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If the brain were simple enough for us to understand it, weld/be too
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Resumo

Sincronizagao antecipada (AS, do inglés "anticipatedtaymgzation™) € uma forma de sin-
cronizacdo que ocorre quando uma influéncia unidirecioealv@ada de um transmissor para
um receptor, mas o receptor lidera o transmissor no temga.sifecronizacao contra-intuitiva
pode ser uma solucado estavel entre dois sistemas dinantiepkdos em uma configuracao
mestre-escravo quando o escravo recebe uma retroalifherafr@gsada e negativa. Diversos
exemplos de AS foram encontrados em diferentes sistemasytanto, faltam evidéncias ex-
perimentais de AS no cérebro. Nessa tese, nds investigamasténcia de AS em uma rede
neuronal do tipo mestre-escravo quando a retroalimentdg@sada e negativa é substituida por
um circuito inibitorio dinamico mediado por sinapses qu@si No nivel neuronal, mostramos
a existéncia de AS em um microcircuito de 3 neurdnios e em uBrpdpulacées neuronais nos
quais a retroalimentacao é proporcionada ou por um intednguou por uma subpopulacao
de neurdnios inibitérios. Uma transicdo suave de sincagdia atrasada (DS, do inglés "de-
layed synchronization™) para AS ocorre quando a conduigicaptica inibitoria € aumentada.
Mostramos que o fendmeno é robusto quando variamos os pasdndes modelos dentro de
um intervalo fisiolégico aceitavel. Os efeitos da plastci€e sinaptica dependente do tempo
nas transicdes DS-AS também foram investigados. Os rdsgliabtidos a partir dos nossos
modelos sdo comparaveis a dados obtidos experimentalemqi@nto macacos realizam cer-
tas atividades cognitivas. Em alguns casos, uma influémsdirecional dominante de uma
regido cortical para outra pode vir acompanhada de um temm@rdso tanto positivo como
negativo. Apresentamos um modelo para AS entre duas reggdelsrais e comparamos estes
resultados com os dados experimentais, obtendo excelamterclancia.

Palavras-chave: Sincronizacéo Antecipada, Modelos Neuronais, Retroaliaggio Inibitoria,

Curva de Resposta de Fase, Plasticidade Sinaptica Depieiderempo, Causalidade, Analise
de Dados.
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Resumen

La sincronizacion anticipada (SA) es una forma de sincemi@n que se produce cuando
una influencia unidireccional se transmite desde un emiswor rceptor, pero el sistema re-
ceptor adelanta al emisor en el tiempo. Este fenOmeno,aramt la intuicion, puede ser una
solucion estable de dos sistemas dinamicos acoplados eroafiguracion maestro - esclavo
cuando el esclavo estéa sujeto a una retroalimentacioninegatardada. Hay muchos ejem-
plos de SA que se han encontrado en diferentes sistemasnkargo, no existe evidencia ni
tedrica ni experimental de que ocurra en el cerebro. En esbejb de tesis se investiga la
existencia la SA en circuitos neuronales cuando la realiacgn retardada se sustituye por
un bucle inhibitorio mediado por sinapsis quimicas. A nivalironal, se muestra la existencia
de SA en circuitos de 3 neuronas o 3 poblaciones de neuromade da retroalimentacion la
proporciona una interneurona o una subpoblacion de nesiinhibitorias. Una transicion de
sincronizacion retrasada (SR) a SA se produce suavemeatel@se incrementa la conduc-
tancia sinaptica inhibitoria. Se encuentra que el fenénesnmobusto para una amplio espectro
de parametros del modelo dentro del rango fisiologico. Tambe investiga el papel de la
plasticidad neuronal en la transicion SR-SA. Los resuliamltenidos a partir del modelo se
comparan con los obtenidos experimentalmente en monoslawaalizan ciertas tareas cog-
nitivas. En algunos casos, una influencia direccional dam&de un &rea cortical a otra se
acompafa de un retardo que puede ser negativo o0 positivoreSenpa un modelo para las
relaciones entre dos regiones corticales del cerebro yrapamaran los resultados numéricos
con los datos experimentales, obteniendo un excelentedacue

Palabras clave: Sincronizacion Anticipada, Modelos Neuronales, Retroatitacion inhibito-
ria, Curva de Respuesta de Fase, Plasticidad SinapticanDiepée del Tiempo, Causalidad,
Andlisis de Datos.






Abstract

Anticipated Synchronization (AS) is a form of synchroniaatthat occurs when a unidi-
rectional influence is transmitted from an emitter to a nemebut the receiver system leads the
emitter in time. This counterintuitive phenomenon can bé&hls solution of two dynamical
systems coupled in a master-slave configuration when thie Eaubject to a negative delayed
self-feedback. Many examples of AS dynamics have been foudifferent systems, however,
theoretical and experimental evidence for it in the brais be@en lacking. In this thesis work
we investigate the existence of AS in neuronal circuits wiendelayed feedback is replaced
by an inhibitory loop mediated by chemical synapses. At #agronal level, we show the ex-
istence of AS in 3-neuron or 3-neuron-populations micgts, where the self-feedback is
provided either by an interneuron or by a subpopulation bikittory neurons. A smooth tran-
sition from delayed synchronization (DS) to AS typicallycacs when the inhibitory synaptic
conductance is increased. The phenomenon is shown to bstrolowa wide range of model
parameters within a physiological range. The role of spikeng-dependent plasticity in DS-
AS transitions is also investigated. The results obtaimethfthe model are compared with
those obtained experimentally in monkeys performing aertagnitive tasks. In some cases
a dominant directional influence from one cortical area totlaer is accompanied by either a
negative or a positive time delay. We present a model for At#/den two brain regions and
compare its results to the experimental data, obtainingceellent agreement.

Keywords: Anticipated Synchronization, Neuronal models, Inhibtéeedback, Phase Re-
sponse Curve, Spike-timing Dependent Plasticity, Catys&lata Analysis.
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CHAPTER 1

Introduction

The desire to understand nature is the moving force that smdience advance. The ability
to make models about the world and use them to predict factsaahon them is not just
intrinsically related to our daily researches, but also w0 everyday life. This is the very
evidence that one of the specialties of our brain is to makdetso In an extreme view, our
brain is the machine that constructs the (models of) reflity

What mechanisms allow us to model and predict facts are ortleeofireat questions in
neuroscience. In Buzsaki’'s words, “brains are foreteltiegices and their predictive powers
emerge from the various rhythms they perpetually genefafe” Exposing the mechanisms
that allow complex things to happen in a coordinated way énlifain has produced some of
the most spectacular discoveries in the field. These synaed activities in the brain are
the subject of this Thesis. In particular, we are interestethe time differences between
synchronized components.

1.1 Whatis Anticipated Synchronization?

Synchronization is an astonishing universal collectiveqmenon. It has been reported
in a striking variety of physical and biological systemsaisping from the subatomic to the
astronomical scales. The history of synchronized osoiltajoes back to Huygens’ work with
two weakly coupled pendulum clocks. In a classical consgichronization means adjustment
of rhythms of self-sustained periodic oscillators due teirthweak interaction. In the past
decades an increased interest in the topic of synchroaizafichaotic systems has ariseh. [

It was in the context of coupled chaotic units that the coho¢@nticipated synchronization
was discovered] 5, 6].

Two identical autonomous dynamical systems coupled in adinectional configuration

(that we call master-slave) can be described by the follgwiuations:

x = f(x(t)), (1.1)
y = flyt)) +Kx(t) -yt —tq)],

if the second system (the slave) is subjected to a negatiagattself-feedbacks andy € R"
are dynamical variables representing the master and the, §(&) is a vector function which
defines the autonomous dynamical systkng a matrix representing a coupling parameter and
ty IS a positive constant delay time.

The presence of the feedback, or the “memory term”, enabkes:tistence of a trivial so-
lutiony(t) = X(t +tq), which can be easily verified by direct substitution in theteyn above.

1



2 CHAPTER 1 INTRODUCTION

The striking aspect of this solution is its meaning: theestdtthe driven system anticipates
the driver’s statex. In other words, the slave predicts the master. This counteitive syn-
chronization manifold, called “anticipated synchroniaat (AS) was discovered in 2000, by
Voss []. The existence of AS is even more remarkable when the dycsaiithe master sys-
temx is “intrinsically unpredictable” as in chaotic systemis®, 5]. Along these years, AS has
been shown to be stable in a plenty of scenarios, includiagrétical and experimental works.

Voss also proposed another coupling scheme that could ieXftb[4]. The “complete
replacement” was described by:

X = —ax(t)+f(x(t—tg)), (1.2)
y = —ay(t)+f(x(t)).

The manifoldy(t) = X(t +tq) is also a solution of this system. In this situation, the@péition
time can be arbitrarily large, while the stability of AS iretformer case (Ed..1, called “delay
coupling”) requires some constraints on the constant diag T and couplingK [4, 6, 5].
Despite this fact, the delay coupling scheme is more intieiggsince we can maintain the
master’s dynamics unperturbed and change just the slavgfsings. In this Thesis we will
deal with the former case.

1.1.1 Physical systems

When Voss introduced the concept of AS, he proposed thatutdvapen new avenues in
the study, prediction and control of chaotic systefqy$[ 5]. Indeed, one of the first numerical
verification of AS was done by Masoller][in the following year. She numerically found
anticipated synchronization regime in a model of two clasdimiconductor lasers with optical
feedback when a small amount of the intensity of master laasrinjected coherently into the
slave laser.

AS was also observed between delayed-coupled chaotic rippMpsoller and Zanette
analytically studied the stability properties of the syrmhized states. Since time delays in
maps are discrete, the dimensionality of the problem resfaiite, whereas ordinary differen-
tial equations with finite time delays mathematically c@ngt an infinite-dimensional system.
Depending on the parameters, the maps may present AS oedeggchronization (the usual
retarded or lag synchronization). Hernandez-Garcia dhktudied two types of coupled
chaotic maps, 1D Bernoulli-like maps and 2D Baker maps, irckvan analytic treatment of
the stability of the AS regime was possible. They also shotvatithe numerical simulations
were in good agreement with the analytic predictions.

The first experimental observations of AS was done by Sikagsam et al. [0]. They
handled two diode lasers as transmitter and receiver. Tlséemlaser was rendered chaotic by
the application of an optical feedback from an externaitgav his experimental verification
of anticipating chaotic synchronization unveiled gregpanunities for application in optical
communications, information processing, and in contnglldelay induced instabilities in a
wide class of nonlinear systems.

Other experiments with unidirectionally coupled lasensorged anticipated and delayed
synchronization (DS) regimes, depending on the differdrateveen the transmission time and
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the feedback delay timel], 127]. The two regimes were observed to have the same stability of
the synchronization manifold in the presence of small pbetions due to noise or parameter
mismatches1”].

AS was also verified in experiments with electronic circyits, 14, 15, 16]. The electronic
circuits allow for a real-time anticipation of even stropgiregular signals. It was found that
synchronization of the driven circuit with chaotic fututates of the driving circuit is insensi-
tive to signal and system perturbations3,[14]. Moreover, a transition from AS to DS through
zero-lag synchronization with excitatory and inhibitopuplings, as a function of the coupling
delay, was reported in [/, 18].

A simple linear analysis was employed by Calvo et af] to show the minimal require-
ments necessary to reproduce AS. Numerically, AS was obdemtwo dissipative determin-
istic ratchets driven externally by a common periodic farg€, in unidirectionally coupled
ring and linear arrays of chaotic systems,[27], in a single system having two different time
delays (the feedback and coupling delag]), and in a new coupling scheme with varying time
delay [24]. Moreover, AS has been used as a mechanism to estimatertdmagtars of chaotic
systems?5], to predict 6] and to control chaotic trajectories ], 24].

An algorithm of coupling design for a long-term anticipatibpme was proposed by’ {]

Its efficacy was demonstrated for the Rossler system, thbleagroll Chua circuit, and the
Lorenz system. The algorithm is based on phase-lag comp@mgathe time-delay feedback
term of the slave system. The maximum prediction time atthwvith this algorithm is larger
than that obtained with the diagonal coupling usually useti¢ literature.

A new method for achieving AS without the time delay in uneédiionally coupled chaotic
oscillators was proposed in 2005]]. The method uses a specific parameter mismatch between
the drive and response that is a first-order approximatiomu® time delay coupling. The
stability analysis, numerical results and an experimeolelervation of the effect in radio-
frequency electronic oscillators was present&d. [

1.1.2 Biological systems

After several works in physical systems, a reasonable gureatises whether AS can ap-
pear in natural (not man-made) systems. In his first papeutah®, Voss already proposed
the investigation of physiological systems: “Since theanhdng mechanisms are so simple, it
should be worth searching for synchronization in physimalsystems, where delayed feed-
back dynamics seem to play a crucial raie][ In particular, arrays of phase-locked oscillators
are suspected to be important for an understanding of nalirdormation processing, and the
introduction of a physiologically motivated time delay mayprove such models3p].”

The first attempt to find AS in biological inspired systems wase by Ciszak et al3[].
They studied two unidirectionally coupled FitzHugh-Naguneuron models in the presence of
negative delayed self-feedback in the slave (seeiy. They showed that AS occurs in this
non-autonomous dynamical system, driven by white ndised4, 35]. In such models, even
when the neurons were tuned to the excitable regime, the slkanron was able to anticipate
the spikes of the master neuron, working as a predidtdr [

In 2013 Pyragiené and Pyragas] investigated AS in nonidentical chaotic neuronal mod-
els unidirectionally coupled in a master-slave configoratithout a time delay feedback.
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' Master
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Stimulus Delayed Feedback
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Figure 1.1: Schematic representation of two model neuroopled in a master-slave config-
uration, with a negative delayed self-feedback loop (attar&zed by the delay timg = 7 in
Eq.1.1) in the slave neuron. Reproduced from Ciszak et=i]. [

Based on the modified scheme proposed i],[they replaced the feedback tet{x(t) —
y(t—tq)) in Eq.1.1by the simpler coupling without a time delag{x(t) —y(t)). They showed
that if the parameters of chaotic master and slave systeensmi@matched in such a way that
the mean frequency of a free slave system is greater than ¢am finequency of a master
system, then both the AS and DS regimes can be achieved. tirttiacslave neuron antici-
pates the chaotic spikes of the master neuron for coupledl&dsystems as well as for two
different neuron models: the Hindmarsh-Rose and the adgaptiponential integrate-and-fire
neurons 4.

1.1.2.1 The inhibitory feedback loop

Though potentially interesting for neuroscience, it is tiovial to compare these theoret-
ical results with real neuronal data. The main difficultyslie requiring that the membrane
potentials of the involved neurons be diffusively coupl@thile a master-slave coupling of the
membrane potentials could in principle be conceived by mehmelectrical synapses (via gap
junctions) [37] or ephaptic interactions3f], no biophysical mechanism has been proposed to
account for the delayed inhibitory self-coupling of thevelanembrane potential employed by
Ciszak et al. 3, 34, 14].

In the brain, the vast majority of neurons are coupled viaribal synapses, which can
be excitatory or inhibitory. In both cases, the coupling iiectional and highly nonlinear,
typically requiring a suprathreshold activation (e.g. #&spof the pre-synaptic neuron to
trigger the release of neurotransmitters. These neusatrdiers then need to diffuse through
the synaptic cleft and bind to receptors in the membraneeptst-synaptic neuron. Binding
leads to the opening of specific channels, allowing ionicanis to change the post-synaptic
membrane potentiai3[/]. This means that not only the membrane potentials are mecttly
coupled, but the synapses themselves are dynamical systems

We proposed to bridge this gap investigating whether AS canairoin biophysically plau-
sible model neurons coupled via chemical synapses. Moeeeisiing, we replaced the self-
feedback loop by a dynamical inhibitory loop mediated byrdgarmneuron39]. Such inhibitory
feedback loop is one of the most canonical neuronal motifeerbrain 10, 41]. It was found
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to play several important roles, for instance, in the spooadl [47], thalamus {3, 44], cortex,
etc. Furthermore, we extend our results to population nsoielvhich the inhibitory loop is
mediated by a pool of interneurons. The existence of AS nedliby a dynamical inhibition
unveils several possibilities in the investigation of ASther biological systems.

1.2 Brief computational neuroscience overview

The brain is a complex system whose components create rstwiat continually gen-
erate complex patterns. These brain networks span ovempteukmporal and spatial scales.
The notion that the brain can be fully reduced to the opeamationeurons or, in the opposite
view, that cognition can be understood without making efee to its biological substrates
are exaggerated simplification$. Although several brain regions show significant special-
ization, higher functions such as cross-modal informatiotegration, abstract reasoning and
conscious awareness are viewed as emerging from intemacticross distributed functional
networks. Indeed, most brain functions are thought to relyth® interrelationship between
segregation and integration. The coexistence of these tiwoiples is considered the origin of
neural complexity45]

Once the cellular machinery for generating impulses andrémsmitting them rapidly be-
tween cells had evolved, connectivity became a way by whealrans could generate diverse
patterns of response and mutual statistical dependencmeCtivity allows neurons to act both
independently and collectively. In this sense, the braircfion is fundamentally integrative; it
requires that components and elementary processes wathergiving rise to complex pat-
terns. Connectivity is essential for integrating the awiof (segregated) individual neurons
and thus for enabling cognitive processes such as perogptie@ntion, and memory. Connec-
tivity translates unitary events at the cellular scale Iatge scale patterns.

1.2.1 Neuronal level

Neurons fire spikes and their main behaviors are describéuyaction potentials. There-
fore, neurons can be classified by their firing patterns,Xan®le, regular spiking (RS), intrin-
sically bursting (IB), chattering (CH), fast-spiking (F&)w-threshold spiking (LTS), thalamo-
cortical (TC) or resonator (RZ) Typical responses of eadhe$e classes to an external applied
currentl (t) are shown in Figl.2.

The most simple models representing a minimal biophysintatpretation for an excitable
neuron are the conductance-based models. The first modplkifig neurons was proposed
by Alan Lloyd Hodgkin and Andrew Huxley in 1952 §)]. It describes the ionic mechanisms
underlying the initiation and propagation of the actiongmtials in the squid giant axon. The
precise mathematical description of the axon was possiletd two main features. First,
this axon has a large length and diameter, which permittectrelphysiological intracellular
recordings. Second, it has mainly two types of voltage gated¢hannels. Since ion channels
are selective to particular ionic species, such as sodiynot@ssium, they give rise to specific
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regular spiking (RS} intrinsically bursting (1B} chattering (CSH} fast spiking (FS}
1
thalamo-cortical (TG} thalamo-cortical (TG} resonator (R} Iow-threshold spiking (LTS}

|20 mi

e ool TTT _ 1

Figure 1.2: Examples of different firing patterns that n@sroan exhibit. Electronic version of
the figure and reproduction permissions are freely avalabivww.izhikevich.org.

ionic currents. The capacitive current is equal to the suallabnic currents:

d\t/ = Z lion (1-3)

whereC,, is the membrane capacitance of the cell and the ionic cuagstciated to iox
follows the Ohm's law:ly = Gx(Ex — V). Ex is the reversal potential of the ion a@y is the
channel conductance. It is proportional to the maximum ootahceGy and the dynamical
variables describing the activation or inactivation of theannels.

Therefore, the complete model consists of four coupledhargidifferential equations asso-
ciated to the membrane potentialand the ionic currents flowing across the axonal membrane
corresponding to the Na K™ and leakage currents. The gating variables for sodiurh arel
m and for potassium ig:

dv — _
Crgy = Gnamh(Ena—V) + Gkn*(Ex — V)
+Gm(Vriest—V) +1 + Z Isyn (1.4)
dx
T = V)0 —B(Vx, (L5)

wherex € {hmn}. The voltage dependent rateg and 3x were fitted experimentally in the
seminal work of Hodgkin and Huxley:f].

In its simplest version, the Hodgkin-Huxley (HH) model repents a neuron by a sin-
gle isopotential electrical compartment, neglects ion emeents between subcellular compart-
ments, and represents only ion movements between the iasdleutside of the cell. There
are several more detailed models, called multi-compantahemodels {7, 48, 49|, which take
into account, for example, neuronal morphology and spdisatibution of ion channels. In the
opposite direction, several reduced models (1, 52] are available in order to describe with
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Figure 1.3: Comparing biological plausibility and implemt&tion cost among different neuron
models. Figure extracted from Izhikevich’s pap&®][

minimal ingredients specific dynamical features of realrons. In particular, these simplified
model are useful in analytical studies and large-scale coatipns.

The choice of the best model depends on the questions onteissted to answer. This
choice is also restricted by the available computationalgyo Izhikevich tried to answer this
guestion and to show why his own model is useful in a papetledtiwhich model to use for
cortical spiking neurons?5[3]. In his work, he showed a detailed comparison of the neuro-
computational properties of spiking and bursting modelbe Tain results are summarized
in Fig. 1.3, Along this Thesis we use conductance-based model such andldlso simpli-
fied models, for example, the Izhikevichl], Morris-Lecar (4] and Integrate-and-Fire5p)
models. Each employed model is described in detail whenssacg
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Figure 1.4: Standard model of chemical synaptic transimsfsi4]. (a) A presynaptic action
potential propagates down the axon and reaches the nemm#étr (b) Depolarization of the
nerve terminal activates de voltage-gated Cahannels in the presynaptic membrane. The
increasing of the intracellular concentration ofC@romotes the neurotransmitter release. (c)
The neurotransmitters in the synaptic cleft activate ldygates ions channels on the postsy-
naptic membrane, permitting the entry of the specific ions"(k this example) and leading
to an excitatory postsynaptic potential. Reproduced freasdll and Kandeb[].

1.2.2 Chemical synapses

Spikes are generally not directly transmitted between Camaoation between neurons re-
quires the exchange of electrical or chemical signals. &leesnections, called synapses, are
the dynamical links of our neuronal networks. Dependinglmnttansmission mechanisms,
they can be divided in chemical or electrical synapses.dotgtal synapses the membranes of
the two communicating neurons come extremely close at thapse and are actually linked
together by an intercellular specialization called a gagfion [57]. In chemical synapses,
the electrical activity in the presynaptic neuron inducasa the activation of voltage-gated
calcium channels) the release of neurotransmitters thdstio receptors located in the postsy-
naptic cell. The neurotransmitter may initiate an eleatriesponse (postsynaptic potential) or
a secondary messenger pathway that may either excite dititine postsynaptic neuron (see
Fig. 1.4). Here we will use mainly chemical synapses.

