ORIGINAL

Búsqueda de nuevas dianas terapéuticas de cáncer de pulmón

Search for new therapeutic targets for lung cancer

Pedro P. Medina Vico

Grupo CTS-993. Centro de investigaciones Genómicas y oncológicas (GenyO)

Correspondencia

Pedro P. Medina Vico Centro de investigaciones Genómicas y oncológicas (GenyO). Av. de la llustración, 114, 18007 - Urb. los Vergeles, Granada E-mail: pedro.medina@genyo.es Recibido: 11 - I - 2018 Aceptado: 22 - Ⅲ - 2018

doi: 10.3306/MEDICINABALEAR.33.02.19

Resumen

En cáncer de pulmón, una de las terapias dirigidas más exitosas, son las que inhiben a los protooncogenes ErbB (especialmente a EGFR y a ErbB2). Actualmente se están ensayando la inhibición de estos oncogenes mediante pequeñas moléculas (erlotinib, lapatinib, gefitinib) o mediante anticuerpos monoclonales (cetuximab, trastuzumab, pertuzumab) consiguiéndose un éxito relativo para tumores metastásicos de célula no pequeña. Interesantemente estas terapias parecen ser más efectivas cuando los oncogenes se encuentran amplificados. Teniendo en cuenta estas consideraciones, el objetivo principal de este trabajo, es la búsqueda de regiones cromosómicas amplificadas en cáncer de pulmón que puedan albergar nuevos oncogenes, que nos ayuden a profundizar en el conocimiento del cáncer y sobre los que podamos desarrollar futuros fármacos que sirvan como terapias dirigidas. Para tal propósito hemos combinado dos tipos de plataformas de análisis masivo de información genética: microarrays de hibridación genómica comparada (CGH) y microarrays de expresión para analizar el genoma de 8 líneas celulares de cáncer de pulmón. Se comparó directamente el número de copias de ADN y los niveles de expresión de ARNm de más de 8000 genes para identificar nuevos oncogenes amplificados funcionalmente. La línea celular Calu3 que contiene una amplificación cromosómica conocida de ErbB2, en la región 17q12, se utilizó como control positivo. Además de confirmar la amplificación en 17q en las células Calu3, nuestros datos revelaron claramente la presencia de cuatro amplicones independientes en los cromosomas 5p13, 6p21, 11q13, 19q13 y en la mayoría de los casos de forma concomitante con un aumento en la expresión génica. Ensayos de fluorescencia in situ (FISH) en las líneas celulares confirmaron la presencia de amplificación génica (más de 10 copias) en estas regiones cromosómicas. Además de las líneas celulares, la presencia y la frecuencia de las alteraciones se evaluó adicionalmente en 26 tumores primarios de pulmón mediante FISH. Nuestros resultados mostraron una recurrencia en la amplificación cromosómica en tumores primarios: 8 % (en la región cromosómica 5p12), 4 % (6p21), 4 % (11q13.2), 2 % (17q12) y 2 % (19q13). Un análisis más detallado de los genes contenidos en estas regiones revelaron posibles candidatos a ser nuevos oncogenes en cáncer de pulmón. En conjunto, estos los datos sugieren que estas regiones cromosómicas de ampliación pueden albergar posibles oncogenes implicados en la carcinogénesis pulmonar sobre los cuales se podría diseñar de nuevos fármacos de utilidad terapéutica.

Palabras clave: protooncogenes ErbB, cáncer de pulmón, dianas terapéuticas.

Abstract

In lung cancer, one of the most successful targeted therapies are those that inhibit ErbB protooncogenes (especially EGFR and ErbB2). Are currently being tested inhibition of these oncogenes by small molecules (erlotinib, lapatinib, gefitinib) or monoclonal antibodies (cetuximab, trastuzumab, pertuzumab) achieving relative success for metastatic tumors of non- small cell. Interestingly, these therapies are most effective when these oncogenes are amplified. Given these considerations, the main aim of this work is the search for chromosomal regions amplified in lung cancer that can accommodate new oncogenes, to help us deepen knowledge about cancer and future drugs that we develop to serve as targeted therapies.

To search for chromosomal regions that could harbour new oncogenes amplified in lung tumors we have performed high-resolution CGH (Comparative Genome Hybridization), analysis on cDNA microarrays in 8 lung cancer cell lines. We directly compared DNA copy number and mRNA expression levels of over 8000 genes to identify novel amplicons and the candidate oncogenes that are targeted. The Calu-3 cells that carry gene amplification at the 17q12 region, a previously reported and well known amplicon that targets the ErbB2 oncogene, was included in the study as a positive control. In addition of confirming the amplification at 17q in the Calu-3 cells, our data clearly unveiled the presence of four independent amplicons at chromosomes 5p13, 6p21, 11q13, and 19q13, in most cases concomitantly with an increase in gene expression. FISH analysis in the cell lines confirmed the presence of gene amplification (more than 10 copies) at these regions. In addition to cell lines, the presence and frequency of the alterations was further evaluated in 26 lung primary tumors by FISH analysis. Our results showed that the frequency of amplification at these regions in the primary tumors was as follows: 8% (at chromosome 5p12), 4% (at chromosome 6p21), 4%(at chromosome 11q13.2), 2% (at chromosome 17q12) y 2% (at chromosome 19q13). Further analysis of the genes in these regions revealed potential candidates for new oncogenes in lung cancer. Taken together, the data suggests that these amplicons may harbour potential oncogenes implicated in lung carcinogénesis that could be used for drug targeting. Overall, our results illustrate how the amplification provides a powerful approach to highlight genes with an important role in cancer.

Keywords: ErbB protooncogenes, lung cancer, therapeutic targets.

Introducción

Oncogenes, amplificación génica y fármacos para terapias dirigidas.

Tal y como se ha mostrado en apartados anteriores, de una forma general, los genes importantes en cáncer pueden dividirse en dos tipos: genes supresores tumorales, que controlan negativamente el crecimiento tumoral y los oncogenes, que promueven el crecimiento tumoral. Por ello, y como parte del desarrollo tumoral, las células adquieren de forma selectiva una pérdida de función de los genes supresores tumorales y una adquisición de oncogenes (mediante la conversión de sus precursores naturales, los proto-oncogenes).

Los genes supresores tumorales pueden perder su función mediante los siguientes mecanismos:

1) La pérdida completa de sus regiones codificantes,

2) La adquisición de mutaciones inactivadoras.

3) La represión transcripcional (por ejemplo, mediante hipermetilación de su promotor).

Por otra parte, un proto-oncogén puede transformarse en un oncogén, mediante varios mecanismos (**Figura I1**):

1) Creación de proteínas funcionalmente diferentes: por la adquisición de mutaciones activadoras (los protooncogenes *ras* se activan permanentemente mediante mutaciones puntuales), o bien, mediante la formación de quimeras oncogénicas mediante fusión génica (la fusión de los genes *c-abl* y *bcr* origina un oncogén en la leucemia mieloide crónica).

2) Sobreexpresión asociada a la amplificación génica (*n-myc* en neuroblastomas) o a translocaciones (*c-myc* en los linfomas de Burkitts, suele translocarse cerca del promotor del gen de la cadena pesada de las inmunog-lobulinas, lo que aumenta su expresión).

Tanto supresores tumorales como oncogenes son objeto de estudio por parte de la terapia anti-oncogénica actual. Las terapias dirigidas, son las destinadas a afectar exclusivamente la proliferación tumoral, preferibles frente a las terapias tradicionales, que interfieren en el crecimiento de las células que se dividen rápidamente tumorales o no.

Con la tecnología actual, es más exitoso suprimir el efecto de oncogenes que recuperar la pérdida de función de los supresores, por lo que las terapias dirigidas que están surgiendo actúan inhibiendo oncogenes. El ejemplo más representativo de terapia dirigida se trata del *imatinib mesylate*, una pequeña molécula capaz de inhibir a la quinasa oncogénica *abl-bcr* propia de la leucemia mieloide crónica. Así, el tratamiento con *imatinib mesylate* es capaz de provocar una remisión citogenética completa en cerca del 90% de los pacientes de leucemia mieloide crónica tras 15 meses de tratamiento (Deininger and Druker 2003).

A día de hoy no existen muchas terapias dirigidas en el cáncer de pulmón, y hasta hora solo se han mostrado efectivas las que las que tratan de reducir los efectos cancerígenos de los oncogenes, más que recuperar el efecto de los genes supresores. En cáncer de pulmón, una de las terapias dirigidas más exitosas, son las que inhiben a los protooncogenes ErbB (especialmente a EGFR y a ErbB2/Her2) que se encuentran sobre expresados en alrededor del 10% de tumores primarios (Grob, Kannengiesser et al. 2012). Actualmente se están ensayando la inhibición de estos oncogenes mediante pequeñas moléculas (erlotinib, lapatinib, gefitinib) o mediante anticuerpos monoclonales (cetuximab, trastuzumab, pertuzumab) consiguiéndose un éxito relativo para tumores metastásicos de célula no pequeña (Swanton, Futreal et al. 2006; Bruheim, Sandvold et al. 2013). Ha de resaltarse que estas terapias son más

Figura 11: Transformación de proto-oncogenes en oncogenes: Los proto-oncogenes pueden transformarse en oncogenes mediante la adquisición de mutaciones que les haga funcionalmente diferentes o mediante un aumento de la expresión.

efectivas cuando los oncogenes se encuentran amplificados (Cappuzzo, Varella-Garcia et al. 2005; Tsao, Sakurada et al. 2005).

Amplificación génica y cáncer

La amplificación génica, es un proceso mediante el cual aumenta el número de copias de una región cromosómica de forma diferencial al resto del genoma. Originalmente se identificó como un mecanismo por el cual algunas líneas celulares adquirían resistencia a compuestos inhibidores del crecimiento (Alt, Kellems et al. 1978). En cáncer se observó por primera vez en los genes *myc*, a comienzos de la década de los ochenta (Dalla-Favera, Wong-Staal et al. 1982). En principio, se pensó que se trataba de una excepción, aunque posteriormente la lista de genes amplificados en tumores (sobretodo sólidos) y en líneas celulares ha ido aumentando.

En el caso concreto del cáncer de pulmón se han identificado como principales genes alterados por amplificación, los genes de la familia *myc* (especialmente *c-myc* y *I-myc*) y los genes de la familia *ErbB* (*Erbb2* y *EGFR*) con frecuencias inferiores al 10%.

