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Should the effect of predation be stronger on small islands or on very large
islands and mainlands? To make this question precise, we ask here whether the

presence/absence of a particular type of predator has greater effects on given
types of organisms lower down in the food web, the larger or the smaller the
island. To obtain an answer, we used four studies from the same general system,
subtropical islands of the Bahamas; here diurnal lizards are the predator, the
direct effects are on web spiders (total density, species richness, composite diver­

sity, dominance) and the indirect effects are on herbivory (percent leaf damage)
and in part on aerial arthropods (numbers in sticky traps). In two studies, lizards
were removed experimentally from enclosures on a very large island; the experi­
ment was performed twice. In a third study, entirely unmanipulated medium-to­

large islands with and without lizards were compared. In a fourth study, lizards
were introduced to a set of small-to-medium islands, while two other sets, one

naturally with lizards and the other naturally without lizards, served both as con­

trols and as another comparison. Effect magnitude is measured as the ratio of the

larger to smaller of the treatment means. An overwhelming tendency exists for
lizards to affect spider density, species richness and composite diversity more, the
smaller the island; dominance shows little difference. Herbivory is also affected

on average more on small islands, but the variation in effect magnitude with
island area is less. Aerial arthropods are also affected more on average on small

islands, but unlike the other variables the direction of the effect can be negative
or positive, and the effect is often very weak. Thus the mainly direct effects of

lizards vary more in magnitude than do the mainly indirect effects of lizards. We

propose two explanations for effect magnitude to be greater, the smaller the

island. First, greater isolation allows less reimmigration of prey on islands, lea­

ding to a greater effect magnitude. Second, fewer kinds of predators occur, the

smaller the island, implying a greater effect of removing anyone kind.

Key words: Islands, Predation, Interaction magnitudes, Lizards, Spiders,
Herbivory

Varlaclo a Ia magnitud d'un efeete d'un depredador d'illes petites a iIIes

grans.
L'efecte de la depredaci6, hauria d'esser rnes gran ales illes petites 0 ales illes
molt grans i als continents? Per precisar aquesta questio, al present treball ens

demanam si la presencia/absencia d'un tipus particular de depredador te efectes
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rnes grans sobre determinats tipus d'organismes situats rnes abaix a la xarxa tro­
fica com mes gran 0 com rnes petita es I'illa. Per obtenir-ne una resposta, empram

quatre estudis dins el mateix sistema general, les illes subtropicals de les

Bahamas; les sargantanes diurnes hi son els depredadors, els efectes directes fan
damunt les aranyes de tela (densitat total, riquesa d'especies, diversitat comp )s­

ta, dorninancia) i els efectes indirectes son sobre I'herbivoria (percentatge de
fulles afectades) i en part sobre els artropodes aeris (nombres ales trampes d'a­

ferrament). Ados estudis, les sargantanes foren substretes experimentalment de

tancats a una ilia molt gran; I'experiment es va fer dues vegades. A un tercer

estudi, varen esser comparades illes mitjanes a grans, sense cap manipulacio,
amb i sense sargantanes. A un quart estudi, varen esser introduides sargantanes a

un conjunt d'illes petites a mitjanes, mentre que altres dos conjunts d'illots, un

naturalment amb sargantanes i I'altre naturalment sense sargantanes, varen servir
com a controls i com a una altra comparacio. La magnitud de I 'efecte es va mesu­

rar com a la relacio entre la major i la menor de les mitjanes del tractament. Es

dona una tendencia aclaparadora en el sentit que com mes petita es I'illa rnes
afecten les sargantanes la densitat d'aranyes, la riquesa d'especies i la diversitat

composta; la dominancia d'especies mostra poca diferencia. L'herbivoria tarnbe
esta afectada rnes de mitjana ales illes mes petites, pero la variacio en la magni­
tud de I'efecte amb l'area insular es poca. Eis artropodes aeris tarnbe estan afec­
tats rnes en promig ales illes petites, pero, a diferencia de les altres variables, la
direccio de I'efecte pot esser positiva 0 negativa, i I'efecte es sovint molt feble.
Per aixo, els efectes principalment directes de les sargantanes varien mes en mag­
nitud que els efectes principalment indirectes de les sargantanes. Proposam dues

explicacions per al fet que com mes petita es I'illa mes gran es la magnitud de
I'efecte. Primera, un aillament rnes gran permet menys reirnmigracio de les pre­
ses, conduint a una major magnitud de I'efecte. Segona, a com rnes petita es I'i­

lIa, menys tipus de depredadors hi ha, cosa que implica un efecte mes gran quan
se'n substreu un qualsevol.
Paraules clau: Illes, Depredacio, Magnitud d'interaccions, Aranyes, Herbivoria.

Introduction

How should the strength of species
interactions, such as competition and preda­
tion, vary between mainlands and islands?

A number of investigators have propo­
sed that large predators are typically absent
from islands of sufficiently small area

(Diamond, 1984; Belovsky, 1987; Schoener,
1989; Holt, 1993). In part this is because indi­
vidual spatial requirements oflarge predators,
which are often territorial (i.e., have more-or­

less exclusive home ranges) are too great
(McNab, 1963; Schoener, 1968a; Turner et

a!., 1969) to allow a stable population to per­
sist there. Simple dynamical metapopulation
models of food chains (Schoener et a!., 1995;
Holt, 1996) lead to a similar conclusion: a

greater fraction of islands will have prey than

predators when the latter are dependent on the

former, and the fraction of species that are

predators on a given island will increase with
that island's area. Under such conditions,
overall predation should be weaker on avera­

ge, the smaller the island. Note, however, that

although the effect of top predators on the
next level down may be greater on larger
islands by this reasoning, the level one more

link farther down may thereby in fact be alle­
viated from their own predators, and so on

seriatum in an alternating-level cascade

(Hairston et a!., 1960; Fretwell, 1977; Jager
and Gardner, 1988).

A completely different argument is as

follows. Rather than considering an entire
level as the unit of interest, we can ask about
the effect of particular predator species within



a predator level. The more species within a

given level, the less the effect may be of

removing only one of them, barring complete
compensatory predation and all other things
being equal. The larger the area the commu­

nity occupies, the more predator species there
will typically be at any level, i.e., the greater
the "diffuse predation" (Hixon, 1991; Menge
et aI., 1994), so the effect of removing a sin­

gle species of predator will be smaller there

(Spiller and Schoener, 1998).
The argument for competition is similar

to that for predation. The entire absence of a

trophic level is argued to increase competition
at the next level down (Hairston et aI., 1960).
Hence if a particular trophic level is more

likely to be entirely or largely absent the sma­

ller the island, the more intense should be

competition there. Again, the effects alternate
over succeeding levels. However, for a given
level of competitors, the effect of any given
one is again likely to be smaller, the more spe­
cies of competitors there are (although the
effect of a particular competitor, including its

direction, is not always obvious in theory
[Case, 1995]). Thus "diffuse competition"
(MacArthur, 1972) is the analog concept to

diffuse predation.
While isolation affects species compo­

sition on islands (see below), it has a more

straightforward effect resulting from differen­
ces in immigration rates of prey onto islands
vs onto equivalently sized sites on a main­
land. Large islands may have kinds ofrefugia,
not found on or near small islands, that allow

prey locally exterminated by predators to

reimmigrate relatively quickly (Spiller and

Schoener, 1998). More formally, models of

predation having a flow of prey into the sys­
tem can be more stable, in the sense of having
a single stable equilibrium point (Schoener,
1973) rather than nested cycles ("neutral sta­

bility") as in the simplest, Volterra predator­
prey model (Roughgarden, 1979).
Competition models whose species re-immi­

grate into the system are likewise relatively
likely to have at least one stable equilibrium
point (Schoener, 1974, 1976a).
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Counter to these arguments, isolation
can reduce the number of predators reaching
the isolate, making it less likely that a parti­
cularly devastating one, or indeed an entire
level of predators, will establish. Thus a redu­
ced immigration of predators affects prey
positively via the first of the arguments given
above. Furthermore, one might argue that the
area in question may have its predators exter­

minated also; the less the isolation, the more

readily the predators will recolonize. While

certainly true, the cause of the predator exter­

mination would have to be something other
than the interaction itself; for prey, the threat
of extermination is ongoing by definition of
the predation process. Furthermore, the immi­

gration of predators is counterbalanced by the

immigration of prey just discussed, and one

might argue that the latter flow would be rela­

tively stronger because of the higher popula­
tion densities of prey compared to their pre­
dators. On the other hand, predators tend to be

larger so sometimes stronger flyers and the­

reby better dispersers (MacArthur and

Wilson, 1967), i.e., on a per-capita basis they
may be more likely to immigrate.