In the brain, synaptic transmission is usually mediatedwytatory (depolarize) and in-
hibitory (hyperpolarize) amino acid neurotransmittelgt@mate and GABA, respectively. Glu-
tamate activates AMPA/kainate receptors associated ttréasmission, and NMDA receptors
associated to slow transmission and synaptic plasticitis wWorth mentioning that there is a
plethora of physiological subtypes within a given receptass. In addition, its properties are
known to vary depending on the particular subunits that naakeceptor. Typically an exci-
tatory (inhibitory) synaptic current facilitates (hamgkthe firing of the postsynaptic neuron.
Moreover, one specific neuron can only excite or inhibit ttreecs, not both. Hence, neurons
can also be labeled as excitatory or inhibitory neuréia. [
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The macroscopic behavior of synaptic currents can be desthy kinetic models. It means
the synaptic current is described by Ohm'’s law:

|(|) :glr(|)(v_El>7 (16)

whereV is the postsynaptic potentiat, the maximal conductanck; the reversal potential, and
the fractionr) (i =AMPA,NMDA,GABA a,GABAg) of bound synaptic receptors is modeled
by a first-order kinetic dynamics:
|

d(;—(t) = oi[T](1—rDy—gr). (1.7)
[T] is the neurotransmitter concentration in the synapticd eletl the values of the rate con-
stantsapa, Ba, ac, and Bg are known to depend on a number of different factors and vary
significantly |9, 60, 61]. Simple kinetic models may not adequately simulate the dietils
of synaptic currents, but they provide a good approximatiiosome features such as rise, de-
cay, voltage dependence and summation of currents. Theysafel for describing general
behavior of small microcircuits. Also important, they maim computational efficiency in
simulations of larger neuronal networks.

1.2.3 Neuronal populations

Neuronal networks exhibit complex spatial and temporaigpas even in the absence of
external input. Specific cognitive tasks require the atitwaof different brain regions and
patterns. Therefore, neuronal population models shoutdrapass two main aspects. First,
capture the large-scale interareal behavior at multiptepteral scales as well as neuronal
scale features. Second, relate the activity patterns glutiffierent situations to the underly-
ing anatomical connectivity of the brain.

In a neuronal population model we know the structural cotiviee (i.e. anatomical) and
we can explore the functional and effective connectivigldied to correlation and direction
of the information flux respectively) under distinct comastits [5Z]. This can provide useful
insights to the reversal problem. Typically we can extractctional and effective relations
between distinct brain regions from experimental data,vireitdo not know the anatomical
connectivity.

Usually, biophysically plausible populations models agénorks of spiking neurons mod-
els linked via chemical synapses. Cortical-like modelddsity consider the proportion of
excitatory and inhibitory neurons as 80% to 20% in the coatek sparse connectivity between
neurons 45]. In addition, experimental data suggest that corticaiaeg exhibit small-worlds
properties, which is hypothesized to promote economy aficiezfcy during the information
transmission. Nevertheless, several studies proposzelitftopologies to brain networks, such
as randomly, hierarchical, all-to-all connections, or atomie of them.

1.2.4 Synchronization in the brain

It is widely recognized that the brain’s ability to generatel sense temporal information is
a prerequisite for both action and cognition. Synchronbythms represent a core mechanism
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for temporal coordination of neuronal activity. In the ldstades, theoretical and experimental
studies have made significant advances to comprehend tlidaceand circuit basis of these
oscillations p3]. A major breakthrough was the realization that synapthabition plays a
fundamental role in the rhythmogenesis. Itis importantdterthat neuronal correlation implies
synchronization in some time scale, which can occur with thout oscillations. However,
abnormal neural synchronization is tightly related to raédtsorders like schizophrenia and
autism p4]. Altogether, it is not well known if synchronization emeyas an epiphenomenon
or what is its functional significance.

How information from distinct neuronal regions is exchashgea major question underly-
ing the binding problem. In other words, how objects, cqleminds, background and abstract
or emotional features are combined into a single experferioethe absence of a coordinat-
ing center, the binding by synchrony hypothesis| jwas spread (but not completely accepted)
within the scientific community. It suggests that synchrzation works as a coordinator to
select and route signals and bind together spatially satgdgegions.

More recently, another hypothesis gained several endgrdex communication-through-
coherence(t]. Fries proposed that activated neuronal oscillation drydhmic excitability
fluctuations produce temporal windows for communicatiomly@&oherently oscillating neu-
ronal groups can interact effectively, because their comoation windows for input and for
output are open at the same times. Thus, a flexible patterolwrence defines a flexible
communication structure, which subserves our cognitiveldikty.

1.3 Experimental considerations

In neuroscience, electrophysiology is the study of theteted properties of neurons and
tissues. It involves measurements of voltage changes anttielcurrents on a wide variety of
scales, from single ion channel proteins to large-scatgratesignals in the nervous system. In-
tracellular recording involves measuring voltage andiorent across the neuronal membrane,
whereas extracellular field potentials recordings aretadl#o local current sinks or sources
that are generated by the collective activity of many céle.describe below some techniques
that could facilitate the investigation of anticipated slyronization in neuronal networks.

Dynamic clamp is an electrophysiological method that usesaktime interface between
one or several living cells and a computer to simulate dyngmbcesses such as membrane
potential or synaptic currents. Each living cell is impalsdone or more sharp or patch mi-
cropipette electrodes and its membrane potential is amlegnd fed into the dynamic clamp
machine. The dynamic clamp system contains a model of thehraama or synaptic conduc-
tance to be inserted in the living cells. It computes the enis generated by the modeled
conductances and outputs it in real-time. That currentjectad into the living cell, which
therefore receives the same current as if it contained thabrene or synaptic conductance
modeled with the dynamic clampT]. A hybrid patch clamp setugb], similar to this, is de-
scribed in Chapter 2 in a proposed experiment to investi§dteetween a master and a slave
neuron in the presence of an inhibitory feedback loop.

The hypothesis that neural assemblies form the basic fumadtiunit of operation of the
mammalian central nervous system was originally proposeddnald Hebb §9] more than



1.3 EXPERIMENTAL CONSIDERATIONS 11

60 years ago. Since then, several neurophysiologists t@veed to design electrophysiolog-
ical methods capable of testing the principles governimgaberation of dynamic distributed
neural systems. In this sense, the development of multirelde recordings was the major
breakthrough in the field. In particular, the local field putal (LFP) refers to the electric po-
tential in the extracellular space around neurons, whichbearecorded using multi-electrode
arrays. It consists in an invasive technique, recorded pthdom within the cortical tissue
or other deep brain structures, in alert or anesthetizepsigh Since LFPs are generated by
synchronized synaptic currents arising on cortical nesirtirey represent one of the best type
of signals to investigate time differences between syntkea cortical regions. In fact, in
Chapter 5, we propose that some counter intuitive phenomnegated in LFP data’p), 71] are
evidences of anticipated synchronization in the cortex.

Less direct observations of electrical brain activity ilwethe recording of electromagnetic
potentials generated by combined electrical currentsrgélaeuronal populations. Electroen-
cephalography (EEG) and magnetoencephalography (ME&)igpees are noninvasive record-
ings, made through groups of sensors placed on, or neayiaes of the head. EEG and MEG
directly record signals generated directly from neurowrévdy and consequently have a high
temporal resolution. Although the spatial resolution ispoompared to the LFP, intracellular
recordings from cortical neurons exhibit a close corregipoce between EEG/LFP activity
and synaptic potential§ P]. Therefore, we expect that the existence of AS in the bramaiso
be verified through EEG measures. Indeed this would open pssilglities in the study of AS
in humans.

Since AS has not been reported in any biological system apdritncular in any neuronal
systems, we investigate the existence of AS in several ggpally inspired models that could
be potentially tested. Our main concern was to employ biolily plausible features in order
to be able to propose experimental setups in which AS coulebied. We investigated AS in
two scales: neuronal level and large-scale populatiomstl¥iintracellular recordings such as
dynamic clamp, which allows the measure of spike timing ofrexted single cells, could be
useful to verify the results presented in Chapter 2 and 3daronal microcircuits. Secondly,
multi-electrode arrays recordings provide data that cacdnepared to the results of neuronal
populations model described in Chapter 4. Therefore, inp@&hneb we analyze cortical data
from LFP recordings and compare them to our models. Finall¢hapter 6 we show results
of spike-timing dependent plasticity in neuronal netwowksich exhibits AS that could be
experimentally tested in both neuronal and populatioralesc






CHAPTER 2

Anticipated synchronization in microcircuits

Small networks that can be represented by low dimensioséBsys have attracted a lot of
attention from neuroscientists along decades. Synchaarzproperties of a few coupled neu-
rons have been exhaustively studied analytically, nuralyiand experimentally. Despite the
abundant literature on synchronization of neuronal mgtifs first attempt to find anticipated
synchronization in a biologically plausible modé&lF] which can be experimentally tested is,
as far as we know, the one we describe in this chapter. Sina®menodels are good candi-
dates to represent the master and slave systems, AS mettiethiave (postsynaptic) neuron
could fire a spike right before the master (presynaptic) oredoes $3]. However, the delayed
self-feedback on the slave, suggested by Voss to attainsA8)realistic in neuronal circuitry.
Therefore, we propose to bridge this gap by replacing thayeel self-feedback term by an
inhibitory feedback loop mediated by chemical synapsesaaridterneurond9.

2.1 Master-Slave-Interneuron: the 3-neuron motif

We start by mimicking the original master-slave circuit{debed by eqgs.1(1)) with a
unidirectional excitatory chemical synapse (M> S in Fig.2.1(a)). In a scenario with standard
biophysical models, the inhibitory feedback we proposévsmgby an interneuron (I) driven by
the slave neuron, which projects back an inhibitory chehsgaapse to the slave neuron (see
Fig. 2.1(a)). So the time-delayed negative feedback is accounteloyfa chemical inhibition
which impinges on the slave neuron some time after it hasegpigimply because synapses
have characteristic time scales. Such inhibitory feedbback is one of the most canonical
neuronal microcircuits found in the nervous system, asristaince, in the spinal cord7],
cortex [27], thalamus {3, 44] and nuclei involved with song production in the bird braii¥]|
For simplicity, we will henceforth refer to the 3-neuron mhof 40, 41] of Fig. 2.1(a) as a
Master-Slave-Interneuron (MSI) system.

As we will show below, whether or not the MSI circuit can exh&S depends, among other
factors, on the excitability of the three neurons. In the MBis is controlled by a constant
applied current (see sectianhl). To test the robustness of the results (and at the same time
improve the realism and complexity of the model), in seclgtwe study the four-neuron motif
depicted in Fig2.1(b), where the excitability of the MSI network is chemicathodulated via
synapses projected from a global drivBy)( From now on, we refer to the 4-neuron motif as a
Driver-Master-Slave-Interneuron (DMSI) microcircuit.

13
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(@) (b)

O O==I0 ©

Figure 2.1: (a) Three neurons coupled by chemical synapsiimaster-slave-interneuron
(MSI) configuration : excitatory AMPA synapses (with maxireanductancegs) couple mas-
ter (M) to slave (S) and slave to interneuron (1), whereasaibitory GABA, synapse (with
maximal conductancgg) couples interneuron to slave. (b) Same as (a), except liitharee
neurons of the MSI circuit receive excitatory (NMDA) synapg$rom a driver neuron (D).

2.1.1 Neuron model

In the above networks, each node is described by a Hodgkktep(HH) model neu-
ron [46], consisting of four coupled ordinary differential equets associated to the membrane
potentialV and the ionic currents flowing across the axonal membramesmonding to the
Na", K™ and leakage currents. The gating variables for sodiunh aredm and for the potas-
sium isn. The equations reac{]:

dv — _
Cogy = Gnamh(Ena—V) + Gkn*(Ex — V)
+Gm(Vriest—V) +1 + Z Isyn (2.1)
dx
T = V)0 —B(Vx, (2.2)

wherex € {h,m,n}, Cy, = 971 uF is the membrane capacitance of @380 x 1T um? equipoten-
tial patch of membranéf], | is a constant current which sets the neuron excitabilityahg,
accounts for the interaction with other neurons. The ral@atentials ar&y, =115 mV,Ex =
—12 mV andV,est = 10.6 mV, which correspond to maximal conductanGag, = 1080m mS,
Gk = 324mmS andGy, = 2.7mmS, respectively. The voltage dependent activation angtiina
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vation rates in the Hodgkin-Huxley model have the form:

10—V

an(v) = 1O(Xe(1o_v)/1o_1)7 (23)

Bn(V) = 0.125 /80 (2.4)
25—V

am(V) = 10(8(2&\/)/10—1), (25)

Bn(V) = 4eV/18 (2.6)

an(V) = 0.07e /20, (2.7)

1
Bh(v) - (e(go_v)/lo_l_l)' (28)

Note that all voltages are expressed relative to the repttgntial of the model dt= 0 [54].

According to Rinzel and Miller{4], in the absence of synaptic currents the only attractor
of the system of equatiors1-2.8for | < 177.13 pAis a stable fixed point, which loses stability
via a subcritical Hopf bifurcation dt~ 27651 pA. For 17713 pA<| < 27651 pA, the stable
fixed point coexists with a stable limit cycle.

2.1.2 Synaptic coupling

AMPA (A) and GABAx (G) are the fast excitatory and inhibitory synapses in oudeho
[see Fig.2.1(a)]. Following Destexhe et abf], the fractionr() (i = A,G) of bound (i.e. open)
synaptic receptors is modeled by a first-order kinetic dyioam

(i) . :

O = aT—r®)—gr®), (2.9
wherea; andf; are rate constants aiil] is the neurotransmitter concentration in the synaptic
cleft. For simplicity, we assumd | to be an instantaneous function of the presynaptic potentia
Vpre:

. Tmax
[T](Vpre> - 1+ e[—(vpre—vp)/Kp] ) (210)
where Tmax= 1 mM~1 is the maximal value ofT], Kp = 5 mV gives the steepness of the
sigmoid and/p, = 62 mV sets the value at which the function is half-activated. [
The synaptic current at each synapse is given by

10 =gr(v —g), (2.11)

whereV is the postsynaptic potentiaj, the maximal conductance aiglthe reversal potential.
We useEp = 60 mV andEg = —20 mV.

The values of the rate constarttg, Ba, 0c, and g are known to depend on a number
of different factors and significantly vary$, 60, 61]. To exemplify some of our results, we
initially fix some parameters, which are set to the valuesatfl@2.1 unless otherwise stated
(section2.2). Then we allow these parameters (as well as the synaptauctances) to vary
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MSI | DMSI

ap(MMImsH | 1.1 | 11
Ba (ms™?) 0.19| 0.19

ac(MMIms 1) | 50 | 50
Bs (ms™) 0.30| 0.60

an (mMM~Ims ) | — | 0.072
By (ms D) — 1 0.0066
ga (nS) 10 10
| (pA) 280 | 160

Table 2.1: Standard values employed in the model. See tegefails.

within physiological range when exploring different synmhization regimes (see sectioh8
and2.4).
The slow excitatory synapse is NMDA (N) and its synaptic eatris given by:

I(N) = g B(V)rN (v —Ey), (2.12)

whereEy = 60 mV. The dynamics of the variableN) is similar to eq. 2.9) with ay =
0.072 mMms1 and By = 0.0066 ms!. The magnesium block of the NMDA receptor
channel can be modeled as a function of postsynaptic voltage

1
" 11 e(-0062/)MgZ]o/357

B(V) (2.13)
where[Mg?*], = 1 mM is the physiological extracellular magnesium concaitn.

In what follows, we will drop the neurotransmitter supenstsA, G andN from the synap-
tic variablesr andl. Instead we use double subscripts to denote the referrecpdepostsy-
naptic neurons. For instance, the synaptic current in teesheuron due to the interneuron
(the only inhibitory synapse in our models) will be denoted, g and so forth.

2.2 Three dynamical regimes

2.2.1 Phase-locking: delayed and anticipated synchronigan

Initially, we describe results for the scenario where alino@s receive a constant current
| > 280 pA. This corresponds to a situation in which the fixed {mare unstable and, when
isolated, all neurons spike periodically. All other paraeng are as in Tabl2.1. For different
sets of the inhibitory conductanagg; our system can exhibit three different behaviors. To
characterize them, we defitfé as the time the membrane potential of the master neuron is at
its maximum value in theth cycle (i.e. itd-th spike time), andjS as the spike time of the slave
neuron which is nearest tfy.

The delayr; is defined as the difference (see FigR):

T =t>—tM. (2.14)
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Initial conditions were randomly chosen for each computeeé series. Whem; converges to a
constant value, a phase-locked regime is reached][ If T > 0 (“master neuron spikes first”)
we say that the system exhibits delayed synchronizatior) (B§. 2.2(a)]. If T < 0 (“slave
neuron spikes first”), we say that anticipated synchrommnafAS) occurs [Fig2.2(b)]. If T
does not converge to a fixed value, the system is in a phas€RIDj regime 5]. The extent
to which the AS regime can be legitimately considered “@péited” in a periodic system will
be discussed below.

—M
L |— _:S M
120F | |S £ tM T=t>-1 20 1=t M

V (mV)
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1 1 1 1
1
76980 49960 49970 i (ms) 49980 49990

1
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Figure 2.2: Membrane potentisll as a function of time for an external currdnt 280 pA
in the master (M), slave (S), and interneuron (I) neurons flbt illustrates two regimes: (a)
0c = 20 nS leads to delayed synchronization (DS), where0, and (b)gs = 40 nS leads to
anticipated synchronization (AS), where< 0. Other parameters as in Tallé.

In Figure2.3we show examples of time series in the three different regi(®s, AS and
PD). The different panels correspond to the membrane patefraction of activated recep-
tors for each synapse, and synaptic current in the slaveoneulkor a relatively small value
of the inhibitory coupling §g = 20 nS, Fig.2.3(a)] the slave neuron lags behind the master,
characterizing DS. In Fi2.3(b), we observe that by increasing the value of the inhilitau-
pling (s = 40 nS) we reach an AS regime. Finally, for strong enough itibib[gs = 60 nS,
Fig. 2.3(c)] the PD regime ensues.

2.2.2 Phase-drift

In the DS and AS regimes the master and slave neurons spike same frequency. How-
ever, when the system reaches the PD regime the mean firangfrite slave neuron becomes
higher than that of the master. The counterintuitive reslitiwn in Fig.2.4(a) emerges: the
mean firing rate of the slave neurimtreasesvhile increasing the conductance of thaibitory
synapse projected from the interneuron. For the parti@darbination of parameters used in
Fig. 2.4(a), the transition turns out to be reentrant, i.e., theesysteturns to the DS regime
for sufficiently strong inhibition (a more detailed expltoa of parameter space will be pre-
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Figure 2.3: Time series of the membrane potentidls bound receptorsr] and synaptic

currents [), with model parameters as in Taldlel for the MSI motif. Note that the system is

periodic in the DS and AS regimes [(a) and (b) respectivéiyi,not in the PD regime (c).
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Figure 2.4: (a) The mean firing rate of the slakg) (coincides with the mean firing rate of the
master By) for DS and AS regimes, but it is larger for PD. (b) In PD, theure map of the
interspike interval of the slave is consistent with a quasiodic system (the pink star shows
the return map of the master).

sented below). Figurg.4(b) shows the return map of the interspike interval (ISI)ha slave,
which forms a closed curve (touching the trivial singlefgaeturn map of the master). This is
consistent with a quasi-periodic phase-drift regime.

2.3 Scanning parameter space

Note that in this simple scenanyg, plays an analogous role to thatkbin Eq. 1.1, for which
AS is stable only whelK > K. (eventually with reentrancesj§]. Moreover, the behavior of
the synaptic current in the slave neuron is particularlgadng: in the DS regime [Fid.3(a)],
it has a positive peak prior to the slave spike, which drivesfiring in the slave neuron. In
the AS regime [Fig2.3(b)], however, there is no significant resulting currentegpt when the
slave neuron is already suprathreshold. In this case, tlierdthas essentially no effect upon
the slave dynamics. This situation is similar to the stablecgpated solution of EqL.1, when
the coupling term vanishes.

The dependence of the time delayn gg is shown in Fig.2.5 for different values of the
external current and maximal excitatory conductangg. Several features in those curves
are worth emphasizing. First, unlike previous studies onvsere the anticipation time was
hardwired via the delay parametgfsee eq.[.1)], in our case the anticipation tintels a result
of the dynamics. Note thag; (the parameter varied in Fig.5) does not change the time scales
of the synaptic dynamical variableg,(only the synaptic strength.

Secondly varies smoothly witlgs. This continuity somehow allows us to interpret 0
as a legitimately anticipated regime. The reasoning is k®nde. Forgg = 0, we simply have
a master-slave configuration in which the two neurons spgimgdically. Due to the excitatory
coupling, the slave’s spike is always closer to the massgike which precedes it than to the
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master’s spike which succeeds it [as in e.g. Fiy2)(a)]. Moreover, the time difference is
approximately 15 ms, which is comparable to the characteristic times of yim@gse. In that
case, despite the formal ambiguity implicit in the peridgiof the time series, the dynami-
cal regime is usually understood as “delayed synchromizate interpret it in the following
sense: the system is phase-locked at a phase differenca weh defined signi5]. Increasing
de, the time difference between the master’s and the slavikespventually changes sign [as
in e.g. Fig. 2.2)(b)]. Even though the ambiguity in principle remains, #hex no reason why
we should not call this regime “anticipated synchronizati@gain a phase-locked regime, but
with a phase difference of opposite sign). In fact, we havefoond any parameter change
which would take the model from the situation in Fig.3)(a) to that of Fig. 2.2)(b) by grad-
ually increasingthe lag of the slave spike until it approached the next magiig&e. If that ever
happenedr would change discontinuously (by its definition). Therefdhe term “anticipated
synchronization” by no means implies violation of cauyadibd should just be interpreted with
caution. As we will discuss later, the relative timing betneore- and postsynaptic neurons
turns out to be extremely relevant for real neurons.

Third, it is interesting to note that the largest anticipattime can be longer (up to 3 ms,
i.e. about 20% of the interspike interval) than the largesetfor the delayed synchronization
(= 1.5 ms). If one increasex; further in an attempt to obtain even larger values,dfowever,
the system undergoes a bifurcation to a regime with phase(dhich marks the end of the
curves in Fig2.5).
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Figure 2.5: Dependence of the time delayith the maximal conductanags for different
values of the applied currehtandga. The end of each curve (stars) marks the critical value of
Ja, above which the system changes from AS to PD.

The number of parameters in our model is very large. The numwiaynamical regimes
which a system of coupled nonlinear oscillators can preisealiso very large. Notablp/g-
subharmonic locking structured in Arnold tongues usualtgus [/7]. These occur in our
model as well, but not in the parameter region we are consgleln this context, an attempt to
map all the dynamical possibilities in parameter space @vbel extremely difficult and, most
important, improductive for our purposes. We thereforaifoon addressing the main question
of this work, which is whether or not AS can be stable in a bygitally plausible model.
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Figure 2.6: Time delay (right bar) in the(ga,gc) projection of parameter space: DS (blue,
right), AS (red, middle) and PD (white, left — meaning that stationary value ofr was
found).

In Fig. 2.6 we display a two-dimensional projection of the phase diagodour model. We
employ the values in Tabl2.1, except forga, which is varied along the horizontal axis. Note
that each black curve with circles in Fig.5 corresponds to a different vertical cut of FR&)6,
along whichgg changes. We observe that the three different regimes arébdied in large
continuous regions, having a clear transition between thdoreover the transition from the
DS to the AS phase can be well approximated by a linear relgiigga ~ 3.5 in a large portion
of the diagram.
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Figure 2.7: Time delay (right bar) in the(ga,dc) projection of parameter space for different
combinations of3p and 3g. From left to right we have respectively PD, AS and DS regimes
as in Fig.2.6.

