the extant or the
extinct record. Among others, the extant record tends to be impoverished in larger insular taxa, this being due to selective anthropogenic
impacts. In addition, the most frequent way of insular body size evolution seems to be slightly in favour of decreases in the extant record,
while the extinct record shows the opposite trend, with some unique extreme cases. Again, these differences are due to the selective extinc
tions. When integrated together, the two records indicate no general trend for owls in the evolution of size on islands.
There is no 'island rule' either for this group. These two observations might be extended to birds in general, but a comprehensive, integra
ted study is needed. Allometrical trends are observed on legs and wings that are the same as in birds as a whole. A trend toward larger feet
and claws in insular owls is observed as welL The mechanisms underlying the typically insular cases of body size evolution and allornetri
cal evolution are another, complex and difficult topic. However, some factors, and some perspectives for investigations, are emphasized. It
is shown in what way the evolution of owls in Corsica is original. Anthropogenic impacts are the main factors to account for the differences
between the extant and the extinct record. They made extinct preferentially the larger taxa, and the endemic taxa resulting from evolutions
of extreme amplitude. It is meaningless to consider only the fossi! record, as well as to trust only d1e extant record. As was known for the
richness and taxonomic diversity, extant insular avifaunas are also heavily biased considering body size in a community. Data on living and
fossi! records are complementary on many grounds. A quantitative integration of these records is recommended, whenever it is possible,
before interpretations. Some suggestions for the recognition of biological types of islands are drawn, which also necessitate taking into
account the extensive recent fossi! record.

Keywords: allometry, anthropogenic extinctions, birds, body size, islands, Strigiformes.
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INTRODUCTION

What is the insular trend for body size in birds, if
there is any: increase, decrease, or a more complex trend?
The answer is unclear, as it is for other Tetrapods. Fre

quently, the examples cited deal with giantism associa
ted with a reduction or loss of flight ability. The studies
were rare or restricted to certain groups until recently.
Mayr & Vaurie (1948, in Grant, 1965b) and Amadon

(1953, in Grant, 1965b) were the first to detect in some

groups today or on some islands a trend to an increase in

size, considered from then to be rather general. Grant

(1965b) reported individual studies showing the opposi
te trend, always on living groups, and at low taxonomic
levels of divergence (generally subspecies). Grant (1965a)
noticed that the living Passeriformes on the Tres Marías
Islands (Mexico) show a clear trend to a decrease in

weight. Again these are low taxonomic levels divergen
ces, and of low amplitude. Then a growing consensus

emerged that there is no simple general insular body size
trend (increase or decrease) for birds (Grant, 1968, Carl

quist, 1974; Case, 1978; Gaston & Blackburn, 1995; Blon

del, 2000; and some restricted surveys cited by these

authors). Blondel (2000) recalled the cases of giantism in

vegetarian species (e.g. Aepyornis, Dinornis, Sylviornis,
Pezophaps, Raphus... ), and of dwarfism in many Passeri
formes. The cases of giantism are numerous, often linked
to a reduced or loss of flight ability. Others seem clearly
linked to the size of preys (e.g. Harpagornis moorei; see

Alcover & McMinn, 1994). Actually, the diversity and

complexity of examples are great. Some examples of
dwarfism exist in diverse groups, of various sizes: many
Rallidae (e.g. Ryan et al., 1989); two species of emus

(genus Dromaius, Casuariiformes - Australian islands up
to. the recent Holocene; Parker, 1984); a cassowary
iCasuorius lydekkeri, Casuariiformes - New Guinea; Rich
et al., 1988). Conversely, giantism is reported in extinct
Passeriformes (e.g. Emberiza alcoveri - Canary Islands;
Rando etal., 1999), or a Caprimulgiformes (genus Megae
gotheles- New Zealand; Rich & Scarlett, 1977). The latter
cases are associated with strong reductions in flight abi

lity (and tarsus lengthening for E. alcoven). Thus, there is
no evidence for a general trend toward either an increa
se or a decrease in size in insular birds, which seems con

firmed by two recent studies (Clegg & Owens, 2002; Cas

sey & Blackburn, 2004).
Recently a study proposed evidence for the 'island

rule' in birds (Clegg & Owens, 2002), but some remarks

may be opposed to this view. The 'island rule' was esta

blished for mammals where large species tend to de
crease and small ones to increase in size on islands (e.g.
van Valen, 1973; Lomolino, 1985; see Meiri et al., 2004 for
some exceptions). The sample analyzed by Clegg &
Owens (2002) was small and suffered from several

important biases, some of the most problematical being
the absence of data from the recent fossil record (dating
from before the anthropogenic extinctions and extirpa
tions on islands) and the exclusion of all the flightless
taxa. The island/mainland differences observed in this
extant sample were generally small and rarely reached
the 5 % minimal value proposed by Lomolino (1985).
Then, the trends observed were of very low magnitude
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(essentially less than 1 or 2 % in body weight on average),
and cannot compare with the well marked island rule in

mammals (with up to 50% differences in some groups).
This will not be developed here, yet it is better at present
to consider as unknown whether the 'island rule' applies
to birds or not.

To summarize, there are only more or less striking
individual examples of insular dwarfism or giantism in

birds, but yet no trend appears, either with extant or with

extinct forms. A necessary step is now to start integrating
both records. As suggested by Case (1978), given the great
disparity of patterns seen in birds, both living and

extinct, it may be useful to examine bird orders separa

tely for example, and to integrate both living and recently
extinct taxa. Most of these recent extinctions or local

extirpations on islands were due to anthropogenic
impacts. In most cases, these impacts were Holocene in

age, repeated, and indirect, such as introduction of dise

ases, continental predators or competitors, modification

oflandscape, but sometimes also direct over-hunting by
humans (Olson & James, 1982; James & Olson, 1991;
Olson & James, 1991; Milberg & Tyrberg, 1993; Steadman,
1995; Mourer-Chauviré etal., 1999; Sadler, 1999; Duncan

et al., 2002; Blackburn et al., 2004). The absence of such

taxa in the avifaunas of today is therefore unnatural, and
tl1e only way to approximate the natural communities
and complete taxon lists is to integrate both the living
impoverished faunas and the recently extinct taxa.

Hitherto very few analyses based on such an integrated
insular record for birds have been made, a recent exam

ple being the study of an integrated Holocene bird record
of New Zealand (Cassey & Blackburn, 2004). The objecti
ve of the present work is to present preliminary conclu
sions arising from analyses made on an integrated native

insular record of the Strigiformes (owls) of the world.
The order Strigiformes is particularly well-adapted

for this study, because (1) extant insular owls are wides

pread and frequently exhibit size and allometrical modi
fications; (2) recently extinct owls are well represented in
the fossil record of islands, they also often exhibit these
kinds of modifications - and they are relatively easy to

identify osteologically. Their intermediate flight abilities
can explain this. They are sedentary enough to undergo
insular evolution, without too much gene flow from the
continent (or other islands). Meanwhile, they sometimes
cross important distances over the sea, which allows
them to colonize islands up to 3500 km apart from any
other land.

A study of body size and allometrical evolutions in
both the recent fossil and extant records of insular owls
was carried out. Some preliminary results will be expo
sed, as well as conclusions about the method, and pers
pectives to improve the pertinence of such analyses.

METHODS

The body size is expressed as a semi-quantitative
variable, given the necessary approximations from the
literature on extant taxa, as well as from the data on

extinct forms. The allometries studied here are the relati-
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ve size of the beak, the wings, the legs, the pedal digits
and claws. These data are also expressed as semi-quanti
tative variables.

A very recurrent problem is to avoid apparently
insular taxa, which actually have a relictual distribution,
for anthropogenic or natural reasons, the island(s)
having played the role of a refugium. Therefore, some

apparently insular characteristics can well be not insular

at all. The Laughing Owl Sceloglaux albifacies (G.R. Gray),
probably extinct, was known only in New Zealand, but
there are some doubts arising from the possibility of a

recent wider distribution (e.g. Konig et al., 1999). A simi

lar case could be that of the Papuan Hawk Owl Uroglaux
dimorpha (Salvadori), which presents today a disjunct
insular distribution (Holt et al., 1999; Konig et al., 1999).
According to Case (1978), many insular giant reptiles
actually display a relictual distribution compared with

recent Pleistocene times, like the giant monitor lizard of
Komodo.

An even more widespread problem is the identifica

tion, as precise as possible, of the direct ancestor of an

insular form (on the continent or on adjacent islands). It

is the only way to evaluate the direction and amplitude of
the insular modifications. The living Giant Scops Owl
Mimizuku gurneyi (Tweeddale), of the Philippine
Islands, was until recently often considered a dwarf eagle
owl (close to the genus Bubo). However, recent DNA

analyses by Miranda et al. (1997) demonstrated that it is

closer to the smaller scops owls of the genus Otus, there
fore making it a giant insular owl. This is an extreme

case, with the inversion of the interpretation of body size

evolution, but smaller uncertainties exist for many other
taxa.