A third characterization of islands is
their greater potential exposure to physical
factors such as wind and wave action, inclu­

ding tidal waves. This trait would seem to be

exacerbated, the smaller the island (although
the opposite has been argued by Cody [1966]
for islands in maritime climates and out of the
hurricane belt). Were physical factors chroni­

cally to hold all populations down, population
densities would be low and biological interac­
tions would be weak (Andrewartha and Birch,
1954; Wiens, 1977). In contrast, reversing the
causal chain, smaller populations are more

vulnerable to extinction (MacArthur and

Wilson, 1967; Goel and Richter-Dyn, 1974;
Terborgh and Winter, 1980; Pimm et aI.,
1988; Pimm, 1991; Schoener and Spiller,
1992; Hanski, 1997), so that if predation say,
wiped out all individuals except those in a

small number of predation refugia, physical
factors could finish them off (or vice versa).
This would cause predation to be more effec-
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tive, the smaller the island. A similar argu­
ment can be made for interspecific competi­
tion, e.g. if a population was reduced by com­

petition to only a small number of individuals
sustainable on exclusive resources.

The above discussion shows that ans­

wers to questions about the relative effects of

species interactions on islands and mainlands
will depend inter alia on the precise form of
the question. In this paper, we restrict the

questions and the systems used to answer

them to produce some precise expectations
and tests. In general, we will ask, for the same

kind of predator and prey, in the same geo­
graphic locale, is the effect of that kind ofpre­
dator stronger on smaller or larger islands, the

largest of which are effectively mainlands?
Hence the predator trophic level always
exists, and the expectation follows the diffu­

se-predation argument, as well as the princi­
pal isolation argument given above: the lar­

ger the island, the weaker the magnitude of

predation. We will be looking at both the
direct and indirect effects, again using the
same or very similar species, so that we are

effectively examining the effects on kinds of

species that occur at all the sites we consider.
For about two decades we have been

studying species interactions in terrestrial
food webs using islands in the Bahamas as a

model system. Anolis lizards are here major
predators, eating carnivorous arthropods such
as spiders, herbivorous arthropods, and detri­
vores such as certain dipterans (Schoener,
I 968b). To investigate the direct and indirect
effect of these predatory lizards, we use two

complementary methods-{ I) observational

comparisons of the biotas on small islands
with and without lizards and (2) experimental
manipulations, both of lizards within field
enclosures on a large island and of lizards on

small islands. From this body of work we

extract for this paper the relevant data from
four studies--two at the same very-large­
island site but during different time periods, a

third on medium-to-large islands, and a fourth
on very small islands. These data will be used
to produce an empirical answer to the ques-

tion of how the effect of a predator varies in

magnitude with island area.

Experiments and observations

This section collects data on the direct
and indirect effects of lizards from experi­
ments and observations for a range of island
areas. First, two lizard-removal experiments
on a very large island (",3x I km'), effectively
a mainland, are summarized (full description
in Spiller and Schoener, 1988, I 990a,b, 1994,
1998). The first experiment has lizard remo­

val only; the second has lizard and spiders
removal in a crossed design. Second, obser­
vational data are presented for lizard and no­

lizard islands of medium-to-large area (112-
8603 m' vegetated area). Although the data
have been used in a number of studies (details
of the system in Schoener and Spiller, 1992;
Spiller and Schoener, 1995, 1996), the analy­
ses given here for spiders are new. Analyses
of herbivory follow previous papers (Spiller
and Schoener, 1996, 1997). Third, a lizard­
introduction experiment on islands of small­
to-medium area (40-179 m' vegetated area) is
summarized. This experiment allows compa­
rison of a set of manipulated islands (lizard
introduction) with a control set of no-lizard
islands (lizards absent), as well as comparison
of a set of unmanipulated, natural lizard
islands with a set of unmanipulated natural
no-lizard islands (the aforementioned control

islands). This experiment has been described
elsewhere (Schoener and Spiller, 1996, in

press), but data on certain spider species­
diversity-and-abundance measures are pre­
sented here for the first time.

Throughout what follows, we only
report detailed statistical treatments, inclu­

ding P values, for results from new data com­

pilations; these always utilize analyses of
variance and covariance. When time-series
data are involved, we evaluate differences in

time-averages, statistically equivalent to eva­

luation of the between-subjects effect in a

repeated-measures design in which time is the
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Fig. 1. Example of enclosure used in lizard-removal experiments on the very large island,
Staniel Cay.
Fig. 1. Exemple de tancat emprat als experiments de substraccio de sargantanes a una illa molt

gran, Staniel Cay.

repeated factor. The specific P values are not

given for results tested as statistical hypothe­
ses in previous papers; rather, we use such
terms as "significant" or "significantly diffe­
rent" to denote P values less than 0.05.

Similarly, we denote an effect "marginally
significant" when 0.05:5P < 0.10.

I. Very-large-island experiments.
A. Experiment I-One-way lizard removal.
This experiment was conducted on Staniel

Cay, an island in the central Bahamas

(Exumas). The study site was a vegetated,
sandy area elevated 10-15 m above the nort­

heastern shore. The vegetation consisted

mostly of Coccoloba uvifera (sea grape), with
a few representatives of e I 0 species of other
shrubs.

The experiment had three treatments (n
= 3 for each); (I) unenclosed plots with
lizards unmanipulated; (2) control enclosures
with lizards; and (3) lizard-removal enclosu­
res. Each plot and enclosure was 83.6 rn',

Mean heights of the vegetation varied from
0.14 to 0.53 m. To take this vegetational hete­

rogeneity into account, we stratified the plots
into 3 blocks. Then one enclosure from each
block was randomly assigned to have lizards
removed during the experiment. Enclosure

design was modified from that of Pacala et al.

(1983). Wood-framed fences were built on the

plot perimeters. The plots were buried 0.31 m

below the ground and stood 0.93 m high, with
hardware cloth (3-mm [\4 inch] mesh) atta­

ched to the sides. Polypropylene plastic was

cut into O.4-m-wide strips and mounted hori­

zontally on top, forming a continuous 0.2-m

overhang on the inside and on the outside of
the fences, so that, except for the overhang,
the enclosures were open on top (Fig. I). To

accomplish this construction, several thou­
sand pounds of materials were flown in repe­
ated trips to Staniel Cay in a small airplane.

Most lizards at the site were Anolis

sagrei, with some Anolis carolinensis and
Ameiva festiva. The biology of these species



40 T. W Schoener and D.A. Spiller

is discussed in detail elsewhere (Schoener,
1968b; Schoener and Schoener, 1978, 1980,
I 982a,b). Snout-vent lengths (mean of the lar­

gest third of all specimens collected from the

Exumas) were: A. sagrei, males = 54.4 mm

(N = 45), females = 39.8 mm (N = 27); A.

carolinensis, males = 60.9 mm (N = 27),
females = 46.7 (N = 6). Ameiva were somew­

hat larger (precise measurements unavaila­

ble).
Initially we stocked control enclosures

as needed to a level of 9 lizards (6 females
and 3 males); the mean natural density at the
site was 0.1 per m'. During the experiment
(May 1985-November 1988), we counted
numbers of web spiders of each species at

one- to three-month intervals; the spider spe­
cies found at this site during this and the next

experiment are listed in Tab. I. At the same

intervals we sampled aerial arthropod abun­
dance with sticky traps; this consisted of put­
ting out four sticky traps in each plot, then

recording the number of individuals and body
lengths (estimated to the nearest mrn) of the

arthropods caught by the traps. The traps were

22x 14-cm sheets of clear plastic coated with

Tanglefoot adhesive and suspended 0.25-0.50
m above the ground. Each year, we tagged
leaves of sea grape and (using 5 evenly spa­
ced areas, in each of which we tagged three

undamaged leaves) measured herbivore

damage (as a percent of the total leaf area) as

it accumulated throughout the year. The sum­

mary measure used was the mean of the per­
cent damage per leaf (DL in Schoener [1988]).
We distinguished three different categories of
leaf damage--scars and mines (necrotic
areas), holes (entirely missing areas), and

galls (produced by a cecidiomyiid midge,
Ctenodactylomyia watsoni). In the field, we

observed scars produced by homopterans
(Cicadellidae and Aphididae) and a hemipte­
ran (Pentatomidae), mines produced by a lepi­
dopteran, and holes produced by lepidopte­
rans (Tortricidae - Amorbia sp. [prob emigra­
tella]; Noctuidae--unidentified spp.), a cole­

opteran (Scarabaeidae - Phyllophaga sp.) and
a hymenopteran (Trachymyrmex maritimus).