Linearity, however, breaks down as parameters are furtheed. This can be seen e.g.
in Fig. 2.7, which displays the same projection as Fid, but for different combinations @@g



22 CHAPTER 2 ANTICIPATED SYNCHRONIZATION IN MICROCIRCUITS

andBa. We observe that AS remains stable in a finite region of tharpater space, and this
region increases as excitatory synapses become faster.
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Figure 2.8: Time delay (right bar) in the(ga,dc) projection of parameter space for different
values ofl. PD, AS and DS regimes as in Fig6.

Figure 2.5 suggests that larger values of the input curieeventually lead to a transition
from AS to DS. This effect is better depicted in Fi§8, where the DS region increases in
size ad (and therefore the firing rate) increases. Figuwré¥b)-(d) also show that the system
can exhibit reentrant transitions gg is varied. Most importantly, however, it can be seen in
Figs.2.7and2.8that there is always an AS region in parameter space, astsyaap intrinsic
parameters are varied.

As we will discuss later, the possibility of controlling thensition between AS and DS
is in principle extremely appealing to the study of plasfich neuroscience. However, in a
biological network, the input current would not be exactiyistant, but rather be modulated by
other neurons. In the following, we test the robustness ofrAthis more involved scenario,
therefore moving one step ahead in biological plausibility

2.4 The effect of a common Driver

Let us consider the MSI circuit under a constant input curren160 pA. This is below the
Hopf bifurcation [74], i.e. none of the three neurons spikes tonically. Theivagtwill now
be controlled by the driver neuron (D), which projects eadtity synapses onto the MSI circuit
[see Fig2.1(b)]. We chose to replace the constant input current by alglearying current, so
that the synapses projecting from the driver neuron areeoNtkDA type. The driver neuron
receives a currerlp = 280 pA, so it spikes tonically. All remaining parameters asan the
second column of Tabl2.1. The interest in this case is to verify whether AS holds wien t
excitability of the MSI circuit is modulated by a non-statary current.
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Figure 2.10: DMSI circuit (see Fi2.1(b)). Delayt (right bar) in the(ga,0c) projection
of parameter space for different combinationg3afand fz. PD, AS and DS regimes as in
Fig. 2.6.

As shown in Fig.2.9 and2.10, we found in this new scenario a similar route from DS to
AS, and then the PD regime (compare with Eigdand 2.7). Note that the characteristic time
(Bn = 6.6 s 1) for the unbinding of the NMDA receptors is about ten timegéa than the
interspike interval (ISI) of the driver neuron (which spskat~ 67 Hz). As a consequence,
rom, 'ps, ol are kept at nearly constant values (with variations=0£0% around a mean
value see Fig2.9b)). The variations in the NMDA synaptic current are alsaBnwhich in
principle should make the system behave in an apparentlyasimay to the previous MSI
circuit. However, these small variations are importantugoto increase the AS domain in
parameter space, in some cases even eliminating the PDhrégge e.g. Fig2.10for Bg =
0.30 ms'1). Therefore, at least in this case, the use of more biolbgicaisible parameters
does not destroy AS, but rather enhances it.

In fact, the three regions in the MSI diagrams seem to retasr imain features in the
DMSI circuit. When PD occurs, for example, the slave agaikespfaster than the master
(see Fig2.11(a)), like in the MSI circuit (compare with Fig.4(a)). Another signature of the
robustness of the PD phase against the replacement of anbhgta slowly-varying synaptic
current appears in the return map shown in Rid.1(b). It can be seen that it has the same
structure of its three-neuron counterpart shown in Eig(b).
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Figure 2.11: DMSI circuit (see Fig..1(b)). (a) The mean firing rate of the slag) coincides
with the mean firing rate of the masté#/) for DS and AS regimes, but it is larger for PD. (b)
In PD, the return map of the interspike interval of the sla/ednsistent with a quasi-periodic
system.

2.5 Neuronal chain networks

The brain exhibits well defined sequences of neuronal pseseduring complex behav-
iors, such as cognitive tasks, motor sequences executbmeaognition. One well known
model that reproduces multiple observations of precisgdgating firing patterns is the synfire-
chain [78, 79]. However, a lot of other networks can produce precise fipatierns and gener-
ate sequences. For example, the execution and recognitamtions can be achieved through
the propagation of activity bursts along a biologicallypimed neuronal chaing[J], a chain
network can propagate stable activity with temporal prenign songbirds§1] and a chain of
chaotic slaves can exhibit AS§).

We wondered if it is possible to control the temporal presidbetween spikes of different
neurons in a chain of slaves and interneurons (seeZFlg). Particularly, we are interested
to know whether this chain can exhibit AS. It is shown in REigl3that a chain of coupled
standard HH neurons driven by a constant current can premidechanism for obtaining larger
anticipation and delay times between the first master ankhghslave than the 3-neuron motif.
Furthermore, the chain network motif has precise time difiees among the spikes that depend
on the synaptic conductances and the external current.
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Figure 2.12: Chain of master (M), slaves (S) and internesi(nAll parameters as in Tabke1
for the MSI circuit.
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Figure 2.13: Membrane potential of each numbered neurowrsi Fig. 2.12 The chain
exhibits (a) DS for weak inhibitory synaptic conductanggs= 20 nS and (b) AS for stronger
inhibition gis = 40 nS. Note that the largest anticipation (and delay) tinteetsveen neurons 1
and 5.

2.6 Proposed experiment

2.6.1 The hybrid patch clamp setup

The 3-neuron motif shown in Fi@.1 can be experimentally reproduced in a hybrid patch
clamp setup. It means that AS could be testedlitro. The required setup consists in three
steps. First, it is necessary to patch a real neuron (thaldAmiour slave). Second, through
a dynamic clamp procedure, one excitatory and one inhipggnapses are generated (from
simulated master and interneuron respectively). Thesergted synaptic currents are injected
through the intracellular recording pipette. Finally, gisulated interneuron receives, in real-
time, excitatory synapses that were generated by each gpike slave.

Such setup has been used by Le Masson €i@ltd study how an inhibitory feedback loop
controls spike transfer in thalamic circuits. They havefiedt that, depending on the value
of the inhibition, the slave and the interneuron exhibit@@mt oscillations. This coherent
behavior was characterized by a peak in the cross-cowglétinction, which is defined by
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comparing the activity profiles of the two neurons acrosedbht time delaysiZ]. The peakin
the cross-correlation is a measure of the level of synchbatyeen the two neurons, whereas
the time delay in which the peak occurs is the time lag of theckyonized regime, i.e. the
equivalent oft in our model.

Le Masson et al.q8] have reported that the positive correlation peak deceetgearge
inhibition. However, they have not verified any increasenmnegative correlation between the
master and the slave. One possibility for the absence of $eegime is due to the fact that the
simulated retina cell activity (master) and the patchedhthacortical neuron (slave) present
very different dynamics.

We suggest that the AS regime could be verified in the hybiigpsiéthe simulated master
cell have similar dynamical properties as the biologicatpad neuron. To test this hypoth-
esis it is necessary to make our previous 3-neuron motif evere realistic. In this section,
we use a single-compartment modified Hodgkin-Huxley neunailel designed according to
Pospischil et al.§3] which is based on previous thalamocortical modeig, B5]. This model
was obtained from ModelDB3[)]. It is well suited for simulating motifs in which the effeot
neuromodulators or pharmacological agents on identifiedgctances can be tested.
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Figure 2.14. Characterizing the modified HH model. (a) Exiengb the membrane potential
of each neuron in the AS regime. The spiking frequency is lemidan in the standard HH. (b)
Excitatory and inhibitory post synaptic potential EPSP HEP generated by the AMPA and
the GABA synapses employed in our model. (c) Time detain each cycle, characterizing
DS (blue), AS (red) and PD (cyan) regimes. tds a function ofjg. Similar to what happens
in the standard HH, here there is a smooth and continuousitianfrom DS to AS.
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2.6.2 Modified Hodgkin-Huxley model
Each neuron is now described by:

dv

5 = GnamPh(Ena—V) 4 Gkn*(Ex —V) + Gup*(Ex —V) (2.15)

+Gm(Mrest—V) +1 + Z Isyn

Cmn

where Gna = 50 mS/cnd, Gk = 5 mS/cnt, Gy = 0.07 mS/cn, Gy = 0.1 mS/cnt Eng =
50 mV, Ex = —100 mV. The three voltage-dependent currents are the soaishpotassium
currents that generate action potentials and the extrayddtrectifier’ K+ current (repre-
sented by the teri®y p*(Ex — V) in Eq.2.16). This slowK+ current is responsible for spike-
frequency adaptation firing rate and the afterhyperpaéion (AHP) of cortical pyramidal
cells. The gating variables= m,n,h are described as before:

dx _

dt
The steady-state activation and the time constant aregctgely, given byxe. = ay/(ax+ Bx)
andtx = 1/(ax+ Bx), where:

(V) (1= %) — B(V). (2.16)

—0.32(V — Vg —13)

Om = e V- Vr-13/4_q

0.28(V — Vi — 40)
Pm = eV —Vr—40)/5_ 1
ay = 0128 (V-Vr-17)/18

4

o = 11e (V-Vr-40)/5

—0.032(V — Vi — 15)
On = e (VVr-15/5_1
B, = 0.5e (V-Vr—10/40_7 (2.17)

We usevr =55 mV.
The gating variable obeys the following equations:

dp
P~ (patv)— )T (V)
1
Pu(V) = 1+ e V+39/10
(V) = fmax (2.18)

3.3e(V+35)/20 | g~ (V+35)/20°

wheretmax=1's. We can also take into account the effect of temperatureCelsius) dividing
Tmaxby 2.3(T—38//10 byt here we considdr = 36 °C.

The model described by Eg.16 can reproduce different eletrophysiological results from
the rat somatosensory cortex and thalanmusitro [83]. It is also good to represent both



2.6 PROPOSED EXPERIMENT 29

excitatory and inhibitory cortex cells (see an example efriiean membrane potential of M,
S and | in Fig2.14a)). Depending on the parameters it fits different neurqgesyas regular
spiking fast spiking, low-threshold spikes. Adding two meurrents to ER.16(one for high
and other for low threshold &4&) it can also generate bursts. By far the largest cell class in
neocortex is the so-called regular-spiking (RS) neuronc¢kvis in general excitatory and most
often correlates with a spiny pyramidal-cell morphologyeTypical response of RS cells to
depolarizing current pulses are trains of spikes with aataypt.

The model claims to represent one of the many possible canmipes between simplicity
and biological realism. It is is more complex than nonlineéegrate-and-fire model87T, 53,
88), but it is also more realistic because the ionic currengsidentified and can be adjusted
to physiological measurements such as voltage-clamp tlageded. In order to mimic real
synapses it is also important to obtain realistic excitatorhibitory) post synaptic potentials
EPSP (IPSP). Both EPSP and IPS of our model are shown i2.E#fb). The synapses are
AMPA and GABA, as described in sectich L

In this section we use this modified HH model to built-in thelM®tif illustrated in Fig.2.1
and to look for anticipated synchronization. Once againfrodling the synaptic conductances
we can find DS, AS and PD regimes. These regimes can be ch&@edtby the sign of the
curverT;(#cycle in Fig 2.14(c). Like in previous sections, the time delay in the traosifrom
DS to AS is a continuous and smooth function of the inhibiteypaptic conductance (see

Fig 2.14d)).

2.6.3 AS in the presence of noise

Here, we use experimental data from a patched nettoimprove our model and explore
the parameters in which the 3-neurons model of modified Hegres AS. The real cell patched
during the experiments fires spikes due to the injection obiayncurrent, as we can see in
Fig. 2.15To mimic the membrane potential shown in this figure we haweddoise to the
constant external current in our model. Then, the inteespikerval is not constant, as can
be observed in Fig2.16a). The time delay between the master and the slave also varies in
each cycle. However, maintains a well defined sign, as shown in EigLgb) and the system
presents both DS and AS regimes depending on the stregigtbkthe inhibitory synapse (see
Fig.2.17). The mean value df is a well behaved function @jis (as in the case without noise).

LExperiments were performed by Dr. Marylka Yoe UusisaarihatTheoretical and Experimental Neurobiol-
ogy Unit in the Okinawa Institute of Science and Technoldgpan.
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Figure 2.15: Experimental data from a patch clamp recordihgells in sliced tissues. (a)
and (b) Injected current in each recording. (c) and (d) Membrpotential of the same cell in
two different trials (corresponding to the two colors in leazaph) repeating the same noise
(respectively (a) and (b)). (e) and (f) Example of an actioteptial zoomed in from (c) and
(d). Data were kindly provided by Dr. Marylka Yoe UusisaardeDr. Klaus Stiefel (Okinawa
Institute of Science and Technology, Japan).
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Figure 2.17: Time delay in each period for different valuésnbibitory conductancesgg
increases from top to bottongg = 0,10,15,20,30,40 nS.

2.7 Other motifs

2.7.1 Bidirectional coupling

One practical application of anticipated synchronizatsoto use the prediction of the slave
to prevent or stimulate a certain response in the mastertificial intelligence an intelligent
system should be able to predict and act consequently. ihgribat if a system which exhibits
anticipated synchronization has an internal control sgsiecould, in principle, act before a
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Figure 2.18: Modified MSI motif. We incorporate the effectaobmall excitatory feedback
from the slave to the master. How does the system go from areaigbnal to a bidirectional
coupling?

specific event and avoid undesired behaviors.
Here we are interested in studying the biologically plalesdmunterpart of two dynamical
systems coupled as follows:

— f(x(t)) +h(x() Y(t—t2)), (2.19)
y o= ) KX -yt —tg)].

whereh(x(t),y(t —t2)) is an arbitrary coupling function of and/ory. In physical systems,
typical couplings are the direch = y(t —tp) and the diffusive:h = y(t —t) — x(t). In our
biologically inspired model we propose to add an excitatdrgmical synapse from the slave
to the master to mimiti(x(t),y(t —t»)). Compared to Eql.1the extra term in Eq2.19is
an attempt to study the effect of an internal control systéoreover, in neuroscience the
reciprocal connection is of great importance and abundutite brain. Indeed, bidirectional
connections are more than two times as frequent than peeldigt chanced9).

Therefore, we investigate the existence of AS regime in thdified 3-neuron motif shown
in Fig. 2.18 which has an extra excitatory synapse from the slave ndartire master. We use
the standard HH model and chemical synapses with time desaysTable2.1. Each neuron
receives an external constant currért 200 pA, which implies the coexistence of a stable
fixed point and a stable limit cycle. In order to mimic the mpisach neuron also receives a
square pulsed current. The pulses obeys a Poisson digirnbuth rate parametd® = 200 Hz.
Each pulse has 1 ms width and 200 pA height. Moreover, theanastron receives an extra
Poisson input wittR = 50 Hz. Fig.2.19shows that the time series from the master and the
slave are different, as well as their interspike intervé®)( Like before, we define the time
delayt as the mean value of the time delay in each period.

Aiming to understand the effect of the excitatory feedbaokifthe slave to the master, we
have fixed the conductances constituting the inhibitorp @@, = gis = 10 nS). We start from
gvs = 10 nS andysp = 0 nS, i.e. a unidirectional coupling. Similar to previousuks for this
canonical master-slave configuration, depending on thieitohy conductance the system can
present both DSys = 10 nS) or AS ;s = 80 nS) regime. Then we increase the conductances
of the reciprocal couplinggus andgsy). We have attached the value @yis with thegsy in
the following way:gwus = 9si + gsm, Which ensures thajy s is always larger thagg.

The effect of the reciprocal coupling in the AS and DS reginseshown in Fig.2.20by
the red and blue dots respectively. If we start in the DS reggrs = 10 nS), the time delay
almost does not change with the excitatory feedlggk (1 ~ 0.8 ms). On the other hand, if
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Figure 2.19: Characterizing the standard HH model in thegree of a Poisson input. (a)
Time series of the master (black) and the slave (red). (ey$pike interval (ISl) in each cycle
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Figure 2.20: Time delay as a function of the excitatory conductarmgg, from the slave to
the master. Fog;s = 10 nS (blue dotsy is almost constant and the system exhibits only DS
(t > 0). Forg,s = 80 nS (red dots) the system exhibits both AS<(0 for gsm < 10 nS) and
DS (tr > 0 forgsm > 10 nS).

we start in the AS regimey(s = 80 nS, represented by the red dots in Rig0), the time delay
persists almost unchanged for small valuegj (1 ~ —0.4 ms). If we increasgsy by more
than 10% ofgys, T increases and the system moves to the DS regime (red dotg with in
Fig. 2.20.
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2.7.2 An extra slave

It is also possible to find other motifs, with more neuronaf ttan also exhibit AS. For ex-
ample, the presence of a second slave as shown i@ Rif{a) may enlarge the set of parameters
in which AS occurs. We call this motif master-slave-slanteineuron (MSSI). The excitatory
synapses are mediated by AMPA while the inhibitory is metidty GABAs. In Fig. 2.21(b)
and (c) we compare versusthe inhibitory conductancgs for the MSI (shown in Fig2.1)
and the MSSI motifs. In the MSSI configuration the time detagefined as the time difference
between the first slave and the master. The inhibitory symggss from the interneuron to
the first slave. In Fig2.21(b) the synaptic conductances &= gus = gss= gis = 6.5 nS
whereas in Fig2.21(c) ga = gus = gss= gis = 20 nS and the synaptic time decays are
Ba = Bc = 0.6 ms L. All other parameters are in the first column of Tabl& In Fig. 2.21(b)
the extra slave prevents the system to go to the PD regimgl{&itag the phase-locking), while
in Fig. 2.21(c) the extra slave increases the anticipation time (i.ere@mses the modulus of the
time delay| 7).

(@)

8 8 8
@@=
Q. /
81s

(b) (©)

L 1 L L L 1 R L L fmas=r
40 60 80 100 _50 50 100 150 200 250 ~ 300
g (nS) g, (NS)
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Figure 2.21: Example of a master-slave-slave-interne(M85I) motif. (a) Schematic repre-
sentation of MSSI. (b) and (@) as a function ofy;s = gg for both MSSI and MSI motifs. (b)
The excitatory conductance ajg = gus = gss= 0is = 6.5 nS, other parameters as in Tabl&
(€) ga = Ous = Oss= Ois = 20 nS and the synaptic time decays Bke= Bg = 0.6 ms L.

2.7.3 Motor circuit in the spinal cord

Motor behavior can be considered as the ultimate outputeohdrvous system and is me-
diated by local spinal circuit®[]. The spinal cord has three major functions: as a conduit for
motor information, which travels down the spinal cord; a®aduit for sensory information in
the reverse direction; and finally as a center for indepethgeantrol numerous reflexes and



2.7 OTHER MOTIFS 35

central pattern generators. The interplay between motmoms and interneurons results in the
appropriate sequence of muscle contractions. Renshasv[€€]l97] are inhibitory interneu-
rons found in the gray matter of the spinal cord, and are @ssakin two ways with an alpha
motor neuron (see Fi@.22. (i) They receive an excitatory collateral from the alplearon’s
axon as they emerge from the motor root, and are thus "kemptm&d" of how vigorously that
neuron is firing. (i) They send an inhibitory synapse to alpfotor neuron of the same motor
pool. In this way, Renshaw cell inhibition represents a tiegdeedback mechanism.

Since we are interested in inhibitory feedbacks, we siredlatvery simple motif to repre-
sent the motor circuit in the spinal cord shown in Rig22. Each label in Fig2.23 represents
a neuron or types of neurons: (1) agonist alpha motor neg)rRenshaw cell, (3) agonist
muscle spindles (sensory receptors), (4) la inhibitoryrareresponsible for inhibiting an-
tagonist motor neuron and activated by l1a spindle affeyefisantagonist motor neuron, (6)
antagonist muscle spindles (sensory receptors), (7)neteon activated by antagonist muscle
spindles which inhibits 1a inhibitory neuron. The synagtieiductancey s of this inhibitory
synapse is our control parameter.

Each cell was described by a modified Morris-Lecar neuronehedhich allows arbitrarily
small frequenciesi4]:

dv — _
Cma - GCarnoo(V)(ECa—V> +GKW(EK —V)
+Gm(Viest—V) + 1 + Z Isyn (2.20)
dw  We(V)—w,
a 7%0(\/) ; (2.21)

whereCpy, = 1 uF/cn?, Gea = 1 mS/cn?,Gk = 2 mS/cn?, Gy = 0.5 mS/cn?,Eca = 100 mV,
Ex = —70 mV,Viest = —50 mV and

Woo (V) = 0.5(1+tanh(vr;;;()))

W3
Tw(V) W .

(2.22)

Synapses were mediated by AMPA and GAB#s described previously. All conductances are
fixed atg = 10 nS except;s which may vary from 5 to 40 nS. The period of each neuron is
T ~ 16 ms.

Depending on the values gfs, the mean time delay between the agonist and antagonist
muscle spindles (neurons 3 and 6 in Fig23a)) can be positive or negative. Differently
from previous sectiont; = ti6 —ti3 in each cycle oscillates periodically around its mean value
(see Fig.2.23b)). In this case, AS could be a mechanism to facilitate tttevation of the
antagonist muscle spindle before the agonist. Since wedatidecount for conduction delays
in this model, the existence of AS regime in this simple sitoracould at least decrease time
delays between spikes in presence of real conduction delays
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Figure 2.22: Illustration of the motor circuit. There aretimhibitory loops in this circuit. The
agonist motor neuroriNeurona motora agonisjaends an excitatory synapse to the Renshaw
cell (Célula de Renshawwhich sends back an inhibitory synapse. The antagonistlasgpin-

dle (Huso muscular agonisjaxcites an interneuron, which inhibits the 1a inhibitoguron
(Interneuronainhinidora 1a The latter inhibits the antagonist motor neurbdle(rona motora
agonistg, which excites the antagonist muscle spindle closingthéitory loop. Moreover
the 1a inhibitory neuron receives an excitatory synapsa tiee agonist muscle spindlesdu-
rona motora agonistaand an inhibitory synapse from the Renshaw cell. Repratificen
Kandel et al. §0.
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Figure 2.23: Muscle circuit (a)Schematic representatibthe circuit shown in Fig2.22
(b)Time delayt; between neurons 3 and 6 in each cydleoscillates, but fogis=5nS itis
always positive indicating a DS regime, whereasgigr= 40 nS,t; < 0 which characterizes an
AS regime.






CHAPTER 3

Phase response curve

3.1 Whatis it and why is it useful?

Self-sustained oscillatory patterns are well spread ihogioal systems. The rhythmic
activity of populations of fireflies, cardiac pacemark celt&l neuronal circuits are just a few
examples. All these biological oscillations can be desdimathematically by limit cycle
attractors which are responsible for periodicity in dyneahsystems. However, the complete
understanding of the mechanistic bases of synchronizeteaourrent challenge in the interface
of physics and biologyd3)].