In all the cases where these kinds of doubt exist, the
taxon implied was not included in the list of in situ evol
ved insular owls. For example, the extinct Tyto balearica
as a species, ofWestern Mediterranean Islands, was not

included because its closest continental relative is not

known, and it is not clear at which taxonomic level it can

be considered an insular owl (Louchart, 2002). Scelo

glaux albifacies, despite typical insular-looking characte
ristics (long legs, short wings, terrestrial habits), is not

included in the body size analyses because of its possibly
relictual distribution, and its unknown ancestry (Konig et

al.,1999).
All the non-indigenous owls on islands (introduced

by man) were excluded from all the analyses.
A nomenclatural, but important issue is that of the

terrns . dwarf » and . giant », which imply that strong
modifications are involved. Actually, it is obvious at a fust

glance that most of the insular size modifications are

slight. Proportionate dwarfism and proportionate gian
tism were defined as heterochronies with isometrical
conservation of proportions (Gould, 1977), but no limit
was quantified to define dwarfism or giantism as oppo
sed to slight decrease or increase in size. Other categories
of heterochronies imply allometrical modifications joi
ned to the dwarfism or giantism. Many cases of hete

rochrony with allometries are known in flightless insular
birds (e.g. Livezey, 1989; 1990; 1993; 1995), but in most

cases with Strigiformes, it remains to be tested whether
the allometries implied are correlated with a trend in

body size modification. With this in mind, the data on

size and allometries are considered separately here. The
modifications were arbitrarily considered here as slight
(moderate) between 5 % and 10-15 % of change in mass,
and important (strong) over this value. In the latter case,

the terms dwarfism and giantism are also used.
The minimal value of 5 % of difference in mean

weight (or an equivalent cubed linear measurement)
between an insular taxon and its mainland counterpart
to record it as a size modification follows Lomolino

(1985) who defined this value as the minimum statisti

cally reliable and applied it to mammals.

Throughout the text unless the context indicates

otherwise, the term "island" refers to either an island or

an archipelago.

BODY SIZE - EXTANT STRIGIFORMES

The data

A database was constituted with two main tables. In
the fust one, the individuals are the endemic insular taxa.

In the second one, the individuals are the islands.
The variables were defined as follows.

Intrinsic variables: variables relative to the endemic insu
lar taxa

The individuals are the endemic insular taxa (n=148)
on the world: from the sub-species to the genus.

Description of the variables:
• In situ body size evolution of the taxon

The insular taxonomic unit can display the following
states for this variable:

-2: important decrease (dwarfism)
-1: slight decrease
O: no change
1: slight increase
2: important increase (giantism)
?: unknown
The cases where insular endemic subspecies show

invariance in size compared with the closest continental

subspecies were taken into account for all the subspecies
in the genus Tyto. For five species of Strigidae (three of
Otus and two of Ninox), all the subspecies invariant in

size or allometry between themselves were considered a

unique insular (endemic or not) subspecific taxon called
« other subspecies » for the intrinsic variables (in each
of the five cases). This choice is justified by the slight dif
ferentiation observed on other characters, and because

they would have disequilibrated the information too

much with poorly differentiated taxa, the focus of the

study being on the evolutionary changes. These choices
will always be taken in consideration when the data are

compared and interpreted: the cases of invariance will
not be quantitatively interpreted. On the other hand,
these subspecies have of course been taken in account

for the variables relative to the insular communities of
owls associated with every studied taxon (see below).

• Taxonomic rank of insular in situ differentiatiol1
The insular endemic taxon was considered as a taxo

nomic category, ranging from the subspecies to the

genus. If a polytypic species is insular, it was taken into
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account as such, and its different subspecies as well.
Other example: if a monotypic species is insular at the

genus level. it was taken in account once at the genus
level. The states for this variable are:

1: subspecies
2: species
3: group of close species, superspecies, or genus
• Size class (category of weight) of the insular taxon

Five categories are defined:
1: < or= 150 g
2: 151- 250 g
3: 251- 500 g
4: 501-1000 g
5: > 1000 g
In the cases where the weight is not known, and no

allometrical difference is reported, the weight was infe
rred from other measurements, and using close taxa for
which these and the weight were both known.

N.B.: The taxa having undergone a size modification
were classified in the category corresponding to their

present size, i.e. after the size evolution. This choice is

justified by uncertainties as regards a « precise » estima

tion of the weight of the ancestral taxon. In addition, it

appears that a taxon would generally be only very rarely
classified in a different size class if considered before
rather than after size evolution. The consequences of the

possible bias, minimized by the use of rather wide size

classes, will be taken irito account in the section Results

(see below).
• The type of vegetation frequented by the insular

taxon

Six categories are defined:
1: forested
2: semi-forested
3: forested to semi-open
4: semi-open
5: open to semi-open
6: open
i: indifferent (as regards the characteristics ofdensity

and height of vegetal cover considered here)

Extrinsic variables: variables relative to the island con

text

The individuals are the islands (n=230).
Description of the variables:

Physical extrinsic variables
• The latitude
The variable is the latitude of the island (for an archi

pelago, the mean of the latitudes of the different islands),
distributed in three classes:

1: 0° - 19°
2: 20° - 39°
3: 40° - 59°
There is no case at higher latitudes.
The values combine northern and southern latitu

des together in the same categories.
• The surface
The variable corresponds to the surface of the island

(for an archipelago, the sum of all the surfaces of the
individual islands) in km': the surfaces are classified in
five categories:

1: l-lOOlem'
2: 101-1000 km'
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3: 1001 - 10 000 km-
4: 10001- 100000 km'
5: 100000 krn- - 1000000 km'

The four largest islands included here are by decrea

sing order of surface: Madagascar (787 000 km'), New

Guinea (771 900 km'), Borneo (730000 km'), and Suma

tra (473 606 km').
• The distance
This is the distance from the island (for an archipe

lago, the smallest one) to the closest continent or larger
island where the parent-taxon lived most probably. It is

classified in four categories:
1:10-50lem
2: 51- 500 krn
3: 501-1000 lem
4: 1001- 2000 lem
?: case where the area of distribution of the parent

taxon is unknown
• The situation of the island relative to the continen-

tal plateau deep of less than 200 m

Categories:
O: beyond the limits of the continental plateau
1: within the limits of the continental plateau (relati

ve to the geographical unit from which the distance was

measured)

Extrinsic variables related to the community ofowls pre
sent on the island

Some characteristics of the communities of Strigi
formes were recorded for every island. These characteris
tics are only approximately pertinent because some

recent changes in distributions can affect the commu

nity which was originally contemporaneous with the

evolutionary changes on the insular taxa. These changes
are generally unknown. As far as possible, only sympatric
taxa were considered in every community.

• The total number of taxa on the island having
undergone an evolution in size in situ

All the different taxa were taken in account (insular
as well as non-endemic insular), avoiding any redun

dancy (only the taxa considered at the lowest taxonomic
rank being recorded).

The value taken by the variable is the number of taxa

for each island.
The following five variables represent the total num

ber of taxa on an island included in every of the size clas
ses:

• Number in size class 1 « or = 150 g)
• Number in size class 2 (151 - 250 g)
• Number in size class 3 (251- 500 g)
• Number in size class 4 (501-1000 g )
• Number in size class 5 (> 1000 gl
Similarly, the following five variables represent the

proportions of taxa in the different size categories relati
ve to the total number of taxa on the island:

• Proportion in size class 1 « or = 150 g)
• Proportion in size class 2 (151 - 250 gl
• Proportion in size class 3 (251 - 500 gl
• Proportion in size class 4 (501 - 1000 g )
• Proportion in size class 5 (> 1000 gl

Remaining variables:
• The number of endemic insular taxa on the island



• The total number of taxa of Strigiformes on the
island

• The proportion of taxa having undergone an evo

lution in size relative to the total number of taxa on the

island
This ratio is expressed in the following categories:
1: 0.01- 0.20

2: 0.21 - 0.40

3: 0.41- 0.60

4: 0.61 - 0.80

5: 0.81-1
?: unknown
• The proportion of endemic insular taxa relative to

the total number of taxa on the island
This ratio is expressed in the following categories:
1: 0.01 - 0.20

2: 0.21- 0.40

3: 0.41- 0.60
4: 0.61 - 0.80

5: 0.81-1
?: unknown
• The total number of different genera on the island
• The proportion of genera relative to the total num-

ber of taxa on the island
This ratio is expressed in the following categories:
1: 0-0.20
2: 0.21 - 0.40
3: 0.41 - 0.60

4: 0.61 - 0.80
5: 0.81 -1

?: unknown
• The total number of taxa divided by the decimal

logarithm of the surface of the island
This value is expressed in the following categories:
1: 0-0.33
2: 0.34 - 0.67

3: 0.68-1
4: 1.01 -1.33
5: 1.34 - 1.67
6: 1.68-2
7: 2.01- 2.33

?: indeterminate
The two tables -insular taxa table and islands table

are linked by the co-occurrences, i.e. every occurrence of
a different taxon on a different island.