In the present paper, we simplify treatment of

herbivory by lumping together all leaf-dama­

ge types; separate analyses of these types are

in Spiller and Schoener (1990b, 1994, 1996).
Results of this experiment were as

follows. The mean total density of web spi­
ders was significantly higher, 3.1 times, for
lizard-removal enclosures than for treatments

with lizards (Tabs. 2, 3; Spiller and Schoener,
1988, 1996). Unenclosed plots and control
enclosures were nearly identical, indicating
that the enclosures had no effect on spider
numbers; because of this, we simplify below

by excluding unenclosed plots from the
tables. Number of web spider species were

higher in lizard-removal enclosures than in
the other treatments; time averages were 1.2
times greater in removals than in control
enclosures and the ratio of the former to unen­

closed plots was about the same. Detailed

analyses revealed that the lizard effect on spi­
ders was caused by both predation and food

competition (Spiller and Schoener, I 990a).
Mean number of aerial arthropods was 1.6
times higher in unenclosed plots than in con­

trol enclosures and was 1.1 times higher in
lizard-removal enclosures than in control

enclosures; there was a significant enclosure
effect as well as a significant lizard effect on
aerial arthropods (two-tailed raw P = 0.00 I,
0.043, respectively). We also separated small

(:::;4 mm) and large (> 4 mm) aerial arthropods
(Spiller and Schoener, 1990a). Numbers of
both were greater for no-lizard than lizard
enclosures (Tabs. 2, 3), but the effect ratio

(larger over smaller) was substantially greater
for large arthropods (I.7) than for small arth­

ropods (1.05), and was only significant for the
former (Schoener and Spiller, in press). Thus

although spiders ate many of the same arthro­

pods as did lizards, when lizards were remo­

ved increased predation by spiders did not

completely compensate for the lack oflizards.

Finally, lizards significantly reduced scar and
mine damage and reduced hole damage as

well, but not significantly (Spiller and

Schoener, 1996). Interestingly, lizards signifi­
cantly increased the amount of gall damage.



Taxa I. Very-large-island site II. Medium-to-small-
islands site

A. First experiment B. Second experiment

Araneidae

Metepeira datona X X X

Metepeira sp.
Eustala cazieri X X X

Argiope argentata X X X

A. trifasciata
Eriophora ravilla X X +

Gasteracantha cancriformis X X X

Cye/osa caroli X

C. walckenaeri

Cyrtophora sp. X

Tetragnathidae
Nephila e/avipes X X X

Plesiometa argyra X X

Leucauge sp. X

Tethragnathidae sp.

Uloboridae
Uloborus trilineatus X

Philoponella semiplumosa
Theridiidae
Latrodectus mactans X X

Argyrodes elevatus X X X

As furcatus X

Total 8 9 12

+Occurs on these islands but not counted because of difficulty of detection there.

Table 1. Species of web spiders occurring at three Bahamian sites during four studies.

Taula I. Especies d'aranyes de xarxa presents ales tres localitats de les Bahames durant els quatre estudis.

Ill. Small-to­
medium
islands site

X
X
X
X
X

X

X
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X
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X rn
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Q.
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I. Very-large-island Experiment (Staniel Cay) II. Medium-to-Iarge- III. Smalll-to-medium-isiand .j:>.
ro

island Observations Experiment and Observations

(Exumas Region) (Abaco Region)
Variable A. First experiment B. Second experiment :-I

�
Lizard No-lizard Lizard No-lizard Lizard No-lizard Lizard Natural Natural (/)

o

enclosures enclosures enclosures enclosures islands islands intro- lizard no-lizard
::::r
0
C1>

duction islands islands ::J
C1>

islands .....

tl)
::J

I.Total 0.457 1.395 0.543 0.989 0.Q35 0.198 0.155 0.109 0.766 Q.
t:J

spider ),.
density' �(no.zrrr') �

.....

2. Number 2.85 3.53 2.17 3.40 1.58# 2.61 # 1.04 0.92 3.13

spider species
(=species
richess)

3. Spider NC NC 0.269d 0.396" 0.174 0.344 0.068 0.036 0.257

composite
diversity"

4. Spider NC NC 0.797' 0.681' 0.885 0.748 0.964 0.981 0.839

dominance"

5. Sea- 1.62 3.23 0.45 1.49 0.59 1.87 NC NC NC

grape
leaf damage (percent)

6. Button- NC NC NC NC 9.0 11.7 2.0 6.7 8.9
wood
leaf damage
(percent)'



I. Very-large-island EXperiment (Staniel Cay) II. Medium-to-Iarge- III. SmaIII-to-medium-island
island Observations Experiment and Observations

(Exumas Region) (Abaco Region)
Variable A. First experiment B. Second experiment

Lizard No-lizard Lizard No-lizard Lizard No-lizard Lizard Natural Natural
enclosures enclosures enclosures enclosures islands islands intro- lizard no-lizard

duction islands islands
islands

7. Total 3.2 3.5 3.8 3.9 NC NC 6.5 7.9 5.5
number
aerial arthropods
(number/trap-day)"

8. Number 2.9 3.1 NC NC NC NC 6.4 7.9 5.4
small
aerial arthropods
(number/trap-day)"

9. Number 0.23 0.38 NC NC NC NC 0.10 0.04 0.06

large
aerial arthropods
(number/trap-day)'

A

DL measure (Schoener, 1988), green morph
# Back-transformed adjusted means from ANCOVAs
a E. ravilla included in Data Set I but not II because of detection difficulty on islands (it is mainly active nocturnally)
b Means of the individual census means for Data Set IS; means of the cumulative values (computed from frequency distributions of

all the time-series data added together) for Data Sets II and III (a cumulative measure had to be used for these data sets because islands someti­
mes had no spiders so composite diversity and dominance could not be computed)

c Note that values for Data Sets IA and IS are given in Spiller and Schoener (1988, 1944) per enclosure, not per trap as in this table
d Cumulative measures are 0.308 and 0.461, respectively

Table 2. Effect of lizards on food-web variables: Mean values of the variables with and without lizards (NC = not calculated).
Taula 2. Efectes de les sargantanes sobre les variables de la xarxa trofica: valors mitjans de les variables amb i sense sargantanes (NC = No cal­

culat).

"'tJ
Cil
2-
�
(J)-

rn
::::::
(1)
Q.
o
::J
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ii}
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Because the latter comprised only a small

portion of the total leaf damage, overall

damage was substantially decreased by
lizards: lizard enclosures had twice as much

overall damage as did no-lizard enclosures

(Tabs. 2, 3).
B. Experiment 2-Two-way lizard and

spider removal. This experiment was staged
at the same site as was Experiment I and was

conducted after the latter's completion
(Spiller and Schoener, 1994). The expanded
design (2x2 factorial) had four treatments (n =

3 for each): (I) controls with lizards and spi­
ders unaltered (natural densities); (2) lizards
removed and spiders unaltered; (3) spiders
removed and lizards unaltered; and (4) both
lizards and spiders removed; all treatments

were conducted within enclosures. We again
used three vegetation blocks of four plots
each; treatments were assigned randomly wit­

hin each block. Enclosure construction was

identical to that in the previous experiment,
but note that an additional six enclosures had

to be erected. Enclosures in Treatments I and

2 were stocked up to a level of nine A. sagrei
lizards apiece, the same density used in the

previous experiment. We monitored the expe­
riment at one-to three-month intervals from

May 1989 to December 1994; results for
aerial arthropods and leaf damage were com­

piled through March 1992. Methods were as

in the previous experiment, except that mines
and scars were measured separately (but note

we again lump all damage types for purposes
of the present paper).