Here we are interested in the relation between the synctatan of a few coupled neurons
and their intrinsic dynamics9f]. Phase response curves (PRCs) are one the main tools to
characterize the effects of a perturbation applied to leyitles and may predict qualitative
features of a particular oscillation subjected to perttidos. Therefore, it is useful for linking
the response of individual neurons to perturbations andlyfmamics of the entire neuronal
network.

Lettp be an arbitrary point on a periodic orbit of a nonlinear systeghen any other point
on the periodic orbit can be characterized by the tighe,since the last passing &f. The
variable@ is called phase of oscillation, and it is bounded by the pkaboscillationT [95]

. The phase response of a periodically spiking neuron (weétthod T) represents the change
in its phase due to a perturbation in a specific momeiihe magnitude of the phase shift in
the spike train depends on the shape and the exact tinmofghe stimulus. We numerically
calculate the PRC sending the same stimulus at differemtstimnd measuring the shift on the
phase of oscillatioiPRC(t). Typically we plot the PRC due to a square pulse current which
arrives in a moment and evokes a phase response RR{@(the next spike. For simplicity,
unless otherwise stated, we convert the phase shifts todatays and measure the PRC in
seconds (not in radians). We arbitrarily chogge: 0 to correspond to the peak of each spike.

In Fig. 3.1(a) we show a qualitative example of an applied externakeultft) and its effect
in the mean membrane potential of a neuron (dashed linesemi®the undisturbed or free-
running trajectory). We define PRG = t{fe — tdistubed (see Fig 3.1(a)), wheret! i is the
spike timing of the free-running neuron atrg‘g’tk‘gbedis the spike timing of the disturbed neuron.
By our convention, PR@E) > 0 if the next spike is advanced. It means that the disturbacbme
fires before it would do in the absence of the stimulus. On therchand, PR@) < O if the
next spike is delayed. In Fi§.1(b) we show the PRC of an Hodgking-Huxley neuron due to a
small current pulse: with heiglit = 1 nA and widthL = 0.01 ms. Exactly the same curve is
obtained for a different small pulse with the same ak¢a: 10 nA andL = 0.001 ms.

39
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Figure 3.1: Definition of phase response curve (PRC) (a) pfarof an applied external

currentl (t) and its effect in the mean membrane potential of a neuronh&hbkne represents

the free-running trajectory (in the absence @f). We define PRQ) = t;;?fe— téee "edas the

effect ofl (t) in the next spike of the neuron. In this example, the stimulas applied at a time
t = 2 ms after the spike. The subsequent spike of the perturhgdomevas delayed by.4 ms,
in comparison with the free-running neuron, heR&G2 msg = —4.7 ms< 0. (b) PRC as a
function of the time in which an infinitesimal square pulse curré(t) was applied.

We also define PR(t) as the phase shift in the first spike after the perturbatioilewh
PRG(t) is the phase shift in the second spike. It is also possiblefioe the PRg(t) and so
on. If the perturbation is sufficient small, one expects amdfies that PREt) = PRG(t) =
PRQt). Itis worth to mention that the PRC can be calculated for ditrary stimulus, not
necessarily weak or brief. The only condition to do it cotiyers to wait enough time to ensure
that PRG(t) = PRG_1(t). However, this become a limiting factor when we use PRC tdystu
synchronization of periodic coupled oscillators as we dadllin the following sections.

There are two main types of neurons in respect to the sigreaf BRC. When small depo-
larizations produced by excitatory postsynaptic poténtaly produce advances in the phase
of the neuron, the phase response is a non-negative curveedll it a Type-1 neuron. In
Type-ll neurons both positive or negative PRC can be pragiwepending upon the timing of
the excitatory stimulus (as shown in Fig1(b)). For infinitesimal perturbations this classifi-
cation of PRC $6] is closely related to the classification of excitable meams in respect to
the applied depolarizing currents. However, it is more aieate to relate the type of the PRC
to the existence of subthreshold oscillatiofig] [

Class-I excitable membranes can fire arbitrarily slowlyrrtea onset of firing (may os-
cillate with arbitrarily small frequency), whereas Cldksxcitable membranes have an abrupt
onset of repetitive firing at a threshold frequency, and o&bge induced to fire at any frequency
below the threshold frequency. Class-I membrane excitalsltypically exhibited by models
near a saddle-node on invariant circle bifurcation, and€lanear an Andronov-Hopf bifur-
cation P8] (which is the case of the HH model). Then, Ermentrdifi [has concluded that
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Figure 3.2: Two types of neurons based on membrane exdyadnild PRC. In (a),(c) and (e)
we show an example of a Type-I neuron, whereas in (b),(d) Brie(show an example of a
Type-ll neuron. Figure adapted from Sterratt et @f] and CanavierJ7].

Type-lI PRC is associated with Class-I excitability and HpeRC with Class-II excitability.
For example, this relation is valid for the HH model, whichaiSype 1l PRC and a Class-I
excitability. In Fig.3.2we show examples of Class-I and Il excitability and Typed agpe-I|
PRC.

However, more recently, an abrupt onset of firing (Classxtitability) may also be ob-
served in the case of a saddle-node bifurcation away fronlittie cycle [94]. Therefore,
Izhikevich has proposed to classify the neurons acconditylboth bifurcation and resting
state. By his definition, a neuron is a resonator if exhihitgtlsreshold oscillations and as inte-
grator if there are no subthreshold oscillations. All regons are Class-Il, but the integrators
can be both Class-I or Class-Il. In this sense, it was verifiatlType-I PRC is better associated
to an integrator and Type-ll PRC with a resonatoi] [

In the theory of weakly coupled oscillators the BRQenerated by an infinitesimal stim-
ulus is called linear response function, infinitesimal PR&nel, or Green’s function. This
function can be convolved with the actual input received dgheoscillator (usually a synaptic
conductancé(t)) in order to compute the total PRE) of the oscillator received over one cycle
of the network oscillation:

PRG (t / PRGn ()l (t+ T)dT (3.1)

It is also possible to measure the spike time response c8MeQC) as the PRCs generated
by an action potential to drive the change in postsynapticiaotance . In all cases we can just
refer the function as PRC but it is necessary to specify whiithulus has generated it.
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3.2 Master-Slave: two unidirectionally coupled oscillatos

3.2.1 Poincaré phase map

Several mathematical formulations allow the time evolutad coupled oscillators to be
described by a map from one cycle to the next. For exampleléss of pulse coupled meth-
ods [LO(] and weak coupling method$%, 101, 102 make use of the PRC to calculate Poincaré
phase maps. While in the weak coupling method we convolvetanbpation with PRG¢, in
the pulse coupled method we simply use the perturbatiolfiitsgenerate the PRC (or STRC).
If the coupling is not sufficiently weak but is pulsatile intnee, the method of pulse coupled
oscillators should be utilized. Although the PRC can bewdated for any input, both methods
require that the timing of each spike is affected by only yneptic spikes within one period.
In other words, it is necessary that there is no second oehigitier effects of the PRC.

These ideas have been employed to study the response ofanrtewa periodic stimulus
such as synaptic inputs from a periodic pre-synaptic neutorparticular, we are interested
in the synchronization between two unidirectionally cagpheurons: the master and the slave
(MS motif). Once we know the PRC of the slave due to the synaitnulus and the time delay
between the two neurons in one cycle, we can predict the teteydn the following cycle.
Fig. 3.3(a) illustrates spikes of the master and its effect (throinghsynapse) in the spikes of
the slave according to the PRC. The time since the first sgitteeslave until the second spike
of the master can be geometrically obtained by two diffesemnts (see Fig3.3(a)), which give
us the following relation:

6o+ Tv = Ts— PRQ6p) + 6. (3.2
Generalizing it for any period, we find the Poincaré phase fadp

where6, is the time between the—th spike of the slave and the—th spike of the mastefy
andTs are the periods of the master and the slave.

If the system goes to a phase-locking regime, the time dedwd®n consecutive spikes of
the master and the slave will be the same in each period. 8hus= 6, = 8* and consequently
PRC(0*) = Ts— Tm. We sayf* is a fixed point that could be stable or unstable depending on
the slope of the curve as a function &f. In the particular case dfs = Ty, PRQ6*) = 0,
which means that the synapse from the master always arrthe islave membrane potential in
the exactly time in which it causes no effect in the next spieis stable if|1+ PRC(6*)| <
1, which ensures that a positive slope indicates unstabéde fpoint. By no means we are
limiting the coupling to be excitatory. If the synaptic cemt is too large, the first order of the
phase response, PRGs very different from higher orders of the PRC and B could be
inappropriate to describe the synchronization of a masdtae system.

3.3 Slave-Interneuron: bidirectional coupling

The next level of complexity is two reciprocally coupled nens. Mirollo and Strogatzl[0
formulated the general map for any two coupled oscillatorshich the state variable (i.e. the
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membrane potential V) is a smooth monotonically increaamdjconcave down function of the
time, (for example the leaky integrator). For identicalitbators in which the coupling term is
zero at a phase of both 0 aiid synchrony with zero lag is always a solution. However, pbthe
solutions are possible. For systems in which the PRC doedisappear at 0 antl synchrony
may not be a solution. Therefore criteria are required fdhlexistence and stability, as we
will show [10(].

(@) (b)

Figure 3.3: lllustration of the temporal trace of a neurod #re effect of the synaptic current
between coupled neurons on their following spikes. Difiégefrom Fig. 3.1, the solid line
represents the free-running trajectory and the dashedHespike due to the presynaptic cur-
rents in that cycle. (a) Two neurons coupled in a masterestanfiguration (MS, unidirectional
coupling). Each spike of the slave (S) is perturbed by thagira current from the master (M).
By definition, the perturbation is theR(t) (b) Two neurons coupled in a slave-interneuron
configuration (SI, bidirectional coupling). Each spikelud slave (S) is perturbed by the synap-
tic current from the interneuron (1), whereas each spikénefihterneuron is perturbed by the
synaptic current from the slave.

First we defings, as the time difference between the th consecutive spikes of the slave
t> and the interneurot), and the opposite order far, we have:
o= to—t, (3.4)
an = th—t3,

Then, the map based on the PRCs for two pulse coupled oscillistgenerated as follows. By
Fig. 3.3(b) it is possible to geometrically defirrg as a function of and PRCQy), whereyy
is a function ofag and PRGyn(ap) and generalize the relation to each penind

Vo = —an—PRGun(an)+Ts (3.5)
ant1 = —¥%h—PRCW) +T. (3.6)

Therefore, it is possible to represent this map by just onaton:

Ont1 = an‘i‘PRth(an)—PRC(Vn)‘f‘Tl —Ts. (3.7)
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This result is in agreement to the one obtained for pulse ledupscillators 10(. In our
particular case of the SI motif, in the phase-locking regope; = an, T) = Tsanda™* =T — y*.
Then, the map can be reduced to the following condition:

PRGn(T —y") = PRQY), (3.8)

whereT is the period of the phase-locking, which can be equdktandT, or not.

3.3.1 Stability analysis

Linearizing around the fixed poirtt*:

PRC6,) = PRQO")+PRC(6)A6, (3.9)
NGy = 6,— 6 (3.10)

wheref = a or y, in EQ.3.7, we obtain the following approximated map in the neighborho
of the stationary solution:

Adni1 = [(PRGyy(a) + 1) (PRC(y) + 1)) Aan. (3.11)

If |(PRG,,,(a*)+1)(PRC(y*) +1)| < 1, thenAan;1 goes to zero and the locking @ ,y) is
stable.

It is important to notice thaPRGn(a) does not necessarily comes from an inhibitory
pulse. We use this notation just because we are interestedniparing our results to the
Slave-Interneuron motif. The results obtained here arécgaritly general to describe any
kind of bidirectional coupling between two neurons (mutgiakcitatory, mutually inhibitory,
excitatory-inhibitory...) and it does not requires that tscillators are equal. However, like in
the previous section, this map is correct only if the firstaorBRC is sufficiently greater than
the others. Moreover, the cells should alternate in firin@ (S -1-S - 1...).

3.4 Master-Slave-Interneuron coupling

To the best of our knowledge, the Poincaré map of this magr@sented in Fi@.1(a)) has
not been reported. Similar to what we did before, we can défiee¢ime differences between
neurons as:

Bn = tM—t> (3.12)
W = tr? - t||1
On = t# - tr?fl

and define the return map based on geometrical featuresul&@ahg the time difference be-
tween the second spike of the master and the first spike ofahe:s

Bo+Tm = Ts+ (—=PROBo) — PRGnn(a0)) + B (3.13)
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Figure 3.4: Three coupled neurons in a master-slave-ieteam configuration (MSI). Each
spike of the slave (S) is perturbed by the synaptic currembfihe master (M) and the interneu-
ron (I), whereas each spike of the interneuron is perturbyethé synaptic current from the
slave. The Poincaré map of this configuration provides the tlifferences between the three
neurons in the phase-locking regime.

Measuring the time since the first spike of the slave untsésond spike and looking justto S
and | we find:

a0+ Yo = Ts+ (=PRCQBo) — PRGnn(ar0)). (3.14)
The time between the first and second spike of the internegivas us:

T+ (—=PRQw)) = yo + 01, (3.15)

where yp = Ts — PRC(Bo) — PRGqn(ao) — ap. Generalizing the three equations above and
rewriting the terms we obtain the desired map:

Bri1 = Bn+PRCOBH) +PRGh(an) +Tv—Ts (3.16)
Vo = —an—PRQB) —PRGun(an) +Ts (3.17)
Ont1 = On+PRQBh) +PRGun(an) —PRAW) + T —Ts. (3.18)

Since according to E@.16and3.17, y, = yn(an, Bn), this is in fact a two-dimensional map,
which means that one of the equations can be suppressedyveipwes is a more didactic way
to represent it.

Two important assumptions were done here. First, we asstiméthe effect of two differ-
ent stimulus is the sum of each one separately. Second, vedened that the three neurons
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fire in each cycle. The order of the fire does not matter (M - SS4;1 - M; or S - M - |), but
it should not change along the numerical calculation. Furttore,PRC(3) andPR(y) are
independent functions.

3.4.1 Particular case

In the special case in which the slave and the interneurodeseribed by the same equa-
tions and the excitatory synapses MS and Sl are equal, we have

PRCB) =PRQYy), VB=Yy. (3.19)

Moreover, if the free-running period of the three neuromsthe same, thefiy =Ts=T, =T.
In the stationary situatiofi, 1 = Bn = * and Eqs3.16 3.17and3.18reduce to:

PRO3") +PRGm(a*) = 0 (3.20)
PRC(3*) + PRGh(a*) —PRQYy*) = 0. (3.21)

In the phase-locking regime:
Vw = Y =PRQy)=0 (3.22)
PRCOB*) = —PRGw(T-Y"). (3.23)

By our own definition of the time delay in the previous chapfEr=tM —tS= —1 mod(T).

In other words, in AS we havgi* = —1 whereas in DS we hav@d, = T — 1. Then we expect
small B* in the AS regime, and larg8* for DS regimes. This analysis, together with the
shapes of the PRC for the HH, gives us a good intuition ab@ubétessary conditions for the
existence of AS.

For example, since we know that in all examples of AS and DSrttezneuron fires right
after the Slave, we expegt > T /2 (see e.g. Fig2.2). SoPRCy*) should cross the axis
with negative slope in the second half of the period, like ig. B.5a) and (c). Moreover,
y'>T/2=a*<T/2. If PRCB) = PRQY) = —PRGn(a), VB, a andy, then* = a*.
That meang8* < T/2, which impliest < 0 and hence that AS is a solution. In addition, the
Interneuron and the Master fire at the same moment.

3.4.2 Stability Analysis

Similarly to what we did in the stability analysis for the Slse, we write:

PRO6,) = PRQ6*)+PRC(6%)A6, (3.24)

wheref = a, 3, or y. Using the equations aboveé,= a* + y*, and the following relations:

Ts— PRQB*)—PROa*) = T —PROy)=T (3.26)
(3.27)
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in the maps3.16- 3.18 we find:

Adni1 = Aan+PRC(a *)Aan+PRC’( B*)AB, — PRC(y")Ayh (3.28)
Ay = —Aan—PRG(a*)Aan—PRC(B*)AB (3.29)
ABni1 = ABn+PRC(B*)ABy+ PRC,,(a)Aan. (3.30)

Then, the stability condition can be written as follows:

Adni1 = [1+PRC,(a*)+PRC(y*)PRG,,(a*)PRC(y*)|Adn
+ [PRC(B* )+PRC’(B )PRC (v)|AB, (3.31)
ABri1 = [PRC.(a%)]Adn+ [1+PRC(B*)]AB (3.32)

This relation can be written in a matrix representation as:

(a6 )= (o) (a8)

ABn+l CcC D ABn

where A,B,C,D are the terms between square brackets inEg$and3.32 The stability
condition requires that the eigenvalues of the square x&trandA, € (—1,1) .

3.4.3 Phase model

Coupled oscillators interact via mutual adjustment of tfanplitudes and phases. For
weak couplings, amplitudes are relatively constant andritegactions could be described by
phase models5)2, 95]. In such approach our MSI motif would be described by théofaing
differential equations:

QM = v
6s = ws+f(6w—0s)+9(6 — 6)
6 = ws+h(6s—8). (3.33)

Redefining the variables as:

¢ Bs— Bu

we can reduce our problem to two ODE'’s:

¢ = ws—am+f(=9)+a(-y)
U = ws—w—h(y)+f(-¢)+a(-y). (3.35)

These equations are related to the map in Bdss- 3.18replacingg by -3, ¢ by a, f,g
andh by PR B),PRGnn(a) andPRCy)) respectively. The phase model is often employed in
analytical calculations. Particularly when the PRC canpgp@eximated by simple functions as
sines, cosines or piecewise-like functions.
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Figure 3.5: Phase response curve of a quadratic currerd putls width L and height H. (a)
H = 30 pA and different values df. (b) FixedL = 2 ms and varyingdd. (c) the same plot as
in (a) with a zoom in the region close to the fixed pd?RCt*) = 0. (d) The effect of negative
H = —30 pA in the quadratic pulse simplification, which is the agalus of an inhibitory
synaptic current.

3.5 Numerical results

The phase responses curves of a Type-ll neuron generatetfdrgmt pulses are shown in
Fig. 3.5. We choose the PRC produced by a pulse with heigjht 30 pA and widthL =2 ms
as the standard curve (black lines) and compare it to PRQdegidy different heights and
widths. Firstly, in Fig.3.5a) we fixedH and changed. Fig. 3.5c) exhibits the same plot with
a zoom in the region close to the fixed poRRCt*) = 0. Secondly, we fixed and varyH,
which is shown in Fig3.5b). Finally, we compared the effect of a negative pulse @ RRC,
which is the equivalent of an inhibitory coupling in our silifipd model of quadratic synaptic
pulse (see Fig3.5d)). We emphasize that, for these HH neurons, even in thiplsiapproach
excitation and inhibition araot simply the reflection of one another around the &&= 0.

Using quadratic pulses as the synaptic current from theenéstthe slave, we compare
the time delayr between the two neurons obtained from two different methdeisst we
simulate the MS motif of HH neuron as we did in Chapter 2, reiplgthe chemical synapses
by quadratic pulsed with heighi = 30 pA. The black dots in Fig3.6(a) represent as a
function of the widthL of the synapse. Second, for each valué afe numerically calculate
the respective PRC and use the map represented by.Em calculatef*. Then we obtairr
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using the following relations: i® > T/2=-1 =T — 0, otherwiser = —0 (see orange dots in
Fig. 3.6(a)). Although results are in a good agreementLfor 6 ms there is a distinguishable
difference between the values pbbtained with each methods. It is worth mentioning tat
is almost constant for fixed = 2 ms and different values &{.
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Figure 3.6: Comparison of the time delay between neurongyubie Poincaré map (orange)
and the simulations results for two motifs. (a) The unidie@ally coupled master-slave motif.
(b) The 3-neuron motif MSI.

We repeat the same procedure in order to compare both meihratie MSI motif. In the
simulation of the 3-neuron circuit, the inhibitory synapgsesH,;s = —30 pA, the excitatory
synapses havelys = Hg) = 30 pA and we vary the width of the three synapses together:
Lms=Ls = Lis=L (from 1 to 7 ms). The time difference between the master aaddwve
as a function ofL is represented by the black dots in F&j6(b). Then, we calculated the
numericalPRC3) andPR(Qy) using a quadratic pulse &f = 30 pA, and the®RG(y) using
a quadratic pulse dfi = —30 pA. Finally, we use the phase response functions in th& &§.
to calculateB* anda™ for each set of widths. These results are represented byang® dots
in Fig. 3.6(b). The two methods provide coincident valuesiéf=t' —tS and the same sign of
T, but not coincident values. It suggests the assumption akweupling may not apply here.

The spike time response curve STIMPA for the HH neuron produced by the first order
AMPA synapse used in Chapter 2 is shown in Hgi(a). If we use the map in E@.3 and
the fact that this curve crosses the axig ia T with negative slope we would expect that
two undirected coupled neuron with AMPA synapse synchenmiith zero lag. However, we
have shown in Chapter 2 that they synchronize with 1.5 ms (see Fig2.5). It suggests that
chemical synapses are too large comparable to the peridiedfiH model to use even the
simplest map of two unidirectionally coupled neurons. kualen Fig.3.7(a) we compare the
STRG\MPAwith the PRC generated by a quadratic pulsklef 30 pA andL = 2 ms. and the
STRGAMPAIs almost 6 times larger than the PRC.

One possibility to achieve the weak coupling requiremerdrafer to reconcile the values
of T obtained from the simulations and from the PRC map is to userateuron models that
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can present larger periods. For example, we can try the reddifH presented in Se@.6
(see Eq2.16). Fig. 3.7(b) shows the PRC of this model for a quadratic pulse \With 2 ms
andH = 30 pA (black circles) anéi = —30 pA (orange circles). Preliminary results suggest
that the weak coupling approximation is more appropriatetticc modified HH model than
for the standard HH model. The possibility of gaining anabitinsight into the mechanisms
underlying AS is worth pursuing and remains under invetibga
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Figure 3.7: Other phase response curves. (a) Spike timseepove STREMPA for the
standard HH model with AMPA synapsg\(s = 10 nS) and PRC calculated using a quadratic
pulse ofH = 30 pA andL = 2 ms. (b) Phase response curve RRIGefor the modified HH
receiving quadratic pulse stimulus:= 2 ms andH = 30 pA (black circles) anéi = —30 pA
(orange circles).



CHAPTER 4

Neuronal populations

Synchronization by neural oscillation has been extengistldied along the years. It has
been hypothesized to be relevant to issues such as the dpipdiblem [5], temporal cod-
ing [104], deployment of spatial attentiori (5, higher cognitive functionsd3], and many
others (for a recent review, se=)[]). Particularly, coherent oscillations are also usefuhter
the functional connection between different areas in tiieegauring multisensory integration,
sensorymotor decision-making, and top-down visual atiarji. 07].