The sources used to establish this database (with
Access™) are (in chronological order):

Olson (1978, 1995); Burm et al. (1982); Talbot Kelly
(1982); Pyle & Engbring (1985); Buden (1987); Fry et al.
(1988); Louette (1988); Langrand (1990); Burton (1992);
Sargeant (1992); Dunning (1993); Taylor (1994); Castro &

Phillips (1996); Cramp (1998); Del Hoyo et al. (1999);
Bruce (1999); Holt et al. (1999); Marks et al. (1999);
Doughty et al. (1999); and different geographical atlases
for the physical characteristics of islands.

A total of 343 taxa were considered, among which
148 are endemic insular.

230 islands were included in the analysis. They are

islands of more than 1 km-.
The map on Fig. 1 indicates the location of these

islands.
N.B.: The analyses and interpretations were proces

sed considering the Strigiformes as a whole, indepen-

dently of the taxonomy, because this group is judged
ecologically and morphologically rather homogeneous.
Qualitatively, the trends appear well shared between the

Tytonidae and the Strigidae.

Bivariate analyses
Some analyses using the Kendall's coefficient of rank

correlation were processed (using Statistica™). The
variables are semi-quantitative (discrete categories esta

blished from quantitative data, discrete or continuous)
and ordered. Therefore this type of analysis is particu
larly well suited. The degree of correlation obtained bet
ween the variables two by two is Kendall's tau (1:). It was

calculated by the formula (Kendall, 1938, in Sprent,
1992):

1: = (ne - nd) / (112 n (n - 1))

with ne the number of pairs of concordant observa
tions and nd the number of discordant observations bet
ween variables two by two; n is the total number of
observations. The analyzed data can be summarized in a

series of tables of contingency, expressing the cross num

bers between all the states of the variables two by two.

The fact that several variables were frequently affected by
a question mark is considered carefully for the interpre
tations. All the bivariate tests were processed, and those

indicating correlations at least significant (p<0.05) were

retained. The value of t= indicates the degree of correla
tion (0<1:2<1), and can be expressed in %.

For the correlations among extrinsic variables, the
individuals are the 220 islands. For the correlations

among intrinsic and extrinsic variables considered alto

gether, the individuals are the 148 endemic insular taxa

(from the subspecies to the genera).

Results

It is difficult to interpret correlations for two isolated

variables, because it is not clear whether and how the
causal relations are distributed. Nevertheless, the follo

wing observations are noteworthy.

Correlations among extrinsic variables

Many variables are very significantly correlated posi
tively (p-cü.ül). Many of these correlations just reflect
some obvious common components of the variables
(like number of insular taxa - their proportion to the

total, etc.) but have no insular meaning. The remairring
ones, when showing values of t= greater than 10%, are

shown in the Table 1. These correlation values remain of
low magnitude, however: only two exceed 26%.

It seems that the more endemic the community is,
the more frequent is the phenomenon of size evolution

(proportion of cases): 51.9% correlation. Under condi
tions of endemism, it seems that owls « frequently»
undergo size modifications.

The proportion of different genera relatively to the
total number of taxa tends to be higher when the rich
ness in endemic insular taxa is lower (40.4% correlation).
A possible explanation is that an island with a low speci
fic richness is likely to have a relatively high number of
different genera. A corollary is that many different gene-
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ra can reach an island, even small or remote, probably in

a short time geologically. Then, a relatively lower compe
tition is likely to occur between different genera than be
tween species of the same genus, all other things being
equal, allowing preferentially different genera to cohabit

longer together. This is well known generally in animals.

Incidentally, the distance to a continent (or a larger
island), is negatively correlated with the presence of a

continental platform, but only rather slightly (23.8%
correlation). Actually, the correlations show that the pre
sence or absence of the platform seems at least as impor
tant as the distance regarding the insular characteristics
of the communities. For typically sedentary birds like

many owls, a continental bridge during low sea level

periods was certainly necessary for some of the coloniza

tions, at least for the weaker flyers.

Correlations among intrinsic and extrinsic variables con

sidered altogether
The correlations are generally of far lower magnitu

de than in the case of the extrinsic variables alone. Even

if highly significant, few exceed a value of 5%. Only four
exceed a value of 10%, with a maximum of 26.5%, all but
one being without insular signification (see above).
There is only a weak trend (12.3% correlation) for larger
insular endemic taxa to frequent more open habitats.
This may however apply to mainland taxa as well. A futu
re study including all continental owls will provide some

clues to answer this question.
The absence of correlation between the surface of

the island and any other variable is noticeable. The lati
tude is correlated, positively and weakly, only with the

vegetation type frequented by taxa. Apparently, forested
habitats are more frequented on lower latitude islands.
This could be simply due to the predominance of such
habitats on tropical islands. The distance is therefore the

only geographical characteristic affecting communities

and size evolution in this analysis. It is possible that this

is affected by anthropogenic selective extinctions and

extirpations, which will be developed in tl1e section Dis

cussion.

Finally, a negative correlation, significant but of very
low magnitude (1:"= 2.59%) appears between the direc

tion of the evolution of size and size class of the taxa. It is

apparent on Fig. 7. The smaller taxa would tend very

slightly to increase in size, the larger to decrease, but this

is no more apparent when fossils are integrated (Fig. 8;
and see below).

Remark
A co-occurrence today in real sympatry (and in the

same environments) of two species of one genus on one

island is not rare (e.g. several islands ofIndonesia for the

genus Tyto). Even three species of Tyto occur together in

SE New Guinea: T. alba meeki, T. longimembris and T.

tenebricosa, but the latter lives in cloudy rain forest, whe

reas the two others occur in open habitats (Konig et al.,
1999). Generally, the two sympatric species are of diffe

rent size in Tyto. However, at least in two cases (Timor
and Solomon Islands), the two species are of the same

size: here T. alba delicatula and T. longimembris; they
also live in the same habitats (Konig et al., 1999). This is

partly in contradiction with a widespread idea (see
Grant, 1965b) that 1:\<\10 species of the same genus rarely
co-exist on an island, due to interspecific competition. It

appears that some traits - probably behavioural - other
than size alone, can allow such a sympatry within one

genus. In the fossil record, at least three species of the

genus Tyto certainly co-existed in the Mio-Pliocene of
the palaeo-« island » of Gargano (Ballrnann, 1973, 1976;
Pavia, pel's. com.). Two species of Tyto lived together
during part of the Pleistocene in Corsica (Louchart,
2002), and three in the Pleistocene of Cuba (T. alba, T.

noeli, T. riveroi; Arredondo, 1982). In each of these fossi!

examples, however, the co-existing species were of diffe
rent body size (Table 2).

Distance Continental plateau Number of insular Proportion of different genera
endemic taxa genera to ilie total number of taxa

Continental plateau 23.8

Pr�ortion of different genera
to e total number of taxa 40.4

Number oftaxa
showing size evolution 51.9

Number oftaxa
in the size class 1 11.4

Number of taxa
in the size class 2 17.2

Number oftaxa
in the size class 5 12.1

Ratio richness / surface 10.1 26.0

Table 1. Correlation values,' higher than 10%. between extrinsic insu
lar variables, after Kendall's rank correlation test. All these val
ues are expressed in %, and correspond to highly significant
correlations (p-cü.Gl). In normal police: positive correlations.
In italics: negative correlations. Here are shown only the corre

lations with a signitication for insularity (see the text).

Taula 1. r' valors de correlació superiors al 10%, entre variables insulars

extrinsiques, segons el test de correlació re rangs de Kendall. Tots

aquests valors s'expressen en % i corresponen a correlacions
altament significatives (p<0.01). En lletres rodones, correlacions
positiues. En cursives, correlacions negatives. Es mostren només
les correlacions amb un signijicat per a l'anàlisi de la insulari
lai (veure text).
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Size
Allornetrical Allometrical Taxonomic

Species Island!Archipelago Known age Putative ancestor evolution evolution Size class rank of
evolution of tarsus of wing divergence

Tyto halearica Corsica, Sardinia Middle Tyto sp. ? ? O 4 1

cyrneichnusae Pleistocene

Tyto cavatica Puerto Rico Pleistocene Tyto falaucops/ a 3 2
insu arisibargei

Tyto gigantea Gargano Mio-Pliocene Tytosp. 2 17 5 2

Tyto neddi Barbade Quaternary Tyto sp. 1 4 2
(Lesser Antillean Is.)