Hasta la fecha, la técnica más empleada para la detección de los cambios en el número de copias de ADN a lo largo de todo el genoma, ha sido la Hibridación Genómica Comparada (CGH), desarrollada en 1992. Dicha técnica compara el número de copias de ADN de dos muestras distintas que previamente se han marcado con fluorocromos diferentes. Por ejemplo, el ADN tumoral, marcado en verde y el ADN normal, marcado en rojo. Ambos ADNs se mezclan en cantidades equimolares y se realiza una hibridación in situ competitiva sobre cromosomas metafásicos normales. Cuando no existen alteraciones en el número de copias del ADN, la cantidad de ADN marcado en rojo y verde es la misma, por lo que el resultado final aparece en amarillo (mezcla 1:1 de rojo y verde). Por el contrario, si el tumor contiene ganancia de material genético en determinadas regiones, la hibridación de esa zona resultará en una mayor proporción de fluorocromo del tumor (verde). Por el contrario, si el tumor contiene una deleción (pérdida), la región delecionada del tumor aparecerá en rojo. La CGH permite, por tanto, la detección de ganancia y pérdidas de regiones cromosómicas en todo el genoma del tumor y se ha aplicado extensamente durante los últimos años a los más diversos tipos de tumores, mostrando su gran utilidad en la búsqueda de regiones cromosómicas con alteración en el número de copias. Sin embargo presenta el inconveniente de tener una resolución limitada ya que es incapaz de detectar alteraciones que abarguen menos de 7-10 Mb.

En los últimos años se ha podido aumentar la resolución de esta técnica mediante la utilización de los microarrays de CGH, que combinan la tecnología de análisis masivo de los microarrays (Pinkel, Segraves et al. 1998), la técnicas de hibridación comparada de la CGH y los datos de secuencias y posiciones aportados por el Proyecto Genoma Humano. De esta forma, los microarrays de CGH se utilizan para comparar masivamente secuencias concretas de ADN de muestras diferentes de las que se conoce su posición exacta en el genoma. Esto posibilita una mayor resolución, tan sólo limitada por el número de secuencias impresas en el microarray y la distancia genómica que existe entre ellas. Así, pueden alcanzarse resoluciones entorno a la 0,5 Mb. En principio, como plataforma para los microarrays de CGH, se ha estado utilizando matriz de ADNc (Pollack, Perou et al. 1999), aunque actualmente están emergiendo las matrices de ADN desarrolladas ex profeso para dicha técnica.

Objetivos

A pesar de los avances actuales, el cáncer de pulmón es la primera causa de muerte por cáncer en nuestro país. Actualmente no existen terapias eficaces que logren disminuir la mortalidad de este tipo tumoral y menos del 12,5% de los pacientes españoles logran sobrevivir cinco años tras su diagnóstico. Es necesario aumentar los esfuerzos para comprender los mecanismos que contribuyen a la aparición y evolución del cáncer pulmonar, con el fin que puedan repercutir efectivamente sobre los pacientes.

El análisis masivo genómico se ha mostrado como una herramienta capaz de ayudar a la comprensión del proceso carcinogénico y como una herramienta útil para la selección de dianas terapéuticas que pueden ayudar al diseño de fármacos.

Las terapias dirigidas son las destinadas a afectar primordialmente la proliferación tumoral. Son preferibles frente a las terapias convencionales, que interfieren en el crecimiento de las células que se dividen rápidamente tumorales o no, siendo en principio más efectivas y con menos efectos secundarios.

En cáncer de pulmón, una de las terapias dirigidas más exitosas, son las que inhiben a los protooncogenes ErbB (erlotinib, lapatinib, gefitinib, cetuximab, trastuzumab, pertuzumab, etc) que se encuentran sobre-expresados con cierta frecuencia en tumores primarios. Como se mencionó en la introducción, estas terapias son más efectivas cuando los oncogenes se encuentran amplificados genéticamente. Teniendo en cuenta estas consideraciones, el objetivo principal de este trabajo, es la búsqueda de regiones cromosómicas amplificadas en cáncer de pulmón que puedan albergar nuevos oncogenes, que nos ayuden a profundizar en el conocimiento del cáncer y sobre los que podamos desarrollar futuros fármacos que sirvan como terapias dirigidas.

Materiales y métodos

Microarrays de ADNc de expresión

Por microarravs de ADNc se conoce a una técnica de análisis masivo de expresión génica que utiliza como soporte un vidrio en donde se han depositado una matriz de puntos que contienen secuencias de ADNc conocidas. En los microarrays de expresión se comparan dos ARN de diferente procedencia. Para ello el ARN se retrotranscribe a ADNc y se marcan con fluorocromos diferentes, por ejemplo, rojo (Cy5) y verde (Cy3). Posteriormente ambos ADNc marcados se hibridan de forma competitiva sobre el portaobjetos que contiene la matriz de ADNc, se lava y se recoge la fluorescencia mediante un escáner. Las intensidades de fluorescencia recogidas en el canal rojo serán proporcionales al ARN inicial que habíamos marcado en rojo, e igualmente para el verde. De esta forma pueden compararse miles de trascritos de ARN diferentes a la vez, tantos como puntos de secuencias diferentes haya en el microarray.

El OncoChip es un microarray de ADNc que especialmente ha sido diseñado que contenga genes implicados en el cáncer. Incluye un núcleo central de 2.489 genes relevantes en el cáncer junto con otros genes implicados en la respuesta a drogas, genes específicos de tejido y genes control hasta sumar un total de 6386 genes. En el presente estudio (**Figura M1**), para realizar los ensayos de microarrays de expresión se partió 35 µg de ARN total. En un primer paso, el ARN se retrotranscribió y marcó usando el enzima "Superscript II ARN-Hase Reverse Transcriptase" (Invitrogen, Carlsbad, CA, USA). Se utilizó el fluorocromo Cy3-dUTP (verde) para marcar de un ARN refrente comercial (Unniveral Human Referente RNA, Stratagene) y Cy5-dUTP (rojo) para marcar el ARN de las líneas celulares problema. Los ADNc se purificaron mediante "CyScribe GFX purification kit" (Amersham Pharmacia Biotech, Piscataway, NJ, USA). Posteriormente se combinaron los ADNc control y problema, se añadió el bloqueante "Human Cot 1 DNA" (Invitrogen, Carlsbad, CA, USA) y se precipitaron con etanol.

A continuación el cDNA marcado se desnaturalizó y se hibridó en el cristal utilizando como tampón de hibridación "Slide Hyb#1" (Ambion, Austin, Tx, USA). Se incubó 17h a 55oC. Finalmente, el cristal se lavó y se escaneó utilizando Scanarray 5000 XL (GSI Lumonics Kanata, Ontario, Canada).

Las imágenes escaneadas se cuantificaron y normalizaron con el programa GenePix (Axon instruments Inc., Union City, CA, USA) y los datos para el estudio se extrajeron con la ayuda del paquete bioinformático: (http:// gepas.bioinfo.cnio.es/cgi-bin/preprocess) (Herrero, Al-Shahrour et al. 2003).

Figura M1: Desarrollo de un Microarray de Expresión.

Microarrays de hibridación genómica comparativa (CGH)

Los microarrays de CGH se utilizan para comparar masivamente secuencias concretas de ADN de posición genómica conocida de muestras diferentes. La plataforma de estos microarrays puede ser igual a los de expresión, es decir ADNc, aunque existen microarrays específicos que se están desarrollando *ex profeso* para dicha técnica y contienen secuencias de ADN. En el presente trabajo se utilizó la misma plataforma para los microarrays de expresión y CGH (OncoChip). El desarrollo experimental es similar al descrito anteriormente en los microarrays de expresión con la salvedad de que se utiliza ADN, en lugar de ARN retrotranscrito a ADNc (**Figura M2**). Inicialmente, se crecieron las líneas celulares de cáncer de pulmón: Calu3, H23, A427, H441, A522, A549, H1299 y H2126 bajo las condiciones recomendadas, y se les extrajo el ADN por procedimientos convencionales. Como ADN control, se utilizó el extraído de linfocitos sanguíneos a cinco individuos sanos. Ambos tipos de ADN se fraccionaron mediante digestión con los enzimas *Alu I y Rsa I*. Más adelante, se purificaron y se marcaron los fragmentos con los fluorocromos Cy3 (ADN normal) y Cy5 (ADN tumoral) utilizando "Bioprime Labeling Kit (GIBCO-BRL, Grand Island, NY, USA). Los procesos posteriores de hibridación y extracción de datos son similares a los descritos anteriormente para microarrays de expresión. Como software especifico se utilizó el "CGH Explorer" v2.44 (http://www. ifi.uio.no/forskning/grupper/bioinf/Papers/CGH/).

Figura M2: Metodología utilizada para la búsqueda de regiones amplificadas en cáncer de pulmón.

Hibridación Fluorescente in situ (FISH)

En esta técnica se utiliza una sonda específica marcada fluorescentemente para localizar una región determinada de ADN en el genoma celular (ya sea en el núcleo interfásico o en metafase). Las aplicaciones de esta técnica son variadas, puede utilizarse tanto para localizar la posición de un determinado gen, como para caracterizar aberraciones cromosómicas de cariotipos. En el presente estudio, se utilizó para validar las amplificaciones génicas que previamente se habían hallado mediante el microarray de CGH.

Preparación de las sondas fluorescentes específicas:

Se utilizaron dos tipos de sondas: sondas específicas situadas en el núcleo de los amplicones hallados mediante los microarrays de CGH y sondas control centoméricas, o de regiones del mismo cromosoma no amplificadas. Las sondas se elaboraron a partir de ADN específico extraído de cromosomas artificiales bacterianos (BACs) obtenidos de Invitrogen (CA, USA) o de BACPAC Resource Center (BPRC) del Children's Hospital Oakland Research (Institute in Oakland, CA, USA; Tabla M3). Para constituir la sonda, cuando fue posible, se utilizaron varios BACs solapantes con el fin de mejorar la eficacia y especificidad del ensayo. Cada una de las sondas BACs se validaron por separado sobre metafases de células normales comprobándose que hibridaban en la posición cromosómica indicada. Una vez purificados los BACs, tras su amplificación y extracción a partir de células de E.coli, se utilizó el "CGH translation KIT" (Vysis. Inc., Downers Grove, IL, USA) para marcar 10µg de cada sonda. El marcaje para las sondas control fue en verde (con dUTP-Cy3) y las sondas del amplicón se marcaron en rojo (con dUTP-Cy5), siguiendo las indicaciones del proveedor. Posteriormente se purifi-

 Tabla M3:
 Cromosomas artificiales bacterianos utilizados para construir sondas fluorescentes específicas.