A canonical mechanism to generate oscillatory activity éminonal networks with chem-
ical synapses is the feedback loop through excitatorybitdry connections{3]. We were
wondering if the inhibitory feedback loop can regulate theetdelay between the oscillations
leading the system to an anticipated synchronization regimother words, is it possible that a
model of synchronized neuronal population exhibits AS? tAeeresults from 3-neuron motifs
extensible to much larger neuronal networks? In order toesddhese questions we investigate
in silico the emergence of AS between neuronal populations.

We take into account realistic brain features, such as tbpgotion of excitatory and in-
hibitory neurons, variability in the neuronal dynamicsikspg, bursting etc), noise, baseline
firing rates and global topological motifs, with parametgresen so as to mimic cortical sub-
networks. To simplify the modeling of the asymmetry necessa previous studies of AS
and the delayed feedback, our model focuses on corticazabcouplings in a Master-Slave-
Interneuron (MSI) configuration. As shown in Fi§1, each node is a population of neurons:
the Master population (M), the Slave population (S) and titerheuron population (1). By con-
struction the S neuronal population exerts no influence oW$Mwe will show, however, the
inhibitory loop mediated by the interneurons in | can suffcenake M lag behind S, indicating
the existence of an AS regime. All the links in Figl are unidirectional chemical synapses.

4.1 Modeling collective oscillations in large-scale systes

Our populations are composed of Izhikevich neurciy fvhose parameters are chosen
randomly from a predefined ranged and then kept constanighout the simulations. The
parameters of the model are chosen so as to reproduce tfipinglpatterns observed in dif-
ferent types of neuron in the cortex. Each excitatory newambelong to one of the follow-
ing classes: regular spikes, bursting or chattering, witbe-defined probability. Similarly,
inhibitory neurons can be fast-spiking or low-thresholdksyy. Altogether the neuronal popu-
lation described here reproduces eletrophysiologicaillt®both at the neuronal scale and for
large-scale network®{].
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Master Slave Interneuron

Figure 4.1: Three large-scale networks coupled in a M&f@re-Interneuron (MSI) configu-

ration. Excitatory (inhibitory) neurons represented by (green) units. Two of the networks
are coupled in a master-slave configuration, with an inbriteedback loop mediated by the
interneuron network. Besides the excitatory synapses frearons belonging to the Master
(M) population, the neurons from the Slave (S) populati@o akceive an inhibitory synapses
from the neurons in the interneuron population (1). All sgses are unidirectional.

Each neuron receives an independent Poisson train of exgifaost-synaptic currents to
mimic the activity of all other neurons in the brain that we aot modeling. Excitatory (in-
hibitory) neurons send excitatory (inhibitory) synapsesdiated by AMPA (GABA)), both
modeled by first-order kinetic&{]. In each population the neurons are synaptically conecte
with 10% of randomly selected neurons of the same populésiparse connectivity).

4.1.1 Cortico-cortical network

In order to investigate the synchronization propertiesieen populations representing cor-
tical regions we build 3 populations composed of hundredgeafons described by the follow-
ing equations $1]:

dv

ri O.O4v2-|—5v+140—u+ZIx, (4.1)
du
prl a(bv—u), (4.2)

wherev is the membrane potential amdthe recovery variable which accounts for activation
(inactivation) of K™ (Nat) ionic currents.ly are the currents provided by the interaction with
other neurons and external inputs.vi®> 30 mV, thenv is reset toc andu to u+d. For each
excitatory neuron the dimensionless parameters(arb) = (0.02,0.2) and(c,d) = (—65,8) +
(15, — 6)a®. Similarly for each inhibitory neuron(a,b) = (0.02,0.25) + (0.08, — 0.05)cg and
(c,d) = (—65,2), whereo is a random variable uniformly distributed on the inten@lL].

The connections between neurons are assumed to be fageatimhal excitatory and in-
hibitory chemical synapses mediated by AMPA (A) and GAB&G). The synaptic currents
are given by

Ix = Oxrx(V—Ex), (4.3)

wherex = A,G, Epo = 0 mV, Eg = —65 mV andry is the fraction of bound synaptic receptors
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whose dynamics is given by:

dry

TXE = —rx+25(t—tk), (4.4)

where the summation ovkistands for presynaptic spikes at tilhgdMoreover, the time decays
aretp = 5.26 ms,1g = 5.6 ms [LOE. Each neuron is subject to an independent noisy spike train
described by a Poisson distribution with r&e The input mimics excitatory synapses (each
with conductancege = 0.5 nS) fromn pre synaptic neurons external to the population, each
spiking with a Poisson ratR which, together with a constant external currkntdetermines
the main frequency of mean membrane potential of each populanless otherwise stated,
we have employe® = 2400 Hz and. = 0. We use Euler’'s method for numerical integration
with a time step of M5 ms.

The Master population is composed of 500 neurons (80% e&njte?0% inhibitory), each
one receiving 50 synapses (sparse connectivity) from rahgdselected neighbors in the same
population. The mean membrane potenfid] (mV) of this population oscillates with a mean
periodTy ~ 130 ms which strongly depends on the Poisson Ratéh order to obtain higher
oscillations frequency we increase the Poisson rate.

The Slave population is composed of 400 excitatory neurard) one receiving 40 synapses
from neighbor neurons belonging to the same population,yp@ses from excitatory neu-
rons from the Master population (which characterizes thetemsslave configuration) and 10
synapses from the interneurons in the third populationgtvpiay the role of the delayed self-
feedback responsible for AS). To close the inhibitory |aiye, Interneuron population has 100
inhibitory neurons, each one receiving 10 synapses fromharauty selected inhibitory neurons
from | and 40 excitatory synapses from randomly selectedamsubelonging to S.

Our main control parameters will be the following maximahaptic conductanceus
in the excitatory M-S coupling ang;s in the inhibitory I-S coupling (see Figl.1). Unless
otherwise stated, all other synaptic couplings remain f(see Tablel.1for details).

We can regard the Slave and Interneuron populations asspomeing either to well sep-
arated regions (see Fig.1) or to sub-populations of a larger network that is very samtb
the Master population. To stress this possibility, in thedified motif shown in Fig4.9a),
described in the Sectiof.4 everything remains as before but each neuron in the Interneu
ron population receives synapses from 10 randomly sel@steithtory neurons in the Master
population. To mimic the Slave-Interneuron population) € a cortical region driven by the
Master population, the conductance of the synapses fromongsuin M to both excitatory and
inhibitory neurons in Sl are the sarggs. The results obtained with both motifs are qualitative
similar and the later motif will be useful to compare our miodih experimental data in the
next chapter.

4.1.2 Defining time delay in the model

Since the mean membrane potentid) is significantly noisy in time, it is hard to precisely
determine its maximum value in each cycle. In order to sohie issue, we use a sliding
window (typically At =5 ms) to calculatéV) from (V) (see Fig.4.3). It makes the signal
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parameters cortico-cortical range varied
nl 500 (80% exc. / 20% inh. -
n2 400 (100% excitatory) -
n3 100 (100% inhibitory) -
avs 0.5 0-3
s 0.5 -
dis 4(AS) / 8(DS) 0-25
OsMm 0.0 0-1
internalgampa 0.5 -
internalgcapa, 4 7.5
external nois@ampa 0.5 -
Poisson rate (HZR 2400 2000 - 4800
# internal connectioni! 50 -
# internal connectionS 40 -
# internal connectionk 10 -
# external connectiondS 20 5-20
# external connectiorSl 40 -
# external connection$ 10 -
# external connectiorSM 0 20

Table 4.1: The model parameters. Standard values employbd MSI motif.

smooth enough that we can determine in each period thetfimavhich (VX) has a maximum
value k=M, S, | indexes the population amthe period). Since each neuron is subjected to an
independent Poisson input, the oscillation period of eagufation is not constant. Now we
can define the period of a given population in each cycle:

Tix = tiﬁ-l_tix' (45)

For sufficiently long time series we calculate the mean efipand its standard deviation.
The frequency of oscillatioff can be calculated either by the inversion of the mean period o
by the Fourier transform dfvV*). In a similar way we calculate the time delay in each cycle

Ti = tis — tiM . (46)

Then we calculate as the mean value af ando; as its standard deviation. It is also possible
to plot the return map; versusti_1 (see Fig.4.5). In all those calculations we discard the
transient time. IfTyy & Ts and thert is independent of the initial conditions, the system is in
a phase-locking regime. Another way to characterize themegs by the cross-correlation
function between the LFP of the M and S populations, showngn4=6(a), which is calculated

as. . - . _
(3 Vi — V) (3 Vet —Vg)

C(Vm.Vst) = — P—
V/Z (Vi — Va2 (V- Vs)2

4.7)
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Figure 4.2: Raster plots of each population in delayed symihation (DS) and anticipated
synchronization (AS) regimes. The horizontal axis is timd the vertical axis is the index of
the neurons in the Master (upper), Slave (middle) and Ieteon (lower) populations. Each
point represents an action potential. The only differenevben the two simulations is the
maximal conductancgs of the (inhibitory) synapses from the Interneuron popolatio the
Slave populationg;s = 8 nS [(a) and (c)] andjs = 4 nS [(b) and (d)]. All neurons in the |
population are inhibitory, as well as the last 100 neuronth&M population (index 400 to
499). All others are excitatory. (c) and (d) Zoom-in versiaf (a) and (b), displaying the
difference in the firing patterns of individual neurons ie S and AS regimes.

4.2 How to characterize AS?

The raster plots in Figel.2 show that the majority of spikes in each population happens i
preferred time intervals. The recurrence of these time\mats (darker regions) is an evidence
of the typical oscillatory behavior of the 3 coupled popiadias. Even though the inhibitory neu-
rons individually fire with higher frequency than the extig ones, collectively they maintain
the typical oscillatory pattern in which the density of sgsks larger in the preferred time inter-
vals. Note that the darker region in the Interneuron popmnadlways occurs shortly after the
one in the Slave population. Figuré(c) and (d) show that, despite the collective oscillatory
behavior, each neuron in a population can fire quite irrefyula

The set of parameters used in Hg2 are the typical ones, shown in Tablel, except that
in Fig. 4.2(a) and (c)gis = 8 nS while in Fig.4.2(b) and (d)gis = 4 nS. The main observable
difference between the two situations is that the darkeilonsgof the M population occur
before (after) the ones in the S population in EFidgX(a) (Fig.4.2(b)). It means that in one case
(Fig. 4.2(a)) almost all spikes in the S population occur right afterast all synaptic currents
from the M population have arrived. This often leads to thee8rans spiking in a narrow
interval, as shown in Figt.2(c). As the inhibitoryg;s coupling is decreased (Fig.2(b)), the
S neurons mostly fire before the M neurons (and, as shown intEifgl), the deviation of the
mean in the S firing is larger). In particular, each neuromfid and S may fire more than
once in each collective oscillatory cycle, which occurs eften for neurons from S in the AS
regime (see Fig4.2(d)). Altogether, the data provides a qualitative evideoicthe existence
of both DS and AS regimes in this system.



56

S,
E
™
[ T
|
Iy # I : I
>
Yo I A
e N
L L L | 11
201 202%0 " 20300
ti t i T(ms) tiJrlt i+1

Figure 4.3: Mean membrane potentd)) of the Master (black) and the Slave (red) populations
in the DS (top) and AS (bottom) regimes. Gray lines are theréli mean membrane potentials
(Vx). Their local maximal values determitfe x =M,S used to calculate the time delgyin
thei—th cycle.

421 LFP scale

In order to characterize the DS and AS regimes we need to ifptm relative spiking
times of the M and S populations along a large time series ifégrdnt parameter sets. A
reasonable way to start this analysis is to plot the m&gnof the membrane potential of all
neurons in each population as a function of tif\) can be thought of as a crude approxima-
tion of a local field potential (LFP) signal. As expected frirme raster plots)V) oscillates and
has sharp peaks, as shown in Ed.

Using the previous definition of the time delayand the mean perio#, we will focus on
the wide regions of parameter space where the M and S pomsatiave the same average
period Ty ~ Tg). In this case, the time delay fluctuates around a mean \radeié€r;), which
characterizes a phase-locking regime between the M and @gimms. By definition, ift > 0
the system is in the DS regime (see Fig3(a@)), whereas ift < 0 the system is in the AS
regime (see Fig4.3(b)). t turns out to be a well behaved and often non-monotonic fancti
of the inhibitory synaptic conductancgs, as shown in Fig4.4(a) and (b), as well as of the
excitatory synaptic conductanggs, as shown in Fig4.4(c) and (d). The transition from DS
to AS is smooth and continuous. When we reduce the numbeterirat links from the Master
to the Slave population (for example from 20 per neuron to &plserve qualitatively similar
results but the interval of inhibitory conductances in Wi#S occurs decreases.

Moreover, we can use the return mapversust;_; to characterize different regimes.
Fig. 4.5shows that besides the DS and AS regimes, for small valuggafpsic conductances
the system may exhibits two other regimes. As in the 3-necase there is a phase-drift (PD)
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Figure 4.4: The mean time delayersushe inhibitory synaptic conductancgg from1to S

population.t = 0 is where the transition from AS (red) to DS (blue) regimeursc Depending

on the strength ofjys the system exhibits either DS or AS regimeasas a function ofgs

for (a) gus = 1.5 nS and (bpus = 0.5 nS.1 as a function ofjys for (¢) gs = 15 nS and (d)

Os=3.3nS.
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Figure 4.5: Return map versust;_;. Four different regimes: AS, DS, phase drift (PD) and
bistable regime (for small values of inhibitory conductesic The system alternates between
AS and DS with a well defined value of

region in which it is senseless to determine the mean tinmeyd# this regimely # Ts. Since
Ovs = Ois = 0, the Slave population is totally isolated and there is rbition acting on it.
Differently from what happens in the 3-neuron motif, fgg = O the Master and the Slave
are not identical. Besides, in the large-scale networkyéetn the phase-drift and the phase-
locking regimes there is a bistable regime. The bistahsitgharacterized by the coexistence
of well characterized DS and AS regimes which alternate ftiame to time (see Figd.5). Sev-
eral studies have suggested that multi-stability are wvapoirtant in neural dynamics. It might
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Figure 4.6: Characterizing AS in large and small scales.Cfass-correlation between the
mean membrane potenti@l') of the Master and the Slave populations for different regime
The time at which the cross-correlation function attaissitaximum value is approximately
the mean time delay between the M and S populations. (b) Histogram of the timaydgf'S
between the spikes of all coupled pairs whose presynaptione are in the M population and
postsynaptic neurons are in the S population. ¢) and d) &ypjaking activity of a presynaptic
neuron from the M population (black) and a postsynaptic medirom the S population (red)
in two different regimes: DS (c) and AS (d).

underlie the switching between different perceptions draveors [L09 110, 111, 112 119.
Transitions between many possible attractors of the nemalits may occur, for example,
under the influence of a cognitive drivingyI4, 115 116. However, from now on we will deal
just with the regime where either AS or DS is stable.

Still at the LFP scale, another characterization of bothpéeodicity of oscillations and
the existence of DS and AS can be made via the cross-coorlatnction between the mean
membrane potentials of the M and S populations, respegtiv&i(t)) and(Vs(t)). The corre-
lation curves shown in Figt.6(a) corroborate the results obtained by the direct measenmem
of 1, displaying a peak with positive time delay in the DS regimd aegative time delay in
the AS regime. The cross-correlations were calculatecgusm4.7.

4.2.2 Neuronal scale

Although the phase-locking is a collective phenomenon[OBeand AS regimes are also
evident at the neuronal scale. The histograms in &i§(b) show the probability density of
spike time intervalg™S between a spike from neuron in S and its respective presigrspkes
from neurons in M. Both the peak and the mean of the distdlbubiave positive values in
the DS regime, and negative values in the AS regime. The degeak of the histogram is
comparatively smaller than the first. It means that in theapyic scale, AS is a local and
non-periodic phenomenon.
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Figure 4.7: Mean time delay (right bar) in the (g,0vs) parameter space. The blue region
corresponds to the DS regime and the red one to the AS. (a) dised? rate iR = 2400 Hz
and the population firing rate, ~ fs~ 7.7 Hz. (b) The Poisson rate R= 4800 Hz and
fm ~ fs~ 14.7 Hz. The horizontal (vertical) dashed lines in (a) corresjsoto thd versus g
(gms) curves shown in Figd.4(a) and (b) (Fig4.4(c) and (d)).

Figures4.6(c) and (d) show examples of spiking activity of neurons frima M and S
populations. In both cases, we chose two neurons which are-pgst synaptic pair. In both
DS and AS regimes, pairs of coupled neurons do not maintairséime time delay between
their spikes in every cycle. Even though the order of theespdan change (pre-post to post-pre
spikes), on average there are more pre-post spikes in DS arelpust-pre spikes in AS. That
is what allows us to characterize the AS and DS regimes |lgo&irihe peak of the histogram
in Fig. 4.6(b).

4.3 Robustness in parameter space

Since we showed that the different ways to characterize theaAd DS are essentially
equivalent, in the following we choose to employas our standard measure. To explore the
parameter space, we used the values given in the first col@ifabote 4.1, except forg,s and
Owvs, Which in Fig.4.7 are varied along the horizontal and vertical axes respsgtiv

In Fig. 4.7(a) we display a two-dimensional projection of the paramgpace of our model.
The two different regimes (DS in blue and AS in red) are disttied in large contiguous re-
gions of parameters. The transitions AS-DS are smooth. Tnedntal (vertical) dashed
lines in Fig.4.7(a) corresponds to the vs gis (gus) curves shown in Fig4.4(a) and (b)
(Fig. 4.4(c) and (d)). For the chosen parameters, the populationsctive oscillate at an
average frequenc ~ 7.7 Hz (Ty =~ 130 ms).

The results are also robust with respect to the baseling frate of the neurons. In
Fig. 4.7(b) we show the results for a higher input Poisson r&e-(4800 Hz) , which leads
to higher network oscillation frequenciebx 14.7 Hz (Tyy ~ 68 ms). For this higher Poisson
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Figure 4.8: T is robust against noise. We choose an AS regime with all thenpeters given in
Table4.1(exceptys = 5 nS) and varied the Poisson r&eAs a consequence, the mean period
(and frequency) of the Master also varied. We plot the samef gmints in five different ways:
(a) T as a function of the mean period of the Maskgrand (b) its mean frequendyy = 1/Tu.

(c) T normalized tdly as a functioMy and (d) as a function of the Poisson rRtge) Measured
mean frequency for each chosen Poisson rate.

rate, the inhibitory conductances inside each populate®us to be greater (interrngdaga, >
6.5 nS). The phase diagram in Fig7(b) is qualitatively the same as in Fig}.7(a) butgcaga, =
7.5 nS. Since the period of the collective oscillations is srdior Fig.4.7(b), so it is the max-
imum absolute value of the anticipation tim¢compare the color-coded valuesf

Fig. 4.8 shows the time delay and its normalized value/Ty as the Poisson rate is
varied. Beginning from the AS regimgys = 0.5 andg;s = 5 nSin Fig.4.7(a)), Ris increased
from 2000 Hz to 4400 Hz. All other parameters are in Table It is worth mentioning that it is
possible to find an AS regime f&t > 2800 Hz (an example is shown in Fig.7(b)). However,
it is necessary to change other parameters such as intgnagitec conductances.

4.4 Modified motifs

4.4.1 Slave-Interneuron as one cortical population

Our results are also robust with respect to changes in theldgp of the system. In
Fig. 4.9a) we show a modified version of the MSI motif of Fi§1, where the M population
also projects its excitatory synapses onto the | populathnguably, this could better mimic
an asymmetrical mesoscale interaction between two cbpaaulations as the ones assessed
in experiments with macaque-monkey$[117] (more details in the next chapter). In the case
of Fig. 4.9a), the S and | populations can be considered as the exgit@bol inhibitory sub-
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Figure 4.9: A modified MSI motif also exhibits DS and AS. a) 8anto the motif in Fig.4.1

but with extra excitatory connections from neuron in the Mpplations to neurons in the |
population. b) Mean time delay(right bar) in the (g,9vs) parameter space. The Poisson rate
is R= 2400 Hz and the population firing rates dfg~ fs~ 7.7 Hz.

population of a larger Slave-Interneuron (Sl) populatiwat is very similar to M. Figurd.(b)
shows a phase diagram for this situation which is similahtsé of the preceding figures. The
time delay in each cycle is defined as=t>' —tM, wheret>' is the peak in the mean membrane
potential of all neurons in the Sl population.

4.4.2 Bidirectional coupling

Although the structural (i.e. anatomical) connectivityvoeen cortical areas is often bidi-
rectional [L17], brain functions typically require the control of intereal interactions on time-
scales faster than synaptic changes. Particularly, fomatiand effective connectivityP] must
be reconfigurable even when the underlying structural octiviy is fixed. First, different
tasks require the activation of different pathways. Secwamllive in a changing environment.
However, a complete understanding of how interareal phaiserence can be flexibly regulated
at the circuit level is still unknownl[09].

To ensure that the AS regime is not specific to cortical engesnhkith unidirectional con-
nections, we show its robustness in the presence of exgitsyaaptic feedback from the Slave
to the Master population. In this subsection, each neurtimeii population receives synapses
from 20 randomly chosen excitatory neurons of the S| popuriat Fig. 4.10a) shows this
schematic configuration. All other parameters are in Tdhleandgys = 4 nS to ensure that
for gsm = 0 nS the system is in the AS regime. For small values of thetaxey feedback
conductancegsy < gus/2, the AS regime persists (see FiglQb)). The time delay be-
tween the two population increases Wik, and the system eventually goes to a near zero-lag
regime [LOg. Moreover, the cross-correlation in Fig.10(c) corroborates the existence of two
different regimes.
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Figure 4.10: Effect of the synapses from the Slave populdtidghe Master. (aj as a function
of the excitatory feedback as we varied the synaptic comaheetgsy, for a fixed value of
gvs = 0.5 nS. (b) Cross-correlation between the mean membranetdteintM and SI.
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Figure 4.11: The parameters of the Izhikevich neuron mod&rdhines the different firing
patterns of the neurons (shown in Fig2). For fixeda = 0.02 andb = 0.2 the response of the
neuron to an applied constant current depend on the valueswdd. For (c,d) = (—65,8)
the neuron is a regular spiking (RS), far,d) = (—55,4) it is an intrinsically bursting (IB),
for (c,d) = (—50,2) it is a chattering (CH). Electronic version of the figure aegroduction
permissions are freely available at www.izhikevich.org.

4.5 Changing neuronal variability of the Slave

Neuronal synchronization, which might play an importanéro the neural coding, pro-
vides a potential spike-based code (i.e. depending on-$jikeg differences) that putatively
coexists with a rate code (i.e. based on the neuronal firiteg [a04]. We suggest that AS can
open a new and unexplored avenue to improve the computaponeer of spike-based code.
Particularly, Brette 104 has proposed that heterogeneity is essential for theefigi of com-
puting with neural synchrony. He showed that in a heteroges@eural population model,
synchrony receptive field could be used as an additionatnmdition for computation. There-
fore, we show that in our model, the AS regime is not only rolagsinst neuronal variability
but it is also a smooth function of the proportion of differéypes of neurons.