Tyto noeli Cuba Pleistocene Tyto alba 1 4 2

Tyto ostologa Hispaniola Pleistocene Tytoalba 1 4 2

Tyto pollens Great Exuma, Pleistocene Tyto alba 1 -L 5 2
New Providence
(Bahamas)

Tyto riueroi Cuba Pleistocene Tytoalba 2 5 2

Tyto robusta Gargano Mio-Plíocene Tyto sp. 2 LL 4 2

Tyto nov. sp. Sicily Middle Tytosp. lor 2 4 2
Pleistocene

Tyto sp. Gargano Mio-Pliocene Tyto sp. ? 4

Tyto sp. Madeira Pleistocene Tyto sp. -l? 2 or 3 2?

Tyto? letocarti N. -Caledonia Holocene ? ? 3

Mascarenotus grucheti Réuníon Holocene Otussp. 2(?) LL -1 3 3

Mascarenotus muriuorus Rodrigue Holocene Mascarenotus sp. a 3 2

Mascarenotus sauzieri Mauritius Holocene Mascarenotus sp. a 3 2

aff. Otus scops Madeira Quaternary OUISSp. ? 1

Gymnoglaux sp. Cuba Pleistocene ? a 1 2

Bubo (Strix ?) perpasta Gargano Mio-Pliocene Bubosp. (?) -I? 4 ?

Bubo insularis Corsica, Sardinia Pleistocene Bubo (bubo) -2(?) L(?) -1 4 2

Bubo osualdoi Cuba Pleistocene Bubosp. I? -1 5 2

Grallistrix auceps Kauai (Hawaii) Holocene Grallistrix sp. O 3 2

Grallistrix erdmani Maui (Hawaii) Holocene Grallistrix sp. -1 ? 3 2

Grallistrix geleches Molokai (Hawaii) Holocene Strix ? LL -1 3 3

Gmllistrix orion Oahu (Hawaii) Holocene Grallistrix sp. -l? 3 2

Ornimegaloriyx oteroi Cuba Pleistocene Strix/Ciccaba 2 L -2 6 (=5) 3

Ornimegalonyx sp. 2 Cuba Pleistocene Strix/Ciccaba? ? ? ? ? ?

Athene angelis Corsica Pleistocene Athene noctua 2 -L -1 3 2

Athene cretensis Crete, Armathia Pleistocene Athene noctua 1 L 3 2

Athenesp. Eubea Holocene? Athene noctua 1 2 2

Athene trinacriae Sicily Middle Athene noctua a L 2 2
Pleistocene

Athene nov. sp. Puerto Rico Pleistocene Athene -l? 2 2
(cunicularia)

Athenesp. Cova na Reia - Eivissa Pliocene Athenesp. -l?? 2 2
(Balearic Is.)

Athene (cunicularia) New Providence Pleistocene Athene -1 2 l?

(Bahamas) (cunicularia)

Pulstarix arredondoi Cuba Pleistocene Pulsatrix 1 -L 4 2

perspicillata

Table 2. Extinct endemic insular Strigiformes in the world. The four

species of Grollistrix are very homogeneous in terms of size and

allometries, as well as the three species of Mascarenotus. For each
of these genera, only one of the species is chosen for the size and
allometrical modifications, the other species being considered as

showing little change inside the genus. In Grallistrix. the type
species G. geleches of Molokai, is arbitrarily considered here as

representative of the basal level of evolution of the genus. In Mas

carenotus, the species of the largest island (Réunion) M. grucheti
is similarly considered as such. In the genus Ornimegalottyx, four

species have been described, but it is now considered most like

ly that only two are valid (W. Suarez and O. Iirnénez, pel's. com.).
Ornimegalonyx oteroi - the type species - and Ornimegaionyx sp.
2 are retained here. The references used are cited in the text.

Taula 2. Strigijormes endèmics insulars extingits del món. Les quatre
espècies de Grallistrix són molt homogènies en termes de mida i

al.lometries, igual que ho són les tres espècies de Mascarenotus.

Per a cadascun d'aquests gèneres només s'ha triat una espècie per
analitzar les modificacions de talla i al-lomètrioues. conside
rant-se que hi hauria pocs canvis dintre del gènere. A Grallistrix,
es considera G. geleches, l'espècie tipus de Molokai, com a repre
sentatiua del nivell basal d'evolució del gènere. A Mascarenotus,
es considera com a tal l'espècie de l'illa més gran (La Réunion),
M. grucheti. Al gènere Ornimegalonyx s'han descrit quatre espè
cies, però actualment sembla que el més probable es que només
n'hi hagi dues de vàlides (w. Suarez and O. jiménez, pers. com.).
Es retenen aquí Ornimegalonyx oteroi - l'espècie tipus - i Or

nimegalonyx sp. 2. Les referències emprades es citen al text.
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INTEGRATION OF THE RECORD OF EXTINCT INSU

LAR STRIGIFORMES

The intrinsic characteristics of the 35 extinct insular
endemic Strigiformes recorded here were evaluated
(Table 2). 13 taxa belong to the genus Tyto, and 22 are

Strigidae. They are distributed over the world (Fig. 1). The

body size class was recorded for each extinct taxon using
the relationships established for predatorial birds by
Campbell & Marcus (1992) between the least circumfe
rence of the femur and tibiotarsus and the body weight.

The islands which have a most significant fossil
record of Quaternary owls are generally not the same as

those where live today the largest numbers of endemic
owls (with the noticeable exception of the Greater Anti

lles). This is a geographical effect of the extinctions dis
cussed in this paper. The two records are thus comple
mentary geographically.

The sources used to establish the synthetic Table 2

are (in chronological order):
Wetmore (1920, 1937); Brodkorb (1959, 1969); Ball

mann (1973); Arredondo (1972, 1975, 1976, 1982); Olson

(1978,1984,1985); Olson & Hilgartner (1982); Rich & van

Tets (1982); Weesie (1982, 1988); Pieper (1985); Mourer
Chauviré & Weesie (1986); Steadman (1986); Balouet &

Olson (1989); Mourer-Chauviré & Sanchez Marco (1988);
Olson & James (1991); Alcover et al. (1992) ; Burton

(1992), Cheneval & Adrover (1993); Alcover & McMinn

(1994); Arredondo & Olson (1994); Mourer-Chauviré et

al. (1994, pers. com.); Mourer-Chauviré et al. (1997);
Mourer-Chauvíré etal. (2001); Mlikovsky (1998a; 1998b);
Tyrberg (1998); Pieper fide Jaume et al. (1993, in Tyrberg,
1998); Steadman & Hilgartner (1999); Pavia (2000); Lou-

chart (2001; 2002); Pavia & Mourer-Chauvíré (2002), O.

Iiménez (pers. com.), M. Pavia (pers. com.), W. Suarez

(pers. com.).
Extrinsic variables are often not well documented

for the extinct taxa. Therefore, only intrinsic variables

give semi-quantified results for the extinct record.

Size: observations and interpretations

The data allow a qualitative comparison between

extinct and extant insular taxa, as regards the univariate

trends shown by the analysis of the intrinsic-variables.

Every of the following intrinsic variable was considered

separately: direction and amplitude of size evolution,
size class, taxonomic rank of divergence. The vegetation
type of the habitat being unknown for most of the extinct

taxa, this variable was not included in this comparison.
Any bias toward an under-representation of the

smaller taxa in the fossil record can be excluded, becau
se the fossils of owls are easily identifiable, and the sma

llest owls are still « small to medium sized » birds, very
unlikely to be overlooked by avian palaeontologists. This

confidently allows the following interpretations.
Trends in the evolution of size in situ (Figs. 2- 4)
The indeterminate cases (<< ? ») were excluded from

this analysis.
The extant taxa showing insular evolution of size dis

playa trend to decreases in size: there are almost twice as

many decreases as increases in size (Fig. 2). Among the
cases of important size modifications, six are decreases

(dwarfisms), while only one is an increase (giantism: Mimi

zuku (Oats) gurneyi (Tweeddale), of the Philippine Islands).
The extinct taxa, on the other hand, show other

trends (Fig. 3). Their disparities in comparison with the

O· 400 80° 120· 160·

Fig. 1. Map showing the distribution of the principal islands or archi

pelagos where endemic extinct (in red) and living (in green)
Strigiformes are recorded.
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Fig.I, Mapa que mostra la distribució cie les illes principals on s'han
documentat Strigiformes endèmics extingits (en vermell) i uiuents
(en verd).
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extant record are in that:
- they include a larger proportion of moderate increa

ses in size;
- they include a considerably larger proportion of

important increases in size;
- the fossil record concentrates almost all the cases of

giantism;
- dwarfism is very rare: only the case of Bubo insularis

(Pleistocene-Holocene of Corsica and Sardinia) is
well supported (Louchart, 2002).
Most of the decreases in size are uncertain. There is

a need for a more precise account of the evolutionary
relationships.