Results of this experiment were as

follows. The time average for total density of

spiders was significantly higher, 1.8 times, in
the treatment with only lizards removed than
in the control (Fig. 2, right; Tabs. 2, 3; Spiller
and Schoener, 1998). Also as in the previous
experiment number of spider species was sig­
nificantly higher in the treatment with only
lizards removed than in the control (Fig. 2,
right; Tabs. 2, 3); the effect ratio was somew­

hat greater-I.6 here vs 1.2 in the first expe­
riment. In addition to number of species, we

calculated (as in Spiller and Schoener, 1998)

two other measures of species diversity that

incorporated relative abundances. First, we

calculated composite diversity, the modified

Simpson index (as suggested by Lande

[1996]):

where Pi is the proportion of the total number

of individuals belonging to Species i and S is

the number of species. Second, we calculated

dominance, the proportion of the total number

of individuals belonging to the most abundant

species, in this case Metepeira datona.

Composite diversity was higher in no-lizard

enclosures, while dominance was lower, alt­

hough the second tendency was only margi­
nally significant (Fig. 3, right; Tabs. 2, 3).
Figs. 4 and 5 show how the numbers of indi­

vidual spider species varied during the expe­
riment. Numbers of aerial arthropods in the

same two treatments were almost identical

and not significant in the overall analysis
(Spiller and Schoener, 1994) (Tabs. 2, 3). The

effect of spiders on aerial arthropods was

more substantial, apparently stronger than the

effect of lizards. Finally, mean amounts of
the major leaf-damage types--scars, mines

and holes-were greater in each of the two

treatments with lizards removed than in con­

trols (Spiller and Schoener, 1994, 1996), but

means with only spiders removed and con­

trols were nearly identical. Galls were extre­

mely rare in this experiment, and no signifi­
cant effect was detected. Overall mean leaf

damage (Tabs. 2, 3) was significant (Spiller
and Schoener, 1994, 1996), being 3.3 times

greater in lizard-removal enclosures than in

enclosures with lizards. The lizard-spider
interaction was not significant for either aerial

arthropods or leaf damage, indicating that

compensatory predation was absent or at best

weak.

II. Medium-to-Iarge-island observations.
We have been censusing spider abun­

dances on over 100 islands in the vicinity «
20 km) of Staniel Cay since 1981 and measu-
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Fig. 2. Comparison of the time course of the experiment on small-to-medium islands (Abaco,
Data Set III) with that of the second experiment on a very large island (Staniel, Data Set IB).
Each point represents a treatment mean for a single census. ThP. row: total web-spider density­
left, very small islands; right, very-large-island enclosures. Bottom row: total number of web­

spider species (species richness�left and right as above.

Fig. 2. Comparacio del curs temporal de I 'experiment sobre illes petites a mitjanes (Abaco,
Conjunt de Dades 111) amb el del segon experiment a una ilia molt gran (Staniel, Conjunt de
Dades IB). Cada punt representa una mitjana tractament per a un recompte unic. Filera de dalt:
densitat d'aranyes de xarxa - esquerra. illes molt petites; dreta. tancats a illes molt grans.
Filera de sota: nombres totals de les especies d 'aranyes de xarxa (riquesa d 'especies) - esque­
rra i dreta com a dalt.

ring leaf damage in sea grape since 1986 on

all of those islands where that species occurs

(II islands with lizards, 7 islands without

lizards). We (Spiller and Schoener, 1995,
1996) concentrated on that subset of those
islands that included all islands 2: 1 00 m'

(vegetated area) and with maximum vegeta­
tion height 2:1 m, because most populations
on poorer islands were small and ephemeral.
In addition, we excluded islands with recor-

ded lizard turnover (immigration or extinc­

tion) and islands successfully colonized by
spiders in a species-invasion experiment
(Schoener and Spiller, 1995). With these fil­

ters, we obtained 27 islands with lizards and
24 islands without lizards; these are the
islands used for the spider analyses below. As

in a previous recent treatment (Spiller and

Schoener, 1995), we use here the data from
1981 to March 1990, a 10-year period, to
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Fig. 3. Comparison of time courses of the experiment on small-to-medium islands (Abaco, Data
Set III) with the second experiment on a very large island (Staniel, Data Set IB). Each point
represents a treatment mean for a single census. Th.!2 row: web-spider composite diversity-left,
very small islands; right, very-large-island enclosures. Bottom row: web-spider dominance­
left and right as above. For Data Set III, when values could not be computed for a particular
island at a particular date (because no spiders occurred there), "0" was used for composite diver­

sity and "I" was used for dominance.

Fig. 3. Comparacio del curs temporal de I 'experiment en illes petites a mitjanes (Abaco,
Conjunt de Dades III) amb el segon experiment a una illa molt gran (Staniel, Conjunt de Dades

IE). Cada punt representa una mitjana de tractament per a un unic recompte. Filera de dalt:
diversitat composta d'aranyes de xarxa -esquerra, illes molt petites; dreta tancats a illes molt

grans. Filera de baix: dominancia d 'aranyes de xarxa -esquerra i dreta com a dalt. Per al

Conjunt de Dades III, quan les valors no es podien computar per a una illa particular a una

data particular (perque no hi havia aranyes), s 'emprava "0" per calcular la diversitat com­

posta i "I" per calcular la domiruincia.

analyze properties of spiders. From another

previous recent treatment (Spiller and

Schoener, 1997), we use data from 1986

(when a dynamic measure of herbivory was

first employed) through 1993 to analyze leaf

damage in sea grape. Additionally, we did a

static measurement of leaf damage in a small

species, buttonwood (Conocarpus erectus)



during 1984 (Schoener, 1988), which we shall

also discuss in the present paper.
Web-spider censuses proceeded as

follows. All webs were counted on each

island, and their occupants, if any, noted as to

species, size and (if possible) sex. Spiders
without webs were noted but not included in

the counts; few such spiders were seen.

Vegetation on these islands was typically 0.5-

1.5 m in height and was sparse, so that we

were able to inspect visually most foliage for

webs. To minimize the possibility of missing
a web, we performed censuses in teams of
two or three persons walking in tandem.
Because of the small areas of most of the

islands, it was almost always practical to cen­

sus the entire island; in a few cases (Schoener
and Spiller, 1992) we censused only part of
the island and extrapolated, stratifying the

island by vegetation type. Each annual census

was conducted in late April or May. This

period of time coincides with the end of the

dry season, and between-year variation then is
less or no greater than that at other times of
the year for which we have data. This may be

largely because weather is usually more seve­

re during other times, such as winter when

cold fronts destroy large numbers of spiders,
or late summer to autumn, when hurricanes

sweep across the Caribbean. Tab. I lists the
web spider species found in these censuses.

Of these, M. datona and E. cazieri were by far
the most abundant overall; A. argentata and
G. cancriformis were the two other most com­

mon species. Lizards on these islands are

mostly Anolis sagrei; Anolis carolinensis,
Ameiva festiva and Leiocephalus carinatus

also occur on some of the (mostly largest)
islands.

Leaf damage in sea grape is measured

dynamically much as in the set of experi­
ments just described, except that sampling
techniques were necessarily somewhat diffe­
rent. On islands with fewer than 8 sea-grape

plants, all plants were sampled. On islands
with 8-20 plants, sampled plants were chosen

systematically by including every other plant
encountered on a circular ambit of the island.
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On islands with> 20 plants, every third plant
so encountered was sampled. We distinguis­
hed the same categories of damage as in the
first experiment described above; galls were

practically absent. Again, damage types were

combined for the analysis herein.
The other species whose herbivory was

measured, buttonwood, exists as more-or-Iess
discrete morphs, silver and green, in which
leaf trichomes are numerous or few, respecti­
vely (Schoener, 1987). Because only green
buttonwood occurs in the comparison region
(very small islands of Abaco, see III below),
we only report damage for that form here.
Unlike sea grape, for which damage was mea­

sured nondestructively in the field, we measu­

red buttonwood damage by collecting leaves
and analyzing them in the laboratory with a

digitizer. Leaves collected for analysis were

sampled by systematic selection of trees such
that number of trees sampled was roughly
proportional to the logarithm of buttonwood
surface area on an island, with the maximum
number per island being 10 trees. To sample
leaves, we tossed a square haphazardly onto

each tree and collected that cluster of leaves
closest to the landing point; up to 9 samples
per tree were thus obtained. As before, we

used mean of the percent areal damage per
leaf (taken over all leaves from a particular
island) as our measure of herbivory.