Depending on the parametex,d, c andd in the I1zhikevich model (see E4.1) each neuron
in the populations respond differently to a constant currére characterize the type of neuron
by its response. In Figl.11there is a detailed description of the kinds of neurons céy
the Izhikevich model that we use here. In the absence of aauinsurrent in our model, but in
the presence of synaptic currents, the behavior of a regalaon for example, may be slightly
different in each cycle. The oscillatory activity of a poatibn may change depending on the
proportion of each kind of neuron.

By Voss’s definition of AS the two dynamical systems need todeatical (see Eql.1).
Here we aim at verifying if small changes in the Slave popaoihastill leads to AS regimes.
Furthermore, in Fig4.12we show that continuous changes in the variability of therowes
from the Slave population produce continuous changes itirte delay. Particularly, if we
want to simulate cortico-thalamical interactions we wolike the Slave (thalamus) to have
more bursting neurons than the Master (cortex).

In this section we redefine the parameteendd from Eq.4.1as:

c = —55—x+(5+x)0?— (10— X)o7 (4.8)
d = 44+y—(24+y)02+(4—y)o2.

Both 01 and o, are random variables uniformly distributed in the intef@al]. If we simul-
taneously vary andy, keeping the relatioy = 2x/5, the maximum values af andd vary
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Figure 4.12: Neuronal variability. The time delay is a sniofainction of the proportion of
different kinds of neurons in the Slave.

along the lined = —6¢/15— 18 which passes through RS, IB and CH in the plot at the right of
Fig. 4.11 It means that, as before, there are all kind of neurons ih sawulation. However,
the distribution of the different types of neurons changéh w For example, when = —55
(and consequentlgt = 4) the majority of the neurons in the S population are IB nesydut
there are also RS and CH neurons in S. On the other hand, e#ien65 andd = 8 there are
more RS than IB neuron in S and more IB than CH neurons. Theteafféhese changes in the
time delay is shown in Figl.12 It seems that the existence of more RS neurons facilitafes A
However, further investigation are necessary to distisiguhether changes inare due to the
amount of IB and CH neurons or due to the differences betweand/S populations.

4.6 A toy model for the thalamus

The thalamus is a structure of the central nervous systen$j@at could play an impor-
tant role in the synchronization of cortical regioris.f]. It is considered as the gateway to
the neocortex, since all sensory signals, except for thectafy inputs, reach the neocortex
only after passing through a specific thalamic nuclei. Tiaatimus is believed to both process
sensory information as well as relay it to the cerebral coeach of the primary sensory relay
areas receives strong “back projections” from the ceratwgex. Moreover, in the thalamus
there are many inhibitory feedback loops due to reticulalatmic neurons (RTN) and thalamic
interneurons42]. Although the bidirectional connectivity pattern betwethalamus and cor-
tex [119, 120, here we investigated only the effects of unidirectionalagpses from the cortex
to the thalamus (the “back projections”). Since it is stdkgible to observe anticipatory oscil-
lations in the presence of synapses from the Slave to thegkjastr model can also be adapted
to include the thalamic dynamical relaying(g 118 121].

In this section, we consider a similar motif to the one showhig. 4.1, but the neurons in
the Slave population are described by a different model@h#urons in M. The Master popu-
lation is described as before (cortical like, see Sedcfidp but the Slave population mimics a
thalamic region and is composed of 500 hundred neurons (&@#atory 20% inhibitory).
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Figure 4.13: Time series for the Master cortical populatiod the Slave thalamic population
for different values ofjys. The AS regime is characterized by two peaks in the mean reerebr
potential of the Slave. The first peak anticipates de Magteanhics.
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Figure 4.14: Time delay as a function gfis. In the presence of two peaks in the Slave, we
define the time delay using the first peak.

[ht!]

parameters thalamocortical range varied

nl 500 (80% exc. / 20% inh. -
n2 500 (80% exc. / 20% inh. -
n3 100 (100% inhibitory) -

oms 20 (DS) /100 (AS) 5-150
Jsi 50 -
Jdis 50 -
gsm 0 -
internalgapmpa M 0.5 -
internalgampa S 5 -
internalgcaga, M 2 -
internalggapa, S and | 20 -
external noisgampa M 0.5 -
external nois@ampa S and | 0.5 -
Poisson rate (HZR 2000 -
# internal connectioni! 50 -
# internal connectionS 50 -
# internal connectionk 10 -
# external connectiondS 40 -
# external connectiorSl 50 -
# external connection$s 10 -
# external connectiorSM 0 -
external constant currehtin M 0 -
external constant curreigin S (exc) 42 -
external constant currehtin S (inh) 50 -
external constant curretgin | 50 -

Table 4.2: Parameters employed in the thalamocortical mode
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The 400 excitatory neurons are described as the thalanaddC) relay neurons¥]:

200V = 1.6(v+60)(v+50) —u+} Ix
u = 0.04b(v+65) —u), 4.9)

whereb = 15 if v < —65 andb = 0 otherwise. Wherw > 35+ 0.1u mV, thenv is reset to
—60—0.1u andu to u+10. The 100 interneurons in the Slave population obey thartia
interneurons equations:

20V = 0.5(v+60)(v+50) —u+ Ix
U = 0.05(7(v+60)—u). (4.10)

Whenv > 20— 0.08u mV, thenv is reset to-65+ 0.08u andu to the minimum betweea+ 50
and 530. The Interneuron population still has 100 inhiiteeurons but mimics the reticular
thalamic nucleus (RTN) neurons:

40V = 0.25(v+65)(v+45) —u+ 3 Ix
(= 0.015b(v+ 65) — u), (4.11)

whereb = 10 if v< —65 andb = 2 otherwise. Wher > 0 mV, thenv is reset to—55 andu to
u+50.

Each neuron receives an external constant cutgeantd a Poisson input. The current ap-
plied to the excitatory neurons in the thalamuk is 42 pA, whereas in the thalamic inhibitory
neurons and in the RTN = 50 pA. All parameters are shown in Talle.

Since our model has two separated pools of inhibitory neyyribiis simpler to us@ys as
the control parameter. The time series of M and S are showigindFL3for different values
of gus. The mean period and the mean time delay are calculatedasiynib the previous
sections. However, the existence of a second peak in the meambrane potential of the
thalamic population (see Fig.13 is not considered in order to calculate Then, the time
delay 1 is the difference between the time of the peak (or the firskpéahere are two) in
mean membrane potential of S and the time of the closest pelk Using this definition,
the model exhibits both ASt(< 0) and DS ¢ > 0) regimes. Fig4.14 shows the relation
betweent and gys which is qualitatively similar to that obtained with the tioo-cortical
models (compare with Fig..4(c) and (d)). Although this thalamocortical model would berm
realistic in the presence of bidirectional connections,dhistence of AS between two distinct
M and S populations could play an important role in our un@deding of the mechanisms
underlying AS in oscillatory systems. However, furtherastigation is necessary to establish
such mechanisms.

4.7 Stability analysis of phase-locking regimes between nmnal popula-
tions

In this section we simulate a different population modeblfded in a a master-slave con-
figuration, see Fig4.15a)) to study the stability of the phase-locking regimesgs locking
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theorem proved in 1996 by Gerstner, Hemmen and Cowa# [5]. The time differencedys)
between the oscillation of the two populations is typicalfunction of the strength of the ex-
citatory synapseslf,) from the Master to the Slave and also of the internal inbilgisynapses
in the Slave population).

We perform the stability analysis of these phase-lockirggnnes by using Integrate-and-
Fire (IF) neuron models coupled via synapses describedilfg} = (s/12)exp(—s/T). The
membrane potential of each neuron is given by:

Znt—t +ZJ.,Z t—t )+ lo[1—exp(—t/T)], (4.12)

whereg(t) = [3a(s)exp(—(t —s)/T)ds lllustrative examples of the synaptic current(())
and the neuronal respong#t()) are shown in Fig4.15b).
The locking theorem ensures that if

<2J.,Z t—t +I0[1—exp(—t/r)]> lt=T > 0, (4.13)

the oscillatory regime (of period) is stable [ 27]. In addition, if the left side of Eg4.13is
negative or zero the phase-locking regime is unstable.

Unlike the previous sections, in the motif shown in Fgl5a) each neuron in the Slave
population receives excitatory (inhibitory) synapsesrfrall other excitatory (inhibitory) neu-
rons in the same population, which leads}tpJij = (J+J) (in the simplest case). It also
receives the excitatory synapses from the excitatory meurothe Master populatiory( Jij =
Jm). Using these expressions and calculating the derivaitives. 4.13our stability condition
becomes:

Z((J +J)(T —KT)(2t — (T —KkT))exp(—(T —KT) /1) +

Im (s —KT) (2T — (3qus—KT)) exp(— (s —KT)/T) + 2loT2exp(—T /1)) > 0. (4.14)

The only condition for stable oscillations in the Master plgpion is|Jinn| > Jexe Fig.4.16C)
shows the stability map for fixed values of all parameterepkdys andJ;. Different values
of J; lead to continuous and finite intervals &jis in which the phase-locking regime is stable.

Since the anti-phase synchronizatiang = T/2) is an unstable solution, and in order
to match this results with our previous ones of anticipatgttkronization between neuronal
population, we separate the stable regiond\g < T /2 (Delayed Synchronization - DS) and
dous > T/2 (Anticipated Synchronization - AS). Examples of both aftons are shown in
Fig.4.16a) and (b).

It is also possible to obtain stable phase-locking betwherMaster and the Slave popu-
lations if the excitatory and inhibitory neurons in the Sgwopulation oscillate with a phase
differenceds;. In such case they can be considered as two different pogusagiving rise to
two stability conditions: one for the excitatory subpopiga of the Slave and other for the
inhibitory subpopulation (data not shown).
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Figure 4.15: IF neurons with high connectivity and in theeadz® of noise. (a) Two neuronal
populations coupled in a master-slave configuration. (l@nEpies of the synaptic current and
neuronal responses in one period.
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Figure 4.16: Both Anticipated Synchronization (AS) andd@eld Synchronization (DS) are
stable for a wide range of parameters. (a)-(b) Examples a$@thocking. The only difference
between AS and DS is that (&ys > T/2 in AS and (b)dus < T /2. (c) Stability map of the
phase-differencéys for different values ofl;. Note that the anti-phase regime is unstable.
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4.8 Discussion

4.8.1 Neuronal populations can exhibit AS

Although Voss {l] has suggested that AS could explain phenomena such as ldngede
induced transition in visually guided movemeriis]| to the best of our knowledge there are no
explicit reports of AS in neuronal populations. With rareeptions 6], previous observations
of AS in theoretical, physical, and biological systems weased on the original framework,
which included a somehow artificial negative delayed sstidback 4, 29, 8, 20, 33, 10, 12,

14]. Our simple model requires very few ingredients for the gyaace of AS in physiologically

plausible models. We have shown that substituting the negdelayed self-feedback by a
dynamical inhibition, AS can be observed in a model of codmertical populations. This

would open new perspectives to investigate the existent®oAS regime in other biological

systems.

In particular, we have addressed the emergence of AS in gipu$ of neurons represent-
ing certain cortical areas and studied its robustness sigexternal noise, heterogeneity and
synaptic characteristics. Similarly to what occurs in aeBiions motif B9, here the antici-
pation time emerges from the system dynamics, instead afjteiplicitly hard-wired in the
dynamical equations/] (see Eqg.1.1). Since the time delay depends on the strength of the
synapses, AS could be tuned by neuromodulation.

Comparing structural and functional connectivity matsioémacaque monkey cortex from
the CoCoMac databasel7, 123 we can emphasize two important aspects. First, both the
structural and functional connectivity matrices are nohsyetrical, what indicates that there is
a moderate amount of preferential coupling direction asiénrhaster-slave configuration. As
an example we mention the connectivity matrices of aredas#lang to the somatomotor and
visual cluster from the CoCoMac databa$éj. Second, some pairs of regions have opposite
directionality in the structural and in the functional cections. This can be verified in the
matrices cited above, for example between areas OC and OAlsodetween OB and PEp,
TA and TF. The names of the areas follow the scheme of Felleandrvan Essenl?4] (for
more details see Stephan et dl2f]). This can result from the influence of all other areas on
these two regions, but could also be AS regimes that were elbtharacterized.

The robustness and stability of our model indicate that A8lte can probably be extended
beyond cortical areas (or even beyond the brain). For exathpl brainstem and central pat-
terns generators in the spinal cord are driven by tonic abary brainstem inputl[25. Due to
biophysical similarities between brainstem spinal cord aaorcortical circuits 125 and the
fact that inhibition together with excitation dynamicatBgulate oscillations, these regions can
be modeled as master-slave systems with feedback inmbiflee MSI motif in Fig4.1is also
similar to a simplification of the circuit involving the re. and the lateral geniculate nucleus
in the thalamus {5, 6€], as well as to the olfactory epithelium and the olfactoribldu 24.

4.8.2 Different synchronization regimes within the same astomical connectivity

Neuronal synchronization is a widespread type of actiwtyich occurs from sensory sys-
tems to higher cortical areas. Due to the communicatioodtiin-coherence hypothesi&] it
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is very important that the same structural motif can geeeaddterent coherent regimes of oscil-
lations. Flexible patterns of coherence in the same stralctootifs facilitate flexible commu-
nication. Moreover, different working regimes within thense anatomical connectivity. 09
are necessary during changes in behavioral aspects withtshe-scales. Our model provides
different patterns of coherence within the same anatontieahections. Therefore, flexible
communication is one of the possible functional signifieenef the AS regime and the transi-
tions to DS mediated by inhibition.

Several LFP measures in the brain exhibit synchronizatitimphase differencel27, 107,
129, for example the theta phase synchronization betweerobgppus and medial prefrontal
cortexinrats{29 130, the gamma band synchronization between the frontal elgkdied area
V4 in monkeys [.31] and the beta band synchronization between cortical aneasnkeys [0,
132, 133 71]. Typically, these phase differences are associated teythaptic delay between
distant regions. However, one needs not be a direct consegu# the other127. As we
have shown in this chapter, the pool of inhibitory neuran#/[ 135 in the cortex can regulate
the time delay between the oscillations. It means that thibition may annihilate the effect
of synaptic delays, providing shorter phase differencad{ding negative values).






CHAPTER 5

Cortical data analysis

Phase synchronization is an ubiquitous phenomenon in tigly if complex systems that
may underlie a variety of neurocognitive processesd. Particularly, it has been related
to large-scale integration P, efficiency of information exchanges{],as well as working
and long-term memoryl]27]. Correlation measures are the most widely employed tawls f
measuring phase synchronization and it is typically useidfer interactions between brain
areas [ 07, 137. However, correlation alone cannot reveal the influenbes @re exerted by
neurons in one area on those in the other by axonal trangmiasid synaptic effect. One ap-
proach to detecting directional influence in the brain hamnlte infer it from relative phase
measuresi38 139 140, 141, 131] of neuroelectric indices, such as the electroencephafogr
(EEG). The assumption here is that the timing differencelioitgn relative phase reflects
the transmission time of neural activity. By contrast, ottneasures of directional influence,
such as Granger Causality (GC), have emerged in recent gsans alternative approach that
is grounded in the theoretical framework of statisticaldictbility between stochastic pro-
cessesl4? 147.

A dominant value for directional influence from one braineaf®) to another (B) indicates
that the activity of neurons in area A exerts an effect on ity of those in area B. It is
often assumed that such a directional influence should mvguanied by a positive time delay
(relative phase lead of the activity in area A before thatregaaB), indicating that A's activity
temporally precedes that of B. However, this assumed oglsttiip is not theoretically justified.
Furthermore, it has been empirically observed that a domid&ectional influence between
areas of sensorimotor cortex may be accompanied by eithegative or a positive time de-
lay [70]. Brovelli et al. showed that steady contractions of arm hadd muscles by macaque
monkeys performing a visual pattern discrimination task @companied by phase synchro-
nization of beta-band (14-30 Hz) Local Field PotentialsRkl-recorded from somatosensory
and motor cortical areas’(]. Directional influence among those areas, as assessed by GC
showed that interareal functional relations are usualyyrasetrical. Importantly, the interareal
relative phase showed no obvious relation to the direclityrdetermined by the dominant di-
rection of causal influence. Thus, for example, even whenr@iicated that area A exerted a
stronger influence on area B than in the reverse directigggesting an asymmetric functional
relation dominated by the influence from A to B, it was oftea tlhase that area A lagged behind
area B intimeT0].

A similar incongruence between phase difference and GCdeetWreFrontal Cortex (PFC)
and Posterior Parietal Cortex (PPC) in monkeys performimgpegking memory task was re-
ported by Salazar et al7[]. They observed a dominant parietal-to-frontal beta-b@ain-
fluence that was opposite to the direction of influence inadh the 24 — 6.5 ms time lead of

73
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PFC before PPC derived from relative phase. The dominargtphto-frontal direction of GC
influence was supported by spike-field coherence analygas auggesting that relative phase
is not a reliable indicator of directional influence.

Despite efforts to join concepts of anticipatory behaviod &S dynamics 144, 145, bi-
ological models of AS, and experimental evidence for it i@ brain, have been lacking. As
shown in the previous chapters, anticipated synchrowzaiccurs when a unidirectional influ-
ence from a generator dynamical system (A) to a receivermdigad system (B) is accompanied
by a negative phase difference between A and,B[6]. The only difference between the defi-
nition of AS and the reported paradox, is that the causalenfie measured in the experiments
can not ensure a structural unidirectionality. Therefbere we propose that the existence of
AS in the cortical model presented in Chapter 4 could explanapparent paradox reported
by Broveli [7(] et al. and Salazar et al/f]. We show that our model reproduces delay times,
as well as coherence and GC spectra, from the cortical datafir@ings provide a theoretical
basis for the observed cortical dynamics, while suggedtiagthe primate cortex operates in
the AS dynamical regime during cognitive function. The nddeher suggests that the local
inhibitory interactions in a receiving neuronal populatia the cortex will determine whether
that population will anticipate or lag behind sending pepioins.

5.1 More realistic features

To simplify the modeling of the asymmetry observed in ther@ea causal influences be-
tween pairs of areas, we simulated two unidirectionallypded cortical-like neuronal popula-
tions similar to the modified MSI motif described in the praws chapter. The cortical regions
and the motif studied along this chapter are illustratedig 5.1(c). Connectivity within
the M population randomly targets 10% of the neurons, wittitatory conductances set at
g¥ = 0.5 nS and inhibitory conductances segilt= 4 nS. The S population is also composed
of 400 excitatory and 100 inhibitory neurons, forming eatty slave (ES) and inhibitory
slave (IS) subpopulations (Fi§.1C). Neurons in the ES subpopulation receive 40 synapses
(gE = 0.5 nS) from other neurons of the ES subpopulation, and 10 sgsapvith conductance
gls) from neurons of the IS subpopulation. Neurons in the IS epbfation receive 40 synapses
(gE = 0.5 nS) from neurons of the ES subpopulation and 10 synag§e54 nS) from neurons
of the IS subpopulation (Fich.1C). Note that neurons of the IS supopulation project syrepse
with different synaptic conductances to neurons in the siaunlnepopulation§|'|S =4 nS) and
to neurons in the ES subpopulatiogFX. Subpopulation IS accounts for the inhibitory loop
previously reported to be essential for the emergence of A% [The M and S populations
are connected as follows: 20 synapses (with conduc@gﬁ%)efrom each excitatory neuron of
the population projects on the S population. Unless otlsstated, each neuron receives a
Poisson inpuR = 2400 Hz and no external curreigt= 0.
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Master Slave

Figure 5.1: (A) Location of recording sites in monkey GE (@om the four electrodes ana-
lyzed). (B) Sites 1 and 2 are in the primary motor cortex anch@ry somatosensory cortex
respectively. Sites 3 and 4 are in the parietal cortex. Asrowdicate the direction of influ-
ence between each pair (Granger causality) and their wréthetdated to the peak of Granger
causality shown in Tabl&.2. Colors indicate the sign of time delay between pairs, ikadat
to the influence direction. Blue arrows indicate the senderster) leads the receiver (slave).
Red arrows indicate the receiver leads the sender. (C) Satiterapresentation of two cortical
areas coupled in a master-slave configuration. In the mbdedtructural connectivity ensures
the direction of influence from the master to the slave. Thec&f’e connectivity may also be
accessed by Granger causality measures (se® B)g.
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Site Pairs  Coherence Peak of Granger Causality Phase Time delay
M — S |[Peak  fpeak(HZ)M — S fpeak(Hz) S—M fpeak (Hz)|Difference (rad) 1 (ms)
2—1 |0.1065 250.0429 25 — —+ -1.1380 -7.24 (AS)
2 — 3 |0.4506 240.2092 26 0.1205 26 -2.8485 -18.89 (AS)
2—4 10.1892 24 0.1207 26 — — -2.5775 -17.09 (AS)
3—1 |0.1295 240.1074 24 — —  1.4714 9.76 (DS)
3—4 |0.5804 25 0.3029 25 — — 0.4554 2.90 (DS)
4—1 |0.1027 2530.0507 27 — — 0.7236 461 (DS

Table 5.1: Peak of coherence, Granger causality and tiney dedtween all 6 pairs of sites
shown in5.1. Positive values of time delay indicates the master leadssldwe (DS), while
negative value indicates the master lags behind the sla8¢ &Aom 300 ms to 400 ms after
the stimulus onset during a NO-GO task the oscillatory belmappears again. Comparing to
the wait window, shown in TablB.2, all the directions of causality relations are maintained.
The sign of the time delay changes only between sites 1 and 4.

5.2 Data acquisition

LFP data was recorded via up to 15 microelectrodesy(Bildiameter, 2.5-mm separation)
from the sensorymotor cortex (right hemisphere) of an adale rhesus macaque monkey, as
described in Brovelli et al.q0] (Fig. 5.1A) 1. Data was acquired while the monkey performed
a GO/NO-GO visual pattern discrimination task which regdiit to release (on GO trials) a
previously depressed hand lever. Our analysis focuses @rtriéls of the 90-ms period (18
points, 200-Hz sample rate) ending with the visual stimolset (wait window). Only correct
trials (both GO and NO-GO) were analyzed. Considering thelevkask, each trial lasts for
500 ms.

We also tested our model against results from a differen¢ex@nt, where monkeys per-
formed a working memory task while LFP activity from two doal regions (PFC and PPC)
were recorded. In that case, results were directly extidoten Salazar et al.7[1].

5.3 Granger causality

Granger causality is a statistical concept of causality ihhased on predictionlLfid. In
Granger’s words: "The topic of how to define causality had plpgosophers busy for over two
thousand years and has yet to be resolved. It is a deep coest@uestion with many possible
answers which do not satisfy everyone, and yet it remainsmesmportance.”