BAC	GENES	POSICIÓN							
CTD-3092E20	NUP155, WDR70	5p13.2							
RP11-52A1	CPNE5, PPIL1	6P21.1							
RP11-170N22	CPNE5, PPIL1	6P21.1							
RP11-58G14	PPIL1, PI16, FGD2	6P21.1							
RP4-625H18	ID4	6P22.3							
RP11-715F10	AIP, CDK2AP2, GSTP1, CABP2	11q13.2							
CTD-2530J15	CLCF1, RAD9, PPP1CA, RPS6KB2, PTPPRCAP, CORO1B, CABP4, AIP, CDK2AP2, GSTP1, CABP2	11q13.2							
RP11-65L1	FCHSD2	11q13.4							
RP11-800A3	P2RY2, P2RY6, ARHGEF17	11q13.4							
RP11-933G1	P2RY2, P2RY6, ARHGEF17, TNFRSF19C, D87470	11q13.4							
RP11-123C1	RUVBL2, LHB, CAGB, CGB1, CGB2, CGB5, CGB8, CGB2, CGB7, NTF5, KCNA7, SNRP70, LIN7B, PPFIA3, HRC, TRPM4	19q13.3							
RP11-591H17	RUVBL2, LHB, CAGB, CGB1, CGB2, CGB5, CGB8, CGB2, CGB7, NTF5, KCNA7, SNRP70, LIN7B, PPFIA3, HRC, TRPM4	19q13.3							
	SONDAS DE CONTROL								
RP11-20606 19p11-19p									
	RP11-277K21	6q12							
	RP11-12C1	11q11.2							
	RP11-91I22	5q11.2							

có el ADN, se añadió 20µg de bloqueante Human Cot 1 ADN (Invitrogen, Carlsbad, CA, USA) y precipitó el ADN. Finalmente se resuspendió en tampón de hibridación LSI/ WCP " (Vysis. Inc., Downers Grove, IL, USA).

Hibridación

La hibridación se realizó sobre un portaobjetos, donde se habían depositado núcleos de las líneas celulares estudiadas, o en el caso de tumores, sobre microarrays de tejidos (TMA, del inglés Tissue Microarray). Los portaobjetos, se deshidrataron con etanol y sobre ellos se depositó una mezcla que contenía: 1.5µl de la soda del amplicón (marcada en rojo), 1.5µl de la sonda control (marcada en verde) y 7µl tampón de hibridación LSI/WCP (Vysis. Inc., Downers Grove, IL, USA). Posteriormente el ADN se desnaturalizó a 72oC durante 2 minutos, y se incubó 16h a 37oC en una cámara húmeda. Finalmente, se lavó el portaobjetos y se tiñó con DAPI para su visualización en un microscopio de fluorescencia.

Creación de matrices titulares (*tissue microarray*, TMA).

La hibridación fluorescene *in situ* sobre los tumores primarios se realizó sobre una matriz tisular que contenía secciones de tejidos tumorales seleccionados de diferentes pacientes de cáncer de pulmón (*tissue microarray*, TMA).

Los TMA facilitan un análisis masivo de diferentes tejidos pulmonares mediante diversas técnicas entre las que se incluyen las de inmunohistoquímica o, como en este caso, de hibridación fluorescente *in situ*.

La construcción de los TMA (Figura M5), puede resumirse en los siguientes apartados:

1. **Selección del material:** selección de las preparaciones histológicas y bloques de parafina que

continen embebidos los tumores pulmonares de interés. 2. **Selección de la zona a pinchar** dentro del bloque donante.

3. **Diseño de la plantilla del TMA**, mediante un programa informático, en la cual existe una

serie de duplicados y de controles como control de calidad del ensayo.

4. **Realización del bloque receptor**: pinchando sucesivamente los bloques donantes en las zonas previamente seleccionadas, guiándonos por el diseño predeterminado de la plantilla, para posteriormente introducir los cilindros en el bloque receptor, que poco a poco se convierte en una matriz que contiene secciones tumorales representativas de una muestra de pacientes con cáncer de pulmón.

PCR cuantitativa (qPCR).

En el presente estudio se utilizó la reacción en cadena de la polimerasa cuantitativa (qPCR) sobre ADN y sobre ARN con el fin de corroborar los datos obtenidos en los microarrays de CGH y de expresión respectivamente. El ADN se extrajo de las líneas celulares y de los tumores primarios, utilizando el DNeasy Blood & Tissue Kit (Qiagen Inc., Valencia, CA) siguiendo el protocolo del proveedor. De forma similar, el ARN se extrajo de las líneas celulares usando "RNeasy kit" (Qiagen Inc., Valencia, CA). Los tumores, sin embargo, se trataron con Trizol (Life Technologies, Inc., Grand Island, NY, USA) antes de usar el RNeasy kit. Durante el proceso se usó la nucleasa "RNAse-free DNAse I" (Qiagen Inc., Valencia, CA, USA) para eliminar posibles interferencias con el ADN. Para comprobar que el ARN no había sufrido degradación durante el proceso de extracción se realizó una electroforesis con 1µg del ARN obtenido.

La reacción de retrotranscipción (RT) se realizó a partir de 1µg de ARN utilizando el kit "Reverse Transcription System" (Promega, WI, USA) basado en las propiedades del enzima AMV-retrotranscriptasa. Para estas reacciones se utilizaron como cebadores hexámeros aleatorios (en tumores primarios) y oligo-dT (en líneas celulares).

Las reacciones de qPCR se realizaron a partir de 25ng de producto total utilizando "The SYBR® Green PCR Master Mix" (Applied Biosystem, Foster City, CA, USA) y cebadores específicos para los genes. Las condiciones de PCR fueron: 2 min a 50oC, 10 min a 95 °C y 40 ciclos de amplification (95°C durante 15 segundos y 60°C durante 30 segundos). La proteína gliceraldehído-3-fosfato-deshidrogenasa (GAPDH) se utilizó para normalizar las variaciones de las cantidades del ADNc de partida.

La evolución de la PCR se siguió con un sistema detector de secuencias ABI Prism 7700. Una vez obtenidas las curvas de amplificación la cuantificación se realizó siguiendo una curva estandar de amplificación o mediante el método Δ Ct.

Resultados

La amplificación génica es uno de los mecanismos de activación de proto-oncogenes en los tumores. De entre los genes comúnmente amplificados en cáncer se encuentran myc y ErbB2, cuyo incremento en el número de copias en el ADN se asocia a elevados niveles de expresión génica y constituye un mecanismo de activación oncogénica de varios tipos de cáncer. Los microarrays de CGH (Comparative Genome Hybridization), que permiten el análisis global y cuantitativo del número de copias de un genoma, pueden utilizarse como herramientas para determinar con gran resolución los cambios que se producen en la dotación génica de una línea celular tumoral al compararla con un ADN genómico control. Distintos trabajos han demostrado la viabilidad de utilizar plataformas de microarrays de ADNc convencionales para estudiar las alteraciones en el número de copias del ADN genómico en células tumorales. Por ello, otro de

los objetivos del presente trabajo fue la identificación de nuevas regiones amplificadas en líneas celulares de tumores pulmonares que alberguen oncogenes potencialmente relevantes para el desarrollo de este tipo de cáncer. Para identificar regiones amplificadas se estudiaron las ocho líneas celulares de cáncer de pulmón: Calu3, H23, A427, H441, H522, A549, H1299 y H2126. Tanto el análisis de las alteraciones en el número de copias del ADN genómico como los cambios en los perfiles de expresión se llevaron a cabo utilizando como plataformas los microarrays de ADNc (Oncochip).

Para el análisis del número de copias del genoma, el ADN de las líneas celulares se hibridó competitivamente contra el ADN extraído de sangre periférica de individuos normales. Por otra parte, para el análisis de expresión global el ARN total de las líneas celulares se comparó un ARN de referencia (Universal Human Reference ARN, Stratagene). Debido a que la aplicación de la técnica de microarrays de CGH a la búsqueda de amplificaciones es relativamente reciente (Pollack, Perou et al. 1999) se decidió validar su eficacia incluyendo en el análisis una línea celular que presentaba un amplicón bien caracterizado en el brazo largo del cromosoma 17 (17g12-13), que probablemente tiene como diana el oncogén ErbB2. La amplificación del proto- oncogén ErbB2 se describió por primera vez en la línea celular Calu-3 a finales de los ochenta (Fukumoto, Shevrin et al. 1988). Estudios más recientes han estimado la media de copias por célula de ErbB2 en 30, pudiendo llegar hasta 64 copias/célula; (Bunn, Helfrich et al. 2001). Los resultados globales obtenidos en relación al número de copias del ADN genómico mostraron de forma inequívoca la presencia de un incremento del número de copias del oncogén ErbB2 (Figura R1) y genes adyacentes de la posición cromosómica 17q12 en la línea celular Calu-3 (Figura R2 y R3).

En este estudio, la amplificación de *ErbB2* fue exclusiva de la línea celular Calu3 y no se encontró en las restantes líneas celulares (**Figura R2**). El análisis permitió determinar que el amplicón comprende aproximadamente 5Mb (concretamente la región que va desde 31,9Mb a 36,9Mb). Dicha región contiene 140 genes según la información actual que existe sobre el mapa genómico.

Figura R1: Detalle de los resultados de la hibridación competitiva entre el ADN de individuos normales y el de la línea Calu3. El punto señalado corresponde al gen *ErbB2*.

ADN normal-Cy3

Calu3 ADN-Cy5

Calu3 ADN-Cy5

Figura R2: Tabla de los valores obtenidos a partir de los microarrays de CGH para el amplicón 17q12 en las ocho líneas celulares analizadas. Datos expresados en Log2 (Medianas Cy5/Cy3). Resaltado en verde oscuro los valores >1 y en verde claro los 0.5-1. En azul, se presentan de igual forma los valores de microarrays de ADNc de la línea Calu3.