The deficit in cases of giantism in living owls is clear

ly the effect of differential extinctions and extirpations,
for the same reasons as with the size classes. This will be

developed in the section Discussion. When the extant

and extinct taxa are considered altogether, there is no

remaining trend in the evolution of size: there are

symmetrically almost as many increases as decreases

(Fig. 4). In the extant record, island by island, there is no

exclusion between the cases of decreases and those of
increases in size: the higher the number of all cases ofsize
modification on an island, the higher the number in both
the directions. Therefore even at the scale of individual
islands there is no insular trend in the evolution of size.

Size classes (Fig. 5)
The extant taxa in the two classes of smallest size

(less than 250 g) are not well represented among the taxa

that are present both on islands and on the continents.
These size classes are better represented among insular
endemic taxa. This is probably due to the higher propor
tion of allopatric species in certain genera in these size
classes (e.g. Otus, Ninoxi, compared with classes oflarger
body size. In both these extant records the intermediate
size class (3) is the best represented as is the case in most

systematic groups of animals.
In extinct insular taxa, the large sizes (more than 500

g) are relatively better represented than in extant ones,
endemic as well as non-endemic. A special size class (n°
6) may even be created for the extinct Pleistocene Orni

megalonyx oteroi, the giant owl of Cuba, which measured
around one meter high; however it is retained in the size
class 5. The amplitude of the evolution of size in situ for
this genus is unknown, because its continental ancestor

is not identified, but it is provisionally placed in the cate

gory « +2 ». Globally the taxa of large size are under

represented in the extant insular record. Such a differen
ce in size representations reflects the selective recent

extinctions and extirpations, mainly anthropogenic (see
section Discussion).

The taxonomic ranks ofdivergence (Fig. 6)
The quasi-absence of cases of differentiation at a

subspecific rank in the extinct record is due to difficulties
in osteological discrimination of fossils at these very low

degrees of divergence (see also Brodkorb, 1959; about

possible subspecific ranks for extinct Tyto in the Carib
bean Islands).

Size classes and evolution ofsize (Figs. 7-8)
The sLight trend noticed for extant taxa alone is per-

number of taxa

o 1-2 -1 2
evolution of size

Fig. 2. Distribution of the extant endemic insular taxa of Strigiformes
according to the categories of size evolution.

Fig. 2. Distrbució dels taxa d'estrigiformes insulars endèmics vivents
d'acord amb les categories d'evolució de talla.

number of taxa

evolution of size

Fig. 3. Distribution of the extinct endemic insular taxa of Strigiformcs
according to the categories of size evolution.

Fig.3. Distrbució dels taxa d'estrigiformes insulars endèmics extingits
d'acord amb les categories d'evolució de talla.

number of taxa

-2 -1 o 2

evolution of size

Fig. 4. Quantitative integration of the two endemic insular records:
extant (in turquoise) and extinct (in red) taxa. Distribution of the
taxa of Strigiformes according to the categories of size evolution.

Fig.4. Integracio quantitativa dels dos registres insulars endèmics: taxa

vivents (en turquesa) i extingits (en vermell). Distribució dels taxa

d'estrigiformes d'acord amb les categories d'evolució de ta mida.
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ceptible on the Fig. 7: smaller extant taxa show more

increases in size, and larger ones show more decreases.
For extinct taxa alone, however, the pattern is diffe

rent. Most of the moderate increases revealed by extinct
taxa concern those which were already large before iso
lation (classes 4 and 5), and the giantism essentially con

cerns large taxa too. The smallest taxa which evolved
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Fig. 5. Distribution of the taxa of Strigiformes according to the diffe
rent size classes. Top: Extant taxa present simultaneously on

islands and on the mainland. Middle: extant endemic insular
taxa. Bottom: extinct endemic insular taxa.

Fig.5. Distribució dels taxa d'estrigiformes segons les diferents classes de
talla. A dalt: taxa uioents presents simultàniament a illes i conti
nents. En mig: taxa insulars endèmics vivents. A sota: taxa insu
lars endèmics extingits.

toward giantism, extinct and extant records altogether,
led to Athene angelis, from the Pleistocene of Corsica

(Louchart, 2002), and Mimizuku (Otus) gurneyi, living in

the Philippine Islands, as well as probably the first diffe
rentiated species of Mascarenotus, ancestral to the

others, all in the Mascarene Islands.
When the extinct and extant data are put together,

there is no more correlation between the size category
and the direction of size evolution (Fig. 8).

Therefore, there is no 'island rule' for owls: the sma

ller ones do not tend to increase in size (14 decreases and

15 increases), while the larger ones only slightly tend to

decrease (31 decreases and 24 increases).
Another way to confirm the absence of'island rule' in

owls is to consider other groupings of size classes. If the
size class 3 is considered the medium one, then it is useful

to look at the trends in the classes of smaller size than 3 vs.

the ones of larger size than 3. In addition this allows to

avoid the possible bias induced by the necessary choice to

assign the size class of a taxon after in situ evolution (see
section Methods). This bias would affect the proportion of

taxa showing an increase vs. a decrease in size only in the

intermediate class (3). If a category oflarger taxa is defined
as separated from the category of smaller taxa by the equi
valent of the class 3, then no taxon can be erroneously put
in a wrong category from being classified after in situ evo

lution, because no case has been recorded that would
cross two limits of size class in the course of its insular size
modification. The best marked cases cross only one size
class limit and are rare (14 cases over 84). Thus, examining
the proportions of decreases and increases for taxa inclu
ded in disjunct "extreme" size classes makes it possible to

eliminate this possible bias (which would act against the
island rule). The Table 3 confirms that the absence of
island rule is not an artifact: the smaller classes (lor 1 +2)
comprise similar numbers of decreases and increases,
while the larger classes (4+5 or 5) comprise even slightly
more increases than decreases.

Decrease Increase

smaller Size class 1 11 (2) 10 (2)

Size classes 1+2 14 (3) 16 (2)

larger Size classes 4+5 8 (1) 11 (4)

Size class 5 3 (O) 4 (3)

Table 3. Distribution of the cases of insular body size modification of
the smallest and the largest Strigiformes (living + extinct) in
the categories 'decrease' (categories -1 and -2 lumped) and
'increase' (categories 1 and 2lumped) according to the size of
the taxa. First row: size class I only; second row: size classes 1
and 2; third row: size classes 4 and 5; fourth row: size class 5

only. The 'medium' size class 3 is excluded. In parentheses
after every total is indicated the number of best marked mo

difications (categories' -2' and '2').

Taula 3. Distribució dels casos de modificació de ta mida corporal de les

estrigiformes més peti/es i més grans (uiuents i extingides) a les

categories de "minoa" (categories - J i -2 juntes) i "increment"
(categories 1 i 2 juntes) d'acord amb la mida dels taxa. Prime
ra filera, només la classe de mida 1; segona filera, classes de
mida .I i 2; tercera filera, classes de mida 4 i 5; quarta filera,
només la classe de mida 5. S'ha exclós la classe de mida "mitja
na" 3. Darrera cada to/al, entre parèntesi, s'indica el nombre de
modificacions més marcades (categories "-2" i "2").
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Strong negative Moderate negative Moderate positive Strong positive Moderate Moderate Strong
allometry (-2) allometry (-1) allometry (1) allometry (2) shortening (-L) lengthening (L) lengthening (LL)

Beak 1: 3: 2: 1:

Otus pauliani Tyto alba gracilirostris; Tyto alba sumbaensis; Nesasio solomonensis

T. a. meeki; T. a. crassirostris

Phodilus badius part/us

Wing 1: 8: 1:

Ornimegalonyx Tyto alba bargei; Tyto nouaehollandiae

sp.t Mascarenotus grucheti t: calabyi
Bubo insularis t:

B. osvaldoi t;
Grallistrix sp. t:

Athene angelis t:

Sceloglaux albifacies (t);

Asio otus canariensis

Tarsus 3: 1: 4: 8: 5:

Tyto alba gracilirostris; Nesasio solomonensis Tyto pollens t: Tyto alba ernesti; Tyto robusta t:
T. a. schmitzi; Athene angelis t; T. a. detorta; Otus nudipes;

T. nouaehollandiae Pulsatrix arredondoi t; Otus insularis; Gymnoglaux
calabyi Nesasio solomonen.sis Pyrroglaux podargin.us; lawrencii;

Ornimegalonyx sp. t: Mascarenotus sp. t:
Athene cretensis t: Grallistrix sp. t

A. trinacriae t:

Sceloglaux albifacies (t)

Foot digits 3: 7: 2:

and claws Phodilus badius parvus; Tyto alba ernesti; Athene angelis t:
Otus alfredi; T. a. detorta; Nesasio solomonensis

O. collari T. a. gracilirostris;
T. a. schmitzi;

T. a. crassirostris;

T. nouaehollandiae

calabyi;
Otus alius

.. ... .. . ..