The basic idea behind the definition of the Granger causalityuite simple:x Granger
causey if the past ofx helps to predicy better than the past gf In a more general way:
suppose we have three time serig@), y(t), andw(t). First, we realize an attempt to forecast
the value ofx(t + 1) using past terms of(t) andw(t). Second, we repeat the process using,
besides the past termsxit) andw(t), the past terms of(t). If the second prediction is found

IData from these experiments was kindly provided by ProfvétéBressler (Florida Atlantic University).
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to be more successful, according to standard cost functtbes the past of(t) appears to
contain information helping in forecastingt + 1) that is not in the past(t) or w(t) . In this
case we say(t) "Granger causesX{t + 1) if two conditions are satisfied: (j)t) occurs before
X(t+1); and (ii) it contains information useful in forecasting + 1) that is not found in a
group of other appropriate variables. This multivariatéeagion (number of variablas >
2), sometimes referred to as conditional Granger caudélity], is extremely useful because
repeated pairwise analyses among multiple variables caetsmes give misleading results.
In the simplest case of= 2 we can write:

p p
Xt) = 3 Awxt—])+ Y Augjy(t— ) +Ex(t) (5.1)
j=1 =1

p p
yt) = > Aorjx(t—j)+ > Acajy(t—j) +Ey(t),
=1 =

wherep is the maximum number of previous observations to take intmant in the model
(the model order), the matrix A contains the coefficientdefinodel (i.e., the contributions of
each lagged observation to the predicted valuegtofandy(t)), andEyx andEy are residuals
(prediction errors) for each time series. If the variancE,ofor Ey) is reduced by the inclusion
of they(t — 1) (or x(t — 1)) terms in the first (or second) equation, then it is said yiat- 1)
(or x(t — 1)) Granger causest) (or y(t)). In other wordsy(t — 1) Granger causex(t) if the
coefficients inAp2 are jointly significantly different from zero.

For data consisting of multiple trials, each trial can besidered as a separate realization of
a single underlying stochastic process. Moreover, thdicaits in the multivariate regressive
model can be interpreted in the frequency domains, allowagal interactions to be analyzed
by frequency [47]. In this spectral Granger causality, the statistical gigance of our results
were estimated by constructing surrogate data.

The main limitation of the mathematical formulation givertihe Eg5.2is that it only ac-
counts for linear information transfer. It is a problem imgaex systems (such as the brain)
because lots of information is also transferred non-liyeddore complex extensions to non-
linear cases exist, however these extensions are oftendifficalt to apply in practice [44.
Another problem is that Granger causality cannot distigsigbietween actual straight causality
from the interaction via a third process which is not incldidi@o the analysis. Moreover, the
choice of the factors, for example the model orgein Eq. 5.2, may influence on the final
result. Then, Granger causality should not be directlyrpreted as physical causality.

5.3.1 Causality measures in neuroscience

Despite the limitations, Granger causality is emerging psoaising and pragmatic mea-
sure of information flow in neuroscience/3. Besides the already mentioned applications
of Granger causality to study cortical interactiofi§,[71], there are several other works us-
ing this method to infer effective connection in data acedifrom different techniques {49.

For example, Liang et al1}tg employed it to differentiate feedforward, feedback, aaietal
dynamical influences in monkey ventral visual cortex dupattern discrimination. Kaminski
et al. [L49 noted increasing anterior to posterior causal influeneagtd the transition from
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waking to sleep by analysis of EEG signals. In the domain oRfMRoebroeck et al.1[5(
applied it to data acquired during a complex visuomotor,tadiereas Sato et all$1] used a
wavelet variation of G-causality to identify time-varyingusal influences, and Liao et al5[]
aimed to reveal the network architecture of the directediémfte brain network on resting-
state. Granger causality has also been applied to simulatadl systems in order to probe the
relationship between neuroanatomy, network dynamicspahdvior [L53 154].

Although there are many new methods to infer information fi@yond Granger causality,
there is no unanimity as to what is the best method to use sfeaantropy and directed trans-
fer function are among the most employed methods withinoralrdata. In particular, several
other methods employed the idea of phase to infer conngctphase slope index p5, phase
locking value [L.56], imaginary part of coherencyi[7], weighted phase lag index $d, pair-
wise phase consistencyd9, At least one of them, the phase slope ind&x], clearly claims
to be useful to estimate causality.

An advantage of information theoretic measures (mutuarimétion and transfer entropy),
as compared to standard Granger causality, is that theyeasgtige to nonlinear signal prop-
erties [L46). A limitation of transfer entropy, as compared to Grangestmod, is that it is
currently restricted to bivariate situations. Also, infation theoretic measures often require
substantially more data than regression methods such agy&raausality [6(]. Particularly
in the analyzed data here, there are only 18 points in eaalhwthich turns out to be too few
points to use transfer entropy.

5.4 Spectral Analysis of LFP and simulation data.

Coherence, Granger causality and phase difference sphantatysis were calculated fol-
lowing the methodology reported in Brovelli et al.(] using the GCCA Matlab toolbox.[51].
The autoregressive modeling method (MVAR) employed in REf§1, 70] to estimate the
spectral analysis from the LFP time series requires theneligeof single-trial time series to be
treated as produced from a zero-mean stochastic processefdte, we have preprocessed the
LFP time series by including detrending (subtraction otfigng line), demeaning (subtrac-
tion of the ensemble mean) and normalization (division leytdmporal standard deviation) of
each trial.

It was also necessary to determine an optimal order for thARIModel. For this purpose
we obtained the minimum of the Akaike Information CriteriphiC) [167] as a function of
model order. The AIC dropped monotonically with increasingdel order up to the number
of points in a trial minus one. We consider that the model oadel0 (50 ms) used in7[]]
is sufficient to provide good spectral resolution and avoidrparameterization. In fact, we
verified the consistency of the results using model ordeBsasfd 15.

For each pair of sited ,k) we calculated the spectral matrix elem&gt f) [70, 163, from
which the coherence spectr@®y(f) = |Sk|?/[Si (f)S«(f)] and the phase spectrugy(f) =
tan 1[Im(Sk)/Re(Sk)] were calculated. A peak @y(f) indicated synchronized oscillatory
activity at the peak frequenchpeai With a time delayrix = @x(fpea)/(27fpear). Directional
influence from sité to sitek was assessed via the Granger causality spedirumf) [70, 163
(arrows in Fig5.1B are in agreement with Tabfe?2).
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Figure 5.2: Comparison between data from sites 1 and 2 (titp)tie results of our model
in the AS regime (bottom). (A) Measured and simulated LFRetsrries. (B) Both in data
and model the sites are synchronized with main frequency2¢klak of the coherence). (C)
In data, site 2 Granger causes site 1 (as if site 2 were theemastl site 1 were the slave).
However, site 2 lags behind site 1€ —8.7 ms as shown in Tabk 2). Similarly, in the model
the master Granger causes the slave, but lags behimd=t{8.2 ms). (D) Phase difference
between pairs of site as a function of the frequency in whimecence reaches its maximum
value (fpear. fpeak= 24 Hz, comparable with Ref/[]. fpeax= 17 Hz, comparable with
Ref. [71]. In this work, posterior parietal cortex Granger causefrpntal cortex, but prefrontal
cortex leads the former (varies from—2.45 ms to—6.53 ms)

5.5 Comparing data and model

From the experimental data, we have selected four pairsestredes for which the two
following criteria were satisfied: strongly asymmetric ughce inferred by Granger causality
and strong coherence. In these cases, both the coherenGramgker causality peaks were at
similar frequencies. Those results are represented irbFigand summarized in TabER2. In
all cases the pairs were synchronized in the beta band @@thkiz).

Whenever a sité strongly and asymmetrically Granger caukewe refer tol as a master
(M) site andk as a slave (S) site. Intuitively, in these cases one woul@&xjl to lead S
(i.e. ik > 0), but the counterintuitive result revealed by Tabl2is that there is no consistent
relation between GC and[70, 71]. Given the complexity of the cortical interactions, saler
mechanisms could account for this phenomenon. Here we peopaoninimal model that ex-
plains how asymmetrically coupled neuronal populatiomssyamchronize with either positive
or negative time delay.

The asymmetry between M and S neuronal populations is atallyt built-in in the simu-
lations (Fig.5.1C). Despite the noise and heterogeneity, the mean membaoa@etial of the M
and S populations can synchronize with the same main fregu&epending on the synaptic
conductances, the system can exhibit delayed synchramz@&s), witht > 0, or anticipated
synchronization (AS), witlt < O.
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Figure 5.3: Time delay as a function of the inhibitory condince, corresponding to black
dots in Fig.5.2(d) in the following frequencies: ajeak= 17 Hz b) fpeak= 24 Hz. Like in the
previous chapters, the transitions from AS to DS are smaadhcantinuous.

5.5.1 Model reproduces experimental coherence and GC speat

We have adapted the model to fit the data coherence peak freg(4 Hz in Fig5.2), by
adding a constant current to every neurbe=(9 pA) and adjusting the synaptic conductances
(M = §° = 3.2 nS,g¥S = 0.5 nS andgP® = 12.6 nS). This modification also produced noisier
time series that better mimic measured LFPs (5igA). For a fair comparison with data, sim-
ulated LFPs took both the ES and IS subpopulations into deraiion. We have downsampled
the model time series to the same rate employed for the da@aH2), after which simulated
data was analyzed exactly like experimental data.

In Fig. 5.2 we compare simulation results with experimental data fraessl and 2 (pri-
mary motor and somatosensory cortices respectively, sge B), which showed a clear uni-
directional influence (from 2 to 1) and negative time delayndd to AS, the model yielded a
coherence spectrum similar to that of the data (BigB), particularly in its sharpness around
the measured peak frequency. Not surprisingly, the alesohities of the peak coherence for
the simulations is larger than for the data, probably refigdhe fact that, differently from our
simple model, in the brain one region is also influenced byyhwdher regions.

The model also successfully reproduced the main featurteedEC spectrum of the data
(Fig. 5.2C). A sharp peak was obtained in one direction {MS in the model), whereas the
reverse direction showed a weak and flat spectrum. The fatthle peak frequency of the
GC spectra approximately coincides with the peak frequaridpe coherence suggests that
causality is mediated by the coherence oscillations ar@4ndz [70).

Results by Brovelli et al. showed positive as well as negaiime delays, given an asym-
metrical GC between two sites(]]. By changing the inhibitory conductang?, the model
managed to reproduce both regimes (EigD), which corresponded to what we refer to as DS
and AS, respectively.

In the second dataset, the peak frequencies were around BhdHthe average relative
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Site Pairs ~ Peak Coherence Peak Granger Causality Phase Time delay|
M — S [Magnitude  fpeak(HZ)M — S fpeak(Hz) S—M fpeak (Hz)|Difference (rad) 1 (ms)
2—1 0.3051 24 10.1944 25 — - -1.3166 -8.73  (AS

— )
2—3 0.4029 24 10.1547 26 0.0892 25 -2.1316 -14.14 (AS)
2—4 0.2552 24 10.1086 24 0.0265 26 -1.6706 -11.08 (AS)
3—1 0.2546 24 10.1610 24 — —+ 0.4637 3.08 (DS)
3—4 0.7186 24 10.4203 26 0.0859 28 0.3799 2.52 (DS)
4—1 0.2072 24 10.0644 26 — —+ -0.4313 -2.86 (AS)

Table 5.2: Peak of coherence, Granger causality and tinagy dedtween all 6 pairs of sites
shown in5.1 In each pair, the site which exerts a larger influence on theras called the
master. The other site, which receives the larger influesdag slave. Positive values of time
delay indicates the master leads the slave (DS), while ivegadlue indicates the master lags
behind the slave (AS). A dashk-| indicates that no peak was observed in the Granger Causalit
spectrum.

phase between PPC and PFC was negatilje Dur simple model yielded similar results with
changes in parameterg® = 1.0 nS,gM = §° = 7.5 nS, g’ from 6 to 20 nS and a Poisson
rate equal to 6000 Hz). In Fi¢.2D we summarize the comparison between phase differences
observed in the model and in the data.

The time delayr as a function of the inhibitory conductancgfsis shown in Fig5.3for both
sets of parameters ((Brak= 17 Hz and (bfpeak= 24 Hz). Similarly to what was observed
in previous chapters, the transition from DS to AS is smoatth @ontinuous. It means that
the same model may represent different pairs of sites inFigsince they are modulated by
different amounts of inhibition. In particular, sites 1 addrom the data have a time delay
T = —8.7 ms which is quite close to the minimum time delay obtainethwur model,r =
—8.2 ms forgP = 12.6 nS.

Hitherto all results are for the wait period of the task (90 ma$ore the stimulus onset).
Nonetheless, we also analyzed the whole task, which corapd=h600 ms in each trial. After
the stimulus, the synchronized activity decreases andsezprently, the peak in the coherence
between pairs of sites also decreases. However, during RQaSks, which requires to the
monkey to maintain the hand lever depressed, the synclewmetivity reappear before the
end of the trial. This result was reported by Zhang et &/ In Table 5.1 we repeated the
same analysis shown in Tabie2, but for a different interval (from 300 to 400 ms after the
stimulus onset) and only for NO-GO tasks. Results are quaigly the same between all
pairs, except for 1 and 4. It means almost all pairs that éeh&S (or DS) during the wait
period, show the same regime in the end of the task (a residhwias not reported by Brovelli
et al. [70] neither by Zhang et al.1[54]).
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5.6 Discussion

5.6.1 Relative time delay is a poor indicator of directionalinfluence

It is well known that the correlation between two variablegsinot necessarily imply that
one causes the other. However, there is a tendency in thatlite to use the relative phase
between synchronized populations to infer which one is tiveedregion [L65. As we have
shown, in our model the leading population does not necisdaives the lagging population.
By definition, in a master-slave configuration the directadninformation flow is from the
master to the slave. It means the master drives the slavehrA®and DS regimes. As there is
no violation of causality, the existence of an AS regime ichssystems reveals that the relative
time delay does not always indicate the direction of caudation.

In prior analysis of cortical LFP data’[], an apparent contradiction was found between
the time lag and the GC direction for some pairs of sites (sé#eb.2). A similar paradox was
also reported by Salazar et al. for different cortical regif’1]. The apparent contradiction is
caused by the assumption that the direction of informatmm ftom one process (A) to another
(B) must result in process B following process A in time. Heee our model of AS not
only proves that this intuition fails but also sets a framewia which an AS regime naturally
emerges, reconciling causality with a negative phase laghd& best of our knowledge, this is
the first model to exhibits AS between cortical populations.

It is important to mention that LFPs are highly sensitivete depth of the recording, which
can lead to phase reversal as a function of electrode depth €6, 167, 164]). Although this
could shift all phase delays by radians and possibly confound AS with DS and vice versa,
that would not eliminate the apparent contradiction betwgease lag and causality. In pairs
of brain regions in which DS occurs (as e.g. regions 3 and Bbi€b.2), causality and phase
lag would not match and would still require an explanation.

5.6.2 Correspondence between dynamical synchronizatiorgime and functional brain
state

In light of the hypothesis that synchronization plays ananm@nt role in neural processing
and coding 104, 66], different dynamical synchronization regimes may be neglfor flexible
communication to occur within a given structural networ&mtrecture. For instance, changes
in dynamical synchronization state may be necessary fat-s&ion changes in functional brain
state related to cognitive processin@, 169, or long-term changes related to learning. AS
may represent such a dynamical state of synchronizatiorthars may be able to open new and
unexplored perspectives for understanding this type oingpdOur model suggests that even
populations with a strongly unidirectional connectiviggncexhibit dynamical flexibility. Sim-
ply by small changes in the relative weights of excitatorgt arnibitory synaptic conductances,
a range of synchronization patterns, displaying positivedgative time lags, can be achieved
for the same anatomical structure. In fact, recent neursiplggical evidencell7(] suggests
that top-down attentional influences act to affect the badanf excitation and inhibition in
visual cortical area V4.
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5.6.3 Effective connections and functional significance

In order to characterize the interaction between distaaintareas, correlated oscillations
used to be analyzed (7). However, cross-correlation functions as well as cohegeneasures
are not always sufficient to indicate neither the structcwahection nor the direction of the flux
of information of the networkl[09. The motifs explored here are examples of such a situation,
since the time in which the peak of the cross-correlatiorction occurs can be positive or
negative. A step further in the analysis of brain connetstiduring specific tasks is to infer
the effective connection (i.e. to infer directional inflees, besides correlations). For this
purpose, one should calculate the flux of information usiogexample Granger, causality or
transfer entropy.

It is worth to mention that if the analyzed data is too smalhas low resolution, in an
anticipatory situation causal measures such as transtespgnor Granger causality would
state that the information flux is from the slave to the driweaster) [ 71]. In these situations
the sign of the time delay would seem to agree with the app#tenof information. Such an
effective connectivity calculated in the wrong way would nepresent real causal flux neither
the structural connectivity.

Since the model presented here predicts that the AS-DSticamis mediated by synaptic
changes, a related question is whether the functionalfgignce of AS and DS regimes (if
any) could be unveiled by monitoring causality and phasellaing the process of learning a
new task. On the conservative side, given the central deyreedof phase lag on inhibition in
the slave population, the observation of AS between prirsargatosensory and motor areas
could be just an epiphenomenon, reflecting strong inhibitibthe primary motor cortex in
order to prevent movement, as required by the task [Alternatively, the precise timing in
the coordination among areas might subserve additionatifurs, possibly in connection with
attention and perceptual coordination.






CHAPTER 6

The interplay between spike-timing dependent
plasticity and anticipated synchronization in the
organization of neuronal networks

How learning and memory is achieved in the brain is a centuaktion in neuroscience.
Since antiquity, philosophers have been thinking abow finoblem. It was Aristotle who
proposed the notion of the mind as a tabula rasa, or a blate Jihis idea is exactly opposite
to that of Plato, who defended that the human mind was créateeé heavens, pre-formed and
ready. Since then, there is a long-standing discussiontadiether we are primarily a product
of nature or of nurturel[77].

6.1 Synaptic plasticity

The most accepted idea nowadays is that the storage of iafmmin our brain is mediated
by changes in the synaptic efficiency, a phenomenon callegjxic plasticity. This assumption
emerged after the demonstration by Ramén y Cajal that nksxdmneurons are not in cytoplas-
matic continuity but communicate with each other via sgead junctions called synapses. In
1949, Donald Hebbd9] conjectured that if input from neuron A often contributedhe firing
of neuron B, the synapse from A to B should be strengthenedlisliown words: “When an
axon of cell A is near enough to excite a cell B and repeatedlyensistently takes part in
firing it, some growth process or metabolic change takeseplaone or both cells such that
As efficiency, as one of the cells firing B, is increased7}. His ideas are known by the
popular slogan: “cells that fire together, wire together'owsver, strictly speaking, Hebb’s
rule is directional: cell A helps fire cell B.

The strengthening of connections between co-active caisbiecome known as Hebbian
plasticity. The resulting groups of cells joined togetherotigh this form of plasticity are
called Hebbian assemblies. Hebb also propose that thelirasia of the thought process are
the chains of assemblies that create specific sequences.offie same cells can patrticipate
of several different chains (or percepts) depending on kbedls are active at the same time
and on the sequence of activation. Then, distinct sequemegsrepresent distinct thought
processes![/7.

Along the last decades, several experimental works in a euwitbrain regions including
the hippocampus, neocortex, and cerebellum, have revaateaty-dependent processes that
can produce changes in the efficacies of synapses thattgersiarying amounts of time. Bliss
and Lgomo’s studyl[7J was the first to demonstrate that the effects could last fong period.

85
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Their work was the first verification of synaptic plasticitythe mammalian brain, particularly
in the excitatory synapses of the hippocampus, a regionhwpacticipates in learning and
formation of memory in humans. They showed that brief trafifsgh-frequency stimulation to
monosynaptic excitatory pathways in the hippocampus cansdrupt and sustained increase
in the efficiency of synaptic transmission.

Lynch et al. [L74] reported that while high-frequency stimulation inducexdemtiation of
the activated pathway, the inactive pathway may sufferekspon. This was in agreement with
Hebb’s idea of a slow “synaptic decay” for unused connestidgven tough he did not propose
an active mechanism to weaken synapses, long-lastingsipnevas also found to occur at the
activated pathway when the activation frequency was [b¥]. Synaptic increase or decrease
that persists for tens of minutes or longer are generallgddbng-term potentiation (LTP) and
long-term depression (LTD), respectively.

Despite plenty of plasticity models based on correlatiohpre- and postsynaptic firing
(known as rate-based rules), in more recent years a novekeporn cellular learning has
emerged, where temporal order of pre- and post-synaptiespnstead of frequency is em-
phasized. This new learning paradigm, known as spike-grdiependent plasticity (STDP),
has rapidly gained interest because of its combinatiomopkcity, biological plausibility, and
computational powerl[77]

6.1.1 Spike-timing-dependent plasticity (STDP)

Markram and Sakmann reported a breakthrough study on therieme of precise relative
timing of spikes emitted by the pre and post- synaptic nesinothe neocortex![/q. They re-
vealed that LTP occurs when the time difference betweenrtwegmd the postsynaptic neurons
is around 10 ms and the presynaptic neuron spikes first. Ootttee hand, LTD was shown to
happen due to acausal pre-after-postsynaptic spike tsnevgn when they employed the same
stimulation frequency to generate pre-post and post-pkesp

In 1998, Bi and Pool[77, 178 mapped essentially the entire STDP window. First, they
evoked spikes in both pre and postsynaptic neurons withcageréme difference/t). Second,
they measured changes in the excitatory postsynaptic fait@aPSP) as an indirect measure
of the strength of the synapse (see Fd). A positiveAt means that the presynaptic neuron
fires spike before the post synaptic neuron, which has beamrsto induce LTP. A negative
At is associated with the opposite order (a post-pre spike)gamérates a decrease in the
amplitude of the EPSPs, which characterizes LTD. Then, ttyegated the process in a roughly
40-ms-long coincidence window. More interestingly, theparted a rapid 1-ms transition
between LTP and LTD for near-perfect coincidence betweerapd postsynaptic cell activity.
This sudden transition between LTP and LTD is in biologieaits essentially instantaneous.
Despite quite surprising, it was later reproduced in thecodgex [L79 and is now considered
one of several hallmark features of STDF'}].

To mathematically describe the relation shown in Fig.an additive STDP rule has typi-
cally been used:

- {g+A+exp(—t/r+), ift>0 6.1

g—A_exp(t/t-), ift<O
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Figure 6.1: Spike-timing-dependent plasticity (STDP)ifi@tion in paired recordings in dis-

sociated neuronal cultures. Changes in the strength ofranttnal excitatory synapses due
to different time differences between the spikes from pré post synaptic neurons. Figure
reproduced from Bi and Poa.T7].

whereg is the synaptic conductance (or weight) and tP°St—tP'® js the time difference be-
tween pre and post synaptic spikés., A_, 7, andt_ are the parameters to fit the data. In our
notation along this thesis, in a unidirectional configunatithe postsynaptic neuron is the slave
and the presynaptic neuron is the master. The experimeggesuthatr . varies in a range of
tens of milliseconds1[8(.