CCL18 IMAGE:768497 31.416 -0.035 -0.034 0.199 0.25 0.895 0.177 -0.207 0.094 0.188 CCL3 IMAGE:768497 31.416 -0.035 -0.034 0.199 0.25 0.895 0.177 -0.207 0.094 0.188 CCL3 IMAGE:460398 31.440 -0.253 0.17 -0.048 0.33 0.397 0.055 -0.261 0.09 -0.391 CCL3L1 IMAGE:153355 31.635 -0.322 -0.145 -0.043 0.263 0.202 0.06 -0.459 -0.137 -0.104 TRIP3 IMAGE:66787 31.917 0.318 0.025 0.327 0.311 0.952 0.3 -0.218 0.224 0.134 MGC4172 IMAGE:782783 32.022 1.114 0.12 0.282 0.381 0.582 0.374 0.012 0.254 0.596 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.667 0.16	Con	ClanalD	Mb	Calu3	H23	A427	H441	h522	A549	H1200	H2126	Calu?
CCL16 IMAGE:164497 31.410 -0.033 -0.034 0.133 0.23 0.033 0.171 -0.207 0.034 0.106 CCL3 IMAGE:460398 31.440 -0.253 0.17 -0.048 0.33 0.397 0.055 -0.261 0.09 -0.391 CCL3L1 IMAGE:153355 31.635 -0.322 -0.145 -0.043 0.263 0.202 0.06 -0.459 -0.137 -0.104 TRIP3 IMAGE:66787 31.917 0.318 0.025 0.327 0.311 0.952 0.3 -0.218 0.224 0.134 MGC4172 IMAGE:782783 32.022 1.114 0.12 0.282 0.381 0.582 0.374 0.012 0.254 0.596 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.567 0.163 -0.066 -0.044 0.785 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671	CCL 19	IMACE:769497	21 4 16	0.035	0.034	0 199	0.25	0.895	0 177	0 207	0.094	0 188
CCL3 IMAGE:40336 31.440 50.235 0.11 50.646 0.135 0.035 50.201 0.055 50.137 CCL3L1 IMAGE:153355 31.635 -0.322 -0.145 -0.043 0.263 0.202 0.06 -0.459 -0.137 -0.104 TRIP3 IMAGE:66787 31.917 0.318 0.025 0.327 0.311 0.952 0.3 -0.218 0.224 0.134 MGC4172 IMAGE:782783 32.022 1.114 0.12 0.282 0.381 0.582 0.374 0.012 0.254 0.596 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.567 0.163 -0.066 -0.04 0.785 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671 0.037 -0.208 -0.074 0.806 RNF110 IMAGE:809916 34.144 1.402 0.05 0.367 0.338 0.887 0.312		IMAGE://60398	31.410	0.055	0.034	0.048	0.23	0.000	0.055	0.261	0.09	0.100
CCCLSE1 IMAGE:15333 31.033 0.322 0.143 0.043 0.203 0.205 0.305 0.433 0.134 0.134 TRIP3 IMAGE:66787 31.917 0.318 0.025 0.327 0.311 0.952 0.3 -0.218 0.224 0.134 MGC4172 IMAGE:782783 32.022 1.114 0.12 0.282 0.381 0.582 0.374 0.012 0.254 0.596 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.567 0.163 -0.066 -0.04 0.785 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671 0.037 -0.208 -0.074 0.806 RNF110 IMAGE:809916 34.144 1.402 0.05 0.367 0.338 0.887 0.312 -0.064 0.191 1.463 PSMB3 IMAGE:951233 34.63 1.021 -0.12 0.364 0.032 0.254 0.168<		IMAGE:460356	21.625	0.233	0.1/5	0.040	0.35	0.202	0.055	0.459	0.03	0.104
INTAGE:00171 31.317 0.316 0.023 0.321 0.311 0.332 0.332 0.321 0.216 0.224 0.134 MGC4172 IMAGE:782783 32.022 1.114 0.12 0.282 0.381 0.582 0.374 0.012 0.254 0.596 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.567 0.163 -0.066 -0.04 0.785 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671 0.037 -0.208 -0.074 0.806 RNF110 IMAGE:809916 34.144 1.402 0.05 0.367 0.338 0.887 0.312 -0.064 0.191 1.463 PSMB3 IMAGE:951233 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234		IMAGE:155555	21.033	0.322	0.145	0.045	0.203	0.202	0.00	0.433	0.224	0.104
MGC4 172 IMAGE:762783 52.022 1.114 0.12 0.262 0.361 0.362 0.374 0.012 0.234 0.386 AATF IMAGE:2072912 32.380 1.006 -0.112 0.397 0.143 0.567 0.163 -0.066 -0.04 0.785 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671 0.037 -0.208 -0.074 0.806 RNF110 IMAGE:809916 34.144 1.402 0.05 0.367 0.338 0.887 0.312 -0.064 0.191 1.463 PSMB3 IMAGE:951233 34.163 1.021 -0.12 0.364 0.032 0.254 0.168 -0.018 0.159 1.878 FBXL20 IMAGE:1185229 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234	MCC4472	IMAGE:00707	22.022	1 114	0.023	0.327	0.311	0.552	0.3	-0.210	0.224	0.134
AATF IMAGE:2012312 32:380 1.000 -0.112 0.337 0.143 0.367 -0.066 -0.066 -0.04 0.733 AP1GBP1 IMAGE:362829 32.952 1.176 -0.221 0.024 0.013 0.671 0.037 -0.208 -0.074 0.806 RNF110 IMAGE:809916 34.144 1.402 0.05 0.367 0.338 0.887 0.312 -0.064 0.191 1.463 PSMB3 IMAGE:951233 34.163 1.021 -0.12 0.364 0.032 0.254 0.168 0.018 0.159 1.878 FBXL20 IMAGE:1185229 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234		IMAGE:702703	32.022	1.114	0.12	0.202	0.301	0.567	0.374	0.012	0.234	0.330
APTGBP1 IMAGE:062629 32:352 1.176 -0.221 0.024 0.015 0.071 -0.206 -0.774 0.066 RNF110 IMAGE:062629 34.144 1.402 0.05 0.367 0.338 0.887 0.312 -0.064 0.191 1.463 PSMB3 IMAGE:051233 34.163 1.021 -0.12 0.364 0.032 0.254 0.168 0.018 0.159 1.878 FBXL20 IMAGE:1185229 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234	AATE AD1CRD1	IMAGE:2072912	32.300	1.000	-0.112	0.337	0.145	0.507	0.103	-0.000	-0.04	0.705
RNF110 IMAGE:809916 34.144 1.402 0.03 0.337 0.336 0.367 0.312 -0.004 0.131 1.403 PSMB3 IMAGE:951233 34.163 1.021 -0.12 0.364 0.032 0.254 0.168 -0.018 0.159 1.878 FBXL20 IMAGE:1185229 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234	APTGDPT DNE440	IMAGE:362629	32.932	1.170	-0.221	0.024	0.015	0.071	0.037	-0.200	-0.074	1.600
FBXL20 IMAGE:1185229 34.670 2.788 -0.148 1.311 0.804 -0.907 -0.944 -0.57 1.234		IMAGE:809916	34.144	1.402	0.03	0.364	0.330	0.007	0.512	0.004	0.151	1.403
FDXL20 IMAGE: T185223 34.670 2.700 -0.140 1.311 0.004 -0.307 -0.344 -0.37 1.234		IMAGE:951233	34.103	2 700	0.12	0.304	0.032	0.234	0.100	-0.010	0.133	1.070
DDD4D4D WAACE-977479 25 027 1074 0.005 0.444 0.521 0.926 0.260 0.407 0.224 0.660	FBALZU DDD4D4D	IMAGE:1185229	34.670	2.100	-0.140	0.444	0.004	0.020	-0.307	-0.344	-0.57	0.660
PPP1R1B IMAGE2/1713 33.037 4.371 0.033 0.444 0.331 0.030 0.203 0.131 0.354 0.003		IMAGE:277173	35.037	4.971	0.095	0.444	0.551	0.030	0.209	-0.197	0.334	0.009
ERBBZ IMAGE:/83/29 35.110 3.122 0.056 0.045 0.065 0.113 0.005 0.053 0.069 4.507	ERBBZ	IMAGE:/83/29	35.110	3.122	-0.038	0.040	-0.060	0.113	0.000	0.033	-0.069	4.30
GRB7 IMAGE236059 35.148 3.912 0.381 0.677 0.326 0.489 0.079 0.31 5.027	GRB/	IMAGE:236059	35.148	3.912	0.381	0.677	0.326	0.400	0.489	0.079	0.31	5.027
GSDML IMAGE:244062 35.314 5.488 0.298 0.432 0.322 0.122 0.104 4.902	GSDML	IMAGE:244062	35.314	5.488	-0.598	0.298		0.432	0.322	-0.122	0.104	4.902
ORMDL3 IMAGE:767775 35.331 3.661 -0.124 0.199 0.554 -0.165 0.183 0.108 4.117	ORMDL3	IMAGE:767775	35.331	3.661	-0.124	0.199		0.554	-0.165	0.183	0.108	4.11/
PSMD3 IMAGE:815861 35.391 2.907 0.362 0.656 1.02 0.421 0.314 0.777 2.584	PSMD3	IMAGE:815861	35.391	2.907	0.362	0.656		1.02	0.421	0.314	0.777	2.584
CSF3 IMAGE:1667001 35.425 3.343 0.148 0.339 0.348 0.985 0.417 0.065 0.256 0.267	CSF3	IMAGE:1667001	35.425	3.343	0.148	0.339	0.348	0.985	0.417	0.065	0.256	0.267
THRA IMAGE:22074 35.473 2.183 0.138 0.248 0.371 0.967 0.28 0.102 0.224 1.967	THRA	IMAGE:22074	35.473	2.183	0.138	0.248	0.371	0.967	0.28	0.102	0.224	1.967
CDC6 IMAGE:204214 35.698 1.231 -0.308 -0.085 -0.166 0.025 -0.231 -0.366 -0.221 0.929	CDC6	IMAGE:204214	35.698	1.231	-0.308	-0.085	0.166	0.025	-0.231	-0.366	-0.221	0.929
RARA IMAGE:461516 35.719 1.478 0.084 0.202 0.178 1.561 0.185 -0.02 0.082 2.435	RARA	IMAGE:461516	35.719	1.478	0.084	0.202	0.178	1.561	0.185	-0.02	0.082	2.435
TOP2A IMAGE:825470 35.798 2.281 -0.145 -0.053 -0.18 0.344 0.196 -0.529 -0.131 0.751	TOP2A	IMAGE:825470	35.798	2.281	-0.145	-0.053	-0.18	0.344	0.196	-0.529	-0.131	0.751
CCR7 IMAGE:3053351 35.964 2.926 0.105 0.284 0.403 1.079 0.294 0 0.347 0.346	CCR7	IMAGE:3053351	35.964	2.926	0.105	0.284	0.403	1.079	0.294	0	0.347	0.346
KRT20 IMAGE:586796 36.286 1.408 -0.13 0.309 0.177 0.911 0.244 -0.198 0.185	KRT20	IMAGE:586796	36.286	1.408	-0.13	0.309	0.177	0.911	0.244	-0.198	0.185	
KRT13 IMAGE:327676 36.911 0.237 -0.273 -0.061 -0.174 -0.131 -0.096 -0.438 -0.104 0.924	KRT13	IMAGE:327676	36.911	0.237	-0.273	-0.061	-0.174	-0.131	-0.096	-0.438	-0.104	0.924
KRT19 IMAGE:810131 36.933 0.629 0.246 0.295 0.373 0.335 0.322 0.06 0.199 4.016	KRT19	IMAGE:810131	36.933	0.629	0.246	0.295	0.373	0.335	0.322	0.06	0.199	4.016
KRT14 IMAGE:183602 36.992 0.369 -0.126 0.059 0.251 0.065 0.332 0.138 0.045 3.238	KRT14	IMAGE:183602	36.992	0.369	-0.126	0.059	0.251	0.065	0.332	0.138	0.045	3.238
NKIRAS2 IMAGE:137971 37.423 0.178 0.138 0.008 0.11 0.024 0.043 0.236 0.026 1.034	NKIRAS2	IMAGE:137971	37.423	0.178	-0.138	0.008	-0.11	0.024	0.043	-0.236	-0.026	1.034
RAB5C IMAGE:745249 37.531 0.521 0.025 0.429 0.578 0.912 0.607 0.16 0.112 0.865	RAB5C	IMAGE:745249	37.531	0.521	0.025	0.429	0.578	0.912	0.607	0.16	0.112	0.865
I GP1 IMAGE:1555536 37.595 0.35 0.001 0.305 0.225 0.405 0.076 0.089 0.131 1.104	L GP1	IMAGE:1555536	37.595	0.35	0.001	0.305	0.225	0.405	0.076	-0.089	0.131	1.104
STAT5A IMAGE:115638 37.694 0.575 0.277 0.026 0.18 0.721 0.067 0.311 0.184 0.956	STAT5A	IMAGE:115638	37.694	0.575	-0.277	-0.026	-0.18	0.721	0.067	-0.311	-0.184	-0.956
STAT3 IMAGE:1469311 37 719 0.695 0.008 0.245 0.339 1.033 0.44 0.139 0.205 0.329	STAT3	IMAGE:1469311	37,719	0.695	-0.008	0.245	0.339	1.033	0.44	-0.139	0.205	0.329
STAT3 IMAGE:725746 37.719 0.494 0.104 0.475 0.624 0.336 0.293 0.17 0.126	STAT3	IMAGE:725746	37.719	0.494	-0.104	0.475		0.624	0.336	0.293	0.17	0.126
ATP6V0A1 IMAGE:770377 37.864 0.149 0.085 0.288 0.029 0.301 0.079 0.177 0.02 0.611	ATP6V0A1	IMAGE:770377	37.864	0.149	0.085	0.288	0.029	0.301	0.079	-0.177	0.02	0.611
TCEL4 IMAGE:114410 37 973 0.444 0.168 0.205 0.157 0.682 0.583 0.106 0.224 0.522	TCEL4	IMAGE:114410	37 973	0.444	0.168	0.205	0.157	0.682	0.583	-0.106	0.224	0.522
TCL14 IMAGE-502582 37 973 0.147 0.012 0.082 0.036 0.277 0.118 0.207 0.044 0.005	TCEL4	IMAGE:502582	37 973	0 147	_0.012	0.082	0.036	0.277	0 118	0 207	0.044	_0.005
TURG1 MAGE-108377 38.015 0.557 0.164 0.581 0.183 0.67 0.29 0.078 0.077 0.044	TUBG1	IMAGE:108377	38 015	0.557	0.164	0.581	0.183	0.67	0.29	0.078	0.072	-0.041