Results for web spiders were as follows

(note that previous treatments [Spiller and

Schoener, 1995, 1996] are only for orb-web,
not other types of web spiders; we have added
the latter here-see also Tab. I). The total
number of spider individuals must be measu­

red in some way that takes into account the

several-orders-of-magnitude variation in area

that the study islands show. One solution is to

divide by area to obtain densities; this is a

sensible procedure because a reasonable

assumption, made for example in many bio­

geographical models (Preston, 1962;
MacArthur and Wilson, 1967; Schoener,
1976b) is that number of individuals is pro­
portional to area. A huge difference in total

spider densities occurs between lizard and no-



I. Very-large-island Experiment (Staniel Cay) II. Medium-to-large- III. Smalll-to-mediurn-island .j:>.
co

island Observations Experiment and Observations

(Exumas Region) (Abaco Region)
Variable A. First experiment B. Second experiment

:-i

�

No-lizard vs lizard No-lizard vs lizard No-lizard vs lizard No-lizard No-lizard
(J)
C)

vs lizard vs natural
:::;-
0
C1>

introduction lizard ::J
C1>
-.

I.Total 3.1 1.8 5.7' 5.0 7.0 [ll
::J

Spider
0..

density
tJ

(no.zrrr')
�

2.Number 1.2 1.6 1.7 3.0 3.4 �
spider species

�
-.

(=species
richness)

3.Spider NC 1.5* 2.0 3.8 7.1

composite
diversity

4.Spider NC 1.2*# 1.2# 1.1 # 1.2#

dominance

5.Sea- 2.0 3.3 3.2 NC NC

grape
leaf damage (percent)

6.Button- NC NC 1.3 4.4 1.3

wood
leaf damage
(percent)



I. Very-large-island Experiment (Staniel Cay)

Variable A. First experiment B. Second experiment

No-lizard vs lizard No-lizard vs lizard

7.Total

number
aerial arthropods
number/trap-day)

8.Number

small
aerial arthropods
(number/trap-day)

9.Number

large
aerial arthropods
(number/trap-day)

l.l 1.0

1.0 NC

1.7 NC

tRatios of larger to smaller treatment value

#Lizard value> no-lizard value

•Ratios the same for cumulative measure (see text)
aRatio is 4.9 for back-transformed adjusted means (see text)

II. Medium-to-Iarge­
island Observations

(Exumas Region)

No-lizard vs lizard

NC

NC

NC

III. Smalll-to-medium-island

Experiment and Observations

(Abaco Region)

No-lizard

vs lizard
introduction

1.2#

No-lizard
vs natural

lizard

1.4#

1.2# 1.4#

1.7# 1.5

"'tl
ca
!i}
0'
..,

(I)
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�
Q.
g
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Q)
::J
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Table 3. Effect of lizards on food-web variables: Effect ratios t(NC= not calculated).
Taula 3. Efectes de les sargantanes sabre les variables de la xarxa trofica: taxes d'efectes (NC= No calculat). .j>.

CD
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Fig. 4. Time courses of abundance for particular species from the second very-large-island expe­
riment (Staniel, Data Set IB). Each point represents a treatment mean for a single census. Full

species names given in Tab. I. Species are excluded from Figs. 4-5 if they were so rare that
fewer than five individuals were recorded in the entire data set; i.e., summed over all dates and
enclosures.

Figura 4. Curs temporal de I 'abundancia per a especies concretes del segon experiment a una

ilia molt gran (Staniel, Conjunt de Dades IE). Cada punt representa una mitjana de tractament

per a un recompte unic. Eis noms complets de les especies es donen a la taula I. Les especies
s 'exclouen de les figures 4-5 si eren tan rares que names s 'havien registrat menys de cine indi­
vidus en el conjunt complet de dades (es a dir; sumades en totes les dades i tancats).
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Fig. 5. More time courses of abundance for particular species from the second very-large-island
experiment (Staniel, Data Set IB). Each point represents a treatment mean for a single census.

Full species names given in Tab. 1.

Fig. 5. Mes cursos temporals d 'abundancia per a especies concretes del segon experiment a una

illa molt gran (Staniel, Conjunt de Dades IB). Cada punt representa una mitjana de tractament

per a un recompte unic. Els noms complets de les especies es donen a la taula 1.

lizard islands; the latter have 5.7 times the
densities as do the former (Tabs. 2, 3; see

Spiller and Schoener [1995] for various statis­
tical evaluations). Unfortunately, it is well
known that the number of species is not best

represented as directly proportional to area

(above references), so that division by area is
for that variable not justified. Alternatively,
we can do covariance-type analyses, with

island area as the covariate, and number of

species and island area transformed appro­
priately. Of the two possibilities, number of

species and log number of species vs log area,
the latter gave the greater linearity, so we used
that transformation here. The first step is to

include in the model the interaction for the
main effect (lizard presence and absence)
with the covariate, log area. The interaction
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Fig. 6. Left. Log., mean total number of spider individuals versus loglo island area for medium­
to-small islands (Exumas, Data Set II). Right. Log., mean number of web spider species (spe­
cies richness) vs loglo island area for medium-to-small islands (Exumas, Data Set II). Means are

averages of values from 1981 through 1990 inclusive.

Fig. 6. Esguerra. Log» del nombre total mitja d 'aranyes individuals versus log» de I 'area insu­

lar per a illes mitjanes a petites (Exumas, Conjunt de Dades II). Dreta. Log» del nombre mitja
d 'especies d 'aranyes de xarxa vs log,« de I 'area insular per a illes mitjanes a petites (Exumas,
Conjunt de Dades Ii) log,« de I 'area insular per a illes mitjanes a petites (Exumas, Conjunt de
Dades 11). Les mitjanes son els promedis dels valors de 1981 a 1990 inclosos.

was not significant (in this analysis and all
others below), indicating equality of slopes,
so we then can do a "normal" ANCOVA.
This analysis shows both area and the lizard
effect to be significant (Tab. 4); Fig. 6 illus­
trates the data. From this analysis, we can

calculate adjusted (= least squares) means to

remove the effect ofarea (Tab. 2). The ratio of

adjusted means, back-transformed to arithme­
tic values, can be computed as a measure of
effect size; it is 1.7 (Tab. 3). This ANCOVA

methodology can provide an alternative to the
method we used above for evaluating the
lizard effect and computing effect size for
total spider individuals, where now we use

log number rather than density as the depen­
dent variable. This might be especially appo­
site when something additional to area, e.g.
some habitat measure that correlates with

area, is influencing the form of the plot of
number of spiders vs area. Tab. 4 shows that
both the lizard and area effects are highly sig­
nificant. When adjusted means are computed
and back-transformed to arithmetic values,
the effect ratio is 4.9, very close to the 5.7
value obtained using densities. Finally the
same ANCOVA procedure for the other two

variables associated with species diversity,
composite diversity and dominance, shows
that the area effect is not significant (Tab. 4;
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Source df F P

I. Log total number of spiders
log area 1,45 51.02 5x I 0.5*
lizards 1,45 29.85 5x I 0.5*

2. Log number of spider species
(species richness)

log area 1,45 9.86 0.002*
lizards 1,45 12.83 4xI0"'*

3. Arcsine sqrt spider composite
diversity

log area 1,45 0.25 0.620
lizards 1,45 7.84 0.008

4. Arcsine sqrt spider composite
diversity

lizards 1,46 9.05 0.004

5. Arcsine sqrt spider dominance

log area 1,45 0.27 0.609
lizards 1,45 7.95 0.007

6. Arcsine sqrt spider dominance
lizards 1,46 9.13 0.004

* One-tailed P value: all unmarked P's two-tailed; note that we consider tests involving
number of individuals and number of species (except for interactions) to have directional

hypotheses because of prior theory and data; tests involving composite diversity and domi­
nance use two-tailed P values.