Allometrical insular evolution

Allometrical trends in insular birds are well known:
on the beak, wing or tarsus, in living or extinct Passeri
formes (Grant, 1965a,b; 1966; Rando et al., 1999; Segui,
1998); on the wing or the tarsus in Falconiformes (e.g.
Suarez & Olson, 2001), in Psittaciformes (Necropsar
rothschildi, J.P. Hume, pers. com.), in Strigiformes (refe
rences in this study); on the wing in the numerous exam

ples of reduction or loss of flight ability in insular (mainly
extinct) taxa, known in at least 14 orders of birds (refe
rences in Louchart, 2001). The trends, when present, are

in an increase of the relative size of the beak and the rela
tive length of the tarsus, and a decrease in the relative
size or length of the wing. All these are likely to be obser
ved on fossil bones.

Allometries were recorded for extant, as well as

extinct owls, when the information was available or

interpretable. These data were analyzed to evaluate the

place of Strigiformes in this context. The sources used to

complete the database were the same as for body size.
The data for extant, and moreover for extinct taxa are

not abundant. Only a qualitative comparison of the two

records can be made. It reveals that the trends displayed
are basically the same for both, but are more extreme in
the extinct taxa.

Data and observations

Description of the variables
When a modification occurs in the length oflimbs in

birds, the most distal elements are affected at most and
first (Rando et al., 1999). It is judged pertinent to interpret
osteological data of the tarsometatarsus length in terms

of hindlimb length, and the recent data of length in the

ornithological literature either on the « tarsus » or on

the whole limb as representative of the changes in hind
limb length as well.

<Beak
Five categories are defined:
-2: strong negative allometry
-1: moderate negative allometry
O: isometry
1: moderate positive allometry
2: strong positive allometry
-Wing
Four categories are defined:
-2: strong negative allometry
-1: moderate negative allometry
O: isometry
1: moderate positive allometry
- Tarsometatarsus / « tarsus »

Six categories are defined:
-L: moderate shortening
o. isometry
1: moderate positive allometry (in all its dimensions)
2: strong positive allometry (in all its dimensions)
L: moderate lengthening
LL: strong lengthening
- Pedal digits and claws
Four categories are defined:
-1: moderate negative allometry
O: isometry

1: moderate positive allometry
2: strong positive allometry

Univariate trends (Table 4)
Data relative to the pedal digits and claws and to the

beak are available almost only in tile extant record. One

case is however included here (Table 4): the extinct Athe

ne angelis exhibits a positive allometry on pedal digits
and claws (Louchart, 2001; 2002). This information is not

listed in the Table 2.

Uncertain cases are excluded in the present analysis.
Isometries are widely predominant, and they are not

included in the Tables 2 and 4.

Some trends appear for pedal digits and claws, the
tarsus and the wing (Table 4):

- The pedal digits and claws tend to get stronger. This
is a newly observed insular trend.

- The tarsus tends essentially to get longer.
- The wing tends to get reduced.

Correlations between variables
These allometrical evolutions do not tend to show

clear correlations with any other variable in this study,
which is probably due in part to tile small size of the

sample.
Between each other, the observed trends seem to
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show some dependence, qualitatively, given the charac
teristics of the taxa concerned:

- the positive allometrical evolution of pedal digits
and claws seems positively correlated with that of the

tarsus;
- the allometrical evolution of the beak seems positi

vely slightly correlated with the two preceding, but there is
however no clear resulting univariate trend for the beak.

DISCUSSION

Grant (1965a,b) observed that in passerines, the evo

lutions of body size and allometries are independent.
This seems to apply also to tile Strigiformes, but the
small sample regarding the allometries does not allow to

test it statistically. Allometries and size are treated sepa
rately here.

Evolution of size

No general trend for increase or decrease in size

appears for insular Strigiformes. This tends to confirm
the absence of such a general trend for birds.

Secondly, no 'island rule' applies to insular Strigifor
mes, when extinct and extant are integrated, despite a

rather important range of body sizes (spanning more

than two orders of weight): there is no relation between
the size of a taxon and the direction of its insular size evo

lution. No analogy can be drawn with tile island rule
known in both living (e.g. Lomolino, 1985) and extinct
mammals (e.g. Mein, 1983; Guérin, 1997). This tends to

support the absence of such a reliable rule observed
hitherto in birds, despite the questionable statement of

Clegg & Owens (2002). There is no evidence either for the
'island rule' from tile Holocene native bird record of New
Zealand (Cassey & Blackburn, 2004).

Considering the anthropogenic impacts that will be

developed later (see below), the interpretations of the
bivariate analyses on the extant database must be very
cautious.

A threshold effect seems to appear between the
moderate increase in size, and the giantism. The value of
this threshold is difficult to precise, but the effect is clear:

beyond this value, tile influence of the size of preys is

markedly expressed, especially for giantism, in every
individual case. Giantism can generally be explained by
the adaptation of the owl to indigenous and/ or endemic

larger mean size of preys than on mainland.
Under the threshold value, every case considered

separately, no pattern related to the size of prey can be
detected. Precise data on the diet of insular owls are often

missing, but this observation is consistent with a lack of
influence of disparate sizes of prey on the size of living
Tyto alba (Fig. 9; Taylor, 1994).

Considering the marked decreases in size, the relati

vely small size of prey can be influential sometimes, but
oilier factors certainly playa role. They are not identified

yet, but sometimes a noticeably insectivore diet is repor
ted, for example, showing the possible role of the nature

of prey, not only its size.

As part of an « island syndrome », islands typically
display a release of some constraints (interspecific com

petition, predation ... ), and a strengthening of some

others (confinement, limitation of some resources,

intraspecific competition) (e.g. Adler & Levins, 1994;
Blondel, 2000). Some of these factors have been variously
proposed to shape the body size trends observed in
diverse Amniotes. These can be roughly summarized:

- optimal body size (Damuth, 1993; Brown, 1995) -

sometimes with a reference to Cope's rule (e.g.
Damuth, 1993); this concept and the value of the

possible optimal body size in mammals are however

disputed (e.g. Meiri etal., 2004),
- release of predation by medium sized Carnivores

(Thaler, 1973; van Valen, 1973; Sondaar, 1977; partly
inspired byValverde, 1964),

- change in demographic strategy (Melton, 1982),
- territoriality associated with sexual size dimorphism

(Louchart,2001),
- (near) absence oflarge predators (Case, 1978),
- increase in intraspecific competition, due to higher

density (Robinson-Wolrath & Owens, 2003),
- increase in density of some prey; relative abundance

of prey (Case, 1978),
- release in interspecific competition (Case, 1978;

Lomolino, 1985; Angerbjorn, 1986, in Grant, 1998;
Millien, 1999),

- increase of the ratio food resource / food require
ment, associated with territoriality (Case, 1978),

- different size of prey compared with mainland

(Case, 1978; Alcover et al., 1992); only over a thres
hold value (Louchart, 2001),

- Bergmann's rule and insular climate types (Foster,
1964); incidentally this ecographic rule applies well
to continental owls generally (e.g. Del Hoyo et al.,
1999),

- Limited surface area of islands (e.g. Grant, 1998),
- Limitation in vegetal food resources (Sondaar, 1977;

Azzaroli, 1982, Lawlor, 1982; Ryan etal., 1989),
- Increased sedentarity in some birds (see e.g. Lou

chart,2001).
Some of these factors were proposed together in

conjunction (e.g. Case, 1978). Many were dismissed

recently, depending on the taxonomic group and the
trend considered, but the interactions between them are

so complex, and the contexts so intricate, that no synthe
tic satisfying explanation of the real trends emerges yet.

Considering the Strigiformes alone, there is no gene
ral insular trend to be explained, but giantism and dwar
fism seem to correspond to typically insular conditions

(e.g. presence of giant mammalian prey ... ). It seems tilat

some explanations for size changes could be searched in
the optimal size theory (especially for some decreases in

size), in tile prey density / availability (especially for dwar

fism), in the size of prey available (over a threshold value,
at least for giantism), and in the territoriality of the owl
taxon (Louchart, 2001).