En la figura R3 se muestra una representación del número de copias del ADN junto los niveles correspondientes de expresión de los genes incluidos en el Oncohip para todo el cromosoma 17 en la línea Calu3. Es importante destacar la correlación existente entre amplificación génica y la sobreexpresión de la mayoría de los genes contenidos en la región (Figura R2 y R3), hecho que no sucede en todos los amplicones. La amplificación de 17g12 se corroboró con la técnica de FISH (hibridación fluorescente in situ), utilizando para ello una sonda de ErbB2 (marcada en rojo) sobre el ADN total (teñido en azul con DAPI) de la línea Calu3 (Figura R4). Como control se utilizó una sonda centromérica marcada en verde que detectó la presencia de tres cromosomas que portaban el centrómeros del cromosoma 17. En los núcleos interfásicos se observó un número de copias para el gen ErbB2 superior a 25. En los núcleos metafásicos se observaba un cromosoma 17 con una morfología típica (submetacéntrica) y dosis génica de ErbB2 normal (situado en el centro derecha, Figura R4) y dos cromosomas telocéntricos aberrantes que presentan amplificación génica de ErbB2.

Una vez validado el sistema y, en base a los parámetros proporcionados por el control, se analizó la presencia

de amplicones en el resto de las líneas celulares, utilizando los siguientes criterios de selección: a) regiones que contengan genes cuyo valor Log2 (Medianas Cy5/ Cy3) fuera mayor a 1 y b) incremento del Log2 (Medianas Cy5/Cy3) superior a 0,5 en al menos cuatro genes adyacentes al anterior. Aplicando estos criterios se seleccionaron las siguientes regiones cromosómicas: 5p13 en la línea H23; 6p21 y 6p23 en la línea H522; 11q13.2 en las líneas H23 y H441 y 11q13.4 en las líneas H23, A427 y H441 y, finalmente, 19q13 en la línea H2126. En la figura R5 se representan los valores de CGH referentes a todo el genoma de algunas de las líneas celulares estudiadas.

Análisis de la región amplificada en el cromosoma 5p13.

El amplicón 5p13 fue identificado en la línea celular H23 y abarca aproximadamente 7Mb (desde la posición 34 a la 41Mb; Figura R6). Dicha región contiene alrededor de 50 genes según el mapa actual del genoma humano. Los datos aportados por los microarrays de expresión, mostraron que esta amplificación génica no se traducía en un claro aumento de expresión génica, al menos para aquellos genes contenidos en el Oncochip. Es posible que valores relativos de sobreexpresión de menor magnitud o que alguno de los genes no incluidos en el Oncochip

Figura R3: Datos de CGH y ADNc microarrays del cromosoma 17 de la línea celular Calu3 (expresados en Log2 Medianas Cy5/Oy3).

Figura R4: Hibridación fluorescente in situ utilizando una sonda contra ErbB2 (rojo) y una sonda centromérica (verde).

sean responsables de dicha amplificación génica. Alternativamente cabe la posibilidad de que no existan ningún oncogén diana en esta región y que se trate de un fenómeno de reordenamiento genético recurrente debido a la elevada inestabilidad genética de estos tumores.

Para la validación por FISH se marcó en rojo un BAC situado en el núcleo del amplicón (CTD-3092E20) que contenía los genes *NUP155* y *WDR70*. Como región control se marcó en verde el BAC (RP11-91I22) situado en la región distante situada cerca del centrómero (5q11.2). En el análisis de FISH se observó una cons-

Figura R5: Valores de CGH en el genoma de las líneas celulares H522, H23, H2126 y Calu3. Datos expresados en Log2 (Medianas Cy5/Cy3) ajustadas.

picua amplificación de la región 5p13 en la línea H23 (**Figura R7**). Para su comparación se muestra la línea H522, que se hibridó en paralelo con la H23 y presenta dosis génicas normales.

Al ser uno de los amplicones más recurrentes en tumores primarios (como veremos más adelante), fue elegido para estudiar más extensivamente. Figura R6: Valores de CGH en el cromosoma 5 de la línea celular H23.

Figura R7: Hibridación fluorescente in-situ sobre la región 5q12 (rojo) y el centrómero del cromosoma 5 (verde). La línea H522 (A-B) muestra una dosis génica normal y la H23 (C-D) una clara amplificación.

Figura R8: Tabla de los valores obtenidos a partir de los microarrays de CGH para los amplicones 6p21 y 6p22 en las ocho líneas celulares analizadas. Datos expresados en Log2 (Medianas Cy5/Cy3). Resaltado en verde oscuro los valores >1 y en verde claro los 0.5-1. En azul, se presentan de igual forma los valores de microarrays de ADNc de la línea Calu3.