Table 4. Statistical results for ANCOYAs and ANOYAs, Data Set II (Type III SS).
Taula 4. Resultats estadistics per a ANCOVAs i ANOVAs, conjunt de dades II (Tipus 11/ SS).

see Fig. 7 for the lack of an area effect). Thus
we drop area and compute significance as a

simple one-way ANaYA; P values for the
two are very low (Tab. 4). Effect ratios are

computed directly from means of the respec­
tive island values (Tab. 2); these are 2.0 and

1.2, respectively. Despite the large variation
in effect ratios, note again that the lizard.
effect is significant for all four variables.

The lizard effect on herbivory in the
two species of plants studied is always nega­
tive (less damage with lizards) and statisti­

cally significant. Sea-grape leaf damage is
3.2 times greater in the absence than presence
of lizards (Tabs. 2, 3; Spiller and Schoener,
1997). The one-time analysis of buttonwood
leaf damage gave a rather small ratio of leaf

damage, however, being only 1.3 (Tabs. 2, 3;
Spiller and Schoener, 1996).
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III. Small-to-medium islands=-experimen­
tal introduction of lizards and observations
from unmanipulated lizard and no-lizard
islands.

The study system consisted of 12
small-to-medium islands covered with fairly
closely spaced shrubs and a few grasses.

Height of the vegetation rarely exceeded 1.5

m and was usually substantially less. All
islands were located in a 3.2 x 2.0-km area

that was part of a protected "creek" waterway
just south of Snake Cay, Great Abaco.

The experiment had three treatments:

(I) lizards present naturally and unmanipula­
ted; (2) lizards introduced where absent natu­

rally and (3) lizards absent naturally and

unmanipulated. Each treatment had 4 islands;
to reduce initial differences between
Treatments 2 and 3, all islands without lizards
were first stratified into pairs similar in area

and vegetation, then one from each pair was

randomly assigned to Treatment 2. Note that
we can compare the manipulated treatment to

either of the unmanipulated treatments (the
latter acting as controls), or we can compare
Treatments I and 3; this is in fact comparing
natural lizard with natural no-lizard islands.
The manipulated species was again the lizard
Anolis sagrei. This species is slightly smaller
over the Little Bahama Bank, where Abaco is

located, than in the Exuma region farther
south: snout-vent length of males was 50.8
mm (N = 103) and that of females was 40. I

(N = 80; means of largest third, as above). On
islands where it was initially present, it was

the only diurnal lizard.
On 28 April 1988, we introduced 3

female and 2 male adult lizards onto each
island in Treatment 2; a previous experiment
(Schoener and Schoener, 1983) indicated that
this propagule size was sufficient for esta­

blishment. Propagules established success­

fully, and populations did not become extinct
for the 7-year duration of the experiment.
Populations on islands having lizards natu­

rally also showed no extinctions during that
time.

Measurement of leaf-damage variables
was performed at yearly intervals. Spider
variables (total density of individuals, number
of species, composite diversity, dominance)
were measured -4 months, 6 months and 16
months after experimental inception, as well
as at all yearly intervals. Variables were com­

puted from counts of each spider species over

an entire island. The spider species found

during this experiment are listed in Tab. 1. At
the same intervals as for spider variables, we

sampled aerial arthropod abundance with

sticky traps (4-6 per island); traps were iden­
tical to those used in the very-large-island
experiment and were suspended 0.25-0.50 m

above the ground. Duration of trap exposure
and collection of data also followed procedu­
res outlined above for the very-large-island
experiment. We measured herbivory for the
commonest shrub species on the islands, but­
tonwood. Leaves were sampled as follows.
Before the manipulation, we measured each
buttonwood shrub. We then randomly selec­
ted from 4 to II (x = 5.7) "large" shrubs,
depending on the number available (the latter

ranged from 7 to 35 "large" shrubs; see

Schoener and Spiller, in press, for definition
of "large"). To sample leaves, we tossed a

square haphazardly onto each shrub from I to

5 times, depending on the shrub size, and
collected that branch let or clump of branch­
lets closest to a marked comer. Sampling in

subsequent years used the same shrubs as

selected for initial sampling (except those

diminishing markedly in size were excluded).
A year's sample averaged 2484 leaves.
Leaves were stored in plant presses and

brought to the laboratory, where the total area

and areas of various damage types were mea­

sured with a digitizer. We distinguished three

types of leaf damage: scars, holes and lines.
The first two categories are defined as above;
"lines" were highly elongated, typically ser­

pentine, slightly raised areas. Herbivores
identified from buttonwood so far are

Lepidoptera from the families Noctuidae

(Col/omena filifera and unknown species)
and Gelechiidae, as well as a curculionid bee-
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Fig. 7. Left. Arcsine-square-root mean composite diversity vs loglo island area for medium-to­
small islands (Exumas, Data Set II). Right. Arcsine-square-root mean dominance vs logic island
area for medium-to-small islands (Exumas, Data Set II). Means are averages of values from
1981 through 1990 inclusive.

Fig. 7. Esguerra. Mitjana de l'arrel quadrada de I'arcsinus de la diversitat composta vs log»
de l'area insular per a illes mitjanes a petites (Exumas, Conjunt de Dades II). Dreta. Mitjana
de I 'arrel quadrada de I 'arcsinus vs. log» de l'area insular per a illes mitjanes a petites
(Exumas, Conjunt de Dades II). Les mitjanes son els promedis de les valors de 1981 a 1990
inclusive.

tie (Artipus floridanus). In addition, using
confinement trials we showed line damage to

be produced by the flea beetle Chaetocnema
brunnescens (Chrysomelidae). In the analyses
below, we combined all damage types as

above to produce the variable total leaf dama­

ge.
Results of the experiment and observa­

tions were as follows.
Before introduction, the two island

classes without lizards had similar spider den­
sities of individuals and number of spider spe­
cies (Fig. 2). These values were substantially
larger than those for the islands with natural
lizard populations; spider density on the for­
mer was 6.7 times, and the number of species

was 1.8 times, that on islands having lizards

naturally. After lizard introduction, both spi­
der density and number of species dropped
precipitously, and in two years their mean

values nearly coincided with values for
islands having lizards naturally (Fig. 2, left).
The two pairs of means remained similar

throughout the five remaining years of the

experiment, suggesting that a new state had
been reached. The time series for composite
diversity and dominance behaved rather simi­

larly, except initial treatment values were

somewhat closer, at least on an arithmetic
scale (Fig. 3, left). However, as time progres­
sed, a fairly clear divergence of the introduc­
tion-island mean from the no-lizard-island
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mean occurred, and the two classes of lizard
islands showed quite similar values (lower
composite diversity, higher dominance)
during the final five years. Because of the

similarity of these two lizard classes-intro­
duction and lizards present naturally-we
combine the two for statistical evaluation. For
all four variables, the difference between
these two classes combined and the no-lizard
class (Tab. 2) is highly significant (for time

averages, P = two-tailed, P = 0.015 and P =

0.018, for composite diversity and dominan­

ce, respectively; see Schoener and Spiller
[1996] for the first two variables). Figs. 8 and
9 show how the numbers of individual spider
species varied during the experiment.

To present effect ratios, we make two

comparisons for each variable: natural lizard
vs natural no-lizard, and introduction vs natu­

ral no-lizard (Tab. 3). This is because in some

cases the two ratios are very different. For the
first comparison, which includes non-mani­

pulated islands only, ratios for both spider
density and composite diversity are both very
high: 7.0 and 7.1, respectively. The ratio for

spider species number was 3.4, whereas that
for dominance was 1.2. Ratios using introduc­
tion islands in place of islands having lizards

naturally were generally smaller, being 5.0,
3.0, 3.8 and 1.1, respectively. By tracking
individual species (see below, Figs. 8 and 9),
we were able to document in detail the devas­

tating effect of lizard introduction. The pro­
portion of species becoming extinct was 12.6
times higher on lizard-introduction islands
than on islands without lizards. Locally com­

mon and rare species were both reduced by
the introduction of lizards, but nearly all of
the latter became permanently extinct.