Over the past decades, STDP has been found in a range of sexie insects to hu-
mans [L81]. Specially, STDP has been demonstrated in the human primator cortex [ 87].
Pairing electrical stimulation of somatosensory affererve with transcranial magnetic stim-
ulation (TMS) leads to long-lasting changes in the motarkex potentials (MEPS) elicited by
TMS.

It is worth mentioning that inhibitory synapses can als@ldig plasticity, but just in the last
years this was thoroughly investigated both experimgnéaill theoretically183. Moreover,
different experiments reported completely different tenapwindows [L81]. Therefore, along
this chapter we will not apply STDP rules to the inhibitoryapses.
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6.2 AS and STDP synergetically organize the network dynamg

The interplay between STDP and Anticipated Synchroniraten have a major influence
over the structural organization of neuronal networks. BTiBlies on relative spike timing
to induce modifications on the connectivity of neuronal rets, trough the potentiation or
depression of synaptic strengths. On the other hand, théioaitbn of the synaptic strengths
can induce transitions between AS and DS synchronizatigimes. However when the net-
work synchronization regime changes from DS to AS, theik@aipiking time between pre and
post-synaptic neurons is inverted, leading to a inversfah@STDP (e.g. from potentiation to
depression).

One problem in applying STDP rules in neuronal networks ésdtability. In numerical
simulations of unidirectional couplings, it is usually Besary to set an arbitrary upper bound-
ary to the synaptic weights §(. Itis also necessary to avoid that the plasticity rule desthe
signal of the conductance, because it should not turn ategary synapses into an inhibitory
one. Moreover, according to experimental data, synaptighte should fulfill the following
key properties 184, 185: (i) The weight distribution should be stable. Unchangedtgrns
during a synchronized regime would allow the informatiorriea through the connections to
be consistently interpreted; (ii) Synaptic weights shqurigsent diversity. This is the opposite
to all weights having the same value or binary weights. Honetly, a graded set of connec-
tions can perform a richer set of computatiofsq, 187); (iii) Weights should be limited. It
means that due to the finite number of neuromodulators, hgsdietc, the synaptic weights
should not grow to biophysically unrealistic values. Itcats/oids amplification of neuronal
activity to pathological levels.

We started by extending the 3-neuron model presented int€ho the presence of STDP
in the synapse from the master to the slave (excitatory tdaggcy neuron). Then we studied
the neuronal population model presented in Chapter 3 in&dgBTDP rules between synapses
from neurons in the master population to neurons in the glapelation. First, we verified that
AS exists and can be stable in the presence of STDP rulesn&eeae proposed that STDP
could facilitate a self-organized near zero-lag syncleaton. More interestingly, we showed
that the interplay between AS and STDP rules gives stablegimweight distributions that
are comparable to experiments in the cortexy .

6.3 STDP in the 3-neuron motif

To initiate the study of the effects of STDP rules in a systieat €xhibits a smooth transition
from AS to DS, we chose the 3-neuron motif modeled by HH nesi@inChapter 2. The
microcircuit is represented in Fig.2(a). Synaptic plasticity was applied in the excitatory
synapses from the Master to the Slaygs. Unless otherwise stated, all parameters are as in
Table2.1

For fixedgis = gs) = 40 nS, the time delay between the Master and the Slave is a smooth
function ofgys (i.e. in the absence of STDP). This relation is shown in Bi§. Similarly to
what is described in Chapter 2, the motif in Fig2(a) presented two phase-lockings regimes:
DS (blue) and AS (red), and a phase-drift (PD) regime. It ipantant to mention that in
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Figure 6.2: MSI motifs in the presence of STDP rules. (a) €meurons coupled by chemical
synapses in the master-slave-interneuron (MSI) configuraExcitatory AMPA synapse from
the Master to the Slavgys under STDP rules. (b) Master and Slave-Interneuron ciilea
populations. Each synapses from M to Sl has a different actadaegy s which can change
due to STDP.

Master Slave-Interneurc

Chapter 2 we varied the two excitatory synapggesmediated by AMPA, at the same time,
which meang)ys = gis, whereas in this chapter we fixgg = 40 nS.

Considering the results shown in Fig.3 we expected that if we switched on the STDP
rules, in an AS regime the synaptic conductagge decreases by LTD, while in a DS regime,
Ovs increases by LTP (see arrows in F@g3). To verify this hypothesis, we applied the addi-
tive rule described in Ecp.1with 7, =7 =10 ms andA, = A_ =1 nS for the excitatory
conductanc@ps.

We studied three different situations: initial value of dantancegys =40 nS (DS)gus =
20 nS (AS) andgys = 2 nS (PD). In Fig.6.4 we show how the conductance changes along
the time in each case. As mentioned above, to avoid infinleelye or negative values of
conductances itis necessary to choose an ugper= 300 nS) and a lowegfys = 0) boundary
for the conductance. Fox 500 ms the systemis in a well defined regime, then the STDB rule
are turned on and there is a transient time until the new regénmeached. Together with the
boundariesdy&®' = 300 nS andy3%e" = 0), the three initial conditions allow the following
transitions: DS+DS, AS—PD, and PB+PD. In Fig.6.5we illustrate the membrane potential
of the Master (black), the Slave with no STDP rules (red) d®dSlave after the STDP rules
are applied and the system reached the new regime (dastletlvies).

Moreover, if we use another lower boundary, for exampie Gus < 32 nS, it is possible
to end in an AS regime (data not shown). Although distinctgeral windows for STDP
between excitatory-inhibitory synapses have been praphateve apply the additive STDP
rules of Eq.6.1 on the synapse from the slave to the interneuggnsimply goes to the upper
boundary. Since the order of pre-post spikes between S andd dot change either in AS
or DS, the time differencél —tS is always positive and the conductargg always increases
through LTP. We employed a fixed value of conductagge= 40 nS, but we verified that the
results are qualitatively similar for other valuesgej.
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Figure 6.3: Time delay as a function of the excitatory conancegys for fixed values of
Osi = gis = 40 nS and no plasticity rules. If we turn on STDP, the DS reg@s > 32 nS
should lead to LTP whereas the AS regioft s < 32 nS should lead to LTD. F@iys < 6 nS
the system presents a phase-drift (PD) regimeraddes not converge to a fixed value.
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Figure 6.4: The synaptic weights as functions of time foeg¢hdifferent situations. Initial
values ofgus are: gus = 40 nS in the top (starting from a DS regimejys = 20 nS in the
middle (starting from AS) andus = 2 nS in the bottom (PD). STDP rules were switched on
att = 500 ms (vertical arrow).
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(c) PD— PD
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Figure 6.5: The effect of STDP rules in the 3-neuron motif iee three cases shown in
Fig 6.4. Membrane potential of the Master (black), the Slave wittf®LDP (red) and the Slave
(dashed violet) with STDP rules acting on thgs. () Initial value ofgys = 40 nS, final value
Oue " = 300 nS (upper boundary arbitrarily chosen). The systemniseigi the DS regime
and remains there. (b) Initial value gfyjs = 20 nS. The system starts in the AS regime, then
Owus decreases until values smaller than 6 nS and the systemesete PDgy s periodically

oscillates between € gys < 3. (c) Initial value ofgus = 2 nS. Lower boundaryglo&e’ = 0.
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6.4 STDP between neuronal populations

In this section, we are interested in comparing the convigceffects of the interplay be-
tween AS and STDP in a model to experimental data from thexoiherefore, we applied
STDP rules to the synapses between two neuronal popula@ibupted in a master-slave config-
uration. In particular, we used the modified MSI motif delsed in Chapters 4 and 5 in which
the Slave and Interneuron (S) are together as a single abréigion (see Fig6.2). Without
plasticity, all excitatory synapse&gms have the same value, and the time detag a function
of bothgys andg;s as shown in Fig4.9. A positive value oft indicates DS (blue), whereas
T < 0 characterizes AS (red).

In the additive rule described in Ef.1 both the amounts of potentiation and depression do
not depend on the previous values of the weights. This is d goadel to describe situations
in which the relative potentiation in strong synapses is liesense than in weak synapses.
However, it does not always hold for synaptic depressidit][ In these cases a hybrid rule
has been proposed as an improved model for the STDP rule:

_ Jo+A exp(—-t/1y), ift>0 (additive LTP) 6.2)
9= g—A_gexp(t/1_), ift<0 (multiplicative LTD) '

wheret_ = 17, =5 ms,A_ = 1.0 and typicallyA, = 0.5 nS, but it can be varied from®to
3.5 nS. We will show that this hybrid rule together with AS prd&imore realistic results.

6.4.1 AS inthe presence of STPD: an emergent property

For simplicity, we fixed all the intra-population synapses applied STDP rules only in
the synapsegwus between M and S populations. Unless otherwise stated, alhpeters are
given by Table4.1. When we turned on the STDP rules, eagls synapse were modified
according to Eg6.2 and consequently the mean of the time delay in each peried (T;))
changed. After a transient time, the system reached a symizled regime in which the two
populations oscillate with a well defined value nf The time delay could be either positive
(DS) or negative (AS). The mean membrane potential of the M3upopulations as well as
the time delay are illustrated in Fi§.6 for an example of AS and DS, both in the presence
of STDP. Results are robust independently of when we turrherptasticity rules (i.e. in the
beginning of the simulation or after the system reaches aelsgnized regime).

In the cortical-like networks explored in this chaptersipiossible to start in an AS regime
and go to DS via STDP (changing the parametpssandA,), or to go in the opposite way:
DS — AS (differently from what happens in the 3-neuron microgitc This is an emergent
property that arises from the synergetic interplay betw8&€BDP and AS in modifying to
generate changes gys and vice versa. In Figh.7(a) we show the relation betweerandg;s
Comparing the two curves with and without plasticity in Figz(a), we can see, for example,
that forgis = 7.5 nS the effect of STDP is to take the system from DS to AS.

Furthermore, in Fig6.7(b) one can see as a function of the dimensionless paraméter
for fixed gis = 4 nS. In the absence of STDP ag@ = 4 nS the system is in AS. Thus, this
plot shows that foA, < 2.2 the system can start on AS and stay in the same regime, vgherea



6.4 STDP BETWEEN NEURONAL POPULATIONS 93

@ 0
551 7 %5
3-60 - -60
> -65 o5
-70 -70
40.0 40.840.0
(©) @
40 401 ]
=20 208 ]
N Opmim

1 1 I
100 200 300 100 200 300
cycle cycle
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for for A, > 2.2 the system can go from AS to DS. Indeed, the two regimes angdhsible
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transitions from one to the other are spread in large regbtige parameter space. Altogether,
AS and DS are stable and robust against STDP.

6.4.2 Hybrid STDP and AS stabilize synaptic weight distribdion

There have been several attempts to link weight distribstend synaptic plasticity rules;
in particular, STDP rules have received most of the atterfig5, 180. Typically, the additive
rule in Eq.6.1 produces a bimodal distribution [24,26], with synaptiestyths clustering both
around zero and at the imposed maximum synaptic weight. Menv8arbour et al. argued
that “the bimodal distribution resulting from an additivéle appears to be in conflict with
existing data, in which no such bimodality can be detecteé@4. Fig. 6.8 shows examples
of experimental synaptic weight distributions in differdmain regions and types of cells re-
ported in the literature. All the distributions shown hairaitar shapes (but different scales): a
monotonic decay with maximum probability near zet@4. In addition, plenty of studies (in
the cortex, hippocampus, and cerebellum) strongly sudgesxistence of a large majority of
undetectable (silent or potential) synapses with almast eeight.

The most amazing result in our model is related to the syoapight distribution when
the system reaches an AS regime via STDP. The mentioneddsatbhout experimental shape
of the weight distributions (monotonic decay with maximurokgbility near zero) are repro-
duced by our MSI motif in the AS regime (see FgYa)). Moreover, the distribution @js
obeys the three key properties explained in &2.as a result of the dynamical interaction
between AS and STDP: (i) the distribution is stable, (ii)atae and (iii) limited. More interest-
ingly, the synaptic weight distributions are limited witltdhe necessity of arbitrarily chosen
boundaries. Even considering that each synapse indilydisathanging along the time, the
distribution of all synaptic weights maintains the samdgratand the system remains in the
same synchronized regime.

On the other hand, for a DS regime, the third property is notetely satisfied. Eventu-
ally it is necessary to arbitrarily choose an upper bounftaryhe weights, otherwise some of
them grow beyond biophysical limits. In the bottom of Fig(a), in the absence of a bound-
ary, we see that there is probability of finding large valuegygs in the DS regime, whereas
that does not happen for AS. The choice of the maximum valgggfcan lead to a bimodal
distribution for DS (data not shown). However, stabilitydadiversity are present.

Differently from the 3-neuron motif studied in Secti6rB, results here do not depend on
the initial values ofgys. Each synapse has a different behavior but all synapsethsrggve
similar weight distributions along the time. In Fig.9(b) we see the evolution in time of four
randomly chosen synapses from each different initial doodin the AS (top) and DS (bottom)
examples. In DS there is a probability of extremely fast gngawvhich results in large values
of conductance as mentioned before. In AS all weights cgever small values, no matter its
initial values.

6.4.3 Other STDP rules

In order to compare the different possible cases, besiagds/brid rule we tested our model
against two other rules that can also describe the data simdwg. 6.1. Firstly, the multiplica-
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Figure 6.9: Synaptic weight distributions in the presenicbybrid STDP rules. (a) and (b)
AS, withgis=4nS. (c) and (d) D§;s= 16 nS.A, =0.5andA_ = 1.0 are kept fixed. (a) and
(c) Histogram of thegys values. In the inset of (a) AS gives limited weight distribateven
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unlimited. (c) and (d) Independence of the initial synaptinductances. Each color represents
a different simulation in which all initial synaptic condaaces were the sanggs = 0.5 nS
(black),gms = 1.0 nS (red)gus = 3.0 nS (blue)gus = 5.0 nS (orange). For each simulation
we show 4 randomly chosen synaptic conductances evolvitigman In the AS regime (top),
the conductancegys vary in a limited interval. In the DS regime (bottom), sinbe beginning

of the simulation, there is a tendency for some synapsesto grore than others.

tive STDP model:

(6.3)

_ Jo+A,gexp(—t/ty), ift>0
9= g—A_gexp(t/t-), ift<O.

This rule requires an upper boundatPP¢ for both DS and AS and provides no diversity in the
weight distribution. Virtually all weights end up in the nmmum gys = 0 or in the maximum
valuegys = g"PPe",

Secondly, we employed the additive rule in Bgl with no boundaries. The distribution
is a Gaussian centering in zero for the AS case and centeriagpositive number for DS.
However, it allows negative conductances, which is not liyspcally plausible. If we choose
the lower boundary to be zero, in order to avoid the negatees of conductances, the weight
distribution for AS is similar to the hybrid case. Neverdésd, in the DS regime the stability is
compromised, and is non-stationary (i.e. its mean and variance change aveti

The 3-neuron results are qualitatively the same for theet®EDP rules. The results with
this microcircuits should be more interesting in the preseaf plasticity in the inhibitory
synapses. Although inhibitory plasticity was reported toyde completely opposite STDP
window in certain experiments, which cannot be describedryyof the rules employed in this
chapter, this could be potentially enlightening for theerptay between AS and STDP.



CHAPTER 7

Concluding remarks and further perspectives

Understanding the brain is a challenge that is attractinger@asing number of scientists
from many different fields, what makes neuroscience perttemost remarkable example of
interdisciplinarity. In particular, computational neaoience aims to use theoretical approaches
from physics, mathematics, computer science and engingggriintegrate experimental obser-
vation, data analysis and theoretical modeling. In thisitheve studied the relation between
structure and dynamics in distinct biophysical models afroes and brain regions. We pre-
sented a detailed analysis of anticipated synchronizéi8nin biologically plausible neuronal
network models within different scales and proposed exrpantal setups to test our hypothesis.
Moreover, we proposed that the mismatch between diredtinfiaence and phase difference
in cortical experiments reported by Brovelli et al/(], whose data we also analyzed here, can
be the first verification of AS in the brain.

As explained in the scope of this Thesis, AS is a form of syaetzation that occurs when a
unidirectional influence is transmitted from a generataa teceiver, but the receiver precedes
the generator in time. This counterintuitive synchronaategime can be a stable solution
of two dynamical systems coupled in a master-slave configuravhen the slave receives a
negative delayed self-feedback. In this thesis, we shohaidat master-slave system can also
exhibit AS when this negative delayed self-feedback isaegdl by a dynamical inhibitory loop
mediated by chemical synapses. This replacement opensveswes in the study of AS in
biophysical systems.

In Chapter 2, we showed that a canonical neuronal micrativath standard chemical
synapses, and where the delayed inhibition is provided bptemneuron, may exhibit AS. It
means that, when a master neuron sends an excitatory syapskave neuron, which excites
an interneuron and receives an inhibitory synapses baokitidhe slave is able to fire spikes
before the master. Moreover, the time detdyetween consecutive spikes of the master and the
slave is shown to be a continuous and smooth function of thibitory synaptic conductance.
Therefore, this 3-neuron motif presents a smooth tramsftiom the delayed synchronization
(DS, when the master spikes before the slave) to AS medigtsgraptic conductances.

The phenomenon is shown to be robust in the 3-neuron motihwinedel parameters are
varied within a physiological range. The AS regime and thagition AS-DS is also exhibited
when different setups are included in our motif: in the pneseof a common driver neuron
that simultaneously excites all three neurons; when theistseexternal noise; in modified
neuron models; in a chain of slaves and interneurons; inrégepce of an excitatory feedback
from the slave to the master; and in a simple model for the mmtouit of the spinal cord.
Moreover, results in this chapter could be tested in a hybaith clamp setup, in which the
inhibitory synaptic conductance can be simulated in readti

97
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In Chapter 3, the 3-neuron motif was analytically invedieglausing the theory of phase
response curves (PRCs) for phase-locking regimes. We getgbkbe approximation of weak
coupling oscillators, to calculate the Poincaré phase mahé difference between spike tim-
ing of the neurons. The stability conditions were calcudas a function of the PRCs of the
master, the slave and the interneuron. This approach caailtdte the investigation of AS,
reducing the problem to the analysis of a set of conditioasghould be satisfied by the PRC of
the involved neurons. These results still need to be coretbd by further numerical simula-
tions. As a matter of fact, we cannot use the standard Hoeglixiey neuron model employed
in chapter 1 for this task, because it was not able to satisfynecessary weak coupling ap-
proximation, and the choice of a better model remains unolesideration.

In Chapter 4, we presented a model of two brain regions cdupjea well-defined direc-
tional influence (master M and slave S populations), thdtaditst model of neuronal popula-
tion to displays AS. Each population is composed of hundaéaseurons with the necessary
ingredients to mimic cortical-like sub-networks. We enyad realistic brain features, such
as the proportion of excitatory and inhibitory neurons,iafaitity in the neuronal dynamics,
noise, baseline firing rates and global topological mogisilarly to the 3-neuron motif case,
the system exhibits an AS regime and a smooth AS-DS transitwbich could be mediated
by several parameters: synaptic conductances, Poissgrpraportion of different classes of
neurons in S, etc. Since the anticipation time emerges ft@system dynamics, instead of
being explicitly hard-wired in the dynamical equatiori§(see Eql.1), AS could be tuned by
neuromodulation.

Despite of the several existing studies of AS in physicateays, a verification on AS
in the brain has not been reported. Therefore, in Chapter prapeosed that our neuronal
population model can be comparednivo experimental results and explain counter-intuitive
results reported in cortical data. Brovelli et alJ] observed that, in monkeys engaged in
processing a cognitive task, a dominant directional infbeéeinom one cortical area to another
may be accompanied by either a negative or a positive timeydeHere we compared our
populational model's dynamics in the AS regime to the expernital results of Brovelli et al.
By reproducing delay times and coherence spectra, ourtsgaulvide a theoretical basis for
observed neurocognitive dynamics, and suggest that theafgicortex may operate in the AS
dynamical regime as part of normal neurocognitive functidime existence of AS between
cortical regions in non-humans primates unveil new pobsés for the investigation of AS in
humans.

Since the DS-AS transition amounts to an inversion in thégpof the pre- and postsynap-
tic spikes, in Chapter 6 we investigated the effects of sfifkéng-dependent plasticity (STDP)
in our neuronal-scale models and in our large-scale nesvakie showed that AS is robust and
stable in neuronal populational models in the presence BIFSThe interplay between STDP
and AS regulates the distribution of synaptic weights, Wwhian be compared to experimen-
tal weights distribution from the cortex. Moreover, it stetes the unlimited growth of some
synaptic conductances in the absence of arbitrary chogser ijpundary to them.

Improvements in our study can be accomplished in severattiins. In the theoretical
point of view, our models can be modified in a plethora of wdgghe following, we suggest
several situations in which further investigations on oeat AS regimes may be relevant:
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on the existence of AS between bursting neuron models asasetl chaotic neuron models;
on the relation between Type-I and Type-ll PRCs and the exe¢&t of AS; on the effect that
the inclusion of delays in synaptic conductance may haveSreAd in the AS-DS transition.
In addition, one could investigate existence of AS in a neurass model 89, which is
a mesoscale model that employs few differential equatiareszribe entire cortical columns.
All the distinct neuron mass models present internal inlmbiwhich can mediate the inhibitory
loop required for AS.

Other biophysical models should be proposed to relate ASpiretiomena such as the
delayed induced transition in visually guided movemeni$ s suggested by Vosg][ More-
over, the inversion in the order of pre-post and post-preesptould also be useful as a mecha-
nism to facilitate unsupervised learning. A more realistidel for the motor neurons in spinal
cord could, in principle, relate AS regimes and our reactiore. Another relevant step would
be the investigation of an AS regime beyond brain modelspasXample, in gene regulation
dynamical models that exhibit inhibitory loopsd(.

Our work is a step further towards a better insight on thetigeiabetween concepts of
anticipatory behavior and AS dynamicsij, 145. However, there are still countless questions
that should be answered in order to understand the mechanisderlying our capacity of
predict and act based on our models of the world. In the exyarial point of view, we expect
that the analysis of EEG data will be able to reveal the sansenatich between causality and
phase lag which was reported in LFP measures. Since the EE@ois-invasive technique, AS
could be verified in humans.

Doubtless, more experiments should be performed in ordangswer several questions
about the existence and functionality of AS in the brain. Whkahe role of the time delay
(specially in the AS regime) during learning tasks and/ahmperformance of a specific task.
Is AS specially related to the working memory task reportgdhlazar et al.{1], or to the
premovement period of the GO/NO-GO task reported by Broeglal. [70]? Is AS just an
epiphenomenon? Which are the advantages of patterns afcaewith different time delays?
Investigation of these questions could enlighten the fonel significance of the AS regime
on the cognitive process. Altogether, we hope that this iBhmsuld stimulate the research in
this new and interesting field of anticipated synchronaatn biological systems.
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