Gen	CloneID	Mb	Calu3	H23	A427	H441	H522	A549	H1299	H2126	H522 cD	NA
HIVEP1	IMAGE:75803	12.121	-0.26	0.12	0.05	0.18	0.28	-0.17	0.78	-0.05	-0.11	
DTNBP1	IMAGE:105558	15.631	0.12	0.16	0.13	0.21	0.93	0.07	0.19	0.11	1.116	
FAM8A1	IMAGE:231223	17.709	-2.01	-0.34	-0.74	-0.87	2.31	-0.88	0.12	-2.44	1.41	
DEK	IMAGE:46213	18.332	-0.07	0.12	-0.2	0.03	2.1	-0.1	0.22	-0.05	0.568	
ID4	IMAGE:78823	19.946	-0.21	0.09	-0.23		1.41	-0.26	-0.06	0.09	3.102	
ALDH5A1	IMAGE:44505	24.603	-0.12	0	-0.19	0.02	0.93	-0.16	0.15	-0.15	1.075	6n22.24
TTRAP	IMAGE:84325	24.758	0.08	0.14	-0.33	0.12	1.39	-0.34	0.35	-0.05	1.701	0022-24
HIST1H4B	IMAGE:184217	26.135	-0.4	0.09	-0.28	-0.09	0.26	-0.38	0.27	-0.35	0.595	
HIST1H4C	IMAGE:146113	26.135	-0.07	0.09	-0.26	0.42	0.25	-0.14	0.92	-0.19	0.679	
HIST1H4H	IMAGE:447715	26.135	-0.15	0.04	-0.08	0.2	0.1	-0.36	0.31	-0.2	0.859	
HIST1H4J	IMAGE:23083	26.135	-0.28	0.08	-0.3	-0.1	0.17	-0.36	0.45	-0.27	0.819	
HIST1H1C	IMAGE:66317	26.164	-0.7	0.03	-0.41	-0.09	-0.01	-0.26	-0.03	-0.07	0.133	
BAK1	IMAGE:235938	33.648	0.24	0.12	0.37	0.53	0.24	0.08	0.29	0.31	0.715	
RPS10	IMAGE:2252417	34.493	-0.23	-0.43	-0.27	-0.2	-0.23	-0.22	-0.12	-0.31	0.092	
ZNF76	IMAGE:745003	35.335	0.01	0.48	0.03	0.39	2.93	0.2	0.36	0.35	1.472	
PPARD	IMAGE:270626	35.418	-0.06	0.23	0.12	0.29	0.7	-0.05	0.14	-0.07	1.206	
RPL10A	IMAGE:124824	35.544	-0.09	0.09	-0.13	-0.18	0.53	-0.09	0	-0.24	-0.3	
MAPK14	IMAGE:772261	36.104		-0.11	-0.66	-3.17	1.62	-0.95	0.11	-1.29	1.396	
MAPK13	IMAGE:590774	36.130	-0.08	0.06	-0.04	0.31	1.28	-0.02	-0.05	-0.23	-1.601	
C6orf69	IMAGE:227338	36.519	-0.48	-0.23	-0.37	-0.07	1.22	-0.54	-0.13	-0.37	0.16	
C6orf69	IMAGE:43828	36.519	-0.04	0.01	-0.2	0.13	1.32	-0.14	0.18	-0.06	-0.286	
STK38	IMAGE:826135	36.570	-0.39	-0.09	-0.03	-0.11	1	-0.1	-0.16	-0.23	1.092	
SFRS3	IMAGE:950092	36.670	-0.13	-0.24	-0.51	-0.42	1.73	-0.31	0.13	-0.28	0.282	6.24
CDKN1A	IMAGE:133504	36.754	-0.11	0.32	0.04	0.42	1.32	0.03	0.38	0.13	0.099	opzi
PPIL1	IMAGE:431796	36.931	-0.4	-0.17	-0.41	-0.24	2.13	-0.18	-0.32	-0.34	1.186	
PIM1	IMAGE:292726	37.246	-0.71	0.16	-0.34	0.06	1.76	-0.4	0.24	-0.37	0.048	
PIM1	IMAGE:813630	37.246	-0.32	0.23	0.24	0.84	1.87	-0.19	0.26	-0.14	-0.16	
C6orf128	IMAGE:1641726	37.288	-0.38	0.19	-0.23	0.08	1.48	-0.14	0.23	-0.07	0.572	
MDGA1	IMAGE:262763	37.708	-0.21	0.24	-0.26	0.15	1.67	-0.08	0.03	-0.09		
GL01	IMAGE:491001	38.752	-0.37	0.1	-0.28	0.05	1.53	-0.09	-0.03	-0.23	1.694	
DNAH8	IMAGE:435871	38.791	-0.33	-0.01	-0.46	0.14	1.37	-0.21	0.1	-0.15	0.459	
C6orf102	IMAGE:1850834	39.412	0.01	0.15	-0.23	0.27	1.35	-0.1	0.16	0.05	-0.156	
TBN	IMAGE:1590007	42.126	0.01	0.2	0.16	0.26	0.24	0.13	0.2	0.24	0.372	
C6orf133	IMAGE:281904	42.640	-0.38	-0.21	-0.17	-0.34	-0.01	-0.42	0.24	-0.61	-0.139	

Análisis de la región amplificada en el cromosoma 6p21 y 6p23.

Los amplicones 6p21 y 6p23 fueron identificados simultáneamente en la línea celular H522. La amplificación para la región 6p21 abarca aproximadamente 7,8Mb (desde la posición 34,4 a 42,2Mb) y contiene alrededor de 100 genes conocidos, según el mapa actual del genoma humano. Por otra parte, el amplicón 6p23 abarca aproximadamente 10Mb (desde la posición 16,2- a 26,2Mb) y contienen alrededor de 60 genes conocidos. Ambas amplificaciones están separadas por un valle de unos 7,8Mb (Figura R9). La cercanía de ambos amplicones y la presencia de ambos en la misma línea celular sugieren que se trata de un fenómeno de reordenamiento complejo. Los datos aportados por los microarrays de expresión, mostraron que sólo el amplicón 6p23 presentaba un aumento significativo en la expresión de los genes amplificados (Figura R8).

De forma similar a los anteriores amplicones, la amplificación en el cromosoma 6 se confirmó mediante la técnica de FISH. Para 6p21 se marcó en rojo una serie de BACs situados en el núcleo del amplicón (RP11-170N22 y RP11-58G14) que contenían los genes *CPNE5*, *PPIL1*, *PI16* y *FGD2*. Para el amplicón 6p23 se marcó en rojo un BACs situado en el núcleo del amplicón (RP4-625H18) que contenía el gen ID4. Como control se utilizó una sonda centromérica marcada en verde (Chromosome 6 Satellite Probe, Driect Green, Qbiogene, UK). Las imágenes captadas tras la FISH mostraron una clara amplificación en un núcleo interfásico de la línea H522 en la región 6p21 (**Figura R10-A**), mientras que la FISH realizada en paralelo con la misma sonda en un núcleo de la línea A427 mostró una dosis génica normal (**Figura R10- B**).

En las metafases (Figura R10-C), se observaron cuatro cromosomas con el centrómero del cromosoma 6, dos de ellos presentan una morfología normal (submetacéntrica), mientras que los otros dos son aberrantes. Uno de los cromosomas aberrantes presenta un número elevado de copias de la región 6p21 que, además, incluyen el centrómero, tal y como indica la señal amarilla de superposición. La comparación de metafases de la

Figura R9: Valores de CGH para el cromosoma 6 de la línea celular H522.

línea H522 para los amplicones de las regiones 6p21 y 6p23 (**Figura R10-C** y **R10-D**, respectivamente) muestra los mismos cromosomas implicados en las regiones amplificadas.

Al ser uno de los amplicones más recurrentes en tumores primarios (como veremos más adelante), fue elegido para estudiar más extensivamente.

Figura R10: Arriba: Hibridación fluorescente *in-situ* sobre la región 6p21 (rojo). La línea A427 muestra una dosis genética normal y la H522 una conspicua amplificación. Abajo: Hibridación fluorescente *in-situ* sobre el amplicón 6p21 y 6p23 (rojo) y el centrómero del cromosoma 6 (verde) en la línea H522.

Análisis de la región amplificada en el cromosoma 11q.

Los amplicones de 11q13.2 y 11q13.4 fueron identificados simultáneamente en las líneas celulares H23 y H441. Ambos tienen una longitud aproximada de 2Mb, abarcando las posiciones desde 66,4 a 68,4Mb para 11q13.2 y desde 71,4 a 73,4 para 11q13.4. Según los datos obtenidos por el estudio de microarrays de CGH, ambos amplicones están separados por una región de aproximadamente 3Mb (Figura R11). De la misma forma que se observaba para la amplificación en el cromosoma 6, la cercanía de ambos amplicones y la presencia de ambos en las mismas líneas celulares sugiere que se trata de fenómenos de reordenamiento complejo. Ambas amplificaciones se asocian con un aumento de los niveles transcripcionales, especialmente la amplificación de 11q13.2 en la línea H23 (Figura R13).

De forma similar a los anteriores amplicones, la amplificación en el cromosoma 11 se confirmó mediante la técnica de FISH. Para la región 11q32.2 se marcó en rojo una serie de BACs situados en el núcleo del amplicón (RP11-715F10 y CTD-2530J15) que contenían los genes *CLCF1, RAD9, PPP1CA, RPS6KB2, PTPPRCAP, CO-RO1B, CABP4, AIP, CDK2AP2, GSTP1* y *CABP2*. Para el amplicón 11q32.4 se marcó en rojo un BACs situado en el núcleo del amplicón (RP11-65L1, RP11-800A3 y RP11-933G1) que contenía los genes *FCHSD2, P2RY2,*

30

P2RY6, ARHGEF17 y TNFRSF19C. Como región control se marcó en verde un BAC (RP11- 12C1) situado en la región cercana al centrómero (11p11.2). La compara-

ción de metafases de la línea H441 para los amplicones de las regiones 11g13.2 y 11g13.4 (Figura R12) muestran los mismos cromosomas implicados en las regiones amplificadas. Los núcleos en metafase muestran la presencia de dos copias del cromosoma 11 normales (metacéntricos) junto con un cromosoma aberrante que contiene varias copias de la región 11q13.2 y 11q13.4.

Figura R12: Hibridación fluorescente in situ de los amplicones 11q13.2 y 11q13.4 en la línea H441.

Figura R13: Tabla de los valores obtenidos a partir de los microarrays de CGH en las ocho líneas celulares analizadas para los amplicones 11q13.2 y 11q13.4. Datos expresados en Log2 (Medianas Cy5/Cy3). Resaltado en verde oscuro los valores mayores a 1 y en verde claro los valores entre 0.5 y 1. En azul, se presentan de igual forma los valores de microarrays de ADNc de las líneas H23 y H441 respectivamente.