The lizard effect on spiders is mainly a

direct one (Spiller and Schoener, 1990a). The
lizard effect on the other variables in this

experiment is indirect; patterns were weaker
and more variable. Lizards reduced leaf

damage of buttonwood, but an overshoot
occurred on introduction islands; herbivory
there during the middle years of the experi­
ment was less than that on islands having

lizards naturally (Tab. 2). This difference is
reflected in the effect ratios: that using the
natural lizard and no-lizard islands is small,
being 1.3, whereas that using introduction and
no-lizard islands is substantially larger, being
4.4 (Tab. 3; P's for time averages of the two

comparisons are mostly very small [Schoener
and Spiller, in press]). Curiously, the lizard
effect on aerial arthropods, when one occu­

rred, was opposite in direction to that in the

experiments on a very large island (Tab. 2).
Lizards significantly increased the number of

small (:0;4 mm) arthropods but had no signifi­
cant effect on large arthropods (Schoener and

Spiller, in press); note that most arthropods
were small. Effect ratios were always small,
and in the case of large arthropods inconsis­
tent in direction among the two comparisons
(Tab. 3).

Collation and interpretation

Data from the experiments just descri­
bed are now used to determine whether the
effect of lizards on spiders, which is largely a

direct result of predation, is stronger on small
or large islands. To accomplish this, we arran­

ge the data in the tables according to island

area, from the largest to the smallest. Tab. 2

gives the raw data, and Tab. 3, which we shall
concentrate on, gives the effect ratios-larger
over smaller of the two treatment means

being compared; the greater the ratio, the gre­
ater is the effect. Note that these ratios are

mostly computed from data with no obvious

temporal trend, rather than from data whose
values are changing systematically through
time; for experimental data, this generally
entails computing the time-average over the
latter portion of the experiment; for observa­
tional data, the entire time period is used to

compute time-averages. An exception is but­
tonwood leaf damage in Data Set III, for
which there is an overshoot lasting several

years on introduction islands (see below);
final values here are about the same, being all

low, for all three treatments. So far as conclu-
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Fig. 8. Time courses of abundance for particular species from the small-to-medium-island expe­
riment (Abaco, Data Set Ill). Each point represents a treatment mean for a single census. Full

species names given in Tab. I. Species are excluded from Figs. 8-9 if they were so rare that
fewer than five individuals were recorded in the entire data set, i.e., summed over all dates and
islands.

Figura 8. Cursos temporals de l'abundancia d 'especies concretes de I 'experiment en illes peti­
tes a mitjanes (Abaco, Conjunt de Dades III). Cada punt representa una mitjana de tractament

per a un unic recompte. Els noms complets de les especies es donen a fa taula 1. Les especies
s 'exclouen de les figures 8-9 si eren tan rares que names s 'havien registrat menys de cine indi­
vidus en ef conjunt complet de dades (es a dir; sumades totes les dates i tancats).
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Full species names given in Tab. I.

Fig. 9. Mes eursos temporals de I 'abundancia per a especies concretes de I 'experiment ales
illes petites a mitjanes (Abaeo, Conjunt de Dades lll). Cada punt representa una mitjana de
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sions concerning spatial differences in com­

parison of direct vs indirect effects, using a

long-term average for these data, which we

do, is conservative. Also be aware that ratios

are best compared among the same kind of
data (i.e., like quantities). Thus ratios of com­

posite diversities or dominances may not be

expected to vary the same way as ratios of
densities or numbers of species. Ratios of

adjusted means from ANCOVAs may also

vary differently from those using raw data;
however, note that in the single instance for
which we computed ratios both ways (total
spider density, Data Set II), the two ratios
were very close (see above). Finally, note that
Tab. 5 gives the rankings of ratios, as well as

separate rankings of mean values of the varia­

bles for lizard and no-lizard treatments; this
will be helpful in following the discussion
below.

The negative effect of lizards on the

density of all spiders combined shows a near

monotonic increase from very large to very
small islands (Tabs. 2, 3, Row I). Effect ratios
increase from 1.8 to 7.0; only the comparison
of introduction to no lizard islands (III),
whose ratio is 5.0, is slightly out of order,
being less than the 5.7 ratio attained from
observations on medium-to-large islands (but
notice an alternate way of computing the lat­
ter gives 4.9, which places it back in order).
Note from Tab. 5 that there is somewhat of a

tendency for data sets with greater densities to

have lower ratios: thus the two very-large­
island experiments (I) have greater densities
than the two island sites; however, within that
set (compare IA to JB) and within the non­

main-island sites (compare II to III) the ten­

dency is reversed for no-lizard data and rever­

sed in the latter for lizard data. To the extent

that the tendency exists, it is the opposite of
that found for temporal variation of islands of
the Exumas site (Data Set II) over a l O-yr
period (Spiller and Schoener, 1995); in the

latter, the higher the density, the higher the
ratio. In both studies, densities of lizard and
no-lizard treatments at the same site or time
tend to co-vary, i.e., they rise or fall together
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(Tab. 5); here, only the two very-large-island
experiments are out of order.

Species richness (number of spider spe­
cies) shows the same tendency as does spider
density: the smaller the island, the greater the
lizard effect, which is here to reduce species
number (Tabs. 2,3, Row 2). The tendency is
here perfectly monotonic. Ratios show less
variation (1.2-3.4) than those for densities.
The mean number of species again shows a

tendency to be higher, the smaller the ratio,
i.e., to be higher for data sets with larger
islands: the rank is exactly the same for no­

lizard treatments as for spider densities. The

species tendency for lizard treatments is more

monotonic than the same tendency for spider
densities; in fact species number ranks

exactly inversely with effect ratio. It follows
that lizard and no-lizard treatments do not co­

vary perfectly, but they tend to do so. Finally,
note that the total number of species found du­

ring the appropriate time period at each site is
simi lar from one data set to another (Tab. I).

Composite diversity was computed for

three, rather than four data sets, so trends are

somewhat less well evaluated. Nonetheless,
the same results occur: lizards reduce compo­
site diversity, and the smaller the island, the

greater the effect ratio (Tabs. 2, 3, Row 3).
Actual values increase monotonically with

decreasing ratio (and thereby increasing
island size); ratios range from 1.5 to 7.1;
lizard and no-lizard treatments co-vary per­

fectly. Note, of course, that composite diver­

sity is not independent of species richness, so

this and the previous (and the subsequent)
comparisons are not independent.

Although lizards increase dominance,
that variable shows virtually no variation at

all in effect ratio-three values equal 1.2 and
the fourth is 1.1 (Tabs. 2, 3, Row 4). This is

despite variation among data sets in absolute
values of dominance: no-lizard treatments

have values ranging from 0.681 to 0.839, and

they decrease monotonically from small to

large islands; lizard treatments have values

ranging from 0.797 to 0.981, and they also
decrease monotonically from small to large
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Variable o Ranking of Ratios Ranking of Mean Values

(smaller to larger) (larger to smaller)
Lizard No-lizard

I. Total spider density IB IB IA

IA IA IB

II III III

III' II II

2. Number of spider species IA IA IA

IB IB IB

II II III

III III II

3. Spider composite diversity IB IB IB

II II II

III III III

4. Spider dominance :;t III IJJ
II II

IB IB

5. Sea-grape leaf damage IA IA IA

II II II

IB IB IB

6. Buttonwood leaf damage II II II

IJJ III IJJ

7. Total number aerial arthropods IB III III

IA IB IB

III IA IA

t ":;·signifies that ratios are about the same

, For Data Set III, the average of the two ratios is used

Table 5. Rankings of data sets by magnitude of the effect ratio and magnitudes of the mean

values for the major variables used in this study. Ratios are ranked from smaller to larger while

mean values are ranked from larger to smaller. Hence (1) When ratios and mean values show
the same order ofdata sets, a perfect inverse co-variation occurs, and (2) When mean values

for lizard and for no-lizard treatments show the same order of data sets, a perfect direct co­

variation occurs. Roman numerals refer to data sets in Tabs. 2,3.
Taula 5. Ordenacions de conjunts de dades segons la magnitud de la taxa de I 'efecte i les mag­
nituds dels valors mitjans per a les variables principals emprades en aquest estudi. Les taxes

s 'ordenen de 'menor a major, mentre que les valors mitjans s 'ordenen de major a menor. Per

aixo, (I) quan les taxes i valors mitjans presenten la mateixa ordenacio de conjunts de dades, hi
ha una covariacio inversa perfecta, i (2) quan els valors mitjans per als tractaments amb sar­

gantanes i sense sargantanes presenten la mateixa ordenacio de conjunts de dades, hi ha una

covariacio perfecta, Eis numeros romans es refereixen als conjunts de dades de les taules 2 i 3.