Allometries

The predatory nature of owls obviously has conse

quences on the observed allometries of the pedal digits
and claws, and a priori possibly also those of the tarsus.
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The trend for pedal digits and claws to get stronger
in insular owls was hitherto never reported. This special
adaptation is likely to be found even more regularly as

more precise data become available for extant as well as

extinct taxa. The Fearful Owl Nesasio solomonensis (Solo
mon Islands) feeds on unusually large prey for an owl of
this size, somehow "replacing" absent Ninox (Burton,
1992; Doughty et al., 1999; Del Hoyo et al., 1999; Konig et

al., 1999). Its relatively very strong feet and claws (and
strong beak and large and stout tarsus) are probably rela
ted to this habit, and in some continental owls they are

associated to similarly unusually large prey (Bruce, 1999;
Marks etal., 1999). The case of the extinct Athene angelis,
similarly exhibiting strong feet and claws, may be inter

preted in the same manner (Louchart, 2002). It is very
likely that many extant cases of strong feet and claws on

insular owls (e.g. Tyto) can be interpreted this way as
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Fig. 7. Distribution of the different size classes of the extant endemic
insular taxa of Strigiformes according to the categories of size
evolution. In light blue: smaller taxa (size classes 1 and 2). In vio
let: larger taxa (size classes 3 to 5). Top: detailed categories of size
evolution. Bottom: categories grouped in decreases and increas
es.

Fig. 7. Distribució de les diferents classes de talla als taxa d'estrigiformes
endèmics insulars vivents, segons les categories d'evolució de la
talla. Blau clar: taxa més petits (classes de talla 1 i 2). Violeta: taxa

més grans (classes de talla 3 a 5). A dalt: categories detallades
d'evolució de ta talla. A sota: categories agrupades en increments i
minves.

well. For both extant and extinct taxa, the data are mis

sing on the often overlooked phalanxes, but it will be
most interesting to investigate them.

A special adaptation to orni thophagy might also give
rise to relatively strong feet and claws, as suggested by
examples on extant Falconiformes (M. Pavia, pers. com.).
This possibility deserves attention.

The other aliametrical trends observed may have a

large part in common with birds as a whole. Considering
the reduction of the wing and the lengthening of the tar

sus, the diverse explanations that have been proposed are:

- more terrestrial habits than on mainland (Arredon
do, 1975; Weesie, 1982; Rando et al. 1999),

- ornithophagy in forested habitat (Olson & James,
1991), due to absence of mammals,

- forested habitat and specialized predation on repti-
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to the categories of size evolution. In light blue: smaller taxa (size
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Fig. 8. Distribució integrada de les diferents classes de talla de tots els
taxa d'estrigiformes endèmics insulars (vivents + extingits) segons
les categories d'evolució de talla. Blau clar: taxa més petits (cla
sses de talla 1 i 2). Violeta: taxa més grans (classes de talla 3 a 5). A
dalt: categories detallades d'eiolucio de la talla. A sota: categories
agrupades en increments i minves.
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les on vertical surfaces O.P. Hume, pers. com.; exam

ple of some historically known Mascarenotusi,
- terrestriality and insectivory (Suarez & Olson, 2001),

oriented extension of some dimensions of habitat

niche, due to the release of interspecific competition
(Blondel, 2000), like:

- for the tarsus: firmer perches on average - inclu

ding the ground (Grant, 1965a,b; 1966),
- for the beak: more types offoods, including lar-

ger particles (Grant, 1965a,b; 1968; 1998),
- character displacement (Grant, 1998),
- increased sedentarity (Grant, 1998),
- Allen's rule and insular climate types (discussed e.g.

in Grant, 1965b).
The factors that are likely to explain the most gene

ral insular trends observed in birds are an increased

terrestriality linked with a reduced predation pressure, a

special diet sometimes devoid of non-flying mammals

(for predatory birds), and an increased sedentarity.
For the Strigiformes, all of these three groups offac

tors clearly apply, more or less independently, to account

for the trends. Shorter wings are in general a consequen
ce of sedentarity and release of predation. Longer legs
can be linked with terrestriality (staying or moving on the

ground, e.g. probably Gymnoglaux lauuirencii and Otus

nudipes - Greater Antilles, Otus insularis - Seychelle
Islands, or the extinct Athene cretensis, Ornimegalonyx
oteroi ... ), or with a special diet (e.g. possibly the extinct
Grallistrix spp., Mascarenotus spp ... ). A marked insecti
vore diet is shared by G. laiurencii, Otus nudipes and

Pyrroglaux podarginus (the latter of the Palau Islands,
Micronesia), all three having lengthened hindlimbs (and
partly unfeathered). Thus, such a diet could also favor
this allometrical change, as in the falcon Palco kurochki
ni (Suarez & Olson, 2001). All these factors are not exclu
sive of each other.

There is no evidence for an insular climatic influen
ce on either body size or allometries in owls or more

generally in birds. A particular climate on average on

islands has not been firmly established yet, some authors

having even opposite opinions on this issue (cooler, or

warmer than on tile mainland at tile same latitudes).
Actually a warmer and moister climate is likely on most

oceanic islands compared with mainland, which needs
to be quantified, but the evidence is missing for conti
nental islands.

The special diets (enhanced or exclusive ornitho

phagy, herpetophagy, insectivory) are consequences of
the lack of indigenous non-flying mammals on oceanic
islands. These terrestrial mammals are the main diet of a

very large proportion of owl species on the continents.
The allometries of feet and claws seen above may

sometimes « replace » the expected change in body size
of the predator to follow the size of indigenous prey.

The predatory ecology of tile Strigiformes appears
influential in case of giantism. The obvious examples of
extinct giant owls reveal more of tile pattern. Generally,
tile islands standing far from a continent are free of Car
nivores. Alcover & McMinn (1994) indicated that the
Viverridae colonized islands up to 300 km from tile con

tinent (Ethiopian and Oriental regions). In most cases,

among tile Carnivores, only some otters colonize farther
than 30 km. The distance is therefore indirectly influen
tial in this particular way. On these islands the Strigifor
mes take a predominant role of predator, as strong and

complementary to that of the diurnal raptors treated by
Alcover & McMinn (1994). On several islands, tile largest
predator before the anthropogenic impacts was an owl

(Burness et al., 2001).
What can be considered as parallelism was noticed

by Arredondo (1976) and Olson (1978), between tile evo

lution of the different species of Tyto on tile palaeo-archi
pelago of Gargano (Mio-Pliocene), and that of the spe
cies of Tyto on tile Greater Antillean Islands (Pleistoce
ne): in both cases tile body size of the three species are

spaced out at tile same values approximately. These two

archipelagoes had in common the absence of Carnivores

(otters excepted), and tile presence, probably abundant,
of often giant mammalian prey (Rodents, Insectivores,
and others; Arredondo, 1976). These common traits are

in part due to moderate (intermediate) distances to tile

respective continents. As another striking parallelism, on

each one of the Galapagos and Canary Archipelagoes
(the latter partly) lives a small and dark endemic species
of Tyto: respectively Tyto (alba) punctatissima and Taiba

gracilirostris. Among tile other sin1ilarities between these

100

CI)
.....

..c

. Q'l
Q)
5:
e
ro
Q)

E
>.
Q)
"-

Q.

South N America
80

subsaharian
Africa

60

North N America

40

"

20

'+-

O
Q)
Ol
e

�

West Palearctic

OT---�--��--�--�----�--�--�--�
200 300 400 500

Owl mean body weight (g)

•

Fig. 9. Relació entre la mida mit

jana de diferents poblacions
deTyto alba i la mida mitjana
de diuerses mostres de les seues

preses. Modificat a partir de

Taylor (1994).

Fig. 9. Relation between the mean

size of different populations
of Tyro alba and the mean

size of some samples of their

preys. Modified after Taylor
(1994).

" Tyto a. pralincola (N)
• Tyto a. pralincola (S)
D Tylo a. alba
• Tyto a. gultata
+ Tyto a. affinis
• Tyto a. delicalula
• Tylo a. javanica
" Tyto (a.) punctalissima (female)

600

BODY SIZE EVOLUTION OF OWLS -------------�--

169



two archipelagoes, Rando et al. (1999) cited the presence
of an endemic buzzard (Buteo), oflava mice, and of giant
rats. These two archipelagoes have in common physical
(volcanic origin) and geographical (east side of an ocean,

intertropical) characteristics. A further common trait is
the absence of incligenous Carnivores. A last remarkable

example, this time of convergence, was noticed by Mou

rer-Chauviré et al. (1994). On the Hawaiian archipelago
the genus Grallistrix, a small endemic owl of the Strigidae
probably close to Strix, has undergone allopatric specía
tions (Olson & James, 1991). This genus is characterized

by very lengthened hindlimbs and shortened wings. All

of the four species are extinct. On the Mascarene Islands
several allopatric speciations also occurred, in the extinct

endemic genus Mascarenotus, probably close to Otus

(Mourer-Chauviré et al., 1994). Mascarenotus also shows

very lengthened hindlimbs and shortened wings. The
two archipelagoes had in common their remoteness and
the absence of any non-flying mammal. These three

examples show the importance - among others - of the

characteristics of the mammal community in shaping
the community of Strigiformes, and provide help to defi
ne the main island types biologically. The really oceanic
islands are those devoid of non-flying mammals (inclu
cling the Pleistocene Eivissa, Balearic archipelago, Alco
ver et al., 1994). A further intermecliate type should be
defined: the islands lacking Carnivores (with the possible
exception of some otters), but where some non-flying
mammals (e.g. Rodents) are present. This is the case of
some Caribbean Islands, including those where live

Gymnoglaux lawreneii and Oms nudipes, both having
lengthened hindlimbs, but not as much as Grallistrix and
Mascarenotus.