Gen	CloneID	Mb	Calu3	H23	A427	H441	H522	A549	H1299	H2126	H23 cDNA	H441 cDNA	
RBM30	IMAGE:247216	66.189	-0.086	-0.47	0.076	0.71	-0.151	-0.025	-0.069	0.262	-0.778	-0.036	
RCE1	IMAGE:2009655	66.367	0.162	0.178	0.252	0.628	0.372	0.229	0.095	0.331	1.236	0.935	
SYT12	IMAGE:51284	66.531	0.165	0.188	0.427	0.62	0.502	0.158	0.083	0.356	0.492	2.896	
RHOD	IMAGE:591907	66.581	0.225	0.583	0.621	0.981	0.396	0.267	0.088	0.398	1.491	0.414	
POLD4	IMAGE:810734	66.876	0.011	0.87	0.38	0.948	-0.566	0.269	0.147	0.587	1.629	1.358	
CLC	IMAGE:1664309	66.888	0.005	0.555	0.297	0.398	0.242	0.157	0.024	0.205	1.618	1.524	
PPP1CA	IMAGE:196102	66.922	0.054	0.707	0.466	0.653	0.272	0.247	0.114	0.293	1.938	0.929	
RPS6KB2	IMAGE:324712	66.953	0.189	0.707	0.425	0.577	0.315	0.269	0.195	0.399	2.509	0.712	
AIP	IMAGE:814731	67.007	0.636	1.288	0.534	1.532	1.718	0.531	0.498	0.813	1.727	0.887	
PITPNM1	IMAGE:277186	67.016	0.195	0.963	0.486	0.863	0.388	0.2	0.145	0.397	1.429		
DOC-1R	IMAGE:810429	67.031	-0.167	0.142	0.369	0.2	0.014	-0.01	0.038	-0.054	1.693	0.929	
NDUFV1	IMAGE:770043	67.131	0.133	0.356	0.165	0.466	0.17	-0.048	-0.092	0.25	1.329	0.325	11q13.2
NDUFV1	IMAGE:825302	67.131	0.065	0.324	0.207	0.098	0.142	0.298	0.168	0.3	1.429	-0.898	
ALDH3B2	IMAGE:771308	67.186	0.285	1.204	0.456	1.259	0.489	0.366	0.255	0.542	1.19	1.331	
NDUFS8	IMAGE:502141	67.555	0.011	0.288	0.052	0.208	0.042	-0.108	-0.107	0.022	1.359	0.816	
TCIRG1	IMAGE:2015083	67.563	0.046	0.295	0.154	0.289	0.113	0.08	-0.062	0.005	0.801	0.73	
CHKA	IMAGE:462632	67.577	0.205	1.077	0.188	1.071	0.319	-0.123	-0.502	0.555	0.006	-0.274	
CHKA	IMAGE:46367	67.577	0.298	0.757	0.409	0.734	0.244	0.048	-0.034	0.261	0.189	0.437	
SUV420H1	IMAGE:782832	67.680	-0.33	0.66	-0.137	0.569		-0.254	-0.513	0.339	0.702	0.787	
SUV420H1	IMAGE:826099	67.680	0.015	0.922	0.265	0.913	0.598	-0.203	-0.15	0.382	0.798	0.719	
LRP5	IMAGE:194451	67.837	0.584	0.687	0.497	2.356	1.037	0.602	0.927	0.188	0.25	2.452	
C11orf23	IMAGE:128785	67.985	0.13	0.806	0.534	0.683	-0.543	-0.155	-0.343	0.209	-0.281	-1	
C11orf23	IMAGE:293830	67.985	-0.023	0.383	0.576	0.213	-0.005	-0.192	-0.283	-0.023	0.817	0.475	
DKFZP564M082	IMAGE:771317	71.499	0.005	-0.037	0.318	0.178	-0.097	-0.137	-0.202	-0.181	0.727	-0.16	
FOLR3	IMAGE:324715	71.524	0.186	0.57	0.7	0.975	0.3	0.211	0.061	0.444	-1.556	0.083	
F0LR1	IMAGE:131839	71.578	0.09	0.388	0.716	0.741	0.232	0.124	0.025	0.279	-3.913	-0.146	
FOLR2	IMAGE:813757	71.605	0.226	0.631	0.868	1.093	0.473	0.253	0.001	0.513	-0.518	0.033	
SKD3	IMAGE:565653	71.681	0.422	0.889	1.512	1.525	1.377	0.376	0.295	0.658	1.874	2.388	
PDE2A	IMAGE:1257170	71.965	0.3	0.37	0.606	0.845		0.095	0.241	0.522	-0.04	0.04	
FCHSD2	IMAGE:299128	72.225	0.104	0.347	0.267	0.772	0.273	0.045	-0.03	0.277	0.585	-0.08	
P2RY2	IMAGE:141852	72.607	0.059	0.696	1.806	2.159	1.647	0.243	0.095	0.545	1.693	1.383	
P2RY6	IMAGE:452588	72.653	-0.061	0.257	0.337	0.502	0.262	0.11	-0.049	0.215	1.916	3.084	11q13.4
ARHGEF17	IMAGE:624577	72.697	0.107	0.456	0.585	1.043	0.442	0.175	0.068	0.33	1.23	1.852	
TNFRSF19L	IMAGE:1655750	72.765	0.088	0.58	0.598	1.003	0.756	0.403	0.236	0.542	0.346	-0.144	
PLEKHB1	IMAGE:731469	73.022	0.08	0.448	0.799	0.5		0.628		0.592	0.073	0.053	
RAB6A	IMAGE:1553280	73.064	0.19	0.591	0.629	1.351	0.384	0.371	0.308	0.359	0.703	0.254	
RAB6A	IMAGE:256666	73.064	0.516	0.731	0.508	1.277	0.8	0.544	0.72	0.85	0.801	1.354	
UCP2	IMAGE:236034	73.363	-0.063	0.554	0.064	0.586	-0.048	0.029	-0.095	0.114	0.082	0.501	
UCP3	IMAGE:628529	73.389	-0.133	-0.126	-0.001	0.267	0.066	-0.179	-0.246	-0.058	1.173	0.861	
PME-1	IMAGE:1030791	73.560	0.264	0.516	0.321	0.946	0.615	0.261	0.035	0.442	0.231	-0.125	

Figura R11: Valores de CGH para el cromosoma 11 de las líneas celulares H23 y H441.

Análisis de la región amplificada en el cromosoma 19q13.

El amplicón en 19g13 fue identificado en la línea celular H2126. Abarca aproximadamente 1,6Mb (desde la posición 53,5Mb a 55,1Mb) y contiene alrededor de 80 genes conocidos según el mapa actual del genoma humano (Figura R14). La amplificación génica de esta región se corresponde con un aumento transcripcional de gran parte de los genes amplificados (Figura R16). Al igual que el resto de amplicones, la amplificación fue validada mediante FISH utilizando las sondas RP11-123C1 y RP11-591H17 que contienen los genes RUVBL2, LHB, CAGB, CGB1, CGB2, CGB5, CGB8, CGB2, CGB7, NTF5, KCNA7, SNRP70, LIN7B, PPFIA3, HRC, TRPM4. Los núcleos en interfase de la línea H2126 mostraron una conspicua amplificación de la región 19q13 (Figura R15-**B** y **C**) con un número de copias superior a diez. Mientras que los de la línea celular H441 (Figura R15-A) ensayadas en paralelo mostraron una dosis génica normal.

Figura R14: Amplicón 19q13. A) Valores obtenidos en los microarrays de CGH para el cromosoma 19 en la línea celular H2126, el amplicón 19q13 se destaca en rojo. B) Detalle de los valores de CGH en el núcleo del amplicón de la región 19q13. C) Posición cromosómica de los BACs utilizados para la validación por hibridación fluorescente *in situ.* D) Posiciones cromosómicas de los genes conocidos en esta región cromosómica según la información actual que se dispone del genoma.

Figura R15: Hibridación fluorescente in situ del los amplicones 19q13.2 en la líneas A) H441 y B,C) H2126.

Estudio de la presencia de amplificación en tumores primarios de pulmón.

La presencia de la amplificación en regiones concretas del ADN encontrada en las líneas celulares tiene mayor

importancia si está presente también en tumores primarios. De esta forma se puede concluir que es un fenómeno asociado al proceso tumoral y no un artefacto que ocurre en células en cultivo. Por ello se evaluó la presencia de amplificación génica en estas regiones en tumores primarios de cáncer de pulmón. El estudio se llevó a cabo mediante Hibridación Fluorescente in situ (FISH), utilizando las sondas descritas anteriormente (Tabla M3). Para detectar la presencia de falsos positivos por poliploidías se utilizaron siempre sondas control (marcadas en verde) simultáneamente con la sonda problema (marcada en rojo). En el estudio se incluyeron tumores de 25 pacientes diagnosticados con cáncer de pulmón de tipo adenocarcinoma, el mismo tipo histológico que las líneas celulares utilizadas. Los tumores estaban incluidos por duplicados en una matriz tisular (ver apartado materiales y métodos 3.4), que además contenía tejidos normales de control.

La **figura R18** muestra imágenes representativas captadas por FISH. Para todas las regiones fue posible detectar al menos un tumor primario que tuviera amplificación. Se consideraron positivos para amplificación génica a aquellos tumores que presentaban un incremento de al menos 5 copias de la región de interés. Las frecuencias de amplificación fueron las siguientes se muestran en la **tabla R17**.

Los amplicones presentes en las regiones cromosómicas 5p13 y 6p fueron los más frecuentemente encontrados en tumores primarios, y se seleccionaron para ser más estudiados extensivamente, en busca del gen causante de la amplificación (como veremos en secciones posteriores).

Discusión

La amplificación génica es uno de los mecanismos de activación de proto-oncogenes en los tumores. Como paradigma de proto-oncogenes activados por amplificación se encuentran *ErbB2* amplificado en el 25-30% de los tumores de mama (Slamon, Godolphin et al. 1989) y N-myc amplificado en el 40% de neuroblastomas (Brodeur, Seeger et al. 1984). En tumores de pulmón, a pesar del alto grado de inestabilidad cromosómica que presentan, no se conoce ningún proto- oncogen que se amplifique tan recurrentemente (Shiraishi, Noguchi et al. 1989).

En el presente estudio se identificaron mediante el uso de microarrays de hibridación genómica comparada (CGH) cinco regiones diferencialmente amplificadas (5p13, 6p21-22, 11q13, 17q12 y 19q13). Posteriormente se validaron dichas amplificaciones mediante FISH utilizando sondas específicas y se comprobó un aumento relativo en el número de copias génicas de dichas regiones. Aunque la frecuencia individual de cada amplicón en los tumores estudiados no fue muy elevada (siempre inferior al 10%), el número de tumores que presentaba al menos una de las alteraciones era conside-rablemente alto (28%). Estos datos, junto a las recientes evidencias que relacionan dichos amplicones con una peor supervivencia (Kim, Yim et al. 2005), muestran la relevancia de dichas alteraciones en el cáncer y subrayan la importancia de dedicar esfuerzos dirigidos a la identificación de los oncogenes contenidos en dichas regiones. A continuación discutiremos los resultados obtenidos para cada amplicón:

El amplicón encontrado en la línea celular Calu3, correspondiente a la región 17q12, sirvió para validar el sistema de análisis utilizado en el presente trabajo, ya que alberga un conocido proto-oncogén *ErbB2/neu*, cuya amplificación se describió por primera vez en dicha línea celular en 1988 (Fukumoto, Shevrin et al. 1988). Estudios más recientes han estimado la media de copias por célula de Calu3 de *ErbB2* en 30 (pudiendo llegar hasta 64 copias/ célula) (Bunn, Helfrich et al. 2001).