islands. Thus all values are rather large, but

the tendency reaches its extreme on the very
small islands of the Abaco experiment (III),
where monocultures of Eustala cazieri are

common (recall that dominance for this data

set had to be computed from cumulative

data=-see above).
Very interestingly, the indirect effects

of lizards, on leaf damage and (in part) on

aerial arthropods, show similar but substan­

tially weaker trends in effect ratio from small

to large islands than the direct effect.
Leaf damage of sea grape can be com­

pared for two sites, one of which has two

experiments (lA, IB, II; Tabs. 2, 3, Row 5).
Effect ratios increase from the average of the

two very-large-island data sets to the

medium-to-large-islands data set. However,
values only vary from 2.0 to 3.3, and one of
the ratios for the very large island is slightly
greater than that for the medium-to-large
islands (3.3 vs 3.2, respectively). Magnitude
of damage increases with decreasing ratio,
and the lizard and no-lizard treatments co­

vary perfectly.
Leaf damage of buttonwood has only

two data sets to compare (II and III; Tabs. 2,
3, Row 6). Within one of these sets, however

(Abaco experiment, III), we can look at two

ratios, that for natural lizard to natural no­

lizard islands and that for lizard-introduction
to natural no-lizard islands. The former com­

parison (which is entirely observational)
gives the same ratio as that for the medium­

to-large islands (II), being 1.3. However, as

described above, introduction islands showed
an overshoot of the lizard effect, i.e., leaf

damage there became significantly smaller
than on either of the other treatment classes,
including natural lizard islands. The effect
ratio here is 4.4, substantially higher than the
1.3 for medium-to-large islands. As before,
when comparing data sets actual values of

damage rank inversely with the ratios, and
lizard and no-lizard treatments co-vary per­
fectly.

Total number of aerial arthropods can

be compared for three data sets, two from the
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very large island and one from small-to­
medium islands (lA, IB, III). First, we must

note that the effect of lizards on aerial arthro­

pods is not the same from one site to the next:

lizards decrease aerial arthropods on the very

large island but increase them on the small-to­
medium islands. The first effect is likely to be

direct, or mostly so, but the second must be
indirect. In any case, effect ratios are very
small, being 1.0 or 1.1 for the negative lizard
effect and 1.2 or 1.4 for the positive lizard
effect. While ratios are greater for the small­
to-medium islands, the effect reversal should
be noted. While lizard and no-lizard treatment

values (Tab. 2) co-vary perfectly, effect ratios
show no regular relationship to those values

(Tab. 5). Results for small arthropods alone
are similar (most arthropods are small), but
those for large arthropods show equal or

nearly equal effect ratios on small-to-medium
islands and a very large island (lA, III, Tabs.

2,3, Rows 9, 10).
In summary of the main trend, there is

an overwhelming tendency for the lizard
effect to be stronger, the smaller the island,
and it is especially evident for certain direct

effects, such as those on spider density, spider
species richness and spider composite diver­

sity. This fairly complete survey of our data
thus agrees with the more limited compari­
sons--all between the two experimental data
sets IB and III--reported by Spiller and
Schoener (1998). In the latter treatment, we

gave two reasons why the tendency might be
so.

First, we suggested that the lizard effect
should be stronger on islands rather than
mainlands because the experimental units
were more isolated in the former. Because the

plots are relatively close to one another on the

very large islands, dispersal of spiders from
removal to control treatments may have dilu­
ted the lizard effect. Perhaps more impor­
tantly, the heterogenous landscape on the very
large island may have contained habitats sui­
table for web spiders but not lizards, which
would be natural refugia for rare species and

sources of immigration for enclosures. Such
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refugia may not exist at all on small islands,
and sources having such refugia would be
much more distant. Indeed, nearly all species
that become extinct on the lizard-introduction
islands of the small-to-medium-island experi­
ment did not recolonize for the remainder of

the experiment. This can be seen from the

species-by-species time series given in Figs. 8
and 9; note the open triangles. In contrast, in
the lizard plots of the very-large-island expe­
riment most species becoming extinct later
recolonized. This can be seen for the corres­

ponding species-by-species time series of

Figs. 4 and 5; note the open circles. Note also
that lizards have been shown experimentally
to have a huge effect on the likelihood of suc­

cessful spider colonization (Schoener and

Spiller, 1995). Finally, on medum-to-large­
lizard islands, where we census the entire
island (and not just plots within the island),
some refugia may exist, and these would be

averaged into the island-wide spider density,
skewing its value toward that expected for a

no-lizard island.
A second reason why islands may

show a stronger lizard effect the smaller they
are involves diffuse predation, i.e., predation
by a number of different predator species
(Hixon, 1991; Menge et a!., 1994). The argu­
ment is that the more kinds of predators, the
more likely that removal of anyone of them
will fail to have a major effect because anot­

her predator or other predators will slow
down the expected increase of the prey. Other
vertebrates that may eat spiders (e.g. birds)
were present on the very large island (and
often observed within or near the experimen­
tal plots), but they were very infrequently
observed on the very small islands and
somewhat less infrequently observed on the

medium-to-large islands. It is likely that
invertebrate predators of spiders, e.g. hyme­
nopterans, also are more abundant the larger
the island (e.g. Schoener et a!., 1995). Hence
the impact of lizards on spiders may have
been weaker, the larger the island, because

predation was more diffuse, the larger the
island. Actual predation on the lizards them-

selves, expected to be highest on the very
large island, would further weaken the lizard

effect, i.e., soften the consequences of remo­

ving the predator. Somewhat at variance with
this general hypothesis is that the magnitude
of the effect of lizards on spiders we found on

the very large island was similar to that found

by Dial and Roughgarden (1995) in a Puerto

Rican rain forest, despite the latter's greater
complexity. This suggests that the relation of

degree of diffuse predation to the strength of
the lizard effect may level off over large to

very large island sizes.

Finally, the hypothesis that smaller
islands are more physically disturbed, there­

fore have lower population densities which

imply weaker species interactions, is clearly
contradicted by our data. Probably this is
because the reproductive rate of lizards is so

high that invading predators multiply rapidly,
as has been shown in other lizard introduction

experiments (Schoener and Schoener, 1983;
Losos and Spiller, in press) and has indeed

happened in the introduction experiment dis­
cussed here. The data are, however, consis­
tent with the opposing hypothesis given in the
introduction: predators reduce populations to

such sizes that they are more likely to be
"finished off" by physical factors, or vice
versa (indeed, additive density-independent
mortality factors act effectively to reduce the
intrinsic rate of increase, r, which means that
removal of one of them leads to a greater
effect ratio when the others are present than
when they are not). We have no direct eviden­
ce of such a mechanism, but we do find that
the rarer species are those becoming extinct
most readily (Schoener and Spiller, 1996;
Spiller and Schoener, 1998).

A secondary result of our comparisons
is that the difference between large and small
islands in effect ratio is smaller for indirect
than direct effects. If indirect effects in gene­
ral are small, then this would be expected,
because all ratios would tend to be small,
hence similar. In fact, arguments exist for
indirect effects being smaller than direct
effects overall (Schoener, 1993; Abrams et



aI., 1996), and this has been found to varying
degrees, both in our studies (Spiller and

Schoener, 1994; Schoener and Spiller, in

press) and in other studies (Schoener, 1993;
Menge, 1995). However, while indirect

effects might tend to be smaller than direct

effects, the difference in effect ratios could be
the same for large and small islands. Clearly,
the explanation of this secondary result
should it be real-and more corroborative
evidence is needed--awaits additional theore­
tical work.

In conclusion, when the precise ques­
tion is asked, does removal of a given type of

predator affect prey more on a small or on a

large island, the answer is resoundingly more

on the former. Different precise forms of the

general question concerning the relative

strengths of ecological interactions on small
vs large islands may have different answers.

Ours, however, has important implications for
the kinds of sites that would be especially sen­

sitive to the effects of an introduced predator.
In particular, isolated sites such as islands will

be affected more than equivalently sized sites
on a mainland, and the smaller the island, the

greater the impact. Likewise, fragmentation
of mainland habitats into small isolated sites
would particularly affect their vulnerability to

an invading predator. Thus our results may
provide a preview of impending environmen­
tal devastation yet at the same time confer
some causal understanding that helps point
the way toward prevention and even cure.
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