Incidentally, it is remarkable that in Corsica are con

centrated two rare types of evolution of size in owls: the

only known extinct dwarf owl Bubo insularis, and the
extinct giant Athene angelis cliverging from a small owl.
In addition, B. insularis shows the greatest known
decrease in size from such a large mainland ancestor as

a European B. bubo of today, and A. angelis shows one of
the greatest increases from such a small owl as A. noctua.

Many Carnivores lived on this island in the Middle Pleis
tocene (Pereira, 2001) and this unusual circumstance
could have been influential in several ways. But insula

rity in other ways was marked enough to make these two

evolutionary trajectories possible, in a still unclear man

ner (Louchart, 2001, 2002).

The selective extinctions and extirpations

The fossil record reveals the artifactual nature of the

range of insular trends visible on the extant taxa alone.
The selective nature of the extinctions in the Strigiformes
can be summarized as follows (Figs. 2-4, 5): selective

impacts have eraclicated the largest species faster and
more easily. Similarly the taxa resluting from extreme

evolutionary pathways went extinct first. Larger species
have lower population densities than the smaller ones

(Peters, 1983). Therefore, insular populations of larger
species, limited in surface area, are less numerous than
are those of smaller species, which makes them more

vulnerable to extinction risks (Soulé, 1987). The taxa with

longer hindlimbs and/or shorter wings also experienced

relatively more extinctions. A major reason lies in their

vulnerability to predation, being more terrestrial. Even

the perception of the relation between size and size evo

lution is affected when extinct taxa are not considered

(Figs.7-8).
Both extinctions and extirpations occurred among

island birds due to anthropogenic impacts (e.g. Stead

man, 1995). For owls, extinctions seem by far the most

frequent, from the fossil record available. These extinc

tions may have a priori two origins: natural (changes in

sea level, climate; volcanic eruptions, cyclonic events,

land bridge due to a tectonic or eustatic event and allo

wing non-indigenous animals to colonize ... ), or anthro

pogenic. The latter were by far the most common on

islands, mainly in the Holocene. For the Strigiformes,
even if the exact causes are often very difficult to esta

blish, it was demonstrated in almost all the individual

cases that they were anthropogenic.

CONCLUSION

There is no general trend in the insular evolution of

body size for owls. Neither is there an 'island rule' for this

group. This also seems to be the case for birds as a whole,
but a comprehensive study including the recent fossil
record remains to be done. As summarized by Case

(1978), an rule is more powerful if it explains the nume

rous exceptions to the general trends. But such a model
tends to comprise many « amendments » to the « law

». Even in mammals, the 'island rule' would better be
called just an island trend. For evely size, only a majority
of taxa follow the rule, but still all the other ones show
either no change or change in the opposite way (e.g.
Lomolino, 1985, Meiri et al., 2004). Then, a simple nue

may hide many converging or diverging factors, acting
differently on the different taxa, size categories, etc. Such
a rule is likely to be an emerging property of a very com

plex system (sensu Geli Mann, 1994). Finally, many
islands display marked idiosyncrasies (e.g. Quammen,
1996; Grant, 1998; Laman, 2000), which perturb the

recognition of general trends. But the icliosyncrasy of

many islands must be emphasized, because it is a third
reason to preserve island biotas, along with their role as

museums - for palaeoendemics, and laboratories - for

[partly] neoendemics (Cronk, 1997, in Sadler, 1999).
Body size may not be the powerful estimator of

many ecological traits, as it has been thought. It is likely
to be influenced by too many factors, sometimes in

opposition, related to climate, competition, predation,
among others (e.g. Peters, 1983; Meiri et al., 2004), and
such intricate relationships make both the recognition
and explanation of a clear pattern very difficult. Some
allometries seem to be more informative than body size

considering owls. A trend for pedal digits and claws to get
stronger in island owls is reported, and seems related to

unusually large prey.
Trends for longer hindlimbs and shorter wings are

observed, and are the same as those known in island
birds in general. The most general explanations lie in

terrestriality, special diets, and sedentarity. These charac-
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teristics are in turn linked with isolation and particular
indigenous faunas, including prey and predators, the lat
ter factor being partly a consequence of the previous.

The special case of Corsica is emphasized, as an ori

ginal, alternative Middle Pleistocene insular context with
several Carnivores, which among others revealed the
extinct giant A. angelis, and the extinct dwarf B. insularis.

The probably most important intrinsic characteris
tics which need to be better investigated for some island
owls are: their diet; other traits of their ecology like their

degree of terrestriality; their territoriality (the original
one of their mainland ancestor). The most important
extrinsic, insular characteristics, which also need more

precise quantifications, include the type and size ofpreys
available; more generally the kinds of mammals present
on the island (in part linked to, but as influential per se as

the distance from the mainland). Here again, the

palaeontological input is necessary, to reveal the original
indigenous faunas, mammalian as well as reptilian for

example. An intermediate type of biological islands
should be defined: the islands lacking Carnivores (with
the possible exception of some otters, depending on

their diet), but where some non-flying mammals (e.g.
Rodents) are present; as opposed to other continental
islands where Carnivores are (or were recently) present.

The fossil record is indispensable to understand the
insular evolutionary phenomena in owls. It is even possi
ble to integrate quantitatively the extant and extinct

records, which provides a closer approxin1ation of the
natural trends.

It is probable that the results of the bivariate analy
ses, carried out with extant taxa alone, are distorted too,
due to the problem of selective extinctions. It is not pos
sible to integrate the fossil data in these analyses yet.
More indirectly, problems arise also from the fact that the

ecology (diet for example) of living species is affected

today by recent anthropogenic impacts to their habitats,
available prey etc.

The fossil record is indispensable in two main ways:
- It reveals unique evolutionary pathways, the results

of which are more likely to be extinct when they are

extreme, for example in terms of giantism or strong
allometries. The original protective nature of islands,
especially in terms of release of predation, allowed
the survival of such endemics. But the same islands
became a trap when man appeared. The extreme

adaptations to insular contexts became a handicap.
The remaining extant range of evolutionary poten
tials of islands is very distorted and incomplete. Inci

dentally, the fossil record is also necessary for pur
poses of insular biogeography, because in this
domain it becomes evident that in situ evolutions
have to be taken in account (e.g. Lomolino, 2000;
Lomolino & Weiser, 2001).
N.B.: Taking in account the forms recently extinct
from other causes than anthropogenic ones (rare
cases, but existing), is important for taxon-scale stu

dies of evolutionary possibilities.
- It is tl1e only way to approximate the natural com

munities, contemporaneous with these evolutio

nary events, and which disappeared or changed
drastically. The present insular communities are

known to be highly residual and artificial since the

human impacts, which have already been shown to

make the fossils necessary in insular biogeography
(e.g. Steadman, 1995). In terms of insular evolution,
the best possible knowledge of the past, natural

communities, is necessary because these determine
the special interactions partly responsible for many
changes. Alongside the owls themselves, the whole

community of birds, mammals and other groups
need the same palaeontological approach.
Such an integrated approach is still unusual, and

surely it will require some time before biologists and

palaeontologists really share the same interests. Well

beyond the domain of owls, the same issue applies to

birds in general, mammals, reptiles, and many other

living organisms on islands, because few have escaped
the anthropogenic waves of extinctions. A striking exam

pIe is that of the Mascarene Islands where, unlike on the
Hawaiian Islands for example, all the extinctions are due
to the European colonizers since the XVII'h Century
(Blanchard,2000).

Perspectives for the study of insular owls

The data in the extant and extinct records need to be

regularly updated, because new owls are discovered

quite often on islands, living as well as fossil. More preci
se data are needed on allometries - including toes and
claws - and size for many taxa, living and fossil. The

phylogenetic relationships must be ascertained between

many island and mainland taxa. More ecological data are

also needed. The whole record of strictly continental taxa

will be integrated for the Strigidae. It will be also neces

sary to make analyses segregating the small and large
islands (as suggested for biogeography by Lomolino &

Weiser, 2001), as well as the oceanic, intermediate, and
continental ones, biologically speaking.
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