La corroboración de la amplificación y sobre-expresión de *ErbB2* en la línea Calu3, establece un modelo celular fiable para el estudio en cáncer de pulmón de la trasformación por amplificación de dicho oncogén y para estudios de respuesta frente a anticancerígenos utilizados en terapias dirigidas como el *tratuzumab* y *lapatinib*.

El amplicón 11q13 que se encontró en el presente estudio en las líneas celulares H23 y H441, se había detectado anteriormente en tumores de cabeza y cuello, mama, y vejiga. Actualmente, tras más de veinticinco años desde su hallazgo, (Gaudray, Szepetowski et al. 1992), no existe todavía un proto-oncogén que sea firme candidato a ser el gen diana de dicha amplificación. Probablemente, esto sea debido a la presencia de múltiples factores que dificultan su estudio. En primer lugar, los amplicónes de esta región suelen abarcar regiones extensas, muchas veces de varias megabases, que contienen decenas o cientos de genes que se coamplifican (tal y como se ha citado anteriormente para el amplicón Calu3). Además, frecuentemente la región amplificada presenta una estructura compleja (Schwab 1998) en la que pueden estar implicados diferentes fragmentos cromosómicos (Casey, Smith et al. 1986). En concordancia con esta observación, en el presente estudio se ha observado que las líneas H23 y H441 contienen amplificaciones de dos fragmentos cromosómicos cercanos (11q13.2 y 11q13.4) con decenas de genes afectados. Por otra parte, en ocasiones la amplificación génica no se corresponde con sobre-expresión. Así, por ejemplo, los genes INT2/FGF3, que fueron los originalmente asociados al amplicón 11g13 (Roelofs, Schuuring et al. 1993; Lin, Smith et al. 2005), presentaban niveles de expresión indetectables en los tumores en que se encontraban amplificados (Lidereau, Callahan et al. 1988).

Con respecto al amplicón 19q13, los datos previos son escasos y cabe destacar una publicación en la que se ha detectado amplificación de esta región en tumores de pulmón (Casey, Smith et al. 1986), proponiéndose como oncogén candidato al a *SPIB*.

Los amplicones situados en las regiones 6p21-23, 5p13, sean quizás hasta el momento de los que menos información se posee. Sin embargo, en el presente trabajo habíamos encontrado sendos amplicones entre los más frecuentemente hallados en tumores primarios, por esta razón nos dispusimos a estudiarlos más extensivamente. Una vez corroborado los datos generados por los microarrays de CGH mediante FISH, utilizamos una técnica más resolutiva, la PCR cuantitiva, para determinar el núcleo de los genes amplificados en dichas regiones

Figura R16: Tabla de los valores obtenidos a partir de los microarrays de CGH para el amplicón 19q13 en las ocho líneas celulares analizadas. Datos expresados en Log2 (Medianas Cy5/Cy3). Resaltado en verde oscuro los valores >1 y en verde claro los 0.5-1. En azul, se presentan de igual forma los valores de microarrays de ADNc de las líneas H2126.

Gen	ClonelD	Mb	Calu3	H23	A427	H441	h522	A549	H1299	H2126	H2126
ATF5	IMAGE:814158	55.124	0.184	0.192	0.277	0.172	0.168	0.245	0.119	0.269	-0.86
CD33	IMAGE:1917430	56.420	-0.06	-0.25	-0.21	-0.58	-0.85	0.054	-0.51	-0.1	-0.95
CGB5	IMAGE:259973	54.218	0.298	-0.01	0.229	-0.1	-0.2	0.486	-0.29	1.209	0.407
FCGRT	IMAGE:770394	54.708	0.377	0.185	0.549			0.554	0.039	0.772	1.755
GYS1	IMAGE:45632	54.163	0.34	-0.07	0.158	-0.32	-0.18	0.382	-0.13	0.934	1.543
IRF3	IMAGE:809353	54.855	0.568	0.42	0.3	0.177	0.403	0.466	0.033	0.768	1.063
KDELR1	IMAGE:184175	53.578	0.119	-0.08	0.067	-0.02	-0.4	0.164	-0.2	0.008	1.011
MGC10204	IMAGE:1554596	54.648	-0.57		0.28			0.324	0.465	-0.9	0.723
NOSIP	IMAGE:753021	54.751	0.145	0.405	0.211	-0.06	-0.18	0.226	-0.15	0.219	0.59
NTF5	IMAGE:130941	54.256	0.723	0.024	0.245		-0.17	0.442	-0.15	1.271	0.284
NUCB1	IMAGE:788472	54.096	0.455	0.119	0.21	0.191	0.341	0.344	0.086	0.622	1.396
PPFIA3	IMAGE:344942	54.314	0.266	0.487	0.423	0.122	0.334	0.852	0.163	1.147	3.345
PPP1R15A	IMAGE:795893	54.067	0.361	-0.37	0.163	0.206	-0.26	0.958	0.355	0.648	0.984
PRRG2	IMAGE:770074	54.778	0.394	0.276	0.235	0.368	0.276	0.622	0.153	0.642	1.913
PTOV1	IMAGE:840658	55.046	0.388	0.443	0.995	-3.55	-3.04	0.645	0.518	0.924	0.954
RPL18	IMAGE:878545	53.810	0.199	-0.16	-0.21	-0.04	-0.29	-0.01	-0.18	-0.01	0.242

Figura R17: Frecuencia de amplificaciones en tumores primarios. *Indica la presencia de amplificación en al menos una de las regiones testadas.

Región	Frecuencia
5p13	2/25
6p21, 6p23	2/25
11q13.2	1/25
17q12	1/25
19q13	1/25
*Total	7/25=28%

Bibliografía

Alt, F. W., R. E. Kellems, et al. (1978). "Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells." J Biol Chem **253**(5): 1357-70.

Brodeur, G. M., R. C. Seeger, et al. (1984). "Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage." Science **224**(4653): 1121-4.

Bruheim, S., M. L. Sandvold, et al. (2013). "Antitumor activity of elacytarabine combined with bevacizumab, cetuximab and trastuzumab in human NSCLC xenografts." Anticancer Res **33**(9): 3615-21.

Bunn, P. A., Jr., B. Helfrich, et al. (2001). "Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents." Clin Cancer Res **7**(10): 3239-50.

Cappuzzo, F., M. Varella-Garcia, et al. (2005). "Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients." J Clin Oncol **23**(22): 5007-18.

Casey, G., R. Smith, et al. (1986). "Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene." Mol Cell Biol 6(2): 502-10.

Dalla-Favera, R., F. Wong-Staal, et al. (1982). "Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient." Nature **299**(5878): 61-3.

Deininger, M. W. and B. J. Druker (2003). "Specific targeted therapy of chronic myelogenous leukemia with imatinib." Pharmacol Rev **55**(3): 401-23.

Fukumoto, M., D. H. Shevrin, et al. (1988). "Analysis of gene amplification in human tumor cell lines." Proc Natl Acad Sci USA **85**(18): 6846-50.

Gaudray, P., P. Szepetowski, et al. (1992). "DNA amplification at 11q13 in human cancer: from complexity to perplexity." Mutat Res **276**(3): 317-28.

Grob, T. J., I. Kannengiesser, et al. (2012). "Heterogeneity of ERBB2 amplification in adenocarcinoma, squamous cell carcinoma and large cell undifferentiated carcinoma of the lung." Mod Pathol **25**(12): 1566-73.

Figura R18: Imágenes representativas de la Hibridación Fluorescente in situ (FISH) realizada sobre tumores primarios. En la parte superior se muestra los núcleos de un tumor que presenta una amplificación en la región 5p13 y otro que no. Abajo, imágenes representativas de núcleos de tumores que células que presentan amplificación en las regiones 11q13, 19p13 y 6p21 respectivamente.

5p13. Tumor -

5p13. Tumor +

Herrero, J., F. Al-Shahrour, et al. (2003). "GEPAS: A web-based resource for microarray gene expression data analysis." Nucleic Acids Res **31**(13): 3461-7.

Kim, T. M., S. H. Yim, et al. (2005). "Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers." Clin Cancer Res **11**(23): 8235-42.

Lidereau, R., R. Callahan, et al. (1988). "Amplification of the int-2 gene in primary human breast tumors." Oncogene Res 2(3): 285-91.

Lin, M., L. T. Smith, et al. (2005). "DNA copy number gains in head and neck squamous cell carcinoma." Oncogene.

Pinkel, D., R. Segraves, et al. (1998). "High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays." Nat Genet **20**(2): 207-11.

Pollack, J. R., C. M. Perou, et al. (1999). "Genome-wide analysis of DNA copy-number changes using cDNA microarrays." Nat Genet **23**(1): 41-6.

Roelofs, H., E. Schuuring, et al. (1993). "Amplification of the 11q13 region in human carcinoma cell lines: a mechanistic view." Genes Chromosomes Cancer 7(2): 74-84.

Schwab, M. (1998). "Amplification of oncogenes in human cancer cells." Bioessays 20(6): 473-9.

Shiraishi, M., M. Noguchi, et al. (1989). "Amplification of protooncogenes in surgical specimens of human lung carcinomas." Cancer Res **49**(23): 6474-9.

Slamon, D. J., W. Godolphin, et al. (1989). "Studies of the HER-2/ neu proto-oncogene in human breast and ovarian cancer." Science 244(4905): 707-12.

Swanton, C., A. Futreal, et al. (2006). "Her2-targeted therapies in nonsmall cell lung cancer." Clin Cancer Res **12**(14 Pt 2): 4377s-4383s.

Tsao, M. S., A. Sakurada, et al. (2005). "Erlotinib in lung cancer - molecular and clinical predictors of outcome." N Engl J Med **353**(2): 133-44.